

Structure in practical model error bounds

Citation for published version (APA):
Ariaans, L. J. J. M. (1997). Structure in practical model error bounds. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR474943

DOI:
10.6100/IR474943

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR474943
https://doi.org/10.6100/IR474943
https://research.tue.nl/en/publications/298ea72e-fdeb-4ea3-86df-8924f5605bca

Structure in Practical Model
Error Bounds ·

Leon Ariaans

Structure in Practical Model
Error Bounds

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof. dr. M. Rem,
voor een commissie aangewezen door het College van

Dekanen in het openbaar te verdedigen op
woensdag 26 februari 1997 om 16.00 uur

door

Leonardus Johannes Jacobus Marie Ariaans

geboren te Thorn

Dit proefschrift is goedgekeurd door de promotoren:
prof. dr. ir. A.C.P.M. Backx
en
prof. dr. ir. P.P.J. van den Bosch

Copromotor: dr. S. Weiland

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Ariaans, Leonardus J.J.M.

Structure in practical model error boundsj by
Leonardus J.J.M. Ariaans. -
Eindhoven : Technische Universiteit Eindhoven, 1997.
Proefschrift. - ISBN 90-386-0240-5
NUGI 832
Thefw.: systeemidentificatie / onzekerheid / robuuste regelsystemen.
Subject headings: control system analysis / modelling / uncertain systems.

Woe to the author who always wants to teach!
The secret of being a bore is to tell everything.

- Voltaire, De la Nature de l'Homme (1737).

English translatîon taken from·
Donald E. Knuth, The TEXbook (1984).

Voorwoord

Voor de lezer is dit proefschrift nog maar net begonnen, maar voor mij zit
het er (bijna) op. "Het" slaat dan in eerste instantie op het schrijven van dit
proefschrift, maar ook mijn tijd bij de vakgroep Meten en Regelen, eerst als
student, later als promovendus, zit er nu op. Terugkijkend op deze tijd wil ik
een aantal mensen bedanken.

Allereerst prof. Ton Backx, die mij deze baan heeft aangeboden voor ik
ernaar kon vragen. Ik waardeer de vrijheid die hij mij tijdens mijn onderzoek
gelaten heeft zeer, evenals zijn bijdrage aan dat onderzoek, die op verscheidene
essentiële plaatsen in dit proefschrift aanwijsbaar is. Dit geldt zeker ook voor
dr. Ad Da.men en dr. Siep Weiland. Hun kritische maar altijd constructieve
opmerkingen zijn een grote inspiratiebron voor mij geweest, temeer daar zij de
materie elk op hun eigen wijze benaderen.

Vervolgens wil ik prof. Paul van den Bosch bedanken, niet alleen voor het
doorlezen van de eerste versies van dit proefschrift, maar ook voor het vertrou
wen dat hij de afgelopen tijd in mij getoond heeft. Dank ook aan prof. Okko
Bosgra, voor het proeflezen van mijn proefschrift en de plezierige discussies die
daaruit voortgevloeid zijn.

De bereidheid van Jobert Ludlage om zijn drukke bezigheden bij, tegen
woordig, Aspentech te onderbreken om te voorkomen dat mijn onderzoek al te
ver van de praktijk wegdriftte stel ik zeer op prijs.

Een bijzonder woord richt ik tot mijn kamergenoot gedurende vrijwel mijn
hele promotieonderzoek, Jozef Mazák: you made me realîse that life is full of
disappointments hut that it is better to be an optimist proven wrong than a
pessimist proven right.

Uitdrukkelijke waardering verdienen ook Wim Beckers en Udo Bartzke voor
het altijd snel oplossen van de schaarse problemen op computergebied. De
mogelijkheden die zij mij hebben geboden om mijn (computer)werkplek naar
eigen inzicht in te richten beschouw ik als een belangrijk privilege.

Mijn (oud)-collega's Mark Keulers, Heinz Falkus, Milan Hanajik, Par Du
nias, Robert Jan Gorter, Yvo Boers, Maurice Heemels en Liu Hang mogen hier
niet onvermeld blijven. Zij vormen een wezenlijke factor in het plezier waarmee
ik mijn werk en ook andere activiteiten bij de vakgroep verricht heb. Dit geldt
ook voor Dik de Bruin, die mij in de paar weken dat hij mijn kamergenoot
was meer afwezig dan aanwezig vond, voor Paul Borghouts, die mijn taken in
de feestcommissie verlichtte en mij vaak hielp het weekend op gepaste wijze te
beginnen, en voor alle overige (oud)-leden van de vakgroep die nog niet met
name genoemd zijn.

Voorwoord v

"Mijn" afstudeerders Winston Langeslag en Natal van Riel wil ik bedanken
voor de bijdrage die zij - bewust en onbewust - aan mijn onderzoek hebben
geleverd en voor de wijze waarop zij mijn inzicht in sommige aspecten van
systeemidentificatie en regeltechniek in het algemeen hebben aangescherpt.

Als laatste bedank ik pap, mam en oos Jos. Sinds zij aan de wieg van dit
alles hebben gestaan, zijn zij mijn steun en toeverlaat gebleven. Zonder deze
veilige thuishaven was dit proefschrift niet mogelijk geweest.

Eindhoven, 1 januari 1997.

vi Voorwoord

Abstract

In many processes, control is applied to change the dynamic behaviour of the
process such that the process performs better in some sense. Modern techniques
for control design are, in general, based on a model of the process. If the model
uncertainty, i:e. the difference between the model and the true process, can be
bounded and the control design can take this bounded uncertainty into account,
the resulting control is said to be robust. This thesis is concerned with the
problem of finding bounds on the model uncertainty from experimental data
and prior knowledge for application in robust control design.

Practical application of model uncertainty bounds obtained by current tech
niques for uncertainty bounding is hampered by the fact that these bounds
often turn out to be unrealistically large. It is analysed which effects (should)
contribute to a model uncertainty bound. These effects can be divided into
three categories: (a) models used for robust control are takeri to be linear,
time-invariant and of low order, while the underlying process is not; (b) exper
imental data of a process gives only an incomplete and uncertain account of
the process behaviour due to finite data length, finite sampling frequency and
unknown external factors as noise and disturbances; (c) some knowledge that
is available of the process can be expressed only approximately or not at all
in the model and/or the uncertainty bounds. This leads to conservatism. The
practical motivation for application of robust control is mainly to cope with
the infiuence of category (a). Current model uncertainty bounds take typically
the infiuence of categories (b) and (c) into account.

To study the interplay between different factors involved in a model un
certainty bounding procedure, a general frarnework has been developed in this
thesis. Contrary to other frameworks in which identification procedures are
"embedded," this framework takes great care not to put unrealistic restrictions
on the process and/or its noise. Some of the properties that all uncertainty
bounding algorithms (should) have in common are investigated. Furthermore
the relation that should exist between noise, disturbances and simplifications
such as tîme-invariance and linearity on the one hand and model uncertainty
bounds on the other is clarified.

Based on the observations made above, an algorithm is proposed that splits
model uncertainty for MIMO systems in so-called structured and unstructured
parts. The structured part is bounded in a detailed way and is intended to
capture the changes in process dynamics that occur if the process is operated
in several operating points. In the unstructured part, all other sources of model
uncertainty are lumped together and are bounded in a much less detailed way.
If the structured part describes the dominating factors in the uncertainty of

viii Abstract

a process, the remaining unstructured part will be much smaller than would
be the case without a separate description of the dominating factors. In this
way the combination of structured and unstructured model uncertainty bounds
can give a better, less conservative description of the total model uncertainty.
At the same time, the uncertainty bounds represent more aspects of model
uncertainty that are relevant for robust control than most other current bounds
do.

The dominating contributions to model uncertainty can be estimated from
data sets obtained in different operating points. It is shown how these con
tributions can be excluded from the unstructured model uncertainty bound.
Deterministic assumptions are made for the noise and disturbances acting on
the process. Several extensions to the basic algorithm have been developed,
allowing the use of more prior knowledge in the uncertainty bounding or in the
estimation of the structured error components.

The algorithm has been implemented in a C++ program. After careful con
sideration ofimplementation in MATLAB, it was decided that MATLAB provides
insutficient support to implement the algorithm with the full ftexibility that is
required. A generally applicable library was developed to support the imple
mentation. From simple objects like vectors and sets of integers, more complex
data structures are developed, such as signals, model sets, identification ses
sions, etc. These tools were developed and used to implement the algorithm,
hut they have their value in the field of computer aided system identification
in their own right.

The algorithm is tested by means of a number of simulation examples. It
is also applied to practical data taken from an asynchronons machine. From
the results it can be concluded, that the algorithm can indeed reduce the un
structured model uncertainty significantly by splitting off a limited number of
structured error components that were determined by the algorithm. It can also
find an approximate description for error structures that it can not represent
exactly, leading again to a significant decrease of the unstructured error.

Both the structured and the unstructured error bounds are very sensitive
to the way in which the effect of undermodelling is bounded. Also very high
quality data is needed .to distinguish structured contributions to the error from
unstructured ones. It seems that the signal to noise ratio should be of the
order 40 dB or better for successful applkation of the algorithm in its present
form. As the noise exceeds this level for the asynchronous motor, using separate
structured error components hardly reduces the remaining unstruct.ured error in
this example. This is mainly due to the deterministic (worst-case) assumptions
on the noise and disturbances. It is recommended to investigate in future
research the use of stochastic assumptions on the noise. This seems certainly
possible and may result in smaller, but soft, error bounds, which, however,
seem better applicable for realistic signa! to noise ratios.

Contents

Voorwoord

Abstract

1 Introduction
1.1 Background and goals
1.2 Overview of the contents .
1.3 Notation and terminology

2 Model uncertainty and conservatism
2.1 Introduction
2.2 Origins of model uncertainty
2.3 Different types of model error bounds
2.4 Quality aspects of uncertainty bounds
2.5 Summary

iv

vii

5
5
8

10

15
15
19
28
33
34

3 A formal foundation for model uncertainty bounding 35
3.1 Introduction . 35
3.2 Formalism . 35
3.3 Discussion . 62
3.4 Summary . 70

4 An algorithm for structured and unstructured error bounds 71
4.1 Overview of contents 71
4.2 Basic ideas . 72
4.3 Model parametrisation and uncertainty description 75
4.4 Experimental data and prior knowledge 80
4.5 Outline of the algorithm 84
4.6 Review of systems and models . . . 87
4.7 Step 1-4: obtaining a MIMO basis . 88
4.8 Step 5: estimating auxiliary models . 91
4.9 Step 6 & 7: estimating the error structure . 101
4.10 Step 8: translating data and prior knowledge 106
4.11 Step 9: bounding the local structured error . 113
4.12 Step 10: bounding the local unstructured error 116
4.13 Step 11: combining the local results 140
4.14 Influence of the choice of the basis 142
4.15 Summary 143

2

5 Extensions to the basic algorithm
5.1 Introduction
5.2 Estimating initial conditions
5.3 Regularisation of Least Squares estimates
5.4 Prior knowledge of statie gains
5.5 Prior knowledge of complex gains for arbitrary frequencies .
5.6 Weighting of parameters
5. 7 Other ways to determine the error structure . .
5.8 Unstable systems and closed loop experiments.

6 Examples and case studies
6.1 Overview
6.2 A simple SISO simulation example
6.3 A more complex SISO simulation example .
6.4 A MIMO simulation example . .
6.5 Case study: Asynchronous motor
6.6 Conclusions

7 Software components for CASID
7.1 Introduction
7.2
7.3
7.4
7.5
7.6
7.7

Object-oriented aspects of C++ .
Matrices and related data structures
Building on vectors and matrices . .
Keeping all data of an identification session
U ser interface
Performance

8 Conclusions and recommendations
8.1 Conclusions
8.2 Recommendations

A Overview of notation
A .1 Latin symbols .
A.2 Greek symbols .
A.3 Other symbols .
A.4 Other notations .
A.5 Acronyms and abbreviations .

B System based orthonormal basis functions
B .1 Generating a basis from a general system
B.2 Properties of system based orthonormal basis functions
B.3 Transients of a generalised FIR model

C Application of the formal framework

Contents

149
149
150
158
163
164
172
186
191

199
199
200
206
219
229
241

243
243
249
252
265
272
273
274

277
277
280

285
285
288
289
289
289

291
292
294
296

303

Contents

Bibliography

Samenvatting

Curriculum vitae

3

309

315

317

4 Contents

1
Introduction

1.1 Background and goals
1.2 Overview of the contents

1.3 Notation and terminology

1.1 Background and goals

The word "model" has different interpretations. If something is shaped after a
model, the model represents something that reality is supposed to resernble as
closely as possible. In other contexts, models try to describe aspects of reality
in a simplified form. Scale models of a car used in wind tunnel experiments are
examples of this. In this case the model should resemble the geometry of the
car as closely as possible.

Mathematica! models of the behaviour of processes usually fall in the latter
category. They are used to gain a bet ter understanding of the process dynamics,
to formulate expectations for its future behaviour or to derive ways to interact
with the process to obtain a more desirable behaviour of it. These usages are
normally referred to as analysis, prediction and control.

Control strategies are developed for processes to make them behave more
accurately, faster and/or more reliably. In industrial processes, control may
further result in better safety, less demand of raw material and energy, less
environmental load, higher quality of the resulting product or fewer off-spec
products, in short: more economie operation of the process. Consequently
control is applied heavily in aerospace, process industry, chemica! industry,
consumer electronics and so on.

Modern control is almost exclusively based on mathematica! models of the
process. Instead of designing a controller for the process, a controller is de
signed based on the model of the process. Often it is assumed that the model
is identical to the process. This is called the certainty equivalence principle.
Because the process is not identical to the plant, a controller that performs
well on the model may exhibit poor performance on the actual process or even
destabilise that process. To cope with this problem, control design strategies
were developed (and still are) that can recognise that the model is only an

6 Introduction

approximation of the process. If a bound on the mismatch between the process
and the model can be given and if a. controller can be designed that performs
well for all processes whose mismatch with the model does not exceed that
bound, the resulting controller is called robust. Aiming for control robustness
is further motivated by the practical observation that the behaviour of a pro
cess changes for different operating conditions, under the influence of external
factors, aging and wear.

White-box models for a process are derived by describing the physical laws
governing the system. Black-box models on the other hand are derived from
experimental data of the process; the physical mechanisms of the process are
basically not taken into account explicitly, i.e. the process is treated as a black
box. Reliable methods exist for the derivation of black-box models from data
obtained in properly designed experiments. In the last few years these methods
were supplemented by methods to derive a bound on the mismatch between
these models and the actual process. This mismatch will further be called
the model error or model uncertainty. The process model and the uncertainty
bound together with the specifications for the controlled process behaviour form
all required ingredients for the formulation of a robust control design problem.
Having techniques available that subsequently solve such a problem, it may
seem that nothing stops us from applying robust control in practice.

Alas, robustness is achieved at the expense of performance. If one can rely
on the correctness of a model, in other words if the model uncertainty is small, a
controller can be designed that pushes performance of the model to its limits.
However, the larger the uncertainty becomes, the more cautious the control
design has to be. A controller that improves performance for one process may
decrease it for another. To guarantee a certain level of performance for all
processes that fall within the uncertainty bounds, performance for the model
has to be sacrificed and probably also for processes close to the model in some
sense.

Unfortunately it has turned out, that the uncertainty bounds that are found
by the aforementioned techniques are often so big in practice, that the degrada
tion of performance is unacceptable. Moreover, based on practical experience
and physical insight it is often felt that the uncertainty bounds are unreal
istically large. Apparently the uncertainty bounds are often taken to be un
necessarily large and consequently degrade performance substantially. This is
referred to as conservatism and the resulting bounds are said to be conserva
tive. Conservatism has been recognised in the field of uncertainty bounding as
a serious problem which deserves further attention.

The problem area of this thesis is in line with the previous observations. A
preliminary statement of the goal of this thesis is:

Reduce the conservatism in model error bounds that are derived from
experimental data and prior knowledge.

1.1. Background and goals 7

Prior knowledge is mentioned explicitly as a means to bound model errors: if
prior knowledge may be used to decide that model error bounds are unrealis
tkally large, this knowledge might as well be used to reduce these bounds.

The preliminary formulation of the goal of this thesis has been our com
pass · during the research reported in this thesis. However, it is such a broad
statement that it deserves some further refinement.

If one wants to develop tighter bounds for model uncertainty, a clear under
standing of what should be contained by the uncertainty bounds and what can
be excluded from them is a prerequisite. Moreover it is felt that in the design
of all uncertainty bounding techniques some chokes are made that actually
go beyond that specific technique. These chokes reflect a general statement
about certain aspects involved in the derivation of uncertainty böunds from
experimental data and prior knowledge. Different, contradicting statements
can be distilled from e:xisting uncertainty bounding techniques. A considera
tion of such issues in a context that is not confined to a partkular model error
bounding technique is therefore desirable.

The first part of a more refined statement of the goal of this thesis is:

Provide a fundamental analysis of the factors that lead to model un
certainty in the context of bJack..:box identifi.cation for robust control
design. Moreover, analyse the steps that are involved in deriving error
bounds from experimental data and prior knówledge. Prmrirl'! .?- j~!~ti

fication for the choices that are generally made in the design of such a
technique.

The second part follows naturally from the first part:

Based on the results of the aEorementioned analysis, adapt existing
techniques for model error bounding for application in robust control
design or develop new ones such that they fit better to the require
ments of robust controJ design in genera] and are less conservative in
particular.

A short preview of the methodology that was developed to achieve this
second part of the goal is given in the overview of the contents in the next
section.

It has been explicitly mentioned that the intended application for the un
certainty bounds is robust control design. This does not meari that the results
are irrelevant for other fields of application. However, generalisation of the
interpretation of results presented in the subsequent chapters to these fields is
considered outside the scope of this thesis.

8 Introduction

1.2 Overview of the contents

The first part of the stated goal of this thesis is addressed in chapters 2 and 3.
Chapter 2 provides a genera! consideration of factors contributing to model
uncertainty. Recognising which factors make the uncertainty bounds larger
than they need to be is the first step towards deriving uncertainty bounds that
are as tight as possible. For practically useful uncertainty bounds, tightness
of the bound is not the only quality criterion. Other aspects determining the
quality of an uncertainty bounding procedure are considered in this chapter
as well, so that a well balanced compromise between all these aspects can be
made.

A framework for model uncertainty bounding is given in chapter 3. After a
presentation of the framework, the relation between different factors involved
in model uncertainty bounding is investigated. Because the framework is not
restricted to a particular technique for uncertainty bounding, the conclusions
that can be drawn from this study apply to many current and future techniques
for uncertainty bounding. Moreover, the framework takes great care not to
impose unrealistic assumptions such as linearity or time-invariance on the true
process.

Chapters 4, 5 and 6 form the main contribution of this thesis. These chap
ters provide a detailed presentation of a new algorithm for model uncertainty
bounding. This algorithm splits the model uncertainty in so-called structured
and unstructured parts. The structured parts are bounded in a very detailed
way. The model uncertainty that is not accounted for by the structured parts is
lumped together in the unstructured part and bounded in a much less detailed
way. Provided the structured parts represent the dominating sources of model
uncertainty, this separation leads to a tightly bounded representation of the
model uncertainty. The algorithm is developed for MIMO systems.

Part of the machinery used in the algorithm is due to Hakvoort (1994, chap
ter 4). In chapter 4 no modifications are made to these procedures. Chapter 5
proposes some improvements and also extends other parts of the algorithm.
These extensions are relegated to a different chapter to avoid unnecessary dis
traction from the main ideas by technica! details in chapter 4. Nevertheless
chapter 4 is full of concepts and symbols. An example developed along with
the theory throughout the chapter tries to help the reader in getting accus
tomed to these concepts. At the beginning of each section is also a summary
of the· algorithm indicating what part of the algorithm is being considered in
that section.

Figure 1.1 shows the benefit that may be obtained from using separate
structured error components. In this simple example, a process is operated in
two operating points. The Nyquist plots of the transfer functions in these two
operating points are plotted using continuous lines and are marked with x's.
Between these two Nyquist plots is the Nyquist plot of the nominal model for

1.2. Overview of the contents 9

5

0

-5

-10

-15

-20-

0 10 20 30 40 50 60

Figure 1.1: Potential benefit of using structured errors

both working points. The light shaded areas give the uncertainty for a number
of frequencies if no structured error components are used. The dark shaded ar
eas give the unstructured uncertainty that remains if only one structured error
component is bounded separately. The size of the structured error component
for these frequencies is indicated by dashed lines.

This example is discussed in more detail in chapter 6. A more complex
SISO simulation example and a MIMO simulation example are presented next
in this chapter. In the last example presented in this chapter the algorithm is
applied to experimental data obtained from an asynchronous motor.

Chapter 7 presents a side-product of the algorithm. The algorithm was not
implemented in MATLAB but in a C++ program. To support this implementa
tion, a library of "classes" was developed. With these classes the programmer
is no langer forced to code hls algorithms with matrices and vectors, he can also
use objects with a higher level of abstraction, such as signals, model sets, iden
tification sessions, etc. An argumentation for this choice as well as an overview
of the design of these classes is given in this chapter.

In chapter 8 conclusions are drawn and recommendations for future research
are given.

The main text of the thesis can be separated in three parts. The first part
consists of chapters 2 and 3, the second of chapters 4, 5 and 6 and the third of
chapter 7. These parts can be read more or less independently of each other,
although the first part gives background information that was important for
the design of the algorithm in the second part. Moreover, the complexity of the

10 Introduction

second part gives some further justification for the choices made in the third.
In the remainder of this intro_duction, some of the notation and terminology

used in this thesis is introduced. The notation is fairly standard, hut some
conventions are used that can not be considered standard practice. A list of
most symbols used in this thesis is given in appendix A.

1.3 Notation and terminology

1.3.1 Sets and spaces
Throughout this thesis, lN will be used to denote the set of non-negative inte
gers, including 0. Z is the set of all integers. lR, denotes the set of real numbers
and C the set of complex numbers. Z+ and lll+ are the subsets of Z and lR,
consisting of positive values only. z_ and JR,_ are the equivalent subsets of
negative values.

For z E C, Rez denotes the real part of z, Im z is used for the imaginary
part. The absolute value or modulus of z is denoted lzl. For z E C \ {O}
the argument of z is represented by arg z. For z = 0 the argument of z is
undetermined. For z ":/; 0, the argument of z is determined modulo 211'. z* is
used for the complex conjugate of z.

For IF E { lll, C} and n E Z+, IF'n denotes the field of vectors with n
elementstaking their values in JF. ef is the ith unit vector in JF'n. The span of
a, b, c with a, b, c E JF'n is denoted (a, b, c). IF'mxn is the field of m x n matrices
with entries in JF'. We identify JF'n with JF'nxi, so vectors are column vectors.
The identity matrix In E mnxn is given by

[e?, ... , e~]

For M E JF'mxn,Mi* E JFlXn denotes the ith row of M, M*J E JF'm denotes
the jth column. A matrix M E JF'mxn is said to be tall if m ~ n and said to
be fat if n ~m. Note that square matrices are both tall and fat.

For n E Z, the hold symbol n is a shorthand notation for the set { 1, ... , n}.
For n < 1, n is the empty set. This convention will also be used for other
symbols. For any set S, 2s denotes the power set of S, i.e. the set of all subsets
of S.

Let {Xi}f=1 be a sequence of n matrices with equal number of columns.
Then

stackXi := [~
1

] ,
iEn · xn

the operator "stack" stacks the matrices in the sequence on which it operates
on top of each other, where the first matrices in the sequence end up top-most.

1.3. Notation and terminology 11

Conversely, if {Xi}f=1 is a sequence of n matrices with equal number of rows,
then

sbs Xi := (X1 . . . Xn] .
iEn

"sbs" puts the elements in the set on which it operates side-by-side in a matrix.
For any sequence of matrices {Xi}f=1 ,

diagXi := [X

1

·.]

iEn xn

is the block diagonal matrix with the Xi on its diagonal.
For a, b E IRq, the inner product of a and bis denoted (a 1 b) and equals

q

(a 1 b) := 2: akbk
k=l

The transpose of a matrix A is denoted AT. A * denotes the complex conjugate
transpose. For real matrices A, AT = A *.

For a linear operator P, the notation img P is used for the image space of
P. For a matrix P the image space is taken equal to the span of the columns
of P. With a matrix P E IFqxp is, as usual, associated an operator P 1

, P 1
:

JFP ~ IFq, x f-t Px. It holds imgP = imgP1
•

For P E IRqxp or P E cqxp, rankP shall denote the rank of the matrix P.

1.3.2 Signals, systems and norms

The symbols f2, C2, h2 and 1l2 have their usual meaning:
crp will be used for the space of functions defined on z, taking values in

JRqxp that are square summable:

f~xp := { J 1 f : Z ~ JRqxp, t f-t f (t); (~ t J'[;(t)f*i(t)) < 00}

These functions will be referred to as time-domain signals or f 2-sequences. crP
is the space of functions defined on (} taking values in cqxp that are square
integrable on the unit circle:

J traceF*(z)F(z)dz < oo}
11zl=l

These functions will be called frequency-domain functions. To emphasize this,
signals f E crP will in general be denoted j(t) and signals F E crP will
be denoted F(z). Also, symbols representing elements of f2 will in general be
lower case letters and elements of C,2 will be represented by capital letters.

12 Introduction

Remark 1.1 lt is important to note, that tand z are indetenninates, unless
explicitly stated otherwise. This means tand z do not represent a single real or
complex value, hut a whole set of values. This enables us to use the convention
to denote signals f E l!~xp as f(t) and signals F E .crP as F(z): f(t) denotes
in general the signal f, whereas, say, f (t') denotes the vame of the signal f at
timet= t1

• As an example of an explicit exception, in EtEZ f(t) the ~otation
f (t) does refer to the value off at time t, because it is clear from "EtEz,''

that t is not indeterminate in this case. 0

With each element f(t) of lixp is associated an element F(z) of .Cixp
through the Z-transform:

F(z) = L f(t)z-t
tEZ

For such a pair (f(t), F(z)), F(z) is called the Z-transform of f(t), f(t) is the
inverse Z-transform of F(z). The values f (t 1

), t1 E Z are the Laurent series
expansion coefficients of F(z) around z == 0.

Hixp is the restriction of .crP to those functions that are analytic outside
the unit disc, including at oo. hixp is the set of inverse Z-transforms of HrP.
For every /(t) E hixp it holds that f(t1) = 0 for t' < 0.

(will denote the forward-shift operator or left-shift operator:

We can associate with every f(t) E hixp an operator F(():

F((): e~ -t t:i, u(t) H- y(t) := L f(r) [C,,.u] (t) (1.1)
rEJN

If /(t) E hrP, F(z) will be used to denote its Z-transform and F(() to
denote the operator associated to it through (1.1). Often this will not be
mentioned explicitly. Moreover, we will not be very strict in distinguishing the
three entities. They are seen more as different reprèsentations for the same
thing. f (t) will be called the impulse response of F(z) or F(() and F(z) is
called the transfer function associated with F(() and f(t).

Similarly to the previous section, for all :F E {1:2 , .C2 , h2, 1i2}, :Fq is used as
a shorthand notation for ;r:qxl and:F for :F1.

With lixp is associated the norm ll·llt:2 :

p

Vf(t) E erp llf(t)lle2 := . L L f~(t)f*i(t)
tEZ i=l

1.3. Notation and terminology 13

The norm ll·llh2 is identical. As f(t') = 0 for f(t) E hrP and t' < O the norm
ll·llh2 reduces to

p

vt(t) E hrp 11t(t)llh2 := 2: 2:1:;,ct)f*i(t)
tElN i=l

The norms for .crP and 1lrP are obtained by integrating over the unit circle
as follows:

and

1 i 1 llF(z)ll.c2 := -
2

traceF*(z)F(z)-dz
7r lzl=l Z

1 /1f ' . = - traceF*(eJ"')F(e3w)dw
271" -1f

1 i 1 llF(z)lln2 := -
2

traceF*(z)F(z)-dz
7r lzl=l Z

= 2_ J1f traceF*(eJ"')F(ei"')dw
27!" -1f

The l 1-norm of f(t) E (JRPP)lN is defined as

llf(t)lle1 := ~ax L " l!iJ(t)I.
iEq L_;

jEp tEIN

Note that not every f(t) E (mqxp)JN has a well-defined (finite) l 1-norm. In this
thesis the notation Il! { t) llt1 will implicitly assume that the norm is well-defined.
The eoo-norm off (t) E (JR,P)Z is defined as

llf(t)llt00 := maxmax lfi(t)I.
iEp tEZ

Finally, the 1l00-norm for F(z) E 'fl'l,;P is defined as

VF(z) E 1-t.'l,;P, llF(z)lltl"" sup l7max(F(ei"')),
wE(0,1r]

where l1max(M) is the largest singular value of ME mqxp.
If the time domain signals f (t) E l!2 are to be interpreted as "real lîfe"

signals, one should consider the time t to be normalised to the length of the
sampling interval. This means that the frequency domain signals F(e3"') E .C2
are expressed in normalised frequency: w = 7r corresponds to half the sampling
frequency. This normalisation is also implied if it is claimed that a system has
large time constants. "Large" means in this statement "large compared to the
sampling time."

14 Introduction

The subset of those f (t) E h~xp that satisfy

3N E IN, Vt1 > N, f(t') 0

will be called the set offinite impulse response (FIR) models. Strictly speaking,
if fi(t),h(t) E hrP are not FIR models, then their impulse responses are
infinitely long and one can not say that the impulse response of one is langer or
shorter than that of the other. However, with length of the impulse response
will somewhat ambiguously be meant the smallest N such that

N P

L L J!'ï(t)f*i(t) 2: PllJ(t)llh2 (1.2)
t=O i=l

where p E (O, 1) is some sensibly chosen value. The ambiguity in the description
lies in the fact that p is not fixed. With this interpretation of length of impulse
response we can say that the impulse response of fi (t) is longer or shorter than
that of h (t). If fi (t) has a shorter impulse response than f2 (t), we will call
fi(t) faster than h(t). F1(z) and F1(() are called faster than F2(z) and F2(()
resp. if fi(t) is faster than h(t).

As a consequence of this, the statement that the impulse response of some
j(t) E hrP is longer than N samples, N E IN, should be interpreted such,
that

N P

L "LI!Jt)f*i(t) < Pllf(t)llh2
t=O i=l

where p is as in the previous paragraph.
A system F(() E cgxp is called stable if a bounded sequence u(t) maps to

a bounded sequence [F(()u](t). This is often referred to as BIBO stability.
ó(t) denotes the Kronecker delta function.

{
1 t = 0

8 : Z -+ IR, t i-+
0 t =I 0

We will also use ó(t) and ó(t - n), n E Z to denote the restriction of ó(t) and
ó(t - n) to IN. With this interpretation, ó(t),ó(t - n) E h2 • However, usage
will be clear from the context.

F\irther notation will be introduced throughout the text. For a quick re
minder of the meaning of a specific symbol the reader is referred to appendix A,
which contains a list of most symbols used in this thesis, with a short descrip
tion for each symbol and, where appropriate, a reference to the page on which
the symbol is explained or introduced.

2
Model uncertainty and

conservatism ..

2.1 Introduction
2.2 Origins of model uncertainty
2.3 Different types of model

error bounds

2.1 Introduction

2.4 Quality aspects of
uncertainty bounds

2.5 Summary

In the late eighties, early nineties, important progress was made in the field of
robust control design. A solution to the "standard" 11.00 problem was presented
in (Doyle et al., 1988; Doyle et al., 1989). These results were subsequently
refined by the introduction of the structured singular value µ, leàding to so
called µ-analysis and µ-synthesis, (Packard, 1988; Packard and Doyle, 1993).

Roughly speaking these results mean that in the configuration of figure 2.1
a controller K can be designed for a model G that is perturbed by an unknown
hut bounded model uncertainty ~. The techniques can be applied such, that

w

Figure 2.1: Generalised plant, controller and uncertainty interconnection in
robust control design

16 Model uncertainty and conservatism

a certain performance level can be guaranteed for any A such that

(2.1)

(Some assumptions are made here. The most important ones are, first of all,
that the model G is linear, time-invariant and of finite McMillan degree. Fur
ther, it is required that a linear, time-invariant controller K exists that stabilises
the interconnection of G and a for all A satisfying (2.1). Finally. performance
is assumed to be measured in terms of the 1l00-norm of the operator depicted
in figure 2.1, mapping €2 signals w to f2 signals z.)

Maintaining performance even if the true plant deviates from its nominal
model, normally referred to as performance robustness, is to be considered a
desirable property: in many practical situations physical insight may lead to
the conclusion that under different circumstances the controller K will "face"
a different plant G1

, where G1 is the interconnection of G and some value of
a sati::!ying (2.1). Think for cxample of a controller for a chemicai plant. It
would be attractive if one can take explicitly into account in the control design
that the plant reacts differently in summer, when the atmospheric temperature
is relatively high, than in winter. Other changes in the process behaviour may
be induced by degradation of catalysts, wear and aging of the plant. Many
more influences can be thought of that a controller should be robust against,
for this particular example as well as for other types of plants. This issue will
be further investigated in the remainder of this chapter.

Following the results in the field of robust control design, the system iden
tification community picked up the hall and set off to develop techniques to
estimate an appropriate value for da in (2.1) or other bounds on the model
uncertainty that can be handled by 1l00 control design or µ-synthesis. In
(Wahlberg and Ljung, 1992) four main streams were distinguished in this re
search:

1. Identification in 1l00 , as developed in (Helmicki et al., 1989; Helmicki
et al., 1990a; Helmicki et al., 1990b; Helmicki et al., 1991; Mäkilä and
Partington, 1992; Mäkilä et al., 1994; Mäkilä et al., 1995; Partington,
1991; Partington, 1992)

2. Methods based on the traditional, statistica} approach, complemented by
an estimate of the bias error. (Goodwin and Salgado, 1989; Goodwin
et al., 1992; Kosut, 1988).

3. Many publications have appeared in the field of set membership algo
rithms, which could better have been called parameter set membership
algorithms, see (Gutman, 1988; Kosut et al., 1992; Walter and Piet
Lahanier, 1990) and the references therein.

4. Research not so much concerned with uncertainty bounding hut rather
with improving the link between identification and control design was

2.1. Introduction 17

reported in (Schrama and Van den Hof, 1992; Schrama, 1992; Gevers,
1991; Gevers, 1993; Van den Hof and Schrama, 1995).

Although the aim of this chapter is not to give a complete review of literature
on the topic, other developments will be mentioned in the remainder of this
chapter.

Even though the missing requirement for robust control design, a quan
titative bound on the model uncertainty, was more or less fulfilled by these
developments, the case was not yet solved and closed. Combination of the esti
mated uncertainty bounds and the robust control design techniques aften gave
disappointing results. To achieve sufficient robustness, some nominal perfor
mance has to be sacrificed. The performance degradation that was observed in
practice was often considered unacceptably large. Because the control design
techniques yield the "optima!" controller, or at least optimal to within a speci
fied margin, the most obvious way to try to improve this situation is to enhance
the estimation of the uncertainty bounds to yield tighter and/or more detailed
bounds. This assumes implicitly that the bounds estimated so far are not as
tight as possible, in other words that the estimated bounds are conservative.

Clearly, much effort was and is spent to link the development of robust
control design with the development of model uncertainty estimation. The link
that is developed resembles to some extent a tunnel that is built from two ends.
Unfortunately the two teams of construction workers that are supposed to meet
in the middle might very well miss each other or at best have two mis-aligned
tunnel halves. This is illustrated by the following, fictitious conversation be
tween a model builder and a control designer that is taken from (Wahlberg
and Ljung, 1992), in which the model builder defends his uncertainty bounds
against the scepticism of the control designer:

MB: Here is my model statement: A nominal Nyquist plot with confidence
bounds.

ODE: Fine, but can you guarantee that the true Nyquist plot is not outside
these bounds.

MB: Well, all I can say is that there is no evidence in the data of such a risk.

ODE: But I want to be positive.

MB: One can never be 100% positive about statements about the real world.
You can increase your confidence, though, by collecting more observations
under varying conditions and see if my model is still unfalsified with respect
to these data.

ODE: I see here that you have assumed that the disturbances are random.
I don't believe in thàt nonsense. Disturbances can be very deterministic.
Th.en the model discrepancy could be a lot worse.

MB: Well, all I can say is that there is no evidence in the particular data set
we worked with that we need to be so pessimistic.

18 Model uncertainty and conservatism

The model builder does a good job in this conversation pointing out that the
uncertainty bounds are an extrapolation or generalisation of a limited number
of observations, but that we can be more or less confident about this generali
sation. In fact, this is characteristic for any natural scientific research.

Up to this point, everything seems to be developing according to plan.
U nfortunately, the conversation could have proceeded as follows.

CDE: It is my experience that the control performance varies with the quality
of the raw material we use in our plant. What does the uncertainty bound
say about that?

MB: There is no evidence in our data set that such an effect ever occurs.

CDE: I was already afraid you were going to say that. Do your uncertainty
bounds apply if we are making a product with different specifications? Or
if a rain shower hits the reactor?

MB: Sorry, 1 was only allowed to do a limited number of experimental runs.
But don't worry, collecting extra data to establish the influence of these
effects would only decrease (at least not increase) the size of my uncertainty
bounds.

CDE: 1 am glad to hear that, because, quite frankly, the bounds I have now are
so big that 1 can say goodbye to any performance in my robustly designed
controller.

Note that this part of the conversation is not taken from (Wahlberg and Ljung,
1992) any more .so that the complete responsibility for it lies with the author
of this thesis.

Three important issues come up in this second part of the conversation:

• If the model builder and the control designer are talking about model
uncertainty, they are thinking of different causes for this uncertainty.

• If one wants to make statements about a plant in different operating
conditions, data and prior knowledge about the plant should be collected
for all (relevant) operating conditions. Although this is in itself a trivial
observation, it may imply that the experiments that were sufficient to
derive good nomina! models for a plant are insufficient to base tight,
accurate uncertainty bounds upon.

• While experience has shown in many practical cases that linear time
invariant models are a sufficiently good approximation of real plants, one
has to keep firmly in mind during the uncertainty bounding that the true
process is not linear time-invariant. A data set taken from the plant in
one operating condition can not be used to reduce the uncertainty in the
plant 's behaviour in a.nother operating condition. Instead, the form er
data set reveals uncertainty that is not present in the latter data set and
vice versa. The model builder is confused about this in his last remark.

2.2. Origins of model uncertainty 19

The issues raised above suggest to take a closer look at model uncertainty
as such. The remainder of this chapter is concerned with this. First it will be
investigated what effects (should) contribute to the model error bound. Then
some fundamental decisions often made implicitly in a model error bounding
algorithm are discussed. Finally some general quality aspects of model uncer
tainty bounds are reviewed.

To finish the tunnel metaphor discussed earlier: if two tunnel halves do not
meet in the middle; it is not necessary to close both halves and start all over
again. A small extra stretch is mostly sufficient to connect both ends.

2.2 Otigins of model uncertainty

In this thesis "model error" and "model uncertainty" are used for the same
concepts. Three categories of contributions to model error bounds will be
distinguished:

• U ndermodelling

• Strict sense uncertainty

• Wide sense conservatism

Strict sense uncertainty refers to a subset of all systems that can be represented
exactly by the framework used for identification and uncertainty bounding,
namely the subset of those systems that can not be falsified by the data or
prior knowledge. If a plant is known to be a first order process with, say a DC
gain and a pole location within certain known intervals, one could say that there
is only model uncertainty and no model error if this plant is to be modelled by
a first order transfer. In this case a subset of the set of first order transfers can
be formulated having the properties that one of its members coincides with the
real process and that for none of its members it can be concluded from data
or prior knowledge that it is not the member coinciding with the real process.
This subset represents in this example the strict sense uncertainty.

Strict sense conservatism refers to those models that

l. are consistent with the nomina! model(s) and the uncertainty bound,

2. can be falsified by the data and prior knowledge and

3. have a negative effect on the performance of the robustly designed con
troller.

Wide sense conservatism refers to those models that satisfy only l. and 2. The
extra requirement 3. distinguishes strict sense conservatism from wide sense
conservatism. For model uncertainty bounding for other purposes than robust

20 Model uncertainty and conservatism

control design another requirement than the one mentioned under 3. will be
appropriate.

Undermodelling means that the true system can not be represented by a
model in the model set. If one has an exactly known second order plant that
is modelled by a first order model, then, strictly speaking, there is undermod
elling (and possibly conservatism, depending on how this undermodelling is
botmded), but no uncertainty: as the true plant is known, there is only one
dynamical system that can not be falsified by the prior knowledge.

Examples of these will be given below.

2.2.1 Undermodelling

At the risk of stating the obvious, the most important cause for a model error
is that the model used to describe the process is a gross simplification of that
process. Nevertheless one may consider this issue a little further to get an
impression of what kind of model errors can be expected.

The techniques for robust control design mentioned earlier require that the
nominal model G in figure 2.1 on page 15 is a linear time-invariant model.
They do not require that a is linear time-invariant; a is only required to be an
1{00-norm bounded operator. This means that in the configuration of figure 2.1
the following implication holds for certain d11 , dx E IR+:

If ~ is not linear time-invariant, the interconnection of G and ~ is not neces
sarily linear time-invariant either. Contrary to this generality allowed by 1{00 -

control design, most identification techniques rely on the fact that, at least in
an operating point, the plant can be approximated sufficiently well by a linear
time-invariant model. This also applies to the algorithm discussed in chapter 4
and 5. Allowing non-linear models G and/or non-linear uncertainty blocks ~
would mean giving up most of the tools used in identification and model error
bounding. Nevertheless, the restriction to use linear time-invariant models is a
self-imposed restriction.

Given this restriction, one can distinguish the following aspects of under
modelling.

1) Non-linear relation between u and y
Everyone doing identification with linear models is probably well aware
of the fact that the true process is not linear. This may manifest itself

. in different ways. Most dearly present in an experimental data set is the
non-linear response to the inputs whose response is to be modelled: a
superposition of excitations does not give a response that is the corre
sponding superposition of responses, sealing an excitation does not lead
to an accordingly scaled response. In chapter 3 a heuristic way to deal
with, or rather limit, the effect of this phenomenon will be discussed.

2.2. Origins of model uncertainty 21

2) Operating points
It is also well known, that a process behaves different in different oper
ating points. In this context an operating point is interpreted as a set
of operating conditions, such as ambient temperature, nomina! values of
inputs, type of raw material used, etc. Another effect of non-linearities
is that unmodelled inputs may change the dynamics between the inputs
and outputs that are modelled. For example, most physical processes
change their behaviour if they are operated at different temperatures. In
chemica! plants, where temperature is an important parameter, this is
clear, hut the effect can also occur in electronic or mechanica! devices.
These differences in process behaviour are similar to those induced by
a changing operating point. They are more difficult to deal with, be
cause these changes can not be influenced, or only partially, and often
the initia! change that caused the shift in process behaviour is not directly
measured.

Not only is the linear part in linear, time-invariant models an oversim
plification of reality. Processes are also time-varying, due to the effects
of aging..and wear. A catalyst in a chemical plant generally gets polluted
and consequently less active during its life-span. A driving belt in a me
chanica! construction may stretch after extensive periods of heavy load,
which will translate to a change in the dynamics of the transmission at
hand. These effects are difficult to deal with using robust control if their
quantitative effect is not reproducible or predictable: one can not do ex
periments to determine how a plant will respond in two years time, short
of the cases in which another, similar hut older plant is available for ex
perimentation. One can try and gather sufficient information about the
changes that can be expected from experience with other, similar plants.
If the rate of change is not too high and the costs of experimentation,
identification and controller design are not too high either, one could
be better off re-identifying the plant and retuning the controller after a
period of time.

4) Limited dynamic range
Forgetting for a moment about non-linearities and time variances, there
is still plenty of room for undermodelling. In practice, experiments can
cover only a limited dynamic range: the fastest response that can be
identified is overbounded by half the sampling frequency. The slowest
dynamics that one can "see" are limited by the length of the experiments.
During the experiment design, sampling frequency and experiment length
are chosen such, that the relevant dynamics of the plant are covered by
the data. Nevertheless the effects of "irrelevant" dynamics may be visible
in the model error bounds.

22 Model uncertainty and conservatism

H the effect of this kind of underrnodelling can not be separated frorn the
effects that are considered relevant, this visibility may be stronger than
expected: if for example some high frequent behaviour of the plant is
omitted frorn the transfer function of the model, this may be visible in
the uncertainty of every sample of the impulse response of the plant. To
interchange the role of time and frequency domain in this example, one
may think of a large delay with a small associated gain that one chooses
to omit from the process description. Although this simplification has
a strongly localised effect in a time domain description of the plant, it
will increase the uncertainty in the frequency domain for each and every
frequency. A small simplification cán consequently lead to a consider
able increase in model uncertainty if the uncertainty description can not
express the simplification properly.

5) Distributed and high-order dynamics
Not only may the dynamics of the true process have a wider range than
covered by the experiments and consequently by the resulting model. It
is also not uncommon that the actual process has distributed dynamics.
The model is in general only of fini te order. Consequently reactions in
chemical plants are usually assumed to take place under homogeneity
conditions. In Hexible structures, only a few modes are considered and
these modes can only be described approximately. Much more examples
can be thought of where this simplification occurs.

It is my conviction, that the kind of model uncertainty discussed in this
section is exactly what a robust control design wants to be robust against.
However, model uncertainty bounding algorithms have concentrated on bound
ing the effect of the causes discussed in the next two sections. - This is not
meant to imply that all causes of model uncertainty that will be discussed sub
sequently should be ignored in robust control design, although it would be nice
if some of them actually could.

2.2.2 Strict sense uncertainty

The conclusions that can be drawn frorn experimental data conceming the true
process behaviour is principally restricted by at least two effects.

• Firstly, the experimental data is finite. For many identification methods,
asymptotic consistency results may be derived under "weak" or "reason
able" conditions - remarkably enough never called "realistic" conditions.
These results state that the identified model tends to the true process if
the experimental data length tends to infinity. Turning this statement
around it says, that the identified model may not coincide with the true
process for finite experimental data. Loosely speaking, some effects do

2.2. Origins of model uncertainty 23

not "average out" on a finite data set that would on an infinitely long
data set.

Another illustration of the influence of finite data can be found by con
sidering the discrete Fourier transform (DFT). From any textbook on the
subject it is known that the DFT may be interpreted as the transform of
a periodic continuation of the finite length signal. Choosing a different
continuation of the signal would result in different Fourier coefficients.

• The second cause of strict sense uncertainty is the possible corruption
of the experimental data by noise, disturbances, responses to unmodelled
inputs, etc. As already mentioned, under suitable conditions these effects
may vanish if the length of the data set goes to infinity.

Remark 2.1 An obvious way to reduce the effect of finite data length is to
extend the experiment duration. This is limited in practice by the allowed
experimentation time, the computational load involved in estimating the model,
etc. Also the process or the characteristics of its disturbances may change in
very long experiments.

Input design for the identification experiment may play an important role in
shaping the influence of noise: one may expect an accurate model in frequency
regions and, in case of MIMO or MISO processes, for input directions in which
the input is strongly exciting. A less accurate model can be expected in regions
where the input is hardly exciting and the experimental data consequently
barely contains information about the process response.

One may try to improve the signal to noise ratio in the experimental data
by increasing the input amplitude. This is limited by actuator and operating
constraints. Also one can expect a larger excitation of non-linearities for larger
input amplitudes.

In conclusion, the effect of finite data length and noisy measurements may
possibly be reduced yet never eliminated. D

2.2.3 Wide sense conservaäsm

Contrary to the contributions discussed in the two previous sections, there is no
fundamental impossibility to eliminate the effects of conservatism: these effects
can be reduced or even removed by designing better model error bounding
algorithms.

A common cause of conservatism is, that one has more knowledge about
the noise that is affecting the process than can be handled by the algorithm.
In parameter set estimation techniques for example, the true output Ytr(t) of
the process is generally assumed to be corrupted by a noise signal i::(t) with a
known €00 bound:

y(t) = Ytr(t) + i::(t), max li::(t)I < ë
t

(2.2)

24 Model uncertainty and conservatism

A more detailed statement on the noise can be made by making e a function
of time. This can be handled by parameter set estimation techniques as well,
but this still does not address the unattractive property of the characterisation
(2.2) that the noise can behave very wildly: at one sample instant €(t) may
be equal to e, at the next it may be -e and it can keep alternating between
these two extremes. It is very unlikely that the true noise and disturbance
signals really show this behaviour. Neglecting for a moment the problem of
quantifying this information, there remains the problem of incorporating this
knowledge into the model error bounding algorithm.

This example has many variants. Think for example of algorithms that
require bounds on the noise in frequency domain. These can not handle (2.2) as
such. To determine the largest possible deviation in frequency domain following
from (2.2) fora certain frequency w, one would have to consider the power in a
sinusoidal signal E(t) offrequency wand amplitude ë. For another frequency w
the procedure has to be repeated. Considering only these maximal deviations
in frequency domain is a very conservative representation of (2.2): it can be
concluded from (2.2) that if for a certain frequency w the deviation is equal
to its maximal value, then the deviation for all other frequencies is necessarily
equal to zero!

Another problem with the noise bound (2.2) is that it assumes that the
noise and disturbances enter the process at the output. lt is likely that some of
the noise enters the process at the inputs, so that it is filtered by the dynamics
that are to be modelled. Much more difficult is noise that enters the process
through unmodelled inputs. The noise can then be assumed to be filtered by
some of the dynamics that are to be modelled, but one may be unable to say
a priori by which part of the dynamics.

One may also have information concerning the process transfer itself that
can not be used by an error bounding algorithm. It is conceivable that one
knows for a practical process the range of the frequency for which a resonance
peak occurs. If the uncertainty structure that is used is an additive error with
an 1l00-norm bound on the error,

Gtr(() = G(() + A((), llA(()il1i
00

<da,

the reader may verify that this information can only be represented in an
approximate way. Figure 2.2 shows this for an example. In this Bode amplitude
plot, the continuous lines correspond to the transfers having the largest and
the smallest value of the resonance frequencies. The dashed line shows the
frequency characteristic of the chosen nominal model. This has been chosen to
minimise the conservatism used by an additive error description, while being
consistent itself with the prior knowledge. The shaded area can be expressed as
a frequency dependent bound on the amplitude of the additive error A. lt is the
smallest such area that contains all transfers consistent with prior knowledge.
Nevertheless this area contains much more transfers than only those consistent

2.2. Origins of model uncertainty 25

IG(jw)l 10-1

10~'--~~~~~~~~~~~~......._J

10-1 10° 101

w -t

Figure 2.2: Approximate description of varying resonance frequency

with the prior knowledge that only the resonance frequency may vary.
As another example of a case in which the true undermodelling/uncertainty

does not fit the measure that is used to quantify the uncertainty, think of the
1l00-norm bound (2.1) fora SISO uncertainty block 6.. If the true uncertainty
in A(jw) can be represented by the darkest shaded circle in figure 2.3 for a
certain value of w, the amplitude-based 1l00-norm bound can represent this
at best by the outer-bounding light shaded circle. One may wonder to what

t Im.ó.(jw) ---i--

Figure 2.3: Conservatism in an amplitude bound

26 Model uncertainty and conserva.tism

extent the situation shown in figure 2.3 is realistic. This may be illustrated
by means of results obtained for the water vessel process shown schematically
in figure 2.4. This example has been taken from (Van den Boom, 1993). The
process consists of four vessels Vi, ... , V4 into which water can flow at the top
and from which water flows through a restriction at the bottom. The out
flow of a vessel is roughly proportional to the water level in the vessel. The
response from in-flow to water level is therefore roughly a first order response.
The inputs to the total process are the water flows into the two top-most
vessels. The outputs to be controlled are the water levels in the two bottom
vessels. In (Van den Boom, 1993) the model uncertainty was characterised
by means of the maximal H 00-norm of an uncertainty block ~ related to the
additive error on a coprime factorisation of the nominal model of the process.
It is beyond the scope of this example to explain the uncertainty bounding
procedure in detail. The interested reader is referred to (Van den Boom, 1993).
As a result of the worst-case approach followed in this technique, the largest
possible absolute value for ~(jw) was calculated that was still consistent with
the experimental data and the prior knowledge. The prior knowledge consisted
mainly of a bound on the noise in the measured input and output signals in
frequency domain and a stabilisation assumption. It would be interesting to
compare this worst-case amplitude of !l(jw) with the best-case amplitude, i.e.
the smallest possible absolute value of !l(jw) that is consistent with the data
and the prior knowledge.

In figure 2.5 both the maximal (worst-case) and minimal (best-case) ampli
tude of ~(jw) have been plotted for a number of frequencies. lt is interesting
to see, that the best-case errors can have values significantly larger than zero.
For all frequencies where this is the case, an effect similar to that of figure 2.3
occurs: the worst-case amplitude corresponds for each frequency w1 to a disk in
the complex plane that is known to contain ~(jw'). The best-case amplitude
corresponds to a disk in complex plane that is known not to contain !l(jw1

).

Nevertheless this "best-case disk" is completely contained by the "worst-case
disk."

All examples discussed so far in this section are cases in which =;;;...:;;::=:...==
prior knowledge that can not be used by the algorithm. One may distinguish
here the case that one has well-defined quantitative information that can not be
used and the case that one has only vague, qualitative knowledge that can not
be represented accurately, let alone be used by a formal algorithm. Ignoring
the latter kind of knowledge is perhaps not so much a shortcoming of the
model error bounding algorithm: one can not expect to derive well-defined,
accurate noise bounds from knowledge that can not be stated accurately and
unambiguously.

Another cause of conservatism lies in the concessions that have to be clone
in practical algorithms to the computability of the bound. A tight bound is
often over-bounded by a bound that is less accurate, hut easier to compute.

2.2. Origins of model uncertainty 27

in-flows

V3 Vi
out-flows

Figure 2.4: Water vessel processtaken from (Van den Boom, 1993)

0.4

0.3

0.2

0.1

0.5 1.5 2 2.5 3

w -7

Figure 2.5: Best- and worst-case errors for the water vessel process

28

The final source of conservatism that is mentioned here is the data prepro
cessing that precedes the identification and error bounding steps. Detrending,
linearising etc. have as objective to remove unwanted effects from the data. Un
fortunately this normally also distorts or removes information that one would
actually like to keep. Nevertheless, deciding not to preprocess the data because
of this is probably a cure that is much worse than the disease.

2.3 Different types of model error bounds

In this section some choices are discussed that are made by the designer of
an algorithm for model uncertainty bounding, even though he/she may not be
aware of this.

2.3.1 Hard bounds or soft bounds

The issue whether model uncertainty bounds should be "hard", i.e. determinis
tic, guaranteed to be correct, or "soft", i.e. probabilistic, correct up to a certain
confidence level, has received much attention. Despite the discussion whether
soft bounds can be reconciled with the phiiosophy of robust control design
(more specifically 1{00 design and µ-synthesis) or only hard bounds are com
patible with the worst-case approach taken in these techniques, the difference
between hard and soft bounds is not as sharp as it may seem. If one takes the
size of a 99.53 confidence interval as a hard bound on the noise level in the
experimental data and uses this subsequently in a "hard bounding" technique,
are the resulting noise bounds hard or soft? H one decides that these bounds
must be soft, then the issue can be closed, because in practical measurements
there is always some random noise and the only bou,nds we can ever get are soft
bounds. So, in order to discuss this problem a little further, let us agree that
the bounds have to be considered "hard." How is the 0.53 possibility that the
noise bounds are too small to be put in agreement with the earlier claims that
hard guarantees were required?

Still, it would go toa far to claim that the whole problem is a non-issue.
One should be awa.re of the kind of assumptions made to properly interpret the
results of an algorithm. It is probably not possible to pronounce one approach
as correct and the other is incorrect.

In (De Vries, 1994) it is argued that one should use a probabilistic measure
on the uncertainty due to noise, because this leaves the possibility open that
the infiuence of noise "averages out." This addresses the conservatism that
was discussed in section 2.2.3 based upon equation (2.2) on page 23. It is
further stated that undermodelling should be bounded in a deterministic way,
as undermodelling does not average out over time and can have a worst-case
nature indeed.

2.3. Different of model error bounds 29

In (Goodwin and Salgado, 1989; Goodwin et al., 1992) the stochastics is
taken one step further and both the noise and the undermodelling are taken to
be samples from a random process. In the first reference the prior knowledge
consists of the cross-covariance function in frequency domain of the additive
error. In the second it consists of an exponentially decaying upper bound on the
variance of the impulse response parameters of the additive error. "Additive
error" is taken here with respect to some unknown optima! model. This prior
information is then mapped in frequency domain into an aposteriori estimate of
the expectation of the square of the additive error with respect to the nominal
model.

Another approach to ease the worst-case nature of many error bounds could
be to attach a probability distribution to the bound. To our knowledge, this
would be a new approach. It is therefore interesting to investigate this idea
a little further. Restricting attention for a moment only to the influence of
noise, a probability or likelihood can be specified for the diffetences between
the measured signals (Um, Ym) and all candidate "true", undisturbed signals
(Utr, Ytr) where (Utr, Ytr) are taken from some set Utr x Ytr. A map ping M is
then to be formulated, mapping a candidate undisturbed signal (Utr, Ytr) to a
measure d on the model uncertainty:

M: Utr X ltr -+IR+, (Utr, Ytr) r-+ d

Any hard error bounding technique can be used for M. Note that in this sim
plified case no prior knowledge is involved in M. Define the "inverse map ping"

)çt : IR+ -+ 2Utr XYtr, d r-+ {(Utr, Ytr) E Utr X Ytr 1 M(Utr. Ytr) :S d}

Let fuy (Utr, Ytr) be the probability density that was attached to the candidate
undisturbed signals (utr,Ytr). The probability distribution Fd(d) of the bound
d is then given by

Fd : IR+ -+ [O, lJ, d.-+ [fuy(u,y) d(u,y)
l'Jvl(d)

(2.3)

Although the idea is simple, application of it seems almost impossible. Let
us assume for simplicity that an explicit expression is available for ti(d), a
very optimistic assumption indeed. It would still be unlikely that an analytic
solution exists for the integral in (2.3). Reverting to numerical integration
provides no solution, as, even in case of a SISO system, the integral is of
dimension 2N where N is the number of data points in the experimental data.

Remark 2.2 In the remainder of this section attention will seem to be re
stricted to hard bounds. This is by no means meant to imply that hard bounds
are to be preferred over soft bound, it just allows for simpler expression of the
statements to be made. Nevertheless all statements can also be reinterpreted
in a soft-bounding sense and should apply as such as well. 0

30 Model and conservatism

2.3.2 Process in the model set or not

An issue attracting little discussion but dividing the model uncertainty bound
ing approaches clearly in two different camps is the question whether the true
process can be considered to be in the model set or not. In this section we will
assume that the model set consists of parametric models.

Considering model sets consisting of restricted complexity models and as
suming that the true process can be described exactly by one of those models
provides a means to extrapolate information obtained during finite experirnents
to statements holding true for all time instances. Using this approach it is pos
sible to say sornething about what experimental results would have looked
like if the experiment had spanned a langer period. The assumption that the
process is in the model set provides explicit conditions on the way in which
time-extrapolation can occur. In frequency domain both interpolation between
the sampled frequency-points and extrapolation to higher frequencies occurs.
This is important to realise, because one needs to have an alternative for this
if one refuses to assume that the process is in the model set: even though one
does not assume that the process is in the model set, there must be some way
of precluding the possibility that the process would start responding fiercely
to the excitations after the experiment interval. For frequency domain data,
there must be some way of ensuring that the frequency response of the system
is in some sense smooth between the frequency samples. This can be achieved
in several ways.

A common way is to assume an exponentially decaying bound on the im
pulse response parameters of the true system. Similar to this is the assumption
for discrete time systems that the poles of the true system are within a cir
cle of radius p, where p is known and less than one. Another method, used
in (De Vries, 1994; Hakvoort, 1994) and chapter 4 and 5 of this thesis, is to
assume an exponentially decaying bound on the generalised impulse response
parameters of the system. For more information on the latter approach the
reader is referred to the above references and to chapter 4 of this thesis.

Remark 2.3 The smoothness assumption above can be thought of as the as
sumption that the true process is in some set. This set is a subset of the set
of linear time-invariant processes. This subset will be encountered again in
chapter 3. 0

In parameter set estimation techniques, one basically assurnes that the pro
cess is in the model set, see (Walter and Piet-Lahanier, 1990) and the ref
erences therein. To some extent this has been generalised in (Milanese and
Elia, 1993; Livstone and Dahleh, 1995; Vicino and Zappa, 1996). These ref
erences allow for an unstructured additive model uncertainty. However, it is
assumed that this uncertainty is norm-bounded a-priori. The possible error this
extra uncertainty induces in the estimated model parameters is then bounded

2.3. Different types of model error bounds 31

by the proposed algorithms. The problem of obtaining this prior knowledge,
which is exactly what the problem of model uncertainty bounding is all about,
is not addressed by these references.

If one assumes that the process is in the model set, all of the undermodelling
effects listed under 1) to 5) in section 2.2.1, page 20 onwards, are ignored
completely. If one recognises that the process is more complex than any model,
the effects listed under 4) and 5) can be accounted for. In the context of robust
control design, this is definitely to be preferred.

Remark 2.4 The effect of 2) "working points", page 21, can be accounted for
by using separate data sets for a range of operating points and operating con
ditions. This range should cover the range of conditions that can be expected
after the implementation of the controller that is still to be designed. One may
then distinguish local uncertainty bounds, valid in one operating point, and
global uncertainty bounds, valid for all operating points. The global bounds
are simply obtained by taking bounds containing all local bounds. This idea is
applied in the algorithm of chapter 4.

This approach is valid only in cases where it can be relied upon that all of
a particular data set was obtained in a single operating point under roughly
constant operating conditions. If this is not the case, one is, possibly unknow
ingly, trying to reduce uncertainty of a model for one operating point by using
data for another operating point. D

2.3.3 Best case or worst case

At a first glance it seems clear that robust control design methods need a spec
ification of an uncertainty description that, provided the the prior knowledge
and assumptions are valid, guarantees to at least model the true process. In
other words, uncertainty bounding should find the smallest possible bound that
we can trust to be large enough to contain a description for the real plant. This
leads to worst-case bounds: given a set that is known to contain the true pro
cess, the bound that is large enough to contain all processes in this set should
be used.

Nevertheless the opposite approach is encountered in the literature as well.
In (Zhou and Kimura, 1993; Zhou and Kimura, 1994) the smallest bound that
can not be falsified by data and prior knowledge is searched: the data and
prior knowledge together define implicitly a set that is known to contain the
true process. The bound on the uncertainty derived by Zhou and Kimura is
chosen such that at least one process in that set satisfies the bound. The
stronger statement that all processes in the set satisfy the böund can not be
guaranteed.

In connection with robust control design this seems a suspicious approach,
even though the references consider noise-free data only. There is also another

32 Model uncertainty and conservatism

strange effect: the more data is obtained from the process, the greater our
"tools" to falsify an error bound. The error bound is a non-decreasing function
of the amount of data that we have available!

Remark 2.5 The effect that having more data increases the error bound was
encountered earlier: if data is obtained in another operating point, the model
error bound can not be reduced, hut is possibly increased. However, incteasing
the bound has the benefit of extending the faith we can have in the error bound
to an extra operating point of the process.

Given this explanation, there might be a similar explanation for the case at
hand. This explanation would be that a longer data set increases the validity of
the error bound to a longer time span. This would imply that the error bound
is only valid for the duration of the experiment. Clearly, this is unacceptable.

D

2.3.4 Bound for one process or any process

The bounds on the worst-case model error derived in (Gu, 1994; Gu and
Khargonekar, 1991; Helmicki et al., 1989; Helmicki et al., 1990a; Helmicki
et al., 1990b; Helmicki et al., 1991) are the worst possible bounds that one
may observe if the true system is any system in a restricted set. (This set is
the kind of set discussed in section 2.3.2 if one does not want to assume that the
true process is in the model set.) This means in particular, that the bounds are
valid not only for the process for which we want to have a model but also for all
other processes in that set. This in turn implies, that these particular bounds
can not depend on the experimental data, because these are necessarily taken
from only one member in the set. This differs from most other bounds, in which
the data potentially does contribute to a reduction of the model uncertainty.

Having a bound that applies for all possible processes is useful if one wants
to compare the quality of different algorithms. H algorithm A gives a tighter
bound than algorithm B for a certain process but algorithm B outperforms
algorithm A on another process, one can not say that either is better than the
other. If the bounds produced by the algorithms are not tied to particular
processes, the algorithms can be compared. If one is "only" interested in a
bound on the uncertainty for one particular process, namely the process that
is to be èontrolled, one need not take such a worst-case approach. Nevertheless
it may be attractive for reasons of computability to do this anyway.

Remark 2.6 Only the bounds on the model uncertainty do not depend on the
data in the above references. The identified model does depend on the data of
course. In thiss.ense the data reduces the model uncertainty quite significantly!

D

2.4. Quality aspects of uncertainty bounds 33

2.4 Quality aspects of uncertainty bounds

In this section aspects concerning the practical applicability, or quality, of an
error bounding technique will be discussed. These should be interpreted as
"desirable properties." It is not the case that a technique having all of the prop
erties mentioned here is necessarily a good technique and a technique lacking
some of them is useless in practice.

The probably hardest requirement for practical application is that the al
gorithm provides a computable bound. Whether a bound is to be considered
computable or not is to some extent up to personal taste. Bounds for which
simply no algorithm to compute them are known, are obviously not computable.
But, while one person may quite happily spend a week's worth of computing
power on the calculation of a bound, someone else may find this already un
acceptable and consider the bound uncomputable. Apart from the subjective
element in this decision it also depends strongly on the state of the art in (af
fordable) computing power, which has been developing rapidly during the last
decades.

In the context of uncertainty bounding for rohust control design, it is im
perative that the statement about the model uncertainty can be used by tech
niques for robust control design. This is related to, hut not identical to aiming
for bounds that are in line with control objectives. The link between iden
tification and control has been studied for example in (Gevers, 1991; Gev
ers, 1993; Schrama and Van den Hof, 1992; Schrama, 1992).

It should definitely be considered a practical advantage of an error bound
if it can incorporate the kind of prior knowledge that one has in a certain
situation. The match between what kind of knowledge is practically available
and what can be used by error bounding techniques would benefit from a wide
discussion between practicists and theorists.

Also of much practical value is a bound that is interpretable in physical
terms. An interpretable bound can be confronted with one's expectation for
the model uncertainty. If the obtained hound is in line with this expectation,
the faith in the bound is increased, even in the presence of the simplifying
assumptions that were made in the derivation of the bound. If, on the other
hand, the bound deviates significantly from what was expected, this is a sign
that things need to be carefully checked. It may be that the error bound is
conservative, hut it could also be that the nominal model, the input design,
the experimental conditions etc. are the cause of the unexpected results. In
summary, an interpretable bound can be validated, or invalidated, based on
arguments that are not necessarily restricted to the theoretica! framework into
which identification and error bounding have been cast.

Contrary to what the name suggests, prior knowledge consists mostly of
assumptions that are made about the process. These assumptions are hopefully
very sensible indeed, hut they remain assumptions, not real knowledge. If the

34 Model and conservatism

error bounds turn out to be determined mainly by the prior "knowledge," one
should realise that these assumptions have far-reaching consequences. If, on the
other hand, certain aspects of prior knowledge did not contribute to a reduction
of the uncertainty bounds at all, it may be worthwhile to investigate whether
that particular specification was not too cautious. These considerations are
only possible if it is known what actually determined the size of the uncertainty
bounds. The ability of an uncertainty bounding algorithm to provide this
information is the final desirable property we like to mention.

2.5 Summazy
There seems to be a different interpretation of the concept "model uncertainty"
in the areas of control design and model error bounding. The three main
categories of contributions to a model error bound are undermodelling, finite
data and noise and conservatism. For a robust control design it is desirable
that as many of these aspects of undermodelling as possible are bounded in a
reliable way by the eventual error bounds.

Model error bounds can be decreased by reducing conservatism. Important
causes of conservatism are the inability to use all of the prior knowledge that
is available and the inability to express all of the a posteriori knowledge about
the model uncertainty in the uncertainty bound.

3
A formal foundation for model

uncertainty bounding

3.1 Introduction
3.2 Formalism

3.1 Introduction

3.3 Discussion
3.4 Summary

In chapter 2 model uncertainty was considered in an informal way. In this
chapter a general formal framework is presented for process identification and
model uncertainty bounding. The aim of this formalism is to describe at an
abstract level the concepts involved in process identification and uncertainty
bounding. This provides a framework in which one can think about model
uncertainty bounding without being tied to a particular algorithm.

The formalism is intended to be complete in the sense that every possibly
relevant aspect of the process behaviour is covered by elements of the formalism:
if the true system can not be fully represented by models in the chosen model
class, which is always the case in practice, the formalism should provide enough
alternatives to represent the mismatching parts by. As was already mentioned,
the framework should not be restricted to a particular class of existing or
prospective algorithms. Due to this generality, most terms in this formalism
are rather abstract: for different algorithms the abstract notions may be given
different forms. For clarity an example is developed along with the formalism.

3.2 Formalism

To represent systems and models, the behavioural representations described in
(Willems, 1986) will be used. In this representation, dynaniical systems are
considered sets of vector valued signals. More precisely, a dynamical system is
considered to be a triple ('Jl', W, B), where W is called the signal alphabet, 'JI'
the time set and B c WT the behaviour of the system. The behaviour B is

36 A formal foundation for model uncertainty bounding

the set of all signals w(t), defined fort in the time set 'II', that the system may
exhibit.

Exaniple: Consider the example of a two phase asynchronous motor. For a
further discussion of this kind of device, see section 6.5 on page 229. Of the
many aspects of this device, we may choose to limit attention to the voltages Ui
and U2 over the stator windings, the currents Ii and 12 through these windings,
the mechanical torque T m exercised by the motor at its axis and the angular
velocity w of the axis. If we abstract from the units in which these quantities
are to be expressed, we can say that the signal alphabet is equal to lli6 : for
t' E 'II' we have that w(t') := (Ui (t1

), U2 (t1),I1 (t1), I2(t1
), T m(t'), w(t')) E JR,6.

If the system is considered in discrete time domain, 'II'= Z or 'II'= Z+. H
it is considered in continuous time, then 'II' = lEi or 'II' = JEi+. Notwithstanding
the name "time set" lor T there is nothing prohibiting that the engine is
considered in frequency domain. This gives 'II' = C and W = C6 • Variants of
this where T is a subset of C, such as the imaginary axis, the unit circle or
sampled subsets of these, can easily be found.

This is already a gross abstraction of the physical machine. The tempera
ture of the windings is not considered, nor the price of the engine, its manu
fäcturer or the colour of its case, to name only a few things. D

To consider the behaviour of a system B on a subset T' of T, the notation
BIT' will be used. This is formally defined as

BIT' := { w' E wT' l 3w EB, Vt1 ET' w1(t1
) = w(t')}.

It is assumed that for a certain behaviour B a partitioning of the signals
w(t) E B into inputs and outputs is both possible and known. This will be
denoted w(t) = (u(t),y(t)) where u(t) consists of the input signals and y(t) of
the output signals. The same partitioning of w into u and y will be used for
all behaviours in the formalism. This partitioning is used at one point in the
formalism, but the formalism does not really rely on it.

There are two reasons to suffer the loss of generality induced by distin
guishing between inputs and outputs. Firstly, it makes the formalism easier
accessible for those used to thinking in terms of inputs and outputs, which is,
despite the work of Willems and his followers, in my opinion the large majority
of the identification and control community. For those trained in not thinking
in terms of inputs and outputs the generalisation to a more symmetrie formula
tion should be straightforward. Secondly, in all practical cases where the signals
can be partitioned into actuator signals and sensor signals, which constitutes,
again at least in my view, by far the majority of cases, the partitioning in to
inputs and outputs is trivia!. Therefore the loss of generality is not considered
very significant.

3.2. Formalism 37

Another departure of convention with respect to the behavioural frame
work is that behaviours will not be denoted B or /3 in this formalism. If a
symbol describes a process, model or any other dynamical system then it is
a behaviour, this is not further stressed by denoting it B. The variation in
notation that is made possible by dropping this convention is used to denote
different kinds of systems or models by different symbols. In the examples, also
other representations of models will be used.

An overview of the formalism is now given in the symbolism (3.1) below.
At this point it will not make much sense yet, but throughout the remainder
of this section, the various symbols in this framework will be introduced. lt is
expected that the reader will often be referring back to this overview. Therefore
it is repeated at the top of every left page in this chapter; this is meant as an
aid to the reader and not as a vain attempt to make the formalism seem more
important than it is.

SE S -+ !> w

} ~ I> Cstab
'.Pc Q 1>Vu, (llull ::; du 11.;11 ::; d() -+

!> '.J'2, · · ·, '.J'N:P

!>Jid (3.1)

C"+".ó. } d(~) < d c -+ 0 K? C _ ác

Before explaining all the symbols in this formalism in detail, it is worthwhile
to mention a few conventions here. A behaviour of a system, process, model,
etc. is denoted by a normal Roman capital letter, such as S, M, etc. Capital
Roman script letters, such as S, '.P and Q, are used for sets of behaviours.
Behaviours being sets of trajectories, these script capital letters denote sets of
sets of signal trajectories.

The items marked by a '1>' involve concepts that the formalism can not
generate but that are required in later steps of the formalism. An example of
this is the symbol W, that will turn out to represent the experimental data
used in identification. In the formalism, experimental data can not be derived
from other, known quantities. Nevertheless several steps in the formalism will
require that experimental data is available.

In the remainder of this section the various symbols will be explained. A
discussion of a symbol is rnarked by a box containing that symbol and a '!>'
sign. This makes it possible to see at a glance what symbolis being explained in
a certain part of the text or where to find an explanation for a certain symbol.

True system

38

SE S -+

-+

A formal foundation for model uncertainty bounding

I> w
I> Cstab

l>Vu, (llull ~du ==} ll~îl ~ dç) -+

1> P2, ... ,PN'.P

c "+"6. } d(~) < d c -+ OK?
C - D.c

(3.1)

[IJ I> The particular system under study is denoted S. Sis the behaviour of
that "true" system, soit is the set of all signals w(t) that the true system
can exhibit. It is implicitly assumed, that the signal alphabet W and the
time set 'II' are known. Unless otherwise noted, this signal alphabet and
this time set will also be used for all other behaviours in this formalism.

In practical situations we may have access to (part of) the scalar valued
signals in w(t) for some w(t) E S, where t E 'II'' C 'II' and 'II'' is some
bounded subset of 'II'. Accessing these signals may contaminate the "true
signals,'' for instance by introducing measurement noise. Also other ex
ternal influences may be present in a (partial) observation of w(t). These
contaminations are assumed to be present in the signals w(t) E S. With
this interpretation S represents somewhat more than only the true system
including all its imperfections; it also includes the imperfections of the
measurement equipment.

The set S is not accessible for measurements. At best we can try to verify
whether some w1 (t} is a member of S. As soon as we have carried out
an experiment for t E 'II'', it is impossible to do another experiment for
t E 7I'1• Apart from this, we can not do experiments for all t E 'II' if 'II'
is unbounded, which will generally be the case. This implies that even
elements of S are in practice not fully accessible for measurements.

In advance of the introduction of the concept of stabilisability, which will
. be formalised on page 41, it is already stated here that the system S is
stabilisable.

~ I> S is the set of all processes of the same kind as S. This is the place where
one can put any prior knowledge about the system S that is available by
virtue of the fact that it applies for any system of that kind.

Example (cont.): If Sis the behaviour of the motor, then S may be (a subset
of) the set of dissipative systems. Indeed, the law of preservation ·of energy

3.2. Formalism 39

states, that all energy that has somehow entered the motor should have either
been stored in the motor or have left the system. In practice one meets the
problem here of accounting for all losses that occur in the system. A first
attempt at this might be

j_t
00

U1(t)Ii(t) + U2(t)I2(t) dt = 2;: tLilf(t) + L tciv/(t) +
i J

L L tMi1,i2Ii1(t)Ii2(t) + L jt Rkii(t)dt+
i1 i2#i1 k -oo

tJw2 (t) + [
00

Tm(t)w(t) dt + other eflects (3.2)

Skip ping the sign conventions that are implicitly assumed here, the meaning of
the new symbols is as follows. U1Ii is the power that flows to the motor through
the first stator winding, U2I2 is the same for the other stator winding. Li for i
in some countable set is the set of all inductances that can be distinguished in
the motor. Ii is the electrical current fl.owing through inductance Li. Mh,iz is
the cross-conductance between two "ports" i 1 and i 2 . The currents fl.owing into
these ports are Ii1 and !;2 respectively. Note that every pair of ports occurs
twice in the summation, once as the pair (i1, i2) and once as the pair (i2, i1).

Cj for j in another countable set is the set of all lumped capacitances in
the motor. Vj is the voltage over capacitance Cj. Rk is a set of resistances,
through which currents h fl.ow. They account for the electrical losses in the
motor.

T mW is the mechanical power exercised by the motor on its axis: T m is
the torque that the motor exercises on an external load and w is the angular
velocity of the axis. !Jw2 (t) is the kinetic energy in the turning parts of the
motor. J is the inertia of those parts of the motor that participate in the
rotating motion.

With "other eflects" all other losses and buffers of energy are meant. This
includes the mechanical losses due to friction, electro-magnetic radiation, edy
current losses, etc. If the motor jumps from its position during operation, it
will have a kinetic energy and, if it happens to jump up, also a potential energy,
etc.

Most eflects are hard to quantify exactly, but most of them can be bounded.
A rough but simple conclusion to be drawn from (3.2) is

H 1I' = IR and 1I' is indeed a time set in the literal meaning of the word,
then this inequality can already be used to exclude certain behaviours from

40 A formal foundation for model uncertainty bounding

t>W
[> Cstab

t>'v'u, (liull Sdu ==> llÇll S dç) } ~ PcQ

[> '.P2, · · ·, '.PNp

[> Jid (3.1)

{

Mid C Mset }
M·d "+" ó
d(ó ! S dt,. -t Co E eo -t {

t> reqmrements

G "+"ó } d(~) < d c -t OK? C _ Ac

S. For behaviours consisting of one-sided sequences, discrete time sequences
or frequency domain sequences, additional work is involved before the law of
preservation of energy can be used to determine membership of S for a certain
S' CWT. This.is not further pursued here, because the purpose ofthis exam
ple was only to give an idea of the kind of knowledge that can be represented
by the set S. 0

~ (cont.) [> The set S is certainly not a well-defined set! How broad or how
narrow the set S is depends highly on the knowledge one has of the kind of
device of which S is a particular realisation. If there is no knowledge that
can be used to decide that a certain behaviour can not possibly represent
a device similar to the true system S, then we have the extreme case that

S=2w'.1I',

S is the set of all subsets of WT.

[> Some measurements have been taken of the system S on a time set
7I'' C 7I'. These measurements are represented by a set W c WT' . Thus

Wc SIT'

Example (cont.): Assume that the asynchronous motor is considered in dis
crete time, so that 7I' = Z. Assume further that measurements of all ele
ments of w were taken from t' = Tsl to t' = Te1 2: T8 1 and from t' =. Ts2 to
t' = Te2 2: T8 2. Assuming for simplicity that Te1 < Ts2, it holds

and W consists of a single trajectory w = (U1,U2,l1,l2 ,Tm,w), specifying
a measured value for U1(t'), U2 (t'), I1 (t'), h(t'), Tm(t') and w(t') for every
t' E 7I'1

•

3.2. Formalism 41

From this example it may be clear that W contains in general only one
trajectory, even if multiple data sets were obtained from the system S. If W
contains multiple elements, that implies that multiple measurements of the
system have been taken simultaneously. O

Modelling and uncertainty bounding aspects

[C stab [1> It is assumed that a stabilising controller for the system is both
known and connected to the system during the experiments in which W
was obtained. For stable systems this may reduce to a situation in which
no controller is present.

The interconnection of the system S and a controller Cstab will not be
formalised. The scheme of figure 3.1 specifies it informally. The input u of
the process S is partitioned into a "free" part u1 and a part u2 connected
to the controller output. The output is partitioned similarly into a part
used by the controller and apart not used by the controller. An extra set of
free signals r is introduced. In genera! these signals represent the reference
trajectories one wants the system S to follow in soine sense. Bath u1 and r
may be empty. The signal 63 represents the disturbance and measurement
noise effects that are part of S. The notation will become clear later in
this chapter. Although these signals are considered in this formalism to
be part of S, they may be external signals to the system from a physical
point of view. In case both u1 and rare empty, the closed loop system has
turned into an autonomous system.

The controller C stab is said to stabilise S if

(llu2ll < oo A llYll < oo) (3.3)

This is generally referred to as bounded-input, bounded-output (BIBO)
stability. S is said to be stabilisable if a controller Cstab exists that sta-

Figure 3.1: Interconnection of S and Cstab

42 A formal foundation for model uncertainty bounding

[> w
r> Cstab

!>'Vu, (llull :::; du ===> llÇll :::; dç)
[> '.P2, · · ·, '.PNp

{

Mid C Mset }
M·d"+"a
d(a) :::; dA -+Co E eo -+ {

I> requirements

c "+"a } d(~) < d c -+ OK? G _ Ao

(3.1)

bilises S. For the sake of generality it is not specified what norm is actually
meant with 11·11·
lt can now be explained why the noise and disturbances 6 3 had to be drawn
explicitly in figure 3.1. BIBO stability requires that the output remains
bounded if the inputs remain bounded. However, it may very well be
the case that the outputs become unbounded if the external inputs to the
system that were absorbed in S, i.e. the noise and disturbance influences
represented by 6 3 , become unbounded. If this happens, we do not want
this to imply that the system is unstable.

Note that it is not assumed that S is a normed set. S is intended to
represent the "true" physical system and it is therefore not considered
desirable to restrict the signal trajectories in S to those trajectories that
have a finite value for llwl!, llull and/or llYll·

In the remainder of this chapter it will be assumed that the reference signal r
is bounded:

llrll < oo. (3.4)

@] (cont.) r> Another property of the systems in S has been introduced im
plicitly in the discussion of Cstab= all systems in S are .stabilisable. This
corresponds to the assumption that the true process is stabilisable. This
is reasonable to require. If the true system is not stabilisable, not much
benefit can be derived from applying identification, uncertainty bounding
and robust control to it anyway.

@] [> The set Q consists of a class of systems that is present in every algorithm
for model uncertainty bounding hut for which there is nevertheless not a
general name. Usually, it is the class of systems to which the true system
is assumed to belong, such as the class of linear, time-invariant systems. In

3.2. Formalism 43

any case, it is a class of systems in which the outputs y can be completely
explained from the inputs u, possibly up to transient effects if 'JI' is a one
sided time set. Because systems are represented in this formalism by their
behaviour, Q is a set of behaviours.

Contrary to the system S, the signals of the systems in Q do not contain
measurement noise or external disturbances. (A refinement could be made
such that Q contaîns also some information considering the noise acting
on the system, such as a filtering indicating the colouring. that ·is present
in the noise. For convenience this is not carried out here.) If Q contains
linear systems, non-linear side-effects are neither part of the systems in Q.

In section 2.3.2 it was pointed out that one needs to assume more about
the true process than merely that it is linear, time-invariant if one wants
to stand a chance of, say, extrapolatîng data from a finîte, discrete time
interval to an 7-l=-bound on the additive model error. It is exactly this
kind of knowledge that is represented by the set Q.

As the outputs can be explaîned from the inputs, there exists a mapping
from the inputs, and possibly from initial condîtions, to the outputs. This
mappîng is assumed to be a causal one, i.e. fora certaîn t 1 E 'JI', y(t1) does
not depend on u(t2) for any t2 > ti.
More requirements on Q will follow.

Example (cant.): For the asynchronous machine it may be known that the
response of the current through the windings to a pulse on the voltage over
the windings falls off at a certain exponential rate. For Q one might tlierefore
choose the set of linear, time-invariant processes having at least this decay rate
in their impulse responses.

Note that this is not meant to imply that the true system is a linear, time
invariant process; see the Eollowing discussion on Ç. 0

[fJ t> The signal Ç accounts for everything in the true system S that can not
be accounted for by a system Q E Q. Every w E S is decomposed into
a component WQ, that can be accounted for by a certain Q E Q, and a
component Ç as follows

Vw = (u,y) E 8 w = WQ + Ç, WQ E Q E Q. (3.5)

The signal Ç acts, possibly, on both inputs and outputs. Neither WQ nor Q
are unique in (3.5), but some chokes for WQ and/or Q are more sensible for
our purposes than others. Before considering this, figure 3.2 may already
clarify to some extent the role of Ç. {u1 and Ç111 are genèrally considered
disturbances and {u2 and Ç112 are normally regarded as measurement noise.
In this formalism, both u1 and u3 may be considered the process input u.
In case u1 is used as the process input, the signals that a human operator

44 A formal foundation for model uncertainty bounding

SE S -t [> w
t> Cstab

!>Vu, (llull :'.S du ==> llÇll :'.S dç) } ~ PcQ

!> :J>2, · · ·, :J>Np

{

Mid C Mset }
M· "+"~ d('i) :'.S dt::. -t Co E eo -t {

!> requirements

c "+"~ } d(~) < d c -t 0 K? C _ Ac

(3.1)

or a controller specifies for the plant is taken as "the" input. If U3 is
considered the process input, the disturbances in Çu1 are elirninated frorn
the signa! u, hut this goes at the expense of introducing measurement noise
Çu2. If the formalism is applied in an open loop situation, one may choose
whether to use u1 or u3 . However, in a closed loop situation one can only
use ui, because it was assumed in the discussions on stability that the
process input u was the signal that was generated by the controller, i.e.
u1. At the output we do not have this choice. The only process output
that is in general available is the measured. output y3 .

Attention is now turned to two problems: which WQ E Q is to be used in
(3.5) and which Q E Q? There is a simple solution to the first problem:

Vw ES wo = arg~jg llw -wll (3.6)

In words: for every trajectory in the true system S, find that trajectory in
Q, called wo, that fits best to w. The misfit between a w ES and a w E Q
is quantified here by llw - wil for some norm. For simplicity the problems
that the minimum may not exist or may not be unique are ignored here.

Çul Çyl

Ut U2 Q Y2 y

Ç"2 o-Ç112

U3 Y3 ~

Figure 3.2: Possible interpretations for u and y

3.2. Formalism 45

A first attempt at a solution to the other problem could be to take Q equal
to

Q = arg I!lin max mil! llw - tûll·
QEQ wES wEQ

(3.7)

This takes a worst-case approach. It is not a feasible solution for two
reasons: first of all, not for every w E S the expression llwll may be
well defined. This problem also applies to (3.6), but it was no attention
given there as the solution that will be developed below for (3.7) will be
applicable. Even if llwll were well-defined for every w E S, the expression
llw-wll can be expected to grow out of bounds if llwll grows out of bounds.
The choice of Q is completely dominated by the fit that can be realised
for large w. This may not be so much of a problem for linear S, but for
non-linear S it certainly is.

In order to resolve this problem, the assumptions that are made implicitly
if a "real" system is approximated by a linear, time-invariant model need
to be made more explicit. If a system is to be approximated by a linear,
time-invariant model, this means that a linear, time-invariant description
of the system has to be found, that gives a good account of the process
behaviour locally.

Locally means first of all locally in time: there once was a time that the
system to be approximated <lid not exist yet and there will be another time
in which it does not exist any more or at least does not behave any more in
the way we expect it to now. Therefore, the norm used in (3.6) and (3.7)
should be such that there is little or no weighing of mismatches between
w and w that occur far in the past and far in the future. What "far in the
future" means depends on the period of time that the model is intended
to be valid.

Weighing mismatches between w(t') and w(t') not at all in llw-wll (equa
tion (3.6)) for certain values of t' may turn the norm llw - wll into a
semi-norm. The notation 11-11 may then be somewhat misleading, hut this
is not considered a big problem.

Locally also means locally in amplitude range. The model should be a good
representation of the system in the amplitude range where the system
is expected to be used. As this formalism is about model uncertainty
bounding for robust control design, the relevant amplitude ranges are those
that will occur in the eventual closed loop situation.

Let the set R c WT be such that it contains only trajectories w for which
the amplitudes of inputs and outputs are within the range discussed above.
Then instead of (3.7) a second attempt at picking a sensibly optimal Q E Q

46 A formal foundation for model uncertainty bounding

SE S -+ !> w
!> Cstab

t>Vu, (llull ::; du ==> llÇll ::; dç)
!> '.P2, · · ·, '.PN'.P

} ~ PcQ

!>Jid (3.1)

{

Mid C Mset }
M·d "+" .6.
d(.6.} ::; dD. -+ Co E eo -+ {

!> reqmrements

c "+".6. } d(~) .< d c -+ OK? C _ Ac

could be

Q = arg :rp.in max mil! llw - wil (3.8)
QEQ wESnR wEQ

Further refinements can be made to the selection of Q, but the general idea
is probably sufficiently clear by now. The optimal Q will be referred to as
the manifestation of S in Q. In chapters 4 and 5 Q will be a subset of the set
of linear, time-invariant processes. (See appendix C for a further discussion
of the links between this formalism and the algorithm of chapters 4 and 5.)
Then Q will be referred to as a linear, time-invariant manifestation of the
process, or just the linear manifestation, which is shorter but less accurate.

Given the fact that the behaviours in Q consist of trajectories in which the
outputs y can be explained from the input u by relationships of a certain
form, Ç has to account for three effects:

l. The relation that is present between u and y may not be exactly of
the form specified by elements in Q.

2. . The outputs y will not be completely explicable by the limited number
of signals that happened to be included in u. Other inputs to the
system will have their influence on the outputs as well. This includes
those inputs that are normally referred to as process disturbances.

3. The measurements of y and possibly of u may not represent the true
value of these signals. The actual measurements can be contaminated
by measurement noise.

The distinction between 2. (disturbances) and 3. (measurement noise) is not
so relevant as far as identification is concerned, as in general no attempt is
made during identification to distinguish between the two. However, for control
design the difference is important. A controller is supposed to react to process
disturbances but should be as insensitive to measurement noise as possible.
Extra knowledge is then required to make a distinction between the two effects.

3.2. Formalism 47

Example (cont.): Considering the inputs U1 and U2 of the asynchronous ma
chine and its outputs 11 and / 2 , it is known that for large currents Ii and 12 a
saturation effect occurs in the magnetic material inside the machine. This has
its influence on the relation between U1 and U2 on the one hand and Ii and 12
on the other. If Q is taken to be a set of linear models, this effect can not be
described by any Q E Q. This is an example of the effects mentioned under 1.
that Ç has to account for.

Suppose that the inputs U1 and U2 are specified in open loop by a feed
forward controller or signal generator implemented in some computing equip
ment. It is conceivable, although maybe not very likely in practice, that through
electro-magnetic coupling extra stray signals are picked up by the cables con
necting the computing equipment to the motor. If the speciiied U1 and U2 are
taken as the inputs to the process, the extra signals tha.t are added to the in
puts before they are really applied to the motor are to be considered exogenous
inputs, or disturbances. This corresponds to an effect listed under 2. above.

The same effect may occur to the measurements of Ii and 12 • Suppose
these currents are converted to a volta.ge that is then lead to the computing
equipment. If stray signals are picked up by the cables connecting the com
puting equipment to the current-to-voltage converter, these signals should be
considered measurement noise and are an example of effect 3.

The currents flowing through the motor windings have a limited range: if
their amplitude gets too large, the windings will burn. This leads naturally to
a range R for the currents Ii and 12 in which the motor behaves more or less
as it is intended to. Outside this range, the behaviour of the motor may be
predictable, but definitely not conforming to a linear model that could have
been derived for the motor. 0

Note that for the effects 2. and 3. the signal Ç represents the effect of the
exogenous inputs. This does not mean that Ç contains these inputs directly. Ç
is additive to the inputs and outputs that are included in the description S.
The exogenous inputs may very well enter the system physically at a location
that does not coincide with the location of any of the signals in w E S.

Up to this point no assumptions were made about the degree in which the
outputs y can be explained by the inputs u fora w = (u,y) E S. We could
have taken u to represent the prices of certain flowers at a market place and y
the number of employees called Piet in a company. The assumption that the
outputs y have to be explicable, at least to a certain extent, by the inputs u is
formalised next:

'rlu, (ilull::; du ==> llÇll::; dç) !> Any feasible model Q E_ Q that specifies

a relationship between u and y has the property that the data can be
decomposed as

W =WQ +Ç,

48

SE S -+

A formal foundation for model uncertainty bounding

I> w
l> Cstab

1>\fu, (llull :; du ===> llÇll S dç)

I> 'Y2, · · ·, 'YNp

} ~ PcQ

G"+"à } d(~) < d c -+ OK?
G - l:l.c

(3.1)

with WQ E Q. However, the output y is only to a large extent explicable
by u if it holds that

(3.9)

provided both inputs and outputs contribute in roughly equal amounts to
llÇll and l!wll· If these norms are completely dominated by the contribution
of the inputs, the above statement is not true. In this case we can fit
to a w E S a w E Q E Q such that the inputs in w and w are equal
hut the outputs are completely different. This will nevertheless lead to
llÇll = llw wll « llwll· A similar situation may occur if llwll or llw wll
is completely dominated by the outputs. Assuming that such domination
by neither the inputs nor the outputs is the case, (3.9) has far-reaching
implications.

As already stated, it means that y can be explained to a large extent
through u. (3.9) will therefore not apply if u and y are two signals that
have nothing to do with each other. (3.9) implies moreover that the ex
planation of y by u takes the form of a relationship between y and u of
the sort Q. Assuming once more that Q consists of linear, time-invariant
behaviours, (3.9) quantifies what it means that the non-linear system S
can be approximated by a linear, time-invariant process.

As was mentioned in the discussion leading to (3.8), it is in practice not
reasonable to assume that (3.9) holds for every w E S. What is actually
meant is that Ç should remain small if the inputs and outputs stay within
a certain range. This latter requirement is intended to be implied by
llull Sdu. This will be explained further below.

The requirement

3.2. Formalism 49

links the theoretica! descriptions in Q with the physical reality in S. A few
reality-checks seem therefore in order.

That llull ~ du can be expected to imply llÇll ~ di;, « llwll is not trivia!.
The argumentation for this consists of two steps. First it is considered whether
there exists a range of input and output amplitudes, such that

a) S can indeed be approximated sufficiently well by a system Q E Q so that
in this range it holds llÇll « llwll.

b) this range is large enough to contain the range of input- and output-ampli
tudes that can be expected in the system during the eventual closed-loop
operation.

Second it will be discussed whether one can expect llull ~ du to be a sufficient
condition for both inputs and outputs to stay in this range.

Starting with the first issue, is it possible to find a proper description Q E Q
for the system in the input- and output-ranges of interest? Whether this can
be achieved depends on the system S and on Q. Practical experience shows
for a lot of processes that the approximation of a real plant by a linear, time
invariant description is good enough to get away with. However, practice can
also provide examples in which this standard tool fails miserably. As far as
the formalism is concerned, this is an open question. Note that the range of
interest for the input and output amplitudes was formalised on page 45 by the
set R.

Remark 3.1 In the previous parts with "ranges of interest" for inputs and
outputs was more or less implicitly meant that the inputs and outputs should
satisfy an upper bound. In practice it is also sensible to maintain a lower bound
on the magnitude of u: it is not uncommon that an actuator performs poorly
for very small excitations or that the process simply does not respond to signals
below a certain threshold. Dead zone, hysteresis and backlash are examples of
such effects. These effect will not further be considered here. D

Moving on to the second issue, is the condition llull ~ du sufficient to ensure
that both inputs and outputs remain in a certain range and is the condition
llull ~du a reasonable one in the first place? For open-loop stable systems Sit
is easy to see that the answer to both questions is "yes." Making sure that the
answer is also affirmative for unstable systems S is exactly what the stabilising
controller Cstab was introduced for. It may be assumed that the disturbances
and the measurement noise are bounded. This implies for the signal 63 in
figure 3.1 on page 41

(3.10)

(See also equation (3.3) on page 41.) A bound on u implies, together with
assumptions (3.4) on page 42 and (3.10) above, indeed a bound on y. This can

50 A formal foundation for model uncertainty bounding

t> w
!> Cstab

t>\lu, (llull ::; d" => llÇll ::; dç) } ~ Pc Q

t> P2, ... ''J'Np

{

Mjd C Mset }
M·d "+" 6.
d(.6.) ::; dt:. -t Co E eo -t {

t> requirements

G "+"6. } d(~) < d c -t OK?
ç - !:.c

(3.1)

be seen as follows. From the fact that Cstab stabilises S follows by definition

(llu1ll < oo /\ llrll < oo /\ 116311 < oo) =>
{llu1ll < oo /\ llu2ll <co/\ llYll <co) (3.11)

Given the assumptions that r and 63 are bounded, we have

(llu1 Il < co ~ llull < co) => llYll < co

u1 is in practice a bounded signal for the same reason as r is bounded: it is
a variable specified by the user of the plant. It can now be concluded that
bounding u will bound y and that it is reasonable to assume that u can be
bounded. This completes the discussion of the second issue.

This is the point in the formalism at which inputs are treated essentially
different from outputs. One could replace the implication llull ::; d" => llÇll :::;
dç by the implication llwll ::; dw => llÇll :::; dç. However, keeping u bounded
is something that can be achieved simply by specifying bounded values for
them, at least in the open-loop case. One can not specify that the outputs
remain bounded. One can only apply an input and see what happens. In the
closed-loop case it becomes more a matter of taste whether to require that u is
bounded or that w is bounded: not all of u can be considered free variables any
more and one has to resort to arguments given above to show that all signals
in 1t remain bounded in practical circumstances. In exactly the same manner
it could have been argued that all signals in w remain bounded.

If the selection of inputs and outputs has been such, that the relationship
between inputs and outputs is too weak for proper control, this will emerge
here in the algorithm, even before the control design. In this case, choosing du
such that u remains in the range of interest, a considerable part of y will not
be explicable by u, so Ç will be a large signal and

3.2. Formalism

will not hold.
Consider once more equation (3.8) from page 46:

Q argl!rln max mil! llw - wil
QEQwESllRwEQ

51

(3.8)

One can argue that this optimisation is a very hypothetical one. The set S is
not known and even if it were, it would be a diflicult job to solve (3.8). However,
things are not as bad as they may seem. The optimal Q that is determined by.
(3.8) is never used. It is only introduced to express that as much as possible of
the process behaviour should be explained by a relation in Q. In other words,
the signal Ç accounting for the fact that S <t. Q, for disturbances, measurement
noise etc. should be made as small as possible. That this should be confined to
a certain amplitude range for both inputs and outputs, expressed by the range
R, is nothing new. During the input-design for an identification experiment
the amplitudes of the inputs have to be chosen exactly such, that input- and
output-amplitudes are in a practically relevant range. During the input design
a value for du is therefore already implicitly determined. All that remains to
be determined is a bound on the effects 1. to 3. on page 46. After a number of
identification runs with the plant, one should be able to determine at least an
upper bound for these effects.

1 W 1 (cont.) C> The trajectories in W should satisfy

l '.P2, ... , '.P Np 11> Prior knowledge that is available of the system is represented
by '.P2, ... , '.P N~p. If it is known for example that the DC-gain of a certain
SISO transfer in Sis equal to 1, while all others are known to be 0, '.P2 will
consist of all behaviours in Q that are consistent with this information. If
it is further known that there is a resonance peak near a certain known
frequency, '.P3 will contain all members of Q that can be considered to be
consistent with this prior knowledge, etc.

To decide whether an element of Q is consistent with a certain type of prior
knowledge about the system S, the influence of Ç has to be accounted
for because prior knowledge is usually stated in terms of the noise-free,
disturbance-free system.

Now the experimental data and all prior knowledge in the formalism have
been introduced. This information will subsequently be proce.ssed to identified
models and uncertainty bounds.

~ t> Apart from '.P2, ... , '.PNp we introduce '.Po Ç Q containing all elements of
Q consistent with W and a noise level p. The noise level p will be specified

52 A formal foundation for model uncertainty bounding

[> w
[> Cstab

·l>Vu, (llull ::; du ===> llÇll ::; dç)

[> '.P2, • • ·, '.PN'.J'

} ~ PcQ

I> Jid (3.1)

-+ { ~~~ ; +~s~ } {
d(.ö.) ::; da -+Co E eo -+

[> requirements

C"+".6. } d(~) < d c -+ OK? C _ ác

later. Q E Q is said to be consistent with W and p if and only if

Vw E W, 3w E Q, llw -w!I::; p.

Until it is specified what noise level is to be used, we take '.Y0 = P0 (p)
where Po is a function of an as yet unknown argument p:

Po:IR+-+2°, pt-+{QEOIVwEW3ûiEQ, llw-wll:;p}.
(3.12)

The fact that the system is stabilised by Cstab is represented by the subset
'.J\ of Q containing all systems in Q that are indeed stabilised by C stab.
The role of Ç in this will also be considered later.

All prior knowledge and experimental data about the system can now be
summarised by stating that Q, the manifestation of Sin S (see (3.8)), is a
member of the subset

N'.J'

'.P := n '.}\
i=O

of Q.

This set will be called the process uncertainty set. All elements of '.Y are
non-fälsiffable by the experimental data or the prior knowledge.

The Venn-diagram of figure 3.3 shows the relation between Q, '.Po, ... , 'YN'.J'

and P for N'J' = 3.

Remark 3.2 The aim of model uncertainty bounding techniques is to find a
description of P that is as tight as possible. lt has been argued in section 2.3.2
that this description should generally be taken such that it contains all of '.P,

3.2. Formalism 53

although descriptions containing at least one element of '.P are encountered in
literature as well. Robust control design techniques should design a controller
having desired properties for all elernents of '.P. This will be discussed further
in section 3.3.3. D

set I> Existing techniques for robust control design are based on a nominal
model and a bound on the error or uncertainty in this nominal model. lt
is the job of the identification step to select a nominal model from a set of
candidate nominal models. This set of candidate models, normally called
simply the model set, is denoted by Mset·

For all M E Mset, there exists a causal relationship from inputs to outputs.
A specific technique may or may not require that Mset C Q. In general
MsetnQ =fa 0.

Example (cont.): Suppose, that one wants to model the SISO transfer Erom
U1 to Ii of the asynchronous motor by an output error model:

y(k) = !~2 u(k) + €(k)

a(() = 1 + aiC1 + · · · + anCn

b(() = bo + b1C1 + · · · + bn('"""n

n E IN.

Figure 3.3: Venn diagram of Q, '.Po, ... , '.PN:? and '.P

(3.13)

54 A formal foundation for model uncertainty bounding

SE S ---+ [> w

} ~ I> Cstab
'.Pc Q

t>'r/u, (llull ~ du ==* llÇll ~ dç) ---+
[> '.P2, · · ·, '.J'Np

[>Jid (3.1)

---+
{

Mid C Mset }
M·d "+" L.l
d(L.l) ~ dil .· ---+Co E eo ---+ {

[> requirements

c "+"L.l } d(~) < d c ---+ OK? C _ !:.c

e.(k) is assumed to be a white noise sequence, although asymptotically unbiased
results will be obtained in output error identification if it is coloured. One may
additionally require that for some m E IN, m < n

Vk = 0, ... , m, bk 0.

The set Mset is now equal to the set of all linear, time-invariant processes where
the relation between u and y can be written in the form (3.13).

Mset

(Note that the noise sequence E is left out of the description of Mset.J
For the purpose of model uncertainty bounding one may further require

that Q is the set of linear, time-invariant processes whose impulse response
parameters fall off with a certain exponential rate. Because the model set
Mset contains in this example even unstable models, it holds

Mset i. Q.

For the class of parameter set estimation techniques, it holds on the other
hand

Q := Mset·

D

Mid and Jid [> As already mentioned, identification should select an optimal

model from the model set Mset· This optimal model will be denoted Mid
and referred to as the nomina] model.

3.2. Formalism 55

In fact the possibility is left open that the identification selects more than
one optimal model. This hardly complicates the formalism and is slightly
more general. Therefore Jvt:id uses a script "M" and it would be more
accurate to call Jvt:id the set of nominal models. However, as the major
ity of identification procedures yields a single nominal model, our verbal
descriptions will be such that Jvt:id contains only one model.

Which model in the model set is to be considered the optimal model should
depend on many factors. The degree in which Jvt:id is able to explain
the data W is one of the most important ones. The capability of Jvt:id
to explain the data should be balanced with the complexity of Jvt:id: for
models of sufficiently high order for instance, any finite data set can be
explained completely by a linear, time-invariant model. For models for
robust control design, the selection of the optima! model should further be
based on "control relevant" arguments.

It is not the aim here to delve <leep into the problems related to formulating
an optima! notion of optimality. For the purpose of this formalism, the
identification criterion function Jid attributes a cost to each model M E
Mset for given data W. This is achieved by requiring Jid to bè a function

T .
from Mset x 2 w to a set where JE is a totally ordered set:

For Jid to be suitable as a misfit criterion, it is required that

VMi, M2 E Mset, Wc W'.II',

M1 C M2 ===} Jid(Mi, W) ~ Jid(M2, W)

and

\:/ME Mset, Wi, W2 c W'.II',

W1 c W2 ===} Jia(M, W1) :::; Jid(M, W2).

It is customary that JE = IR or IE = IR+, i.e. Jid often takes its values in
IR or IR+.

We now simply have

Because Mset is not necessarily a subset of Q it may turn out that

56 A Eormal foundation for model. uncertainty b<mnding

SE S -+ I> w
I> Cstab

i>'v'u, (llull :S du ===> llÇll :S df.)

I> :J>2, · · ·, :J'Np

-+
{

Mid C Mset }
M·d "+"Ll.
d(Ll.) ~ da -+ Co E eo -+ {

I> requirements

} ~ ~cQ
. (3.1)

1 Ll., d(Ll.) and da 11> Not only should an estimate for the nominal model be
given. For robust control design one also wants to have ah indication of
the uncertainty or error in the nominal model. For this purpose the model
uncertainty Ll. is introduced . . Ll. "interacts" in some way, nàt specified
by this · formalism, with the nominal model to yield a perturbed model
Mid " + " Ll.. All perturbed models are assumed to be causal models.

Ll. is assumed to be taken from some set á. It is not possible to give
a precise description of a without specifying what the operation " + "
means, so the formalism leaves the exact meaning of a open. a should
be such, that all its elements can be used to perturb the nominal model in
the way described above.

lt is customary to bound the model uncertainty by bounding Ll. in some
measure. This measure is represented here by the map ping d : a -+ ID,
where ID is some partially ordered set. Bounding Ll. in this measure is then
formalised by

d(Ll.) :S da.

Example (cont.): The most widely used perturbation is probably that of addi
tive model uncertainty. For this kind of perturbations, Ll. is a transfer function
with the same number of inputs and outputs as the nominal model Mid and
the perturbed model is simply obtained by the addition of Mid and Ll.. Taking
into account that Mid was actually a set of nominal models, this transfates to

M being a linear model and assuming Ll. is also linear, we may define the addi
tion of two behaviours simply by associating, say, an impulse response sequence

3.2. Formalism 57

to both M and 8, adding those sequences and translating the resulting impulse
response sequence back to a behaviour.

Many other forms of perturbations have been reported in literature: mul
tiplicative uncertainty at the inputs or outputs, additive coprime factor uncer
tainty, etc.

Another way to bound model uncertainty is to bound the uncertainty in
the model parameters. This will be developed Eurther for the output error
model structure given by (3.13). Let JV(id consist of one model, denoted here
in transfer Eunction form,

We may then proceed to define

A = IR2n+1,

Mid "+ "a = Mid "+ "(8bo, . .. ,dbn,da1, . .. ,dan)T =

and

so that

= { (b& + dbo) +(bi + dbi)z- 1 + · · · + (b~ + dbn)z-n}
1 +(ai+ da1)z-1 + · · · + (a~ + dan)z-n

ID= JR4n+2.

The partial ordering on ID as used by d(d) :5 d.ci. is then defined as

Vk = 1, ... ,4n + 2, Xk < Yk (3.14)

and

(x1, ... X4.n+2) = (y1, ... ,y4n+2) :{=:::>

Vk = 1, ... , 4n + 2, Xk Yk· (3.15)

Naw let

The set

58 A formal foundation lor model uncertainty bounding

SE S -+ I> w

} ~ I> Cstab
'.Pc Q 1>Vu, (!lul! :Sdu ===> llell $ d{) -+

I> '.P2, · · ·, '.PNp

I> Jid (3.1)

{

Mjd C Mset }
M·d"+"Ll.
d(Ll.) $ dA -+ Co E eo -+ {

I> requirements

c "+"Ll. } d(~) < d c -+ OK? C _ Ac

(see below) contains those processes

for which · it holds

Vk=O, .. "n bkE[b~+Qk,b~+bk] A

Vk 1"",n ak E [a~ +.!!k,a~ +ak]·
(3.16)

(3.16) represents an uncertainty bound that could have been the result of a
parameter set estimation technique.

(3.14) and (3.15) specify a partial ordering and not a total ordering. For
example, neither of the three following relations is considered true:

(0, l)T < (1, O?
(0, l)T = (l,O)T

(0, lf > (1, O)T

The set of relevant processes is defined as

{M "+"Ll.! ME Midi Ll. E A, d(Ll.) $ dA}·

D

The dependence on dA has been made explicit in this notation. These processes
are called relevant because they contain those processes that are relevant to the
step of robust control design. As far as this design is concerned, the true system
can be any element of Mrel· Often one takes for dil the smallest value such
that

(3.17)

3.2. Formalism 59

although (Zhou and Kimura, 1993; Zhou and Kimura, 1994) take the approach
that dt:. should be the minimal value such that

(3.18)

Figure 3.4 shows what figure 3.3 on page 53 could look like for two different ap
proaches to determine '.MreJ(dt:.). '.Mrel,a corresponds to equation (3.17), '.Mrel,b
to equation (3.18).

Q

Figure 3.4: Different approaches for '.Mrel

The role that Pand Ç and consequently also '.MreJ(dt:.) and Ç should play in
robust control design will be considered in the next section.

Summruy of modelling aspects

In several steps a representation for the true system S has been derived, consist
ing of a nomina! model '.Mid• a process uncertainty ~ and a signal Ç containing
"all that remains." This is schematically shown in figure 3.5. The outer-most
block represents the true system S. Disturbances and measurement noise are
considered here to be part of S. The signal Ç represents those parts of S that
do not fit in Q. The block marked Q represents the parts of S that do fit in
Q. For a certain ~ E ä such that d(~) ::; dt:. the interconnection of '.Mid and
~ should be identical to the block marked with a Q. Because neither '.Mid nor
'.Mid " + " ~ need to be an element of Q, the blocks '.Mid and ~ stick out of the
block Q.

60 A formal foundation for model uncertalnty bounding

SE S -t I> w
I> Cstab

1>\fu, (llull S du ===? !IÇll :S dç) } ~ TcQ

1>P2, ... ,PNp

{

Mid C Mset }
M·d "+" b. d(ö} S dA -t Co E eo -t {

I> reqmrements

C"+"b. } d(~ .) < d c -t OK?
C _ Ac

(3.1)

Note that the true system is described by the nominal model(s) Mid• the
uncertainty 6. and its bound dt::. and the bound dç on Ç. This will be further
discussed in section 3.3.2.

Control design, implementation and validation

Not all of the symbols in (3.1) have been introduced yet. The symbols rep
resenting the control design still need to be discussed. These parts of the
formalism are much less detailed than the ones discussed so far, because the
formalism is mainly concerned with identification and uncertainty bounding.
Because these are performed with the explicit goal of applying the results for
robust control design, it is feit that the control design and implementation
should have their place in (3.1) too. It is beyond the scope of this thesis to
give a detailed account of these steps.

y

Figure 3.5: Processes and signals in the formalism

3.2. Formalism 61

t> These are the requirements the controller has to meet. They
'---~--'

can very diverse: robustness, disturbance rejection, tracking behaviour,
cost of the implemented control and computing time needed to calculate a
control action are all factors that determine the quality of a control design.
Many other factors may play a role as well.

1 e0 1 t> This is the set of candidate controllers from which the control design
procedure has to pick the optimal one. Often controllers are taken from
the set of linear, time-invariant systems. In practice they may have to meet
an a priori bound on their McMillan degree due to requirements following
from the way in which they will be implemented. e0 contains all controllers
satisfying these requirements in as far as the control design takes them into
account.

t> The controller that is eventually chosen from e0 is denoted Co. This
the controller that, hopefully, is designed such that it meets all require

ments, or finds the best possible compromise between these.

16.o, dt:..c 1 C> Due to variations in components, finite word length in the calcu
lation of results, the analog-to-digital or digital-to-analog conversion and
possibly other effects, the controller that is actually implemented is not
identical to Co, although we may hopefully assume that it is a good ap
proximation of it. Because there is also some uncertainty involved in the
actual behaviour of the controller, the actual implementation is one out of
a set of possible implementations.

The difference between the designed controller and the implemented con
troller is described, analogously to the difference between the nominal
model and the true system, by an uncertainty 6.a. This uncertainty is
bounded by

The controller that is actually implemented is denoted Co " + " 6.o, where
" + " denotes an interconnection similar to the interconnection of the nom
inal model JV(id and the process uncertainty 6.. It is reasonable to assume,
that

Co "+" 6.c :::::: Co,

although it may be wise to keep in mind, that

Co " + " 6.o "/:- Co.

1 OK? 1 C> The ultimate criterion to judge whether control design, identifica
tion, uncertainty bounding, etc. have met their goals is to evaluate the per
formance of the controller on the real process. If the performance meets the

62

SES-+

A forma] foundation for model uncertainty bounding

!> w
I> Cstab

1>Vu, (!lul! ::; du ==> llell S df.) } ~ PcQ

I> '.P2, · · ·, '.PNp

c "+".à.. } d(~) < d c -+ OK?
C - Ll.c

(3.1)

requirements, all previous steps have apparently given satisfactory results.
If not, lots of options are open: a better implementation C of the controller
may solve the problem, or a better design for the controller 0 0 . Maybe
the requirements are not realistic and need to be reviewed. The model
set :Mset or the uncertainty bound d.c,. may be too tight, the uncertainty
description denoted by " + " may not be appropriate for the situation at
hand, the identification data W may not be rich enough. Some of the
prior knowledge '.P2, ... , '.PNp may be incorrect. Finally, one may decide to
redesign the system S that needs to be controlled or choose another set of
inputs and outputs. In short, any aspect of the formalism may need to be
revised if it turns out in the end that the controlled behaviour of the plant
does not meet the requirements.

The reader is assumed to be familiar by now with the symbols in the algo
rithm. The repetition of the formalism on every left-hand side page is therefore
terminated from this point onwards.

3.3 Discussion

3.3.1 Iterations

The previous section may have given the impression that the steps in the frame
work are all one-shot algorithms, apart from a final validation at the end. lt
should be stressed that this is not the case. In practice, validation does not
only take place at the very end, but after about every step. The nomina! mod
els are normally validated immediately after the identification and it may be
decided then already that the nomina! models require refinement. Also the
model uncertainty description and the uncertainty bounds should be subjected
to critica! evaluation before passing them on to the control design. It is also
not likely that the first attempt at a control design is immediately implemented
at the final plant.

3.3. Discussion 63

The actual steps may further not be performed in the order indicated by
(3.1). The values for du or dç may very well be determined after the identifi
cation of nominal models. The nominal model may also give an indication of
how fast, say, the impulse response of the true system falls off. This may be
reflected in Q and/or '.P.

3.3.2 Relaäon between Ç and ~

It has already been mentioned that the uncertainty in the system's behaviour
is bounded both by d(~) :S dfl and llÇll :S dç. In this section it is argued why
this is the case and what the relation between Ç and ~ should look like.

Write

where Çz3 accounts for disturbances and measurement noise and 6 for the fact
that even in the noise-free, disturbance-free case it would hold S f/. Q. This
is in line with the partitioning of Ç into three effects on page 46. The effect
mentioned under 1. is represented by 6 and the other two by Çz3. No distinction
is made between effect 2. (disturbances) and 3. (measurement noise), because
they are equivalent as far as identification and model uncertainty bounding is
concerned.

Effect of noise and disturbances

Consider first the exclusive effect of 6 3 , so assume fa = 0, i.e. we know that
under noiseless, disturbance-free circumstances it would hold S E Q. Because
it was assumed that

\/w E W, llull :Sdu,

the implied inequality

applies for all w E W.
It was stated that '.Po contains all elements of Q that are consistent with

the data W, given the uncertainty in this data. Which elements of Q are to be
considered consistent with W depends on a noise level p:

Po(P) = {Q E Q l 'Vw E W 3w E Q, llw-wll :S p}.

An obvious candidate for the noiselevel pis dç, the bound on Ç. Po(dç) contains
all elements of Q that can not be falsified by the data and the bound dç on the
uncertainty in the data. If we dispose of exact data, i.e. dç = 0, there may still

64 A formal foundation for model uncertainty bounding

be several elements in Q that could have generated this data. However, P0 (dç)
will grow if dç increases and if '.Po = P0 (dç) this will generally imply that '.P
grows. If the· latter implication would not hold, the process uncertainty set '.P
would not depen.d on the data and we might as well have omitted collecting the
data in the first place. However, this may happen ifthe apriori information is
very restricting.

Another candidate for p is

dmin :=min { d E IR+ U {O} 1 '.Po(d) ::/. 0} (3.19)

It is assumed for simplicity that the minimum in (3.19) exists. The idea is to
take dmin as small as possible given the constraint that Po(dmin) should be
non-empty and to take the noise level involved in the decision whether a Q E Q
is consistent with the data W equal to this dmin· For this value of p as little
of the data uncertainty as possible is expressed in Po(p). Contrary to dç, dmin
is not known a priori.

To decide whether to use '.Po = Po(dç) or '.Po = Po(dmin) as the proper
interpretation for '.P0 , some further consideration is required. As it was assumed
that 6 0, it is known that the true (noise- and disturbance-free) relation
between u and y can be expressed by a Q E Q. Consequently the true system
can be represented in the form

S' E Mid " + " .D.,

where S' is the noise-free, disturbance-free part of S.

(3.20)

Remark 3.3 Actually (3.20) is not certain yet hut (3.20) needs to be made
sure: the set á from which .D. 's are taken and the perturbed systero Mid" + ".D.
should be taken such that

Mid " + " á := LJ Mid " + " .D. .J Q.
aEÄ

Otherwise we may end up in a situation that part of the system behaviour is
represented by '.P, but not by Mid" +" .D. fora .D. E á such that d(.D.) ::::; da, so
that the robust control design does not take it into account. Part of the model
uncertainty was lost in the process of bounding it.

One may argue that this is allowed, as long as the aspects that are dropped
in this way are not relevant for the control design. Although there is probably
much truth in this, it is in principle better to let the control design decide this.
If these aspects are really not relevant, they will - hopefully - not influence
the control design. On the other hand, it may not be possible to represent the
aspects that are dropped accurately by the interconnection Mid " + " .D. and a
bound da or it may take a large effort to do so.

Therefore, the point of view expressed above can not be considered to be
"carved in stone." 0

3.3. Dfacussion 65

It is known that P0 (df,) contains the manifestation of Sin Q. Consequently,
if Po = Po(d.;) then P will contain the manifestation of Sin Q. This manifes
tation has the property that for all signals in the relevant amplitude ranges it
holds

Therefore the control design has to count on disturbance signals Ç of a size llÇll
that is less than dt,.

Hit is decided on the other hand to use Po= Po(dmin) as the interpretation
for Po, then the value of dt::.. will possibly be smaller, which has in itself a
beneficia! effect on the control design. However, assume that dmin = 0, so
there exist systems in Q that could have generated the noisy data in W. The
fact that dmin can be taken equal to zero does not mean that the data in
W is actually noiseless. It means that the systems in P0 (dmin) consider, un
rightfully, the noise realisations present in W to belong to the input-output
behaviour of S. Suppose now that the actual noise realisation present in W
was Ç', with lle'll = dç. Suppose further that the part of Ç1 corresponding to
the inputs u is equal to zero and that the systems in Q are time-invariant. If, at
a later time, the same inputs as those present in W are applied to the models
in P0 (dmin), the same noise realisation Ç1 will be reproduced, only shifted in
time. If the same inputs would be applied later to the true system S, a noise
realisation equal to a shifted version of -Ç1 could actually occur. Apparently
there is a difference 2Ç1 between the signals observed for the true system and
those generated by the models in Po(dmin)· The control design therefore has
to count on a noise level at least as large as 2dç !

The above line of reasoning is depicted in figure 3.6. In this figure, iiJ repre
sents the input and output trajectories that the system would have generated
during the experiments if there were no noise and disturbances. Due to noise
and disturbances represented by the vector Ç1

, the experimental data set does
not consist of the trajectories w but of the trajectories w1. If at a later time
the same experiment would be repeated, the noise and disturbance free pro
cess behaviour would again be w in the example given above. If the noise and
disturbances are now equal to , the experimental data will now consist of
w2 instead of w. However, all behaviours in Po(dmin) will reproduce the be
haviour w1 under these conditions: apparently there is a difference 2Ç1 between
the observed process behaviour and the behaviour of the models in Po(dmin).

If this situation is analysed a little further, we see that the noise that the
control design encounters can be split into two components ~o: and ({3. (o: repre
sents the difference between the signals generated by the systems in Po(dmin)
and those generated by the real manifestation of S in Q. fo represents the
diff erence between the signals generated by the manifestation of S and those
generated by S itself. lt can be relied on that 11(.ell will not exceed dç if the
inputs satisfy llull ::::; du, but the same does not apply for ll(o:ll· For input

66 A formal foundation for model uncertainty bounding

Fîgure 3.6: Increase of noise level for Po(dmin)

signals completely different than those in W, the value of Il Ç0 ll may very well
be larger than d€. Consequently, the bound on Ç of 2dç derived above can be
guaranteed only for those input trajectories that are present in W. The control
design has to expect noise levels even larger than 2dç.
· The problem of determining the maximum noise level that the control design
can expect will not be considered further here, because it will be argued in
section 3.3.4 that it is to be preferred to bound the model uncertainty by dt:.
instead of by d€ .

Summarising the above . line of reasoning, the influence of 6 3 can be ac
counted for by a bound on A and if we do this, the bound on the disturbances
need not be increased for the control design.

Effect of undermodelling

In the previous paragraphs it was assumed that Ç accounted only for noise
effects and disturbances, so 6 = 0. Now consider the other extreme, namely

6 =fa 0 /\ 63 = o.
In this case we are purely looking for what was called the manifestation of S
in Q, no noise or disturbances are present in the system. It should be stressed
that there is no A E .0. such that

S = Mid "+" A.

One may therefore decide to make dt:. as small as possible. This can be clone by
taking pin (3.12) equal to dmin defined in (3.19) because the smallest possible
value of p will results in the smallest bound on A.

This is probably not a good idea. All that can be concluded from W and
the bound dç is that the manifestation of Sin Q must be a member of P0 (dç):

Po(dç) = {Q E Q 1 Vw E W, 3w E Q, llw wil~ dç}.

3.3. Discussion 67

If one uses an interpretation for '.Po such that it does not necessarily contain
the manifestation of Sin 0, and '.P0 = Po(dmin) is such an interpretation, then
one can not be sure any more that there is an element Q' in '.P0 , such that

Vw = (u,y) ES llull:::; du => (3w E Q', llw -wll ~ dd,

the noise level that the control design must count on, on top of the uncertainty
bounded by dt.., exceeds dç. In this case the signa} Ç can again be split in to a
component Ça and ÇfJ where Ça accounts again for the mismatch between the
systems in '.Po on the one hand and the manifestation of S in Q on the other
and ÇfJ accounts for the mismatch between S and its manifestation in Q. llÇfJll
will not exceed dç, but llÇall may be larger. Again a smaller value of dt.. has
been achieved at the expense of a larger value of dç. It was mentioned above
that this is undesirable, so in the case 6 3 = 0 one should use p dç too.

Conclusion

The effects of fa and Ç23 now turn out to lead to the same conclusion, namely
that '.Po should be taken equal to Po(dç). In other words, the noise level p that
should be used in (3.12) to decide which elements of Q are consistent with the
data W should be taken equal to dç. Yet the situation is different for these two

As far as 6 3 is concerned, there exists a relation between the "true"
values of u and y that can be expressed by a Q in Q. The problem here is that
due to the uncertainty in the data this Q simply can not be observed exactly.
By using '.P 0 = Po (dç) we can be sure that '.P contains the behaviour that
represents this true relation bet ween u and y. It is not known which behaviour
this is, but if we knew, then we could use it for example as a simulation model
for the system S. Çz3 results in strict sense uncertainty, see section 2.2.2 on
page 22. For 6 we have the situation that there is no Q in Q that can express
the true relation between inputs and outputs, 6 is part of this true relation. 6
represents undermodelling as discussed in section 2.2.1. This undermodelling
is not bounded by dt... The eventual value of dt.. only makes sure that the
value of Ç due to undermodelling and other effects can be bounded by dç. As
a consequence of this, 6 may have its influence on the stability of the closed
loop. This is discussed in the next section.

The results of this section can be summarised as follows. If the process
uncertainty set '.P uses Po = P0 (dç) and if dt.. is chosen such, that 'MreJ(dt..) ~
'.P then the same value for d~ can be used in identification and model error
bounding on the one hand and robust control design on the other hand. If this
is not the case, then the effects of undermodelling, disturbances and noise .as
expressed by Ç may exceed the bound dç by a factor two and more.

dt.. alone does not suffice to characterise the uncertainty in the nominal
model 'Mid· The value of dç also accounts for part of the uncertainty.

3.3.3 Closed loop iniluence of Ç

As the signal Ç accounts, among other things, for a relation between u and y
that can not be expressed by Q, Ç accounts also for influences that are "in the
closed loop," and may therefore have its influence on the stability of the closed
loop. Nevertheless it may seem at first glance that robust control design takes,
as far as stability robustness is concerned, only the influence of Li into account.

Ça çc

.. ,Y
U1 8-Ç ~ ~

.:

U2

çd çb Cstab r

Figure 3. 7: Interconnection of S and Cstab• complete Ç

Consider again figure 3.1, which has been redrawn in figure 3. 7 in a modified
form. In this figure, all of Ç has been "pulled out of" S, leaving ·the block
denoted "S - Ç." Note that, contrary to figure 3.1, some of the input/output
behaviour of Sis now represented outside the block S - Ç: the part of Ç that
accounts for the fact that S </. Q represents input/output behaviour of S, hut
it is extracted from the hlock "S - f" It now holds

and Cstab stabilises S if and only if

(llu11l < oo /\ llrll < oo /\ ll~îl < oo) ==> (llu2ll < oo /\ llYll < oo). (3.21)

If the controller now meets for every M E Mreb and thus for every A1 E '.P, the
stronger requirement

(llu1 Il $ dui /\ llrll $ dr /\ llÇll $ dç) ==> (llull $ du /\ llYll < oo) (3.22)

then it also guarantees to stabilise the true plant S, provided we ensure that

(3.23)

The reasoning bebind this is simple: if the controller ensures that llull $ du
for any Ç such that llÇll :$ dç then it will also do so far that particular Ç that
represents the relation between u and y that could not be represented by a
Q E Q. Ensuring that llull $du implies in turn that llÇll :$ dç.

3.3. Discussion 69

It now turns out that it was correct to require for all elements in '.P to be
stabilised by the controller Cstab' of which it was actually only known that
it stabilises the true system and possibly not its manifestation in Q. However
this is only shown above to be correct under the condition that Cstab satisfies
(3.22) and that the data set W was collected under circumstances satisfying
(3.23).

3.3.4 d~ is more detailed than de

In section 3.3.2 situations were encountered in which a smaller value of dt:..
could possibly be obtained at the expense of a larger value of d1;,. In fact, the
signa! Ç can account for anything that Ll. can account for, provided it is allowed
to grow sufficiently large. It is possible as an extreme case to have dt. = 0
(or some other appropriate value for which it holds that Mrel = Mid) while Ç
accounts for all the uncertainty and errors in the nomina! model.

The reason why this is possible is closely related to the reason why it should
be avoided: Ç can account for just about anything, whereas Ll. implies some
structuring in the error, however rough this may be. If .6. is for example an
additive error that is bounded by some induced operator norm, then it is known
that the inftuence of .6. on the outputs y is small, in some sense, if u is small.
Such structure is absent from a bound on Ç.

As a result, a robust control design faces in principle amore difficult problem
if all uncertainty has been expressed in Ç and not in .6.. It should therefore be
preferred to use .6. where possible and Ç only if there is no other way, as was
done in section 3.3.2.

3.3.5 Multiple manifestations of Sin Q

A refinement of the interpretation of the forma! framework can be given by
allowing multiple manifestations of S in Q. During the discussion of the man
ifestation of S in Q it was already mentioned that this manifestation, say Q1

should only be a good approximation of S locally, both in time and in ampli
tude. As far as. time was concerned, the normal life-span of the system S was
taken to be the time-interval on which Q' should be a good approximation of
s.

An approach allowing a more detailed description of S would be to require
Q1 to be only a good approximation of S for an even shorter period of time.
This period of time should at least contain several times the largest relevant
time-constant in S and this should also be contained by the time intervals on
which the data sets in W are taken, or one can not expect to find an accurate
approximation for Q' from W. What manifestation of S actually applies at a
certain moment depends on a number of conditions, such as nominal values of
the inputs to the process, external operating conditions, etc. A set of conditions

70 A fonnal foundation for model

under which a certain manifestation of S applies is normally called an operating
point.

Based on physical reasoning one could then proceed to make sure that W
contains a sufficient number of data sets to determine all relevant manifestations
of S in Q, in other words W should cover all opérating points of S. The signal
Ç accounts then also for the effects that occur during the transition from one
operating point to another. An example of this approach is given in the next
chapters.

3.3.6 Norms in the formalism

In many places in this chapter signal norms have been used to express the
size of a signal. For example, the input/output range that is to be considered
relevant as far as model validity is concerned was assumed to be induced by the
requirement llull <du. The optimal WQ in (3.6) on page 44 was defined through
minimisation of a norm, the disturbances Ç are assumed to be norm-bounded
signals, etc. For the purposes of this formalism, norms are merely used as a
measure for the size of a signal. It need not be the case that the measure that
is appropriate at a certain pointis also the one that should be used at another
point.

For ease of exposition, little attention has been given to this issue in this
chapter. In fact, up to technical details, the statements made in this chapter
generalise straightforwardly to a situation in which different norms are used
explicitly or in which even signal measures are used that are not norms in the
strict mathematical sense.

3.4 Summa.ry

A formal framework for the process of identifying nominal models and bounding
the uncertainty and/ or error in these models has been presented. By means
of the concepts introduced in this framework it was analysed how to handle
the practical situation that the combination of nominal models and bounded
process uncertainties is known to provide insufficient freedom to represent the
true plant exactly. It turned out that the effect of this inability to describe
the true plant exactly can be handled in a way similar to the way in which
disturbances and measurement noise can be handled.

Most concepts in the formal framework have been left rather open for the
sake of generality.

4
An algorithmfor structured and

unstructured error bounds

4.1 Overview of contents 4.9 Step 6 & 7: estimating
4.2 Basic ideas the error structure
4.3 Model parametrisation 4.10 Step 8: translating data

and uncertainty description and prior knowledge
4.4 Experimental data and 4.11 Step 9: bounding the

prior knowledge local structured error
4.5 Outline of the algorithm 4.12 Step 10: bounding the
4.6 Review of systems and local unstructured error

models 4.13 Step 11: combining the
4.7 Step 1-4: obtaining a local results

MIMO basis 4.14 Infl.uence of the choice of
4.8 Step 5: estimating the basis

auxiliary models 4.15 Summary

4.1 OveIView of contents

In this chapter we will present an algorithm for bounding model uncertainty.
A few considerations are underlying the design of this algorithm. These will be
discussed in section 4.2. In section 4.3 the model parametrisation and uncer
tainty description used in the algorithm are presented. Section 4.4 describes
the input to the algorithm. This will consist of experimental data and prior
knowledge about the plant that the algorithm can handle or requires. After
this basis, the algorithm is given in section 4.5, the main section of this chapter.
The various steps are worked out in more detail in section 4.7 to 4.13. Some of
these steps are taken from chapter 5 of Hakvoort (1994). This will be indicated
where appropriate. In this chapter we follow the steps taken there closely. In
the next chapter some of these steps are reconsidered or extended. This will
hopefully help the reader who is already familiar with this work to focus better
on the main issues instead of on technical details.

72 An algorithm for structured and unstructured error bounds

This chapter ends with a summary of the choices that were made and of the
constraints under which they were made. This is intended as an aid for those
who want to change some of the aspects of the proposed algorithm. Also, the
original aspects .of the algorithm are summarised.

This algorithm was published earlier in highly condensen form in (Ariaans
et al., 1996).

Example: Throughout this chapter, several steps in the algorithm will be
illustrated by means of a simple SISO example. This example will be shown in
the same way as this paragraph. 0

4.2 Basic ideas

The combination of model and uncertainty bound that is aimed for, should be
suitable for current robust control design techniques. These techniques should
include 1{00 control design and/or µ-synthesis, as these seem to have the widest
practical acceptance. To our knowledge, current solution methods for the 1l00 -

control design problems use linear, time-invariant nomina] models. This does
not mean that non-linear processes can not be handled at all. As long as the
non-linearity can be represented as an 1l00-bounded model "uncertainty" these
techniques can still be employed. Although the model uncertainty itself does
not have to be linear, we will restrict attention to model uncertainties that
are linear time-invariant operators. This means that only linear time-invariant
processes will fall in the model uncertainty description. Fortunately, practical
experience has shown, that for many processes operating in a fixed operating
point, a linear time-invariant model is quite adequate for the purpose of con
trol design to describe the dynamic behaviour of that process. We therefore
restrict attention to a combination of nominal model and process uncertainty
description yielding a set of linear, time-invariant processes.

For causal, stable, linear, time-invariant processes, the generalised orthonor
mal basis functions described in (Heuberger, 1991) and later successfully ap
plied in (De Vries, 1994) and (Hakvoort, 1994) seem to yield an attractive model
parametrisation in the light of uncertainty bounding. Roughly speaking, gen
eralised orthonormal basis functions enable us to incorporate a rough model
of the process dynamics into the model parametrisation. This rough model is
called the basis generating system. The closer this model is to the true system,
the fewer model parameters are needed to give an accurate description of the
process. Moreover, bounds on the undermodelling can be given under weak
conditions, which also become smaller if the basis generating system is a bet
ter approximation of the true process. In principle, these parametrisations are
only suitable for stable processes, hut in (De Vries, 1994, chapter 6) a way to
circumvent this problem due to (Schrama, 1992) is discussed. Based on these

4.2. Basic ideas 73

considerations, we would like to use this model parametrisation, together with
its attractive properties, in our algorithm as well.

Having looked briefiy at how the process uncertainty is to be described,
with still many open questions, we should now ask ourselves what the process
uncertainty is meant to cover.

In genera!, a whole set of process transfers is consistent with the data we
gathered about the process in an identification experiment and the prior knowl
edge and assumptions we may have. This corresponds to the process uncer
tainty set '.P of chapter 3. The pair of nomina! model and process uncertainty
bound is one way to cover all elements in '.P. We do not assume, that our nom
inal model or any other model in the model set are a member of '.P. This idea
is a common starting point for current uncertainty bounding techniques. It is
found for example in Helmicki et al. (1991), Goodwin et al. (1992), Van den
Boom {1993), Mäkilä et al. (1994), De Vries (1994), Hakvoort (1994), Zhou
and Kimura (1994) and many others.

For application in robust control design, we want our algorithm to go one
step further. Not only should our uncertainty description refiect the fact that
the nomina! model is only an approximate description of a system that we
can not pin-point exactly. It should also reflect, that if the process has moved
from one operating point to another, a different linear time-invariant model
may have become the most appropriate one to describe the true process. The
process uncertainty set will also have changed in this situation: transfers that
were consistent with the dynamica! behaviour of the plant in one operating
point, may not be consistent with the dynamica! behaviour in another operating
point and vice versa. Other, less intentional causes for a shift in the dynamic
behaviour of the plant are conceivable too. Different characteristics of raw
material, changing environmental conditions, aging catalysts etc. may change
the process dynamics as well.

The description of reality would be better if we went even one step further,
and described not only the behaviour in various operating points, hut also the
way in which transitions between different operating points are accomplished.
This would lead us into the field of non-linear and/or time-varying models. For
reasons mentioned above, we do not want to enter this complex field. This
means that some dynamic behaviour of the plant, namely the non-linear and
changing dynamics, will be missing from our process uncertainty set. However,
we feel that recognising the effects that non-linearities have in operating points
while omitting the effects between operating points is to be preferred over
ignoring the effect of non-linearities both in and between operating points.

The concept of varying operating points also applies to a situation in which
the plant to be described is known to be one of a set of similar but not identical
plants and in which it is unknown which of the plants will actually be dealt
with. Ha product is produced in large series, small disturbances during the
production process will result in, hopefully small, differences between the final

74 An algorithm for structured and unstructured error bounds

products. If a controller is part of the product, the same design will face
slightly different plants. Each realisation of the product can be interpreted
as a different operating point. In this case, the controller will not encounter
transitions between these operating points.

The list of situations that can be interpreted as a plant operating in differ
ent operating points can be extended further. One may think for example of
standard controllers for slightly different production lines or of "reliable stabil
isation" in environments were plants ai:e affected by failures in actuators and
sensors. In the latter example different operating points correspond to different
sets of available actuators and sensors. Further extension is left to the reader.

As the name implies, time-invariant processes have the same behaviour at
any time instant. There seems to be a fundamental contradiction in using
multiple linear time-invariant models and process uncertainty sets for a single
plant. However, this is not a real contradiction. It is not the true process that
we take time-invariant. It is only the approximate descriptions of it that we
assume to be time-invariant.

Successful applîcation of this idea puts stronger requirements on our experi
mental data and prior knowledge. Obviously, if we want our process uncertainty
set to cover several operating points, all of these operating points have to be
present in the data. This implies that we have to do experiments in each of
these operating points. It also means that we have to adjust our behaviour
in case of multiple data sets. "Traditionally," the overall process uncertainty
set, resulting from the combination of data sets, could be taken equal to the
intersection .of the local uncertainty sets for each data set: if the true process is
known to be in both uncertainty sets then it is known to be in the intersection
of both sets. In our situation this is still valid, provided the data sets belong
to the same operating point. If the data sets belong to different operating
points, we should take the union of the uncertainty sets. A discussion about
how many operating points to use and tools to guide this decision is deferred
to section 5.6.2.

Taking the union of local uncertainty sets instead of the intersection is not
a great help in our aim to reduce uncertainty bounds. Fortunately, the concept
of different operating points also enables us to employ a technique that gives a
tighter uncertainty description. Especially in the case of .\UMO processes, we
can expect the changes in process transfer occurring between operating points
to be highly structured. There is only a limited number of physical parame"
ters that change if we move between operating points and these changes rnay
even depend on each other. (With parameter is meant here a physical quan
tity causing the change in behaviour, not the parameters of the mathematical
description that change as a result of this.) This suggests that there is some
dependency between the change of the individual model parameters. If we
manage to find this dependency and separate this effect from the other con
tributions to process uncertainty, we can split the uncertainty in a structured

4.3. Model parametrisation and uncertainty description 75

part and an unstructured part. The structured part accounts for operating
point changes, the unstructured part for all the effects that were not accounted
for in the structured part. The structured part hopefully covers the dominat
ing aspects of the process uncertainty and is easy to use in µ-synthesis. The
unstructured part is much less detailed, hut hopefully also much smaller.

The algorithm tries to accomplish the separation in structured and unstruc
tured parts by estimating auxiliary nominal models for each operating point.
U sing a technique called principal component analysis we try to find the cor
relation between the changes in model parameters and let these dictate the
structured parts. We will discuss the implications this has for the allowable
model parametrisations later. A brief introduction to principal component
analysis is given in section 4.9. In section 5.7 we will discuss other ways to
determine the error structure.

Every new algorithm that tries to solve a problem in the field of model error
bounding runs the risk that it actually does not solve the problem, hut only
shifts it to the problem of obtaining the prior "knowledge." To avoid this, the
algorithm should provide sensible guesses for every element of prior knowledge
that it requires. If this is not possible without extra information, practical
ways should be available to obtain that information.

Finally the algorithm should indicate as far as possible what determined the
final error bounds. This information is especially important if some "educated
guesses" were made for the prior knowledge: elements of prior knowledge that
really determine the error bounds should be investigated critically whether they
were realistic and not over-optimistic indeed. On the other hand, preliminary
cautious choices could be considered for refinement if they appear to be non
restrictive at all.

4. 3 Model parametrisation and uncertainty de
scription

4.3.1 Generalised orthonormal basis funcöons

The standard basis for h2 is { ó (t), ó (t - 1), ó (t - 2), ... } with the corresponding
basis for 1-l2 given by {1, z-1 , z-2 , ... } If the time-domain basis is denoted
{bk(t)}f:,0 , where in this case bk(t) = ó(t- k), then any element g(t) of h2 can
be written

CXl

g(t) = 2: Okbk(t) (4.1)
k=O

where Ok are the parameters of g(t) expressed in the basis {bk(t)}. For this
particular choice of basis {bk} it holds ok = g(k).

76 for structured and unstructured error bounds

An obvious model parametrisation is obtained by truncating the infinite
summation in (4.1) toa finite one. For this particular set of b1o(t), this corre
sponds to finite impulse response (FIR) models. An important advantage of
this parametrisation is, that it is linear in the parameters 01o. The most impor
tant disadvantage is, that to approximate a system with large time constants
(compared to the sampling time), a large number of parameters is required.

This disadvantage can be alleviated by using a different set of basis functions
{bk(t}}f:0 • It is for example well known, that a system with a single dominant
pole can be approximated fairly well by a limited number of Laguerre functions.
Systems with a dominant pair of complex conjugate poles can be approximated
using Kautz models. A unifying framework as well as a generalisation for
Laguerre and Kautz models is given by so called "system based orthonormal
basis functions," described extensively in Heuberger (1991). In appendix B a
more or less self-contained, though incomplete, introduction to these functions
is given.

At this point we suffice with the following imprecise interpretation: given a
basis generatipg system Gb(() E 1ir1, a mapping

'.13: 1i~xi -+ 21-l~xi G1>(() i-+ {Bo((), Bi((), ... }

can be formulated such that the set '.13(G0(()) is an orthonormal basis for 1i2.
(Note that we may use a SIMO system to generate a set of SISO basis func
tions. The construction of Bo((), ... from G0 will be treated in more detail in
appendix B.) Any (stable) system G(() E 1i~xl can therefore be expressed as

00

G(() = L: ekBk(()
k=O

Moreover, there exist ME IR+ and p E [O, 1) such that

\:Ik E IN !Bkl < Mpk (4.2)

and pis smaller if the poles of the basis generating system Gb are chosen closer
to the poles of the system G. This implies that from a certain value of kon, the
values of M pk will be smaller, even if the value of M increases by the change
in basis generating system.

In the remainder of this chapter we will also need a property and a con
jecture. . The property will be proven in appendix B. In this appendix an
argumentation will be given as well for the conjecture. Because both are used
heavily in the rest of this chapter, they are restated here for convenience. They
will be used to bound the effects of undermodelling, although that is probably
not evident at this point yet.

Property 4.1 Let {Bo((), B1 ((), ... } be a basis generated by a nnite dimen
sfonal system G0(() E 1i~xl. Let n denote the McMillan degree of Gb((),

4.3. Model patametrisation and uncertainty description 77

then

0

Note that Bo(z) is intentionally omitted from property 4.1. This property is
based on the fact that through the construction of the basis functions, B k (()

and Bk+nt(() differ only by an integer power of an all pass function.

Conjecture 4.2 Let {Bo((), B1 ((), ... } and n be as in property 4.1.

00

l:tPlbk(t)I < C1 + C2
p+i/2

n
t=:O

0

4.3.2 Model parametrisation

In the previous section a basis for 1i~xl was discussed. As we will be deal
ing with MIMO systems, this concept needs to be extended. We take a very
pragmatic approach: for a system with p inputs and q outputs, a basis for the
transfer from each separate input to each separate output is generated. To
formalise this, we introduce some notation and terminology:

N otation: An entry of the transfer function of a MIMO system with p inputs
and q outputs will be referred to as a subtransfer of that system.

The set

s := q x p

is the set of sub transfer indices. Elements of S will in gener al be denoted a.
The matrices Eu E JRqxp, a ES are defined as follows:

[Eu] .. := {1 if (i,j) = a
•3 0 if(i,j)#=a

A basis for 1i~ x 1 will be called a SISO basis. A collection of pq SISO bases
constitutes a MIMO basis for 1irP given by

{Bg((),Bf((), ... }, a ES.

This means, that any system GE 1i~xp can be written

00

G(() = LLOfEqBf(()
o-ES k=:O

78 An for structured and unstructured error bounds

where {B0((),Bf(()"" }uES denotes the MIMO basis. For fixed u ES the
sequence { B0((), Bï((), ... } denotes a SISO basis for 1-l2 with reference to the
u-entry of G. · , D

The model parametrisation used in our algorithm is now simply obtained
by taking only .a finite number of basis functions. Given the basis

{Bo((), Bf ((), .. · }uES,

the model set therefore becomes

k"

Mset = { G(() E 1-l~xp 1 G(() = L L ()kE" Bk(()} (4.3)
uES k=D

where B'{. E JR, for (l ES, k = 0, ... , k" and {k"}uES is a set of properly chosen
integer constants specifying the model complexity for each subtransfer. In this
context, the ()k are called generalised FIR parameters.

We will not discuss the general problem of choosing the right model com
plexity. For notational conveniènce, we will drop the superscript (l from k"
wherever possible. The algorithm does not require that the k are the same for
all subtransfers, however. This can be especially convenient if, say, we want
low model complexity for all subtransfers except one.

The fJ'{. involved in (4.3) are collected in a parameter vector 9 E lflC, where
obviously c = EuEs(k" + 1). Given the values of k and the MIMO basis
{BZ((), k E IN,O" ES}, equation (4.3) implies a bijection between members
of Mset and parameter vectors 9 E me. In genera! we will assume the MIMO
basis and the values of k implicitly. These are fixed in the early stages of the
algorithm. We will therefore denote the member of Mset corresponding to some
(JE me by Ge, although it should actually be denoted G9 (k",B'k;O" ES).

Remark 4.1 Even if minimal state-space realisations are used for the B'k,, a
MIMO state-space model obtained by simply combining the models for the
subtransfers as indicated by (4.3) will in genera} not be minimal. Especially
if the same SISO basis is used for all subtransfers, a considerable reduction
in state-dimension can be achieved. Reducing the state-dimension afterwards
does not infiuence the validity of the (reduced) results. D

4.3.3 Uncertainty description
The uncertainty description is given by

n,

a + Ll. + I: siAi (4.4)
i==l

4.3. Model parametrisation and uncertainty description

where

G, il, Ai E tl~Xp

Qi :::; Ji :::; di,
llilll:::; dt:.

dt:.,Qi,Ji,di E IR

i Ens

79

G represents the overall nominal model. The algorithm which we present can
work with an a priori given nominal model, or it can suggest a nominal model
along the way. JiAi, i E ns are the structured error components. The transfers
Ai are usually determined by the algorithm, however, they can be specified by
the user as well. These error components are uncertain, because the gain
factors ói can vary within the intervals [fii, di]· The transfer il will be called
the unstructured error. It is bounded in some measure, indicated by llilll·
Although llilll suggests that the measure used to bound il is a norm, this will
not always be the case. The algorithm can bound the H 00 norm for every
separate entry of il. It is also possible to bound the impulse response of il:
for each time instant and for every separate entry of il" an interval will be
determined to which the impulse response is restricted. This can also be done
for the impulse response after weighting by a stable weighting filter and for
the step response. These time domain bounds on il leave the possibility open
to link the results of the algorithm with time domain based control strategies
optimising over a finite horizon, such as the class of model based predictive
controllers. Given the wide-spread application of these controllers in process
industry, this is of major practical importance.

Remark 4.2 The nominal model êJ need not be expressed in the model para
metrisation of section 4.3.2. If the algorithm suggests a G, it will be a model
taken from Mset in (4.3). If the user specifies this model instead, he is free to
specify any model in tlrv. D

A fundamental choice has been made in this uncertainty description: the
process signals have been divided into inputs and outputs. After chapter 3,
where for that matter ~his distinction was made too, some justification of this
choice may be in order. The first reason for this is that current techniques for
robust control design use this separation. As the model and the uncertainty
bounds are derived for application in robust control design, the separation into
inputs and outputs is going to be made anyway, so we might as well make it
now. Moreover, if signals can be separated into actuators ànd sensors, this
leads to a natural separation into inputs and outputs. Finally it was argued in
section 4.2 that a model parametrisation in terms of system based orthonormal
basis functions was desired as such parametrisation enables us to obtain an

80 An algorithm for structured and unstructured error bounds

accurate description of a system using few parameters and to derive explicit
bounds on the undermodelling. These benefits have been shown for systems
interpreted as (linear, time-invariant) input/output operators.

4.4 Experimental data and prior knowledge

The algorithm will need several "inputs:" information that it can not or need
not generate itself. Required information will be marked with '•' at the start
of the paragraph, optional information by 'o'.

The algorithm will involve identifying auxiliary models in every operating
point of the process. We therefore require at least one experimental data set for
each operating point. Multiple data sets in one operating point are possible.

Notation: Let nw denote the number of operating points. W shall be used to
denote the set of operating points. Elements of W are by convention denoted
w. \Vith each w E W is associated a finite set 1>(w) of data set indices for
w: each d E 1>(w) specifies a data set taken in the operating point w, but it
is not the data set itself. A data set is typically a record of input and output
measurements taken from the process during an experiment. The elements of
1>(w) are used to enumerate these experiments.

1) := LJ 1>(w)
wEW

1) is the index set of all data sets in all operating points. Elements of 1) and
1>(.) are normally denoted d. dis a data set index then.

nd(w) is the number of elements in 1>(w), w E W, while nd is the total
number of elements in 1). D

The required prior information can now be stated more precisely:

• For each data set d E 1>, it is assumed that measurements ud(t) have
been taken of the process inputs and yd(t) of the process outputs. The
measurements have been taken on the time interval 'Jl'd C Z, so ud and
yd are defined on 'Jl'd. Because this information will be used to identify
time~invariant models, it is assumed without loss of generality that each
'Jl'd starts at t = O. The length of the experiment interval shall be denoted
Td, so 'Jl'd {O, . .. ,Td -1}.

The data sets will be used to identify models in each operating point. This
implies that the data sets have to be suitable for · this purpose: the sampling
frequency should have been chosen sufficiently high to capture the fastest pro
cess behaviour that should still be modelled and the length of the data sets

4.4. Experimental data and prior knowledge 81

should be sufficiently long to identify reliably the largest relevant time con
stants of the process. Also the input signal should be sufficiently rich to be
sure that all relevant process dynamics are indeed observable from the output.
The amplitude of the input signal should be small enough not to excite too
much of the non-linearities present in the true plant, yet be large enough to
have a sufficiently good signal to noise ratio at the outputs of the process.

In order to fulfill these conditions, extra prior knowledge about the plant
is required. Also proper anti-aliasing measures need to be taken to make sure
that neglected high-frequency dynamics do not influence the results in the
frequency range of interest. As the algorithm is not so much concerned with
the identification of models as with the bounding and structuring of model
uncertainty, this knowledge is not listed explicitly here.

o For some data sets d E '.D, an instrumental variable vd (t), t E 'II'd may
be available. Whether this is needed or not depends on the identification
methods that wil! be used in the algorithm and on the kind of experimental
data that is available, closed loop or open loop.

For the identification method that will be discussed as an example, the
instrumental variables should be correlated with the inputs of the system,
hut not with the disturbances acting on the system. In an open loop situa
tion, this means that the inputs of the system can be used as instrumental
variables if one so desires. Therefore instrumental variables are considered
optional in open loop: if they are not available the inputs will be used
as instruments. In closed loop separate signals, for example the external
references of the plant, are required.

For the example identification method, the instrumental variable should
contain p signals, i.e. equal to the number of inputs.

• The algorithm requires a MIMO basis for JlrP as described in the previous
section. For optimal results, the dynamics of this basis should resemble
the dynamics of the true process, see appendix B. Therefore, either a
MIMO basis has to be available a priori, or knowledge about the dominant
dynamics of the process, so that a basis can be generated as explained in
appendix B.

o A nominal model G(() may be available for the process. Any stable, linear
time-invariant model can be used. It need not be expressed in the model
parametrisation used by the algorithm.

Given the availability of a MIMO basis, the (linear manifestation of the)
true system G'fr can be written in each operating point w E W as

00

ar,.(()= I: l.:(e;;)~E,,. Bk(ç)
o-ES k=O

82 An algorithm for structured and unstructured error bounds

• For each operating point, and for each subtransfer <7 E S, values M 17 E IR+,
p17 E (0, 1), O~ax E fR+ and (k*)" E IN are known, such that

l(O)ui< Ö" ·- {O~ax k < (k*)u
trk - k·- M<T(p")k k?::(k*)"

(4.5)

Essentially, (4.5) means, that the tail of the parameter sequence { (Otr)k} ~=O
decays exponentially. This implies, that the system has to be stable! This
implication is not trivial, it is a property of system based orthonormal basis
functions.

(4.5) goes further than (4.2) in that not only the existence of M and pis
stated, hut values for M and p are assumed to be known. To avoid too large
bounds for small values of k, there is the option to switch to another bound for
small values by means of (k*)u and O~ax· In fact, it would be possible to make
o~ax dependent on k for k < (k*)U. In the actual implementation this has been
carried out. However, this possibility will not be pursued here for notational
convenience.

In section 4.8.3 it will be discussed how one may estimate this prior infor
mation.

• For each operating point w E W, the data sets d E '.D(w) are assumed
to be affected by additive noise or disturbances €d(t) at the output only.
Therefore, the following relation holds

(4.6)

For ease of reference, Ed(t) will be called output noise, although in chapter 3
it has been argued that t:d(t) should be interpreted broader than just noise
effects, see the discussion of~ in chapter 3.

• For each data set d E '.D, a signal ëd : Td -t mi is available, such that

(4.7)

For q > 1, i.e. for multiple output signals, the absolute value and the in
equality should be taken element-wise.

• For each data set d E '.D, a vector ud E IR~ is available, such that

(4.8)

This information will be used later to bound the influence of unknown initial
conditions.

At this point it is worthwhile to recall the discussion about the bound u
on the input signals in chapter 3, denoted du there: the linear manifestation

4.4. Experimental data and prior knowledge 83

of the process in an operating point depends not only on the operating point
itself but may also depend on the level of excitation in that operating point.
Therefore the level of excitation in the data sets should be similar to the level of
excitation that can be expected in the practical situation for which the nominal
model and uncertainty bounds are derived. Due to the heuristic nature of this
argument it is not formally listed here as required prior information.

o For some data sets d E 'D, instrumental variables rf (t) : 'Jl'd ~ lR and
constants ëf E JRi, l = n~, n~ E IN may be available, such that the cross
covariance between i:d(t) and rf (t) is bounded by known constants ëf:

1 2: éd(t)rf(t)I s ey
tE'JI'd

(4.9)

Here also, the absolute value and inequality should be taken element-wise. In
order to limit the effect of initial conditions, the summation may be started
from some 0 < ts < Td. The value of ëf should be updated accordingly. It is
discussed in section 4.8.3 how ey can be estimated.

The instrumental variables vd(t) on page 81 and rf (t) above are used for
different purposes. Each signal rf (t) is scalar valued, but as many rf (t) can be
used as one wishes. The vd(t) on the other hand have the same dimension as
the process input and only one vd(t) can be used. Provided one can obtain the
corresponding ëf, the components of vd(t) can be used as (some of) the rf(t).

Example: The simulation example discussed throughout this chapter will use
a "true" process having two linear time-invariant manifestations. The two
operating points corresponding to these manifestations are denoted a and b
respectively, so that in this example

W={a,b}

The transfer in operating point a is given by

1
ca (z) = ---tr z _

and that in operating point b by

G~r(z) = I.5Gf"(z) = 1.S
z-

For bath operating points, one data set was generated. We can therefore
identify the set of data set indices 'D with W and deline 'D(a) and 'D(b) corre
spondingly:

'D = {a, b}, 'D(a) = {a}, 'D(b) = {b}.

84 An algorithm lor structured and unstructured error bounds

The inputs in both operating points were zero mean, normally distributed white
noise sequences. Input sequences of 1500 samples were generated. These were
applied to the process, but only the last 1000 samples obtained in this way were
recorded in the .data set. Prior to these excitations of the process, the process
was in steady state. In this way a non-zero but realistically sized transient can
be expected in the data sets. As both data sets contain 1000 samples it holds

Ta = T 6 1000, 'JI'a = 'JI'b = {O, 1, ... '999}.

Normally distributed, zero-mean white noise was added to the output sig
nals in the data sets. The signal to noise ratio in data set a was taken equal
to 40 dB. The same absolute noise level was used in data set b. The noise was
not correlated with the inputs.

No separate instrumental variable vd(t), d E '.D was used lor the purpose of
identification. The instruments were taken equal to the input sequences:

For the cross-covariance bounds no separate instrumental variables were used
either. Here too the inputs were used instrumental varia.bles. The number of
instrumental variables was therefore equal to 1 in both data sets,

n~ = 1, n~ = 1,

and

r~(t) = u"(t).

In this simulation example, values for the parameter bounds ih, k E lN,
the input bounds üd, d E { a, b}, the noise bounds ed, d E { a, b} and the cross
covariance bounds cf, d E { a, b} can be determined easily. This is not done
here, as tbis approach is not realistic in practical cases. These bounds will be
estimated later on in this chapter Erom information that one can assume to be
available also in a practical situation.

For completeness, the input and output signals in both data sets have been
plotted in B.gure 4.1. (Continued on page 90.) D

4.5 Outline of the algorithm

The steps involved in the "basic" algorithm are now presented. This section
is not intended as a self-contained description of the algorithm. It should be
considered a frame-work in which the sections 4.7 to 4.13 fit. In these sections,
ea:ch step is described in more detail.

In the following, "apriori" means "before the algorithm starts." A priori in
formation therefore includes information that was obtained in an identification
step carried out before the algorithm.

4.5. Outline of the algorithm 85

3

2

0

-1

-2

-3'--~'--~'---'-~'--~'-----'

0 200 400 600 800 1000

a) Input, data set a

2

0

-1

-2

-3'--~'--~'--~~~~~

0 200 400 600 800 1000

c) Input, data set b

Figure 4.1: Input and output signals in both data sets

STEP 1 If a MIMO basis is available apriori goto step 5.

STEP 2 If we have a nominal model G, goto step 4.

STEP 3 Identify one nominal model G (i.e. for all operating points) to generate
a MIMO basis.

STEP 4 Generate a MIMO basis {Bk},,.Es} for the model parametrisation.

86 An algorithm for structured and unstructured error bounds

STEP 5 For each operating point w E W, estimate an auxiliary model, repre
sented by a parameter vector 9w.

STEP 6 Construct a central model from the 9w, w E W. Denote the corre
sponding parameter vector 9c. If the structured error components Ai are
specified a priori, continue with step 8.

STEP 7 Define b.(Jw := 9w - 9c, w E W. Analyse the b.8w using princîpal
component analysis. This will yield ns dominating directions in the pa
rameter space, denoted OA,i, i E n 8 • These are the parameters of the
structured error components Ai, for which bounds will be derived in the
next steps.

STEP 8 For each operating point w E W, translate the experimental data and
prior knowledge to a set of linear constraints on the model parameters.
The set of model parameters satisfying these constraints will be denoted
C'/J. This set constitutes a polytope in parameter space.

STEP 9 For each operating point w E W, bound the structured errors by solv
ing a linear programming problem. The parameters in this LP problem
are restricted to C'IJ. This yields bounds for Ói, i E n 0 , locally in each
operating point.

STEP 10 For each operating point, bound the unstructured error, taking into
account the structured error components.

STEP 11 Combine the results for all operating points to bounds on oi, i E ns,
and À that are valid globally, i.e. for all operating points.

Amore detailed summary of the algorithm is given on pages 146 and 147.
This summary is also printed on a separate sheet coming with the thesis, so
that it can be kept alongside the text. The algorithm is divided into mayor
steps, which are further split into a priori information for the step, marked
by a '<', a posteriori information for the step, marked by a '>', and possibly
sub-steps. The numbers at the right edge of the page refer to the page at which
the relevant concept is introduced.

The main steps in the algorithm as listed above can be recognised as follows
in the summary. The steps "Do experiments" and "Gather prior information"
are actually not part of the algorithm, they precede step 1 of the algorithm.
"Choose basis Eunctions and model orders" covers steps 1 to 4. The auxil
iary models of step 5 are estimated in "Estimate auxiliary models" and the
analysis of the error structure of steps 6 and 7 is carried out under the head
ing "Estimate error structure." Step 8, the translation of the prior knowledge
to linear constraints on the model parameters is referred to on page 146 as
"Construct set of linear constraints". This step is further divided into the

87

steps "Extend noise bound" and "Extend cross-covariance bound." In chap
ter 5 more steps will be added under this heading. Steps 9 and 10 are both
summarised under the heading "Bound errors JocaJJy." Step 9 corresponds to
the sub-heading "Bound structured errors," whereas step 10 corresponds to
both the sub-headings "Bound unstructured errors in frequency domain" and
"Bound unstructured errors in time domain." The sub-step "Split parameter
uncertainty in structured and unstructured parts" is listed as a separate step
on page 147. Actually this is not a separate step hut a step that is performed
many times as part of the steps bounding the structured (step 9) and unstruc
tured (step 10) error. Step 11 of the algorithm is finally called "Combine local
results" on page 14 7.

At the beginning of a section in which a step of the algorithm is presented
in detail, the summary on pages 146 and 147 is repeated in condensed form and
in smaller print. In these condensed summaries, only the step being discussed
is split further into required information, sub-steps and generated information.
The other steps will only be indicated by their heading. Moreover, these other
steps will be shown in lighter print.

4. 6 Review of systems and models

At this point it may be worthwhile to reconsider the various systems and models
that have occurred so far.

First of all there is the true system atr· atr can be non-linear, infinite di
mensional, time-varying etc. However, it is assumed that in an operating point
w E W, atr can be approximated by its linear manifestation ar;_, where ar;_
is linear and time-invariant, possibly infinite dimensional. Note that it would
be more accurate to refer to ar;, as the linear and time-invariant manifestation
of a, hut for brevity it is simply called the linear manifestation of atr· The
approximation of atr by ar;. should be interpreted as explained in chapter 3, in
particular in section 3.3.5. Note that the behaviour of the true system atr that
is not represented by ar;_ ends up in the noise sequence é(t). Fora system that
can hardly be approximated in an operating point by a linear time-invariant
system a~, the noise bound ë(t) will become excessively large.

The nominal model G can be any linear time-invariant model for all oper
ating points, supplied by the user. In the remainder of this chapter we will also
encounter a {J. Let the parameter vector be c-dimensional, then a {J is related
to G through

Ó = arg min ll!J(t) - ge(t)llh2
8ElR°

a {J is represented in the parametrisation used internally by the algorithm.
The central model is merely a by-product of the algorithm during the anal

ysis of the structure in the model uncertainty. The central model is needed

88 An algorithm for structured and unstructured error bounds

only during the determination of the structured error components Ai((). It is
not directly related to the nomina! model. It is indirectly related to the nom
ina! model because both are in some measure an approximation of all linear
manifestations of the true system Gtr· The user may choose to use the central
model as the nomina! model. In this case the central model and the nominal
model "happen" to be identical. This is never assumed by the algorithm.

The auxiliary models Gew are models estimated for the linear manifestation
of the true system in the corresponding operating point w, so Ge"' is an ap
proximation of GY:.. Like the centra! model, they are required for the analysis
of the structure in the model uncertainty. The auxiliary models may also be
used to estimate some of the required prior knowledge, as will be explained in
sections 4.8.3 and 4.10.3.

Finally, the structured error components Ai are the models parametrised
by OA,i, so

4. 7 Step 1-4: obtaining a MIMO basis

: (hf~l '

Ï
. Choose basis funct.ions and model orders p. 88

t > ~•(!): set of basis functions 1» 75
> k: model order p. Ti

The first four steps are concerned with generating a MIMO basis. For our
purposes, this will be equivalent to finding a basis generating system. The
procedure of appendix B will subsequently be followed to generate a basis that
will be used for all operating points.

As pointed out in section 4.3.1, the expansion coefficients in the tail of the
basis tend to zero fastest if the poles of the basis generating system are close
to the · poles of the true process. More exactly, this property applies for all
expansion coefficients ()k for which k ;:::: max{k + 1, k*}. The faster the tail
coefficients tend to zero, the smaller the undermodelling will be due to the
truncation of the basis in the model parametrisation. In our case, the true
process has a different set of pole locations for each operating point. The poles
of the generating system should be chosen close to the poles in all these sets.
As these pole locations are unknown, a rough model that finds a compromise
between the different sets of pole locations is needed. If we have a model Ö,

4. 7. Step 1-4: obtaining a MIMO basis 89

this is a natural candidate. If we do not, we need to get an indication of the
pole locations by other means. This is the purpose of step 3.

The model order should not be taken too high. Some properties of the
parameters 6tr,k can only be observed if k (estimated) model parameters are
available, where k is equal to several times n, the McMillan degree of the basis
generating system Gb. If nis large, many model parameters need to be esti
mated in order to observe these properties. This leads to a significant increase
in the computational complexity of the algorithm and also to an increase in the
variance error that can be expected in the estimated model parameters. On
the other hand, the model order should be sufficiently high to represent all of
the dominating poles of the true process.

Most identification methods can in principle be used to find a basis gener
ating system: any method yielding a more or less accurate description of the
(dominant) process poles will be suitable. Estimating FIR models of sufficient
length does in general not yield a good basis generating system. All model
poles will be located in the origin. Using this as a basis generating system will
consequently generate the standard basis, thereby defeating the whole purpose
of using system based orthonormal basis functions. A model reduction step
should be performed first in such a case.

Not withstanding this, the standard basis can be used as a MIMO basis.
Conceptually there is nothing prohibiting this. It will be pointed out in sec
tion 4.14, how in general this will lead to conservative error bounds.

Apart from these considerations, there are some practical constraints. Given
the observation that the dominant poles of the process should be present in the
basis generating system, the length of the impulse response of the generating
system will be of the order of the length of the impulse response of the true
system. Provided that we have done experiments of sufficient length, we can
therefore assume that the impulse response of the basis generating system fits,
say, five to ten times in the experimental data intervals for each data set.

To be able to estimate values for Mand pin (4.5), the models to be esti
mated in step 5 need to have a number of parameters that is several times the
McMillan degree of the basis generating system (see section 4.10). This implies,
that parameters have to be estimated for basis functions that have impulse re
sponses that are langer than that of the basis generating system. Depending on
the poles of the basis generating system, this may result in impulse responses
that are langer than the length of the experimental data sets. The more energy
of the impulse response of a basis function is outside the experimental window,
the less faith we can have that we can estimate the contribution of this basis
function reliably. In such a case the parameters corresponding to higher order
basis functions will be unreliable. They will in general not reveal the exponen
tially decaying behaviour of the parameters that we were trying to estimate in
the first place. This will be explained in more detail in the next section.

90 An algorithm for structured and unstructured error bounds

If this situation occurs, the "ideal" solution would be to do longer experi
ments. This is not always possible, or may lead to a computational load later
in the algorithm that exceeds the available computing power or the patience of
the user. In these cases, the only solution left is to generate the basis with a
basis generating system that has a shorter impulse response.

Example (Continued Erom page 84): A basis was generated for the example
process using the basis generating system

1
Gb(z) = z - 0.95

Note that the pole of this process is close to but not identical to the pole of both
linear manifestations of the true process. In figure 4.2a the impulse responses
of the first five functions of a basis generated by Gb are plotted. Figure 4.2b
shows the Bode amplitude plot of the same functions. Due to property 4.1 on
page 77 all amplitude plots lie on top of each other in this plot.

0.8 bi (-)
b2 (--)

0.6
b3 (-.)
b4 (..)

bo (..)

0.4 10°

0.2 ·\

'.\. \ -..--: . -·-.
0 '.\ ~ · · " ;r · · · · · · · • · · · · ·., ,_.· /. - .

·.·.:__':.. - - - -
-0.2 ~-~-~-~---~ 10-1 ~--~---~--~

0 20 40 60 80 100 10-• 10-' 10° 102

samples-+ frequency -+

a) Impulse responses b) Transfer functions

Figure 4.2: First five basis functions in the example

(Continued on page 93.) D

4.8. Step 5: estimating auxiliary models 91

4. 8 Step 5: estimating awdliazy models

1 Estimate auxilia.ry models ... " ... " " ... " " p. 91
~ 11{1),y(!),u(I). model parametrisation

> 9w, parameters of auxiliary model for operating point w p. 92

The next step in the algorithm is the estimation of auxiliary models, i.e. "nom
ina!" models for each operating point. To avoid confusiön with the "overall"
nominal model G, these nomina! models will be referred to as auxiliary models.

As with the estimation of G, the algorithm does not prescribe what identi
fication method to use for the estimation of auxiliary models. Contrary to G,
the auxiliary models need to be expressed in the parametrisation of section 4.3.
In this section we therefore describe an algorithm that estimates models of the
form (4.3).

4.8.1 Instrumental variable estimation

The estimation of auxiliary models should be repeated for every operating
point. We will drop the superscript w that indicates that the true process is
considered in an operating point. Also, we will first consider multiple input,
single output processes.

For each data set d E '.D(w), we define matrices Uf and V:d, i E pas follows:

Ud·= ' .

V .d ·= ' ,

[

[Bal,i)(~)u~J(o)

[Bal,i)(()ufärd 1)

[

[B~l,i)(()vf](O)

[B~1,ï)(()~f](Td - 1)

[B~~~:Ji (()ufüü) l
[B~~;'.?l (()~tJ(Td - 1)

[B~~;'.?) (()vf](O) l
. . . [B~~~·:i) (()~f](Td - 1)

The columns of ut contain the ith input filtered by the basis functions for
this input in the model parametrisation. (Recall that Bkl,i) is the kth basis
function of the transfer from input i to the only output, numbered 1.) V:d is
similar with the process input replaced by the instrumental .rai-iable. Ud and
vd are in turn built from these ut and vt

ud := [ut . . . ut]

92 An algorithm for structured and unstructured error bounds

yd shall be a column vector containing the output measurements:

yd := [y(O) . . . y(Td - 1)(.

Assuming that the order of parameters in 9 is compatible with the order of
filtered inputs in Ud, the instrumental variable estimate {Jd for data set d would
be

(4.10)

This estimation method has been analysed in (Hakvoort, 1994), section 5.3
and 5.4. If the inputs are used as instrumental variables, (4.10) becomes the
least squares estimate. This has been analysed using the framework of (Ljung,
1987) in (Van den Hof et al., 1995). It is shown there that, provided the
inputs are rich enough, the estimate (4.10) converges under weak conditions
asymptotically to the true process parameters.

To obtain one model for all data sets of an operating point, we finally
introduce U, V and Y:

Y = stack f dyd,
dEi)(w)

(4.11)

where jd E IR+, d E '.D(w), are weighting factors for each data set. As the
parameter estimate for the operating point is taken

(4.12)

Being an instrumental variable estimate, it is hard to tell what criterion is
optimised by the "optima!" parameter vector 8. If the instrumental variables
are taken equal to the inputs, the instrumental variable method reduces to
a least squares method. This can be restated as follows. Let €d(t, 8) be the
prediction error for data set d at time t for the model with parameter vector
8. It can easily be verified, that

[

€d(O, 9) l
Y - U9 = stack fd : =: Ê(fJ)

dE'.D(w} .
€d(Td - 1, 9)

The estimate iJ from {4.12) minimises llÊ(8)11~, in other words

iJ = argmjn llÊ(8)11~ = argmJn 2:: fd 2:: €d(t, 9)2

dE1)(w) tE'Jl'd

Taking all f d equal to 1 will weight each data set proportionally to its
length. Provided noise levels are comparable in each data set, this seems most

4.8. Step 5: estimating auxiliary models 93

reasonable. If noise levels are different, data sets with a higher noise level
should be weighted less.

For processes with multiple outputs, the procedure outlined above can sim
ply be applied for each output, taking instead of 9 the relevant sub-vector of
8. This is possible, because transfers to different outputs are parametrised
independently.

Remark 4.3 The "gluing together" of the data sets does not give problems
because of mismatching initia! conditions: the inputs are filtered by the basis
functions first and then concatenated.

This is not meant to imply that the initial conditions at the start of the
data sets do not complicate the estimation. At the start of each data set
there is a possible transient in the output, that is, at least in the least squares
estimation discussed here, not taken into account in the estimation. Depending
on the magnitude of the transient and the length of the transient compared to
the length of the data set, this may lead to a smaller or larger bias in the
estimation.

This is the case for a single data set as well and does not result from the
combination of data sets. The point that is made here, is that the concatenation
does not cause additional problems, as would have been the case for example
if the data sets were concatenated first and then filtered.

See also section 5.2. D

Remark 4.4 The estimate (4.12) has essentially the same properties as the
corresponding estimate for a single data set. This means for example, that
the prediction error can be weighted in frequency domain by prefiltering input,
output and instrumental variable. (See for example (Ljung, 1987).) Also, the
estimate (4.12) converges asymptotically to the true parameter values under the
same conditions as the normal instrumental variable method does. "Asymp
totically" should be interpreted here such, that the length of at least one of
the data sets goes to infinity. If the length of the data sets remains finite but
the number of data sets tends to infinity, additional assumptions on the initial
conditions in each data set are required for consistency of the estimate. D

Example (Continued Erom page 90): The results obtained Eor the simulation
example used in this chapter by the estimation method discussed above are
shown in figure 4.3. This figure clearly shows, that the estimated model fäils
to capture the initial transient. Indeed, the estimation method discussed in
this section provides no means to represent the transient. After this transient,
the residuals become small compared to the output signal. The power in the
residuals becomes then comparable to the power in the true noise signals.

Note that the comparison of figure 4.3 is carried out on the estimation set,
not on a validation set.

94 An algorithm for structured and unstructured error bounds

5

0

-5

-10~~~~~-'--~~~~--"~~~~~~~~~~ ~~~~---'
0 100 200 300 400

10

0

-10

500 600 700 800

11 •
,i~ 1

-~

900 1000

-20~~~~~-'--~~..__~__..~~~~~~~~~~ ~~~---___,
0 100 200 300 400 500 600 700 800 900 1000

Figure 4.3: Residuals ('-')and outputs ('--') for data set a (top) and b (bot
tom)

No plots of true and estimated impulse responses or Bode plots are provided,
as the estimated plots can hardly be distinguished Erom the corresponding true
plots. (Continued on page 99.) 0

4.8.2 Mismatch between data length and basis length

As already indicated in section 4.7, identification will be troublesome if the
length of the impulse responses of the basis functions in the model set exceeds
the length of the data. (See also (1.2) on page 14.) To illustrate this, consider
the situation of a SISO system for which one data set is available. The instru
mental variable is taken equal to the input. The estimate is given by (4.10),
which reduces in this situation to

fJ = [~uTu]-
1

~uTy
Let Q denote the matrix to be inverted in the right hand side:

Q :=]:_uTu
T

4.8. Step 5: estimating auxiliary models 95

Assume the input u is a white, quasi-stationary sequence, where the value of
u on each time instant t E 'JI'd is normally distributed with zero mean and
standard deviation au. For the length of the data set tending to infinity, the
element of Q in the jth row and the ith column becomes

[Q]Ji = lim -T
1

"[Bj(()u](t)[Bi(()u](t)
T-too L...J

tE'Jl'

}~m00 ~ ~ (f0
bj(Ti)u(t - T1)) · (i~o bi(T2)u(t T2))

T-1

=)~m00 L L bj(T1)bi(T2) · ~ L u(t -T1)u(t T2)
r1E'II'r2E7l' t=max{r1,r2}

00

a; L bj(T)bi(T) a;ó(j - i) (4.13)
r=O

where the third equality follows from the whiteness of the noise and the fourth
from the orthonormality of the basis functions. (4.13) simply means that Q
is asymptotically equal to a scalar times the identity matrix for the indicated
input.

To investigate the properties of this least-squares identification method,
data was generated by filtering an input sequence with the system

Gtr(z) = (z
z - 0.5381
0.95)(z - 0.80)

The input u was a white noise sequence with a. distribution N(O, 1), consisting
of 1000 samples. The output y was the response of Gtr(z) to this input. Initia!
conditions were set to 0, no noise was added to either u or y. A basis was
generated with the system

G () = 1.7918
b z z -0.99

30 basis functions were incorporated in the model, so k is taken 30.
The true and the estimated impulse response of the system are shown in

figure 4.4. In figure 4.4a the step responses are plotted for the first 100 samples.
In figure 4.4b the same responses are plotted for the first 7000 samples.

Although the true process seems to be estimated fairly accurately judging
from the short step responses, the plot of the step responses for 8500 samples
clearly demonstrates that the match between the estimated model and the true
system is actually very bad.

This can not be due to a varia.nee effect for which the identification pro
cedure happens to be extremely sensitive, because no noise was added to the

96

t 50

h(t)
40

30

20

10

20

An algorithm Eor structured and unstructured error bounds

40

x 1011

5~~~~~~~~~~~~

-5

-10

1
1
1

1
\ /---------
,_;/

-15'--~~~~~~~~~~----"

60 80 100 0 2000 4000 6000 8000 10000

nr. of samples -t nr. of samples -t

a) Short step response b) Long step response

Figure 4.4: Step responses, '- ': true system, '-- ': estimated model

input or output signals. The only "noise" that is present is the quantisation
noise caused by round-off errors in the computer. Double precision arithmetic
was used, so the signal to noise ratio is extremely good. As can be seen in
figure 4.4a, the input record of 1000 samples should be long enough to identify
this system.

The actual singular values of Q are shown in figure 4.5. These do not
correspond to Q = I which holds asymptotically according to (4.13). This in
turn is caused by the fact, that the response of most of the basis functions is
much longer than the 1000 samples in the experiment record. The responses
of the basis functions are not plotted here, but one may get an idea of their
length from the observation that the length of the response of the estimated
model is roughly equal to the length of the response of the last basis functions.
The length of the response of the model can be judged from figure 4.4b.

Theoretically it can be shown, that the true model parameters decay expo
nentially with p = 0.9135. This can not be seen from the estimated parameters
in figure 4.6!

Remark 4.5 In section 5.3, a way to suppress the ill-conditioning of this prob
lem will be introduced and the results will be compared to those obtained in
this section. A brief discussion of other methods known from literature to
handle this problem will be held there as well.

These results are not presented here, as the purpose of the current sec
tion was only to illustrate the problems that can be expected if the model
set contains basis functions with an impulse response length that exceeds the
experimental data record significantly. D

4.8. Step 5: estimating auxiliary models

105

10°

10-"

10-10 .

10-"

10·20

x 10
10

1~--~------~

0.5

0

-0.5

-1

-1.5

-2

-2.5~--~------~

97

0 10 20 30 0 10 20 30

Figure 4.5: Singular values of Q Figure 4.6: Estimated model pa
rameters

4.8.3 Estimating prior information

Prior information that bas to be estimated from experimental data is not re
ally prior information. However, as the kind of information discussed here is
generally called prior information, this name will be used here for it as well.
This section is intended as a means to obtain the information if it is not known
apriori. If it is, then the estimation treated in this section can be skipped.

If no values of Mu, pa and O~ax in (4.5) are available, they may be estimated
from the estimated auxiliary models. In the first place values Mu and p17 need
to be fitted to the magnitude of the estimated parameters. To quantify the
mismatch between an estimated parameter Ók' and the bound M"' (p"')k on its
magnitude it is important to realise that a small difference M"'(p"')k IOZI
should be considered a large mismatch if Ók' is small as well.

This would suggest using the sum of "relative misfits"

as a measure for the overall misfit. This measure is very sensitive to differences
M,,.(p"')k - IÓk'I for values of Bk' close to zero. If this value is close to zero
because of the exponential decay of the model parameters, this is exactly what
is intended. However, such small values may also occur for smaller values of k
for which the envelope M"'(pu)k should actually still be large, i.e. not close to
zero, because the value of, say, 0k'_ 1 and Ók'+i is much larger.

One can also weight the relative misfit hut be more robust against interme-

98 An algorithm for structured and unstructured error bounds

diate small values of êf by using

k"

L jtn M" + k In(pa) - In iêkl 1 (4.14)
k=O

as a measure for the overall misfit.
While (4.14) is a reasonable measure for the misfit between the estimated

model parameters and the exponentially decreasing envelope Ma (pa)k for it,
it is not sufficient to minimise (4.14) for Ma and p" to find the "optima!"
envelope: the envelope is required to overbound the magnitude of the model
parameters. This can be achieved by adding the constraints

(4.15)

to the optimisation. This implies that the outer modulus signs may also be
dropped from (4.14). Finally, the envelope should be exponentially decreasing.
This corresponds to the constraint

(4.16)

By changing to the variables M' = ln M" and p1 = In p" equations (4.14) to
(4.16) can (almost) be translated to the following linear programming problems:

subject to

k"

minimise LIM1 + kp' - In IBkll for M 1,p',
k=O

Vk = 0, ... , k" M' + kp' ??: In IBkï
p' ~ 0

(4.17)

(4.18)

(4.19)

For different a's, different optimisations have to be performed, yielding different
values for M' and p1

• As a concession to numerical solvability, (4.19) also allows
p' = 0 <=:> p = 1. For an exponentially decreasing bound this is actually not
allowed. As an alternative one could require that p1 < -f for some small,
positive value of€.

o:;,ax can be taken equal to

where se 2: 1 is a safety margin to be chosen properly. (k*),,. should be taken
the largest integer such that .

M<T(po-)(k*)" > O~ax·

4.8. Step 5: estimating auxiliary models 99

10' 15

'-o': estimated IBk 1 '-o': estimated 9 k
' --'~ iik 10 '--~· ±iik

10' \
\

5
10° ' ' ' ' 0

/
10-• I

-5 I

I

10-11
-10

10-" -15
0 2 4 6 8 10 0 2 4 6 8 10

k -t k -+

Figure 4. 7: Estimated model parameters and parameter bounds for the simu
lation example

Example (Continued from page 94): The parameters that were estimated in
operating point a for the simulation example are shown in figure 4. 7. The
corresponding values of Ma and pa are 12.95 and 0.4480 respectively. These
bounds will be reconsidered in section 5.2.

(Continued on the next page.) D

An estimate for the noise bound ëd (t) in (4. 7) is easily obtained by taking

where se is another safety margin, Se ~ 1. The noise bound thus becomes
a constant signal. For multivariate ëd(t), maximisation and absolute values
should be taken element-wise.

A tighter bound would be given by

but this bound may be less realistic. As an extreme example, if €(t1) is equal
to zero for some t 1

, the noise bound will be zero. For small €(t1) something
similar, though less drastic, occurs. Therefore, it seems safer to deduce one
noise level from the residuals for all samples and determine the noise bound for
all samples from this noise level.

100 An algorithm for structured and unstructured error bounds

Estimating the cross-covariance bounds ey, l En~ proceeds analogously:

where Se :2: 1 is a safety margin.
If the order of the models considered during estimation is chosen (too) high,

it is likely that part of the particul(,!,I' noise realisation that is present in a data
set is fitted by the estimated models. This will lead to smaller estimates of
the residuals €d(t) and consequently too smaller values of ëd(t) and ët. If the
model orders are such, that there is a clear risk of this, it is to be preferred to
base the residuals €(t) on separate validation data sets and estimate the values
of ë and ce from these. This requires for each data set d E 'D a companion data
set in which the same noise level can be expected as in d. Note that under
certain conditions, the same companion data set can be used for all d E 'D(w)
with w E W.

Example (Continued from the preceding page): The estimated values for ë(t)
are shown in figure 4.8 lor both operating points. For Se the value 1.2 was used.

10

5

0

-5

-10

0

10

5

0

-5

-10

200 400 600 800 1000 0

estimated residuals
+e(t) and -ë(t)

200 400 600 800 1000

Figure 4.8: Estimated residuals and noise bounds

The noise bound is dominated by the transient in the residuals.
The estimated cross-covariance bounds are

cï = 0.1687, et 1.4681,

4.9. Step 6 & 7: estimating the error structure 101

where for Se too the value 1.2 was used.
In section 5.2 further attention will be paid to the infl.uence of the transient

on the noise bound and the cross-covariance bound.
(Continued on page 106.) D

4. 9 Step 6 & 7: estimating the error structure

,;.,~

·· L~:r[p,~~:c .;.~iu;!i;.~.ry :tdHlcl~:,

1
Estirnate error st.ruct.ure .. "." " .. " ;,:·!~;

ê
:).8"' ; 8"' - mean".• ew' p. 105
X: matrix with iu its columns the ~8111 p. 102
(T~l'T: singular value decomposition of X
n..,: munber of structured error components p. 105

> BA.i = i:.i. i En.: parameters of st.ructured errors .4i p. 105

Step 6 and step 7 are treated together, because the way in which the error
structure is determined will turn out to be dictating the way in which the
central model should be calculated. The error structure will be determined
in this section by principal component analysis. Other ways are discussed in
section 5. 7.

4.9.1 Principal component analysis

Principal component analysis is a technique encountered often in multivariate
data analysis. In fact, subtle variants on the same theme are collectively re
ferred to as principal component analysis. For a thorough introduction into
this subject, the reader is referred to Jolliffe (1986). This reference interprets
principal component analysis in many different ways. Most textbooks on mul
tivariate data analysis can be consulted as well. In this section we interpret
principal component analysis in a way that fits best to the application we have
in mind. Our aim is not to be completely rigorous, just to provide enough
information to appreciate the choices made later on.

Consider a zero-mean n-dimensional stochastic variable Jè. This variable
could be generated by a single, unknown random process ~:

(The notation !!<. E IRn means that Jè is a stochastic variable taking its values
in IRn.) On the other hand, it could be generated by n independent random

102 An algorithm for structured and unstructured error bounds

processes .!'l1, ... ,.\'ln, also assumed to be unknown:

n

;f. = 'L:P&i ;J;.,Pi E JR.n,.!'li E JR.
i=l

If (Pi)f=1 = lRn, it is clear that !f. being generated by more than n independent
random processes can not be distinguished from the case that !f. is generated
by n independent processes, provided we have no prior information about the
probability distribution of fi· If (Pi}f=1 Ç mn we can find pj and fj, where
j = l, ... ,n-1 such that

n-1

L ,,
x= p.e.
- J-3

j=l

The stochastic properties of ;J;. are not known, hut m samples have been
taken from ;f., denoted x1 through Xm. Principal component analysis proceeds
as follows. The x1 to Xm are collected in a matrix X:

X := [X1 ••• Xm

Denote the singular value decomposition of X

X=:UEVT

(4.20)

(4.21)

with u1 ::'.:: u2 ::'.:: · · · ::'.:: Un the singular values. (This assumes m ::'.:: n. If m < n
there are only m singular values.) ;f. can now be written as

n

;f = L u*i.!'li, .!'li E IR, var_!'li =ut
i=l

(4.22)

This decomposition is optimal in the sense that U*1t:,1 minimises the variance
of ;r. ;f. for all ;f. taken from the set of random variables generated by a single
random process. Moreover, U*1.!'li + U*2~ minimises the variance of !f. - î
if x is taken from the set of random variables generated by two independent
stochastic processes. This can be extended for up to min{m,n} independent
stochastic processes.

The columns of U are called the principal components of X. According to
(4.22), the singular values can be interpreted as the standard deviation of the
processes "driving" the principal components. A column of V indicates how the
different samples contribute to the corresponding principal component. This
will be discussed in more detail in section 5.6.2.

In figure 4.9 an example is shown for a stochastic variable !f. E JR2 . In this
example

*. = P1f1 + P2f2 (
1.86)

PI = 1.23 , (
0.99)

P2 = -0.06 .

4.9. Step 6 & 7: estimating the error structure 103

The generating processes f.I and ~ are independent with a standard normal
distribution. The dots in figure 4.9 indicate different samples taken from 2'.· The
two straight lines are the vectors p1 and P2· The axes of the ellipse are c71 U*1

and t7zU*2 • Denote the processes driving the principal components f.a and §.b

respectively. In figure 4.9 the principal components are clearly not aligned
with P1 or pz. So although the principal componènts t71 U*1f.a and t7zU*2§.b

have the interpretation of independent stochastic variables yielding together
the stochastic variable · g;:, principal · component analysis does not necessarily
find the "true" stochastic variables P1f.1 and pz~ that constitute !f.

6

4

t
2

Xz
0

-2

-4

-5 0 5
X1-+

Figure 4.9: Example of principal component analysis (see text)

Remark 4.6 The requirement that !fis a zero-mean signal is in practice re
moved by subtracting the mean of !f from the samples before doing the analysis.

0

Remark 4. 7 Principal component analysis is able to reveal correlation be
tween the elements of a varying, or. rather, stochastic vector. This means that
the principal components describe the dominating linear relationships in a ran
dom vector. If the second element of a vector is for example always the square
of the first element, principal component analysis will not detect this. It may
reveal a linear relationship that happens to fit to the samples taken from the
stochastic variable. What this relationship looks like depends entirely on what
samples have been taken. 0

104 An algorithm for structured and unstructured error bounds

4.9.2 Principal component analysis and error structure

As was demonstrated in the previous section, principal component analysis can
be used to find the dominant (linear) relationships between the elements of a
varying vector, fo.terpreted there as a multivariate random variable, based on a
number of samples taken from that variable. The problem that is actually faced
by the algorithm is to find the dominant relationships between the variations in
a process transfer when the process moves between different operating points.
The latter problem can be mapped onto the former by representing a process
transfer in an operating point by the parameter vector of the auxiliary model
for that operating point. This parameter vector is a varying quantity because
the operating point of the process may vary. Because models are identified for
a number of operating points, a number of "samples" of this varying quantity
is available.

In the previous paragraph it is implicitly assumed, or rather hoped, that the
structure that is present in the changes in the transfer of the process, induced
by the change of operating point, is reflected in the changes of the auxiliary
model parameter vectors in a way that can be detected by principal component
analysis. The structured error components in (4.4) are additive uncertainties.
Such an additive uncertainty corresponds to a linear relationship between pa
rameter vectors if the model parametrisation is linear in the parameters. So,
provided the structure in the process uncertainty is indeed of the form (4.4),
principal component analysis of the auxiliary model parameter vectors will de
tect this structure if the model is linearly parametrised. Note that the model
parametrisation used by the algorithm is indeed linear in the parameters. (In
the remainder of this chapter, reasons of computational tractability will be
given that restrict the model parametrisation toa linear parametrisation too.)

Structure in the model uncertainty that is known to exist from physical
reasoning, hut that can not be expressed as an additive error with a varying
gain, will not be found by the principal component analysis. At best only a
linear approximation to the structure will be found.

One may wonder how restrictive the limitation to additive structured un
certainties is in practice. An important consequence of it is, that moving poles
can only be described approximatingly as a structured error component. This
kind of process uncertainty is often found in practical applications. On the
other hand, in many practical applications reported in literature an additive
process uncertainty is assumed, albeit an unstructured one, without physical
or theoretical justification. As this leads nevertheless to useful control designs,
one may be optimistic concerning the limitations imposed by the restriction to
additive structured error components.

If one wants to generalise the algorithm to different model parametrisations
it should be verified what a linear relation between the model parameters means
in terms of process transfers. Consider for example a simple second order ARX

4.9. Step 6 & 7: estimating the error structure 105

structure

It is hard to think of a general reason why there should be a linear depen
dency between the model parameters if the process moves to different operat
ing points. This does not imply that no particular cases are conceivable where
such a structure could give good results. To incorporate such structuring in the
process uncertainty, the uncertainty description (4.4) has to be revised. Many
other changes to the algorithm would be necessary as well.

In section 5.8 an example is given in which a different uncertainty descrip
tion can be used with relatively small adjustments to the algorithm.

The centra! model is introduced into the algorithm because of remark 4.6
on page 103. This remark stated, that the samples of a stochastic process
analysed by principal component analysis should have a mean value of zero.
This makes it clear that the parameters of the centra! model should be taken
equal to the mean of the parameters for each operating point:

(4.23)

Following the interpretation outlined above, the set of fl(Jw := (}w - (Je, w E
W is now a set of samples from a zero mean process. Collecting these samples
in the columns of a matrix X as in (4.20), the principal components are given
by the columns of the matrix U in the singular value decomposition (4.21) of
x.

How many principal components to use is not easy to teil. The singular
values can be taken as a first indication. If there is a sharp drop and then
a stabilisation to an approximately constant level in the sequence of singular
values, the location of the drop is likely to be a good value for the number of
principal components. The variation beyond this number can be ascribed to
"noise effects," which would translate in this situation to variance errors in the
model parameters. In practice however, there are probably too few operating
points for which we have experimental data to be able to see such a clear
pattern. A more pragmatic approach would be to take a number of principal
components of the order of the number of operating points first and check
whether decreasing this number inflates the resulting unstructured error ll.
As long as this is not the case, one can safely reduce the number of structured
error components. In section 4.12 it will be argued that "the more the better"
need not apply to the number of principal components. See remark 4.15 on
page 132.

Once the number n 8 has been determined, the parameters OA,i, i E ns
are defined to be the first n 8 columns of U in the singular value decomposition
X = U~vr. Using the model parametrisation (4.3) this results in the transfers

106 An algorithm for structured and unstructured error bounds

Example (Contmued from page 101): In the simulation example with only
two operating points the problem of determining the error structure reduces to
a somewhat trivia! situation. For two operating points one can use either zero
or one structured error components. Moreover, it holds .

so that the structured error component, jf it is used, is aligned with the differ
ence between the auxiliary models for the two operating points.

(Continued on page 109.) 0

4.10 Step 8: translating data and prior knowl
edge

The experimental data and prior knowledge listed in section 4.4 will now be
translated toa set of linear constraints on the parameter vector 6. The results
presented here were published earlier in (Hakvoort, 1994, chapter 4). Com
putational details were presented in appendix 4.C of that reference. Readers
familiar with these results can skip this section.

The translation will consist mainly of an extension of the noise bound (4. 7)
and of the cross-covariance bound (4.9). The parameter bounds (4.5), possibly
estimated following section 4.8.3, need no further translation.

4.10.1 Extended noise bound

Construct set of linear constraints , . , ... , . p. 106
ii,li,.M,p,b•(t)
Exteml noise bound , ... " " .. " " .. p. 106

~
< ê(t): (unextended) noise bound. l'· 82
> it(!): înllnence of basis k + 1 to k, no transient p. 107
> b(t): transient of basis O tok p. 107
> J: influence of basis k + 1 and higher, incl~ transient p. 108
> - G"(ç)"(tJI $ ë.(t) :~ ê(t) + IÎ(t) + b(t) + li p. 108

···i'

'" 1

4.10. Step 8: translating data and prior knowledge 107

Introduce the noise-free process output for data set d, d E 1>(w):

'Vt E Td Yfr(t) := yd(t) ed(t)

Based on (4.6), we have
00

qESk=O

Consider for a moment the case of a single inputi single output system, so that
we can drop the superscript a and the summation over S. We will also drop
the superscript don the signals u and y. We thus have for all t E Td:

00

Ytr(t') = LOtr,kBk(()u(t1)
k=O
00 00

= L Otr,k L bk(r)u(t' - r) (4.24)
k=O r=O

This involves basis functions that are not incorporated in the model and also
values u(t) are used fort< 0, which we do not have in our data set. (4.24) can
be split into four components as follows

k t' k t'

Ytr(t') = L Otr,k L bk(r)u(t1
- r) + L Otr,k L bk(r)u(t' - r)

k=O

k 00 00 00

+ L Btr,k L bk(r)u(t1 - r) + L Otr,k L bk(r)u(t' - r) (4.25)

where k E IN, k ;::: k is a parameter that can be manipulated to infiuence the
conservatism introduced in the following steps.

Now consider the second term in the right hand side of (4.25) (or rather its
absolute value):

k t' k t'

L Otr,k L bk('t)u(t1
- r) < L Bk L bk(r)u(t' - r) =: à(t') (4.26)

r=O

For all t ET, a(t) can be calculated with a finite number of calculations. The
third term can be bounded as follows

t. e"" J;_, b, (r)u(t' - r) :S t. ii• IJ;_, b,(r)u(t' - ~)1 <;

:S t, ii, j;;}•(r)IU = ut. ii, (llB,(()111, t, lb,(r) 1) =' b(t') (4.27)

108 An algorithm for structured and unstructured error bounds

This can be calculated to any desired accuracy, see for example Fialho and
Georgiou (1995). The results in this reference are derived for uncertain linear
systems but can easily be reduced to the case of a single known linear system.
The last term o((4.25) requires unfortunately use of conjecture 4.2 on page 77
with p taken equal to 0:

00 ~ 00 00

L Otr,k L bk(r)u(t - r) < L ëk L lbk(r)lum ::;
T=O

00 00

Um L Ökl1Bk(()llt1 ::;um L Ó1i (c~ +c~-/k) =:Ó (4.28)
k=k+l

where um := max{ü, lu(O)I, lu(l)I, ... , lu(t)I} and ei and c~ are taken such that
for all k

< c1 + c1 v1k - 1 2 (4.29)

c1 and c2 are chosen according to conjecture 4.2, p 0 .. Calculation of (4.28)
involves summations of the form

00

:E pk-/k
k=ko

For this infinite sum, no analytic expression is known. It can be calculated to
arbitrary accuracy however using

k1 00 k1 00

:E l-lk < :E lik< :E lik+ :E pkk
k=ko k=ko k=ko

The last term can be calculated analytically and can be made arbitrarily small
by taking ki sufficiently large.

The necessity to rely on a conjecture makes the foundation for the latter
bound not rock solid. However, we will show later that in practice there is no
risk that the bounds based on (4.26), (4.27) and (4.28) will be too optimistic.

The noise bound (4. 7) can now be extended:

k t'

Ytr(t1) - L Otr L bk(r)u(t1
- r) <

k=O r=O

k t'

::; 1Ytr(t1) - y(t1) 1 + y(t1) - L Otr L bk(r)u(t1 - r) <

::; ë(t') + à(t1
) + b(t') + 0 =: ëe(t') (4.30)

4.10. Step 8: translating data and prior knowledge 109

(The bound (4.30) accounts for effects of noise, undermodelling and unknown
initial conditions. Following the terminology introduced in (Hakvoort, 1994),
this will be referred to collectively as the extended noise bound.) For every
t E 'II', (4.30) corresponds to two linear constraints on Btr: the upper and lower
bound. The model parameters in () should obviously obey the same constraints.

If the truncation value n would not have been introduced, or if it is taken
equal to k, the only extension of the noise bound is actually through the value
of 8. It is clear that this must be a very conservative bound. It does not depend
on t for example, so that the influence of unknown initial conditions does not
die out. The unknown initial conditions that are accounted for by b do die out
for increasing t. Also the inputs that are known are not used in 8, except for
possibly increasing the value of Urn·

For multiple inputs, each input gives a separate a(t), b(t) and 8. These
contributions should all be added to ë(t) to yield the proper ëe(t). For multi
ple outputs, the calculations should be carried out for each output separately.
This is possible, because transfers to different outputs are parametrised inde
pendently.

Example (Continued Erom page 106): Table 4.1 gives an excerpt of the values
of the signals [Bk(()ua](t), i.e. the values of the input signals of data set a after
filtering by the kth basis function, where k = 0, 1, ... , 9. From this table
follows, that the following constraints on the model parameters are part of .qj:

0.0163 ·Bo + 0.4504 · Bl + · · · - 0.3382 · Bg :::; -0.2358 + 3.1364

0.0163 · Bo + 0.4504 · B1 + · · · - 0.3382 · Bg ~ -0.2358 - 3.1364

-1.2871 · B0 + 0.4330 · B1 + · · · - 0.8529 · Bg :::; -0.1864 + 3.1364

-1.2871 · Bo + 0.4330 · B1 + · · · - 0.8529 · Bg ~ -0.1864 - 3.1364

-1.5533 ·Bo+ 0.0095 · B1 + · · · - 1.3874 · B9 :::; -1.4514 + 3.1375

-1.5533 ·Bo+ 0.0095 · B1 + · · · - 1.3874 · Bg ~ -1.4514 - 3.1375

(Continued on page 119.) 0

Table 4.1: Filtered inputs, output and extended noise bound

t [Bo(()u](t) [B1(()u](t) ... [B9 (()u](t) y(t) ee(t)

400 0.0163 0.4504 ... -0.3382 -0.2358 3.1364
401 -1.2871 0.4330 ... -0.8529 -0.1864 3.1364
402 -1.5533 0.0095 ... -1.3874 -1.4514 3.1375

110 An algorithm for structured and unstructured error bounds

4.10.2 Extended cross-covariance bound

····I'-
.. p.

1 Construct set of linear constraints " " ""p. 106

. !--<
Extend cross-covru:iance hound , p. 110

~
< ët, re(t): (tmextended) cross-covariance hound p. 83
> d(f): basis function k + 1 tok, lruown inputs p. 111
> /(f.): basis fnnctiou k_+ 1 to kê inputs u(-Ï) to u(-1) p. 111
> fi1(f): basi.•functionk+l tok,

inputs u(-t -1) to u(-oo) p. 111
> ó2 (f): basisfnnction k+l and higher, all inputs p.111
> IE, r1(t)(y(!) - G9(()u(t))i

$ tl(f) + /(f) + 81(C) + ó2(l} + ë,,.ffJ p. 112
> c;;: set of line ar constraints on (J for every operath1g point

j : ~ : i

For the cross-covariance bound (4.9) we have the same problems as for the
noise bound (4.7): the model contains only a finite number of basis functions
and we do not have access to inputs prior tot= 0. The solution is also similar.

Consider first the single input, single output case. Choose truncation values
k ?:. k and i E IN. Then

Td-1 Td-1 Td-1 oo oo

L c:(t)rt(t) = L y(t)r1(t) - L rt(t) L Btr,k L bk(T)u(t - T)
t=O t=O t=O k=O r=O

Tá-1 k Tà-1 t

L y(t)rt(t) - L Btr,k L rt(t) L bk(T)u(t - T)
t=O k=O t::::O r=O

k Tà-1 t

L Btr,k L rt(t) L bk(T)u(t - T)
k=k+l t=O

k Td-1 t+i

- LBtr,k L rt(t) L bk(T)u(t-T)
k=O t=O r=t+l

k Td-1 00

- L Btr,k L rt(t) 'E
k=O t=O r=t+t+l

co Td-1 00

- L Btr,k L rt(t) L bk(T)u(t - T) (4.31)
t=O

The various terms of the right hand side will be bounded similarly to the
situation in the previous section. The third term is treated first:

4.10. Step 8: translating data and prior knowledge 111

k Td-1 t

L Otr,k L re(t) L bk(r)u(t - r) <
t=O r=O

k Td-1 t

< 2: ëk L re(t) L bk(r)u(t - r) =: d(l). (4.32)
k=k+l t=O r=O

For the fourth it is found

k Td-1 t+i

LOtr,k L re(t) L bk(T)u(t -T) <
k=O t=O

k Td-1 t+t k t Td-1

::; L ih L ri:(t) L bk(r)u(t r) ::; L iJk L L re(t)bk(t + r)ü
k=O t=O r=t+l k=O r=l t=O

k t Td-1

üLiJkL l:re(t)bk(t+r) =:f(P) (4.33)
k=O r=l t=O

and for the fifth

k Td-1 oo

L Otr,k L rt(t) L bk(r)u(t - r) <
k=O t=O r=t+t+l

k Td-1 oo k Td-1 oo

::; L iJk L re(t) L bk(r)u(t r) ::; L êk L h(t)I L lbk(r)!u
k=O t=O k=O t=O

The sixth finally can be bounded by

00 yd_l 00 00 yd_l . 00

L Otr,k L ri:(t) L bk(r)u(t r) ::; L iJk L h(t)I Llbk(r)lum
k=k+l t=O r=O k=k+l t=O . r=O

oo Td-1

::; Um L Ök (ei+ c~v'k) L hCt)I =: Ö2(l), (4.35)
t=O

112 An algorithm for structured and unstructured error bounds

where Um max{ü, lu(O)I, lu(l)I, ... , lu(k)I} and ei and c~ are chosen accord
ing to (4.29). We already had the prior knowledge that

Td
1

r;:;q L t:(t)re(t) :; ëe
vT~ t=O

Rearranging (4.31) and substituting (4.32) - (4.36) gives

Td Td k t

LY(t)re(t) - L re(t) L Btr,k L bk(r)u(t - r) <
t=O t=O k=O

(4.36)

5 d(l) + f(f) + 81 (l) + 82(f) + ëtVTd (4.37)

This is the extended cross-covariance bound for a single input. In the
multiple input case, every input gives a separate d(l), f (l), 81 (l) and 82 (l)
that should . be added to the cross-covariance bound to obtain the extended
cross-covariance bound. In case of multiple outputs, calculations have to be
repeated for each of the outputs. Here the independent parametrisation of
different outputs is used again. This gives finally for every signal rf(t),l En~
and for every output two linear constraints on the model parameters.

4.10.3 Esümating prior information

This section is similar to section 4.8.3. The objective is now to find c~ and ~
for all a E S, solving

subject to

k

minimise L jci + c~Vk - llBk(()lle1 1 for c~, c~, (4.38)
k=O

Vk=O, .. "k c~ +c~Vk2:: llBk(()lle11

ei 2:: 0, c~ 2:: 0.

(4.39)

(4.40)

The resulting c~ and c~ can then be used as estimated values for ei and c~ in
(4.29).

The rationale bebind this optimisation is similar to that of (4.17). The
absolute value can be dropped from (4.38) because of (4.39). k will in general
be taken equal to k(J', though any other sufficiently large value can be used
instead. As in section 4.8.3, this optimisation has to be performed for every
subtransfer in S.

4.11. Step 9: bounding the local structured error 113

4.11 Step 9: bounding the local structured er
ror

' l

f- Bound errors locally .. " " " """" ... p.113
i···
! trn:-~li ::F '. ~: p,ut:; , · 1'·

r
Bound structured errors .. " " .. "". "" ... · I'· 113

t> il'!':= n1axe•et:; (IJA,1 JIJ' ê)e",,,
upper bound 011 ith

1
st"!ctuxed compouent p. 114

> !lt := min,,•eci (eA" 1 e -IJ) llA,i:
lower bound on ith structured component p. 115

' Ü1

With local structured error is meant the components óiAi, i E ns in (4.4),
considered in an operating point w E W. Local lower and upper bounds on
ói will be derived. These will be denoted 4't: and d!f, respectively. The local
errors will be combined in section 4.13 to the global bounds d.i and Ji of (4.4).

Let ii contain those expansion coefficients of the nominal model ê that
correspond to basis functions incorporated in the model parametrisation. This
does not contradict our earlier claim that ê need not be expressed in the
parametrisation of section 4.3.2. It is still allowed that

The expansion coefficients corresponding to the tail of the basis need not be
zero for G.

In figure 4.10 a somewhat simplified situation is drawn. The parameter
vector consists of two elements only. The two unit vectors lie along the axes
of figure 4.10. The set of linear constraints C'tf is represented by a polytope
containing all points that satisfy the constraints. There is one structured error
component having a parameter vector 9 A,I · In this two dimensional example,
the orthoplement of (} A,1 can be spanned by a single vector 9*,1. In practical
cases, the orthoplement will be of higher dimension, corresponding to a hyper
plane in the parameter space.

It is known through the construction of C'lf that the true expansion coeffi
cients of Gtr (or rather those that are incorporated in the model parametrisa
tion) lie within C'tf. For an arbitrary model in C'IJ, denoted by 91

, the difference
between this model and the nominal model fJ can be decomposed into a com
ponent along the structured error component 9 A,1, corresponding to the vector
o;

1
, and a component perpendicular to () A,1, indicated by the vector ()~. The

114 An algorithm for structured and unstructured error bounds

C'tf -- fl\o~

9~\

Figure 4.10: Bounding of structured error components

vector Oj1 is given by the equation

As the model parametrisation is linear in the parameters, this means that the
model G91 can be written as

where 6.(() accounts for uncertainty in the direction perpendicular to (}A,I

and for uncertainty due to the tail of the basis. See also remark 4.9. As for
any (}1 E C"IJ, the gain factor for the structured error component is equal to
((J A,1 1 91 9c), the largest gain factor that can be encountered for a 91

E C(j
is

- (o 18A1) + max (9' 1(JA1) =: dw1
' 8'E.C0 '

(4.41)

If there are more than one structured error component, the bounds on the
gain factor for the ith structured error component, i E n 8 , can be found by
substituting 9A,i for 8A,1 in (4.41). This is possible due to the orthogonality
of the 9 A,i· An upper bound on 8i is thus given. locally by

\:/i E n 8 , w E W (};f := - (o 18A,i) + 8~q (9' l 9A,i) (4.42)

4.11 .. Step 9: bounding the local structured error 115

For all i and w, this constitutes a linear programming problem.
The lower bound r.1.11!, i E n 8 , w E W can be found completely analogously:

. 'r/i E ns, w E W 4i := (81 (JA i) + min (9' 1 (JA i)
' 9'EC9 '

(4.43)

In case the (} A,i are given by the user, they may not constitute an orthonor
mal set of vectors. This situation will be treated in section 5.7.

Remark 4.8 In the previous derivation, a sealing factor in parameter space
could be used as a gain factor. As was mentioned, this was possible because of
the linear parametrisation of the model. This is the most stringent reason why
the model should be linearly parametrised. D

Remark 4.9 In the example given in figure 4.10, it was mentioned that Ll(()
accounted for the uncertainty in the tail of the basis. The tail of the model G9 1

is equal to zero. Therefore this uncertainty amounts in this particular case to
à - G ir For the true system, the tail is in general not equal to zero. D

Remark 4.10 If 0 f/. [di, Ji] for some i E n 8 , the nominal model is not con
sistent with the data and the prior knowledge. The nominal model is only
consistent with the data and prior knowledge if ói = 0 for all i E n 8 and Ll =. 0
turns out to be an element of the uncertainty description (4.4), which is clearly
not the case in the aforementioned situation. This need not be alarming, as the
nominal model is supposed to "resemble" the process in all operating points.
This accounting for all operating points may cause so much bias in the nominal
model in an operating point that it is not consistent with the data and prior
knowledge in that particular operating point. This does not imply that the
nominal model is a bad approximation of all operating points. 0

The maxima and minima in (4.42) and (4.43) exist, provided C(/ is not
empty: Frorn the definition of C1/} is clear that it is a closed set. It is also
bounded, provided the data sets in '.D(w) contain sufficient samples, because the
model parameters in CYJ can not grow without bounds without violating sooner
or later the extended noise bound (4.30). This follows from the independence of
the basis functions. If the basis functions were not independent, a combination
of basis functions could be cornpensated by another combination. Orthonormal
basis functions are independent provided the time interval that is considered
is long enough. Having established that Cë is closed and hounded, taking into
account that the function to be minimised is continuous and assuming that t::;
is not ernpty, the maxima and minima exist. ,

If the prior knowledge is estimated according to section 4.8.3 and 4.10.3 and
the considered time-interval is long enough in the sense explained previously,
the set CYJ is not empty, because the auxiliary model for an operating point

116 An algorithm for structured and unstructured error bounds

satisfies all constraints for that operating point. C't/ therefore has at least one
element. If prior knowledge was gathered in another way, there may be some
inconsistency in the prior knowledge and experimental data. This can make C'IJ
empty. The mi!!-ima and maxima in (4.42) and (4.43) will not exist. This can
be detected easily, as the solver for the linear programs will report an infeasible
problem.

4.12 Step 10: bounding the local unstructured
error

After bounding the structured errors locally, now the remaining unstructured
errors will be bounded locally. Results will be developed for bounds in fre
quency domain and time domain. The frequency domain bounds are more
involved than the time domain results, so the former will be used to explain
the procedure in detail. The time domain procedure will then be adapted from
the frequency domain procedure.

The procedure is presented first in frequency domain without considering
the structured error components. These results, and the results in time domain
without structured errors, come from (Hakvoort, 1994, section 4.4 and 4.5).
Then will be explained how the structured error components can be removed
from ~. Finally, the time domain procedure is presented.

4.12.1 Structure-less frequency domain procedure

,,,;,.·:,

d"''''"t:•
Bound errors locally " " ... " p. 113

nm:r.u,n.·.:t•·,l ~:nr.;-,.. ,., ,;:::,"
Ihmnd ~trnci-ur~d ,·n\E:;;; .. , , . • ..
Bound unstructured error in frequency domain !>· 116

ei0• ,l = 1" .. ,m: set óf dlrecl:lons in complex plane J>· 117
!l = {w;}: discrete set of frequencies p. 117

> fei(w,) = ~·ec: Re((Gp;g•(eiw,) Ö.l.(&w<))e-10•)

uncertainty in diTection &"' för frequency w, due to
param. nncertainty not covered by struct. error p. 128

> fi.(w;): error due to tail of basis J>. 118
> P:,.(w;): uncertainty region in complex plane determlne<I

by iit(w;) and fi.(w;) I" 128
Bound the interpolation p. 130

B-o\t.nd m1~;1.rth't.î!rt'd (·rr(,t' : ';,,
- . \'· i·P)

The aim of this section is mainly to translate the linearly constrained set of
model parameters C"/j to uncertainty regions in the complex plane. The uncer
tainty regions will contain the unknown true frequency response of ~ on a grid

4.12. the local unstructured error

a) 1'...,, bounded in the direction ei4>t b) 1'w; bounded by an explicitly
known polytope 'Pm(w;)

Figure 4.11: Bounding Pw;

117

of frequencies. For every frequency in this grid there is a separate uncertainty
region. These regions can be translated toa (weighted) 1l00-hound on 6. by
bounding the interpolation error between consecutive frequencies on the grid.

The procedure discussed here works only for SISO transfers. Therefore it
has to be repeated for every sub-transfer of a MIMO transfer. Every element in
6. is consequently bounded separately. For notational convenience, superscript
w for the operating point and a for the sub-transfer will be dropped in this
section.

Frequency response uncertainty regions on a. frequency grid

Let n := {w1, ... ,Wnn} where nn E Z+ and W; €IR, i E no. Consider the
polytope in complex plane

Pwi := {Ge(ejw;) -G(eiwi) l 9 E .Ce}

This polytope is completely determined by the model parametrisation, G, .C9

and w;, hut unfortunately finding all vertices of Pw, would require traversing
all vertices of Ce. This involves a computational load that gets out of hand
very quickly.

However, Pw, can be bounded in the direction eJ<l>t by calculating

(4.44)

Once again, this is a linear programming problem. Figure 4.lla depicts this
situation. The dashed line indicates the direction eiifJt. Because obviously for
x E .Ce

118

the polytope P w; contains no points in the half plane indicated by the shaded
area. This procedure can be repeated for a number of directions </>t, l E m.
The intersection of all half planes that do contain elements of P w; is agaîn a
polytope, hut this polytope has only a number of vertices less than or equal
to the number of directions <Pt that have been investigated. Such polytope will
be denoted Pm(wi)· Figure 4.llb shows a situation in which m 8, leading
to an outer bounding polytope with 8 vertices. In practice, if a number m of
directions is investigated (m 2'.'. 3), </>t is taken equal to

,1. _ ej2(L-1)7r /m
'f'l - ' lEm

The polytope P w, does not necessarily contain the true response of ~: . the
tail of the basis has not been taken înto account. Choosing a truncation value
k ;:::: k, the contribution of the tail in a direction </>e can be bounded as follows:

00

L Otr,k Re (Bk(ejwi)e-Nt) <
k=k+l

k 00

< L 9tr,k Re (Bk(ejw•)e-Jtf>t) + L Btr,k Re (Bk(ejw;)e-Jtf>t) <

m~ jBk(eJw 1)j can be calculated easily because of property 4.1.
k>k

The true response of~ can now be bounded toa polytope Pm(w;), charac
terised as follows:

(4.46)

Remark 4.11 A possibly tighter upper bound can be obtained instead of
(4.45) by using

00

L lhr,kRe(Bk(ejw,)e-itf>t) <
k=k+l

k 00

< L Btr,kRe(Bk(eiw•)e-jtf>t) + L Btr,kRe(Bk(eJw;)e-Nt) <
k=k+l k=k+l

4.12. Step 10: bounding the local unstructured error 119

For consistency with later uses of µ(wi), this is not used here. D

Remark 4.12 We deviate slightly from (Hakvoort, 1994) in (4.45) by taking
maxk>k IBk(eiw•)I instead ofmaxk>k llBk(()llH,,.,· This is less conservative and
easier to calculate. 0

Example (Continued Erom page 109): In table 4.2 the transfer function of the
nomina] model G and some of the basis functions used in the example are listed
for w' 0.01166.

Table 4.2: Some transfer function values for w1 = 0.01166

f J (eiw')

Bo 1.0000
B1 5.9302 l.3847j

B9 -4. 7933 + 3. 7562j

à 27.1152 - 11.4840j

Suppose now m = 8, i.e. the outer bounding polytopes have at most eight
vertices. For the set {e-i<Pt}L1 is taken {l,7f, -~i,-1, -V1'i,j,*2}·
The linear programming problems that need to be solved to determine Pm(w1

)

are

ma:x:imise

and

1.0000 ·Bo+ 5.9302 · B1 + · · · - 4.7933 · 09 - 27.1152,

0.7071·Bo+3.2142 · B1 + · · · -- 0.7333 · 89 - 11.0529,

- 1.3847. 01 + ... + 3.7562. 09 + 11.4840,

-0. 7071 ·Bo - 5.1724 ·Bi + · · · + 6.0454 · B9 + 27.2937,

-1.0000 ·Bo - 5.9302 · fh + · · · + 4.7933 · ()9 + 27.1152,

-0.7071 · Oo - 3.2142 · ()1 + · · · + 0.7333 · B9 + 11.0529,

1.384 7 . fh + ... - 3. 7562 . B9 - 11.4840

0. 7071 · 00 + 5.1724 · 01 + · · · - 6.0454 · 09 - 27.2937,

subject to

[Oo,81" .. ,09(E Ce.

The solutions to these linear programming problems provide the values for
P,i(w1

), f, E m. Calcufation of (4.45) or alternatively (4.47) yields values for

120

µ(w1
). The results of these calculations are shown in ngure 4.12. The arrows

in this flgure indicate the direction eJ<l>t, f E m. The length of an arrow is
equal to the corresponding value of flt(w1

) + P,(w'). The polytope Pm(w') is
determined frorr:i these arrows, as indicated in ngure 4.11 on page 117.

(Continued on the next page.) D

Weighting, frequency domain interpolation error

The frequency response uncertainty regions Pm(w), w E n will now be trans
lated to an 1l00-norm bound on the weighted unstructured error. In other
words, a value dt;. is sought, such that

(4.48)

where W (() E 11.00 is a known, stable weighting function.
The bound (4.48) introduces minimal conservatism if W(() is chosen such

that IW(eiw)D.(eiw)I is an approximately constant function of w, equal to df!>..
The maximal value of jó.(eJw)I is already known for w En from the results of
the previous section. One can try and fit IW(eJw)l-1 to these values for w En,
while still obeying that W(() E 1l00 • This problem will not be discussed
further.

Let {vk(wi)}r=1 denote the set of vertices of the polytope Pm(wi). For
simplicity we assume that this polytope has m vertices. In case this polytope
has less than m vertices, only trivial modifications need to be made. Because

0.2

0

-0.2

-0.4

-1 -0.5 0 0.5

Figure 4.12: Determining Pm(w') Erom fle(w1
) + P,(w')

4.12. Step 10: bounding the local unstructured error 121

.6.(wi) E Pm(wi) it holds

\:/w En IW(eiw).6.(eiw)I ::::; max IW(eiw)vk(w)I =: Óu(w)
kEnt

(4.49)

This bounds the value of W(eJW).6.(eiw) on the frequency grid n.
At this point it is interesting to consider the situation that for some Wi E n

it holds 0 </. Pm(wi)· This means that the nominal model is not consistent with
the data and the prior knowledge. This does not mean that the nominal model
is useless. It does mean that the frequency domain uncertainty bound will be
very conservative for this frequency, as only the largest distance to the origin of
the polytope Pm(wi) is retained. This situation is drawn in figure 4.13, where
for simplicity W has been taken equal to the identity. The darkest shaded

Figure 4.13: Conservatism in the frequency domain bound

area is the polytope P w,. This corresponds to the set of linear constraints C,9
augmented with a bound for the effect of the tail of the basis. This possibly
complicated polytope is outer bounded by a polytope Pm(wi) where, in the
situation of figure 4.13, m = 8, which is represented by the lighter shaded area.
The information in this polytope is finally summarised to its largest distance
to the origin, indicated by the light shaded disk.

Example (Continued Erom the Eacing page): The vertices {vk(w')} are indi
cated in figure 4.12 by a 'o'. The vertex having the largest distance to the
origin, i.e. the one determining Óu(w'), is indicated by an additional '+'. Note

122 An algorithm for structured and unstructured error bounds

that the vertex determining Óu(w') is independent of the value of W(ejw').
(Continued on page 129.) D

The bound (4.49) is extended toa bound for all frequencies by interpolat
ing between the frequencies in 0. Basically a bound fJ on the derivative of
W(ejw)~(eiw) is derived, such that

This is achieved by theorem 4.4.8 of (Hakvoort, 1994). The theorem is restated
here to facilitate the exposition of the adaptations that need to be made later
to account for the structured error components. The basis of this theorem is
the observation, that

dW(eJw)~(ejw)
--------=

dJJJ
dW(ejw) G (eiw) W(jw) dGtr(eiw) _ dW(ejw)G(eJW)

dJJJ t" + e dJJJ dJJJ , (4.50)

from which follows through elementary manipulations that

Vw E lR 1 dW(eJw)~(éw)1 < dW(z)G(z) +
dw - dz

1-loo

+Il d~~z) t= llGtr(z)llH00 + !IW(z)!IH00 Il dG:iz(z) 111-l= (4.51)

Supposing for a moment that values fJ1 and fJ2 are available such that

and

(4.51) leads to

Vw E lR 1dW(eJ2~(eJw)1 :::;

s 11 I"~ + lld~;z) Lp,+ llW(z)ll11~fi, ~· fi (4.52)

In the remainder of this section computable expressions for /31 and /32 will be
derived.

Figure 4.14 depicts a situation in which 5 frequencies have been taken in 0.
The dots indicate the corresponding values of Óv.(w). The dash-dotted line is

4.12. Step 10: bounding the local unstructured error

;·".
: ... ,

\l
<{ l
(' ~
~ :

~:

0

/1

~ À,12

w, w, w.,
frequency

Figure 4.14: Worst case interpolating functions

123

taken as a "worst case interpolating line." The phrase "interpolating" may be
a bit misplaced considering the discontinuities in this interpolation. The slopes
of the dash-dotted Iines correspond to the bound /3. The solid line which is
drawn slightly offset could be used as an alternative interpolating function. As
can be seen from figure 4.14, this may give a smaller interpolation error, at the
expense of a somewhat more involved calculation.

>.j, j E no are the distances between subsequent frequencies in 0:

>..1 := max{2w1,w2 - wi}

>.j := max{wi -w1-1,WJ+1 -w1}, j = 2, ... ,nn -1

).no := max{Wn0 - Wn0 -1, 2(7r - Wn0)}

Using the dash-dotted lines as interpolation we find

\;/w E IR IW(ejw)~(ejw)I ~ ~ax o"(wi) + ~Ài/3,
iEno

from which follows straightforwardly

(4.53)

Remains the problem of finding /31 and /32. A value for /31 can be found as

124 An algorithm for structured and unstructured error bounds

follows. Choose a truncation value k:

Vw E IR
1
dGtr(eiw)1 < ~ () Il dBk(z) Il <

dw - L....t tr,k dz -
· k=O 1ioo

The last term can be bounded using conjecture 4.2 and the fact for any transfer
G(z) it holds llG(z)ll1l00 :::; llG(z)lle1:

00 00 00

= L Ök L rlbk(r)I:::; L Ök (c1 + c2kv'k)
k=k+l r=O k=k+l

Here c1 and c2 have been chosen such that

00

L rlbk(r)I :::; c_1 + c2kVk
r=O

The values of c1 and c2 can be estimated similarly to the values for c1 and c2
in section 4.10.3. Simple combination of results gives

A value for (32 can be obtained by using a procedure similar to the one used
to bound llW(z)~(z)llHoo: Let v~(wi), Wi En be the vertices of the polytope

Pm(wi) + G(ejw,)

and let ó~(wi) be defined similarly to Óu(wi) as

then

4.12. Step 10: bounding the local unstructured error

4.12.2 Removing structured error components in
frequency domain

Bound errors locally " .. " " " ... " " " p. 113
Split parameter uncertainty in structured and
unstructured parts p. 125

t
< ê,ê: nomina] model, vector ofits first k expansion

coefficients in basis bk
> (8A.i l 81 -ê) 8A,i: ith structured component for arbitrary 81

> P: projection onto span of 8 A,î p. 128
> Pl.: projection onto ort.hoplement of span of 8 A,i p. 128
> pl.(81

- ê): unstructured error component in 81

> G.L = G - G piJ: uominal model with structured error
directions removed p. 126

Üdtt ,_[:;.u,~t-r:1:.1,~tre,:l ,:i1-rt~r ·ir: frurn.n1<. y dom :it; .

Lonnd un::=-.r!i,·~.=!t~·!J, i:n·~;r j.::.::. jr::(' dnmttin .

125

The procedure in section 4.12.1 did not take the structured error components
into account. Obviously this should be clone, as otherwise the structured error
components make the process uncertainty needlessly bigger.

As all results in section 4.12 are local results, the results in this (sub)section
apply in an operating point.

Frequency response uncertainty regions on a frequency grid

The adaptation of ÎJ,i (w;) as defined in (4.44) on page 117 is considered first.
Recall that fü(w;) bounded the uncertainty in Gtr(eiw;) resulting from the
uncertainty in the model parameters of Gtr, in a direction ei<Pt. The uncertainty
due to the tail of Gtr was bounded by p,(wi).

Let Ótr,i be defined as

Vi Ens Ótr,i := (oA,i 1 Otr -9) (4.54)

where 0 contains the parameters of ê as discussed in remark 4.9 and Otr con
tains the true process parameters, i.e. the expansion coefficients of the linear
manifestation of the process in the operating point that is considered (the su
perscripts w are still dropped.) Suppose that the structured error components
were known exactly. More precisely, that for each i E n 8 the true value of Ói,

given by Ótr,i defined above, are known. The values of Ótr,i are collected in a
vector

Ötr := [c5tr,1, · · ·, Ótr,n,]T.

126 An algorithm for structured and unstructured error bounds

For further notational convenience the values Ji, i E ns are introduced

as well as the nominal model without any components in the directions () A,i,

n.

êj_(() := ê(() - L JiAi(().
i=l

By construction of 1:,9, the model parameters of the true system are known
to lie within the polytope defined by L9. If the values of Ót,,. are known as well,
the model parameters of the true system are within the subset of 1:,9 given by

(4.55)

In figure 4.15 an example is drawn for three-dimensional parameter vectors
0. The set 1:,9 is indicated by a polytope. The light shaded area inside the
polytope corresponds to the set above.

Oa = J10A,l
()b = Ótr,l () A,l

()c = () - (Ótr,l + J1)0A,l

Figure 4,15: Removing structured error components Erom~

All vectors () E J:,9(Ót,,.) have a component (ótr,i + J)OA,i in the direction
of OA,i· These components need not be accounted for by ~((), because the
part Jo A,i is in the nominal model and the part Ótr,i() A,i is taken into account
by the structured error component. For any () E 1:,9 (Ótr), only the part () -
:L~~ 1 (ótr,i+Ji)B A,i needs to appear in~((). Therefore only vectors () E C~(ót,,.)

4.12. Step 10: bounding the local unstructured error 127'

are of interest for the determination of A:

n.

l:<otr,i + 3i)OA,i 1

i=l

C~ (t5t") has the same shape as ,C9 (t5i..), it is only translated in a direction that
is a linear combination of the 0 A,i, i E ns such, that the translated set contains
the origin.

Consequently the transfers G9 a (eiw) for 0 t::. E .Ce (t5t") account for the
uncertainty that remains in the model parameters after the structured compo
nents have already been taken care of. However, the uncerta.inty corresponds
to the model error only to the extent that it differs from the nomina! model.
The error in a transfer Gea (eiw) is equal to

n,

Gea (eiw) - G(eiw) - L Otr,iAi(eiw) =

n,

G8a (eiw) - Gl.(eiw) - L(Otr,i + Ji)Ai(eiw)
i=l

Assuming that the true system is one of the models in Ce (t5t") the absolute
value of A (eiw') for some frequency w1 E IR, satisfies

I
A(ejw')I :S max GBa(eiw)-G(eiw)

eaE.Cs(6,~)

n,

L Otr,iAi(ejw)
i=l

= max ·1G8, (eiw) Gl.(eiw)I
8~E.C~(.St") a

The maximisation involved here is not a linear programming problem. In the
same way as presented in section 4.12.1 this can be approximated by a series
of linear programming problems

(4.57)

In practice one can not assume that the true system is in the model set.
The same situation occurred in section 4.12.1. The tail of the basis has an
effect that can be bounded by p.(w):

00

L Btr,k Re (Bk(eiw•)e-i<Pe) :S · · · :S [.t(wi)
k=k+l

(4.45)

128 An algorithm for structured and unstructured error bounds

This expression can remain unchanged in the presence of structured error com
ponents: the tail of the structured error components is always zero, so that the
uncertainty in the tail of the true system is not affected at all by the structured
errors.

The only problem that now remains, is that the true values for Ói, i E ns
are not known. Let P} denote the orthogonal projection operator onto the
complement of (9A,i)f~1 • As the 8A,i are an orthonormal set of vectors, P}
satisfies

n,

P.t = I - :L: o A,io~,i (4.58)
i=l

The projection operator onto the span of OA,i, i E n 8 is

n,

PA L:oA,ioi,i (4.59)
i=l

The projection of Ce onto the complement of (8A,i)~ 1 shall be denoted C8:

(4.60)

For any value of Ót" it holds

This implies

(4.61)

Combining the results obtained so far, it can be concluded that the true
value of ~(eiw;) must lie in the polytope

(4.62)

This polytope corresponds to Pm(wi) for the case without structured error
components.

Remark 4.13 In practice, translating the set of linear constraints Ce to an
other set of linear constraints C8 is cumbersome. Fortunately, this is not
needed. Because (4.61) is a linear programming problem, there exists a vector
f of proper dimension, such that

4.12. Step 10: bounding the local unstructured error 129

(Actually the causal relationship is the other way round.) (4.61) can therefore
be rewritten as

where it was used that (P}) * = P}. The change from Ce to C8 can apparently
be accomplished by changing the object function in a straightforward way. D

Remark 4.14 Another issue with respect to the optimisations is the fact that
we may actually be dealing with a MIMO process. As the results in this section
were derived fora subtransfer of such a MIMO process, the parameter vector
(} used in this section was actually a subvector of the parameter vector (} of the
MIMO model.

For the generalisation to the MIMO case, consider the situation that we
want to bound the uncertainty in subtransfer (q1

, p'), (q', p') E S. The value of
fi'e(wi) for example would then be found for this subtransfer as

where (}is the full length MIMO parameter vector. Only the parameter values
og' ,p' to Bi~~~:, determine the value of the object function in this case. In the
notation of the previous remark this means, that all elements off not assodated
with one of these values are zero.

This does not imply that for example the constraints

IBfr,k 1 ::=; Ök Cl :/= (q' 1P
1

)

may be dropped from the calculation of P,'t_, even though these constraints seem

to bear no relation with og' ,p' , ••• , Bi/:, . In the case of no structured error
components this observation would hold true. In the case of structured error
components, this is not true any more. This can easily be seen from the previous
remark: the fact that only a subvector of f contains non-zero elements does
not imply that only the same subvector of P} f contains non-zero elements.
Thus the constraints on the parameters of other sub-transfers are relevant to
the optimisations for the current sub-transfer as well! D

Exarnple (Continued from page 122): In figure 4.16 the effect of removing
the first structured error component from Pm(w') is shown. Similarly to fig
ure 4.12 on page 120, the arrows in this figure point in the directions eJ<l>e, e E
m. The length of the arrows is equal to µ1(w1

) + µ(w1
). The polytope P:n(w1

)

is determined Erom these values. The vertices of this polytope are indicated by
o's. The vertex ha.ving the largest distance to the origin is marked in addition
with a '+'.

130

0.6 / ' ' 0.4

0.2

0

-0.2

-0.4

-0.6

-1 -0.5 0 0.5

Figure 4.16: Determining P:n (w') from p/ (w') + µ(w1
)

The polytope Pm(w') is drawn in the sa.me picture using dash-dotted lines
for compa.rison. Its vertices are marked with 'x' signs. From this picture can
be seen that the polytope P:n(w1

) is shifted with respect to Pm(w'). Moreover,
the shape ofP:n(w') is somewhat different (smaller) than that ofPm(w'). Both
effects contribute to reducing the largest distance of a vertex to the origin.
Appa.rently the choice of the structured error component was a successful one.

D

Weighting, frequency domain interpolation error

The procedure of section 4.12.1 to interpolate between consecutive w E n is
basically followed in the case of structured error components as well. The
derivate bound for W(z)ó.(z) needs to be extended, though. Instead of (4.50),
the starting point of the derivation is now

(4.52) gets an extra term {33:

4.12. Step 10: bounding the local unstructured error 131

<
dW(z)G(z)

dz

(33 is a bound for

t Ói Il dW(dzAi(z) Il
i=l 1-loo

which is obtained easily:

Taking in (4.49) for vk(w) now the vertices of the polytope P:r,(w) instead of
the vertices of Pm(w), the rest of the procedure in section 4.12.1 can remain
unchanged.

Influence of bad choice of structured errors

Consider the highly simplified situation of figure 4.17. The left part of this fig

Bi,1

Go (e3w;)
A,1

Figure 4.17: Example with bad structured component

ure represents parameter space. The parameter space has only two dimensions
in this example. Thereis one structured error component, OA,l· Consequently,
the orthoplement of the span of 9 A,l is spanned by a single vector, 9*,1 . The
right part shows, in a more or less worst case situation, the frequency response
of 9 A,1 and 0*.1 . The end points of the two vectors, drawn there, are the points
in the complex plane corresponding to GeA 1 (wi) and G9 J. (wf). Removing the

' A 1

structured error 9 A,l from Ce' resulting in c9' will incre~se the frequency re-
sponse uncertainty region: the polytope Ce is roughly aligned with the line
eA,l = B*.1 · Because Got.,1 (wi) ~ -GoA,1 (wi) this means, that fora 9 E Ce

132 An algorithm for structured and unstructured error bounds

the contribution of G6:i.i is to a large extent compensated by that of GeA.i ·
Separating the structured and unstructured part will fail to further recognise
this behaviour. Bath Ge:i.i (ejwi) and GeA,.(eiw•) will become large and it will
be bidden that the true value of their sum is actually rather small.

It should be noted, that the structured error direction 8 A,l bas been chosen
intentionally very unfortunately in this example.

This figure demonstrates an element of conservatism that is present in the
derivation of the bounds d.i and Ji on the one hand and dtJ.. on the other. The
link that may be present between the values of Oi and the worst-case value dt.
is lost.

Remark 4.15 Figure 4.17 can also be interpreted in another way: consider
8 A,l and 8~,1 as two structured error components. Here the second structured
error component becomes needlessly large, because there is a strong correlation
with the first that is not used any more. In this picture this is mainly due to
bad alignment of 8A,l to the dominating direction in .Ce. This situation will
be discussed further in section 5.7.

Obviously, any link that is present between the possible values of Si gets lost
in the uncertainty description (4.4). As soon as this effect becomes important
because of a misalignment of the 8 A,i to Ce, adding extra structured error
components increases conservatism. It is therefore of major importance to
choose the structured components properly. 0

To avoid the inflation of the unstructured error due to the structured error
components, we may define the polytope P::,(wi) containing 6.(w) as follows:

P- 11 (·) _ {Pm(wi) in case 1 mw, - -
P:n(wi) in case 2

(4.63)

Either case 1 or case 2 applies, whichever makes maxzeP;:,.(wi) lzl smallest.
It is assumed that the decision whether case 1 or case 2 applies is made

repeatedly for every w E nn. Otherwise one could rather decide whether or not
to use structured error components at all: deciding for case 1 for all frequencies
and still using structured error components is pointless. Making this decision
for every frequency separately may seem harmless at first sight. It does have
a subtle but important consequence: the value of Si in (4.4) on page 78 has
become a function of w now! This function assurnes one of two values for w E 0.
It is either zero or an unknown hut constant value in [d.i, Ji]·

This is unimportant if 6. and Oï, i E n 8 are used in µ-design. The situation
at hand is depicted in figure 4.18. The structured uncertainty block of µ-design
is denoted D to avoid confusion with the unstructured error 6.. The uncertainty
block D consists of scalar factors ó1 , ... , On, and a block 6.1

• 6.' is also a black

4.12. Step 10: bounding the local unstructured error 133

w z

G

Figure 4.18: Uncertainty description in µ-design

of scalars:

tJi.n(w) 0

tJi.'=

0

w represents external inputs, z controlled outputs. G is the controller to be de
signed. Ö' is a generalised plant containing the nominal model G and weighting
filters representing the design requirements. As far as "standard" µ-synthesis is
concerned, (Packard and Doyle, 1993) the Ói are 1l00-norm bounded functions
of w, where they are commonly scaled such that their norm-bound is equal to 1.
The uncertainty description (4.4) is described better by the so-called complex
real µ-synthesis, where it is taken into account that Ói is a real function of w.
The /:Ji,.ij are complex functions of w. Complex-realµ does not use the fact that
Ói is not a function of w at all, so if this property is lost, it is no a real loss.

The change of Ói from real constant to real function is important if the
frequency domain procedure is transferred to time domain. It also complicates
bounding the interpolation error. It can be accomplished by switching be
tween the "worst case interpolating functions" that are constructed during the
bounding of the interpolation error with and without structured errors. This

134 An for structured and unstructured error bounds

switching would select the smallest of the two worst case functions. This is not
further developed here.

4.12.3 Time domain procedure

,,'. 'il j·. 1

Bound unstructured error in t.ime domain l" 134

E
W((): stable weighting filter or z/(z -1) I'· 134
tm""": time afte:r which constant bounds a.re used Jl. 134
s(t): upper bo11nd for W(()Ll.(t) J>. 137

> !(1): lower bound for W(()Ll.(t) p. 139

'I.i

As with the frequency domain bounds, the procedure for time domain bounds
is a procedure for SISO transfers. This means, that every element of ~ is
bounded separately. Hence, every transfer in this section should be considered
superscripted by a u E S. Superscripts w for the current operating point are
also omitted.

Signals §.(t) and s(t) will be derived, such that

Vt E IN ~(t) :::; W(()~(t) :::; s(t)

(The convention to denote impulse responses by lower case letters is not fol
lowed for the unstructured error ~ to avoid confusion with the gains Oi of the
structured errors.) W(() is either a stable weighting filter or z/(z - 1). In the
lat ter case, the step response parameters of ~ are bounded. If W (() = 1 the
impulse response parameters of ~ are bounded. The signals s are calculated
for every t up to some tmax· Fort > tmax a constant value is given.

Consider first the situation for t :::; tmax· This can be compared to the
derivation of frequency response uncertainty regions for w E n. The problem
that these uncertainty regions have many vertices does not occur in· time do
main: the uncertainty regions are real intervals. The uncertainty region has
again two components, one due to the uncertain model parameters, correspond
ing to P,k (w) and one due to the tail of the basis, similar to µ(w). Because the
uncertainty region is a real interval we only need to consider the directions
<P1 = 0 and </i2 = 7f. This will now be worked out in somewhat more detail.

Let Pk(z) = W(z)Bk(z) with corresponding impulse response Pk(t). By
convention, 9tr(t), fj(t), go(t) and ai(t), i E na are the impulse responses of
the transfer functions Gtr(z), G(z), Ge(z) and Ai(z), i E na, respectively. It

4.12. 10: ootmamg the local unstructured error 135

holds

Following a line of reasoning completely similar to the one leading to (4.61) in
section 4.12.2, from this fellows

00

W(()~(t) :::; ift<:J W(() (g9(t) - gl-(t)) + ~ jjk IPk(t)I (4.64)
9 k=k+l

One can see that the maximisation is a linear programming problem by realising
that

In case W(() is a stable filter, the second term on the right-hand side in
(4.64) can be bounded by using the fact that for any stable G((), it holds

Vr E IN lg(r)I :::; llG(()ll1i=

which can be verified easily by considering the response to the input ó(t - r)
and using that the 1l00-norm is the i2-induced norm. Choosing a truncation
value k ;?: k, we thus have

00 k 00

2:: ihlPk(t)I = 2:: ÖklPk(t)I + 2:: ëkiPk(t)I:::;
k=k+l k=k+l

k 00

:::; 2:: ëkiPk(t)I + 2:: ÖkllPk(()lb-l=

Using the sub-multiplicative property of the 1l00-norm:

136 An for structured and unstructured error bounds

which is computable in finite time because of property 4.1. Combination of
results gives

00

For the case W(z) z/(z-1) the derivation above can not be used because
the 1l00-norm of W(z) does not exist; W(() tl. 1l00 • This does not infiuence
the first term in (4.64), hut the second term has to be bounded in a different
way. The Pk(t) are in this case the step response parameters of Bk((). Two
bounds can be formulated for the step response h(t) of a genera! transfer G(z):

Vt E IN lh(t)I $ (t + 1) · maxIN lg(r)I $ (t + 1) · llG(()ll7i00 (4.66)
TE

lh(t)i $ llG(()1ie1 (4.67)

Using (4.66) the second term on the right-hand side of (4.64) is bounded by
s1(t) as follows:

00 ;;, 00

Vt $ tma:x I: BklPk(t)I = I: BkiPk(t)I + I: êkiPk(t)I ::;
k=k+l k=k+l k=k+l

k 00

< I: êkiPk(t)I + (t + 1) I: OklJBk(()JIHoo $
k=k+l k=k+l

k
$ L UkiPk(t)I + (t + 1) m~ llBk(()ll11:00 L uk=: s1(t) (4.68)

k=k+l k>k k=k+l

(4.67) leads to this bound:

00 k 00

Vt $ tmax L ökiPk(t)I I: êkiPk(t)I + I: lhiPk(t)I ::;
k=k+l k=k+l k=k+I

k 00

:::; I: êkiPk(t)I + I: UkilBk(()llt1 $
k=k+1 k=k+l

k 00

$ L êkiPk(t)I + L Uk (c1 + c2v'k) =: 82(t) (4.69)
k=k+l k=k+l

4.12. Step 10: bounding the local unstructured error 137

c1 and c2 have been chosen such (conjecture 4.2), that

(4.70)

Combination of results gives in this case

Vt .$ tmax W(Ç)~(t) ~ ~~ W(Ç) (ge(t) - gJ_(t)) +

+ min{81(t),82(t)} =: s(t)

For t > tmax a bound is needed not involving t. It holds

oo n,

W(Ç)~(t) = L)tr,kPk(t) W(Ç)g(t) - L ÓiW(Ç)ai(t), (4.71)
k=O i=l

As

~Btr,kPk(t)I ~ ~8tr,kllW(Ç)Bk(()il1loo
00

~ llW(Ç)lh-too ~~11Bk(()ll1l= Lök
k=O

IW(()g(t)J ~ IJW(()G(()IJ'h'.00 ~ l1W(()JIH00 l\G(()ll'h'.00

na ns

LóiW(()ai(t) ~ I:max{Ji, -di}llW(Ç)Ai(Ç)JJ'h'.oo
i=l i=l

n,

~ llW(()ll1loo I:max{Ji, -di}JIAi(()ll1l=•
i=l

a conservative bound for (4. 71) is

00

JW(()~(t)J ~ llW(Ç)ll1loo (~~ llBk(()llHoo Luk+ llG(()Jl'h'.= +
k=O

n,

I:max{di,-dï}l1Aï(()il1l00) s(t), t>tma.x
i=l

This bound does not apply in the case W(z) = z/{z 1) as llW(()ll1l= is not
finite then. Observe that for general g(t) E h2, t > tmax

(4.72)

138 An algorithm for structured and unstructured error bounds

Assume for a moment that g(r) ;::: 0, so that

~g(r) + r=E+l lg(r)I = (~g(r) - lg(r)1) + ~ lg(r)I

= (~g(r) - lg(r)I) + llg(t)llt1

For L:;~Ö g(r) < 0 it holds

~ g(T) + ,~E+, lu(r)I = (~ -g(r) lu(r)1) + ~ lu(r)I

= (~ -g(r) - lg(r)I) + llg(t)llt1

Now define l3 : h2 x IN -t JELU {O}

!
I:g(r) - lg(r)I

B(g(t), tmax)+ 't;::'~

'L-g(r) - lg(r)I if
r=O

Substituting the results above in (4.72) gives

g(r) < 0

Vt > tmax tg(r)I ~ B(g(t),tmax) + llo(t)llt1 (4.73)

We now proceed with

00 00

00 k
~ L jjk (c1 +c2Yk) + L B(bk(t),tmax), t > tmax

k=k+l k=k+l

where k ~kis some truncation value and c 1 and c2 are as in (4.70) . .Further
it holds for t > tmax

IW(()g(t)I ~ llg(t)llt1 + B(g(t), tmax)

4.12. 139

ns n"

LóïW(()ai(t) ~ l::max{di,di}(llai(t)lle1 +B(ai(t),tmax))
i=l i=l

Combination of results gives the following bound for (4. 71):

00 k
IW(().6.(t)I ~ LÖk (c1 + c2v'k) + LB(bk(t),tmax)

k=O k=O

+ llG(()lle1 + B(g(t),tmax)
n,

+ L max{di, -dï}(llAi(()!le1 + B(ai(t), tmax)) =: s(t), t > tmax,
i=l

with c1 and c2 as in (4.70) and k 2:: 0 a truncation value.
The derivation of the lower bound 11(t) is completely analogous. The results

for stable W(z) are given first:

k

Vt ~ tmax W(().6.(t) 2:: ~~1: W(() (ge(t) - g.L(t)) - ~ Ök IPk(t)I
9

k=k+I
00

- llW(()llnoo · m~ l!Bk(()lln00 L Ök =: §.(t) (4.74)
k>k

k=k+I

and

W > tmax !1(t) := -s(t). (4.75)

For W(z) = z/(z - 1) the results are

and, again,

W(().6.(t) 2:: min W(() (ge(t) - g.L(t))
9E.C~

min{s1(t),s2(t)} =: !1(t) (4.76)

W > tmax !1(t) := -s(t).

140 An algorithm for structured and unstructured error bounds

4.13 Step 11: combining the local results

. i<"<t\'1"Ily . n

L Combine local results "." ··· I'· 140
J, lllax~ew J;: upper bound fot ith struetured component

minwew 4t: lower bound för ith strnctnred component
11nio11 of all unstrnctnred bonnds

Combining the local results from section 4.11 and 4.12 is relatively simple to
do. The upper and lower bound on the gains Ói are

'Vi En.., ai:= maxd1P
wEW i

di :=min 4
wEW

(4.77)

(4.78)

If 0 (/. [4i, di] for some i E n..,, the nominal model is falsified by the data (and
prior knowledge): in every operating point a non-zero value for the correspond
ing Ói is required to reconcile the model with the data.

A similar situation was discussed in remark 4.10 on page 115. However,
remark 4.10 applied locally to an operating point. It is not surprising that the
nomina! model is not consistent with the data and prior knowledge in an operat
ing point, as it may very well be possible that no linear time-invariant process
exists that is consistent with the data and prior knowledge in all operating
points. If 0 (/. [4i, di] holds globally, where the interval [d.i, cli] should contain
all values of Ói that are encountered across all operating points, it means that
Ói has the same sign in all operating points, so that, say G +Ai· (4i + cli)/2
may be a better model for all operating points. This is likely to increase the
order of G, which may be a reason for the user not to use this proposed model.
One should however be aware, that µ-synthesis can not use the bounds

as such; it can only handle

which turns out to be particularly conservative in the case discussed here.
In frequency domain one may take two different approaches for the global

bound on ~. The simplest one is to combine the bounds d'g,

4.13. Step 11: combining the local results 141

to the global bound

(4.79)

An alternative would be to derive polytopes that are valid for each operating
point and bound the interpolation error similarly to section 4.12.2. This could
proceed as follows: Let iiY:(w) be defined as

Vw E W, k E m,w E 0 ji'/:(w) := (jt~)w(w) + pk(w)

and the global iik(w) as

Vk E m,w E 0 jj,k(w) := maxjj,):1(w).
wEW

The polytope

will contain A(ejw) in all operating points. One may proceed to bound the
interpolation error between the frequencies in n by using the derivative bound

VwEW

(4.53) will then give a global bound on llW(()A(()li?-t
00

• However, this will
result in a bound not less and possibly larger than the one obtained in (4.79):
the "worst case polytopes" over all operating points are interpolated by the
"worst case derivatives." It may very well be, that the operating point yielding
the worst case polytope is not the one giving the worst case derivative. (The
reader going through the calculations involved here will probably recognise
these somewhat vague statements.)

Yet it may be useful to calculate the polytopes P:?i (w). Contrary to the
1l00-norm bound, they also contain phase information.

The global time domain bounds are calculated similarly. Recall that

The globally bounding signals §.(t) and s(t) are defined as

Vt E IN §.(t) := miwn .§.w(t)
wE

s(t) := max ;sw(t),
wEW

so that

Vw E W, t E IN .§.(t) S W(()A(t) S s(t).

(4.80)

(4.81)

(4.82)

142

4.14 Influence of the choice of the basis

Now that all calculations have been presented, it is a good time to consider the
influence of the choice of basis generating system on the results we may expect.

In section 4. 7 it was mentioned that the poles of the basis generating system
should be taken close to the poles of the linear manifestations of the true system.
From appendix B follows that this will lead to small values of f/' in the bounds
on the model parameters

(4.5)

These bounds influence the size of the polytopes C1/j, w E W in various ways.
These polytopes in turn determine the size of the local errors and through these
of the global errors.

The most obvious way in which (4.5) influences the size of the polytopes
C'(j is that the constraints on the model parameters that follow immediately
from (4.5) are some of the constraints that constitute this polytope. Ina well
conditioned situation, these constraints should have a minor influence on the
size of the.error bounds, compared to the influence of the constraints resulting
from data related quantities such as noise bounds. Otherwise the rather suspi
cious situation would occur, that the experimental data hardly contributes to
reduction of the modèluncertainty.

Also, in the extension of the noise bound (4. 7) to the extended noise bound
(4.30) and of the cross-covariance bound (4.9) to the extended cross-covariance
bound (4.37) the bounds ii'k are used to bound the effect of the tail of the basis
and of unknown initia! conditions. As a result of this the final model uncertainty
bounds are never determined by the data alone: changing the bounds (4.5) will
always change the size of the polytopes C'/j.

Finally, the bounds on the unstructured error .ó.(() always consist of a
component due to the uncertainty of the model parameters that is not covered
by the structured error components and of a component due to the uncertainty
in the tail of the basis. The latter uncertainty is also bounded by means of (4.5).

One may not expect to obtain small model error bounds if the basis gen
erating system is badly matched to the true system. The values of p,,., a E S
will be close to one, which will in turn cause a large influence of the tail of the
system on the result.ing error bounds. This will be the case for example if the
standard basis is used to model a system having a largest time constant that
is much larger than the sampling interval. In this case a fast system is used to
generate a basis for a slow system. In the reverse situation that a slow system
is used to generate a basis for a fast system the same problems will occur. (The
interested reader may verify this from theorem B.2 in appendix B.

4.15. Summary 143

4.15 Summmy

In this chapter a coherent algorithm has been presented to separate the model
uncertainty for a process operating in different operating points into a detailed,
structured part and a less-detailed, unstructured part. The presentation has
been such, that a complete algorithm has been described starting after experi
ments and pre-processing and ending with the aforementioned separation and
bounds on both the structured and unstructured part. Several extensiöns, side
steps and discussions that seem interesting have not been discussed to make
the main line of steps stand out more clearly. These digressions are discussed
in the next chapter.

Stripped from all technicalities, the algorithm can be summarised as follows:
for every operating point of a process, identify an auxiliary model. Deduce
from these auxiliary models the dominating components in model uncertainty,
the structured error components. Bound the uncertainty of these components
separately. The unstructured error then consists of two parts: the possible
variation in model parameters that is not covered by the structured components
and a part due to undermodelling. The structured error is expressed as a real
interval in which the gain factor for an explicitly determined transfer function
varies. The unstructured error can be expressed as a weighted 1l00-norm bound
on every subtransfer of the unstructured error or as real intervals in which the,
possibly filtered, impulse response parameters or the step response parameters
lie.

4.15.1 Requirements on the model parametrisation

Many choices have been made in this algorithm. A choice influencing almost
every aspect of the algorithm is the model parametrisation used. A lot of tech
nica! problems can be expected if one wants to use a different parametrisation
than (4.3) in this algorithm:

• It has been argued at several points that the parametrisation itself should
be linear (as opposed to a non-linear parametrisation of linear models.)
This is required for the translation of prior knowledge to constraints in
parameter space and back to constraints in terms of transfer functions,
gains or other control-related entities. It would make sections 4.10, 4.11
and 4.12 considerably more difficult if the parametrisation were not linear.
It will most likely result in optimisation problems that are not linear
programming problems any more hut are even non-convex, non-linear
problems.

• Linear parametrisation is also required for a sensible interpretation of the
principal components in terms of process uncertainty. Although principal
component analysis will give a set of dominating directions for · any set

144 An algorithm lor structured and unstructured error bounds

of parameter vectors corresponding to the different auxiliary models, one
should ask oneself what information these components contain regarding
the process uncertainty in case of a non-linear parametrisation.

• Further it was used several times that different subtransfers are para
metrised independently. This was used mainly during the translation of
the prior knowledge to a set of linear constraints on the model parame
ters. It was used to break the computational problems into sub-problems.
It also made it possible to split the estimation of a MIMO model into the
estimation of several MISO models in section 4.8. It would not be too
difficult to change the algorithm such that this feature of the parametri
sation is not required any more.

• Finally, it was used that

and

k=k
00

L fJ"ljBk((}ll'l-loo l

k=k
00 .

L Öki1Bk(()llt1
k=k

00 00

L Uk 2.: rlb"(r)I
k=k r=O

can be calculated or at least bounded in finite time for the chosen model
parametrisation.

Remarkably enough, the fact that system based orthonormal basis functions
form an orthonormal set was not used, at least not explicitly. (Section 5.6
reveals by looking more closely at one of the arguments of this chapter that it
was used implicitly.)

A lot ·of the machinery used in this chapter was taken from other authors.
Nevertheless the algorithm contains many original aspects. By far the most
important aspect is the algorithm itself.

The idea to use different models in different operating points and deduce
model uncertainty from those models is used by other authors as well. The fact
that these models are analysed to reveal structure in model uncertainty, while
still allowing for other sources of model uncertainty, is, to our knowledge, new.
In many practical applications different models in different operating points

4.15. Summary 145

are used as well. Contrary to the algorithm in this chapter, these different
models are either translated to an unstructured error bound or translated to a
structured model uncertainty in an unsystematic, ad-hoc way.

The combination of structured and unstructured error components has been
used before in for example (Zhou and Kimura, 1994). A new aspect of our
algorithm is, that the structured components need not be specified a priori. An
attempt is made instead to match these components to the observed process
uncertainty.

The application of methods from stochastics / statistics on different model
estimates was used in (De Vries, 1994) in a way that vaguely resembles the
way in which it is used here. The variations in the model parameters however
are treated/interpreted completely differently there. This holds a forterîori for
(Goodwin et al., 1992).

The construction of a linear set of constraints on the model parameters
based on prior knowledge and experimental data is taken from (Hakvoort,
1994). The bounds on the unstructured error are also based on (Hakvoort,
1994), although the procedure to remove the structured error components is
new.

Other original ideas with respect to the algorithm are presented in the next
chapter.

146 An algorithm for structured and unstructured error bounds

Algorithm
Do experiments

Ë
< W, '.D(w): sets of operating points and (prospective) data sets
> ud(t), yd(t): input/output measurements, data set d
> vd(t), rf (t): instruments for identification/cross-covariance bound

Gather prior information , p. 80

E
> ü: input amplitude bound p. 82
> ë(t): noise amplitude bound p. 82
> ëe: cross-covariance bound p. 83
> IJk, M, p: model parameter bounds p. 82

Choose basis functions and model orders p. 88

t > ~k(t): set of basis functions p. 75
> k: model order p. 77

Estimate auxiliary models p. 91
u(t),y(t),v(t), model parametrisation
ow: . parameters of auxiliary model for operating point w p. 92

Estimate error structure p. 101
j.(}W = (}W - IDeaDwt (JW' p. 105
X: matrix with in its columns the tJ.(JW p. 102
UEVT: singular value decomposition of X
ns: number of structured error components p. 105
() A,i = u*i' i E ns: parameters of structured errors Ai p. 105

Construct set of linear constraints p. 106
ü, ëk, M, p, bk(t)
Extend noise bound .. p. 106

~
< ë(t): (unextended) noise bound p. 82
> à(t): influence of basis k + 1 tok, no transient p. 107
> b(t): transient of basis 0 tok p. 107
> 8: influence of basis k + 1 and higher, incl~ transient p. 108
> lv(t) - Go(()u(t)I ::; ëe(t) := ë(t) + à(t) + b(t) + ó p. 108

Extend cross-covariance bound p. 110
< ët,rt(t): (unextended) cross-covariance bound p. 83
> d(l): basis function k + 1 tok, known inputs p. 111
> f (l): basis function k + 1 to k, inputs u(-i) to u(-1) p. 111
> &1 (l): basis function k + 1 to k,

inputs u(-i - 1) to u(-oo)
> 82(l): basis function k + 1 and higher, all inputs
> IL:t rt(t) (y(t) - Go(()u(t)) 1

::; d(l) + f (l) + 81 (l) + 82 (l) + êt JTd
> C(j: set of linear constraints on 8 for every operating point

p. 111
p. 111

p. 112

4.15. Summary 147

Bound errors locally .. p. 113
Split parameter uncertainty in structured and
unstructured parts p. 125

< G, 9: nominal model, vector of its first k expansion
coefficients in basis bk

> (0 A,i 1 O' - 9) 0 A,i: ith structured component for arbitrary 61

> P: projection onto span of 0 A,i p. 128
> p1-: projection onto orthoplement of span of OA,i p. 128

J_ I A I > P (0 - 0): unstructured error component in 0
> ê;1- = G - G p{J: nominal model with structured error

directions removed p. 126
Bound structured errors p. 113

t> d'f := maxe'E.CO (OA,i 1 O' - 0) OA,i:
upper bound on ith 1stn~ctured component p. 114

> 4.'f := mine'E.CO (OA,i 10 - 0) OA,i:
lower bound on ith structured component p. 115

Bound unstructured error in frequency domain p. 116
< eJ<l>l, f = 1, ... , m: set of directions in complex plane p. 117
< n = {wi}: discrete set of frequencies p. 117
> P,~(wi) = maxe'E.CO Re((GpL81(ejw,) - ê;1-(ejw•))e-Nl)

uncertainty in direction eJ<l>l for frequency Wi due to
param. uncertainty not covered by struct. error p. 128

> P,(wi): error due to tail of basis p. 118
> P:,, (Wi): uncertainty region in complex plane determined

by P,e(wi) and p,(wi) p. 128
Bound the interpolation error for w ~ f! p. 130

Bound unstructured error in time domain p. 134

E
< W((): stable weighting filter or z/(z - 1) p. 134
< tmax: time after which constant bounds are used p. 134
> s(t): upper bound for W(()~(t) p. 137
> .§.(t): lower bound for W(()~(t) p. 139

Combine local results ... p. 140

Ë
di := maxwEW di: upper bound for ith structured component
d.i := minwEW d.i: lower bound for ith structured component
Take union of all unstructured bounds

148 An algorithm for structured and unstructured error bounds

5
Extensions to the basic

algorithm

5.1 Introduction
5.2 Estimating initial conditions
5.3 Regutarisation of Least

Squares estimates
5.4 Prior knowledge of statie gains
5.5 Prior knowledge of

complex gains for
arbitrary frequencies

5.1 Introduction

5.6 Weighting of parameters
5. 7 Other ways to determine

the error structure
5.8 Unstable systems and

closed loop experiments

The algorithm of chapter 4 farms a more or less complete recipe for the iden
tification of structured and unstructured error components. Some of the steps
in this framework deserve reconsideration. This will lead to some discussions
that are useful in their own right, others are only valuable within the context
of the algorithm.

For proper appreciation of the points made in this chapter, a firm under
standing of the algorithm of chapter 4 is required. As in chapter 4, a summary
of the algorithm is given at appropriate points in this chapter to indicate with
what part of the algorithm the following remarks will be concerned.

150

5.2

Extensions to the basic algorithm

Estimating initial conditions

····i"

''''""''. ··I"

. "
Construct set of linear constraints " .. "" """" " p. 106

ü,ii •• M,p,V.(t)
Extm:id noise bound ... " " " " .• " . " .•. " ... " p. 106

~
< ë(t): (1mextended) noise bound p. 82
> il(t}: inlluence of basis ii + 1 tok, no transieut p. 107
> b{t): transient of basis 0 tok p. 107
> .ï: influence of basis k + l and higher, incl. transient p. 108
> iy(t) - Ge(O•(t)I $ e,(t) := e(t) + ii(t) + b{t) + 8 p. 108

Extend cross-oowuiance hound "." p. 110

~
ê1,r1(t): (uuextended) cross-covariance bouml p. 83
d(i): basis function k + 1 to k, known inputs p. 111
/(l): basis function k_ + 1 to k2 inputs u(-Ï) to it(-1) p. 111

> 8, (e): basis function k + 1 to k,
inputs n(-Ï-1) to u(-oc) p.111

> O.,(t): basis function k + 1 and higher, all inputs p. lll
> IL:, r,(t){y(t) G•(()11(tl) 1

S d(f) + f(f) + ó1(f} + J,(t) +ëc/f'J p. 112
> !.',f: set of linear constraints Oll 8 for every operatiug point

Brn!>d ... i'

5.2.1 Motivaäon

The extended noise bound (4.30) and the extended cross-covariance bound
(4.37) are in genera! quite conservative with respect to the infl.uence of initia!
conditions. In order to demonstrate this, data was generated by filtering a nor
mally distributed, zero mean white-noise sequence with standard deviation 0.95
by the system

Gtr(z) = z ~-~.9 .

No noise was added to the output and a basis was generated using the true
system. Theoretically this means that in this case only flt",o and 8tr,1 can be
non-zero in the expansion

00

Gtr(() = L 8tr,kBk(().
k=O

This information could have been given to the algorithm through prior values
of tJ, M and p, hut this was not done; the algorithm estimated these quantities
based on the estimated auxiliary model as suggested in section 4.8.3. The input
was used as instrumental variable.

5.2. initia] conditions 151

The following bounds on the model parameters were found:

Ö0 = 20.65

Ök = 5.49 · 106 · (5.65 · 10-6)k, k ;::: L

The bound on inputs prior to t = 0 was set to 2.48, the maxim.al absolute value
of the input sequence.

Five basis functions were used in the model set. The truncation value k
in (4.25) was set to ten. In figure 5.1 the output signal is plotted, together
with the signal a(t), bounding the effect of the known inputs through the basis
functions B6 to B10 , and b(t), bounding the effect ofunknown initial conditions
of basis functions Bo to Bio·

80

60

40.

20

y(t)
a(t)
b(t)

-20~~~~~~~~~~~~~~~~~~~~~~

0 20 40 60 80 100

Time (samples) -+

Figure 5.1: Output signal and extensions to the noise bound

Due to the very small values of the bounds on the model parameters Ö6 to
Ö10 , the signal a(t) is very small. lts standard deviation is of the order 10-21 •

The signal b(t) is initially very large. Compared to the standard deviation of
1.3 of the output signal, its initial value of about 85 is excessive.

Notwithstanding the large value of b(t), the situation is in one respect op
timised towards reducing the bound on the initial conditions: due to the exact
match of basis generating system and true system, the influence of all hut the
first two basis functions is negligible in b(t). In practice, more basis functions
will have a significant contribution to b(t). The more basis functions become
relevant in b(t), the larger it will become and, more importantly, the longer it
will take to die out.

This effect does not only occur in the extension of the ·noise bound. A
similar effect occurs for the extended cross-covariance bound. A good relative
comparison is in this particular case not possible. The output being noise-free
and the system being in the model set, the residuals found by the estimation

152 Extensions to the basic

routine are very small. The standard deviation of the signa! of residuals is
about 10-15• This implies that the non-extended value for the cross-covariance
bound ët in (4.9) will be very small, making comparison to the other contribu
tions to the extended cross-covariance bound meaningless.

The unrealistic inflation of the extended noise bound and the extended
cross-covariance bound is caused by the fact that a worst case bound on the
transient due to the inputs before t = 0 is used. The bound is based on ê1-

norms, which means that the input is assumed to be against its bound for every
t < 0 with the sign determined such, that the output magnitude for t = 0 is as
large as possible. Based on the prior knowledge, this input is possible before
t = 0, hut it is highly unlikely that it occurs. Apparently, the output reaches its
l 1-norm based upper bound only fora very specific and unlikely input sequence
for t < 0. For different transfers, this specific input sequence is likely to be
different. Some conservatism is therefore introduced by summing l1 norms in
(4.27), (4.28), (4.34) and (4.35).

An alternative to this approach is to use an estimate of the transient and
adapt the algorithm to use it properly.

5.2.2 Estimate of transient

Estimating the effect of non-zero initia! conditions can be incorporated fairly
simply into (4.12) in case of a least squares estimation if attention is restricted
to the transient of the model. The difference between the transient of the model
and the transient of the process will be discussed in remaxk 5.3 on page 156.
Instead of writing the model output as a weighted sum of inputs filtered by
basis functions, it should now be expressed as a weighted sum of filtered inputs
and free-run responses to non-zero initia! conditions of these filters.

In the case of system based orthonormal basis functions the first basis func
tion - Bo(() - is equal to a constant gain. It has no transient behaviour
and need not be considered as fax as initia! conditions are concerned. Assume
the basis generating system has McMillan degree nb. In appendix B, Bk(()
will be constructed as one of the sub-transfers of an nb-output, 1-input system
of McMillan degree f k l nb. (Recall that the notation fa lb was introduced for
"a rounded up to the nearest multiple of b" as a generalisation of ral for "a
rounded up to the nearest integer.") This rneans that the space of signals that
can be observed at the output of a filter Bk(() due to non-zero initia! conditions
is at most r k l nb -dirnensional. lt can be less than this value if not all states axe
fully observable from this single output.

For a model being a lineax cornbination of n basis functions, the space of
all output signals generated by initia! conditions can obviously be spanned by
E~::;if k l nb different output signals. This number is of the order n 2 • For
tunately, the actual dimension ·of the aforementioned space is of order n, see
appendix B. The problern of obtaining a (nearly) minimal number of output

5.2. Estimating initial conditions 153

signals spanning the space of output signals that can observed as a result of
non-zero initial conditions will not be discussed here. In appendix B a pro
cedure is derived by which such a set of signals can be constructed, without
generating the full set of order n2 signals.

Let n~i be the number of signals that are produced by the aforementioned
procedure to span the space of possible transients in the subtransfer from the
ith input to the jth output, i E p, j E q. It is assumed that the result of
the procedure is available in the form of matrices Xfi E JR,Tdxn~• such that for
each data set d E 'D, the columns of Xfi span the space of all transients that
can be exhibited by the model for the subtransfer.at hand on the time interval
JI'd. In other words, let xMt) : IN~ IR, be the transient in data set d due to
the initial conditions of the model for subtransfer (j, i), then

[xt,::t~ J E imgXf;

Xfi depends only on the data set through the value of Td: the data set
determines only the number of rows in Xfi· If all data sets are the sarne
length, the value of Xfi will not depend on d. Further, if the same basis is used
for all sub-transfers sharing an output and the model order is also chosen the
same, then the value of Xfi will not depend on the input index i. This has a
straightforward analog in cases where the same basis and model order are used
for all sub-transfers sharing an input.

Analogously to section 4.8.1, first the situation with one output will be
considered. The subscript j will therefore be dropped. Xd is built from the
Xf similarly to Ud in section 4.8.1:

Vd E 'D(w) xd := [xf . . . x;]

X is finally obtained as

x := diag fd xd.
dE'.D(w)

The weighting by jd is applied here for consistency with U and Y, it is not
strictly necessary. The values of U and Y are as in (4.11).

Let <Pm and <ÎJm be column vectors having as many elements as X has
columns. The combined estimation of both the model parameters and the
transients due to initia! conditions is now performed by solving

(5.1)

154 Extensions to the basic algorithm

for fJ and ef,,,,. fJ is the estimate of the model parameters similar to (4.12). The
vector X(i>,,, contains estimates of the transients for each data set d E 1>(w),
stacked on top of each other, weighted by the weighting factors f d. For fut ure
reference, we introduce fj:, d E 1>(w) implicitly through the equation

dAd ~
stack f Ym := X<J>,,,,

dE'D(w)

where fj~ has as many rows as yd has, so that the partitioning of the matrix on
the left hand side is compatible with the partitioning of X into its constituents,
Xd, d E 1>(w).

Remark 5.1 X is a block diagonal matrix containing the weighted Xd, where
as U is built from the weighted Ud by stacking them on top of each other. This
difference is due to the fact, that for every data set of an operating point, the
model parameters are taken the same, whereas the transient can be different
for every data set. D

If the matrix [U X] has full column rank, {J and (i,,,, are unique. Ordinary
Least Squares algorithms can be used to solve (5.1). The remainder of this
section will be concerned with the situation that [U X] does not have full column
rank.

It is assurned that [U X] is a tall matrix. For rank deficient [U XJ, three
different kinds of "deficienciès" can then be distinguished. These rnay occur
simultaneously. Because it was assumed that [U X] does not have full column
rank, at least one occurs:

1. X does not have full column rank, i.e. a column of X can be written as
a linear combination of other columns of X.

2. U does not have full column rank, i.e. a column of U can be written as a
linear combination of other columns of U.

3. The intersection of the image of U and the image of X has rank one or
more, i.e. a column of U can be written as a linear combination of other
columns of U and at least one column of X.

Situation 1 is merely inconvenient: the actual values of <Pm are not required,
only the values of fj:(t). It is easily verified through a projection argument,
that for all (/;.,, satisfying (5.1), X (i>.,, is unique provided situation 3 does not
occur. For numerical reasons, an unambiguous value of tÎ>m is obtained by
picking the value among all (b,,, satisfying (5.1) that has minimum norm. Any
other selection could have been made instead.

Situation 1 is likely to occur: for a multiple input system with the same basis
used for all subtransfers, the space of possible transients of input i is contained
by that of input j if the model order for input i is less than or equal to that of

5.2. tiILtati'ng initial conditions 155

input j. (For multiple outputs this argument applies on a per-output basis.)
This is related to the non-minimality discussed in remark 4.1 on page 78.

Situation 2 corresponds to a fundamental problem. Apparently the input
signal was not rich enough to uniquely identify a model for the experimental
data. There is simply insufficient information in the data record. For a multiple
input system it might be the case, that the signals applied to each input are
sufficiently rich separately, but that there is a relationship between the various
input signals making it impossible to attribute the outputs to an unambiguous
combination of inputs. Whether or not this applies, additional experiments
should be carried out with a better input design.

Situation 3 is strictly speaking as much of a fundamental problem as situ
ation 2 is. The best thing to do is, again, performing additional experiments.
As the transients are only relevant in the first part of an experiment of suffi
cient length, occurrence of this situation means either that the input was only
exciting in the very beginning of the experiment, the experiment was too short
or that too many basis functions are being used in the model set. If it is not
possible to do further experiments, the "explanation" of the measured output
has to be distributed over the responses to the inputs on the one hand and
the "responses" to the initial conditions on the other hand. Any choice here is
arbitrary and it is trivia! to construct for any choice an example in which that
choice works out particularly badly. In the following, as much of the output
signal will be attributed to the inputs as possible. This is inspired by the fact
that practical identification in which no initial conditions are estimated implic
itly does the same. This is admittedly not a very strong argument, the more so
because this situation will not occur in practice for proper experimental data
and model orders.

The actual estimation now proceeds as follows. The matrix [U X] is decom
posed into an orthogonal matrix Q, a (singular) upper-triangular matrix Rand
a permutation matrix P:

Ri2] p-1
0 ' (5.2)

where Q and R11 are square matrices. By an orthogonal transformation Z this
can be transformed into

(5.3)

The factorisation (5.3) is .called a complete orthogonal factorisation of [U X],
see (Anderson et al., 1995). The solution [tF $.,, T]T is finally obtained as

(5.4)

156 Extensions to the basic algorithm

This is the minimum norm solution to (5.1), Le. of all vectors [t:F <Î>,,, T]T satis
fying (5.1), the one obtained by (5.4) is the one having the smallest norm.

Situation 2 should not occur, as argued above, so that U is of full column
rank. Situation.1 is properly handled by (5.4). Situation 3 can be handled
by requiring that the first nu columns of P are the first nu unit vectors of
appropriate length, in any order, where nu is the number of columns of U.
Because U is of full rank, this still implies Rn is of full rank.

The functionality outlined above is present in the LAPACK routine DGELSX.

Remark 5.2 For numerical reasons, the decomposition (5.2) is in genera! not
possible. It is very unlikely that R22 is exactly zero in practical cases. This is
handled by DGELSX by defining both the permutation Pand the partitioning
of R such, that R11 is the largest leading sub-matrix whose estimated condition
number does not exceed a certain threshold value, related to numerical preci
sion. The remaining value of R22 is then neglected and the procedure continues
as explained above.

A positive side-effect of this is, that "a is a linear combination of b" in
the descriptions of the three situations in which [U X] is rank deficient can be
reinterpreted as "ais a linear combination of b up to numerical accuracy." 0

For multiple output systems, the procedure should simply be repeated for
each output. In summary, for each operating point we have obtained an esti
mate IJ for the model parameters. Also, for each data set and for each output
indexed by j E q, an estimate for the transient in that output is obtained in
the form of u!,j(t).

Remark 5.3 Note that the estimate of the transient obtained in this way is
always in the space of transients that can be exhibited by the model. The
transient of the tail of the basis is not estimated. The transient of the process
for a data set d E 1J can therefore be outside the image space of Xd. The
transient of the model is in fact fitted to the experimental data of the process.
This "undermodelling" of the transient will result in a bias on the estimated
parameters and/or an increase in the residuals. The farmer effect becomes
smaller if the length of the data set increases with respect to the length of the
transient.

The undermodelling of the transient can obviously be reduced by increasing
the model order. The order that is used to estimate the transient can be chosen
independently of the actual model order. The matrices Xd can without any
problem be chosen such that they span the space of possible transients of a
different set of basis functions than the set that is incorporated in the model.
In this case the term "transient of the model" is actually not completely correct.
For brevity we will nevertheless use this phrase to refer to the quantity that is
estimated by u!(t). 0

5.2. Estimating initial conditions

5.2.3 Adaptation of the transient bounds

In the extended noise bound

êe(t) = ë(t) + à(t) + b(t) + 0

157

defined in (4.30) on page 108, the transient of the model is bounded by the
term b(t), as can be seen from

k 00

L fhr,k L bk(r)u(t1 - r) $ · · · $ b(t1) (4.27)
k=O r=t'+l

It is assumed that the transient of the first k + 1 basis functions is estimated
in the estimates y~(t), d E 'D from the previous section. This makes fj:(t) an
estimate for the quantity that is overbounded by b(t). In principle s · !Y~(t)I
could be used as an alternative for b(t), where s ~ 1 is a safety margin. Given
the worst case nature of b(t), this alternative is likely to be a smaller bound
than b(t). However, this would even for s = 1 include the transient -fj:(t),
which corresponds to an error in the estimate of 2003.

A more realistic approach is to subtract the estimated transient from the
output and use s1

• lii:(t)j as a bound on the remaining transient of the model.
l ;::: 0 is another safety margin. This amounts to

k t

y(t) Yx(t) L Btr L bk(1)u(t - r) ::::; ë(t) + a(t) + S1
• l:Yx(t)I + o. (5.5)

k=O r=O

(5.5) corresponds to the original extended noise bound (4.30) with the term
b(t) replaced by s1

• liJ"(t)I.
In the extension of the cross-covariance bound the terms f (l) and 01 (l)

account for the influence of the transient of the model:

k Td-1 t+t
L Btr,k L re(t) L bk(1)u(t 1) $... $ f (l) (4.33)
k""O t""O r=t+l

and
k Td-1 00

L Btr,k L rt(t) I: bk(r)u(t r) $ ". $ c51(l) (4.34)
k=O t=O r=t+t+l

The true transient of the model, i.e. of the first k + 1 basis functions in the
expansion of the linear manifestation of the true process in an operating point
d E 'D, will be denoted y~(t). The original bound was

Td-1

L re(t)y:(t) ::::; f(l) + Ö1(l).
t=O

158 Extensions to the basic algorithm

Using the estimate i)~(t) for y~(t) and a safety margin s' ~ 0 this bound can
be replaced by

Td-1 Td-1 Td-1

L rt(t)y~(t) - L re(t)i)~(t) :5 s' L lrt(t)y~(t) 1 =: êx,e (5.6)
t=O t=O t=O

Instead of the extended cross-covariance bound

Td-1 Td-l k t

L y(t}rt(t) - L re(t) L Otr,k L b1;(r)u(t - r) <
t=O t=O k=O

:::; d(e) + f(f) + 61 (f) + 62(€) + ëeVTd (4.37)

the bound

Td-1 Td-1 Td-1 k t

L y(t)re(t) - L 'f)~(t)re(t) ~ L rt(t) L Otr,k L bk(r)u(t r) <
t=O t=O t=O k=O

:::; d(e) + êx,t: + ~(l) + ëeVTd (5.7)

is used.
The linear constraints based on (4.30) and (4.37) are finally removed from

the set of linear constraints Ce and those following from (5.5) and (5.7) are
added. The algorithm of chapter 4 can then proceed as before.

For an example of the potential value of this approach, see section 6.2.

5.3 Regularisation of Least Squares estimates

I' Estimate anxiliary models "". " .. ".:.".: : . : . : .. "~: 91 t< u(t),y(t), v(t), model parnmetrisation
> 8111

: parameters of auxiliary model for operating point w p. 92
... L~:

In chapter 4 least squares/instrumental variable estimation was used as an ex
ample in all steps where identification of a model by the algorithm was required.
In section 4.8.2 it was shown, that this may lead to numerically ill-conditioned
problems and unrealistic estimated models if the length of the experimental
data sets is much smaller than the impulse responses of the high order basis
functions that are incorporated in the model.

5.3. Regularisation of Least Squares estimates 159

Consider the situation of a SISO system for which one data set is available,
as was done in section 4.8.2. The parameter estimate is in this case

where

U = [[Bo(()u](O)

[Bo(()uJ (T- 1)

Y= L::O) J
[Bx;(()u](O) l

[Bx;(()uJ(T-1)

T is the length of the data set and k + 1 is the number of basis functions in
the model. The ith column of U contains the signal u(t) filtered by Bi-i(().
In section 4.8.2 the matrix

Q

was introduced and it was shown that for a white input sequence u Q -+ u!I
if T-+ oo, with O'u the standard deviation of u. It was also demonstrated that
for finite T the value of Q can be near singular.

If this effect occurs, it can be reduced by extending the length of the data
set. This is likely to be undesirable in a practical situation: it is time con
suming, it may be expensive, it will increase the computational load of the
identification, etc. However, one can extend the input sequence with zeroes.
Let T be the length of the original data set and T 1 the length of the extended
data set. Moreover, let er~ be the standard · deviation of u on the time interval
t = 0, ... ,T-1. lt is obtained

T'

T 1 [Q]Jï = lim '°'(BJ(()u](t)[Bi(()u](t)
T'-;oo L..,;

t=O

= ,J":'oo t, (i;, b, (r.)u(t - Ti)) · (f 0 b; (r2)u(t - r2))

00

Ri To-~ L bj(r)bi(T)
r=O

(5.8)

160 Extensions to the basic

The fourth (approximate) equality deserves some further explanation. Due to
the assumed whiteness of the noise it holds

For finite T one may expect the va.lues for r 1 = r2 to be much larger than those
for r 1 f r 2 and moreover those for r 1 = r 2 = Ta to be approximately equal
to those for r 1 = T2 = Tv f ra. How good these approximations are can be
influenced by the input design.

The matrix Q can apparently be made approximately equal to the identity
by extending the input sequence with zeros. Unfortunately it requires knowl
edge of the process transfer to tell how the process will respond to this extended
sequence. As the aim of the identification was to find an approximate descrip
tion of this transfer, this information is not available yet, but one may assume
that the largest time constant in the process transfer is known already: this
knowledge is required to decide how long the experimental data record should
be. One may assume that two or three times the largest time constant after the
input was fixed to zero the output of the process would have become zero in
good approximation as well. This divides the extended data set in three parts:
first the original experimental data records, then a change-over part, in which
the process inputs are zero and the process outputs settle to zero and finally
the steady state part in which both inputs and outputs are (approximately)
zero.

U=
[

[Bo(()u](O)

[Bo(()uJ (T1
- 1)

where the partitioning of U in Uexp, Utra and Uss corresponds to the separation
of the extended data set into three parts. Provided the extension of the data
set is long enough, it will hold

Q = ~uTu 1 (UT u T T) T T exp exp + utraUtra + uss Uss ~ I

if the input that is applied to the process during the experiment interval is a
white noise sequence with standard deviation one.

Consider Y for the zeroes-extended data set. Let Yexp, Ytra and Yss be
a partitioning of Y compatible with that of U in Uexp, Utra and Uss· Yexp is
known, Ytra is unknown and Yss is assumed to be (approximately) zero. Leaving
the unknown part of the output out of the identification criterion, the optima!
model parameter vector should satisfy

(5.9)

5.3. Regularisation of Least Squares estimates 161

As in the unextended case, a projection argument can be used to show that it
holds

(5.10)

Comparing this expression with the one for the unextended case, it appears
that an extra term U'!;Uss has heen added to U[xpUexp· This term is likely to
have a regularising effect, as it was derived previously that

1 T 1 T 1 T
7.Ue:xpUexp + TU88 Uss:::::: l - ifUtraUtra

for white input sequences u.
Another interpretation of this estimation procedure can be given based on

(5.9). In the original, unextended case there was no penalty for large system
outputs after t T. In the new scheme model outputs that are unequal to
zero for t = T, . .. , T' - 1 are penalised. This also indicates how T' should he
chosen: T' - T should he taken such, that the longest of the impulse response
sequences bo(t) to bk(t) reaches steady state in this period of time.

So called ridge regression replaces the "standard" Least Squares estimate

with the estimate

Generalised ridge regression uses the estimate

(5.11)

See (Draper and Van Nostrand, 1979) fora review of these and related regu
larisation methods. These expressions bear some resemblance to (5.10). The
estimate (5.10) is more general in the sense that it drops the restriction on C
in (5.11) to be diagonal. Moreover, the problem of choosing c or the diagonal
elements of C does not occur in (5.10). The only choice that needs to be made
is where to draw the line between the transient effect, represented by Ytra and
the (approximate) steady state situation of Y88 • As has been argued already,
this can he based on knowledge of the largest relevant time constant of system,
which should be known prior to the experiment design.

It should be stressed, that almost nothing was added artificially in this re
finement of the original least squares algorithm: the only part that was more
or less made up is that Y88 0 and that the systern reaches this steady state

162

t 50
h(t)

40

30·

40 60 80

Extensions to the basic algorithm

40

30

20

10

o~~~~~~~~~~~~

100 0

nr. of samples -t

2000 4000 8000 8000 10000

nr. of samples--+

a) Short step response

Figure 5.2: Step responses,
larised LS

'-'·

b) Long step response

true system, '--': model estimated with regu-

Figure 5.3: Estimated model parameters

after two or three times the largest time constant of the system. These approx
imations are definitely very sensible.

To get an impression of the capabilities of the proposed modifications, the
example of section 4.8.2 is reconsidered here. The data set was extended to
8500 samples. Of the extra 7500 samples, the first 200 samples were consid
ered a transient effect. Therefore Yss consists of 7300 samples and Ytra of 200
samples. Figure 5.2 shows the step response of the model obtained in this way.
Comparing these results to those shown in figure 4.4, it is clear that the results
have improved significantly by the regularisation. For further comparison, fig
ure 5.3 shows the model parameters. This figure shows also a big improvement
over figure 4.6.

5.4. Prior knowledge of statie gains 163

5.4 Prior knowledge of statie gains

1- Cons~ruct set o;· linear cons;,raints . : . : ... : . : . : 1). 106
1 u.ll;,.\f,p,11,(t)
· k>u;cl ..

In practice it is not uncommon that prior knowledge exists with respect to the
statie gains of certain transfers. Especially if a process output is controlled by
a primary controller that is designed such that there is no final error, the statie
gain from almost all inputs to the output is equal to zero. The only exception
is the setpoint for that specific output, for which the statie gain is equal to one.
Prior knowledge of statie gains may also result from step experiments. These
experiments are aften carried out to obtain information required for the design
of the actual identification experiments.

In forma! terms, the prior knowledge consists of values ïi,w,cr and h.w,cr for
some operating point w E W and for some sub-transfer a E S such that

G~'cr(z) S hw,crlz=l

aw,cr(z) > hw,crl tr - - z=l

(5.12)

(5.13)

The superscripts w and a will further be dropped. This implies that all transfers
do not have their normal MIMO meaning but denote only a SISO subtransfer.

From (5.12) follows

00

Gtr(l) = l:Btr,kBk(l) s h :::}
k=O

k k 00

L Btr,kBk(I) S h + L BkBk(l) + L iikBk(l) (5.14)

k=k+I

The first term on the right hand side of (5.14) can be calculated without further
modifications. The second term can be bounded by

00 00

:L ëkBk(l) ::; ma~ IBk(l)I L ok
- k>k -k=k+I k=k+l

164 Extensions to the basic algorithm

The maximum can be found easily through property 4.1.
In the same way (5.13) yields

k k 00

I>1tr,kBk(l) ;?: fJ. - L ihBk(l) L ÖkBk(l) (5.15)
k=O k=k+l

The prior knowledge (5.12) and (5.13) of the true system translates to the
linear inequality constraints (5.14) and (5.15) on the model parameters.

Note that the true statie gain is not restricted to the interval [fJ., ii] by the
inequalities (5.14) and (5.15). It can only be guaranteed that

k 00

fJ. 2 L ÖkBk(l) 2 L ÖkBk(l) :S Gtr(l) :S
k=k k=k+l

k 00

$ h + 2 L ëkBk(l) + 2 L ÖkBk(l.)
k=k

The factors 2 stem from the uncertainty in the sign of the contribution of the
tail. In the determination of the upper bound (5.14) a negative sign bas to
be assumed to make sure that (5.14) always contains the true system. If the
actual sign is positive, then the true statie gain is larger than ii by twice the
contribution of the tail.

5.5 Prior knowledge of complex gains for arbi
trary frequencies

Î- Const~ct set or;inear constrai~ts : : .. : ... ~. 106
1 ü,O,,M,p,l!k(t)
' llüi:î',):,,!!dil.' ' :::(;

The case of statie gains treated in the previous section corresponds to prior
knowledge of the complex gain for w = 0. This situation is easier than the
situation for all other frequencies in the range w E (-rr, rr), because the complex
gain is known to reduce to a real gain.

5.5. Prior knowledge of complex ga.ins for arbitrary frequencies 165

As in the previous section, only SISO subtransfers will be considered. To
fit into the framework of chapter 4, the prior knowledge has to be translated
to linear constraints on the model parameters. Not all prior knowledge can be
translated to linear constraints. Also, due to the uncertainty in the tail of the
basis, only an approximate description of the prior knowledge can be given.

The kinds of prior knowledge that will be treated are

1. An interval in which the phase of Gtr is known to lie for a certain fre
quency w' E (-7r, 7r):

arg Gtr (ejw') E [_t, (i)]

for known </> and ef>. The size of the interval f</>, ef>J may not exceed 7r, or
the constraînt corresponds to a non-convex reiîon in the complex plane,
which can not be described by a set of linear constraints that can be used
in a linear programming problem. Using the convex hull instead offers
no solution in this case because the convex hull is equal to C.

2. A phase interval as in 1. combined with a lower bound on the absolute
value of Gtr·

3. An upper bound for the absolute value of Gtr:

IGtr(eiw')I $ {J

4. An estimate for the gain together with a bound on the uncertainty:

IGtr(ei"'') - GI < dG

The estimate à need not be related to the nominal model or the auxiliary
model for the operating point at hand.

3. is a special case of 4. with à = 0 and dG = G. Therefore 3 will not be
treated separately.

In the following sections it will be shown how each of these types of prior
knowledge can be translated - approximately to linear constraints on the
model parameters. These constraints can be added to Ce, after which the
algorithm of chapter 4 can be applied as before.

5.5.1 Phase interval

In this section it will be assumed that Gtr(ei"'') ::j:. O. This is mostly to ease the
presentation, as the argument of Gtr (eiw') is undeterrnined for Gtr (eiw') = 0.

The actual value of argGtr(eiw') is only deterrnined modulo 271". However,
it is assumed that ii> > P. and ef> - P. < 27r. H the first inequality does not

166 Extensions to the basic algorithm

hold, the interval of allowable phase shifts is empty, which can not happen
in practice. If the second inequality does not hold then any direction in the
complex plane is allowed, so the cons.traints do not form a true restriction and
can be ignored. Apart from this fundamental consideration it is also required
that ef> - </> ::::; 7r, due to limits imposed by the translation to linear constraints
on the model parameters.

Figure 5.4: Phase bounds on Gtr(eiw')

In figure 5A the situation has been drawn for specîfic values of w', ef> and
</>. The shaded area indicates values that can not be assumed by Gtr(ejw'). lt
ho Ids

(5.16)

It can also be seen from this figure that the equivalence does not hold if
ef> </> > n. The equivalence (5.16) holds neither in case Gtr(eiw') = 0. The left
hand side is undetermined in that case, whereas the right hand side is satisfied.

Restricting attention to the first inequality on the right of {5.16), it holds

Im (e-j<fiGtr(eiw')) :S: 0

{::} Im (e-jfP f Btr,kBk(eiw')) :S: 0
k=O

(5.17)

5.5. Prior knowledge of complex ga.ins for arbitrary frequencies 167

k 00

L fltr,kBk (ejw') + L Otr,kBk(ejw')
k=k+l k=k+l

::;} Im (e-j~ t Otr,kBk(ejw')) ~
k=O

k 00

L ëkiBk(ejw')I + m~ IBk(ejw')I L {jk
k=k+l k>k k=k+I

where k ;:::: k is a truncation value. The second inequality on the right hand
side of (5.16) implies in a similar way

k 00

L ëkiBk(ejw')I - m~IBk(eiw')I L IJk
k>k

(5.18)

In figure 5.5 the values for G9(eiw) satisfying (5.17) and (5.18} are shown.
The offsets from the continuous straight lines to the dotted straight lines, in
dicated by an = sign, are equal to the right hand side of (5.17). The dark
shaded area contains those points that do not satisfy either (5.17) or (5.18) or
both. The light shaded area contains values of G9(eiw') that do satisfy (5.17)
and (5.18) but that are not consistent with the prior knowledge and the uncer
tainty in the tail. By adding additional linear constraints, the size of this extra
included area can be reduced.

5.5.2 Gain Iower bound

An (absolute) gain lower bound in itself constitutes a non-convex region in
complex plain. As already mentioned on page 165 this can not be translated to
constraints for a linear programming problem. The convex hull of this region
is C; using the convex hull as a basis for the linear constraints required by the
LP problem is obviously not a solution. By combining the gain lower bound
with a phase constraint as in the previous section, it is possible to arrive at a
set of linear constraints that describes approximately the prior knowledge at
hand.

168

Figure 5.5: 'Iranslation of phase bounds to permissible values of G 6 (é·;)

The gain lower bound is taken to be

IGtr(eiw')I 2: G

In figure 5.6 the values of Gtr (eiw') that are consistent with the phase bounds

Figure 5.6: Phase bounds and gain lower bound on Gtr(eiw')

(i> and <P and the gain bound are indicated by the unshaded area.
The derivation concerning the phase bounds is identical to the one of the

previous section and will not be repeated here. For the gain lower bound it
holds

IGtr(eiw')l 2: G

5.5. Prior knowledge of complex gains for arbitrary frequencies 169

00

{::} L Btr,kBk(eiw') ~ G
k=O
k

:::} L(}tr,kBk(eiw') ~ G-
k=O

k

:::} LBtr,kBk(eJw') >
k=O

k
L Btr,kBk(eiw')

k=k+l

00

L Btr,kBk(eiw')
k=k+l

k 00

L ÖklBk(eiw')l -m~IBk(eiw')I L lik
- k>k -k=k+l k=k+l

(5.19)

Figure 5. 7: Translation of phase bounds and gain lower bound to permissible
values of G ê (eiw')

k . 1

The lower bound on the absolute value of I:k=O Btr,kBk(eJw) is not a lin-
ear constraint. Figure 5.7 shows how this can be approximated by a linear
constraint. Let µ(w) be defined as

k co

µ(w') := L IJk IBk(eiw')I + L iJkm~IBk(eiw')I
k=k+l k=k+l k>k

(5.20)

for some truncation value k ~ k. Note that this definition is consistent with the
earlier definition of µ(w) in (4.45) on page 118. The straight line in figure 5.7
representing the gain lower bound goes through the points

z1 := (G - µ(w1))ei~ and z2 (G µ(w1))eiP..

One can verify with elementary mathematics that the set of points on this line

170 Extensions to the basic algorithm

Figure 5.8: Phase bounds and gain lower bound on Gtr(eiw')

is

and all points in the set

satisfy the original bound on the amplitude. Substituting the expression for
z1 and taking z = Gé(eiw), thfä yields the following constraint on the process
parameters:

k

L êk Re (Bk(ejw')e-i(ii>+p)!2) .;:: (G - p,(w')) cos((<i) ef>)/2) (5.21)
k=O

Equation (5.21) together with (5.17) and (5.18) constitute the approximate
description of the phase bounds and amplitude lower bound in the form of
linear constraints on the model parameters. ·

5.5.3 Uncertain complex gain estimate

The prior knowledge

represents an area in complex plane drawn in figure 5.8. The uncertainty in the

5.5. Prfor knowledge of complex gains for arbitrary frequencies 171

model amplitude due to the unknown tail of the basis is bounded as follows:

00

<==> L 8t.,.,kBk(ei"'') - G <.5, dG
k=O

k
=> L,et.,.,kBk(ei"'') - à <

k=O

k
dG + L, 8tr,kBk(ei"'') +

00

L 8tr,kBk(é"'
1

)

k=k+l k=k+l

k
=> L,et.,.,kBk(ei"'') à <

k=O

k 00

dG+ L, ihlBk(ejw')l+m~IBk(ei"')I L, ëk
k>k

(5.22)

The same approach as in section 4.12 .1 is used to approximate this area by a set
of linear constraints. An outer bounding polygon with m vertices, m ~ 3 will
approximate the circle in complex plane. The line partly coinciding with the
edge of the polytope bounding the component in the direction eN, cfl E [O, 21T)
is given by

{ z E C 1 Re (e-i<li(z -à))= dG + P,(w1
)}

with P,(w) as in (5.20). Taking <P = 21T(i.1 l)/m, f, E m, the set of m linear
constraints representing the outer bounding polytope becomes

k

V1.1 E m Re (e-i2"(t-i)/m (-à+ 'L,Ot.,.,kBk(ei"''))) ~ dG + µ(w') (5.23)
k=O

The approximations involved are shown in figure 5.9 for m = 8.

172 Extensions to the basic algorithm

Figure 5.9: Translation of ga.in upper bound to permissible va.lues ofG9(eiw)

5.6 Weighting of parameters

t:,;?.r.J1:L'-:.\'.;i

Estimate error st.ruct.ure """"" .. " """"" p. 101

[

,::,.ew = ew meau"• nw' p. 105
WL: weightiug of para.meters for one modf'J p. 173
W R: weighting of para.meters for one operat,ing point p. 180
X: matrix with in its colunms the t}.f/11

' p. 102
UEVT: singular value decomvosition of WLXWn.
n": munber of strnctm'fXi error cotuponents p. 105

> llA,î = i E n.: param/s of stnt<"tnred <~rtors .41 p. 178

In section 4.9 the model parameters of the structured error components are
determined as the left singular vectors of a matrix

X := sbs f:l.(Jw
wEW

(5.24)

where f:l.(JW are the differences between the parameters of a central model (Je

and the parameter vectors of auxiliary models for the operating points w. In
this section a number of situations will be discussed which give rise to weighting
of the rows or columns of X. Also the meaning of the right singular vectors of
X will be investigated.

5.6. Weighting of parameters 173

5. 6.1 Weighäng of model parameters

In chapter 4 no attention has been paid to the preprocessing of the experimental
input and output signals. It was assumed that the data sets had already been
detrended, outliers had been removed and the different signals had been scaled
properly. All of these steps are crucial for obtaining good models, irrespective
of whether the models are used as "the" nominal model, as an auxiliary model
for an operating point or otherwise.

Many approaches can be used for the sealing of the signals. Some of them
are listed below.

1. In practical processes, both actuators and sensors have a limited range.
These ranges correspond to ranges on the inputs and the outputs. Signals
may be scaled such that these ranges correspond to the interval [-1, 1],
where it is assumed for simplicity that these ranges are symmetrie around
zero. As the signals have already been detrended, this zero value corre
sponds in physical terms to the value of the trend.

2. For identification, signals are often scaled such that they all have a vari
ance of one.

3. Another meaningful sealing in identification is a sealing such, that the
noise level becomes the same in all signals. Depending on the identifi
cation framework used, this may be applicable to the outputs only or to
both inputs and outputs.

The third sealing is often aimed for by applying the second. This uses the
implicit assumption that the signal to noise ratio is the same in all signals.

Consider a q x p model with for each subtransfer a model order k:

k k
LBk1,1) Bk1,1)(() LBk1,p) Bk1,p)(()
k=O k=O

Ge(()= (5.25)

k k
L oiq,1) Biq,1) (C) L oiq,p) Biq,p) (()
k=O k=O

The ordering of the elements in the parameter vector () is free, as long as the
same ordering is used consistently. Let

()" = [Bo . . . Bf]T

be a "block" containing the model parameters for subtransfer a, a E S. A
possible ordering for () is then

() = [(o(l,l))T ... (o(q,l))T (O{l,2))T ... (o(q,p))Tr

174 Extensions to the basic algorithm

Obviously, if the ith input signal, i E p, is scaled by a factor f u,i, all model
parameters occurring in the ith column of (5.25) should scale by a factor 1/ f u,i

in order to keep the model equivalent to the unscaled version. If the jth output
is scaled by a factor fy,j, j E q, then the model parameters occurring in the
jth row of (5.25) scale along by a factor fy,j·

Definition 5.1 Two models using different scalings for inputs and/or outputs
are called equivalent or physically identical if the sequence of

1. sealing the input signals corresponding to the sealing used by the model,

2. filtering the scaled inputs by the respective model and

3. sealing the model outputs back to unscaled values

produces identical output signals for both models. D

Remark 5.4 Given the informal definition 5.1 it is straightforward to for
malise the concept of model equivalence. This would involve extra notational
dutter because the sealing has to be made explicit in the notation. Notwith
standing that this would remove some ambiguity that is now present in the
notation, it is felt that this would not enhance the readability of this exposi
tion.

The definition does not allow for different initial conditions. Again, this
can be fixed at the expense of a more involved definition. D

In the algorithm of chapter 4 the auxiliary models identified with different
sealing factors for inputs and/or outputs will in general not be equivalent. Non
equivalent auxiliary models will result in non-equivalent central models and in
different parameter vectors A8w. The left singular vectors of X in (5.24) will
in turn change as well, so that finally the non-equivalent identified auxiliary
models result in non-equivalent structured error components.

One can easily make the identified models independent of this sealing by
changing to a sealing for both inputs and outputs that is fixed in some way,
identifying the models and then transforming the models back to the original
sealing. This will make the parameter vectors of the auxiliary models equiv
alent in the sense of definition 5.1. This in turn means that a matrix X as
in (5.24) obtained for one sealing is equivalent to a matrix X' obtained for
a different sealing, where equivalence of parameter matrices is obtained as a
straightforward extension of definition 5.1: a matrix can be transformed into
a matrix with which it is equivalent by a sealing of its rows. Which rows scale
depends on which inputs and outputs have different scalings. An important
observation is, that for two equivalent matrices the matrices of their left sin
gular vectors are not equivalent. So even if the identification procedure for the

5.6. Weighting of parameters 175

auxiliary models is independent of sealing in the sense that it yields equivalent
models, the structured error components will not be equivalent.

Apparently sealing is a design parameter for the algorithm. This holds a
forteriori if one realises that the sealing used for identification need not be
identical to the one used in the principal component analysis. As can already
be concluded from the short and incomplete list of scalings at the beginning
of this section, there is no such thing as the optima! sealing. This holds for
identification and it will turn out to apply to the principal component analysis
as well.

In the next section some considerations will be given concerning the interac
tion between sealing and struetured error components. Also the sealing will be
generalised to weightings of the rows of X that do not neeessarily correspond
to sealing of inputs and outputs any more.

Choice of weighting factors

Sealing on a per input basis or a per output basis, as discussed above, has
a clear interpretation. It may be worthwhile to generalise the sealing of the
rows of X to scalings, or weightings, per subtransfer. One may have concluded
from the results of a robust control design or by physical reasoning that the
bottleneck in the robustness of the control design is the uncertainty in one
or two subtransfers. By up-sealing the parameters of these subtransfers they
will become more pronounced in the structured components and thus will be
bounded in a more detailed way. (Another approach would be to explicitly
specify the structured error component. This will be treated in section 5.7.)
Sealing on a per parameter basis can also be considered. It is difficult to find
a reason for doing so.

If the rows of X are weighted differently prior to principal component anal
ysis and are scaled back after the analysis, the 8 A,i, i E ns, need not be
orthonormal any more. Loosing normality is not so important; it requires
normalising some of the formulas, especially those in sections 4.11 and 4.12.
Loosing orthogonality may provide more reason for concern. Orthogonality in
parameter spaee may be interpreted as a form of independence of the structured
error components. However, this rather intuitive argument can be applied to
both the scaled and the unscaled parameter space, but the conclusions to be
drawn are different in physical terms. It is therefore worthwhile to investigate
whether orthogonality in parameter space corresponds to some meaningful no
tion in physical terms.

Consider first the situation of two SISO models having orthonormal param
eter vectors 8 1 and 82 in the unscaled case. Because of the orthonormality of
the unscaled basis functions it holds

k k

(81 182) = (L)l,kBk(eiw) j L)2,kBk(eiw)) = 0
k=O k=O

176 Extensions to the basic algorithm

The first inner product is the standard inner product in JRfc+i and the second
the standard inner product in 11.2. So the models G1 (eJw) and G2(eJw) are
orthogonal to each other and the sarne holds for their impulse responses 91 (t)
and 92(t). Now consider a combination of these two models

The energy in the irnpulse response of g' (t) is

(g' (t) 1 g' (t)) = a 2 (91 (t) 1 91 (t)) + 2a,8 (91 (t) 1 g2(t)) + ,82 (g2(t) 1 92 (t)}

= a 2 llg1(t)lli2 + /32ll92(t)lii2 (5.26)

Apparently, the energy in 91(t) due to ag1 (t) is never compensated by the term
flg2 (t) and vice versa. This can be interpreted as a way of independence. From
the point of view of reduction of conservatism, it seems worthwhile that none of
the structural error components G A,i ((), i E ns, gets compensated by another
structural error component GA,J((),j E n 8 ,j # i.

This form of independence of the error components is lost if the parameters
are scaled on a per parameter basis. This sealing will therefore not further be
considered. In (5.26) only the orthogonality of 91(t) and g2(t) was used, not
the fact that they were normalised. The independence is therefore maintained
if all parameters are scaled by the same factor.

Moving on to MIMO models G1 (() and G2 ((), it holds for the parameter
vectors 81 and 82

(8i l Bj) = L (8f \ 8j), i,j E {l, 2}. (5.27)
nES

It should be noted that the values per subtransfer scale along with the squares
of the parameter sealing. Whether or not two parameter. vectors are orthogonal
therefore depends on the scalings per subtransfer. As was argued above, this
can be used to influence the outcome of the principal component analysis.
There is no universa! physical interpretation for (5.27) providing an answer as
to how to scale the parameters of a MIMO transfer.

The answer to that question should depend on an interactioU; between prior
knowledge and the results of principal component analysis. The sealing is
likely to have a corrective nature: if sorne aspects of the process uncertainty do
not come out of the principal component analysis as could be expected from
physical i:easoning and if this can be tracked down to an unfortunate sealing of
the model parameters, an extra sealing applied before the principal component
analysis can compensate for this.

To give some extra guidance as to what initial weighting to ehoose, three
options are given with their interpretation:

• No separate weighting can be applied to the parameter vectors. This as
sumes that the weighting that is suitable for identification of the auxiliary

5.6. Weighting of parameters 177

models is also appropriate for the determination of the structured error
components.

• Scale the !::J..(Jw inversely proportionally to the parameters of the centra!
model, 9c. As it was argued before that the weighting should be the same
for all parameters of a subtransfer, some averaging has to be carried out
over all parameters fora subtransfer of the central model. Let 9c,u, a E S,
be the sub-vector of oc containing only the parameters pertaining to the
subtransfer a and let !::J..Ow,u be the corresponding sub-vector of !:l(Jw, w E
W. As the arguments above rely hêavily on inner products and 2-norms,
the weighting

(5.28)

is an obvious candidate. To apply this weighting, the values of !::J..Ow,u
have to be divided by r before building x.
The implicit assumption behind this weighting is that the contribution
of a subtransfer to the structured error components should be roughly
proportional to its contribution to the central model. Large subtransfers
are expected to have a large uncertainty. To avoid that these large uncer
tainties completely dominate the smaller ones in the principal compcaent
analysis, this weighting can be used.

• Another approach to the previous idea is to assume that the uncertainty
per subtransfer is roughly proportional to the variation over the different
operating points in the parameters of !::J..(Jw,u A suitable measure for the
variation of the parameters is

llstack !::J..(Jw,u Il
u ·- wEW 2

f .- nw(ku + 1) (5.29)

Note that this measure is sensitive to a bias component in !::J..6. This is
nota problem if the central model has been chosen according to (4.23),
as the bias component will be zero then.

As in the previous weighting, the parameters of !::J..Ow,u have to be divided
by r before building x.

• A combination of both approaches is given by

Il stack 9w,u Il
u ·- wEW 2

f .- nw(k"' + 1) · (5.30)

178 Extensions to the basic algorithm

In this case, both the variation in the parameters of a subtransfer and
the size of these parameters determine the weighting of that subtransfer
in the principal component analysis.

The argumentation above regarding which weightings to choose relies al
most entirely on physical interpretation. As is indicated by the different choices
that can be made, there is no general notion of optimality that can be specified
in terms of, say, only the dt and di, i E n 8 , In the context of identification for
robust control design optimality corresponds obviously to optimal performance
of the final controller, hut this criterion is too complex to be used here. As
an alternative it has been tried to provide means to tune the structured error
components to what seems reasonable from a physical point of view.

Incorporation of weightings in the algorithm

It will now be assumed that the weighting of the parameter vector to be applied
in principal component analysis is available in the form of a matrix W such
that WO is the properly weighted form of the unweighted párameter vector
9. In the previous section interpretations have been given that all lead to a
diagonal weighting matrices W. Note, that the following derivation is valid for
any non-singular weighting matrix W. The weighting W propagates as follows
through the algorithm:

Let X be as in (5.24), i.e. without any weighting. The singular value de
composition of W X is

WX UwEwVJ (5.31)

where Uw and Vw are orthogonal matrices and Ew is a diagonal matrix con
taining the singular values a1 ;::: • · · ;::: O"n" ;::: 0. In the unweighted case the
structured error components At(() were taken equal to the models having as
their parameter vectors the first n 5 columns of U. In the weighted case, they
are to be taken equal to the first ns columns of w-1 Uw. Note that the first ns
columns of Uw are the parameter vectors for the structured error components
in "weighted parameter space" and these are still a set of orthonormal vectors.

In sections 4.11 and 4.12 the difference between a model Ge', 91 E L'tJ,
and the (partial) representation of the nominal model G {J was decomposed into
parts accounted for by the structured error components Ai((), i E n 8 on the
one hand and parts to be accounted for by the unstructured error~(() on the
other hand. (Recall that the representation G {J of the nominal model is only
partial because the tail of ê is not present in G 6.) This decomposition used
the orthonormality of the 9 A,i heavily. This should now be revised.

In this revision, the weighting W is interpreted such, that orthogonality in
the weighted parameter space corresponds to the kind of independence that is
wanted among the Ai(() and also between the Ai(() on the one hand and~(()

5.6. Weighting of parameters 179

on the other. This means that wherever an orthogonal projection occurred
in the sections 4.11 and 4.12, this should be replaced by a transformation to
weighted parameter space, an orthogonal projection and a transformation back
to unweighted parameter space.

In section 4.11 it was derived for the unweighted case that

'efi E n 8 , w E W d':f :=

corresponding to a largest component in the direction of 9 A,i equal to

ÖA,i := d'f9A,i·

(4.42)

(5.32)

See also figure 4.10. According to the previous paragraph, all parameter vectors
in (4.42) and (5.32) should be replaced by their weighted counterparts, yielding
a weighted largest component

WÖA i = (- (WÓ I WOA i) + max (WO' 1 WOA ï)) WOA i
' ' 8 1 E.C:9 ' '

The unweighted largest component then is

ÖA · ,i

so that equation (4.42) should read in case of a weighting W on the model
parameters

(5.33)

In the. same way it is found that the original equation

'efi Ens, w E W 4.'!1 := - (fJ l 9A i) + min (O' I OA i) (4.43)
' ' 8'Et:.'(J '

for the unweighted case should become

(5.34)

in the weighted case.
The way in which the structured error components are removed from the

unstructured error in section 4.12 also needs updating. Basically the structured
error components were removed from the unstructured error by projecting all
parameter vectors 91 E C'tJ onto the orthoplement of the span of the structured
error components. For this projection the operator P} was i:ritroduced as

n,

P} = I - L 9A,i9~,i (4.59)
i=l

180 Extensions to the basic

This becomes in the weighted case

P± = w-' (r -t,wo.,;(woA,•?) w = r-t,o •. ,oI,wTw. (5.35)

where it was used that wr = W. In the middle expression in (5.35) we
recognise, from right to left, the transformation to weighted parameter space
through the matrix W, the original orthogonal projection and the transforma
tion back to unweighted parameters through w-1• The projection operator
onto (8 A,i)iEn. becomes in the weighted case

n,

p A = L 8 A,i8~,i wrw (5.36)
i=l

This change should also be reflected in the definition of .C~ in (4.60) on page 128.
This concludes the changes that need to be made in the algorithm to allow

for a weighting of the model parameters. If frequency domain bounds are
required, no changes are required for the interpolation between frequencies for
which the uncertainty has been bounded explicitly. The combination of local
bounds to global bounds can remain unchanged as well.

5.6.2 Weighting of operating point parameters
In this section weighting of the columns of the matrix X from equation (5.24)
will be considered. Further, the matrix V of right singular vectors in the
singular value decomposition will be interpreted. This interpretation will be
presented by means of a numerical example.

Let the matrix X denote again a matrix having the !::,.8w as its columns,

X = sbs !::,.8w,
wEW

and let X be the matrix obtained by putting the ew, w E W, next to each
other,

Suppose that X has for example the following numerical value

1.03 1.00 0.04 -0.04 0.00 0.01 0.34 0.31
1.02 1.05 -0.02 0.03 0.02 0.03 0.32 0.33

x= 0.00 0.01 1.02 1.00 0.01 0.02 0.33 0.34
0.01 0.03 0.99 0.98 0.02 -0.07 0.38 0.32

-0.02 -0.04 0.00 -0.02 1.01 0.99 0.36 0.32
0.05 -0.02 -0.04 0.03 0.96 0.99 0.34 0.35

5.6. Weighting of parameters 181

This matrix was generated in MATLAB by adding a random perturbation matrix
to the matrix

Xoff=

1 1 0 0 0 0 1/3
1 1 0 0 0 0 1/3
0 0 1 1 0 0 1/3
0 0 1 1 0 0 1/3
0 0 0 0 1 1 1/3
0 0 0 0 1 1 1/3

1/3
1/3
1/3
1/3
1/3
1/3

where the entries of the perturbation matrix were normally distributed with
zero mean and standard deviation of 0.03. In this way it was achieved that
the columns of X are clustered in four pairs consisting of the first and second
column, the third and fourth column, the fifth and sixth column and finally
the seventh and eighth column.

After removal of the mean of the columns from X this yields for X

X=

0.69
0.67

-0.35
-0.34
-0.37
-0.30

0.66
0.72

-0.33
-0.31
-0.38
-0.36

-0.29
-0.35

0.69
0.66

-0.33
-0.37

-0.37
-0.30

0.67
0.65

-0.35
-0.30

-0.34
-0.32
-0.32
-0.31

0.68
0.62

-0.32
-0.30
-0.31
-0.40

0.66
0.66

0.00
-0.03
-0.01

0.04
0.01
0.00

-0.02
0.00
0.01

-0.01
0.00
0.02

The clustering in X is maintained in X. Omitting for simplicity any weighting
of the model parameters as discussed in the previous section, the singular value
decomposition of X

is used to determine the structured error components. The following values are
found for U, E and V

0.57 -0.05 -0.48 -0.47 0.24 -0.41
0.58 -0.06 0.47 0.45 -0.27 -0.41

U=
-0.25 0.52 0.37 -0.53 -0.28 -0.41
-0.23 0.53 -0.36 0.54 0.28 -0.41
-0.35 -0.48 -0.37 0.07 -0.58 -0.41
-0.32 -0.46 0.37 -0.06 0.61 -0.41

2.0125 0 0 0 0 0 0 0
0 1.9991 0 0 0 0 0 0

E= 0 0 0.0976 0 0 0 0 0
0 0 0 0.0650 0 0 0 0
0 0 0 0 0.0385 0 0 0
0 0 0 0 0 0.0000 0 0

182 Extensions to the basic algorithm

and

0.58 -0.06 0.11 -0.35 0.49 -0.19 0.50 0.00
0.59 -0.03 0.21 0.25 -0.68 -0.25 0.02 0.08

-0.23 0.54 -0.28 -0.49 -0.39 -0.19 0.36 0.17

V=
-0.24 0.52 0.64 0.35 0.19 -0.26 0.16 -0.11
-0.33 -0.46 -0.14 0.38 -0.11 -0.07 0.71 0.04
-0.31 -0.48 0.47 -0.49 -0.14 -0.40 -0.16 0.03
-0.01 0.00 -0.37 0.24 0.26 -0.69 -0.26 0.45
-0.01 0.00 0.29 -0.01 0.04 0.40 0.05 0.87

Let c be the number of parameters in 0, in this exarnple 6. The columns of
:EVT or, equivalently, the rows of V:ET specify to what extent the structured
error components OA,i = u.i, i Ens, are present in Aow, w E W. This sterns
from the equality

c

Aow = 2:: [vr:T] . u*i w,i
i=l

Looking at

1.17 -0.12 0.01 -0.02 0.02 0.00
1.20 -0.06 0.02 0.02 -0.03 0.00

-0.46 1.07 -0.03 -0.03 -0.02 0.00

V'.ET = -0.48 1.04 0.06 0.02 0.01 0.00
-0.66 -0.91 -0.01 0.02 0.00 0.00
-0.63 -0.96 0.05 -0.03 -0.01 0.00
-0.03 0.01 -0.04 0.02 0.01 0.00
-0.01 -0.01 0.03 0.00 0.00 0.00

it is clear that the contribution of the last four columns of U is dominated by
that of the first two. (This can be concluded even clearer from :E.) Looking
at the columns of vr;T corresponding to the two dominating columns of U, it
is remarkable that the first row resembles the second, the third resembles the
fourth and the the fifth resembles the sixth. This corresponds exactly to the
clustering of the 9w and the AOw.

The clustering could have been discovered without using VET by looking for
examples at the angles between the vectors A(Jw, w E W. In fact, because U is
an isometry the angles between the AOw are identical to the angles between the
rows of vr;T. But there is more to be seen from VET. Looking for example
at the second column of VET it can be seen that IJ A,2 is mainly present in
AOwlw' w E {3,4,5,6}. This means in turn, that the second structured error
component is determined mainly by the auxiliary models for the third, fourth,
fifth and sixth operating point. From the first column of VET can be concluded
that the first structured error component is determined mainly by the first and

5.6. Weighting of parameters 183

3 1.5 •.

rn u* '······

2 x 0 ··". ·. x c

il.< 0.5 0

U*1
0 0 U*1

U*2
-1 x -0.5 1 o: oei 1

-2 -1 x

-1 0 2 3 4 5 -1 -0.5 0 0.5 1.5 2

a) Unweighted case b) One operating point weighted

Figure 5.10: InBuence of weighting of operating points

second operating point. In this way the rows of yr;T give a rough indication
of which operating points are accounted for by the different structured error
components. This information can be valuable for a physical interpretation of
the structured error components.

It now can occur that a structured error component turns out to correspond
mainly to, say, the auxiliary model for a single operating point, that happens
to be based on a rather short data set with a relatively high noise level. In
figure 5. lüa this is illustrated for another set of example values for t::..ew collected
in the columns of

x = [-0.9921 -1.0434 1.0374 5.0173]
1.0262 0.9790 -1.0192 1.9892 .

These values of D.,(JW are indicated by 'x' symbols. The fourth è::..(Jw has deliber
ately been chosen somewhat as an outlier. It largely determines the main prin
cipa1 component U*1. There is considerable structure in the remaining three
operating point models, they all lie near the line (fi + ()2 = O. Because of the
dominating infiuence of the fourth operating point, this information is hardly
present in the principal components. The direction of the line fli + B2 = 0 is in
dicated by the dashed line in the figure to facilitate comparison of the principal
components to this direction.

The value of VL:T is for this example

yr;T = 1.9669 -0.6179 l l.9076 -0.6546 l
0.3011 1.7374

-4.1756. -0.4648

184 Extensions to the basic

From the first column it is clear that U*1 is mainly determined by the auxiliary
model of the fourth operating point. The first and second operating point seem
to have a significant contribution. This is due to the fact that the central model
is "pulled towards" 9w lw=4 . As a result of this, the first and second operating
point get a large error in this direction as well, hut with an opposite sign. This
can be recognised as well from the first column of VET.

If the faith in the fourth operating point model is low, for example due to a
bad signal to noise ratio or a short data set, it seems reasonable to reduce the
infiuence of this model on the structured error components. To achieve this,
the weighting matrix

WR = [l l l J
and the scaled matrix

X' :=XWR

are introduced and the principal components are determined by a singular value
decomposition of X 1 instead of x.

The reasoning bebind the weighting is, that values of ow that have a large
infiuence on the singular value decomposition can have their influence reduced
by moving them towards the center, in some sense, of the ow. The sealing is
applied to X, so to the t::.Ow, and not to the 9w. This corresponds to a sealing
of the distances between the fr and oc: oc is taken as the center of the ow.
Because of this, this procedure is insensitive to a translation of the origin. This
is a desirable feature, as the structure in the model uncertainty should reveal
something about the position of the ow relative to each other, not relative to
the origin.

The result of this weighting is shown in figure 5.lûb. The singular vectors
U.1 and U.2 have changed, hut U*1 is still not much in line with the structure
in the first three operating points. This is due to the fact that after the simple
weighting leading from X to X 1 the columns of X 1 are not zero mean any more.
The new mean value of the operating point parameter vectors has moved to
9ci. The direction 9ci - 9c has a large influence on U.1.

If the mean is subtracted from the columns of X' before performing the
singular value decomposition the results shown in figure 5.11 are obtained.
Now the first singular vector U*1 is dominated indeed by the structure in the
first three operating points. The influence of the fourth operating point is still
recognisable, so it has not been completely discarded.

It is straightforward to generalise the procedure presented in this section
by means of an example to other situations. Basically it boils down to the

5.6. 185

1.5 ·--~--~--~--~

-0.5 ··." ..

-1; x ············· ...

"1.sl~-~-----~---·~··" i
-1 0 2

Figure 5.11: InHuence of weighting and recentering of operating points

following steps: first, reduce the distance between the centra! model parameter
vector and the parameter vector of an operating point that is undesirably dom
inating the principal component analysis. Then establish a new centra! model
for the new set of operating point models and proceed with the principal com
ponent analysis as before. Of course, this procedure need not be restricted to
a single auxiliary model. As many parameter vectors can be weighted as seems
necessary.

There is insufficient information in the auxiliary model parameter vectors
themselves for the algorithm to decide which values should be considered true
system behaviour and which ones should be distrusted. It has already been
mentioned that noise levels and lengths of data sets can be a reason to suspect
models a priori. Also the results of any validation criterion can be used to
establish the reliability of the models for different operating points. Different
levels of reliability should be reflected in different weighting factors for the
operating points.

Remark 5.5 One may have reservations regarding the quality of the new cen
tra! model (Je' that has been obtained by the previous procedure. However,
things are not as bad as they may seem. Firstly, the new central model can
be shown to be a weighted average of the original auxiliary models, with a
lower weighting on models in which there is relatively little faith. Secondly, the
central model (Je' is only a by-product of the determination of the structured
error components. Apart from this use, the algorithm never uses it as a model
for the process, unless the user decides to use it as the nominal model for the
process. In view of the first remark, it still seems better to use the central
model Ge0 1 instead of Ge•. D

186 Extensions to the basic algorithm

5. 7 Other ways to determine the error structure

Up to this point, principal component analysis has been used to determine the
structured error components. In the preceding section means were developed
to tune this analysis to various kinds of insight we may have. In this section
principal component analysis will be circumvented altogether. Alternative ways
to determine structured error components and modifications that should be
made to the algorithm will be discussed.

5. 7.1 Overview of alternaäves to principal component
analysis

• The most important alternative way to find the dominating parts in the
model uncertainty is probably through physical insight. Based on such
knowledge of the plant, it can be possible in certain circumstances to
indicate a priori what aspects of the plant behaviour will change with
changes from one operating point to another. If this prior knowledge is
detailed enough, it may be possible to translate it to n 8 structured error
components Ai((), i E n 8 •

• In section 5.6.1 it was already mentioned that it can be a sensible as
sumption for some plants that the uncertainty is roughly proportional to
the nomina! model: it can be expected that subtransfers that are large
in the nominal model also have a large uncertainty. In fact, the previous
two statements are not equivalent. Assuming that the uncertainty is pro
portional to the nomina! model requires that the same dynamics should
be present in the uncertainty. Assmning that one is large where-the other
is large does not require this.

In section 5.6.1, more specifically equation (5.28) on page 177 this was
less of an issue, because the parameters for a subtransfer were averaged
in (5.28) and these averages were used only as a weighting, not as a direct
specification of the error components. Another, less important, difference
with the situation here is that in section 5.6.1 the central model was used
instead of the nominal model. The nomina! model instead of the centra!
model could have been used in section 5.6.1 equally well.

5.7. Other to determine the error structure 187

Nevertheless it can be worthwhile to take ns = 1 and 9 A,I ê. If
the nominal model is in the model set used by this algorithm, in other
words, if G(() = G9((), the bounds d1 and 4.1 will give a bound on the
multiplicative uncertainty:

Gtr(() = (1 + /)G(() + Ll(()

f E (!J.i,di]

Note that fis a scalar, even for MIMO processes.

• A third approach is to let the results of control design dictate which parts
of the model uncertainty should be bounded separately as structured
error components. This is closely related to the first approach, based on
physical insight: it probably requires physical insight to recognise what
phenomenon is acting as a bottleneck in the control design. On the other
hand, there is a different emphasis in this approach and the first one.
The first approach tries to answer the question "Where can the model
uncertainty be expected to be large?", whereas this approach tries to
answer the more relevant hut also more difficult question "Where can
the model uncertainty be expected to have a large impact on control
performance or robustness?"

• All ways to determine the model uncertainty have relied on information
for more than one operating point. This does not mean that the algorithm
is completely useless in case of only one operating point. It does mean,
that one has to search for alternative ways to find the structured error
components.

In principle, one can base the structured error components on the infor
mation that is present in the set of Iinear constraint C9 • If the polytope
represented by this set is large in one direction and much smaller in the
others, it is definitely worthwhile to bound the large direction separately,
as a structured error component.

In fact, it is not only the size of the polytope itself that is relevant, it
is also its position relative to the nominal model. The largest error in
parameter space is given by

max 119' - êll
9 1 El:.e

(5.37)

where the Euclidean norm in parameter space has been used as a measure
for the distance between two models. Equation (5.37) seems promising
at first: it is a quadratic programming problem .with li:r;iear constraints,
and efficient algorithms exist to solve these problems. However, these
algorithms solve the minimisation problem

min9T PO+ cT9
(J

188

where P is basically required to be a positive definite matrix. General
isations exist for semi-definite P and indefinite P, but especially in the
latter case the algorithms get much less efficient. The problem (5.37) is
in facta minimisation with a negative definite P.

Using a geometrical argument one can see that the solution of (5.37) must
be obtained for a 61 E Co that is a vertex of the polytope Co. There
seems to be no other solution method to (5.37) than simply traversing
all the vertices of Co. For a moderately sized plant with reasonable data
set lengths, Co already contains thousands of constraints. Traversing all
vertices is practically not feasible any more. With computers getting
faster and faster, it may nevertheless be worthwhi.le to pursue this path
a little further. What is not feasible at present may become possible in
five or ten years. This situation may also benefit from the improvement
of algorithms.

One need not restrict oneself to the largest direction only. Once the
largest direction is found, the orthogonal complement may be searched for
the second largest direction and so on, until the size of the largest vector
found in a direction does not seem to qualify for the term "dominating"
any more.

As mentioned in remark 4.13 on page 129 it is not necessary to project
the polytope Ce itself onto the orthogonal complement of the structured
error components found so far to find the next largest direction. Let P}
denote the projection onto the orthoplement of the span of the structured
error components found so far. The next one is obtained by solving

max llP}(O' - 0)11 = max (O' - Of (P})
2

(O' - 0)
9'ECo 91 El9

which is a quadratic programming problem like (5.37).

The idea of using a QP-problem to find the dominating error components
need not be restricted to the case of one operating point. In case of multi
ple operating points one should search in the polytope that is the convex
huil of the union of the polytopes for different operating points. Find
ing the farmer polytope wîll require at the moment (also) an excessive
computational laad.

5. 7.2 Modtfi.cations to the algorithm

It this section it will further be assumed that the structured error components
are available in the form of n 8 independent vectors (J A,i, i E n 8 • The 9 A,i are
neither assumed to be normalised nor orthogonal.

5.7. Other to determine the error structure 189

lt may seem that this information is sufficient to specify how a certain
system G' (() should be written as

n,

G1
(() = G(() + l:ó~Ai(() +il(() (5.38)

i=l

This is not the case.
Consider a system G8 1 where (}' E C'J for an operating point w E W. For

all 9' E C'/J, the difference (}' fJ should partly be accounted for through a
sum 2:~~1 ó~(J A,i, corresponding to the second term on the right of (5.38), and
partly be accounted for by some rest term, corresponding to il(() in (5.38).
This implies that 91 should be written as

n,

(}' = {J + .L ó:o A,i + (JA (5.39)
i=l

where (JA represents the part that should be accounted for by il((). (Recall
that il(() also accounts for any mismatches in the tails. This means that
(JA = 0 does not imply il(() = 0.) If B' - fJ E {O A,i)ien. then there is a unique
set of values óL i Ens, such that

n.

B1 fJ+ _Lö~BA,i, BA= 0.
i=l

If O' '/. {O A,i)iEn. then a value BA has to be found, such that

Of1 := 8' - fJ - OA E {B A,i)ien.

For Bj1 a projection of 81 onto the span of 6 A,i> i E ns, will be used. From
section 5.6.l it is clear that this projection need not be orthogonal in case of
weighting and this is what causes the non-uniqueness of 6A and the fact alluded
to earlier that the directions 0 A,i alone do not determine uniquely the values
of ói in (5.38). In this section the non-uniqueness will be resolved by using the
orthogonal projection. If this is not desired, then the results obtained in this
section can be combined with the results of section 5.6.1.

lt will now be shown how the algorithm should be updated to reflect the
choices made above.

Let the 6 A,i be collected in a matrix 4>:

4> := .sbs 6 A,i
iEn.

(5.40)

and let c be the number of entries in the parameter vectors 6. The operator PA
mapping an arbitrary vector (J E JR,C to its orthogonal projection onto img <li is

(5.41)

190 Extensions to the basic algorithm

and the operator P} mapping a 8 to its projection onto the orthoplement of
img <I> is

Note that these expressions reduce to (4.59) and (4.58) if the 8A,i form an
orthonormal set of vectors. The remarks made above translate to the equalities

and

Substitution of (5.40) and (5.41) in (5.43) gives

or

Bii = [OA,1 ·· .OA,n,] {<PT<I>) <PT(8' - 0)
n,

= ~ [(<1>T<P)-1<PT(O' -iJ)L8A,i
i=l

Ö~ = (e~·? (<J>T <J>)-1 <J>T (O' - 0)

= (<P {<I>T<I>f1 e~· l B' - iJ)

(5.43)

(5.44)

This should be reflected in the calculation of the bounds d'f and d.'t, i E
ns.' w E W. In section 4.11 it was derived for the upper bounds d'f for the
case of orthonormal 0 A,i that

Vi Ens, w E W d't' := - (0 1 OA,i) + 6~q (0' 1 OA,i) (4.42)

Based on (5.44), this should now become

and for the lower bound we find

The only change that is required for the calculation of the unstructured error
bound is that (5.41) and (5.42) should be used instead of (4.59) and (4.58) for
the definition of the projection operators PA and P}. The combination of local
errors to global errors can proceed as before.

5.8. Unstable systems and closed loop experiments 191

Remark 5.6 In this section it was shown how to use arbitrary structured error
components. In section 5.6.1 the direction of the structured error components
could be infiuenced by weighting the model parameters before doing principal
component analysis. One may wonder to what extent the use of arbitrary
structured error components is more genera! than weighting.

The example below will demonstrate that through weighting only a limited
set of structured error components can be obtained.

Consider the case of two arbitrary vectors lh and 62 , both in me. Let

w Wi > 0, i E c
[
Wl . . Wel '

be a weighting matrix such that W 61 and W 62 would be two of the left singular
vectors of WX in (5.31). It would hold

c

(W61 1 W62) = L wr81,i82,i
i=l

The first vector in the second inner product has only positive entries. The inner
product can now only be zero if the entries of the second vector are either all
zero or do not have the same sign. This may not be true. Consequently,
structured error components 61 and 82 can not be obtained by weighting.
Being able to specify structured errors explicitly is truly more genera! than
weighting. D

5. 8 Unstable systems and closed loop experi
ments

The algorithm is only suitable for stable systems. This is due to the fact that
only for stable systems G(() the expansion

00

G(() = L ()kBk(()
k=O

is possible with an exponentially decaying sequence of f)k 's. This exponential
decay was in turn used heavily to bound the effect of undermodelling.

The algorithm itself is not restricted to open loop situatioris: as long as the
prior information can be obtained, the algorithm can be applied. This does not
mean, that experimental data obtained in closed loop do not complicate things
at all. The complications occur at the level of the identification steps that

192 Extensions to the basic

+

Figure 5.12: Feedback configuration

are part of the algorithm, for example for the estimation of auxiliary models.
These identification steps have to be able to deal with closed loop data. The
least squares algorithm that was proposed by way of example is not suitable
for closed loop data.

A technique going back to (Hansen and Franklin, 1988; Hansen et al., 1989;
Hansen, 1989) can be used to circumvent both problems. The technique was
elaborated further in (Schrama, 1992; Schrama and Van den Hof, 1992) and
was applied by (De Vries, 1994) and later by (Hakvoort, 1994) for the purpose
of model uncertainty bounding. See De Vries (1994) for more references on the
subject and for further motivation of the framework.

The idea is not to identify the possibly unstable plant itself, hut (stable)
coprime factors of this plant. This will be explained in more detail shortly.
Then the implications this scheme has for the application of the algorithm will
be considered.

5.8.1 Coprime factor representation

First, the following assumptions are made:

1. The linear manifestations Gf;. of the plant in the operating point w E W
are linear time-invariant finite dimensional (LTIFD) systems.

2. For all operating points w E W, Gt;. is stabilised by the same known
LTIFD controller C in the configuration of figure 5.12.

3. A (LTIFD) nominal model G for Gtr is available that is stabilised by C.

Assumption 1 is new only as far as the finite dimensionality of Gf;. is con
cerned. The linear manifestations of the true system were almost by definition
considered linear time-invariant processes.

In the feedback configuration of figure 5.12 e(t) is a signal representing
noise, disturbances and possibly also other effects related to undermodelling,

5.8. Unstable systems and closed loop experiments 193

e

u
t---c:i1--..,....Y

~- .. ·------------------------ ---- --------- .. ----------------------------------· .. ______ :

Figure 5.13: Extended dual Youla parametrisation

see chapter 3. r1 (t) and r2(t) are reference signals. They need not both be
present for the purposes of this section. Note that the effect of r2(t) can also
be achieved by increasing r1 (t) with a term C r2 (t).

For completeness the definition of right-coprime factorisations is given:

Definition 5.2 A pair (N((), D(()) is called a right-coprime factorisation over
R1i00 of a linear, time-invariant, finite dimensional q x p system G if

l. G(() = N(()D(()-1

2. N(() E R1i'!};P and D(() E R1i~P

3. 3U(() E R1i~q' V(() E R1i~P, U(()N(() + V(()D(() = I

D

Loosely speaking, the coprime factors N and D can be seen as a stable numer
ator and denominator of P satisfying that there is no cancellation of unstable
zeros in the quotient N n-1 .

Given the assumptions made above, Gt:,., w E W, C and ê admit a
right-coprime factorisation over R1i00 , see (Vidyasagar, 1985). Let (Nt:.,Dt:,.),
(Nc, De) and (JÎ/, D) be right coprime factorisations of Gt!,., w E W, C and
ê respectively. The assumption that all Gt!,. are stabilised by a controller
C that is known to stabilise ê is equivalent to the assumption that there
exists for all w E W a Rt!,. E R1i00 such that the system drawn in fig
ure 5.13 is equivalent to the part drawn in a dashed box in figure 5.12. In
that case it also holds that St;. E RH.00 for all w E W. This result is shown in
(Schrama, 1991; Schrama, 1992). The interconnection drawn in figure 5.13 is
known as the extended dual Youla parametrisation.

194 Extensions to the .basic algorithm

In (Schrama, 1991; Schrama, 1992) it is further shown that for u and y
obtained in an operating point w, w E W, it holds

x = (b + CN)-1(r1 + Cr2) = (b + Cfe)-1(u + Cy)

z = R'frx + s;:_e = D-;1(y - Nx)

u = D'frx - NcS:':.e

y = N;':.x + DcSf:.e.

(5.47)

Provided the external references r 1 and r 2 are not correlated with the distur
bance e, x is uncorrelated with e. Note that x and z are computable because
r 1 , r 2 , N, b and C are known. This means that the transfer from x to z can
be estimated in an open loop fashion. Moreover

D'fr = b - NcRt,W,.

N;':. = N +DcR'fr
(5.48)

so that Df:. E 'R1lf:P and Nt"i- E 'R1l'f:;P. These transfers being stable, the
algorithm can be used to bound the uncertainty in D'f:. and N'f::.. However,
bounding the uncertainty in D'f:. and N'f::. separately ignores the fact that these
transfers are related through (5.48), where fv, b, Nc and De are known trans
fers. Ignoring the relation that exists between the uncertainty in n;::. and Nt:.
leads to more conservative error bounds, so it is better to bound the uncertainty
in R;:J..

Note that the coprime factors Df:. and N;::. and the Youla parameter Rt:,
that will be found depend on the factors of the nominal model. For a different
nominal model or even for a different factorisation of the same model, different
factors Dt;. and N;::. will be found. (IT the identification of Df;. and N;::. is un
biased, the quotient N;_(D'f;.)- 1 does not depend on the factors of the nominal
model of course.) This may even go so far, that the order of Nf::. and Df:. is
different for different (factors of) the nominal model. This interesting issue is
not investigated further here. The interested reader is referred to (Van den Hof
and Schrama, 1995).

5.8.2 Implications for the algorithm

The most important implication for the algorithm is, that the model uncer
tainty is no longer additive uncertainty hut "Youla parameter uncertainty."
The uncertainty description is

Ntr = N + DcRtr

Dtr = D NcRtr
n.

Rtr Ro + D..R + L ÓiAR;i
i=l

(5.49)

5.8. Unstable systems and closed loop experiments 195

where

Ntr,N,Nc E 1l~xp, Dtr,D,Dc E 1l~xp,
qXp -

Rtn Jlo, f:::..R, AR,i E 1l2 , d.i :5 <Îi :5 di

111:::..Rll :5 dR,fi, dR,ti,d.i,öi,di E IR,

i Ens

This structure is visualised in figure 5.14. The uncertainty consisting of t::..R
and Ö1 , ••• , Ón, can be used by µ synthesis as well. .

z

Figure 5.14: Coprime factor uncertainty structure

The prior knowledge that is required for successful application of the al
gorithm is the same as that for the original algorithm, with the modifications
that x and z take the role of the original u and y. Also Rt.. acts like Gf:. did
in the original algorithm. Nevertheless some further discussion is desirable,
as these substitutions may have some consequences for the ways in which this
prior knowledge can be obtained.

• The same data sets are required as for the "standard" algorithm. Further
the controller that was present in the loop during the experiments bas to
be known. According to (5.47) this is sufficient to reconstruct the signals x
and z. ·

o For some data sets d E ']) an instrumental variable v4 (t), t E T 4 may be
available. This instrumental variable should be correlated with x but not
with the disturbances e. This is equivalent to requiring thát the instrumen
tal variable is correlated with r 1 and/or r2 but not with e.

Similarly to the open loop case, x itself can be used as an instrumental
variable if no other qualifying signal is available or desired. As the identifi-

196 Extensions to the basic algorithm

cation of the relation between x and z is an open loop problem, there is no
strict need for instrumental variables other than x.

• For each operating point w E W, the data is assumed to be affected by
noise that is ·additive to z. According to {5.47) ~nd figure 5.13, a sufficient
condition for this is, that the noise is additive to the output, as in the open
loop case. Being in a closed loop situation, the input u is now affected as
well by the noise.

The Youla parameter of the linear manifestations of the true system is
expressed in the MIMO basis in the following way:

00

R~(() = L L(Bltr}~Eu Bk((), a ES
uES k=O

• For each operating point, and for each subtransfer a E S of the Youla
parameter Rt";., values MR. E IR+,PR. E [O, 1),BR.,max E IR+ and k'R E IN are
known, such that

{5.50)

In the open loop case, the poles of the basis generating system had to be chosen
close to the poles of the true system in order to make pu small. Conversely, in
case of bounding the uncertainty in the Youla parameter the poles of the basis
generating system should be taken close to the poles of the Youla parameter

Rt":.· A A

If the nominal model is used for the factors N and D, then the Youla
parameter will be zero for the nominal model. Perturbations of the nominal
model correspond to perturbations of the Youla parameter around 0. Although
the fact that Rt":. is a stable transfer follows from the fact that the true system
is stabilised by the controller C, it is difficult to be more precise about the pole
locations of R'f:. in this case. This makes it difficult to generate a basis with a
basis generating system having its poles close to those of Rr;,.

It may therefore be advisable to base N and ÎJ on a model that is known
not to coincide with the true system, so that non-zero values for R'f:. can be
expected. This model has to be stabilised by C, but using a preliminary Youla
parametrisation it is easy to find such models. The procedure suggested in
section 4.8.3 should probably be used subsequently to estimate the bounds MR_
and pR_, a ES.

• For each operating point w E Wand for each data set d E 'D(w), a signal
ez : 'JI'd -t mi is available, such that

5.8. Unstable systems and closed loop experiments 197

Basically the signal ë~(t) can be derived from the signal ë(t), the l 1-norm
of s;::. and suitable assumptions concerning the extension of ë(t) for t < 0.
Unfortunately the transfer Sf':. is not known exactly. It holds, see for example
(Van den Hof and Schrama, 1995),

s;::. = D;-1(1 + Gt,.c)-1 H

This involves the unknown transfer Gfr.. Also it was demonstrated in section 5.2
that such a bound based on the €1 norm may be very conservative. It seems
to be a better idea to base the bound on the residuals in the identification
of RrJ. as was proposed in section 4.8.3.

• For each data set d E '.D, a vector xd E JR~ is available, such that

Let fd be a bound for lr1 (t) + Cr2(t)j, t < 0. Then it follows from (5.47)
that

Once again, this is probably a conservative estimate for xd, see section 5.2.
The procedure suggested in section 4.8.3 should be preferred.

This concludes our discussion of the main types of prior knowledge that may
be or should be available to the algorithm in the closed loop case. The cross
covariance bound (4.9) and the extensions discussed in section 5.4 and 5.5 can
also be incorporated into this closed loop procedure with little modifications,
similar to the ones discussed above.

Once the prior knowledge is available, the a1gorithm can be followed unal
tered to obtain finally the fully specified uncertainty description given in (5.49)

198 Extensions to the basic algorithm

6
Examples and case studies

6.1 Overview
6.2 A simple SISO simulation

example
6.3 A more complex SISO

simulation example

6.1 Overview

6.4 A MIMO simulation example
6.5 Case study:

Asynchronous motor
6.6 Conclusions

In this chapter the algorithm of chapter 4 and 5 will be tested by means of a
number of examples.

The first example is a SISO simulation example that was constructed in
such a way that it fits the assumptions and uncertainty description of the
algorithm. This example was already presented throughout chapter 4. The
results presented there are briefly repeated and some new results are given.
The second example is also a SISO simulation example, hut the structure that
is present in the model uncertainty can not be represented exactly by the
uncertainty description of the algorithm. This example gives an indication
of the capabilities of the algorithm to capture in an .approxîmating way the
structure that is present in the uncertainty of the transfer of a process if that
structure does not fit the uncertainty description (4.4). The third example
is a MIMO simulation study. Some of the effects that may occur in MIMO
situations, including the effect of weighting as discussed in section 5.6, will be
shown.

The final example uses practical data taken from an asynchronous motor. It
is known from physical reasoning and practical experience that the character
istics of this motor change if the magnetic material inside the. motor saturates.
It will be investigated whether this influence on the dynamics of the motor can
be described by structured error components and whether these components
can be found by the algorithm.

200 and case studies

6.2 A simple SISO simulation example

6.2.1 System and data

A system with two "operating points" is considered. In the first · operating
point, denoted operating point a, the transfer of the process is

Gfr(z) = z ~.97
and for the second operating point, denoted b, the transfer is

G~r(z) l.5Gfr(z) = z ~i.97
A basis was generated using the system

1
Gb(z) = z - 0.95

The poles of the basis generating system were deliberately chosen close to but
not equal to the poles of the linear manifestations of the true process. Only
one data set per operating point was used. For bath operating points a data
set was generated containing 1500 samples, with zero initial conditions. The
first 500 samples were discarded, the remaining 1000 samples were taken as the
experimental data sets. The experimental data sets therefore had unknown,
non-zero initial conditions. 10 basis functions were incorporated in the model.
This gave sufficient freedom in the model set to contain an accurate approxi
mation of the true process.

The inputs were random white noise sequences having a standard normal
distribution. Additive noise was added to the output. The signal to noise ratio
at the output was 40 dB in the first operating point. In the second operating
point the absolute noise level was taken the same, so that the signal to noise
ratio was better in this operating point. The noise was uncorrelated with the
inputs, was not coloured and had a zero-mean Gaussian distribution. The fact
that the noise was not coloured was not used by the algorithm itself, nor in the
identification of auxiliary models.

No prior information was given to the algorithm concerning the decay rate
of the model parameters. As the poles of bath the true system and the basis
generating system are known in this example, it can be calculated that there
exist Ma, Mb E JR+, such that

l8fr,kl :::; Ma0.255k

18Zr,k 1 :::; Mbo.255k

where 8fr,k and 8fr,k are the true expansion coefficients of Grr and Gîr expressed
in the basis generated by Gb. No noise levels or bounds on past inputs were

6.2. A simple SISO simulation example 201

given either. The inputs were used as instrumental variables in the cross
covariance bound (4.9). The value of ët, which is the actual cross-covariance
bound, was estimated by the algorithm.

6.2.2 Results

First the results obtained using one principal component are discussed. The al
gorithm was run once without estimating initial conditions, using the extended
noise and cross-covariance bounds (4.30) and (4.37) and once while estimating
initial conditions, using the extended noise and cross-covariance bounds (5.5)
and (5.7).

The extended noise bound limits the influence of noise and transients on
the output. In figure 6.1 the bounds are shown using dashed lines and the
sum of the true transient and the true noise are plotted with a continuous line.
The left part of the picture shows the results obtained with the bound (5.5),

3 400

2.5
true noise and

2 transient
200 ~

\

1.5
extended noise \ 1 see left 1

upper and '-0 ::
lower bound

,,.-
I

0.5
I

-200

0 ---------
-0.5 -400

0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 6.1: Extended noise bound, with (left) and without (right) estimating
initial conditions

i.e. while estimating initial conditions. The right part shows the results using
the bound (4.30), without estimating initial conditions. The areas between
the dashed lines are the areas that are consistent with the respective extended
noise bounds. It is clear that estimating the transient improves the extended
noise bound considerably.

The truncation value k was taken equal to 19 in the calculation of the
extended bounds. In this way the same number of basis functions is used for
the model and for the first part of the tail of the basis. The undermodelling
due to the first part of the tail is bounded in a less conservative way than
that due to the rest of the tail. It seems reasonable that if ten basis functions
are enough to get sufficiently accurate models, then ten extra basis functions
should be enough to get a sufficiently non-conservative bound on the influence
of the tail.

202 and case studies

Given the above value of k, à(t) in (4.26) accounts for the possible influence
of known inputs through basis function 10 to 19 and b(t) in (4.27) bounds
the possible influence of unknown inputs through basis function 0 to 19. 8 in
(4.28) accounts for the infiuence of all inputs, known and unknown, through
basis function 20 and higher.

In the Ieft hand picture, the mean and standard deviation of à(t) were 0.0011
and 0.0007, respectively. The value of the noise bound ë(t) was estimated to be
0.14 for all t and the value of 8 was 0.59 .10-5. It is clear that the contribution
of à(t) and 8 is negligible. This is mainly due to the fast decay of the estimated
model parameters. This will be discussed in more detail shortly.

In the right hand picture, two effects occur. Most visible is the large value of
b(t). It is the contribution of b(t) that causes the excessive initial values for the
extended noise bound. The other effect is that the residuals of the estimation
become larger, because they also have to account for an unmodelled transient
in the data. This manifests itself in the larger estimated noise bound ë(t): the
value 3.05 was estimated for all t.

The lack of modelling of the transient results in less accurately estimated
model parameters. This leads to worse values for M and p and in turn to larger
values for a(t) and 8. The mean value and standard devi.ation of a(t) are in this
case 0.0049 and 0.0028. The value of 8 is 0.12 · 10-3. These values are larger
than in the case that the transient is estimated, hut they are still negligible.

The absolute values of the estimated model parameters and the parameter
bounds êk, k = 0, ... , 9 that were estimated from these are shown in figure 6.2.
If the transient is not estimated, the parameters of the high order basis func
tions become less exact, which means in this case that they become larger.
Therefore the estimated bounds êk become larger as well.

102

101

10° transient estimated

10-'

-x: 1 ~Iodel param.
-: fh

transient not ·--
10-2

10~3

--o: 1 ~odel param.
--: ()k

10-<
0 2 4 6 8

k -+

Figure 6.2: Estimated model parameters and their bounds

6.2. A SISO simulation 203

Not estimating the transient that is present in the data inflates the poly
topes C'tJ, w E W containing the true model parameters: the extended noise
bound, the extended cross-covariance bound and the bounds ijk all increase
(except for ij0, see figure 6.2). The slower decay of the bounds ijk also causes a
larger influence of the tail of the basis on the uncertainty bounds. In figure 6.3
the impact this has on the uncertainty regions due to the unstructured error
is shown for a number of frequencies. The uncertainty regions apply globally,
i.e. for both operating points. There is clearly a dramatic increase in the size
of the uncertainty regions if no transients are estimated.

20

10

0

-10

-20

-30

-40

-50
-20 -10 0 10 20 30 40 50 60 70 BO

Figure 6.3: Frequency uncertai.nty regions with one structured error compo
nent; light areas: uncertai.nty without estimated transient, dark areas: uncer
tai.nty with estimated transient, x: models estimated for an operating point

With this the comparison of results with and without estimating initial
conditions is ended. Based on these results only the algorithm that estimates
the transients along with the model will be used further.

Now the results with a structured error component are compared to those
without one. Figure 6.4 shows the uncertainty for a number of frequencies. The
x's in this plot show the transfer of the estimated auxiliary models for the two
operating points. The line roughly halfway between the two lines connecting the
x's corresponds to the transfer of the nomina! model. The light areas represent
the uncertainty that is found without a structured error component. The dark
areas show the uncertainty when one structured error component is removed

204

5

0 .. "".

-5

-10

-15

-20

-25

-30'--~~~-'-~~~...._~~~-'-~~~......__~~~-'-~~~--'-~~~--'

-10 0 10 20 30 40 50 60

Figure 6.4: F'requency uncertainty regions with estimated transient; light areas:
no structured error, dark areas: one structured error component

from the unstructured error. The size of this structured error component as
bounded by 41 and d1 is shown by dashed lines. The dark areas in figure 6.3
and figure 6.4 are the same.

Figure 6.5 shows the process transfers and the uncertainty bounds in a
Bode amplitude plot. The light shaded area represents the nominal model
together with the uncertainty due to the unstructured error if no structured
error components are used. The two continuous lines near the edges of this
area represent the true transfers in the two operating points, the one on top
in operating point b, the other in operating point a. The unstructured error,
which is the only model uncertainty if no structured error is used, appears to
be large enough to contain the difference with the nominal model for both true
transfers.

The darker shaded area represents the nominal model and unstructured
error if one structured error component is used. Adding a structured error
component has clearly shrunk this error. The dashed line is the amplitude plot
for

The dotted line right below it is the amplitude of the true difference between
the process and the nominal model. Actually there are two dotted lines, one for

6.2. A simple SISO simulation example 205

10'

(see text)
10'

.. "."":.""":'.~.-:-.. -:-.-:-:.-:-:.7.:-:-.:-.. ~ :- ..

··:"':',~

10•

. .,.
·":"-.

Figure 6.5: Uncertainty in Bode amplitude plot, global results

each operating point, but they are so close that they can not be distinguished
in this plot. As far as one can tell from the Bode amplitude plot, the structured
error component is consistent with the nominal model and the two true process
transfers.

Comparing the Nyquist plot in figure 6.4 with the Bode plot in figure 6.5,
the Nyquist plot looks probably more dramatic than the Bode plot. This is
due to the logarithmic sealing that is employed in the Bode plot.

6.2.3 Discussion

It is not surprising that the algorithm performs satisfactory in the situation
analysed in this section: the undermodelling is small and so are the noise levels.
The uncertainty in the process transfer is clearly dominated by the difference
between the transfers of the two operating points.

With two operating points and one structured error component, one can
expect the algorithm to find a nominal model equal to the mean of the two
transfers. The structured error component is then "aligned" with the difference
between the two transfers. This is exactly what happens. In this academie
example there is no point in asking whether the structure that was found in
the uncertainty is correct. Having only two operating points, the structure is
correct if the uncertainty description (4.4) is consistent with the true transfers.

In a practical example much more care should be taken. It is likely that a
practical process does have more than two operating points. In fact, the set of

206

operating points is likely to be an uncountable set in many cases. If one wants to
"extrapolate" the validity of the uncertainty bounds to more operating points
than those for which data was obtained, it is wise to gather data for more than
two operating points. One should also select these operating points carefully
to make sure that they cover the relevant changes in process behaviour that
one wants to capture by the uncertainty description.

Nevertheless it can be concluded that the algorithm performs as could be
expected in a situation that fits the algorithm. In the next section a situation
that fits the algorithm less well is analysed.

The other conclusion to be drawn from this section is that modelling the
transient can have a large beneficia! effect on the size of the extended noise
bound. How large this effect is depends on the noise level and the level of
undermodelling in an operating point.

6.3 Amore complex SISO simulation example

6.3.1 System and data

In this section a system will be considered that can be described by the following
set of transfers

Grr,(z) = (0.003
w (1-aw)z

O.Ola) (z - 0.97 - O.law)(z - 0.9)'

where aw takes the values listed in table 6.1. Different values of aw correspond
to a different operating point. Data was generated for all operating points in
table 6.1. The DC-gain of Gf;.(z), i.e. Gfr(l), is equal to 1 - aw. The Bode
amplitude plots for the system in different operating points are collected in
figure 6.6. The changes in process transfer are highly structured, they can be
described with a single parameter aw, hut this structure can not be represented
by the uncertainty description (4.4) used ·by the algorithm.

For each operating point, a data set of 2000 samples was generated, where
the input was normally distributed, zero-mean white noise. The first 1000
samples were then discarded, so that reasonably sized transients may be ex
pected in the data sets. Additive noise was added to the output. The signal to

Table 6.1: Operating points and their values of a

f;f 1 2 3 4 .5

-0.2 -0.1 0 0.1 0.2

6.3. A more complex SISO simulation example 207

Figure 6.6: Bode amplitude plots for different operating points of the example
of section 6.3

noise ratio at all outputs was 40 dB. The output noise was white, zero mean,
normally distributed and uncorrelated with the inputs.

10 basis functions were used in the model. The truncation value k in the
calculation of the extended noise and cross-covariance bounds was taken equal
to 19. A basis was generated with the system

z
Gb(z) = z - 0.975.

The basis generating system was deliberately not tuned too much to the true
system to investigate the influence this has. The single pole in the basis gener
ating system is in particular relatively far away from the pole in 0.9 in the true
system. Better results would be obtained if a basis was generated by a second
order system having an additional pole near z = 0.9 compared to Gb(z) above.

6.3.2 First results, discussion

Before presenting the results, figure 6.6 is first considered somewhat closer.
Although the plots may seem to be close to each other, they are very different
as far as additive errors are concerned. The largest transfer, corresponding
to aw = -0.2, is for high frequencies an order of magnitude larger than the
smallest transfer, which is obtained for aw = +0.2. One may also verify, that
the time constant corresponding to the pole that moves for differing operating
points varies by a factor 5.

208

This is refiected in figure 6. 7 in which Bode amplitude plots of the nomina!
model and of the true errors between the nominal model and the process in
different operating points are shown. The nominal model was taken equal to
the central mo~el in the algorithm. The true errors are, especially for high
frequencies, of the same order of magnitude as the nomina! model itself.

w -r

Figure 6. 7: Bode amplitude plot of true additive errors for different operating
points ('-')and nominal model ('--')

In figure 6.8 the structured and unstructured errors that were found by
the algorithm are shown in a Bode amplitude plot. The dotted lînes give
the unstructured errors, the dashed lines the structured errors. The dotted
line with no additional marker is the unstructured error if no structured error
components are used. The dotted line marked with * 's is the unstructured error
for one structured error component. On very close inspection it can be seen
that there is also a dotted line marked with +'s. This line can be distinguished
between w = 10-2 and w = 10-1 • It is a little bit below the line marked with
*'s. It gives the unstructured error if two structured components are used.

The unstructured error is significantly larger than the true error, especially
for large frequencies and for small frequencies. In the remainder of this section,
this is analysed further, thereby showing the capability of the algorithm to
indicate what effect actually determined the final noise bounds.

For the analysis of the noise bound, attention is restricted to the single
frequency w = 10-3 . The case for one structured error component is considered,
the cases for zero or two structured error components would given comparable

209

' ' ' ' >

w -t

Figure 6.8: Structured and unstructured uncertainty in Bode amplitude plot

results. Figure 6.9 on page 213 shows the transfer function uncertainty regions
for this frequency for different operating points. It turns out that the operating
point for aw = -0.1 has the largest uncertainty region, containing all the
others. Consequently the global uncertainty region, i.e. the one that is valid
for all operating points, is in this case determined solely by the uncertainty for
aw = -O.I. (This situation is not only encountered for w = 10-3 , hut also for
other low frequencies. For higher frequencies the size of the uncertainty region
for aw = -0.2 becomes comparable in size to that for aw = -0.1 and both
uncertainty regions then determine the global uncertainty region.)

Figure 6.10 on page 213 separates the transfer function uncertainty regions
for aw = -0.1, w = 10-3 into a part due to the uncertainty in the model
parameters and a part exclusively due to the tail of the basis. The part induced
by the model parameter uncertainty is enclosed by a dashed line, the remainder
of the area enclosed by a continuous line is caused by the tail of the basis.

As far as the uncertainty due to the tail of the basis is concerned, there are
basically two ways to reduce this uncertainty. The first is to use more basis
functions in the model. This may increase the size of the uncertainty due to the
model parameters, hut the reader may verify in section 4.12 that this increase
will never be larger than the decrease of the uncertainty due to the tail of the
basis.

The second way to reduce the uncertainty caused by the tail of the basis is
to use a set of basis functions for which the expansion coeffi.cients for the basis

210 and case studies

functions in the tail are smaller. This can be achieved by choosing the poles
of the basis generating system closer to the poles of the linear manifestation
of the system in this operating point. This may deteriorate the decay rate of
the expansion coeffi.cients for the tail of the basis in other operating points. As
the poles of the linear manifestation of the system in the operating point that
we are considering are not known in a practical setting, matching the poles of
the basis generating system better to those of the true system involves either
an extra identification of the true system in this operating point or a model
reduction step of the corresponding auxiliary model. Recall that the poles of
the auxiliary models coincide with the poles of the basis generating system (up
to multiplicity).

In this particular example, the decay rate of the tail could be improved
by generating a basis with a second order system. It was already mentioned
that the pole in z 0.9 of the true system is not accounted for in the basis
generating system. Leaving this pole out of the basis generating system has
apparently a significant inffuence on the size of the tail of the basis.

Remark 6.1 The previous discussion may suggest that the area enclosed by
dashed lines in figure 6.10 is independent of the tail of the basis. This is not
true. This area is determined, among other things, by the extended noise and
cross-covariance bounds. In the extension of these bounds, the tail of the basis
is involved as well. D

Attention is now focussed on the uncertainty due to the model parameter
uncertainty. For w = 10-3 this corresponds to the area within dashed lines in
figure 6.10. The size of this part of the uncertainty is determined by the set
C'/J of linear constraints. C'/J consists in this case of ten upper and ten lower
bounds for each of the model parameters, 1000 upper and 1000 lower bounds
corresponding to the extended noise bound and one upper and one lower bound
originating from the extended cross-covariance bound. It turns out, that the
only constraints that were ever active during the linear programming problems
that were solved in this operating point are constraints that come from the
extended noise bound. The cross-covariance bound was never active; if it were
omitted from the problem, the same uncertainty regions and structured error
bounds would have been obtained! (One can not tell in advance whether this
situation will occur: in some examples it <lid and in others it did not.)

To keep the memory requirements of the algorithm reasonably small, it was
only recorded which constraints were active at least once in all linear programs
in an operating point. This means that the constraints that were reported to
be active may not have been active during the bounding of the unstructured
error for w = 10-3 . They may have been active instead while bounding the
unstructured error for other frequencies or while bounding the structured error
component.

6.3. A more complex SISO simulation example 211

Figure 6.11 on page 214 shows the residuals together with the extended
noise upper and lower bounds. The noise bounds that were active are marked
with a 'o'. There seems to be a tendency to avoid making the noise bound
active for samples that correspond to a local peak in the noise bound. This is
to be expected, as these constraints are less strict than those for samples for
which the noise bound does not peak. Surprisingly enough, for some of the
samples for which the noise bound peaks, the corresponding constraints have
been active as well.

To continue the search of the effects that eventually determine the unstruc
tured error in figure 6.8, the extended noise bound is separated in figure 6.12
on page 214 into its constituents. The straight line at a constant level of 0.0069
is the unextended noise bound. The line that is for small t a bit above the un
extended noise bound is the sum of the unextended noise bound and the bound
on the transient as derived in section 5.2. The "noisy" line above that is the
sum of unextended noise bound, transient bound and ii(t). In this example,
ii(t) is a bound on the response of basis functions 10 to 19 to the inputs in
the experimental data set. In the last line in the top of the plot the term ó is
finally added. ó is a bound on the response of basis functions with index 20
and higher, both to the inputs in the experimental data set and to the inputs
preceding the experiments.

Clearly the contribution of ó, i.e. the response of basis functions 20 and
higher, is the largest one in this example. From equation (4.28) on page 108
can be seen that, given a set of basis functions, the value of ó is determined by
max{u, lu(O)I, ... , lu(T - 1)1} and Ök, k = 20, In this example it holds

max{u, lu(O)I, ... , lu(T - 1)1} = u,
Ök = Mpk, k = 20, ...

In table 6.2 the values of ó, u, M and p that were found for different operating
points are listed. The change in magnitude of ó over different operating points
is in good agreement with the change in magnitude that is observed for the
uncertainty regions in frequency domain. It is interesting to compare the values
found for a:w = -0.2 with those for a:w = -0.1. Both u and Mare larger for
a:w = -0.2 than for a:w = -0.1, which leads in principle to a larger value of
ó. However, this is more than compensated by the decrease in p from 0.681
to 0.666: the value of ó appears to be very sensitive to the value of p. This
also explains the small values of ó for a:w = 0.1 and a:w = 0.2. These can be
attributed to the small value of p that is estimated in these operating points.

6.3.3 Further results

The example in this section was designed to get insight into the capabilities
of the algorithm to describe structure in a process uncertainty that does not
fit the uncertainty description (4.4). Figure 6.8 on page 209 seems to indicate

212 Examples and case studies

aw ó ü M p ó/ü
·103 ·103

-0.2 20.1 3.79 0.324 0.666 5.3
-0.1 26.1 3.62 0.266 0.681 7.2
0.0 14.0 3.82 0.220 0.666 3.7
0.1 0.8 3.88 0.184 0.587 0.2
0.2 0.1 3.27 0.176 0.542 0.0

Table 6.2: Va.lues of/determining ó for different operating points

that these capabilities are very restricted: using one or two structured error
components hardly changes the unstructured error. Moreover, the unstructured
error bound is much larger than the true model error.

The analysis in the previous part of this sectîon suggests that the unstruc
tured error is dominated by contributions which can be traced back to the
influence of undermodelling and the way in which this is bounded. The tail of
the basis infiates the extended noise bound such, that the uncertainty in the
process transfer is mainly determined by this effect. This, in turn, was caused
by leaving out a pole of the true system from the basis generating system.

To verify whether this is indeed the case, the algorithm was run again, but
this time the tail of the basis was ignored. This was achieved by setting

uk= o, k > 9.

For k = 0, ... , 9 the original values for Uk were maintained. This gives the
results shown in figure 6.13 on page 215. The meaning of the plots in this
figure is the same as in figure 6.8. The dotted line with no markers is the
unstructured error that is obtained without structured error components. The
dotted line marked with *'s is the unstructured error that remains after one
structured error component is removed and the dotted line marked with +'s
the unstructured error with two structured error components removed. The
dashed line with x's is the first structured error component, that with o's is
the second.

A number of things can be observed from this figure. First of all, the un
structured error that is obtained if no structured errors are used is in much
closer agreement with the true size of the model errors in different operating
points than was the case in figure 6.8. Secondly, the first structured error
component is very close to the unstructured error. It leads in deed to a signifi
cant reduction of the unstructured error if this component is removed from the
unstructured error. Removing a second error component has a much smaller
influence on the size of the unstructured error. This is in correspondence with
the size of the singular values that are found in the singular value decompo-

6.3. A more complex SISO simulation example 213

t ImGw(ejw)

0.5

Qw marker

-0.2 +
0 -0.l *

0 0

0.1 x
0.2 (none)

-0.5

Figure 6.9: Frequency uncertainty regions in different operating points for
w = 10-3

0.5

0

~ ________ .J

-0.5

-2 -1 0

Figure 6.10: Total uncertainty region (-)and uncertainty region not due to the
tail of basis (--) for w = 10-3

214 Examples and case studies

0.04

0.02

-0.02

-0.04

-0.06 ,___......_ _ _._ _ __,_ _ ___. __ ,__ _ _._ _ _._ _ __._ __ ,______.
0 100 200 300 400 500 600 700 800 900 1000

t (samples) -t

Figure 6.11: Residuals and extended noise bounds. Active bounds are marked
with a 'o'

0.05

0.04

0.03

0.02

0.01

o~-~-~-~--'----'---~-~--,___......__~

0 100 200 300 400 500 600 700 800 . 900 1000

t (samples) -t

Figure 6.12: Constituents of the extended noise bound (see text)

6.3. A more complex SISO simulation exmnple 215

' \9

' '

'
1o-<~~~~~~~~~---~~~~~~~~~-'-'~~~~-'-~

1~ ,~ 1~ w
w -+

Figure 6.13: Structured and unstructured uncertainty in Bode mnplitude plot,
effects of undermodelling ignored (see text)

0.01..--~-..~~-,..-~~..--~-,-~~-,..-~~..--~-,-~~-,..-~~,.-~--.

0.008 Extended noise (upper) bound

0.006

0.004

0.002

0

-0.002

-0.006

-0.008 Extended noise (lower) bound

-0.01'--~--'-~~-'-~~'--~--'-~~-'-~~'--~-'-~~-'-~~'--~--'

0 100 200 300 400 500 600 700 800 900 1000

t (~amples) -+

Figure 6.14: Residuals and extended noise bounds. Active bounds are marked
with a 'o '. Effects of undermodelling are ignored.

216 Examples and case studies

sition involved in the principal component analysis, see table 6.3. The first
principal component has an associated singular value that is about six times
as large as that of the second principal component.

Table 6.3: Singular values of the four structured error components

<71 <72 <73 <74

0.097 0.015 0.006 0.003

For comparison the extended noise bound has been drawn in figure 6.14 for
the sa.me operating point as in figure 6.11 on page 214. The active constraints
are again marked with a 'o'. This time the extended noise bound consists
only of the unextended noise bound and a bound on the transient in the data.
All other contributions to the extended noise bound appearing in figure 6.12
on page 214 are zero in figure 6.14 because the tail of the basis is forced to
zero through the values of ih. The extended cross-covariance bound has been
active as well, both at its upper bound and its lower bound. As in figure 6.11,
there seems to be no pattern in the active constraints, such that (most) active
constraints could have been selected beforehand from the total set of linear
constraints. This issue will be further considered in section 6.5.3.

By platting the local uncertainty regions for all operating points (not done
here), it can be seen that the unstructured error is no langer determined by a
single operating point. The uncertainty regions now overlap mostly. In general
an uncertainty region for one operating point is no langer fully contained in
those for other operating points.

The first structured error component is drawn in figure 6.15 fora number of
frequencies. The normal continuous lines are the Nyquist plots of the system
in different operating points. The dotted lines connect points on different
Nyquist plots for the same frequency. The thick continuous lines represent the
uncertainty due to the first structured error component for these frequencies.
The structured error seems to give indeed a good account of the changes that
occur if the system moves between different operating points.

The uncertainty bounds were further tested by confronting both the struc
tured and unstructured error bounds with the transfers in two "intermediate"
operating points, namely for a 1 = -0.15 and aII = +0.15. As in this example
the process is completely known in these operating points, the true values of the
structured error gains ói, i = 1, 2 can be calculated. The results of these cal
culations together with the lower and upper bounds d.i and di are summarised
in table 6.4. The results do not falsify the structured error bounds d.i and
di, i = 1, 2.

Figure 6.16 on page 218 shows the unstructured errors for both operating
points, together with their bounds for the three cases of no structured error

6.3. A more complex SISO simulation example 217

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9
-0.2 0 0.2 0.4 0.6 0.8 12 1.4

Figure 6.15: First structured error component in Nyquist plot (see text)

Table 6.4: Structured error bounds and true structured error gains for operating
points I and II

1 -0.0634 0.0639
2 -0.0113 0.0115

0.0465
-0.0005

component, one structured error component and two structured error compo
nents. Here too, the results do not falsify the error bounds that were found
earlier.

An interesting thing happens in the left plot in figure 6.16 for w = 0.088.
For this frequency the unstructured error increases if two instead of one struc
tured error components are removed from the unstructured error. Apparently
a situation as discussed in figure 4.17 on page 131 occurs for this frequency: by
separating the second structured error component from the unstructured error
the relation that exists between these two is lost. This relation must have been
such, that for w = 0.088 a large unstructured error (with two structured errors
removed) can only occur if at the same time the second structured error compo
nent has a value that partly compensates the unstructured error. Because this

218 Examples and case studies

relation is still present in the unstructured error bound if only one structured
error component is removed, the unstructured error with one structured error
component removed is for this frequency smaller than that with two structured
error components removed.

Bode amplitude plots

··X.
··Q.'.l!j· .. ~ ..

··."x

104
'---------''---------'-----'

10-2 10°

w,--+

10° .------.-------...------,

104
·~.

·.

10-• '---------'---------'-----'
10•

w,--+

Figure 6.16: Validation of unstructured error bounds. left: a = -0.15, right:
a = +0.15; '-': error bound, ': ': true error;· no marker: no structured error,
'x': one structured error component, 'o': two structured error components

6.3.4 Conclusions

In this example it turned out, that the size of the extended noise bound is
very sensitive to the decay rate of the model parameters. A slightly smaller
decay rate leads to a significantly larger contribution of the tail of the basis in
the extended noise bound and the extended cross-covariance bound. Therefore
it is of major importance for obtaining good results that the basis generating
system has its poles close to those of the linear manifestations of the process.

It was possible to pinpoint undermodelling as the cause of rather large un
structured errors because the algorithm can provide very detailed information
with respect to the separate components of the error bounds it generates.

Even for structure in the errors that can not be represented by the uncer
tainty description used by the algorithm, the algorithm is still able to reduce the

6.4. A MIMO simulation example 219

unstructured error significantly by using a number of structured error compo
nents. In this case using one structured component already gave good results.
For the example in this section at least, the algorithm can approximate a large
part of the structure in the error by its structured uncertainty description. This
is promising, especially because the variation in process transfer was relatively
large for different operating points.

6.4 A MIMO simulation example

6.4.1 System and data
In this simulation example, the set of systems

[

(0.035 a)(l.1 + lOa) 0.1 · (0.025 - ,8)(1+15,8) l
z - 0.965 - a z 0.975 - ,8

Gtr(z)
0.1 · (0.02 - ,8)(1+17/3) (0.03- a)(l + lOa)

z 0.98 - ,8 z - 0.97 a
(a, /3) E { (0.01, 0.01), (0.01, -0.01), (-0.01, 0.01), (-0.01, -0.01)}

is considered. The DC-gain of the system is given by

G (l) = [1.1 + lOa 0.1·(1+15/3)]
tr 0.1·(1+17/3) 1 + lOa: .

In every operating point, all sub-transfers are first order transfers with no zero.
The off-diagonal terms are smaller in magnitude than the diagonal terms. As
in the previous example, the structure that is present in the changes in process
transfer over the different operating points can not be described exactly by
the uncertainty structure of the algorithm. The relative changes in the off
diagonal transfers are larger than those of the diagonal transfers, both in terms
of DC-gain and of time constant.

A basis was generated by the system

1
G1t(z) = z - 0.9725

Gb(z) could have been determined through identification but this involves the
risk that an (un)fortunate identification result will turn out to be the explana
tion of the main features of the results obtained by the algorithm. To rule out
this risk, a basis generating system was chosen by hand. The transfer of the
basis generating system was chosen close to all subtransfers. The pole location
is the mean of the largest and smallest pole that can be found in any of the
subtransfers of the system in any of the four operating points. For none of the
subtransfers there is an operating point in which the pole location of the basis
generating system matches the pole of the subtransfer exactly.

220 Examples and case studies

As Gb(z) is a SISO transfer, the same set of basis functions was used for
every subtransfer. Seven basis functions were used in the models for every
subtransfer of this system. This number seems large enough to obtain accurate
models while not being so large that it has large repercussions in terms of
computing time required by the algorithm. To make the points that are to be
raised in this section stand out more clearly, the tail of the basis is consequently
ignored in this example!

As in the previous examples, the input sequences in the identification exper
iments were taken to be white noise sequences having a Gaussian distribution
with zero mean and standard deviation one. The length of each data set was
1000 samples. Realistically sized initial conditions were obtained as in the pre
vious two examples. The output signals were disturbed with additive white
noise. The output noise was uncorrelated with the inputs and had a Gaussian
distribution with zero mean and standard deviation 10-2·5 •

Figure 6.17 shows the Bode amplitude plots for the four subtransfers of the
system in different operating points.

Figure 6.17: Bode amplitude plots. no marker: a: = 0.01; 'x': a: = -0.01; 'o':
/3 = 0.01; '+': /3 = -0.01

6.4.2 Results and discussion

Figure 6.18 on page 222 shows the uncertainty regions that were obtained for
the different subtransfers using zero and one structured error component. A
weighting as discussed in section 5.6.l was applied. Recall that this weight-

6.4. A MIMO simulation example 221

ing means, that the differences aow between the auxiliary model parameters
for different operating points and the central model are pre-multiplied by a
weighting matrix W L before performing the principal component analysis:

WLX = WL sbs aow = UwEwVX
wEW

where Uw Ew VJ is a singular value decomposition of the weighted matrix
WLX. In section 5.6.l it was argued, that WL should be a diagonal matrix,
having the same weighting for model parameters belonging to the same sub
transfer. In this example, W L is therefore a block diagonal matrix, where
each block on the diagonal consists of a scalar weighting w<r times the identity
matrix.

The weighting w<r was chosen according to equation (5.30) on page 177.
This means that subtransfers with parameters that are either large or have a
large variation (in absolute sense) are weighted less in the derivation of the
principal components. In this way, the principal components are no langer
completely determined by the large transfers. This gave the singular values
listed in table 6.5.

Table 6.5: Singular values of the principal component decomposition

0"1 0"2 0"3

0.0636 0.0071 0.0010

The most striking fact that can be seen in figure 6.18 is probably the rel
atively large uncertainty regions for the off-diagonal subtransfers. As far as
the transfers on the diagonal are concerned, results are not as good as in the
previous SISO examples: the uncertainty regions are small compared to the
nominal transfer hut removing a structured error component hardly reduces
them further.

The singular values shown in table 6.5 suggest that removing a second
structured error component has little effect. The results obtained with two
structured error components confirm this (not shown).

Because the tail of the basis was ignored in this example, the large uncer
tainty regions in the off-diagonal subtransfers can not be due to a slow decay
rate of the tail-coefficients for these subtransfers. Ignoring the basis corre
sponds to an infinitely fast decay rate for the coefficients beyond those in the
model parametrisation. The large uncertainty regions must be induced by the
set of linear constraints C'IJ for the operating points w.

Having a closer look at the constraints in C9 , it becomes clear why the off
diagonal uncertainty regions turn out so large. In this example, Ce basically
contains three kinds of constraints:

222

0.2 0.05

0 ""

0
-0.2

-0.4
-0.05

-0.6

-o.s~-~--~--~-~ -0.1.
-0.5 0 0.5 1.5 -0.1 -0.05 0 0.05 0.1 0.15 0.2

0.05 0.2
U2 -t Y2

0
0

-0.2
-0.05

-0.1.
-0.6~

-o.1s~~-~-~-~-~- -0.B
-o. 1 -0.05 0 0.05 0. 1 0. 15 0.2 -0.5 0 0.5 1.5

Figure 6.18: Uncertainty regions in Nyquist plot. Dark areas, '-. ': one princi
pal component removed; Light areas, '--': no principal component

L The explicit bounds on the model parameters

-êk S 9tr,k S (jk, k = 0, .. "k (6.1)

2. The extended noise bounds

p k,(i,i) t

Vj E q, Vt E '][' YJ(t) - L Le~~:~ L Ui(r)b~,i) (t - r) ::::; ëe,j(t)
i=l k=O r=O

(6.2)

3. The extended cross-covariance bounds

Vl E nr,Vj E q

P fcU,i) t

L rt(t)yj(t) L rt(t) L L e~~:~ L Ui(r)b~,i) (t r) :::; ët,j
tE'Jf' tE'Jf' r=O

(6.3)

In previous examples it has already been found, that the extended noise bounds
and the extended cross-covariance bounds are the bounds that eventually de
termine the size of the uncertainty regions. The explicit bounds ëk do not

6.4. A MIMO simulation example 223

contribute to a further reduction of the model uncertainty, they are too weak.
However, the extended noise bounds and also the extended cross-covariance
bounds provide basically a bound on the model parameters per output. They
do not discriminate between the contributions of different inputs. Therefore,
the extended noise bound can be small compared to the contribution to the
output of one input, but large compared to that of another input. This is the
case in this example. The extended noise bound is small compared to the con
tribution of input one to output one, but large· compared to the contribution
of input two to output one. Because the extended noise bound does not dis
criminate between different inputs, one may expect unstructured error regions
of roughly the same size for all subtransfers of an output. This is confirmed by
figure 6.19. The unstructured error is roughly the same size in all sub-transfers.
Therefore the unstructured error is relatively much larger in the off-diagonal
sub transfers.

U2 --+ Yl
10°

10-•

10 ... 10"'

10"" 10-2 10-• 10'

10'

10""

10-' 10-· 10' 10_, Hf

Figure 6.19: Structured and unstructured errors in Bode amplitude plot. '-'·
nomina] model; ': ': unstructured error, no princ. comp.; ': *': unstructured
error, one princ. comp.; '--x': structured error component

Influence of other inputs

Things are made slightly worse by the following effect. To determine the un
structured error for, say, the subtransfer from input 2 to output 1, linear pro-

224 and case studies

gramming problems of the form

Maximise (f 1 81
) subject to 81 E Co

are solved, where f is a vector containing the coefficients of the object function.
In this example and for this subtransfer, f is of the form

J = [o . . . o 1á1
•
2

> . . . 1~ 1 •2) o . . . o], (6.4)

only the parameters in 8 pertaining to subtransfer (1,2) are involved in the
object function. This means that in the extended noise bounds, the parameters
in 8 belonging to different subtransfers to the same output can (and will) be
manipulated such, that the contribution of the other inputs to the output
compensate the contribution of the input at hand as far as possible. Provided
the input signals are independent of each other, there is fortunately not much
room to manoeuvre. In this example there is only one subtransfer from different
inputs to the same output, subtransfer (1, 1). If the transfer from the first input
to the first output is manipulated such, that it compensates the contribution
from the second input to the first output for a sample instant t 1 , then it is
likely that this manipulation has an adverse effect for another sample instant
t2 i= t 1 . Nevertheless, the more inputs a system has, the more freedom there
is in this respect. Due to this effect, the uncertainty regions will increase with
the number of inputs.

The exact structure of (6.4) is lost if one or more structured error compo
nents are used, see remark 4.14 on page 129. This means that there is not
complete freedom any more to manipulate the parameters of other subtrans
fers. However, a lot of freedom is still left, so that essentially the same effect
as discussed above will occur also if structured error components are used.

Influence of we1ght1ng

The results above were obtained using weighting during the principal compo
nent analysis. The inftuence of this weighting can best be demonstrated by
comparing the principal components that were obtained in this way by those
obtained without weighting. Figure 6.20 shows in the upper plot the first two
principal components with weighting and in the lower plot without weight
ing. The dotted vertical lines separate the parts of the principal components
belonging to different subtransfers.

In the lower plot, the first principal component is only concerned with
subtransfers (1, 1) and (2, 2), while the second has only significant non-zero
values for subtransfer (1, 2) and (2, 1). At first sight this may seem a good
result. After all, the uncertainty was constructed such, that uncertainty in the
diagonal terms was governed (in a non-linear way) by a parameter a and the
off-diagonal terms by another parameter f:J. However, the principal component

6.4. A MIMO simulation 225

U1 -+ YI U1 -+ Y2 U2-+ YI U1 -+ Yl

0.5 .
"1 / 1

0
\ 1
1 \

-0.5
1 I 1 I ,, 1'

5 10 15 20 25

k --t

0.5
1

0
/1 / ",

/
1 / I 1 I \ I

-0.5 \/ \

5 10 15 20 25

k --t

Figure 6.20: Principal components. (Top: with weighting; Bottom: without
. ht. ' ' (} ' ' (}) we1g mg; - : A,1; -- : A,2

analysis does not "know" this, it just happens to find this separation because
the parameters that are related to a are an ol'der of magnitude larger than
those related to fJ. Moreover, the variation in :subtransfers (1, 2) and (2, 1)
(measured in l 2-sense) is relatively larger than that in subtransfers (1, 1) and
(2, 2). We would therefore like to see that variation expressed in the first
principal component and not in the second.

Things are better for the off-diagonal subtransfers in the upper plot. In
this case the first principal component is largest m the subtransfers (1, 2) and
(2, 1). This is achieved at the expense of some cros6-'coupling with subtransfers
(1, 1) and (2, 2}.

Figure 6.21 is the unweighted counterpart of figure 6.19. Comparing these
two figures, it can be seen that the unweighted structured errors indeed ignore
the off-diagonal terms. The structured errors in these subtransfers are much
smaller than the unstructured errors now. The structured errors in the weighted
case seem much more realistically sized. However, as far as the unstructured
errors are concerned, this does not make much difference. In the weighted case
they were about equally large with and without a structured error component
and in the unweighted case the same applies.

If we look at the subtransfers on the diagonal, the unweighted results are

226 case studies

10°

10""

10-3 10""' 10-· 1o" 10" 10·• 10°

Ut -+ Y2
10' 1o'r----.__

10""'
x-x-K _. M- ~X...

x- ...
10""'

...
'x

104 'x
..,. " ...)(-« 10""'

10·' 104 10-• 10' 10_, 10"' 10°

Figure 6.21: Structured and unstructured errors in Bode amplitude plot, no
weighting. '-': nominal model; ': ': unstructured error, no princ. comp.; ':*':
unstructured error, one princ. comp.; '--x': structured error component

better than the weighted results. Because the structured error is in fact only
concerned with these two transfers, it fits better to the error in these sub
transfers. There is indeed a clear reduction of the unstructured error if one
structured error component is removed.

In figure 6.22 the structured errors are plotted together with the Nyquist
plot of the two diagonal entries. The Nyquist plots of the true transfers for
a: = 0.01 and a = -0.01 are drawn using continuous lines. Some frequency
points are marked with x's on these plots. For these frequencies, both the
structured errors with and without weighting ate plotted too. Those with
weighting are drawn using dotted lines, those without using dashed lines. The
dashed lines are on top of the dotted lines, but it can be seen that the dotted
lines protrude a bit further.

For the diagonal entries weighting hardly changes the direction of the first
structured error component in the Nyquist plane. Weighting of the principal
components does change the bounds on the structured errors. As the dotted
lines are longer than the dashed lines, d1 is larger and d1 is smaller with weight
ing than without. It is not exactly known what determined these bounds in
both cases. All that can be said is that the different directions in parameter
space of the structured error components with and without weighting must be

6.4. A MIMO simulation example 227

0 ... u1. -t Y.1
0

U2-t'!}2

-0.1 -0.1

-0.2 -0.2

-0.3 -0.3

-0.4 -0.4

-0.5 -0.5

-0.6 -0.6

-0.7 -0.7
-0.5 0 0.5 1.5 -0.5 0 0.5 1.5

Figure 6.22: Nyquist plot oftrue transfers and structured error component (see
text)

responsible for these different bounds. The Nyquist plot for the diagonal terms
do not show much difference in direction for these two cases, but figure 6.20,
which also includes the off-diagonal terms, clearly does.

In both cases the direction in the Nyquist plane of the first structured error
is in close agreement with the true change in dynamics that occurs in the diag
onal entries. Despite the large unstructured uncertainty, the structured error
describes indeed the changes in dynamics that can be attributed to operating
point changes!

Sensitivity to noise level and data length

In this example the data sets consisted of 1200 samples. Reducing this to
900 samples has far reaching consequences. In figure 6.23 the central model
parameters for subtransfer (2,1) are shown. The two parameter vectors are
very close. There is a large relative error in the last parameter, but compared
to the size of the other parameters, this error is not so big. Nevertheless, this
error can have a large influence on the uncertainty regions. If the decay rate
of the model parameters is estimated from these parameters, the decay rate
for N = 900 will be much less than that for N = 1200. In the example above,
that would not make such a big difference, because all tail effects are ignored
there. However, if tail effects are taken into account, as they probably should,
then the slower estimated decay rate will give a much larger influence of the
tail. Recall that in the previous example it was found that the size of the tail
effects is very sensitive to the decay rate of the model parameters.

To demonstrate that the data length of 900 samples is not unreasonably
short, figure 6.24 shows the impulse response of subtransfer (2,1) for f3 = 0.01.
The time constant of this impulse response is about 100, so that a data length
of 900 samples should not be considered too short to identify this subtransfer

228 Examples and case studies

O.Q1 .----..,.----..,.-----r-----.-----r------,

0.008

9(2,1)
k 0.006

0.004

reliably.

~

2

~--- ---
3 4

'-'· N = 1200
'--'· N = 900

5

Figure 6.23: Model parameters for subtransfer (2,1)

6

One of the causes of the inaccuracy in the estimated model parameters for
smaller data sets is, again, the influence of the other input on the output. The
influence of input 2 on output 2 is much larger than that of input 1. A relatively
small error in the estimated parameters of subtransfer (2,2) may therefore cause
a significantly larger error (in a relative sense) in the parameters of subtransfer
(2,1). Asymptotically this mechanism will not be present: for infinite data
length, the parameters estimated for subtransfer (2,1) are independent of those
estimated for subtransfer (2,2), but for finite data lengths the cross-coupling is
observed.

In the same way does an increase of the noise level in the outputs lead to
problems. The higher noise level will lead to less accurately estimated model
parameters. This effect will be relatively largest in the off-diagonal terms.

t (samples) -+

Figure 6.24: Impulse response of subtransfer (2,1), (:) = 0.01

6.5. Case study: Asynchronous motor 229

6.4.3 Conclusions

The example in this section demonstrated that relatively large errors can be
expected in a subtransfer if the contribution of the input of the subtransfer to
its output is small compared to the contribution of other inputs to that output.
This is mainly due to two effects:

• The information that mainly determines the size of the error bounds is the
extended noise bounds and the extended cross-covariance bounds. These
bounds discriminate only between outputs, not between the effect of dif
ferent inputs on the same output. Therefore these bounds are relatively
large for small subtransfers.

• The auxiliary models will have a larger relative error for small subtrans
fers than for large subtransfers. This translates to a less accurately esti
mated decay rate for the model parameters of a small subtransfer. The
size of the effects of the tail of the basis are very sensitive to this decay
ra te.

It was also shown, that small subtransfers are ignored by the first struc
tured error components if no weighting is applied. H this is not desired, it can
be easily avoided by weighting the model parameters before applying principal
component analysis: sealing up these parameters before doing the principal
component analysis and sealing them down afterwards will have the desired ef
fect. However, this can not solve the problem of the relatively large uncertainty
in small subtransfers.

6. 5 Case study: Asynchronous motor

6.5.1 System and data

A schematic view of an asynchronous machine is shown in figure 6.25. In this
scheme, four windings are drawn through which electrical currents can flow.
The three large windings labeled a, b and c re;present the stator windings of
the machine. These are fixed to the house of the machine. H current or voltage
sources are connected to these windings, stator currents Ia, h and Ic will flow.
The fourth winding, labeled r, is the rotor winding. This winding is mounted
on a shaft that may rotate with respect to the rest of the machine. The rotor
winding is short-circuited.

The stator windings act as inductances: currents Ia, h and Ic will generate
a magnetic field inside the machine. This field is indicated here by its magnetic
flux density vector B. By proper manipulation of the currents Ia, h and Ic
a vector B can be realised that rotates around the main axis of the machine.
This rotating magnetic field causes a changing magnetic flux through the rotor
winding r. This induces an electric field in the rotor winding. As the rotor

230

winding is short-circuited, a rotor current L" will flow. The rotor current !"
and the magnetic flux density B lead toa Lorentz force FL on the rotor. As a
result of this force, a torque is exercised on the rotor, which will start to rotate.

Figure 6.25: Schema.tic representation of an asynchronous motor

In case the rotor rotates as fast as the magnetic flux density B, the magnetic
flux through the rotor winding is constant. No rotor current /" will flow any
more and consequently there will be no Lorentz force and no torque will be
exercised on the rotor. This situation corresponds to the no-load situation. As
the motor is· normally not operated in a way in which no torque is exercised
on the rotor, this situation will hardly ever occur. Consequently it will hardly
ever be the case that the rotor rotates synchronously with the magnetic field
inside the machine. This is why this kind of motor is called an asynchronous
motor.

Figure 6.25 is highly simplified. The stator inductances do not consist of
a single winding but have multiple windings. Hereby a larger magnetic field
is induced inside the machine for the same stator currents Ia, h and J". In
the motor used for the experiments reported in this section, the rotor consists
of three inductances, each having multiple windings. These inductances are
mounted under angles of 60° relative to each other. This improves the ro
tational symmetry of the machine. The inductance of the stator windings is
further increased by the presence of iron in the construction of the machine.

6.5. Case study: Asynchronous motor 231

This too aids in generating a large magnetic flux density from stator currents
Ia, h and Ic. Apart from the fact that the drawing is too simple, also many
side effects have not been mentioned in the discussion above. One of these
side effects, saturation of the magnetic material for high flux densities, will be
encountered later.

In the test setup used in this section, voltages Ua, Ub and Uc are applied to
the stator windings. These voltages are generated by an inverter. This device
transforms a DC voltage into a triple of AC voltages. These AC voltages have
the same frequency hut are shifted in phase. This is done in a way that is
suitable for their application as driving voltages for the three stator windings.
The stator voltages Ua, Ub and Uc are used as the input signals for the machine,
the resulting currents in the windings are considered the output signals of the
machine. The interested reader is referred to (Gorter, 1997, Appendix A) fora
more thorough description of the test-setup: the experimental data described
in this section are taken from this thesis.

As the machine under test has three stator windings, the machine is called
a three-phase machine. Under certain symmetry conditions, the three stator
voltages and currents can be transformed to two stator voltages and currents
of an equivalent two-phase orthogonal machine. This approach is used here.
The actual machine considered in this section is therefore a fictitious two phase
machine. The two stator windings of this machine are referred to as a and j3.
This fictitious machine is related in a well-defined way to the physical three
phase machine. By considering the equivalent two-phase machine, the original
three-input three-output problem reduces to a two-input two-output problem.
In this two-phase machine, the two stator windings are perpendicular to each
other. Neglecting leakage fluxes and assuming linear magnetics, this means,
that there is no magnetic coupling between these two phases. Therefore the
two-input two-output two-phase motor can be split into two decoupled SISO
systems. As practical conditions are not completely ideal, it appears that
there is a small coupling between the two SISO systems. Therefore the system
is regarded here still as a two-by-two MIMO system.

The experimental data used in this section were collected with a locked
rotor: the rotor position was fixed so that it could not rotate any more with re
spect to the stator. Under this condition and assuming full decoupling between
the two stator windings, the electrical circuit drawn in figure 6.26 is "seen" in
each stator port. Rs represents the resistance of the stator winding. The ideal
transformer in the middle of the figure models the magnetic coupling between
the stator windings and the rotor windings. Lu is the so-cafü;id leakage induc
tance and Lm the main inductance. Rr is the resistance of the rotor winding.
Amore detailed discussion can be found in (Gorter, 1997).

The relation in frequency domain between any of the two stator voltages

232 Examples and case studies

Figure 6.26: Locked-rotor equivalent circuit

Figure 6.27: Bode amplitude plot of locked rotor equivalent circuit

Ut(jw) and the corresponding stator current It(jw) is

or, equivalently,

which is the transfer function from the input Ut(s) to the output It(s). This
transfer function has two real poles and one zero. Figure 6.27 shows the Bode
amplitude plot for this transfer based on the values of Rn R 8 , Lm and Lu as
specified by the manufacturer of the motor. For completeness, these values are
listed in table 6.6. The locations of the poles and the zero are indicated by
vertical dotted lines. The zero is located between the two poles.

6.5. Case study: Asynchronous motor

Table 6.6: Machine parameters

Rs 0.220 0
Rr 0.348 0
Lm 97.4 mH
Lu 9.0 mH

233

The inputs of the motor were excited by generalised pseudo-random binary
noise sequences. A generalised PRBS differs from a normal PRBS in that
its spectrum is smoother for higher frequencies. The frequency spectrum was
designed such, that much energy was put in the frequency region where the
poles and the zero are located. In this way, the experimental results will contain
more energy in the frequency region that is of interest for good estimation of
the physical parameters of the machine. The inverter normally supplying the
machine was used to supply it with the designed generalised PRBS signals.

As a result of saturation of the magnetic material inside the machine, the
value of the main inductance Lm decreases for large magnetising currents Im·
The magnetising current has been selected with a DC-current value of lt. To
investigate the influence of saturation and in particular whether this influence
can be described by a structured error component, experiments were done
with different DC levels for lt. Different DC levels are interpreted as different
operating points for the asynchronous motor. These levels gave ten operating
points, labeled A through J. Table 6.7 gives the DC levels. The DC levels
for lt were translated to corresponding DC levels for Ut and the excitations
discussed in the previous paragraph were superimposed on these DC levels.

The experimental results in operating points A and C turned out to be
unsuitable for identification of accurate models: the residuals obtained in these
operating points were so large that the model uncertainty would be completely
dominated by these operating points. This was explained by the fact that the
power electronics in the inverter is operating in these operating points only just
above the threshold values required for proper operation. The eight remain
ing operating points were used during the estimation and model uncertainty
bounding.

The doek frequency of the generalised PRBS was 250 Hz. Measurements
were taken at 1 kHz and were later downsampled to 250 Hz. As a standard part
of data preprocessing, inputs and outputs were scaled such, that their standard
deviations were approximately one in all operating points. The physical ranges
of these signals are such, that no numerical problems are to be expected if this
sealing would not have been applied.

234 Examples and case studies

Table 6. 7: DC level of I!f in a-axis and (3-axis for different operating points

wp. a-axis (3-axis
[A] [A]

A -0.0473 -0.0177
B 4.0178 -0.2477
c -0.1031 3.6220
D 3.6400//2 3.8884//2
E 12.2533 -0.2759
F -0.1270 11.6856
G 11.3079//2 11.3677//2
H 20.0661 -0.3854
I -0.1682 19.4153
J 19.4526//2 20.0339//2

6.5.2 Results and discussion

The two-phase asynchronous motor is very similar to the MIMO simulation
example in the previous section. Here too the subtransfers on the diagonal
are much larger than the off-diagonal transfers. Based on the results in the
previous section, no weighting was applied before determining the structured
error components. The reasoning behind this is as follows. Because the ex
tended noise and extended cross-covariance bounds do not distinguish between
different inputs, the unstructured error can be expected to be relatively large in
the off-diagonal transfers. There is not much that the structured error can do
about this, so we might as well concentrate on the subtransfers on the diagonal
while determining the structured errors. In these subtransfers, the structured
errors do have the potential to reduce the unstructured error. Tuning the struc
tured error to the subtransfers on the diagonal is achieved automatically if no
weighting is applied, as was demonstrated in the previous section.

The unstructured errors and the structured errors were determined without
taking the influence of the tail of the basis into account. The reason for this
will become clear shortly. A basis was generated by the system

1
Gb(z) = z - 0.945

The pole location of the basis generating system was based on preliminary
identification runs.

The singular values that were obtained in the principal component analysis
are give in table 6.8.

The Bode amplitude plots of the central model and of the unstructured
error bounds for zero, one and two structured error components are given in

6.5. Case study: Asynchronous motor 235

Table 6.8: Singular values for the structured error components

0"1 0"2 0"3 0"4 0"5 0"6 (]'7

0.1554 0.1114 0.0456 0.0320 0.0247 0.0165 0.0157

figure 6.28. There is so little difference between the three unstmctured error
bounds that it is not really relevant which is which. Clearly the unstructured
errors are too large to have any hope for performance if they are used in a
robust control design.

U13 -t la
10' ..------;-----~

10° .•. '''l' •1.,, .",,,

10~'----~-----....:
lo' 1o'

10~'----~-----_....,
10' 1o'

f (Hz)-+ f [Hz]-+

U13 -t 113
10' ,.----~'---"'-----~

10° 10"

"·
."""

10-'

10-'---~-----.....,
10' 10'

10"'----~-----_....,
1o' 1o'

f [Hz]-+ f [Hz]-+

Figure 6.28: Centra] model('-') and unstructured error bounds ('--')

Because the tail of the basis was ignored, many causes for the large unstruc
tured errors can already be excluded beforehand. The only possibly reasons for
the large unstructured error are large noise bounds and large cross-covariance
bounds. Note that the extended noise bound differs in this example only from
the unextended noise bound by the estimated bound on the transient. The
transient only takes significant values during the first 400 samples. As the data
sets consist of over 2000 samples, the transient can not be the explanation for

236

a large extended noise bound.
Analysing the local unstructured errors it turns out that the global unstruc

tured error for the transfer from Ua to I(X is determined for low frequencies only
by the unstructured error for operating point J. For higher frequencies operat
ing points F and H become relevant as well. For the transfer from Up to I(X the
global unstructured error is also mainly determined by operating point I. In
this case operating point G also plays a minor role. For the subtransfers to the
other output, 113, the uncertainty in the transfer from Ua is determined solely
by operating point J and the uncertainty in the transfer from Up is determined
by operating points D, E, G, Hand J.

Table 6.9 provides further insight into the causes of this. In this table the
rms-value of the residuals is listed, together with the value of the estimated
noise bound ë and the signal to noise ratio at the output. The latter is esti
mated as the ratio between the energy in the output signa! and the energy in
the residuals. If attention is restricted to the subtransfers to output J<:>., the
unstructured error is mainly determined by operating point I. According to
table 6.9 the rms-value of the residuals is not excessively large in this operating
point. The rms-value of the residuals in operating point H is larger, hut oper
ating point H plays a much smaller role in the unstructured error bounds for
this output. However, the estimated noise bound is not based on the rms-value
of the residuals hut on the maximum absolute value. Apparently there have
been some unfortunate samples in the residuals of operating point I, because
its noise bound ë is considerably larger than that of operating point H, which
had even a larger rms-value for the residuals than operating point J!

Table 6.9: Noise levels, noise bounds and signal to noise ratios

a-axis /J-axis

wp. rms € ë S/N (dB] wp. rms € ë S/N [dB]

B 0.1113 0.4180 19.1 B 0.0506 0.2494 25.9
D 0.0641 0.2880 23.9 D 0.0762 0.3712 22.4
E 0.1647 0.5485 15.7 E 0.0851 0.3969 21.4
F 0.1284 0.6952 17.8 F 0.0644 0.2865 23.8
G 0.1759 0.6308 15.1 G 0.1123 0.4471 19.0
H 0.2057 0.6230 13.7 H 0.1173 0.5114 18.6
I 0.1754 0.8051 15.1 I 0.0778 0.3076 22.2
J 0.1706 0.5808 15.4 J 0.2311 0.7513 12.7

Another conclusion that can be drawn from table 6.9 is that the signa! to
noise ratio is considerably worse than in the previous simulation examples. At
signal to noise ratios of 20 dB or worse, the unstructured error becomes very

6.5. Casestudy: Asynchronous motor 237

large. The structured error components can only be expected to reduce the
unstructured error if the error induced by operating point changes is large or
at least comparable to other error sources. This explains why removing one or
two structured error components from the unstructured error hardly influences
the size of this error in figure 6.28.

There is another effect that increases the unstructured error: the unstruc
tured error describes for every frequency the largest possible uncertainty that
can be encountered for that specific frequency. It does not contain information
of the sort "if the uncertainty for this specific frequency is at its bound, the
uncertainty for all remaining frequencies can only be this large." Any correla
tion that exists between the uncertainty at different frequencies is lost in the
algorithm. More specifically, the linear constraints on the model parameters
{,9 still contain information of this type hut using this information in different,
independent linear programming problems to bound the unstructured error
looses this information.

It is exactly this type of information that is present in the structured error
components. However, if no "uncertainty directions" dominate the others, (too)
many structured error components are needed before the unstructured errors
start to decrease. Moreover, a similar loss of information occurs here as well:
the correlation that exists between the structured error components and also
between the structured errors on the one hand and the unstructured error on
the other hand is lost. This is not a real problem if the structured components
rapidly decrease in size, hut it can become a significant source of conservatism
if the structured components are about the same size.

For completeness, the unstructured error that is obtained if the tail of the
basis is not ignored is plotted in figure 6.29. As could be expected, the un
structured error is increased for all subtansfers by incorporating the influence
of the tail of the basis.

6.5.3 Computational load

The unstructured errors were bounded in this example for 30 frequency points.
For every frequency point, the error in eight directions in the complex plane
was bounded and this was done for all four subtransfers. Having eight operat
ing points, this gives a total of 7680 linear programming problems that need
to be solved to bound the unstructured errors. If a different number of struc
tured error components is removed from the unstructured errors, another set of
7680 linear programming problems needs to be solved. The data sets for each
operating point were not exactly the same size. On average they contained
2125 samples. This gives for every output 4250 linear constraints because of
the extended noise bounds. The cross-covariance bounds account for anöther
eight constraints, and the explicit bounds on the model parameters represent
another 40 constraints. On average there were a total 8588 constraints in each

238 Examples and case studies

U13-+ Ia
10' ---------~

10'

10' 10'
10-''-----~-------'-'

10' 10'
f [Hz] -t f [Hz] -t

10° 10'

10-3~---~----~
10' 10'

10-'~---~----~
10' 10'

f [Hz] -t f [Hz] -t

Figure 6.29: Central model ('-') and unstructured error bounds ('--'), tail
effects included

linear programming problem.

If no structured errors are used, solving the 7680 linear programming prob
lems took about 35.5 hours (on a 90 MHz pentium running no other tasks and
with sufficient memory to make sure that no swapping occurs.) If one or more
structured errors are used, computing time increases to about 91 hours. This
increase is probably related to remark 4.14 on page 129: if no structured error
is used, the unstructured error in a subtransfer is independent of the extended
noise bounds for other outputs than the one corresponding to that subtransfer.
If one or more structured error components are used, this is no longer true.

After solving all linear programming problems, the algorithm sets off to
collect all results in a binary output file. Intermediate results are saved to disk
to keep total memory requirements of the algorithm reasonable. Saving the
results is therefore mainly a matter of copying data from one file to another.
In the configuration that was used for these calculations, this took another eight
hours. The configuration was not optimised towards minimising this time.

The computing time required to perform the other steps in the algorithm
are neglegible compared to that required for the two steps mentioned above.

6.5. Casestudy: Asynchronous motor 239

Therefore it takes about 300 hours or 12Ï days of computing time to get results
for zero, one and two structured error components.

Literature reports, see (Murtagh, 1981), that the time required to solve one
linear programming problem is roughly proportional to the cube of the number
of constraints in the problem. The number of constraints is mainly determined
by the number of extended noise bounds. For q outputs and N samples in a
data set, 2N q constraints due to the extended noise bounds are found. The
number of linear programming problems that needs to be solved is próportional
to m, the number of directions that are bounded in the complex plane. It is
also proportional to no, the number of frequencies for which the unstructured
error is bounded, to the number of subtransfers and to nw, the number of
operating points. If p denotes as before the number of inputs in the system,
the computing time Tip to solve all linear programming problems satisfies

T1p ,...., mnnnwpq(N q)3

The asymmetry between inputs and outputs results from the fact that the
number of constraints in the linear programming problem is proportional to
the number of outputs only.

Taking into account that the number of parameters that need to be esti
mated is proportional to the number of subtransfers, and that this should have
its infl.uence on the length of the experimental data sets, it is clear that the
required computing time gets out of hand very quickly if the number of inputs
and/or outputs of the system grows.

The computational load can be reduced if it is possible to select a priori
most samples from the extended noise bound that will correspond to active
constraints. To investigate this, consider the histogram in figure 6.30. In
this histogram the distribution of residuals for output 1 in operating point J
is plotted. Also the distribution in the subset of residuals corresponding to
active constraints is shown. No structured error components were used in this
example. Judging from this histogram, a considerable number of constraints
can be skipped a priori: if all constraints for which the residual is small are
skipped, the number of constraints will decrease significantly, hut hardly any
constraints that would become active will be dropped.

It is interesting to see that also constraints for which the residuals are very
small can become active. Making such a constraint active involves manipulating
the model parameters such, that the mismatch between process output and
model output becomes so large for that particular sample that it hits the noise
bound, without violating any of the other noise constraints. Apparently there
is sufficient freedom in the model parametrisation and in the extended noise
bound to make it possible that this happens for some of the 'small residuals.

The situation gets slightly worse if the tail of the basis is taken into account.
This gives the histogram shown in figure 6.31 on page 241. In this case, where
the difference between the extended noise bound and the residuals gets larger,

240

140

120

100

80

60

40

20

-0.4 -0.3 -0.2 -0.1 0
€(t)

Examples and case studies

0.1 0.2 0.3 0.4 0.5

Figure 6.30: Histogram of all residual values (light) and of those corresponding
to active constraints (dark)

more constraints corresponding to small residuals get active. This shows that
it is not a trivia! exercise to formulate a selection rule selecting the majority of
active constraints hut skipping as many inactive constraints as possible.

Even if such a selection rule can he found, it will not solve the problem of
the heavy computational load, it will only alleviate it to some extent.

6.5.4 Conclusions

As this example is very similar to the previous simulation example, most obser
vations that were made for that simulation example can also be made for this
example. For example, the unstructured error in the off-diagonal subtransfers
is of the same order of magnitude as that in the diagonal subtransfers. This
makes the unstructured error in the off-diagonal subtransfers relatively very
large.

In this example the unstructured errors can also be called large in the
subtransfers on the diagonal. This is due to the fact that the signal to noise
ratio at the output is 20 dB or worse. As the unstructured errors resulting
from a consequently large noise bound are truly unstructured, removing one
or two structured error components hardly makes any difference. For such
noise levels, no significant gain can be expected from the use of structured
error components. This is a serious limitation for practical application of the
algorithm.

6.6. Conclusions 241

140

120

100

80

60

40

20

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
E(t)

0.3 0.4 0.5

Figure 6.31: Histogram of all residual values (light) and of those corresponding
to active constraints (dark), infl.uence of tail of basis not ignored

Another effect that infiates the unstructured error and that becomes more
important if the noîse levels become higher is that the correlation that may
exist between the unstructured error at different frequencies is lost. Similarly
the correlation that may exist between different structured error components
is lost. This effect is not restricted to this example, it just becomes more
important due to the higher noise level.

Another practical problem with application of the algorithm is that the com
putational load gets out of hand very quickly if the number of inputs and/or
outputs increases. For this relatively small example already four days comput
ing time is required to bound the unstructured erwr using one or two structured
error components. Bounding the uncertainty for .eystems with say sixty inputs
and ten outputs is therefore presently completely out of the question.

6. 6 Conclusions

The algorithm gives good results for the SISO simulation examples in this chap
ter. This is not restricted to the example that "fits" the uncertainty description
of the algorithm. Also for structure in the model uncertainty that can not be
described exactly by the algorithm good results are obtained. In thîs case the
real structure is obviously not found by the algorithm, but it finds a sufficiently
good approximation of it to reduce the unstructured error significantly.

By tracing back through the intermediate results, the different contributions

242 Examples and case studies

to the uncertainty bounds can be separated well. In this way it was found that
the uncertainty bounds are very sensitive to the exponential decay rate that is
estimated for the model parameters. A small decrease in the decay rate can
cause a large increase in the model uncertainty bounds.

For MIMO systems it turned out that the prior knowledge determining the
size of the uncertainty ·bounds does not discriminate between different sub
transfers to the same output. Therefore the unstructured error is of roughly
the same order of magnitude for all subtransfers to the same output. If the
influence of one input on an output is much smaller than that of another input
on the same output, the unstructured error will be relatively much larger for
the subtransfer of the former input-output pair.

Weighting can be applied successfully to make small subtransfers contribute
to the structured error components. Without weighting, only large subtransfers
will determine the structured error components. However, the usefulness of this
is decreased by the previous observation.

For signal to noise levels of 20 dB or worse, the noise bounds get so large that
unstructured errors get of the same order of magnitude as the nominal transfer.
There is very little structure in these errors, so that removing structured error
components does not improve this situation. lt is not quite clear to what extent
this result is restricted to the example worked out in section 6.5. Nevertheless
it seems clear that application of the algorithm is only useful in cases where
there is a good signal to noise ratio.

The computational load of the algorithm increases rapidly with the number
of inputs and outputs of the system and with the length of the data sets. For
very patient users, two by two systems are within the reach of the algorithm.
For larger systems the computing time on a 90 MHz pentium gets currently in
the order of weeks.

7
Software components for CASID

7.1 Introduction 7.4 Building on vectors and
7.2 Object-oriented aspects of matrices

C++ 7.5 Keeping all data of an
7.3 Matrices and related data identification session

structures 7.6 User interface
7.7 Performance

7. 1 Introduction

7.1.1 ()vervieiv

In the previous chapter some results obtained with the algorithm of chapters 4
and 5 were presented. Obviously the algorithm has been implemented in a com
puter program of some form. The initial idea was to implement the algorithm
in MATLAB. However, thinking about how to arrange the data operated on
and generated by the algorithm, it became clear that MATLAB's programming
language would provide insufficient support to complete this task in a struc
tured and maintainable way. These considerations are given in section 7.1.2
below. In this section it is also argued why C++ was chosen as the alternative
to MATLAB.

The first task that was faced after deciding to implement the algorithm in
C++ was to implement matrices and related data structures in C++, so that
in C++ equally powerful expressions operating on matrices are possible as in
MATLAB. This is described in section 7.3. As soon as these structures are
available, more complicated structures can be built from these, which was the
original reason for implementing the software in C++. These structures are
discussed in section 7.4. They were designed with the goal of being more
generally applicable in the field of Computer Aided System IDentification than
just for the algorithm described in this thesis. Finally, section 7.5 describes the
way all these components were arranged in a single data structure that keeps
all relevant information of an identification session.

244 Software components for CASlD

The sections on the implementation of matrices and more complicated data
structures are preceded by a section on the object-oriented aspects of C++.
The discussion of this subject is kept to the minimum required to appreci
ate some of the .design decisions that were made in the implementation. The
chapter concludes with user interface aspects and sotne remarks concerning the
performance of MATLAB and C++.

7.1.2 Comparison of programming in MATLAB and pro-
gramming in C++

MATLAB has become a very popular tool in the fields of control engineering
and systems theory. Compared to programming languages as C or PASCAL,
MATLAB has a number of important advantages:

1. MATLAB supports dynamically sized real and complex matrices. The user
has the freedom to change at will the dimension of a matrix contained in a
variable, and he/she does not have to bother with allocating a new chunk
of memory to store the new matrix and releasing the memory containing
the previous value. Moreover, if one wants to multiply a matrix a with
a matrix b and store the result in variable c, one can simply write in
MATLAB

c = a * b;

In C this would require a subprogram of the form

Code fragment 7.1
for (rowCnt = O; rowCnt < m; rowCnt++)

for (colCnt = O; colCnt < n; colCnt++)
{

c[rowCnt][colCnt] = O;
for (inCnt = O; inCnt < p; inCnt++)

c[rowCnt][colCnt] += a[rowCnt][inCnt] * b[inCnt][colCnt];
}

The cryptic C syntax probably looks daunting at first, hut that is not
the real problem with code fragment 7.1. The C-code requires five lines
of code for the same operation that is carried out by one line of code in
MATLAB. Moreover, the C code requires that integer variables rowCnt,
colCnt and inCnt have previously been defined and the variables or
constants m, n and p have to be set up previously such that they contain
the number of rows in a, the number of columns in b and the "inner
dimension," respectively.

7.1. Introduction 245

2. MATLAB provides easy access to high quality routines for matrix inver
sion, QR-decomposition, Schur-decomposition, etc. Standard C provides
no routines for this.

3. MATLAB has flexible and powerful functions for plotting and 3D visuali
sation.

4. C is a compiled language. This means that the C-code is converted to
a series of machine instructions. Execution of these machine instructions
will have the same effect as execution of the C-code would have, provided
we had a machine that knew how to execute C-code. The process of
conversion is called compilation. A program can be divided into different
modules and these modules can be compiled independently. Combining
these different modules to a program is done in the linking-phase.

Every tiny change in a program requires a recompilation of at least the
unit that changed. To reflect the change in the compiled unit in the
final program, the program has to be relinked. This can be quite time
consuming.

MATLAB has an interpreted language. This means that the MATLAB
interpreter figures out during execution of a user-written function, what
the function is supposed to do. One can start testing a new function as
soon as it has been saved to disk. This saves a lot of time during the
prototyping phase of an algorithm. The price that has to be paid for this
is that execution of the function is somewhat slower, see below.

5. Despite the existence of an ANSI standard for C, most C-programs not
specifically designed to be platform independent tend to be platform de
pendent, as anyone will know who has ever gone through the trouble of
porting, say, a C-program written for a UNIX machine to DOS. This
problem can be alleviated to some extent by using libraries of routines
that are explicitly supported by its developers on many platforms. For
example, several software libraries exist to support writing graphical user
interfaces on different windowing systems. The software library hides all
differences between the various windowing system and provides a uniform
interface on all supported platforms. However, high quality software that
is available on as many platforms as MATLAB is often both scarce and
expensive.

There is another advantage of MATLAB that follows from the previous ad
vantages and perhaps clever marketing of "the Mathworks," its manufacturer.
By now MATLAB has become a de-facto standard in the field of control design
and system identification, at least as far as research institutions in this field
are concerned: someone who has developed a new algorithm and who wants to
share the code he has written with the rest of the world is likely to do so in
the form of MATLAB routines.

246 Software components for CASID

All disadvantages of C apply in principle also to C++, hut C++ provides
more tools to work around the disadvantages. For example, it is possible in
C++ to define a new type, say matrix:Cls, such that variables a, b and c
behave like matrices. (The postfix -Cls .stands for "class," see below.) Code
fragment 7.1 may then read in C++:

matrixCls a, b, c;

c = a * b;

The only drawback with respect to the MATLAB-code is, that the variables a,
b and c need to be declared explicitly.

This example already illustrates the first of a number of important advan
tages of C++ over MATLAB:

1. The MATLAB-language is restricted to variables of type matrix. Scalars
and vectors are considered special cases of matrices. In C++ a variable
that is used as a counter in a loop can be declared to be an integer
variable. Calculating with a single integer value is much faster than
calculating with a matrix that may be either real or complex and which
can only be found to be a scalar during the execution of the routine.

Not only can C++ use simpler types than MATLAB in situations where
that is convenient, it can also define types that are more complex than
matrices. In MATLAB all objects have to be described in terms of matri
ces. For example, a state-space description of a transfer function G(z) is
represented in MATLAB by a quadruple of matrices, say a, b, c, d, where

G(z) c (zl - a)-1 b + d.

Adding two transfers G1(z) and G2(z) can be achieved with

Code fragment 7.2
(asum,bsum,csum,dsum]=parallel(a1,b1,c1,d1,a2,b2,c2,d2);

Surely this is awkward. In C++ a type SStransferCls can be defined,
such that one could write instead of fragment 7.2

Code fragment 7.3
SStransferCls G1, G2, Gsum;

Gsum = G1 + G2;

(In MATLAB this problem is recognised in several toolboxes. These tool
boxes provided packed representations for systems, signals, etc. Unfortu
nately the representations used by different toolboxes are incompatible.)

A number of benefits follow from C++'s capabilities to define new types
and operators for these types:

7.1. Introduction 247

(a) Much more detail concerning the representation of a type can be
hidden from the user. For example, discrete time signals are rep
resented in MATLAB using matrices where different scalar signals
appear in different columns of the matrix and different sample in
stances in different rows. In C++ a type signalCls can be defined
such that the user does not need to know. This is generally referred
to as information hiding.
The importance of information hiding is. that .if .it is dedded for
whatever reason to interchange the role of rows and columns in the
implementation, none of the code using variables of this type needs
to be changed. This makes maintaining the code much easier.
Obviously the code defining the type needs to undergo some changes,
hut this too can in some cases be a matter of only a few lines of code.
The concept of information hiding can be applied not only at the
level of using the type, hut also at the level of implementing the
type.

(b) Code can be implemented more efliciently. In the implementation
of the state-space type SStransferCls it need not constantly be
checked whether the dimensions of the system-, input-, output- and
input/output matrices are compatible. This is checked only when
these matrices are changed or first created. From then on it can be
relied on that they are compatible.

(c) Provided suflicient tools have been implemented to support this,
the developer can code his algorithm at the level of abstraction at
which he designed it. For example, if pl, p2 and p3 are variables of
type polynomialCls that behave like polynomials, one could write
in C++

p3 = p1 + p2;

In MATLAB polynomials are represented by vectors containing the
coeflicients of the polynomials. Before two polynomials can be added
in MATLAB, one has to make sure that the two vectors representing
them have the sa.me length. This may involve padding one of the
two vectors with zeros.

2. As C++ is a compiled language, the translation of C++-source code to
instructions that the machine understands occurs in the separate steps
of compiling and linking. During the actual execution of the code, the
machine is not con.cerned with this any more. There is less overhead
during the execution of the code and consequently the code executes
fa.ster.

Note that the same difference between MATLAB and C++ was earlier
considered a disadvantage of C++ during the prototyping of an algorithm.

248 Software components for CASID

3. Related functions can be grouped in a single file in C++. A file can contain
several routines and the name of these routines can have long, meaningful
names. If a programmer gives one of his routines the same name as
another, tl;üs is most likely detected during compilation or linking. Also
it is possible to make some auxiliary routines available only inside the
module in which they are used. Outside the module such routines are
unknown. Different routines with the same names can coexist without
problems in this way. (This does not apply to routines that need to be
available in all modules.)

In MATLAB every separate function is stored in a separate file. If one
wants to run these routines on all platforms supporting MATLAB, the
MS-DOS/MS-Windows platform restricts the length of the name of the
routine to eight characters. (The recent successor of this platform, Win
dows 95, supports file names up to 256 characters, but there is no MAT
LAB version yet that supports this.) Moreover, to avoid conflicts with
routines with the same name in other toolboxes it is good practice to
start all routines in a toolbox with the same sequence of two or three
characters. This further restricts the effective length of a routine name.
These effects make the code both more difficult to read and more difficult
to maintain.

4. More diagnosing tools are available for C++ compilers than for MATLAB.
Although MATLAB has limited debugging facilities, the debugging tools
for C++ are in general much more powerful. Finding out which parts of
a program are time-critica! is also better supported in C++.

Comparing the advantages and disadvantages of C++ and MATLAB, the
advantages of C++ seem to get more important for larger projects with more
complex data structures. For smaller projects whose data can be represented
sufficiently well using matrices only, MATLAB seems to be the proper tool.

7.1.3 Aims of the software structures in this chapter

It was felt that the data structures that are required for the implementation of
the algorithm of chapters 4 and 5 are insufficiently supported by MATLAB. It
was therefore decided to implement the algorithm in C++. At the time when
this was decided, no routines had been written to make matrices, polynomials,
signals, state-space realisations of transfer functions etc. available in C++. In
this respect this decision was a big step backward. However, filling this gap
between C++ and MATLAB is an effort that one needs to go through only once.
Provided the tools that are developed are powerful and general enough, they
can be applied also for other projects. This has been the aim in the development
of the data structures presented in this chapter.

7.2. Object-oriented aspects of C++ 249

Due to time constraints and the fact that developing the software tools
discussed above was only a derived goal of the research reported in this thesis,
some of the functionality that was considered desirable in a general library for
Computer Aided System IDentification was not implemented. In these cases,
care has been taken to make sure that the overall structure permits relatively
easy extension in this respect.

This chapter is not concerned with numerics. The difficult problem of im
plementing efficient, robust and reliable numerical algorithms to operate on
the data was circumvented by using software libraries for these purposes that
were available on the internet. Routines for QR-decomposition, singular value
decomposition and other operations from linear algebra were taken from the
LAPACK library. This library is documented in (Anderson et al., 1995). The
linear programming problems that are an important part of the algorithm were
solved by version 2.0 of the LP ..SOLVE package by Michel Berkelaar and Jeroen
Dirks, (Berkelaar, n.d.). These libraries were treated as black boxes as far as
possible.

7.2 Object-oriented aspects of C++

In the previous comparison between MATLAB and C++ a big difference between
the two has not been mentioned yet: C++ supports object-oriented program
ming, while the MATLAB programming language does not.

The phrase "object-oriented" is used in many different contexts these days
and in each of these contexts it is usually presented as something advantageous.
Indeed, in the field of software development object-orientation is expected to
give faster development and maintenance of code, more natura! ways of trans
lating a real-world problem into a program solving it, more reuse of existing
code, etc. In this light it would have seemed reasonable to mention object
orientation in the previous section as an advantage of C++.

This section does not consider whether the promises of object-oriented de
sign have been fulfilled in recent years and if so to what extent. It is restricted
to explaining as little as possible about object-oriented programming to under
stand the design of the software that will be outlined in the next sections.

In (Pree, 1994) the following basic concepts of object-orientation are dis
tinguished:

1. Data abstraction

2. Inheritance

3. Polymorphism and dynamic binding

These will be discussed below.

250 Software for CASID

Data abstraction

Data abstraction is achieved by the use of objects. In (Pree, 1994) an object
is described as follows: "Objects are instances of abstract data types. Thus an
object is an entity that has attributes (=data representing an object's state)
and provides certain operations that are defined for the particular object."

An exarnple may clarify this. Complex numbers all share the same abstract
data type, the type of complex numbers. A varia.bie of type complex number
is an insta.nee of this type. If a program contains three complex variables z1,
z2 and z3, the program contains three instances of type complex.

It may be that the complex varia.bles are represented as a pair of real num
bers, corresponding to the pair of real and imaginary part. This pair of real
numbers are in this case the attributes of the data. To make a useful type
of the type of complex numbers, varia.bles (or expressions) of this type should
"know" how to add to or subtract from another complex number, multiply by
a real number or another complex number, etc. These are the operations that
are provided for the object. They are called the methods of an object.

A complex number may equally well be defined as a pair of real numbers
corresponding to its modulus and its argument. The sa.me operations should be
provided for the object as in the previous implementation using real and imag
inary part, but these operations should now opera.te differently on the internal
varia.bles. It should be completely invisible which of the two representations for
complex numbers are used internally by the object. This is how data abstrac
tion is achieved: a complex number "behaves" according to the usual axioms
of complex numbers, but how this is realised is unimportant.

Inheritance

A data type can be derived from another data type through inheritance. The
derived data type is called the subclass and the data type derived from is the
superclass. The subclass is a descendant of the superclass. A subclass has all
the attributes and methods of its superclass. It may have some extra attributes
or methods and it may change some of the methods of the superclass, hut all
operations that are defined on the superclass are "automatically" defined on
the subclass as well. This terminology reflects the convention to call a data
type a class. With this terminology we can say that objects are instances of a
class.

The power of inheritance lies in the reuse of code: if a certain existing
data type matches already most of the requirements one has, one may derive
a new data type from it. The aspects of the data type that already match the
requirements can then be used straightaway. The mismatching parts need to be
changed or supplemented, but this may require a lot less work than designing
the new type from scratch.

7.2. Object-oriented aspects of C++ 251

Consider for example a program manipulating publications. We may re
quire that every publication has a title, an author and a year of publication.
Different kinds of publications may add different information to this: an article
is published in a journal or in proceedings, a book may be part of a series, etc.

To present relations between classes, the Object Model Notation proposed in
(Rumbaugh et al., 1991) will be used. The example above could be represented
in a diagram as shown in figure 7 .1. Each class is represented by a rectangle
divided into three parts. The upper part shows the name of the class in hold.
The middle part lists the attributes of a class and the lower part has room for
the methods of the class. In the remainder of this chapter, the middle and lower
part will often be omitted. The triangle pointing up on the lines connecting

Publication

title
author
year

...

A
1 1 1 1

.. lnProceedings - Proceedings ..
pages editor
volume conference

... . ..

Figure 7.1: Example class hierarchy

the classes InProceedings and Proceedings with Publication indicates that
InProceedings and Proceedings are derived from Publication. The line
connecting InProceedings with Proceedings and terminated with a diamond
at the side of InProceedings indicates that an instance of InProceedings
refers to one instance of Proceedings.

Figure 7.2 finally shows relations between classes that are not present in the
hierarchy of figure 7.1 hut that will be needed later on in this chapter. The line
connecting A with B in the left part of figure 7.2, terminated with a diamond
and a solid circle, indicates that an instance of class A refers to zero or more
instances of class B. If the solid circle is replaced by an open circle, A refers to
zero or one instance of B.

A class can inherit from multiple other classes. In this case it will have all
the properties (attributes and methods) of all classes it derives from.

252 Software components for CASID

A J B A B

Figure 7.2: A refers to zero or more B (left) or zero or one B (right)

Polymorphism and dynamic binding

Polymorphism means that a variable can contain values of different types. In
the example above this would mean that a variable of type Publication actu
ally contains a value of type Proceedings. The type with whieh the variable
was introduced to the program is called its statie type, the type of the value it
actually contains is called its dynamic type. The dynarnic type of the variable
is always equal to its statie type or a descendant of it.

In the example above one could think of a list of publications. Such a list
would be designed to refer to zero or more instances of class Publication.
In reality it would not contain instances of class Publication hut Articles,
Books, Proceedings, etc. Such a list is made possible through polymorphism.

If a method of an object is called, one would want that the method corre
sponding to the dynamic type of the object is called: the dynamie type of the
object may be a descendant of the statie type of the object and the descendant
may have changed the method of the statie type. This means that only during
the execution of the program, when it is known what the dynamic type of the
object is, can be decided which method should really be called, that of the
statie type of the object or maybe that of one of its descendants. This is called
dynamic binding.

In C++ polymorphism and dynamic binding can not be applied in all cases.
A prograrnmer has to take special precautions to make sure that these concepts
are available at a certain point in bis program. This technicality will be ignored
further, although it gives rise to a lot of design decisions that need to be made
during the coding of a new class.

7.3 Matrices and related data structures

7.3.1 Vectors

Near the bottom of the class hierarchy that will be described in this chapter is
the class of vectors, the vectorCls. A vector is a one-dimensional array of real

7.3. Matrices and related data structures 253

or complex numbers on which a number of operations are defined: addition of
another vector, a complex scalar or a real scalar, multiplication with or division
by a scalar and element-by-element multiplication or division. Moreover, one
vector may be assigned to another.

Before looking into the details of this, Iets assume for now that this is
implemented. It is now possible to write

c = a + b;

to add the instances a and b of type vectorCls and store the result in another
instance c of type vectorCls. This line of code is executed in the following
steps.

1. Create a temporary instance of class vectorCls to hold the result of the
addition.

2. Perform the addition, storing the result in the temporary object.

3. Discard the old contents of c and make sure that c is of the same dimen
sion as a and b.

4. Copy the contents of the temporary instance to c.

5. Discard the temporary instance.

Step 4 is inconvenient: memory needs to be allocated for c to receive a copy of
the information in the temporary instance and then this copy has to be made.
At this point in the program there exist two copies of the same data. The next
step then throws away one of these copies. It would be both faster and less
memory consuming if c and the temporary instance would share the same data
instead of making a separate copy for both.

This can be taken even a step further. After

Code fragment 7 .4
a = b;

a and b might as well share the same data. Only if the value contained in a or
b changes the two instances need to be given their own copies: if the value of
b after execution of code fragment 7.4 changes it is not intended that the value
of a changes along!

This is a wide-spread idea in class design. It is called deferred copying. lt
is implemented here by using an extra class called vectorData. An instance
of vectorData contains the actual data of a vector. A vectorCls refers to
an instance of vectorData. After the assignment in code fragment 7.4 the
instances a and b refer to the same instance of class vectorData. This gives
the preliminary class hierarchy shown in figure 7.3. An instance of vectorCls
may also refer to no instance of vectorData, which is indicated in figure 7.3

254

vectorCls K::::--a vectorData

Figure 7.3: Preliminary hierarchy for the implementation of vectorCls

by the open circle. This special case is interpreted as the empty vector: the
instance of vectorCls represents a vector of dimension zero.

A lot of the functionality of a vector is actually implemented by vector Data.
vectorData "knows" whether its data is real or complex, can switch between
these two cases, can add two instances of vectorData, etc. It is also concerned
with allocating sufficient memory to store all data in the vector and releasing
this memory again if the instance of vectorData ceases to exist. In principle,
vectorData hides all details concerning how the vectors are stored, how a real
vector can be told from a complex one and how many elements the vector has.

Now suppose ais a vector containing four elements and b is a vector con
taining three elements. If we want to assign the value of b to the last three
elements of a, we would like to be able to write:

Code fragment 7.5
a[1:3] = b;

Some technica! details of C++ need to be introduced now: in C++ one indices
into a vector using square braces, in MATLAB this is done using parentheses.
Moreover, in C++ the first element of a vector has index 0, where in MATLAB it
has index 1. Finally the notation 1: 3 has been borrowed from MATLAB. This
notation can not be used in C++. The problem of specifying ranges of indexes is
discussed later. The equivalent MATLAB code for the previous example would
be

a(2:4) = b;

Code fragment 7.5 is implemented by letting a[1: 3] return an instance
of type vectorClsRef. An instance of vectorClsRef refers to (part of) an
instance of vectorCls. For now assume that an instance of class indexRange
specifies what part of the vectorCls is to be used. Assigning an instance b of
class vectorCls to an instance of vectorClsRef referring to an instance a of
class vectorCls is now implemented by overwriting the part of a with b. The
vectorClsRef does not know how to do that, it has to ask vectorData to do
that.

Now let us take the example in code fragment 7.5 a step further. Consider
the following example:

Code fragment 7 .6
a[1:3] = a[0:2];

7.3. Matrices and related data structures 255

The intention of this line of code is that after the assignment the elements
1, 2 and 3 of the vector a contain the values that the elements 0, 1 and 2
had before the assignment. a[1: 3] plays a different role in this example than
a[0:2]. a[1:3] refers to the second to fourth element of a hut a[0:2] should
refer to a copy of the first to third element of a. Fortunately this can be
handled relatively easily. In the implementation of vectorClsRef assigning a
vectorClsRef b to a vectorClsRef a is implemented by converting b first to
a vectorCls and then assigning that to a.

Converting a vectorClsRef to a vectorCls could be implemented by let
ting the new vectorCls refer to a new vectorData that contained a copy of
the subvector referred to by the vectorClsRef. In figure 7.4 this is shown
schematically for the example given above. In this figure the convention to
represent instances of a class by rounded rectangles and put the name of
the class in parentheses is used. The upper part of the figure shows an in
stance of vectorClsRef referring to the second, third and fourth element of
a vectorCls containing the value [10, 11, 12, 13]. The lower part shows the
instance of vectorCls that is made from this vectorClsRef.

(indexRange)

[1,2,3]

(vectorData) •
(vectorClsRef) K::::>----, (vectorCls) K::::>---+------1

[10,21,12,17}

(vectorData) ,
(vectorCls) IC::>----+------l

[21,12,17]

Figure 7.4: Conversion of vectorClsRef to vectorCls by explicit copying

It was chosen to arrange the actual implernentation somewhat differently.
To avoid making unnecessary copies of vectorData instances it was decided
to make it possible that a vectorCls instance refers to part of a vectorData
instance. What part it refers to is indicated by an optional indexRange. If
no indexRange is associated to an instance of vectorCls, the vectorCls is
assurned to refer to all of its associated vectorData. Figure 7.5 shows how a
vectorCls can now be created from a vectorClsRef without the need to copy
the vectorData instance. ·

It may seem that one problem has now been replaced by the other. Instead
of copying the vectorData instance an instance of type indexRange needs to
be copied. However, most indexRanges can be represented in a much more

256

(indexRange)

[1,2,3]

1

[(vectorClsRef) } [(vectorCls) }-
(vector Data)

[10,21, 12,171

[(vectorCls) }-

? (indexRange)

[1,2,3]

Figure 7.5: Conversion of vectorClsRef to vectorCls without copying of a
vectorData

compact way than genera! vectors of the same length. Therefore copying an
indexRange is in general much faster than copying a vectorData contain
ing the same number of elements. On the other hand, checking whether a
vectorCls has an indexRange and getting the elements out of such a range
one by one implies a lot of overhead. However, this overhead occurs also during
the copying of a vectorCls. It depends on the actual sequence of actions in a
program whether using an indexRange in the way described above speeds up
the program or slows it down.

The assignment in code fragment 7.6 now consists of the following steps.

1. a [1: 3] is evaluated, thereby creating a vectorClsRef that refers to the
second, third and fourth element of a.

2. a[0:2] is evaluated, resulting in a vectorClsRef referring to the first,
second and third element of a.

3. The vectorClsRef created in step 2 is converted to a temporary vector
Cls. This involves making a copy of the indexRange of the vectorClsRef
created in step 2 and sharing an instance of vectorData with a.

4. The vectorClsRef created in step 1 requests permission from its vector
Cls (in this case instance a) to change the vectorCls's data. The
vectorCls will request this permission in turn from its vectorData and
this will report that it can not grant this permission, because other in
stances of vectorCls are referring to this instance of vectorData, ex
pecting that the vectorData instance remains constant. This is resolved

7.3. Matrices and related data structures 257

by creating a new copy of the vectorData that only a will refer to. The
vectorData instance that a is now referring to is shared by no other
vectorCls instance, so a grants permission to change its data to the
vectorClsRef that requested it.

5. The actual change of the data of a is carried out.

6. The vectorClsRef that had permission to change a's data informs a that
it no langer needs this permission.

7. The temporary vectorCls created in step 3 is discarded. To clean things
up, the temporary vectorCls first deletes its indexRange. Then it an
nounces to its vectorData that it will no langer use it. The vectorData
responds that it is now no longer used by any vectorCls instance, so that
the vectorCls instance knows that it is safe to delete the vectorData
instance.

8. Both vectorClsRef instances are deleted.

If the assignment to be performed had been of the form

Code fragment 7. 7
a[1:3] = b[0:2];

where b is a vectorCls instance independent of a, the creation of a new
vectorData in step 4 would not have occurred, provided no other vectorCls
instances are referring to a's vectorData instance. Saving this copy operation
was the reason to create the possibility that a vectorCls refers to part of a
vectorData.

The hierarchy of vectorCls-related objects is finally given in figure 7.6.

~--< ,! indexRange 1

vectorCls K>--a vectorData

Figure 7.6: Class hierarchy implementing vectors

Remark 7 .1 Figure 7.6 is still a simplification of the true hierarchy. The
exchange of information between a shared object and other objects that share
it is implemented by means of two classes, one encapsulating the actions to be
performed by the shared object, the other encapsulating those to be performed

258 Software components for CASID

by the sharing object. Therefore vectorData is derived from the former class,
vectorCls from the latter.

Also vectorCls objects are able to print a representation of themselves
to a file or on the screen and they know how to convert input from a file or
from the keyboard to a value of type vectorCls. The interaction with files,
terminals or any other form of a stream is arranged by deriving from a class
streamableCls.

These and other details are not further discussed here. 0

7.3.2 Specifying sets of indices

In the previous section subvectors of a vector were considered. It was discussed
how to handle subvectors assuming that it was known what part of a larger
vector to consider. The task of specifying that part was left to a class called
indexRange. In this section the class indexRange and its descendants are
described.

The class indexRange represents in fact nothing else than a collection of
integer values. Several ways to specify such a range come to mind:

• A collection containing all values at equidistant steps between given start
ing and ending values. In MATLAB these indices are specified by the colon
operator: 1 : 5 or 10: -2: 1 are examples of such sets.

• A trivia] set containing only a single integer value.

• A collection containing an explicit list of all its elements.

• A collection containing an explicit sorted list of all its elements. Sorting
the elements in the list can be useful to remove duplicated elements or
to check whether a value is a member of the collection.

• A combination of other collections, representing the union of the respec
tive collections.

For every item in the previous list a different class is derived from indexRange.
This gives the hierarchy of figure 7. 7. In this hierarchy a sorted collection of
integers is implemented as a special case of an explicit list of integers.

indexRange does not have the full functionality of a set of integers. It only
specifies how to interact with such a set no matter what its actual form is. Due
to polymorphism a vectorCls or vectorClsRef can think that it is dealing
with an indexRange where it is in fact dealing with, say, an explici tRange.
This makes it possible to define new forms of sets of integers without the need
to inform vectorCls or vectorClsRef about this. As long as the new set
is derived from indexRange, vectorCls and vectorClsRef will already know
how to interact with it.

7.3. Matrices and related data structures 259

steppedRange combinedRange

explicitRange 1<:>---.a explicitData

sortedRange

Figure 7. 7: Hierarchy of sets of indices

An explici tRange is vaguely similar to a vectorCls. It refers to inte
ger values similarly as vectorCls refers to real or complex values. Indeed,
explicitRange is implemented like vectorCls, referring to an auxiliary class
explicitData that takes care of allocating memory for the list, etc. Two in
stances of explicitRange can share the same instance of explicitData in the
same way as two instances of vectorCls can share a vectorData.

Every descendant of indexRange is required to define an auxilîary class
called an iterator. Every instance of an iterator class is associated with an
instance of an indexRange descendant. The task of the iterator is to return
one by one the elements of its associated indexRange. This functionality could
have been implemented in indexRange and its descendants, but the scheme
outlined here makes it possible to have two simultaneous iterations over a
collect ion without the need to copy the . collection. This scheme violates the
principle of information hiding a bit. An iterator for a class needs to know
how the class it belongs to stores its information and furthermore it needs to
have access to this information. This is not considered a problem as long as
the programmer implementing or maintaining these classes is aware of it. To
a user of these classes it is still invisible how a certain set is implemented.

7.3.3 Matrices

Matrices are derived from vectorCls. They are considered an extension of
vectors. The extensions involve

• specifying how many rows or columns the matrix has. The total number
of elements in the matrix should be a multiple of this number.

• defining two dimensional indexing. The expression

260 Software components for CASID

m(2,1)

refers to the element in the third row and the second column of a matrix
m. Note that here too indexing starts at index zero.

• implementing multiplication of a matrix with another matrix or with a
vector.

The actual calculations of matrix addition and of all operations involving a
scalar can be performed by the corresponding vectorCls operations. Never
theless separate methods have to be defined for the matrix class, because the
type of the result of these operations is no langer a vector hut a matrix. The
matrix functionality is present in the class matrixCls. As already mentioned,
this class is derived from vectorCls.

vectorCls being the superclass of matrixCls it is clear that the entries of
matrixCls are somehow stored as a long vector. Whether the row vectors are
concatenated to one vector or the column vectors are stacked on top of each
other is irrelevant for the use of matrixCls. A user of the class can find out
if he insists without looking at the code, but it would be unwise to write any
code that relies on the choice that has actually been made.

Submatrices

Taking submatrices of a matrix is arranged in the same way as taking subvectors
of a vector is. If m is an instance of matrixCls and ra and rb are indexRanges,
the expression m(ra,rb) returns an instance of type matrixClsRef. This time
parentheses instead of square brackets are used because C++ does not support
the syntax m[ra,rb]. Using the syntax m[ra] [rb] would cause other problems.

There are some subtleties involved in the implementation of these aspects
in matrixCls and matrixClsRef. Two indexRanges are involved in selecting
a submatrix from a matrix, one referring to the row indices of the matrix, the
other referring to the column indices. In the superclass vectorCls there is
only the possibility to refer either to all elements of a vectorData instance or
to a subset of it indicated by a single indexRange. The problem of where to
store the other indexRange can not be solved by creating a new attribute for
matrixClses that can contain this extra indexRange. Suppose for example
that a matrix consists of three rows and three columns and that it refers inter
nally to all elements of a vectorData. Because a matrixCls is derived from a
vectorCls it is a vectorCls and can be treated as such. As the matrix con
tains nine elements, the vectorData instance that the vectorCls superclass
refers to must also have nine elements in this case; it was assumed that all el
ements of the vectorData were used to represent the matrix. The matrixCls
interpreted as a vectorCls will appear to be a vector with nine elements. Now

7.3. Matrices and related data structures 261

consider the same three by three matrix, but now represented as a submatrix
of a larger matrix, say a four by four matrix. The vectorData referred to by
the matrixCls now contains sixteen elements, only nine of which are used by
the matrixCls. If one of the indexRanges, say the one selecting three out
of four possible rows, is stored in the vectorCls and the other indexRange
selecting the column indices is stored in the matrixCls, the vectorCls will
"think" that it refers to only three of the elements of the vectorData instead
of nine, because the extensions to vectorCls defined by matrixCls are invisi
ble to vectorCls. Not only is this inconsistency confusing for the user, it also
makes that all element by element operations that the vectorCls superclass
is supposed to perform, such as multiplication by a scalar, operate only on a
fraction of the data on which they should operate. To make things even worse,
the reader may verify that the fraction of the vectorData that the vectorCls
is referring to may not even be part of the submatrix that is actually intended.

The solution of this problem is to derive a class from indexRange that
can store two indexRanges. This functionality is present in the twoDRange
class. The twoDRange needs to know whether a matrixCls stores its data as
a concatenation of rows or as a concatenation of columns. In the first case it
also needs to know how many columns the matrix has it is supposed to select
a submatrix from. In the second case the number of rows needs to be known.
The twoDRange can now calculate which elements of the vectorData instance
a matrixCls instance is referring to and present itself as a collection of indices
corresponding exactly to those elements.

The difference between a matrixClsRef and a vectorClsRef is that a
matrixClsRef always refers to a matrixCls, never to its superclass vectorCls.
A vectorClsRef refers to a vectorCls, which may or may not actually be a
matrixCls. Also a matrixClsRef refers to a collection of indices which is
required to be of type twoDRange. A vectorClsRef refers to a collection of
indices that may be represented by any descendant of indexRange.

Figure 7.8 shows the extension of the hierarchy described in this section.

Matrix functions and decompositions

A matrix class is not very useful if only multiplications and additions are de
fined. What is really needed is a set of functions to calculate a matrix's eigenval
ues and eigenvectors, its Schur decomposition, its singular value decomposition,
its QR decomposition, its LU decomposition and its inverse. Fora description
of these decompositions and ways to calculate them numerically, see (Golub
and Van Loan, 1989).

Writing numerically sound routines solving these problems is not a trivial
task. Moreover, even merely implementing the routines from a textbook like
(Golub and Van Laan, 1989) would be a time consuming enterprise. Fortu
nately, the LAPACK library provides a collection of routines that performs all

262 Software components for CASID

.----o vectorData

vectorCls

matrlxCls

matrixClsRef 1<>--0 twoDRange

Figure 7.8: Hierarchy of objects implementing matrices

these tasks. This library is publicly available on the internet and is documented
in (Anderson et al., 1995). All of the problems mentioned above are relatively
easily solved by calling routines from LAPACK.

The routines in LAPACK expect that matrices are stored in a well-defined
way. indexRanges are unknown to LAPACK. Therefore if a LAPACK routine
expects a matrix, it can not handle a matrix whose entries are a subset of a
vectorData accessed through a vectorCls. It can only handle an array of
values containing one column of that matrix after the other, together with
two integers specifying how many rows and columns the matrix has. Separate
routines are provided for real matrices and complex matrices. It is the task
of matrixCls's methods to make sure that the appropriate LAPACK routine is
called and that LAPACK finds the matrices in the way it expects them. Also any
temporary working space required by LAPACK is allocated by the matrixCls
methods, so that all these technica! details are invisible to the user.

The storage of vectors in vectorData has been arranged such that real
numbers and complex numbers are stored in a way that is compatible with
LAPACK. Also an instance of matrixCls stores its elements one column after
the other. Therefore the storage of entries in vectorData is exactly what LA

PACK expects, except fora possible indexRange in vectorCls that selects a
subset of that vectorData. The matrix entries do not need to be rearranged
to call LAPACK routines. Strictly speaking, this violates the concept of in
formation hiding. matrixCls uses information on how vectorData stores its
information. The alternative would be not to use this information and to make
a copy of every matrix such that the copy is stored in the way LAPACK expects
it, regardless of how the original matrix was stored. This has large repercus
sions in terms of memory usage and computing time. This was considered ari
unreasonably high price to pay for information hiding.

7.3. Matrices and related data structures 263

Wherever it makes sense, routines are implemented in two ways: one in
which the result of an operation overwrites the arguments to the operation and
one in which the original arguments are preserved. For example

a.invO;

overwrites the matrix a with its inverse, assuming a is a square, non-singular
matrixCls,and

inv(a};

is an expression returning the inverse of a, leaving the original value of a intact.
Using the first approach saves memory. Because the LAPACK routine mostly
use this approach as well, it also saves an extra copy operation, so it also saves
time. Nevertheless the second approach is easier in some circumstances and is
therefore provided as well.

Special forms of matrices

Apart from genera! matrices LAPACK also supports triangular matrices, band
matrices, symmetrie and hermitian matrices, positive matrices and some special
orthogonal matrices. Exploiting the structure that a matrix is known to have
can result in lower demands on memory. Special "packed" representations of
triangular matrices, band matrices and symmetrie matrices exist in LAPACK

that rernove the redundancy that otherwise would be present in the "full"
representation of the matrix. For exarnple, instead of mapping the square,
upper triangular matrix

(
a~1

A= .

0

... ::~)

0 aqq

to the vector representation

one could map it to the more compact representation

Extension to the lower triangular and the non-square case is straightforward.
The same storage scheme that can be applied for triangular matrices can be
used for symmetrie and hermitian matrices. As an alternative, one rnay use the
non-packed storage scheme that matrixCls uses and simply ignore the values
that would be omitted frorn the packed scheme. In this case there is no gain

264 Software components for CASID

in terms of memory, but execution can be faster, because the implementation
need not be concerned any more with keeping the entries up to date that are
ignored any way.

Another advantage of using structure of a matrix is that some problems can
be solved more easily if the matrix has a certain structure. For example, the
eigenvalue problem is easier to solve numerically for symmetrie matrices than
for non-symmetrie matrices. Also, taking the inverse of an orthogonal matrix
is an especially easy operation; taking its transpose suffices.

Due to time constraints, these structured matrices have not been imple
mented, but below will be indicated how such an implementation could pro
ceed.

The first thought that comes to mind considering how to implement these
special matrix forms is to make these matrices a descendant from matrixCls.
After all, they are matrices that have, compared to general matrices, some
extra properties. From an implementation point of view, this is not such a good
idea. For example, in a genera! matrix, one can assign an arbitrary value to
any of its entries. If, say, a symmetrie matrix is implemented as a descendant
of matrixCls, this operation also exists for the derived (symmetrie) class.
Assigning a value to a single entry of a symmetrie matrix is likely to destroy
the symmetry of the matrix and should not be allowed. As another example, a
symmetrie matrix that is stored in non-packed form uses only either the upper
triangular or lower triangular part of the general matrix that is used to store
it. The entries below resp. above the diagonal are simply ignored and contain
random data. If a general multiplication is performed with such a matrix, these
entries will no langer be ignored and will give an erroneous result.

Of course these deficiencies can be fixed by adapting the appropriate meth
ods in the derived classes such that these problems are avoided. Provided
dynamic binding is used, this seems a solution to the problem in the true
object-oriented spirit. There are two points of criticism one may raise:

• In C++ a class designer has the option whether or not to use dynamic
binding. Dynamic binding implies some overhead in the execution of
the code that is not present in statie binding. A class designer may
therefore tend not to use dynamic binding, provided he is not cutting off
any valuable possibilities for himself.

• A class should be derived from the superclass with which it has most in
common. Some of the methods of matrixCls would need to be changed
to reap the performance benefit that can be obtained by exploiting the
structure in the matrix or to avoid destroying the structure of the matrix.
If it is analysed which methods need to be changed, it turns out that these
special matrices might as well be derived from vectorCls.

Because of this it is proposed to derive these matrices from vectorCls instead
of matrixCls.

7.4. Building on vectors and matrices 265

If the calculation of the result of an operation can not benefit from the
structure in the matrix, the easiest thing to do is to omit implementation of
that operation for the structured matrix but implement instead a method that
converts the structured representation of the matrix to an equivalent matrix
in genera! form. If the C++ compiler encounters an operation that it does
not know how to perform for, say, a triangular matrix hut that it is able to
perform for a matrixCls, it will convert the triangular matrix automatically
(under certain conditions) to a copy of the matrix in matrixCls representation
and use the matrixCls in the operation instead. If the run-time overhead
implied by this conversion is not desired, one can decide to opt for the less easy
possibility of implementing the operation explicitly for this matrix structure.

Having defined such a conversion method, a class representing a structured
matrix still needs to do two things: change those methods of vectorCls that
need special attention for structured matrices and add methods for matrix
operations that preserve or exploit the structure. For each type of structure,
one has to decide what this general observation means in practice.

7.4 Building on vectors and matrices

7.4.1 Polynomials

Scalar polynomials can be relatively easily derived from vectors. A vector is
used to contain the coefficients of the polynomial. Addition or subtraction
of two polynomials involves padding the shortest of the two polynomials with
zeroes to the same length as the longest polynomial. Th~n a simple vector
addition/subtraction will give the coefficients of the sum/difference of the two
polynomials.

Other methods that one wants to have for a polynomial are multiplication
by a real or complex scalar or another polynomial. Also evaluation of the poly
nomial using a real or complex scalar as its argument is supported. Evaluation
of the polynomial with a square matrix argument is also straightforward to
implement. The problem of finding the zeros of a polynomial can be translated
to an eigenvalue problem. Class matrixCls can then be used to solve this
problem. All this functionality is available in the class polynomialCls.

These methods make it possible to write for example

m1 = (p1*p2+p3)(m2);

for p1, p2 and p3 of type polynomialCls and ml and m2 of type matrixCls.
This line of code means: calculate the polynomial that is the sum of p3 and of
the product of p1 and p2. Then evaluate this polynomial for m2 and store the
result in ml.

266 Software components for GASID

7.4.2 Signals

Discrete time signals defined on a finite interval are very similar to matrices.
Multiplication by a scalar, addition or subtraction of a scalar and addition or
subtraction of two signals all require the same calculations as the corresponding
operations formatrices. Therefore the class signalCls that implements signals
uses a matrixCls internally to represent signals.

Despite this similarity between signals and matrices, signals and matrices
can also be very different. Formatrices the norm used most often is the matrix
norm, the largest singular value of the matrix. This norm is rather meaningless
for signals. Also multiplication of two matrices is defined, multiplication of two
signals is not. Taking the autocorrelation of a signal has a clear interpretation,
for a matrix this interpretation is unclear, unless the matrix is interpreted as
a discrete time signal any way. For this reason signalCls is not derived from
matrixCls. It just has an attribute of type matrixCls.

Whether a signal needs to know at what rate it was sampled and at what
time instant sampling started is a point of discussion. It seems that important
information regarding the signal is missing if these attributes are not part of
the signalCls specification. On the other hand, experience with the imple
mentation of the algorithm presented in this thesis is that this information is
never used. Keeping these attributes up to date amounts in this case to extra
overhead from which no real benefit can be derived.

Practice has to show whether there is really a need to record sampling
frequency and starting time of a signal. As an intermediate solution, this
functionality is present as an option.

7.4.3 Linear, time:-invariant processes

Software intended to support system identification is useless if it does not sup
port mödels of some form. In this implementation models for linear, time
invariant processes are supported that can be interpreted as input/output op
erators. As in chapter 3, some generality is lost by distinguishing between
inputs and outputs in the set of signals for which a model is derived. The ca
pability of the software to avoid making this distinction would require a large
programming effort to implement. As the algorithm of chapter 4 distinguishes
between inputs and outputs, this capability would not be used. This applies
also to many other algorithms. Therefore it was not considered a problem that
models make this distinction.

Having decided that the models to be used represent linear time-invariant
processes, there are a number of things that every type of model should be
capable of:

• A model should be able to filter a signal, mapping an input signal to an
output signal.

7.4. on vectors and matrices 267

Figure 7.9: Constructing models Erom other models. Left: addition, middle:
cascading, right: appending

Suppose that the input signa! is cut into two signals, representing the first
and the second half of the experiment. If these two inputs are filtered by
the model and the two outputs are concatenated, the result should be the
same as when the input signal was filtered in one operation. This implies
that every model should have an attribute representing its state or its
initia! condition. This attribute will be called state further on. This does
not imply that only state-space models are admissible.

• A model should be able to store its state in a variable and restore it from
that variable. Resetting the state to zero initia! conditions should also
be possible.

• The response to a number of special input signals should be generated
without creating that input signa! explicitly. In particular, the impulse
response and step response for zero initia! conditions should be accessible.
Moreover, the response to an input equal to zero for the given state of
the model bas to be made accessible. All these operations should update
the state of the model, so that the various responses can be extended
without starting from scratch.

• The frequency response of the model for a certain frequency or a number
of frequencies needs to be available.

• New models can be constructed from existing models. This includes
addition of two models, cascading two models and appending two models,
see figure 7.9. Also selecting a subsystem consisting of a subset of the
original system's inputs and outputs needs to be supported.

All of the functionality mentioned above is encapsulated by the class L Tl -
transferCls. (Maybe the name LTimodelCls would have been more appropri
ate.) The LTitransferCls is, like indexRange, an abstract dass. It does not
implement the functionality itself, it just specifies how its descendants should
make this functionality accessible to their outside world. The class stateCls
represents the state of a model. For every descendant of LTitransferCls there

268 Software components for CASID

should be a corresponding descendant of stateCls to hold the state informa
tion of that type of model.

Polymorphism and dynamic binding is again used to increase the flex
ibility of the classes: if a user writes a routine to make a Bode plot for
class LTitransferCls, the routine will function with any descendant of LTI
transferCls too. No separate routines for different model representations are
used any more.

LTltransferCls
1

SStransferCls

Figure 7.10: LTitransferCls hierarchy

Two descendants of LTitransferCls have been implemented: SStrans
f erCls and MPitransferCls, see figure 7.10. SStransferCls represents a
state-space realisation of linear, time-invariant models:

G(z) = C(zl - A)-1 B + D

The model class MPitransferCls is derived from the Minimal Polynomial Iden
tification toolbox, a toolbox used in our group written by H. Falkus, based on
(Falkus, 1994, chapter 2). The relation between inputs and outputs used by
this model is

B(z) . C(z)
a(z)y(k) = f(z) u(k) + d(z) E(k) (7.1)

E(k) is a noise sequence, u(k) is the process input and y(k) is the process
output. a(z), f(z) and d(z) are scalar polynomials, B(z) and C(z) are matrix
polynomials of appropriate size. As far as the MPitransferCls is concerned,
both u and E are considered inputs to the model. The inputs are just partitioned
into two parts, one filtered by ~?;],the other by ~~f.

The popular FIR, ARX, output error and Box-Jenkins models are all a spe
cial case of the model structure (7.1). These model structures can therefore be
implemented by deriving them from MPitransferCls. For different structures,
different polynomials in (7.1) need to be fixed to one or the identity, depend
ing on whether it is a scalar polynomial or a matrix polynomial. The task of

7.4. Building on vectors and matrices 269

the derived classes is now to restrict the capabilities of the superclass, not to
expand it. In this case this is particularly easy to do.

In order to keep the structure flexible, one can not require that every de
scendant of LTitransferCls "knows" how to convert to any other descendant
of LTitransferCls. Nevertheless it is desirable to be able to convert from
one representation of a linear, time-invariant model to another. The solution
that has been adopted here is that every descendant of LTitransferCls must
be able to convert to and from a state-space representation. This excludes
the possibility of handling non-proper models, which can not be represented
in state-space form hut which are in principle possible in other model struc
tures. This is not considered too big a problem, because non-proper models
correspond in discrete time to non-causal models. It is assumed that the parti
tioning of signals into inputs and outputs has been carried out correctly. This
implies that there exists a causal relationship between inputs and outputs.

How should one descendant of LTitransferCls be added to another? If a
model g2 needs to be added toa model g1, g1 may check whether g2 is the same
type of model as itself and perform the addition without further conversion if it
is. This implies that every model structure should be able to add two instances
of that structure together, which seems reasonable to require. If g2 is not the
same structure as g1 is, g2 should be converted to state-space. One can then
choose whether to implement a routine that adds the state-space representation
of g2 to g1 or to use the conversion from state-space representation to the model
representation used by g1 and add the converted model to g1.

This approach is still not a full solution to the problem. An ARX model can
not be added to an output error model with an output error model as a result.
One may use polymorphism in this case and decide to use a minimal polynomial
representation for the result. This involves a lot of C++ technicalities, hut in
principle it can be clone. The choice which representation to use for the sum
of two systems is then made during the class design. If new types of model
structure are added to the class hierarchy, these choices may not be optima!
any more. It is probably better not to pick a conversion in the class design
hut to generate an error if addition of two incompatible model representations
is requested. This forces the programmer to be more explicit concerning his
intentions with respect to the sum of the model. If the programmer can not
say what model structures he will encounter in a routine, he can decide to use
a state-space representation. The class design already imposed the restriction
that every model should be convertible to a state-space representation, so he
can be sure not to run into trouble if he uses a state-space representation.

7.4.4 Generalised bases and generalised FIR models

In appendix B it is shown that a generalised basis for h2 can be derived from
a basis generating system. In order to represent a basis, one could therefore

270 Software components for CASID

suffice with a class storing the basis generating system and routines to extract
the required basis functions from this system. According to appendix B, ex
tracting this information involves an input balanced system derived from the
basis generating system and an all-pass system, also derived from the basis
generating system. To avoid repeated balancing and generating of an all-pass
system, a basis for h2 is represented by a pair of SISO transfers, the input
balanced transfer and the all-pass transfer. The two SISO transfers are stored
in two instances of type SStransferCls. This is done by the class SISOpair.

This class "knows" how to calculate the impulse response of any of the basis
functions in the set of basis functionsit represents. It can also perform all other
operations that were defined above for a LTitransferCls, either for a single
basis function or fora combination thereof. A difference between an infinite set
of basis functions and models is that it is unknown how many basis functions
out of the infinite set of basis functions are actually used. A consequence of this
is that the operations constructing models from a combination of other models
are not implemented for sets of basis functions. Another consequence is that
it is impossible to store the states of all basis functions in the basis. There
fore the states of the basis functions are stored outside the class SISOpair.
Consequently a filtering operation requires not only a signal to filter, hut also
a variable containing the states of the basis functions at the beginning of the
filtering operation and another variable that will hold the states after the op
eration. If the last variable is omitted from the request to filter a signal, the
states at the end of the filtering operation are simply discarded. If the initial
states are also omitted, zero initial conditions are assumed.

A MIMO basis is simply obtained as an array of SISO bases. Most C++
implementations provide ways to create with very little effort dynamically sized
arrays containing arbitrary types. This is also required by the draft ANSI C++
standard. Maintaining the array of SISO bases is therefore easily realised.
This task is carried out by the class ortFirSet. ortFirSet is not an array of
SISOpair instances hut of SISOpairCopy instances. A SISOpairCopy instance
can share a SISOpair instance with other SISOpairCopy instances in the same
way as a vectorCls instance can share a vectorData instance with other
vectorCls instances. This reduces the memory requirements of ortFirSet if
the same SISO basis is used for all input/output pairs in a MIMO basis.

ortFirSet is derived from MIMOtransferSet. The MIMOtransferSet spec
ifies the interface of ortFirSet with the outside world. This makes it possible
to derive other classes from MIMOtransferSet representing other ways to gen
erate a MIMO basis. Programs using ortFirSet without using any of the
specific properties of system based orthonormal basis functions will then be
able to handle other types of bases without further modifications.

Having a class that represents a MIMO basis, implementing a generalised
FIR model class requires the following actions:

• Provide an array of integers specifying the number of basis functions to

7.4. on vectors and matrices 271

use in each SISO subtransfer.

• Store the states of the basis functions incorporated in the model some
where.

• Provide sufficient "glue" between these component and the MIMO basis,
so that the resulting model class is accessible through the LTitransfer
Cls interface.

The last step suggests that the resulting model class shall be a descendant of
LTitransferCls. This is indeed the case. The ortFirModelCls is a descen
dant of LTitransferCls and implements generalised FIR models using the
components discussed above.

The hierarchy between the different classes discussed in this section is as
shown in figure 7 .11. The classes representing the states of the ortFirModelCls
and the number of basis functions for each input/output pair are not shown
for clarity.

LTltransferCls MIMOtransferSet

SStransferCls ortFirModelCls K>--1 ortFirSet

SISOpairCopy

~-----------• SISOpair

Figure 7.11: Classes involved in the implementation of ortFirModelCls

lt is now interesting to consider the data that is contained in an instance of
ortFirModelCls. For every input/ output pair, there is an integer specifying
the number of basis functions to use and a pair of state-space models defining
a SISO basis. Every state-space model is represented by four matrices. The
state dimension of these state-space models need not be the same for different
input/output pairs. It was the frightening idea of having to implement this
in MATLAB that led to the decision to implement the algorithm in C++ and
looking back on the whole project, it still seems the most important reason to
switch to C++.

272 Software cornp<)D€'nts for CASID

7. 5 Keeping all data of an identification session

While implementing the algorithm the question rose how to make it possible
to add different identification algorithms for the identification of the auxiliary
models to the program, without requiring changing any of the other code. As
before, polymorphism seemed an obvious candidate to tackle this problem. A
general "identification procedure class" could be defined and every identifi
cation procedure derives from this class. lndeed, a class idProcCls having
exactly this purpose was defined.

Unfortunately this can only be a partial solution. Different identification
procedures require different prior knowledge. One can not pass all this prior
knowledge explicitly to the methods of the identification procedure class: as
soon as an identification procedure emerges that requires prior knowledge that
was not anticipated on, the idProcCls needs to be changed. For a specific
identification method it also means that it is offered a lot of data, a considerable
part of which it is probably not using.

This was solved by creating a tree structure of different pieces of informa
tion, see figure 7.12. The root of the tree represents the complete identification
project. Below this root, information is organised in different subtrees, repre
senting the main categories of information. "Data" represents (initially) the
experimental data and prior knowledge of the process, "Identification" specifies
which identification method to use together with possible extra information the
identification method needs to have, such as model order or signal sealing. Un
der "Data" information is organised according to the operating point it belongs
to. To each operating point belongs one or more data sets and maybe other
information. For each data set, there must be input and output measurements.
Additionally there may be other information that is specific to this data set,
etc.

Every node in this tree is an instance of (a descendant of) class property
Cls. propertyCls handles the connection with other nodes. lt also contains
the name of the node. If this is all the information that a node requires, an
instance of propertyCls suffices to represent this node. For anode representing
a data set, the node should also contain the input and output signals. A node
representing a transfer should contain some representation of that transfer,
etc. The ability to contain this information is obtained by deriving properly
extended. descendants from propertyCls.

Helper classes are provided to iterate over all or part of the nodes in the
tree, either starting from the root or from any other node. Functions searching
for certain nodes are also implemented, as well as an extensible set of classes
that can express conditions that a node must satisfy before being considered
as a candidate for a search.

Different parts of the algorithm put their results at appropriate places in
this tree. The identification of auxiliary models should put the model it finds

7.6. User interface

operating operating
point A point B · ··

.... ··/'.:···~

data data nominal
set 1 set 2 model

..-·::·\· ~.
-- ';?/ "~

input output noise
bound

273

Figure 7.12: Tree of all information pertaining to an identifkation session

for an operating point in the subtree corresponding to that operating point.
Information required by the identification should also be found somewhere in
the tree. It is the user's responsibilîty to make sure that all information required
by the identification method he requests is available either beforehand or is
made available in the steps preceding the identification.

This structure has proved ftexible enough to meet all the needs of the im
plementation of the algorithm.

7.6 User interface

The user interface for the algorithm has deliberately been kept very rudimen
tary. There were three reasons for this.

• It is generally considered good practice to separate computational aspects
in a software design from user interface issues. Therefore no user interface
aspects have been built into the class design, except perhaps for the
methods to read from and write to files or the terminal.

• Software is called stable if it does not (or hardly) change any more in the
future. Because this prototype of the algorithm is not stable software, it
was considered unwise to go through a lot of effort to provide an easy to
use interface for it,

• A lot of class libraries exist that facilitate the development of graphical
user interfaces on different platforms. Some of them provide a unified
framework for different platforms: all details concerning the windowing

274 Software components lor CASID

system under which a user interface is running are hidden by the class
library. The same source code can be used on all supported platforms.
Unfortunately these libraries are more expensive if more platforms are
supported.

As it is at this point not clear on which platforms the algorithm will
be running in the future, it was decided not to make a decision which
platforms to support. In this way it is avoided that an expensive library
is purchased that supports a lot of platforms that will never be used. It
is also avoided that a cheap library turns out not to support a platform
that will turn out to be attractive in the future.

Basic terminal and file I/O routines are used to communicate with the user.
This was never felt to be a severe restriction in the use of the software.

7. 7 Performance

It is difficult to assess the performance of the class hierarchy that has been
introduced only superficially in this chapter. Making statements about perfor
mance amounts to making statements about the quality of software. It is a
large subject of dispute how to measure the quality of software. A discussion
of the more general aspects of the quality of the class hierarchy discussed in
this chapter would largely mean a repetition of section 7.1.2. The reader is
therefore referred to that section for a consideration of these aspects.

There is at least one aspect of the quality of the software that can be
measured objectively. This is the speed with which the code executes.

It depends highly on the kind of code that is executed what a comparison
between MATLAB and the class library described in this chapter will look like.
Three different situations will be distinguished.

• If a routine is mainly concerned with manipulation of matrices, without
spending rnuch time on decornpositions and the like, MATLAB turns out
to be more than twice as fast.

This is due to the flexibility of the class library. Every access of a vector
or a matrix requires some communication betwee:p. a vectorData and a
vectorCls. Moreover, if subvectors and submatrices are used, there is a
lot of overhead in the communication with the indexRange descendants
and their iterators. Some optimisation of the code is still possible to
reduce the current amount of overhead, but even after optimisation
nificantly more overhead will still be involved cornpared to the MATLAB
code.

• If a routine is rnainly concerned with decomposing a matrix, calculat
ing an inverse, etc. the speed comparison comes down to a comparison

7. 7. Performance 275

between the MATLAB routines and the LAPACK routines. Both routines
have common ancestors: the EISPACK and LINPACK libraries. Neverthe
less the MATLAB routines turn out to be faster than the LAPACK routines,
at least on a MS-DOS machine running Windows 3.11.

The Mathworks must have invested a lot of effort in optimising their
routines. It is not surprising that their code outperforms the LAPACK
library in this respect.

• Pieces of code that do not rely heavily on matrix manipulations or on
functions decomposing a matrix tend to be relatively slow in MATLAB.
Therefore MATLAB is unsuited for heavy numerical optimisations. In
these cases the benefits of compiled code make C++ outperform MATLAB.
Speed gains of a factor three or more are not unusual.

It is clear that the advantages of the classes described in this chapter should
not be sought in the speed of the executing code. The advantages lie more in
the speed and the relative ease with which one can develop this code.

If speed of execution would have been of the utmost importance in the im
plementation of this library, a number things should have been arranged differ
ently. For example, the ability of a vectorCls to refer to part of a vectorData
instance implies extra overhead in some circumstances. It is not quite clear
whether the savings in execution time that can be obtained by the current
scheme outweigh the extra computing time spent due to this overhead. In
fact, using a vectorData instance as an intermediate between the vectorCls
instance and its data may not be such a good idea as far as minimisation of
computing time is concerned. There are other ways to prevent the unnecessary
copying of data during the evaluation of an expression.

Also one may choose to implement only equivalences of steppedRange and
explicitRange and implement all operations on sub-vectors and sub-matrices
in the respective vectorCls or matrixCls.

Every decision above that is made for the sake of speed of execution sacri
fices part of the modularity of the current design. This means that the structure
that will result from these decision is less Hexible than the current structure.
It will become more difficult to maintain and the initial coding will probably
take longer too.

As far as the algorithm in chapters 4 and 5 is concerned, these consider
ations are irrelevant as far as computing time is concerned. This algorithm
spends by far most of its computing time in solving the many linear program
ming problems that are part of the algorithm. The only way to speed up the
algorithm, apart from using a faster computer, is to use a fas~er LP-solver.

276 Software components for CASID

8
Conclusions and
recommendations

8.1 Conclusions 8.2 Recommendations

8.1 Conclusions
The first goal of this thesis was formulated in chapter 1 as:

Provide a fundamental analysis of the factors that lead to model un
certainty in the context of black-box identification for robust control
design. Moreover, analyse the steps that are involved in deriving error
bounds Erom experimental data and prior knowledge. Provide a justi
fication for the choices that are generally made in the design of such a
technique.

Chapter 2 considered which factors lead to model uncertainty. These fac
tors were divided into three categories. (a) The model is only a simplified
representation of the true process. Often only linear, time-invariant approx
imations to the true process are considered that, moreover, have only a low
order. (b) Experimental data from which the model is derived is incomplete
and inaccurate. The duration of experiments is only finite, as is the sampling
frequency with which measurements are taken. Moreover, data is corrupted by
noise and disturbances. (c) Model uncertainty manifests itself in both shape
and magnitude. The uncertainty bounds contain in general processes that can
be shown, based on experimental and prior knowledge, not to be the true pro
cess. This is called conservatism. An important reason for this is that the
shape of the uncertainty bound does not correspond to the true shape of the
uncertainty.

A technique for model uncertainty bounding should try to reduce conser
vatism as far as possible. However, compromises have to be made concerning
computability and applicability for robust control design. It should further

278 Conclusfons and recommendations

be possible to interpret the bounds in physical terms and to tell what deter
mined the eventual error bounds: the experimental data, prior knowledge, or
a combination thereof.

A framework in which model uncertainty bounding can be discussed without
restricting attention to a particular algorithm was presented in chapter 3. In
this framework it is made explicit that model uncertainty can not be bounded
by experimental data alone. Prior knowledge/assumptions of some form are al
ways required. In a sense, model error bounds are therefore always determined
directly or indirectly by the prior assumptions.

In general, model error bounds alone can not account for all aspects of the
process behaviour. Part of the process behaviour should be represented by a
"noise" bound. This noise bound does not only represent noise and distur
bances, hut also relations between process inputs and outputs that can not be
described by the model uncertainty bounds. For example, if the model un
certainty bounds contain only linear models, as is normally assumed in model
uncertainty bounding algorithms, non-linear relations that exist between in
puts and outputs can not be represented by the uncertainty bound and thus
have to be considered disturbances.

Given the fact that both model uncertainty bounds and noise bounds de
scribe the process, the uncertainty bounding procedure should search for the
largest model uncertainty that is compatible with the noise and the prior knowl
edge. This worst-case approach is commonly used in uncertainty bounding, hut
the reason for this is not that the noise now has been "absorbed" in the model
uncertainty. The true reason is that this is the only way to stand a chance
that the noise that is faced by the eventual controller does not exceed the noise
bound that was used during the identification.

The previous results were formulated in a deterministic fashion, hut they
can be refonnulated in a probabilistic way too. For simplicity this has not been
further developed.

Given these results, it can be concluded that the first goal of this thesis has
been achieved.

The second goal of this thesis reads (see chapter 1):

B:ased on the results of the aforementioned analysis, adapt cAJ,",""15

techniques for model error bounding for application in robust control
design or develop new ones such that they fit better to the require
men ts of robust control design in genera] and are less conservative in
particular.

The basic idea behind the algorithm presented in chapter 4 and 5 is the
hypothesis that in practice only a limited number of physical causes induce
shifts in process dynamics. Because this number is limited, there must be a
considerable amount of structure in the changes in the process dynamics they
generate. This means that the changes that occur in. a process transfer for

8.1. Conclusions 279

one frequency should be related to those that occur for another. In the sarne
way, changes that occur in the transfer from one input to one output should
be related to those occurring in transfers for other input/output pairs.

This bas led to the formulation of an algorithm in which both structured
and unstructured errors are distinguished. The structured errors account in a
detailed way for the effects that were mentioned above, the unstructured errors
account for all other effects in a much less detailed way. The algorithm can
estimate how the separation between structured and unstructured parts should
take place.

This algorithm has, potentially, two advantages: first, the large contribu
tions to the error are bounded in a detailed way. The remaining parts are
bounded much less accurately but they can be much smaller. Second, the
assumption that the process is linear, time-invariant is relaxed further than
in other techniques: the new algorithm recognises explicitly that the process
dynamics change in different operating points.

Clearly, the algorithm is in line with the spirit of the second goal of this
thesis. This was enhanced further by the extensions presented in chapter 5. By
means of these extensions, more prior knowledge can be used in the uncertainty
bounding: by estimating the transients in the data,· more accurate bounds on
their infiuence can be given. Prior knowledge concerning the DC gain of the
process or concerning the complex gain for arbitrary frequencies can be used.
Solutions are provided to tune the separation into structured and unstructured
parts. Alternatively it is also shown how the user may overrule the algorithm
completely in this respect and specify this separation explicitly.

The algorithm relies heavily on the use of models containing a finite number
of system-based orthonormal basis functions. Chapter 5 also shows how the
estimation of such models can be improved in two ways. It is shown that it is
relatively easy to estimate transients for these models. Further a regularisation
procedure is proposed for model sets containing models whose impulse response
is considerably longer than the experiment intervals. Contrary to other regu
larisation schemes, this regularisation has a very clear physical interpretation
and justification.

The case studies in chapter 6 show that the algorithm is indeed capable of
reducing the unstructured error by splitting off structured error components.
Simulation results suggest that this even applies in cases where the structure
in the model uncertainty can not be represented exactly by the algorithm.
The algorithm then finds an approximation to the true structure in the model
uncertainty that it can represent and bounding this separately still reduces the
unstructured error signifkantly.

Application of. the algorithm to practical data obtained from an asyn
chronous machine showed that there are two requirements that need to be
fulfilled before application of the algorithm pays off: It seems that the signal
to noise ratio needs to be at least 40 dB and the poles of the system on which

280 Conclusions and recommendations

the system based orthonormal basis function are based need to be sufficiently
close to those of the true process.

If the latter requirement is not fulfilled, the bounds on undermodelling will
dominate the total model uncertainty. The relatively strict requirements on
the noise, especially in a practical setting, have two causes. Deterministic as
sumptions are made on the noise. This worst-case approach allows much more
noise sequences than seems realistic. Moreover, any relation that exists be
tween different structured error components is lost in the algorithm, because
the structured errors are bounded separately. This also applies to the relation
between unstructured errors in different input/output channels, for different
frequencies in case of frequency domain bounds on the unstructured error and
for different sample instances in case of time domain bounds. See also sec
tion 8.2.2.

Apart from these problems there is another issue that limits practical ap
plication. The computational load of the algorithm increases rapidly with the
number of inputs and outputs of the system and with the length of the data
sets. Application of the algorithm for systems with more than two inputs and
two outputs will easily result in computing times in the order of weeks or worse,
making application of the algorithm impractical.

The algorithm was implemented in C++ because MATLAB, the obvious alter
native, seemed to provide insufficient support for this. A generally applicable
library for computer aided system identification was developed. Use of this
library makes it possible to code an algorithm at a level of abstraction that
is much higher than that of matrices and vectors. This makes the code faster
to develop and easier to maintain. The advantages of C++ over MATLAB be
come more important for large programming projects. For small programming
projects, the advantages of MATLAB over C++ are clear.

Overlooking the results that were obtained, it seems that a number of im
portant steps towards realisation of the second goal of this thesis have been
made. Given the practical problems that the proposed algorithm still exhibita
the second goal can not be considered completely achieved.

8.2 Recommendations

8.2.1 General remarks concerning the algorithm

Some recommendations, including a potential solution to the problems indi
cated in the previous section, are given below, but some more general remarks
seem in order first. The argumentation for the expectation that splitting off
structured error components reduces the remaining unstructured error lies in
the physical causes of model uncertainty. In the categorisation of model un
certainty sources that was made above, these causes fall in category (a). The
explanation for the large uncertainty bounds that were obtained for the asyn-

8.2. Recommendations 281

chronous motor was found to be a large noise bound, corresponding to an
effect of category (b), and the fact that some knowledge about the uncertainty
bound was not used. This is by definition called conservatism, so it falls in
category (c).

It seems that the wrong effects determine the error bounds. These effects
are considered the wrong effects, not because they are irrelevant for robust
control design, but because they represent our inability to give tight bounds
on the true process behaviour, even if it were linear, time-invariant. The fact
that different linear representations for the true process are appropriate under
different conditions, which is in my view what robust control is all about, is
completely overshadowed by that inability.

The solution to these effects can probably only be found by using more or
more accurate knowledge in procedures for bounding model uncertainty. As
much prior knowledge as possible should be incorporated in the uncertainty
bounds. This requires further improving uncertainty bounding algorithms to
make the use of this information possible.

It was mentioned earlier that information was lost in the algorithm con
cerning the relation between the structured error components and between the
structured errors and the unstructured errors. Also the relation between the
unstructured errors for different input/ output channels, for different frequencies
or for different sample instances is not represented by the uncertainty bounds.
It is not quite clear what should be considered the true origin of this loss of
information. Certainly, designers of model uncertainty bounding techniques
should continue to seek the fault with themselves and try to avoid such loss
of information in their algorithms as far as possible. Nevertheless one may
start wondering to what extent conservatism is induced by the format in which
robust control wants to get its uncertainty bounds. The system identification
community has spent some years catching up with the robust control design
ers. Maybe it is time now to continue together and to increase the awareness
in the robust control design community of the kind of information that can be
assumed to be available in practice.

The algorithm presented in chapter 4 may serve as an example for the lat
ter remark. In this algorithm, complex polytopes in the Nyquist plane were
outerbounded by polytopes having only a small number of vertices. Of these
simple polytopes, the vertex having the largest distance to a nominal model was
then used to bound the absolute value of the model error for that frequency.
This effectively outerbounds these polytopes by a circumscribed circle with
its center "in the nominal model." Of these circles, the one with the largest
(weighted) radius is finally selected to bound the 1l00-norm of the model un
certainty, where care has been taken to take into account the effects that occur
between the frequencies for which such circles have been calculated. In each
of the steps, a more compact hut less accurate representation of the available
data is derived, yielding finally a representation that is suitable for robust con-

282 Conclusions and recommendations

trol design. If robust control design develops such, that the results that are
now intermediate results can be used directly as a characterisation of model
uncertainty, conservatism will be reduced. ·

As another example one may further think of using probabilistic bounds on
the uncertainty, derived from probabilistic assumptions on the noise, instead
of the hard, deterministic bounds that are now used by robust control design.

8.2.2 Stochasäc assumpäons on noise

The algorithm was formulated in chapter 4 using a deterministic framework
for the noise. These deterministic bounds on the noise were then mapped to
deterministic bounds on the model parameters and these were finally translated
to deterministic bounds on the structured and unstructured error components.

This is not essential to the algorithm. From stochastic assumptions on noise
the variance of model parameters can be derived using Cramer-Rao bounds.
The derivation of Cramer-Rao bounds relies on the fact that the process can be
represented exactly by a model in the model set, which is a serious drawback of
Cramer-Rao bounds in this context. Fortunately it is shown in (Falkus, 1994)
how stochastic bounds on the model parameters can be estimated even if the
process can not be represented exactly by a model in the model set. This still
results in an estimate for the covariance matrix of the model parameters.

Another option to come to an estimate of the model parameter covariance
matrix can be derived from the results in Hakvoort (1994, section 5.4). In their
present form, these results do not estimate the covariance matrix of the model
parameters, hut only minor modifications are required to achieve this.

Based on an asymptotic normality assumption, the covariance matrix of
the model parameters ·can be translated to ellipsoidal confidence regions for
these parameters. These confidence regions can be outerbounded by an or
thotope, representing a number of constraints equal to two times the number
of parameters. If these and only these constraints are used in the algorithm,
the number of constraints that needs to be handled in the subsequent linear
programming algorithms reduces enormously. This may provide a solution for
the long computing times that are now required by the algorithm.

Another benefit that may be derived from this approach is that the worst
case nature of the bounds is relaxed. This may result in smaller, more realistic
model uncertainty bounds. The price that has to be paid for this is that more
stringent assumptions on the noise acting on the system need to be made, which
may in turn be unrealistic.

As a further refinement to this approach, it can be considered whether the
linear programming problems can not be eliminated all together in the algo
rithm: the uncertainty in any (linear combination of) model parameters maps
linearly to uncertainty in Nyquist plane. This is due to the linear parametri
sation of the models. Let the matrix of the operator mapping the param-

8.2. Recommendations 283

eter uncertainty to frequency response uncertainty for a certain frequency
w' be denoted X(w 1

). Then the covariance matrix of the model parame
ters maps to the covariance in Nyquist plane through pre-multiplication by
[ReX(w 1)T,ImX(w1)T]T and post multiplication by [ReX(w 1)T,ImX(w1)T].
This basic procedure needs to be modified to exclude the structured error com
ponents from the unstructured errors. As only linear operations are involved
in this exclusion, this seems straightforward.

8.2.3 Other uncertainty structures

The algorithm was developed for structured uncertainty that manifests itself as
additive uncertainty with an unknown hut bounded gain factor. This limits the
class of uncertainty structures that can be described exactly by the algorithm.
The practically relevant case of a moving pole for example can not be described
in this way.

In section 5.8 the algorithm was applied to bound the uncertainty in the
Youla parameter of a system transfer instead of the uncertainty in the system
transfer itself. Translating the structured uncertainty in the Youla parameter
back to uncertainty in the system transfer, a kind of structure is found in the
system uncertainty that could not be obtained by direct application of the
algorithm. In section 5.8 this was mainly done to bound the uncertainty in
unstable systems, but a similar approach could possibly be used to make the
algorithm suitable for more kinds of structure in the model uncertainty.

Being able to handle many uncertainty structures is important, because the
more error structures can be recognised by the algorithm, the less conservative
the eventual error bounds will be.

8.2.4 Basis generation

In the presentation of the algorithm it has been argued that the poles of the
basis generating system should be chosen as close as possible to the poles of the
true system in different operating points. Although some suggestions were given
how to achieve this, some further automation of this step seems worthwhile.

284 Conclusions and recommendations

Overview of notation

A.l Latin symbols
A.2 Greek symbols
A.3 Other symbols

A.4 Other notations
A.5 Acronyms and abbreviations

A.1 Latin symbols

a(t) Contribution of basis functions 0 tok to the extended noise . p.107
bound due to inputs u(O) to u(t).

ai(t) Impulse response of the ith structured error component Ai, .. p. 78

b(t)

Co
eo
Cstab
d(R.)

i Ens.
ith structured error "direction": the structured error com- . . p. 78
ponents are equal to óiAi((), i E n 8 •

Contribution of basis functions k to k to the extended noise . p.107
bound due to inputs u{-oo) to u(-1).
Impulse response of the kth basis function. p. 75
Transfer function of the kth basis function. p.75
Complex plane.
The designed controller. "" " .. " ... " " .. p.61
Set of candidate controllers. . " " p.61
A stabilising controller for the system S. p.41
Contribution of basis functions k to k to the extended . p.111
cross-covariance bound due to inputs u(O) to u(Td). (R. is
the index of the instrumental variable involved.)
Bound on the inputs u, used in chapter 3. p.47
Bound on the model uncertainty ~- . p. 78
Bound on the difference between the designed controller and . . p.61
the implemented controller.

dç Bound on Ç, used in chapter 3. " " .. " " " " .. p.47
.......................... Continued on next page

286 Overview of notation

. " "Latin symbols, continued from previous page
'.D The set of all data set indices. . " ... " " ... " " . " . p.80
'.D(w) The set of all data sets of operating point w. p.80
diagXi The blode diagonal matrix having the Xi, i EI on its diag- .. p.11
iEI onal.

ef ith unit vector in IRn or en.
E(f A matrix in IRqxp having a one in row j, column i and zeros .. p. 77

elsewhere (o- = (j,i)).
f (i) Contribution of basis functions 0 to k to the extended . p.111

cross-covariance bound due to inputs u(-f) to u(-1). (l
is the index of the instrumental variable involved.)

jj(t) Impulse response of the nominal model G p.78
g~ (t) Impulse response of the linear manifestation of the true pro- . . p.81

cess in the operating point w.
g9(t) Impulse response of the model G9. " ... " " ... " ". " .. p.78
G Nominal model. p. 78
G~ Linear manifestation of the true process in the operating . . p.81

point w.
G9 Model corresponding to parameter vector 0. p.78
G9 Approximation of the nominal model by truncating its ex- . p.113

pansion in a certain basis to a finite number of basis func-
tions.

G9w Auxiliary model, intended as an approximation for Gtw. p.85
1l2 The field of complex valued functions that are analytic out- .. p.12

side the unit disc and square integrable over the unit circle.

1l00 The field of complex valued functions that are analytic out- .. p.13
side the unit and are bounded on the unit circle.

In
Imz
irngP

Identity matrix in IRnxn.
Imaginary part of complex number z.
Image space of a linear operator P or column span of a .. p.11
matrix P.

Jid The identification criterion used in chapter 3. p.54
k* First parameter for which exponentially decaying bound on . . p.82

tail applies: Vk 2 k*, IB%î < th = M(pO')k.
C2 The field of complex valued functions that are square inte- . . p.11

grable over the unit circle.
C8 Set of linear constraints on the model parameters in the wth . p.106

operating point representing data and prior knowledge.
C~ Projection of C.~ onto the orthogonal complement of the . p.128

span of the parameter vectors of the structured error com
ponents for an implicit operating point j E W .

. Continued on next page

A.I. Latin 287

................ Latin symbols, continued Erom previous page
M 17 Part of the bound on the tail parameters: p.82

'Vk ~ k*, IBZI <ijk= M(p17)k.

IN
p
'.P

P}

q
Q

IR
rankM
Rez
'R1l2
'R1loo
s
s

s
sbsXi
iEJ

stackXi
iEJ

Set of nomina! models. p.54
Set of all processes consistent with the nomina! model and ..
the uncertainty bound.

p.58

Set of all possible models. . " " .. " " " .. " " " " " . p. 78
Number of structured error components. ; . . . p. 78
The number of operating points for which experimental data . . p.80
has been collected.
Set of non-negative integers: 0, 1, 2, ...
Number of inputs.
Process uncertainty set. The set of all processes consistent .. p.51
with prior knowledge and experimental data.
Projection onto (0 A,i)iEn •. In case of orthonormal (} A,i this . p.128
is given by 9A,i9~,i·
Projection onto the complement of (9 A,i)ien.. In case of . p.128
orthonormal (} A,i this is given by I - L;~,,;; 1 8 A,iO~,i.
All processes in Q consistent with a certain type of prior .. p.51
knowledge.
Outer-bounding polytope for Pw;i obtained by intersecting . p.118
m half-planes.
Polytope in complex plane containing Ll(eiwi) . .. "." "". p.118
Polytope in complex plane containing all values representing . p.117

the set { G9 (eJw;} - G(eJw,) I (} E C,9 }·

Number of outputs.
Class of processes to which the true process S is assumed . . p.42
to belong approximately.
Set of real numbers.
The rank of a matrix M.
Real part of complex number z.
The subset of 1l2 consisting of finite dimensional systems.
The subset of 1l00 consisting of finite dimensional systems.
True system, interpreted as a behaviour: s c w'.Jl'. p.37
(chapter 3): Set of all systems of the same kind as the true .. p.38
system S.
(except chapter 3): Set of subtransfers: S = q x p p.77
The matrix obtained by putting the Xi, i EI next to each .. p.11
other (Side By'Side).
The matrix obtained by putting the Xi, i E I on top of .. p.10
each other .

. Continued on next page

288 Overview of notation

........... " ... Latin symbols, continued Erom previous page
'II' (chapter 3): The time set of a behavioural representation ... p.35

'II'

w

A.2

c51(l)

µ(w')

A behaviour is a subset of wT.
(except in chapter 3): The time interval on which a data set .. p.80
is collected.
The time interval on which data set d is collected. p.80
The experirnental data set. p.40
The signal alphabet of a behavioural representation. A be- .. p.35
haviour is a subset of w'.lf'.
The set of operating points. p.80
General input.
Bound on inputs before t 0: 'rit< 0, iu(t)I < ü. p.82
Input measurements for data set d p.80
Instrumental variable for data set d. p.81
General output.
Output measurements for data set d. p.80
Set of integers: ... , -2, -1,0, 1, 2, ...

Greek symbols

Contribution of basis functions k + 1 to oo to the extended . p.108
noise bound due to inputs u(-oo) to u(t).
Contribution of basis functions 0 to k to the extended . p.111
cross-covariance bound due to inputs u(-oo) to u(-t - 1).
(lis the index of the instrumental variable involved.)
Contribution of basis functions k to oo to the extended . p.111
cross-covariance bound due to the inputs u(-oo) to u(Td).
(lis the index of the instrumental variable involved.)
Genera! model uncertainty. In chapters 4-6 more specifically .. p. 78
the unstructured model uncertainty.
The uncertainty in the implernented controller. p.61
Forward shift operator: [(f](t) = f(t + 1). p.12
Model parameter vector " " " " p.78
Model parameter bound: IOkl < Ök " .. " " " ... ". p.82
Uncertainty of 6.(jw') in the direction eJ<l>t due to the model . p.117
parameter uncertainty.
Uncertainty of 6.(jw') in any direction in the complex plane . p.118
due to the tail of the basis.

Ç Signal accounting for all effects that can not be accounted for . . p.43
by a relation between u and y present in Q (non-linearities,
disturbances, noise, etc.)

.......................... Continued on next page

A.5. Acronyms and abbreviations 289

............... Greek symbols, continued from previous page
µ<; Part of the bound on the tail parameters: . . p.82

\:/k 2::: k*, IOk°I < ö" = M(pu)k.
er sub-transfer index: er = (j, i) E q x p. p. 77
O"i ith singular value of a matrix. Singular values are sorted in

order of decreasing magnitude.

A.3 Other symbols

al\ b
aVb
a ==::}

a -<==>
a := b
a=: b

b
b

a and b (logical and).
a or b (logical or).
a implies b.
a is equivalent to b, Le. a if and only if b
a shall be defined as b.
a shall be the definition of b.

A.4 Other notations
In this section, it is not the symbols that determine the interpretation, hut the
way in which they are denoted:

2s
laJ
ral
ralb
(a, b, c)
(a 1 b)
Mi*
M*i
n
ff.
Xi

var J;.

A.5

The complex conjugate of z E C.
The transpose of a matrix A E IRmxn, the complex conjugate
transpose of a matrix A E cmxn.
The set of all subsets of S.
The largest integer not exceeding a.
The smallest integer not exceeded by a.
The smallest multiple of b not exceeded by a, ralt> := r%lb.
The span of vectors a, b, c.
The inner product of vectors a and b.
ith row of matrix M.
ith column of matrix M.
The range 1, 2, ... , n (n E IN).
A stochastic variable/process x.
A sample from the stochastic process J;..

The variance of the stochastic process J;..

Acronyms and abbreviations

290

ARX
CASID
FIR
MATLAB

MIMO
MISO
PRBNS
SIMO
SISO

Overview of notation

Auto Regressive with eXternal input; a model structure.
Computer Aided System IDentification.
Finite Impulse Response; a model structure.
A commercial software package for matrix manipulation and
graphical presentation.
Multiple input, multiple output.
Multiple input, single output.
Pseudo random binary noise sequence.
Single input, multiple output.
Single input, single output.

System based orthonormal
basis functions

B.1 Generating a basis from a
genera! system

B.2 Properties of system
based orthonormal basis
functions

B.3 Transients of a generalised
FIR model

In (Heuberger, 1991) system based orthonormal basis functions were intro
duced. This section will briefly present a number of results on these orthonor
mal basis functions taken from (Heuberger, 1991; Heuberger et al., 1995). Also
a conjecture taken from (Hakvoort, 1994, Section 4.B) and used in chapters 4
and 5 of this thesis is stated.

After these results by other authors, some original result& are presented.
These results are concerned with the space of transients that an unknown linear
combination of a (known) number of basis functions may exhibit. In general
this space is spanned by a number of signals that is equal to the sum of the
McMillan degrees of the basis functions involved in the linear combination. For
this particular basis, a procedure is derived yielding a much smaller number of
signals spanning this space. These signals can then be applied in the estimation
of transients as discussed in section 5.2.

Before presenting these results, first some preliminary definitions: Let Gb(z)
be the transfer function of a single-input, multiple-output, stable, finite dimen
sional, discrete time, causal, linear, time-invariant system, so let Gb E R1lr 1

,

where q denotes the number of outputs of Gb· Let nb denote the McMillan
degree of G". The notation

Gb(z) = (A, B, C, D)

means that

Gb(z) D + C(zl - A)-1 B, (B.l)

292 System based orthonormal basis functions

where

The quadruple (A, B, e, D) is called a state-space representation of G b (z). Such
a representation is called minimal if n = nb. A realisation (A, B, e, D) is
called stable if it is minimal and all eigenvalues of A have an absolute value
that is less than one. Equivalently, Gö(z) is stable if Gb(z) is analytic outside
the unit circle. For such a realisation, the controllability gramian P is defined
as the solution of

APA* +BB* P

and the observability gramian Q as the solution of

· A*QA+e•e = Q.

A stable realisation is called balanced if P = Q = E and input balanced if
P = I and Q = , where E is a diagonal matrix containing the Hankel
singular values in decreasing order on its diagonal. Finally, a system G E RH2
is called inner if it is stable and satisfies

B.1 Generating a basis from a general system

Given an arbitrary Gb E RH~xi, an inner function Gi(z) can be derived
from Gh using the following theorem. In the statement of this theorem, the
convention to denote the impulse response parameters of a system Gi(() by
gi(k), k 0, ... has been used.

Theorem B.1 (see (Heuberger et al., 1995)) Let Gb E RHgx. 1 have a
(minimal) input balanced realisation (A1>, Bb, eb, Dti)· Denote the McMillan
degree of Gb by nb and let nb > 0. It now holds:

(a) There exist ei E JEllxnb and Di E IEl such that (Ab, Bb, ei, Di) is a
minimal balanced realisation of an inner function G;, with jg.(O)I < 1.

(b) (A1>, Bb, ei, D;,) has the property (a) il and only if

e;, = Bi;(I + Ai;)-1 (1 + A1>)

Di = B;(I + A;)- 1 Bb -1

0

B.1. Generating a basis from a general system 293

In the derivation of the inner function Gi(z) from the transfer function Gb(z)
only the matrices Ab and Bb of an input balanced realisation (Ab, Bb, eb, Db)
of Gb(z) were used. Instead of saying that Gi(z) was derived from Gb(z),
we might as well say that Gi(z) was derived from the input balanced pair
(Ab, Bb)· Because G0 and Gi can be represented by state-space realisations
using the same system matrix A0, G; has the same poles as Gb.

With Gb = (Ab, Bb, eb, D0) and Gi = (Ab, Bb, Ci, Di) as in theorem B.l,
define Vk E R,11,~b x 1 , k E 1IV recursively as

Vo(z) := (zl Ab)-1 Bb = (Ab, Bb, Inp 0)
Vk(z) := Vi-1(z)Gi(z), k E IN\ {O}

The Vi(z) have the following property (see (Heuberger et al" 1995))

(B.3)

'Vk, f, E JIV ~ v (t)T v (t) = {I.n, if k. = t (B.4) 6; k l 0 ifk#f

where vk(t) is the impulse response associated with the transfer function Vi (z).
Any system G0 E n1-l.2 can now be written as

00

Go(z) D + LLkVk(z), DE IR,Lk E JR1 xn•.

k=O

This is already very similar to the expansion
00

Go(z) = L lJkBk(z), (Jk E IR, Bk E 1?..1-l2
k=O

that was used in chapter 4 and further. Indeed, the Bk, k E J1V are obtained
as follows

Bo(z) = 1
Bkn&+e(z) = [Vk(z)]l' k E JIV,f, E nb

The Bk, k E JIV obtained in this way represent .a basis for 1?..11.2 generated by
G0• Because of (B.4), the basis is an orthonormal basis. The Lk are called the
grouped expansion coefficients of Go expressed in the basis generated by Gb.
The Vk are c.alled the grouped basis iunctions generated by G0 or by (A0, Bb)·
lt holds

L1c = [81cn0 +1, · · ·, (J(k+l)nb] ·

A system of the form

k

G(z) = L (JkBk(z)
k=O

is called a generalised FIR model. The expansion coefficients Ok, k = 0, ... , k
are called generalised FIR parameters.

294 System based orthonormal basis functions

B.2 Some known properties of system based or
thonormal basis functions

Property 4.1 on page 77 is now trivial. In the notation of this appendix,
property 4.1 reads

This equality follows immediately from the fact that

jBkn;H(ejw') j jBt (ejw')G~ (ejw') j

== jBt(ejw') 1 · IG~ (ejw') j jB1(eiw') j • l.

The fact that the expansion coefficients fh of a system G expressed in a
basis generated by Gb decay tO zero faster if the poles of Gb are closer to the
poles of G follows from the following theorem. For convenience, this theorem
is stated in terms of the grouped expansion coefficients Lk instead of fh.

Theorem B.2 (see (Heuberger et al., 1995)) Let GE R1l2 have a state
space representation (A, B, C, D). Denote the McMillan degree of G by n
and let (Ab, Bb) be an input bafanced pair that generates a set of grouped
basis functions {ViJ~0 , Ab E JRnbxnb, Bb E 1Rn°. Denote the eigenvalues of
A by µi, i E n. Denote the eigenvalues of Ab by p;, j E nb. Express G as
follows

00

G(z) = D + LLkVk(z)
k=O

0, Lo, L1 , . . . is the sequence of impulse response coefficients of a dynamical
system

00

G'(z) LLkz-k-l
. k=O

with state-space representation (X, Y, Z, 0) satisfying

(a) X has dimension n, i.e. the McMillandegree of (X, Y, Z, 0) does not
exceed that of G.

(b) X has eigenvalues Ài, i E n for which it holds

Vi En, l,\l=Ilnb.I µi-Pj I·
l-µ·p· j=l i J

B.2. Properties of system based orthonormal basis functions 295

D

In the remainder of this appendix, the following theorem will be used

Theorem B.3 (see (Heuberger et al., 1995)) Let Gb E 'R1l2 be a system
with minimal input balanced state-space representation (Ab, B1>, Cb, Db) and
with McMillan degree n1>, nb > O. Let (Ab, B", Ci, Di) be the representation
of an inner transfer function derived Erom G". IE a transfer function G(z) can
be expressed by a sum of m grouped basis functions vk k = 0, ... , m - 1,
generated by Gb, m E IN+, i.e. there exist Lk, k = 0, ... , m - 1, such that

m-1

G(z) = D + 2: LkVk(z),
k=O

then G(z) has a state-space realisation (Am, Bm, Cm, D) with state dimension
m·nb,

and Form 2:> 1

Ab
BbCi

0
0

0
0

0

0
B"Df'-2Ci BbDf'-3Ci BbCi Ab

Form 1 it holds in particular Am =Ab, Bm = B".

Bb
B1>Di

Bm = B1>Dt

In (Hak.voort, 1994) the following conjecture is stated:

D

Conjecture B.4 Consider the pulse response representation of any basis func
tion, generated with the procedure described in (Heuberger et al., 1995),

00

'Vi En&, [Vk(z)]; == L [vk(t)]i
t=O

then it is conjectured that for any p 2:: 0,

=
l:tPl[vk(t)]il::; c~ +c2kP+l/2

t=O

for some fini te constants ei, c~ which are independent of k, but possibly depend
on p. This implies that

D

296 System based orthonormal basis functions

The notation in the statement of this conjecture has been slightly changed to
put it more in line with the notation used in the rest of this appendix. The
conjecture is motivated in (Hakvoort, 1994) by "extensive simulations."

The reader may verify that conjecture 4.2 on page 77 is implied by the
above conjecture.

B.3 Transients of a generalised FIR model

In this section the following problem is considered. For a system of the form

k

G(z) = I: OkBk(z) (B.5)
k=O

but with unknown coefficients fh, k = 0, ... , k, find a set {ytr,1 (t), ... , Ytr,i(t)}
of signals, such that all transients that a system of the form (B.5) may exhibit
can be written as a linear combination of the signals in {Ytr,1 (t), ... , Ytr,l(t)}.
Moreover, to reduce computational complexity, an attempt should be made to
makel small.

For a general stable q x p system having a state-space representation with
state dimension n given by (A, B, C, D), the transient of that system for an
initial state x0 is given by

yT(O) x'{;CT
yT(l) xijATCT

x'{;(Ak)TCT
=: Ytr(Xo).

yT(k)
(B.6)

For a single-output system, (B.6) can be rewritten

y(O) C
y(l) GA

= Xo. (B.7)
y(k) CAk

Ytr(xo) is linear in xo. Therefore the space of all transients that the system
(A, B, C, D) may exhibit is spanned by

{Ytr(ef), ... ,Ytr(e~)}.

B.3. Transients of a generalised FIR model 297

Naw consider the first n samples of the state signals in response to an impulse
on t = 0. It is easily verified that it holds

[x(O),x(l), ... ,x(n -1)] = [B,AB, ... ,An-1B].

For a controllable representation (A, B, C, D) we have

rank [B, AB, ... An-l B] = n,

so that

(er, ... ,e~) = (B,AB, ... ,An-1B).

If h E h~ denotes the impulse response of (A, B, C, D), then it follows that

where the shifted signals are defined on JN. This is summarised by the following
lemma.

Lemma B.5 The space of transients of the system (A, B, C, D) with state
dimension nis for controllable (A, B) spanned by the n signals that are obtained
by shifting the impulse response of (A, B, C, D) 1 to n samples forward in
~e D

Now let (A, B) be an input balanced pair with B E mn. According to
lemma B.5, the space of transients of the system represented by (A, B, In, 0)
is spanned by

Instead of the 1 x n system (A, B, In, 0) consider now the following set of
SISO systems

9 := {G(z) E n1l2 l 3C E m1 xn, G(z) = (A, B, C, 0) }. (B.8)

and let

1J := {y E n1l2 l 3G E 9, y is a transient of G}.

be the set of transients that can be exhibited by all systems in 9.

298 System based orthonormal basis functions

Clearly,

Because

the n + lst to n2th signal on the right hand side of (B.9) depend linearly on
the first to nth signal. As a result

(B.10)

The connection of this result with the space of transients that a generalised
FIR model can exhibit is given by the following lemma.

Lemma B.6 The matrices Am and Bm, m E Z+ as def:ined in theorem B.3
on page 295 form an input balanced pair. D

The reader may convince himself of this result by noting that the Z-transform
of the impulse response of the system (Am, Bm, I, ü) is given by

[Vo(zf, ... , Vm-1(zff.

and that the controllability gramian P of this system satisfies

Remark B.1 In (Heuberger, 1991) the line ofreasoning was actually the other
way round. It was established there by other means that (Am, Bm) was an
input balanced pair and that lead to the conclusion that the Vi must satisfy
equation (B.4). D

299

These results are now combined in the following way. The set of systems of
the form

mn&

G(z) = L (}kBk(z), m E IN
k=O

for unknown Bk is a set like 9 in (B.8), where the input balanced pair {A, B) is
to be taken equal to (Am, Bm) as given in theorem B.3. According to (B.10),
the space of transients of all systems in this set can be spartned by the impulse
responses of basis functions 1 to mnb shifted one sample forward in time:

Lemma B. 7 Let }J be the set of trnnsients that can be exhibited by models
G(z) of the form

mn&

G(z) = L ekBk(z), m E IN (B.11)
k=O

where {Bk(z)} is a set of basis functions generated by a system Gb(z) with
state space representation (Ab, Bb, eb, Db) and with McMillan degree nb. Let
bk(t) be the impulse response of the kth basis function, then

0

This gives a particularly easy procedure to generate a set of signals to span
the space of transients that can be exhibited by models of the form (B.11): for
every basis function B k (z), k = 1" .. , mnb, calculate the impulse response of
that basis function and discard the first sample. The set of signals obtained in
this way spans the space of transients. B0 (z) is excluded from this procedure,
because bo(t) = ó(t) and (b(t) = 0.

That only mnb signals are needed to span the space of transients is not
surprising considering the realisation that was given for such systems in theo
rem B.3. However, lemma B.7 goes beyond that result by specifying an explicit
set of mnb signals spanning that space.

For models of the form (B.5) with k/nb f/. IN lemma B.7 does not provide
a procedure to generate a set of signals spanning the space of transients for
all such models. To state the procedure for such models, some extra notation
needs to be introduced.

Let { B k (z)} be a set of basis functions generated by the system G b with re
alisation (Ab, Bb, eb, Db) and with McMillan degree nb. Let (Ab, Bb, ei, Di)
be a realisation of an inner function derived from Gb. Let m be the smallest
integer such that mnb > k. The set

9{ := { G(z) E R1i2 j 3ek, k = i, ... ,j, G(z) = t; OkBk(z)}

300

contains all models that are linear combinations of basis functions i through j.
Assume that all models of the form (B.5) are represented by a realisation as
given in theorem B.3. Note that a number of elements of the last grouped FIR
parameter is zero if k < mnb and nb > 1:

[Lm-1h+1-(m-l)no = ... = [Lm-i]n& = 0

For X c mmnb the set

i!(X){ := {y E 1l1i2 1 3G E 9{, x EX, y is the transient of G with xo x}

contains all transients of models in 9{ for initia! states restricted to the set X.
In this notation, lemma B. 7 states that

iJ(JRmnb)~no = ((b1, · · ·, (bmn&}.

The problem that needs to be solved is to find a set of signals that spans

ij(JRmno)~.

There always exist models G E 9~n· such that the realisation of G according
to theorem B.3 is fully observable. Because this may not be the case for G E 9~,
k < mnb, this problem can not be solved by applying lemma B.7. As an
example of this, consider an input balanced pair (Ab, B1,) from which an input
balanced pair (A2 , B2) with state dimension equal to twice the state dimension
of (Ab, Bb) is constructed according to theorem B.3: (A2, B2) is taken equal to
(Am, Bm) form= 2. Suppose that the dimension of Ab is nb and that k = nb,
so nb + 1 of the basis functions generated from (A2, B2) are incorporated in the
model set 9~- .from the structure of A2 , see theorem B.3, can be concluded that
for any GE 9~ the nb + lst to 2nbth entry of the state vector of its realisation
according to theorem B.3 are not observable. Consequently the response to
initia! states x for which

Vk E nb, [x]k = 0

is zero for all models in 9~ and so

ij(JR2n1>)~ Ç i!(IR2no)~nb.

Let

X' := {x E IRmno 1 Vk E nb, [x]k = O},

then the structure in Am implies that

il(X')mno = U(JRmn&)(m-l)n& = U(JRmn6)(m-l)n0 •
(m-l)n0+1 O (m-2)n0 +1 O 0

(B.12)

(B.13)

B.3. Transients of a generalised FIR model 301

In words this means that any transient that can be observed for B(m-I)nb+l

to Bmnb in response to an initial condition for which the first nb entries are
equal to zero can also be observed for at least one of the basis functions Bo to
B(m-I)nb in response to some other (arbitrary) initial condition. It generally
holds

(B.14)

and

Due to the linearity of a transient in the entries of its initial state vector it
follows that

(B.15)

where X' is as in (B.12) and X" is any subspace of !Rmnb such that

The second equality in (B.15) follows from (B.13) and (B.14). Now consider the
first nb samples of the state vector of (Am, Bm, I, 0) if the system is excited
by ó(t). These nb samples span a space that satisfies the requirements on X"!
This follows from the structure in Am and Bm and the fact that

The interpretation of this result is, that 'd(X")f m-l)nb+l can be spanned by the
impulse responses b(m-l)n&+l (t) to bx;(t) shifted forward in time for one to nb

samples.
The above result is summarised in the following extension of lemma B.7.

Theorem B.8 Let }J be the set of transients that can be exhibited by any
model G(z) of the form

k

G(z) = L fhBk(z), k E IN (B.16)
k=O

where {Bk(z)} is a set of basis functions generated by a system Gb(z) with
state space representation (Ab, Bb, Cb, Db) and with McMillan degree n0• Let

302 System based orthonormal basis functions

m be the smallest integer such that k < mnb and let bk(t) be the impulse
response of the kth basis function, then

1:J =((b1, ... ,(b(m-l)nb'

(b(m-l)nb+l' (
2
b(m-l)nb+l' · · · '(n"b(m-l)nb+l • (b(m-l)nb+2• · · · '(nbbk)

D

The set of signals spanning 11 in theorem B.8 need not be a minimal set of signals
spanning }J. However, the computational effort that is involved in calculating
the set of signals spanning 1i according to theorem B.8 seems acceptable, so no
additional effort is spent to further reduce the number of signals spanning }J.

Theorem B.8 reduces to lemma B.7 if k/nb E JN.

c
Application of the formal

framework: the algorithm of
chapter4

As an example of application of the formalism in chapter 3, it will be shown
how the algorithm of chapters 4 and 5 fits in the formal framework. Only the
aspects of the formalism concerned with modelling and uncertainty bounding
will be discussed. The algorithm does not require amore specific interpretation
for the true system than was given in chapter 3, aspects of control design and
implementation are not part of the algorithm.

1 W and 1I' 1 [> The signal space W is assumed to be partitioned as

w = JRP x IRq,

where JRP represents the signal space for the input component u of a w =
(u, y) E W'.ll' and IRq the signal space for the output component y.

All signals are interpreted as discrete time signals, so the time set 1I' = z.
1 W 1 [> The data W contains for every data set d E 'D a pair of input mea

surements and output measurements.

Notation was simplified in the algorithm by assuming that every data set
started at t = 0. This was possible because the data sets will be used to es
timate time-invariant models anyway. In the formalism this is not possible
for the sake of generality. Therefore the experiment intervals JI'd, d E 'D
should be reinterpreted as corresponding to the "real" times at which the
measurements were taken. All these separate experiment interva.ls can then
be combined into a single "experiment time set" T' according to

Then T' corresponds to the notation used in chapter 3, the right hand side
corresponds to notation used in chapter 4, with the modification mentioned
above.

304 Application of the formal framework

W consists now of a pair of signals u and y,

so that

W = {(u,y)}.

As extra information conceming W it is known which parts of W belong to
different manifestations of Sin Q, as was briefiy mentioned in section 3.3.5.

1Cstab11> The algorithm applies only to stable systems. For stable systems
it is known that Cstab is equal to the null controller.

@] C> The set Q consists for the SISO case of all systems whose transfer func
tion can be represented as

00

Q(z) = LOkBk(z),
k=O

· subject to

The generalisation to the MIMO case is straightforward.

It would be more accurate to say that Q contains the input-output be
haviours of these systems.

j llÇll :$ dç 1 C> In the algorithm, all noise effects and disturbances are lumped
at the output. The signal Ç contains both inputs and outputs. Lumping
all uncertainty at the output can be interpreted as a limiting case of the
more general bounds on Ç. Let fu, fy E IR+ be given and let the norm 11·11
on Ç be defined as

With this definition we have

so that for f u -+ oo

305

(Obviously, convergence of Çu is to be interpreted in the topology induced
by the l 00 norm.) Taking fy = 1, the norm on Ç defined above reduces
therefore in the limit to the l 00-norm on the output component Çy of Ç,
with the additional requirement that Çu = 0. This in turn corresponds to
the way in which the algorithm bounds the uncertainty.

If the same value ë can be used for all ë(t), t E 'II', d E '.D, the bound on
Ç that is used by the algorithm is simply given by

If a truly time-dependent bound ëd(t) is to be used, or a different bound
for different data sets, the definition of the norm on Ç can be adapted
accordingly.

[> The algorithm does not use explicitly the bound on the inputs .___ __ _,

represented by llull ~ du in the formalism. Therefore there is no imple
mentation for this requirement in the algorithm.

For the application of the algorithm on a physical process, the bound is
used implicitly: obviously some constraints on the input signals need to be
satisfied to ensure that the linearisation of the process remains a sufficiently
accurate approximation of the process.

The bound ü on past inputs that is used by the algorithm does not corre
spond to llull ~du. The purpose of the bound llull :::; du is stated in the
previous paragraph. The purpose of the bound û is to bound the effect of
unknown initial conditions.

1 P2, ... , PN:P 1 [> The different types of prior knowledge that are used by the al
gorithm are each represented by a set :J\. This includes the aforementioned
bound on past inputs, the noise bounds ëd, d E '.D, the cross-covariance
bounds and bounds on the statie gain or on the complex gain for any fre
quency. The only type of prior knowledge that is not represented in this
way is

This is represented by Q. Because every :Pi is a subset of Q, every Pi
represents (part of) this prior knowledge as well.

1 Jid• Mid, Mset 1 t> The algorithm does not specify how its nominal model G
is to be identified, it only requires that the nominal model is linear, time
invariant. Therefore nothing can be said about Jid and all that can be said
about. Mset is that it should be a subset of the set of linear, time-invariant
models. The algorithm assumes that t.here is one nominal model, so M1d
should be a singleton.

306 Application of the formal framework

In the estimation of auxiliary models, an identification criterion and a
model set are used. In the presentation of the algorithm, least squares
estimation was mentioned as a possible estimation method for the auxiliary
models. For this method, the identification criterion Jid is identical to the
sum of squares of the residuals fora certain model M E Mset· The model
set Mset contains all models M whose transfer function can be represented
as

k

M(z) = L fhBk(z).
k=O

Here too, the set of identified models Mid is a singleton taken from Mset·

1 Mid "+" A 11> The A used by the formalism corresponds to (A, 61, ... , 6n,)
used by the algorithm. The interconnection of this uncertainty description
and a nominal model Mid• or ê in the notation of the algorithm, is obtained
by

n,

ê "+" (A,61" .. ,6nJ := ê + A + L6iAi·
i=l

where the addition on the right hand side is to be interpreted as addition
of transfer functions or impulse responses. Part of the interpretation of
"+" is now determined by the uncertainty bounding: the Ai, i E n 8 are
determined by the algorithm during the uncertainty bounding

1 d(A) :::; dt:..11> To avoid confusion of the two different symbols A, the A as

used by the formalism will be denoted (A, 61 , ... , 6n.), where these symbols
have the meaning as used by the algorithm. The uncertainty bounding
function d(A) is consequently denoted

d(ó.,61, ... ,6nJ·

As in chapter 3, d is assumed to take its values in a partially ordered set
ID.

The uncertainty bounds derived by the algorithm consist of two compo
nents. One is a bound on A, the other is a set of intervals, one for every
6i, i E n 8 , to which that 6i is constrained. Ignoring the unstq1ctured error
A fora moment, we can define

d(A, 61, ... , 6nJ := (61, ... , 6n,, -61, · · ·, -6n,f,

so that in this case ID = IR2n•. Using moreover the partial orderirig

Va, b E IRn, a < b :{:::::::} Vi E n ai < bi

and

Va, b E JRn, a = b :<===:> Vi En ai= bi

on JRn for any n E Z+, the fa.et that

ViEns, oiE[.di,di]

can simply be expressed as

307

Adding a bound on A can be clone in several ways. For the simple case of
an 1i00-norm bound on A, it suffices to (re)define

d(A, 01, ... , ón.) := (JIAll1i"", 01, ... , ón., -oi, ... , onJT.

If the bound on the 1i00-norm is denoted dt:i., then the bound on both the
structured and unstructured errors can be expressed as

- - T
d(A, Ó1, .. "On.) :::; (dt:i., di, .. "dn,, -Qi, ... , -dn.) .

More detailed bounds on A can be added in a similar way as the struc
tured errors were bounded. Examples of such more detailed bounds are
(weighted) impulse response bounds and bounds defining the simple poly
topes in the complex plane that are obtained as an intermediate result of
the algorithm.

It is interesting to consider what it means that ":::;" is only a partial or
dering on ID. Because the ordering is not a total ordering, we can not say
which of the two situations below is "better:"

case 1
llAllK'° ::; 1.0

-0.1 :::; Ó1 :::; 0.1

case 2
JJAll1t"' :::; 0.9

-0.11 s &1 s 0.09

Being able to decide which of the two is best might be interesting for the
formulation of an optimisation criterion for the determination of the struc
tured error components Ai. One could then search explicitly for those
structured error "directions" that lead to the tightest uncertainty descrip"
tions in terms of dt:i. and .dii di, i E ns.
In principle it can be determined which of the two cases is to be preferred
by designing a robust controller for both uncertainty descriptions and by
looking which controller performs best. Apart from the fàct that a similar
problem may now occur in deciding which controller performs best, this
would specify an ordering on, in this case, triples (dt:i.,!l1,di) that is far
too complex to be used in an optimisation criterion.

308 Application of the formal framework

Apart from the fact that this possibility to specify a total ordering on ID
is impractical, it goes beyond the problem of uncertainty bounding. This
is recognised by the formalism by only requiring a partial ordering on ID.
In that case. the uncertainty bounding technique is allowed to be unable to
decide which of the two cases mentioned above'is "best."

Bibliography

Anderson, E., Bai, Z" Bischof, C., Demmel, J" Dongarra, J" Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S. and
Sorensen, D. (1995). Lapack Users' Guide, 2nd edn, Society for Indus
trial and Applied Mathematics, Philadelphia.

Ariaans, L. J. J. M., Damen, A. A. H. and Weiland, S. (1996). A flexible
algorithm for structuring and reducing model error bounds, Proceedings
of the 35th Conference on Decision and Control, Kobe, Japan.

Berkelaar, M. (n.d.). lpsolve package. in volume02 of comp.sources.reviewed.

De Vries, D. (1994). Identification of Model Uncertainty for Control Design,
PhD thesis, Delft University of Technology, Delft.

Doyle, J. C" Glover, K., Khargonekar, P. P. and Francis, B. A. (1988). State
space solutions to standard H2 and H00 control problems, Proceedings of
the 1988 American Control Conference, Atlanta, pp. 1691-1696.

Doyle, J. C., Glover, K., Khargonekar, P. P. and Francis, B. A. (1989). State
space solutions to standard H2 and H 00 control problems, IEEE Transac
tions on Automatic Control 34(8): 831-847.

Draper, N. S. and Van Nostrand, R. C. (1979). Ridge regression and James
Stein estimation: Review and comments, Technometrics 21(4): 451-466.

Falkus, H. (1994). Parametric Uncertainty in System Identification, PhD thesis,
Eindhoven University of Technology, Eindhoven.

Fialho, I. J. and Georgiou, T. T. (1995). On the C1 norm of uncertain linear
systems, IEEE Transactions on Automatic Control 40(6): 1142-1147.

Gevers, M. (1991). Connecting identification and robust control: A new chal
lenge, Proceedings of the 9th IFAC/IFORS Symposium on Identification
and System Parameter Estimation, Budapest, Hungary, pp. 1-10.

Gevers, M. (1993). Towards a joint design of identification and control?, in
H. Trentelman and J. Willems (eds), Essays on Control: Perspectives in
the Theory and its Applications, Birkhäuser, Boston, pp. 111-151.

Golub, G. H. and Van Loan, C. F. (1989). Matrix computations, Johns Hop
kins Series in the Mathematical Sciences, 2nd edn, The Johns Hopkins
University Press, Baltimore and London.

310

Goodwin, G. C., Gevers, M~ and Ninness, B. (1992). Quantifying the error
in estimated transfer functions with application to model order selection,
IEEE Transactions on Automatic Control 37(7): 913-928.

Goodwin, G. C. and Salgado, M. E. (1989). A stochastic embedding approach
for quantifying uncertainty in the estimation of restricted complexity mod.:.
els, International Journal of adaptive control and signal processing 3: 333-
356.

Gorter, R. J. A. (1997). Identification of the physical model parameters ofin
duction machines. On-line and off-line approaches, PhD thesis, Eindhoven
University of Technology.

Gu, G. (1994). Suboptimal algorithms for worst case identification in Hoc and
model validation, IEEE Transactions on Automatic Control 39(8): 1657-
1661.

Gu, G. and Khargonekar, P. P. (1991). A class of algorithms for identifica
tion in Hoc, Proceedings of the 30th Conference on Decision and Control,
Brighton, England, pp. 634-639.

Gutman, P. 0. (1988). Robust certainty equivalence a new principle for
adaptive control, Proceedings of the 1988 IFAC Workshop on Robust
Adaptive Control, Newcastle, Australia, pp. 123-128.

Hakvoort, R. G. (1994). System Identification for Robust Process Control,
Nomina] Models and Error Bounds, PhD thesis, Delft University of Tech
nology, Delft.

Hansen, F. R. (1989). A Fractional Representation Approach to Closed-Loop
System Identification and Experiment Design, PhD thesis, Stanford Uni
versity, Stanford, CA, USA.

Hansen, F. R. and Franklin, G. F. (1988). On a fractional representation
approach to closed-loop experiment design, Proceedings of the American
Control Conference, Atlanta, GA, USA, pp.1319-1320.

Hansen, F. R., Franklin, G. F. and Kosut, R. (1989). Closed-loop identification
via the fractional representation: Experiment design, Proceedings of the
American Control Conference, Pittsburgh, PA, USA, pp. 1422-1427.

Helmicki, A. J., Jacobson, C. A. and Nett, C. N. (1989). H= identification of
stable LSI systems: A scheme with direct application to controller design,
Proceedings of the American Control Conference, Vol. 2, Pittsburg, PA,
pp. 1428-1434.

Bibliography 311

Helmicki, A. J., Jacobson, C. A. and Nett, C. N. (1990a). Identification in
H 00 : A robustly convergent, nonlinear algorithm, Proceedings of the 1990
American Control Conference, San Diego, California, pp. 386-391.

Helmicki, A. J" Jacobson, C.A. and Nett, C. N. (1990b). Identification in H 00 :

Linear algorithms, Proceedings of the 1990 American Control Conference,
San Diego, California, pp. 2418-2423.

Helmicki, A. J., Jacobson, C. A. and Nett, C. N: (1991). Control oriented
system identification: A worst-case/ deterministic approach in H00 , IEEE
Transactions on Automatic Control 36(10): 1163-1176.

Heuberger, P. S. C. (1991). On Approximate System Identiflcation with System
Based Orthonormal Functions, PhD thesis, Delft U niversity of Technology,
Delft.

Heuberger, P. S. C" Van Den Hof, P. M. J. and Bosgra, 0. H. (1995). A gener
alized orthonormal basis for linear dynamica! systems, IEEE Transactions
on Automatic Control 40(3): 451-465.

Jolliffe, I. T. (1986). Principal Component Analysis, Vol. XIII of Springer Series
in Statistics, Springer, Berlin.

Kosut, R. L. (1988). Adaptive control via parameter set estimation, Interna
tional Journal of Adaptive Control and Signal Processing 2: 371-399.

Kosut, R. L., Lau, M. K. and Boyd, S. P. (1992). Set-membership identifi
catioin of systems with parametric and nonparametric uncertainty, IEEE
Transactions on Automatic Control 37(7): 929-941.

Livstone, M. M. and Dahleh, M. A. (1995). A framework for robust parametric
set membership identification, IEEE Transactions on Automatic Control
40(11): 1934-1939.

Ljung, L. (1987). System Identifkation: Theory for the User, Prentice-Hall,
Englewood Cliffs, New Jersey.

Mäkilä, P. M. and Partington, J. R. (1992). Robust identification of
strongly stabilizable systems, IEEE Transactions on Automatic Control
37(11): 1709-1716.

Mäkilä, P. M" Partington, J. R. and Gustafsson, T. K. (1994). Robust identifi
cation, in M. Blanke ánd T. Söderström (eds), Preprints of the 10th IFAC
Symposium on System Identification, Vol. 1, Copenhagen, pp. 1.45-63.

Mäkilä, P. M., Partington, J. R. and Gustafsson, T. K. (1995). Worst-case
control-relevant identification, Automatica 31(12): 1799-1819.

312 Bibliography

Milanese, M. and Elia, N. (1993). Worst-case li system identification using
perturbed ARMA models, Proceedings of the International Symposium
on Circuits and Systems, IEEE, Chicago.

Murtagh, B. A.' (1981). Advanced Linear Programming: Gomputation and
Pra.ctice, McGraw-Hill Ine.

Packard, A. and Doyle, J. (1993}. The complex structured singular value,
Automatica 29(1): 71-109.

Packard, A. K. (1988). What's new with Mu: structured uncertainty in multi
variable control, PhD thesis, University of California, Berkeley.

Partington, J. R. (1991). Robust identification and interpolation in H00 , In
ternational Journal of Control 54(5): 1281-1290.

Partington, J. R. (1992). Robust identification in H=, Journal of Mathematical
Analysis and Applications 166: 428-441.

Pree, W. (1994). Design Patterns for Object-Oriented Software Development,
ACM Press Books.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991).
Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs,
NJ.

Schrama, R. J. P. (1991). An open-loop solution to the approxirnate closed
loop identification problem, Preprints of the 9th IFAC/IFORS Symposium
on Identification and System Parameter Estimation, Budapest, Hungary,
pp. 1602-1607.

Schrama, R. J. P. (1992). Approximate Identification and Control Design,
with application to a mechanical system, PhD thesis, Delft University of
Technology, The Netherlands.

Schrama, R. J. P. and Van den Hof, P. M. J. (1992). An iterative scherne
for identification and control design based on coprime factorizations, Pro
ceedings of the American Gontrol Conference, Chicago, IL, USA, pp. 2842-
2846.

Van den Boom, T. (1993). MIMO system identification for H00 robust con
trol, PhD thesis, Faculty of electrical engineering, Eindhoven University
of Technology.

Van den Hof, P. M. J., Heuberger, P. S. C. and Bokor, J. (1995). System
identification with generalized orthonormal basis functions, Automatica
31(12): 1821-1834.

Bibliography 313

Van den Hof, P. M. J. and Schrama, R. J. P. (1995). Identification and control
closed-loop issues, Automatica 31(12): 1751-1770.

Vicino, A. and Zappa, G. (1996). Sequential approximation of feasible param
eter sets for identification with set membership uncertainty, IEEE Trans
actions on Automatic Control 41(6): 774-785.

Vidyasagar, M. (1985). Control System Synthesis: a Factorization Approach,
MIT Press Series in Signal Processing and Control, MIT Press, London.

Wahlberg, B. and Ljung, L. (1992). Hard frequency-domain model error bounds
from least-squares like identification techniques, IEEE Transactions on
Automatic Control 37{7): 900-912.

Walter, E. and Piet-Lahanier, H. (1990). Estimation of parameter bounds from
bounded-error data: a survey, Mathematics and Computers in Simulation
32(5 & 6): 449-468.

Willems, J. C. (1986). From time series to linear system - part i. finite
dimensional linear time invariant systems, Automatica 22(5): 561-580.

Zhou, T. and Kimura, H. (1993). Time domain identification for robust control,
Systems and Control Letters 20: 167-178.

Zhou, T. and Kimura, H. (1994). Simultaneous identification of nominal model,
parametric uncertainty and unstructured uncertainty for robust control,
Automatica 30(3): 391-402.

314

Samenvatting

In veel processen worden regelingen toegepast om het dynamisch gedrag van
het proces zodanig te veranderen dat het proces in bepaalde zin beter presteert.
Moderne technieken voor regelaarontwerp zijn in het algemeen gebaseerd op een
model voor het proces. Als de modelonzekerheid of modelfout, d.w.z. het ver
schil tussen het model en het werkelijke proces, begrensd kan worden en als het
regelaarontwerp rekening kan houden met deze begrensde onzekerheid, wordt
de aldus verkregen regelaar robuust genoemd. Dit proefschrift behandelt het
probleem van het vinden van grenzen voor modelonzekerheid voor toepassing
in robuust regelaarontwerp, uitgaande van experimentele data en voorkennis.

Praktische toepassing van modelonzekerheidsgrenzen wordt momenteel be
moeilijkt door het feit dat deze grenzen vaak onrealistisch en onbruikbaar groot
blijken uit te vallen. Geanalyseerd is, welke effecten (moeten) bijdragen aan de
modelonzekerheidsgrens. Deze effecten kunnen in drie categorieën worden on
derverdeeld: (a) modellen die voor robuuste regelingen worden gebruikt zijn li
neair, tijd-invariant en hebben een lage orde, het onderliggende proces heeft die
eigenschappen niet. (b) experimentele data van een proces geeft een incompleet
en onzeker beeld van het procesgedrag t.g.v. eindige experimentduur, eindige
bemonsteringsfrekwentie en onbekende externe factoren zoals ruis. (c) bepaalde
kennis die over het proces beschikbaar is, kan niet of slechts bij benadering door
het nominale model en/of de onzekerheidsgrenzen worden gerepresenteerd. Dit
leidt tot conservatisme. De praktische reden om robuuste regelingen toe te
passen is voornamelijk om onzekerheid uit categorie (a) het hoofd te kunnen
bieden. Huidige modelonzekerheidsgrenzen begrenzen slechts de onzekerheid
ten gevolge van categorie (b) en (c).

Een algemeen raamwerk is ontwikkeld om de interactie te onderzoeken tus
sen verschillende factoren die een rol spelen in een procedure voor onzekerheids
begrenzing. In tegenstelling tot andere kaders waarin identificatieprocedures
worden "ingebed" vermijdt dit kader zorgvuldig dat onrealistische aannames
voor het proces of de ruis gedaan worden. Enkele èigenschappen die alle pro
cedures voor onzekerheidsbegrenzing gemeen (zouden moeten) hebben worden
onderzocht. Bovendien wordt de relatie verduidelijkt die er moet bestaan tus
sen ruis, verstoringen en vereenvoudigingen zoals lineariteit en tijd-invariantie
aan de ene kant en de onzekerheidsgrenzen aan de andere kant.

Naar aanleiding van de opmerkingen in het bovenstaande wordt een al
goritme voorgesteld dat modelonzekerheid voor MIMO systemen opsplitst in
zogenaamde gestructureerde en ongestructureerde componenten. De gestructu
reerde component wordt gedetailleerd begrensd en dient om de veranderingen
in procesdynamica te beschrijven die optreden als het proces in verschillende

316 Samenvatting

werkpunten wordt bedreven. In de ongestructureerde component worden alle
andere bronnen van modelonzekerheid samengevoegd en op een veel minder
gedetailleerde manier begrensd. Als de gestructureerde componenten de do
minante factoren in de procesonzekerheid beschrijven, zal de resterende on
gestructureerde component veel kleiner uitvallen dan zonder een afzonderlijke
begrenzing van de dominante factoren het geval zou zijn. Bovendien omvatten
de zo verkregen onzekerheidsgrenzen meer aspecten van modelonzekerheid die
voor robuuste regelingen relevant zijn dan tot dusver vaak het geval was.

De dominante bijdragen aan de modelonzekerheid kunnen geschat worden
uit data sets voor verschillende werkpunten. Er wordt afgeleid hoe deze bij
dragen uitgesloten kunnen worden van de grenzen op de ongestructureerde
fout. Deterministische aannames worden gedaan voor de ruis en verstoringen
die op het proces ingrijpen. Verschillende uitbreidingen op het basisalgoritme
zijn ontwikkeld om het gebruik van meer voorkennis mogelijk te maken bij het
begrenzen van de modelonzekerheid en het bepalen van de dominante factoren.

Het algoritme is geïmplementeerd in een C++ programma. Na een zorgvul
dige overweging van een implementatie in MATLAB is geconcludeerd dat MAT

LAB onvoldoende ondersteuning biedt. Een algemeen toepasbare bibliotheek
is ontwikkeld voor de implementatie. Uit eenvoudige objecten als vectoren en
verzamelingen van gehele getallen worden complexere objecten samengesteld,
zoals signalen, modelsets, identificatiesessies, etc. Hoewel deze hulpmiddelen
werden ontwikkeld voor de implementatie van het algoritme, hebben ze hun
eigen waarde op het gebied van computerondersteunde systeemidentificatie.

Het algoritme is getest op simulatiedata en op praktijkdata van een asyn
chrone machine. Uit de resultaten kan worden geconcludeerd, dat het algoritme
inderdaad een significante reductie van de ongestructureerde onzekerheid kan
opleveren door een beperkt aantal gestructureerde componenten af te splitsen
die door het algoritme zijn bepaald. Bovendien kan het algoritme een benade
ring vinden voor foutstructuren die het niet exact kan representeren. Dit leidt
opnieuw tot een duidelijke afname van de ongestructureerde fout.

Zowel de grenzen op de gestructureerde als op de ongestructureerde com
ponenten zijn erg gevoelig voor de manier waarop de invloed van ondermodel
lering wordt begrensd. Bovendien is data van hoge kwaliteit vereist om zinvol
onderscheid te kunnen maken tussen gestructureerde en ongestructureerde bij
dragen aan de totale onzekerheid. De sîgnaal/ruisverhouding lijkt tenminste
40 dB te moeten zijn voor een succesvolle toepassing van het algoritme. Aange
zien de ruis dit niveau overschrijdt in het voorbeeld van de asynchrone motor,
vermindert afsplitsen van gestructureerde componenten hier nauwelijks de on
gestructureerde fout. Dit is voornamelijk te wijten aan de deterministische
(worst-case) aannames op de ruis. Het verdient aanbeveling in toekomstig on
derzoek het gebruik van stochastische aannames op de ruis te onderzoeken.
Dit kan resulteren in kleinere, maar zwakkere, foutengrenzen, die echter beter
praktisch toepasbaar lijken voor realistische signaal/ruis verhoudingen.

Curriculum vitae

November 4, 1968
September 1981 -

June 1987
September 1987

January 1993

April 1991
July 1991

January 1992 -
January 1993

January 1993 -
January 1997

January 1997 -

Born in Thorn, the Netherlands.
Secondary school: Gymnasium (:J, Scholengemeenschap
St. Ursula, Horn, the Netherlands.
Master student at the Eindhoven University of Technol
ogy, Department of Electrical Engineering, Eindhoven,
the Netherlands; with
Practical training at the Université des Sciences et Tech
niques du Languedoc CEM, Montpellier, France: Ex
periments and theories on low-frequency noise in GaAs
resistors under supervision of F. Pascal, M. de Murcia
and prof. G. Lecoy.
Master project at the Unilever Research Laboratories,
Vlaardingen, the Netherlands: Specific growth rate con
trol for fed-batch fermentation of bakers' yeast under su
pervision of dr. ir. A.R.M. Soeterboek, dr. ir. M. Keulers
and prof. dr. ir. P. Eykhoff.
Ph.D. research at the Measurement and Control group,
Department of Electrical Engineering, Eindhoven Uni
versity of Technology, Eindhoven, the Netherlands:
Structure in practical model error bounds under su
pervision of dr.ir. A.A.H. Damen, dr. S. Weiland and
prof. dr. ir. A.C.P.M. Backx.
Process engineer; AspenTech Europe B.V" Best, the
Netherlands.

SUMMARY

of the algorithm presented in
chapter 4 of the Ph.D. thesis

Structure in Practical Model
Error Bounds

by

Leon Ariaans

Eindhoven, February 26, 1997

Algorithrn
Do experiments
j-< W, '.D(w): sets of operating points and (prospective) data sets
[> uà(t), yà(t): input/output measurements, data set d

> và(t),rf(t): instruments for identification/cross-covariance bound

Gather prior information p. 80

Ë
> û: input amplitude bound p. 82
> ë(t): noise amplitude bound p. 82
> et: cross-covariance bound p. 83
> Ok, M, p: model parameter bounds p. 82

Choose basis functions and model orders p. 88 t> ~k(t): set of basis functions p. 75
> k: model order p. 77

Estimate auxiliary models p. 91 t< u(t), y(t), v(t), model parametrisation
> ew: parameters of au.xiliary model for operating point w p. 92

Estimate error structure .. " " "." " .. p. 101

~
(/).(}W = aw mean,,,• ew' p. 105
> X: matrix with in its columns the l).(Jw p. 102
> UEVT: singular value decomposition of X
> n8 : number of structured error components p. 105
> (JA,i U.;, i E n 8 : parameters of structured errors A; p. 105

Construct set of linear constraints " . " " ... " " .. p. 106
< u,iik,M,p,b1o(t)

Extend noise bound .. p. 106

§
ë(t): (unextended) noise bound p. 82
a(t): infiuence of basis k + 1 tok, no transient p. 107
b(t): transient of basis 0 tok p. 107
ó: infiuence of basis k + 1 and higher, incl~ transient p. 108

> ly(t) G9(Ç)u(t)I ::;; ee(t) := ë(t) + a(t) + b(t} + ó p. 108
Extend cross-covariance bound "" " p. 110

et, rt(t): (unextended) cross-covariance bound p. 83
> d(l): basis function k + 1 tok, known inputs p. 111
> /(f.): basis function k + 1 tok, inputs u(-i) to u(-1) p. 111
> 81 (f.): basis function k + 1 to k,

inputs - 1) to u(-oo)
> ó2 (f.): basis function k + 1 and higher, all inputs
> !Et rt(t)(y(t)- G9(()u(t))J

::;; d(l) + /(f.) + Ó1(t) + ó2(t) + êtvfTd
> .C~: set of linear constraints on (J for every operating point

p. 111
p. 111

p. 112

Bound errors locally .. p. 113
Split parameter uncertainty in structured and
unstructured parts p. 125

< ê, 0: nomina! model, vector of its first k expansion
coefficients in basis bk

> (9 A,i 1 91
- IJ) 9 A,i: ith structured component for arbitrary fJ'

> P: projection onto span of fJA,i p. 128
> p.L: projection onto orthoplement of span of(} A,i p. 128
> p1-(fJ' - il): unstructured error component in(}'
> 61- G - G Pif nomina! model with structured error

directions removed p. 126
Bound structured errors p. 113

t> d'f := maXEJ'Eq (9A,i l 9' IJ) 9A,;:
upper bound on ith 1stn~ctured component p. 114

> := min9'E.qf (9A,i l 9 - 9) OA,;:
lower bound on ith structured component p. 115

Bound unstructured error in frequency domain p. 116
< ei<l>t, l 1, ... , m: set of directions in complex plane p. 117

fl = {w,}: discrete set of frequencies p. 117
> Vi(w;) = maXEJ'E.Cw Re((Gp.:. 9•(eiw,)- ê.L(eiw'))e-i<l>t)

è .
uncertainty in direction eJ<I>< for frequency w; due to
pararn. uncertainty not covered by struct. error p. 128

> ji.(w;): error due to tai! of basis p. 118
> P:,. (w;): uncertainty region in complex plane determined

by f".t1.{w;) and µ(w;) p. 128
Bound the interpolation error for w tl fl p. 130

Bound unstructured error in time domain p. 134

Ë
< W((): stable weighting filter or z/(z - 1) p. 134
< tmax: time after which constant bounds are used p. 134
> s(t): upper bound for W(()Ll(t) p. 137
> !!(t): lower bound for W(Ç)a(t) p. 139

Combine loc al results ... p. 140

Ë
d; := maxwEW upper bound for ith structured component
i!,.; := minwEW fk lower bound for ith structured component
Take union of all unstructured bounds

STELLINGEN

behorende bij het proefschrift

Structure in Practical Model
Error Bounds

van

Leon Ariaans

Eindhoven, 26 februari 1997

1. Het is grotendeels schijn dat de aansluiting tussen de vakgebie
den robuust regelaarontwerp en modelonzekerheidsbegrenzing
de laatste jaren verbeterd is.

Hoofdstuk 2 van dit proefschrift.

2. Het schatten van structuur in modelonzekerheid gebaseerd op fy
sische voorkennis van het te modelleren proces kan een bijdrage
leveren aan het verminderen van conservatisme in modelonze
kerheidsgrenzen.

Hoofdstuk 4 t/m 6 van dit proefschrift.

3. De MATLAB programmeertaal en de implementatie daarvan zijn
niet geschikt voor software projecten die een omvangrijke pro
grammeerinspanning vergen.

Sectie 7.1 van dit proefschrift.

4. Voor succesvolle toepassing van black-box identificatietechnie
ken kan het te identificeren proces niet als een black box worden
opgevat.

5. Een procedure voor robuust regelaarontwerp die een uniforme
kansverdeling over de hele set van procesonzekerheden kan han
teren zou minder conservatieve resultaten geven dan de huidige
worst-case technieken, daar deze huidige technieken de kansver
deling van de onzekerheden concentreren in die onzekerheden
die de slechtst mogelijke prestaties geven.

6. Dynamica in de stapresponsie van een proces is als een kater. Je
moet even wachten en dan gaat het meestal vanzelf over. Wie
daar geen genoegen mee wil nemen haalt er een doctor bij.

7. De argumenten van economische noodzaak die worden aange
voerd voor het aanleggen van de Betuwelijn maken duidelijk
dat het spoor geen oplossing biedt voor het file-probleem.

8. Het voorschrijven van een standaard voor de typografie van enig
onderdeel van een op zichzelf staande publicatie doet de schrijver
van het betreffende werk tekort.

9. De opvatting, gebezigd in Orwell's "Nineteen eighty-four,'' dat
begrippen waarvoor iemand geen woord heeft uit de gedachten
wereld van die persoon verdwijnen, is onjuist.

G. Orwell, Nineteen eighty-four: a navel (1949)
Dit proefschrift, de set Q in hoofdstuk 3

10. De term niet-parametrische modellen is misleidend. Modellen
van deze soort bevatten doorgaans juist meer parameters dan
andere veel gebruikte modellen.

11. Promovendi zouden in het laatste half jaar voor hun promotie
vrijstelling moeten krijgen van het betalen van kijk- en luister
geld.

