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Abstract 

In many processes, control is applied to change the dynamic behaviour of the 
process such that the process performs better in some sense. Modern techniques 
for control design are, in general, based on a model of the process. If the model 
uncertainty, i:e. the difference between the model and the true process, can be 
bounded and the control design can take this bounded uncertainty into account, 
the resulting control is said to be robust. This thesis is concerned with the 
problem of finding bounds on the model uncertainty from experimental data 
and prior knowledge for application in robust control design. 

Practical application of model uncertainty bounds obtained by current tech
niques for uncertainty bounding is hampered by the fact that these bounds 
often turn out to be unrealistically large. It is analysed which effects (should) 
contribute to a model uncertainty bound. These effects can be divided into 
three categories: (a) models used for robust control are takeri to be linear, 
time-invariant and of low order, while the underlying process is not; (b) exper
imental data of a process gives only an incomplete and uncertain account of 
the process behaviour due to finite data length, finite sampling frequency and 
unknown external factors as noise and disturbances; ( c) some knowledge that 
is available of the process can be expressed only approximately or not at all 
in the model and/or the uncertainty bounds. This leads to conservatism. The 
practical motivation for application of robust control is mainly to cope with 
the infiuence of category (a). Current model uncertainty bounds take typically 
the infiuence of categories (b) and (c) into account. 

To study the interplay between different factors involved in a model un
certainty bounding procedure, a general frarnework has been developed in this 
thesis. Contrary to other frameworks in which identification procedures are 
"embedded," this framework takes great care not to put unrealistic restrictions 
on the process and/or its noise. Some of the properties that all uncertainty 
bounding algorithms (should) have in common are investigated. Furthermore 
the relation that should exist between noise, disturbances and simplifications 
such as tîme-invariance and linearity on the one hand and model uncertainty 
bounds on the other is clarified. 

Based on the observations made above, an algorithm is proposed that splits 
model uncertainty for MIMO systems in so-called structured and unstructured 
parts. The structured part is bounded in a detailed way and is intended to 
capture the changes in process dynamics that occur if the process is operated 
in several operating points. In the unstructured part, all other sources of model 
uncertainty are lumped together and are bounded in a much less detailed way. 
If the structured part describes the dominating factors in the uncertainty of 
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a process, the remaining unstructured part will be much smaller than would 
be the case without a separate description of the dominating factors. In this 
way the combination of structured and unstructured model uncertainty bounds 
can give a better, less conservative description of the total model uncertainty. 
At the same time, the uncertainty bounds represent more aspects of model 
uncertainty that are relevant for robust control than most other current bounds 
do. 

The dominating contributions to model uncertainty can be estimated from 
data sets obtained in different operating points. It is shown how these con
tributions can be excluded from the unstructured model uncertainty bound. 
Deterministic assumptions are made for the noise and disturbances acting on 
the process. Several extensions to the basic algorithm have been developed, 
allowing the use of more prior knowledge in the uncertainty bounding or in the 
estimation of the structured error components. 

The algorithm has been implemented in a C++ program. After careful con
sideration ofimplementation in MATLAB, it was decided that MATLAB provides 
insutficient support to implement the algorithm with the full ftexibility that is 
required. A generally applicable library was developed to support the imple
mentation. From simple objects like vectors and sets of integers, more complex 
data structures are developed, such as signals, model sets, identification ses
sions, etc. These tools were developed and used to implement the algorithm, 
hut they have their value in the field of computer aided system identification 
in their own right. 

The algorithm is tested by means of a number of simulation examples. It 
is also applied to practical data taken from an asynchronons machine. From 
the results it can be concluded, that the algorithm can indeed reduce the un
structured model uncertainty significantly by splitting off a limited number of 
structured error components that were determined by the algorithm. It can also 
find an approximate description for error structures that it can not represent 
exactly, leading again to a significant decrease of the unstructured error. 

Both the structured and the unstructured error bounds are very sensitive 
to the way in which the effect of undermodelling is bounded. Also very high 
quality data is needed .to distinguish structured contributions to the error from 
unstructured ones. It seems that the signal to noise ratio should be of the 
order 40 dB or better for successful applkation of the algorithm in its present 
form. As the noise exceeds this level for the asynchronous motor, using separate 
structured error components hardly reduces the remaining unstruct.ured error in 
this example. This is mainly due to the deterministic (worst-case) assumptions 
on the noise and disturbances. It is recommended to investigate in future 
research the use of stochastic assumptions on the noise. This seems certainly 
possible and may result in smaller, but soft, error bounds, which, however, 
seem better applicable for realistic signa! to noise ratios. 
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1 
Introduction 

1.1 Background and goals 
1.2 Overview of the contents 

1.3 Notation and terminology 

1.1 Background and goals 

The word "model" has different interpretations. If something is shaped after a 
model, the model represents something that reality is supposed to resernble as 
closely as possible. In other contexts, models try to describe aspects of reality 
in a simplified form. Scale models of a car used in wind tunnel experiments are 
examples of this. In this case the model should resemble the geometry of the 
car as closely as possible. 

Mathematica! models of the behaviour of processes usually fall in the latter 
category. They are used to gain a bet ter understanding of the process dynamics, 
to formulate expectations for its future behaviour or to derive ways to interact 
with the process to obtain a more desirable behaviour of it. These usages are 
normally referred to as analysis, prediction and control. 

Control strategies are developed for processes to make them behave more 
accurately, faster and/or more reliably. In industrial processes, control may 
further result in better safety, less demand of raw material and energy, less 
environmental load, higher quality of the resulting product or fewer off-spec 
products, in short: more economie operation of the process. Consequently 
control is applied heavily in aerospace, process industry, chemica! industry, 
consumer electronics and so on. 

Modern control is almost exclusively based on mathematica! models of the 
process. Instead of designing a controller for the process, a controller is de
signed based on the model of the process. Often it is assumed that the model 
is identical to the process. This is called the certainty equivalence principle. 
Because the process is not identical to the plant, a controller that performs 
well on the model may exhibit poor performance on the actual process or even 
destabilise that process. To cope with this problem, control design strategies 
were developed (and still are) that can recognise that the model is only an 
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approximation of the process. If a bound on the mismatch between the process 
and the model can be given and if a. controller can be designed that performs 
well for all processes whose mismatch with the model does not exceed that 
bound, the resulting controller is called robust. Aiming for control robustness 
is further motivated by the practical observation that the behaviour of a pro
cess changes for different operating conditions, under the influence of external 
factors, aging and wear. 

White-box models for a process are derived by describing the physical laws 
governing the system. Black-box models on the other hand are derived from 
experimental data of the process; the physical mechanisms of the process are 
basically not taken into account explicitly, i.e. the process is treated as a black 
box. Reliable methods exist for the derivation of black-box models from data 
obtained in properly designed experiments. In the last few years these methods 
were supplemented by methods to derive a bound on the mismatch between 
these models and the actual process. This mismatch will further be called 
the model error or model uncertainty. The process model and the uncertainty 
bound together with the specifications for the controlled process behaviour form 
all required ingredients for the formulation of a robust control design problem. 
Having techniques available that subsequently solve such a problem, it may 
seem that nothing stops us from applying robust control in practice. 

Alas, robustness is achieved at the expense of performance. If one can rely 
on the correctness of a model, in other words if the model uncertainty is small, a 
controller can be designed that pushes performance of the model to its limits. 
However, the larger the uncertainty becomes, the more cautious the control 
design has to be. A controller that improves performance for one process may 
decrease it for another. To guarantee a certain level of performance for all 
processes that fall within the uncertainty bounds, performance for the model 
has to be sacrificed and probably also for processes close to the model in some 
sense. 

Unfortunately it has turned out, that the uncertainty bounds that are found 
by the aforementioned techniques are often so big in practice, that the degrada
tion of performance is unacceptable. Moreover, based on practical experience 
and physical insight it is often felt that the uncertainty bounds are unreal
istically large. Apparently the uncertainty bounds are often taken to be un
necessarily large and consequently degrade performance substantially. This is 
referred to as conservatism and the resulting bounds are said to be conserva
tive. Conservatism has been recognised in the field of uncertainty bounding as 
a serious problem which deserves further attention. 

The problem area of this thesis is in line with the previous observations. A 
preliminary statement of the goal of this thesis is: 

Reduce the conservatism in model error bounds that are derived from 
experimental data and prior knowledge. 
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Prior knowledge is mentioned explicitly as a means to bound model errors: if 
prior knowledge may be used to decide that model error bounds are unrealis
tkally large, this knowledge might as well be used to reduce these bounds. 

The preliminary formulation of the goal of this thesis has been our com
pass · during the research reported in this thesis. However, it is such a broad 
statement that it deserves some further refinement. 

If one wants to develop tighter bounds for model uncertainty, a clear under
standing of what should be contained by the uncertainty bounds and what can 
be excluded from them is a prerequisite. Moreover it is felt that in the design 
of all uncertainty bounding techniques some chokes are made that actually 
go beyond that specific technique. These chokes reflect a general statement 
about certain aspects involved in the derivation of uncertainty böunds from 
experimental data and prior knowledge. Different, contradicting statements 
can be distilled from e:xisting uncertainty bounding techniques. A considera
tion of such issues in a context that is not confined to a partkular model error 
bounding technique is therefore desirable. 

The first part of a more refined statement of the goal of this thesis is: 

Provide a fundamental analysis of the factors that lead to model un
certainty in the context of bJack..:box identifi.cation for robust control 
design. Moreover, analyse the steps that are involved in deriving error 
bounds from experimental data and prior knówledge. Prmrirl'! .?- j~!~ti

fication for the choices that are generally made in the design of such a 
technique. 

The second part follows naturally from the first part: 

Based on the results of the aEorementioned analysis, adapt existing 
techniques for model error bounding for application in robust control 
design or develop new ones such that they fit better to the require
ments of robust controJ design in genera] and are less conservative in 
particular. 

A short preview of the methodology that was developed to achieve this 
second part of the goal is given in the overview of the contents in the next 
section. 

It has been explicitly mentioned that the intended application for the un
certainty bounds is robust control design. This does not meari that the results 
are irrelevant for other fields of application. However, generalisation of the 
interpretation of results presented in the subsequent chapters to these fields is 
considered outside the scope of this thesis. 
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1.2 Overview of the contents 

The first part of the stated goal of this thesis is addressed in chapters 2 and 3. 
Chapter 2 provides a genera! consideration of factors contributing to model 
uncertainty. Recognising which factors make the uncertainty bounds larger 
than they need to be is the first step towards deriving uncertainty bounds that 
are as tight as possible. For practically useful uncertainty bounds, tightness 
of the bound is not the only quality criterion. Other aspects determining the 
quality of an uncertainty bounding procedure are considered in this chapter 
as well, so that a well balanced compromise between all these aspects can be 
made. 

A framework for model uncertainty bounding is given in chapter 3. After a 
presentation of the framework, the relation between different factors involved 
in model uncertainty bounding is investigated. Because the framework is not 
restricted to a particular technique for uncertainty bounding, the conclusions 
that can be drawn from this study apply to many current and future techniques 
for uncertainty bounding. Moreover, the framework takes great care not to 
impose unrealistic assumptions such as linearity or time-invariance on the true 
process. 

Chapters 4, 5 and 6 form the main contribution of this thesis. These chap
ters provide a detailed presentation of a new algorithm for model uncertainty 
bounding. This algorithm splits the model uncertainty in so-called structured 
and unstructured parts. The structured parts are bounded in a very detailed 
way. The model uncertainty that is not accounted for by the structured parts is 
lumped together in the unstructured part and bounded in a much less detailed 
way. Provided the structured parts represent the dominating sources of model 
uncertainty, this separation leads to a tightly bounded representation of the 
model uncertainty. The algorithm is developed for MIMO systems. 

Part of the machinery used in the algorithm is due to Hakvoort (1994, chap
ter 4). In chapter 4 no modifications are made to these procedures. Chapter 5 
proposes some improvements and also extends other parts of the algorithm. 
These extensions are relegated to a different chapter to avoid unnecessary dis
traction from the main ideas by technica! details in chapter 4. Nevertheless 
chapter 4 is full of concepts and symbols. An example developed along with 
the theory throughout the chapter tries to help the reader in getting accus
tomed to these concepts. At the beginning of each section is also a summary 
of the· algorithm indicating what part of the algorithm is being considered in 
that section. 

Figure 1.1 shows the benefit that may be obtained from using separate 
structured error components. In this simple example, a process is operated in 
two operating points. The Nyquist plots of the transfer functions in these two 
operating points are plotted using continuous lines and are marked with x's. 
Between these two Nyquist plots is the Nyquist plot of the nominal model for 
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Figure 1.1: Potential benefit of using structured errors 

both working points. The light shaded areas give the uncertainty for a number 
of frequencies if no structured error components are used. The dark shaded ar
eas give the unstructured uncertainty that remains if only one structured error 
component is bounded separately. The size of the structured error component 
for these frequencies is indicated by dashed lines. 

This example is discussed in more detail in chapter 6. A more complex 
SISO simulation example and a MIMO simulation example are presented next 
in this chapter. In the last example presented in this chapter the algorithm is 
applied to experimental data obtained from an asynchronous motor. 

Chapter 7 presents a side-product of the algorithm. The algorithm was not 
implemented in MATLAB but in a C++ program. To support this implementa
tion, a library of "classes" was developed. With these classes the programmer 
is no langer forced to code hls algorithms with matrices and vectors, he can also 
use objects with a higher level of abstraction, such as signals, model sets, iden
tification sessions, etc. An argumentation for this choice as well as an overview 
of the design of these classes is given in this chapter. 

In chapter 8 conclusions are drawn and recommendations for future research 
are given. 

The main text of the thesis can be separated in three parts. The first part 
consists of chapters 2 and 3, the second of chapters 4, 5 and 6 and the third of 
chapter 7. These parts can be read more or less independently of each other, 
although the first part gives background information that was important for 
the design of the algorithm in the second part. Moreover, the complexity of the 



10 Introduction 

second part gives some further justification for the choices made in the third. 
In the remainder of this intro_duction, some of the notation and terminology 

used in this thesis is introduced. The notation is fairly standard, hut some 
conventions are used that can not be considered standard practice. A list of 
most symbols used in this thesis is given in appendix A. 

1.3 Notation and terminology 

1.3.1 Sets and spaces 
Throughout this thesis, lN will be used to denote the set of non-negative inte
gers, including 0. Z is the set of all integers. lR, denotes the set of real numbers 
and C the set of complex numbers. Z+ and lll+ are the subsets of Z and lR, 
consisting of positive values only. z_ and JR,_ are the equivalent subsets of 
negative values. 

For z E C, Rez denotes the real part of z, Im z is used for the imaginary 
part. The absolute value or modulus of z is denoted lzl. For z E C \ {O} 
the argument of z is represented by arg z. For z = 0 the argument of z is 
undetermined. For z ":/; 0, the argument of z is determined modulo 211'. z* is 
used for the complex conjugate of z. 

For IF E { lll, C} and n E Z+, IF'n denotes the field of vectors with n 
elementstaking their values in JF. ef is the ith unit vector in JF'n. The span of 
a, b, c with a, b, c E JF'n is denoted (a, b, c). IF'mxn is the field of m x n matrices 
with entries in JF'. We identify JF'n with JF'nxi, so vectors are column vectors. 
The identity matrix In E mnxn is given by 

[e?, ... , e~] 

For M E JF'mxn,Mi* E JFlXn denotes the ith row of M, M*J E JF'm denotes 
the jth column. A matrix M E JF'mxn is said to be tall if m ~ n and said to 
be fat if n ~m. Note that square matrices are both tall and fat. 

For n E Z, the hold symbol n is a shorthand notation for the set { 1, ... , n}. 
For n < 1, n is the empty set. This convention will also be used for other 
symbols. For any set S, 2s denotes the power set of S, i.e. the set of all subsets 
of S. 

Let {Xi}f=1 be a sequence of n matrices with equal number of columns. 
Then 

stackXi := [~
1

] , 
iEn · xn 

the operator "stack" stacks the matrices in the sequence on which it operates 
on top of each other, where the first matrices in the sequence end up top-most. 
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Conversely, if {Xi}f=1 is a sequence of n matrices with equal number of rows, 
then 

sbs Xi := (X1 . . . Xn] . 
iEn 

"sbs" puts the elements in the set on which it operates side-by-side in a matrix. 
For any sequence of matrices {Xi}f=1 , 

diagXi := [X

1 

·. ] 

iEn xn 

is the block diagonal matrix with the Xi on its diagonal. 
For a, b E IRq, the inner product of a and bis denoted (a 1 b) and equals 

q 

(a 1 b) := 2: akbk 
k=l 

The transpose of a matrix A is denoted AT. A * denotes the complex conjugate 
transpose. For real matrices A, AT = A *. 

For a linear operator P, the notation img P is used for the image space of 
P. For a matrix P the image space is taken equal to the span of the columns 
of P. With a matrix P E IFqxp is, as usual, associated an operator P 1

, P 1 
: 

JFP ~ IFq, x f-t Px. It holds imgP = imgP1
• 

For P E IRqxp or P E cqxp, rankP shall denote the rank of the matrix P. 

1.3.2 Signals, systems and norms 

The symbols f2, C2, h2 and 1l2 have their usual meaning: 
crp will be used for the space of functions defined on z, taking values in 

JRqxp that are square summable: 

f~xp := { J 1 f : Z ~ JRqxp, t f-t f (t); (~ t J'[;(t)f*i(t)) < 00} 

These functions will be referred to as time-domain signals or f 2-sequences. crP 
is the space of functions defined on (} taking values in cqxp that are square 
integrable on the unit circle: 

J traceF*(z)F(z)dz < oo} 
11zl=l 

These functions will be called frequency-domain functions. To emphasize this, 
signals f E crP will in general be denoted j(t) and signals F E crP will 
be denoted F(z). Also, symbols representing elements of f2 will in general be 
lower case letters and elements of C,2 will be represented by capital letters. 
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Remark 1.1 lt is important to note, that tand z are indetenninates, unless 
explicitly stated otherwise. This means tand z do not represent a single real or 
complex value, hut a whole set of values. This enables us to use the convention 
to denote signals f E l!~xp as f(t) and signals F E .crP as F(z): f(t) denotes 
in general the signal f, whereas, say, f ( t') denotes the vame of the signal f at 
timet= t1

• As an example of an explicit exception, in EtEZ f(t) the ~otation 
f (t) does refer to the value off at time t, because it is clear from "EtEz,'' 

that t is not indeterminate in this case. 0 

With each element f(t) of lixp is associated an element F(z) of .Cixp 
through the Z-transform: 

F(z) = L f(t)z-t 
tEZ 

For such a pair (f(t), F(z)), F(z) is called the Z-transform of f(t), f(t) is the 
inverse Z-transform of F(z). The values f (t 1

), t1 E Z are the Laurent series 
expansion coefficients of F(z) around z == 0. 

Hixp is the restriction of .crP to those functions that are analytic outside 
the unit disc, including at oo. hixp is the set of inverse Z-transforms of HrP. 
For every /(t) E hixp it holds that f(t1) = 0 for t' < 0. 

( will denote the forward-shift operator or left-shift operator: 

We can associate with every f(t) E hixp an operator F((): 

F((): e~ -t t:i, u(t) H- y(t) := L f(r) [C,,.u] (t) (1.1) 
rEJN 

If /(t) E hrP, F(z) will be used to denote its Z-transform and F(() to 
denote the operator associated to it through (1.1). Often this will not be 
mentioned explicitly. Moreover, we will not be very strict in distinguishing the 
three entities. They are seen more as different reprèsentations for the same 
thing. f (t) will be called the impulse response of F(z) or F(() and F(z) is 
called the transfer function associated with F(() and f(t). 

Similarly to the previous section, for all :F E {1:2 , .C2 , h2, 1i2}, :Fq is used as 
a shorthand notation for ;r:qxl and:F for :F1. 

With lixp is associated the norm ll·llt:2 : 

p 

Vf(t) E erp llf(t)lle2 := . L L f~(t)f*i(t) 
tEZ i=l 
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The norm ll·llh2 is identical. As f(t') = 0 for f(t) E hrP and t' < O the norm 
ll·llh2 reduces to 

p 

vt(t) E hrp 11t(t)llh2 := 2: 2:1:;,ct)f*i(t) 
tElN i=l 

The norms for .crP and 1lrP are obtained by integrating over the unit circle 
as follows: 

and 

1 i 1 llF(z)ll.c2 := -
2 

traceF*(z)F(z)-dz 
7r lzl=l Z 

1 /1f ' . = - traceF*(eJ"')F(e3w)dw 
271" -1f 

1 i 1 llF(z)lln2 := -
2 

traceF*(z)F(z)-dz 
7r lzl=l Z 

= 2_ J1f traceF*(eJ"')F(ei"')dw 
27!" -1f 

The l 1-norm of f(t) E (JRPP)lN is defined as 

llf(t)lle1 := ~ax L " l!iJ(t)I. 
iEq L_; 

jEp tEIN 

Note that not every f(t) E (mqxp)JN has a well-defined (finite) l 1-norm. In this 
thesis the notation Il! { t) llt1 will implicitly assume that the norm is well-defined. 
The eoo-norm off (t) E (JR,P)Z is defined as 

llf(t)llt00 := maxmax lfi(t)I. 
iEp tEZ 

Finally, the 1l00-norm for F(z) E 'fl'l,;P is defined as 

VF(z) E 1-t.'l,;P, llF(z)lltl"" sup l7max(F(ei"')), 
wE(0,1r] 

where l1max(M) is the largest singular value of ME mqxp. 
If the time domain signals f (t) E l!2 are to be interpreted as "real lîfe" 

signals, one should consider the time t to be normalised to the length of the 
sampling interval. This means that the frequency domain signals F(e3"') E .C2 
are expressed in normalised frequency: w = 7r corresponds to half the sampling 
frequency. This normalisation is also implied if it is claimed that a system has 
large time constants. "Large" means in this statement "large compared to the 
sampling time." 
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The subset of those f (t) E h~xp that satisfy 

3N E IN, Vt1 > N, f(t') 0 

will be called the set offinite impulse response (FIR) models. Strictly speaking, 
if fi(t),h(t) E hrP are not FIR models, then their impulse responses are 
infinitely long and one can not say that the impulse response of one is langer or 
shorter than that of the other. However, with length of the impulse response 
will somewhat ambiguously be meant the smallest N such that 

N P 

L L J!'ï(t)f*i(t) 2: PllJ(t)llh2 (1.2) 
t=O i=l 

where p E (O, 1) is some sensibly chosen value. The ambiguity in the description 
lies in the fact that p is not fixed. With this interpretation of length of impulse 
response we can say that the impulse response of fi (t) is longer or shorter than 
that of h ( t). If fi ( t) has a shorter impulse response than f2 ( t), we will call 
fi(t) faster than h(t). F1(z) and F1(() are called faster than F2(z) and F2(() 
resp. if fi(t) is faster than h(t). 

As a consequence of this, the statement that the impulse response of some 
j(t) E hrP is longer than N samples, N E IN, should be interpreted such, 
that 

N P 

L "LI!Jt)f*i(t) < Pllf(t)llh2 
t=O i=l 

where p is as in the previous paragraph. 
A system F(() E cgxp is called stable if a bounded sequence u(t) maps to 

a bounded sequence [F(()u](t). This is often referred to as BIBO stability. 
ó(t) denotes the Kronecker delta function. 

{
1 t = 0 

8 : Z -+ IR, t i-+ 
0 t =I 0 

We will also use ó(t) and ó(t - n), n E Z to denote the restriction of ó(t) and 
ó(t - n) to IN. With this interpretation, ó(t),ó(t - n) E h2 • However, usage 
will be clear from the context. 

F\irther notation will be introduced throughout the text. For a quick re
minder of the meaning of a specific symbol the reader is referred to appendix A, 
which contains a list of most symbols used in this thesis, with a short descrip
tion for each symbol and, where appropriate, a reference to the page on which 
the symbol is explained or introduced. 



2 
Model uncertainty and 

conservatism .. 

2.1 Introduction 
2.2 Origins of model uncertainty 
2.3 Different types of model 

error bounds 

2.1 Introduction 

2.4 Quality aspects of 
uncertainty bounds 

2.5 Summary 

In the late eighties, early nineties, important progress was made in the field of 
robust control design. A solution to the "standard" 11.00 problem was presented 
in (Doyle et al., 1988; Doyle et al., 1989). These results were subsequently 
refined by the introduction of the structured singular value µ, leàding to so
called µ-analysis and µ-synthesis, (Packard, 1988; Packard and Doyle, 1993). 

Roughly speaking these results mean that in the configuration of figure 2.1 
a controller K can be designed for a model G that is perturbed by an unknown 
hut bounded model uncertainty ~. The techniques can be applied such, that 

w 

Figure 2.1: Generalised plant, controller and uncertainty interconnection in 
robust control design 
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a certain performance level can be guaranteed for any A such that 

(2.1) 

(Some assumptions are made here. The most important ones are, first of all, 
that the model G is linear, time-invariant and of finite McMillan degree. Fur
ther, it is required that a linear, time-invariant controller K exists that stabilises 
the interconnection of G and a for all A satisfying (2.1). Finally. performance 
is assumed to be measured in terms of the 1l00-norm of the operator depicted 
in figure 2.1, mapping €2 signals w to f2 signals z.) 

Maintaining performance even if the true plant deviates from its nominal 
model, normally referred to as performance robustness, is to be considered a 
desirable property: in many practical situations physical insight may lead to 
the conclusion that under different circumstances the controller K will "face" 
a different plant G1

, where G1 is the interconnection of G and some value of 
a sati::!ying (2.1). Think for cxample of a controller for a chemicai plant. It 
would be attractive if one can take explicitly into account in the control design 
that the plant reacts differently in summer, when the atmospheric temperature 
is relatively high, than in winter. Other changes in the process behaviour may 
be induced by degradation of catalysts, wear and aging of the plant. Many 
more influences can be thought of that a controller should be robust against, 
for this particular example as well as for other types of plants. This issue will 
be further investigated in the remainder of this chapter. 

Following the results in the field of robust control design, the system iden
tification community picked up the hall and set off to develop techniques to 
estimate an appropriate value for da in (2.1) or other bounds on the model 
uncertainty that can be handled by 1l00 control design or µ-synthesis. In 
(Wahlberg and Ljung, 1992) four main streams were distinguished in this re
search: 

1. Identification in 1l00 , as developed in (Helmicki et al., 1989; Helmicki 
et al., 1990a; Helmicki et al., 1990b; Helmicki et al., 1991; Mäkilä and 
Partington, 1992; Mäkilä et al., 1994; Mäkilä et al., 1995; Partington, 
1991; Partington, 1992) 

2. Methods based on the traditional, statistica} approach, complemented by 
an estimate of the bias error. (Goodwin and Salgado, 1989; Goodwin 
et al., 1992; Kosut, 1988). 

3. Many publications have appeared in the field of set membership algo
rithms, which could better have been called parameter set membership 
algorithms, see (Gutman, 1988; Kosut et al., 1992; Walter and Piet
Lahanier, 1990) and the references therein. 

4. Research not so much concerned with uncertainty bounding hut rather 
with improving the link between identification and control design was 
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reported in (Schrama and Van den Hof, 1992; Schrama, 1992; Gevers, 
1991; Gevers, 1993; Van den Hof and Schrama, 1995). 

Although the aim of this chapter is not to give a complete review of literature 
on the topic, other developments will be mentioned in the remainder of this 
chapter. 

Even though the missing requirement for robust control design, a quan
titative bound on the model uncertainty, was more or less fulfilled by these 
developments, the case was not yet solved and closed. Combination of the esti
mated uncertainty bounds and the robust control design techniques aften gave 
disappointing results. To achieve sufficient robustness, some nominal perfor
mance has to be sacrificed. The performance degradation that was observed in 
practice was often considered unacceptably large. Because the control design 
techniques yield the "optima!" controller, or at least optimal to within a speci
fied margin, the most obvious way to try to improve this situation is to enhance 
the estimation of the uncertainty bounds to yield tighter and/or more detailed 
bounds. This assumes implicitly that the bounds estimated so far are not as 
tight as possible, in other words that the estimated bounds are conservative. 

Clearly, much effort was and is spent to link the development of robust 
control design with the development of model uncertainty estimation. The link 
that is developed resembles to some extent a tunnel that is built from two ends. 
Unfortunately the two teams of construction workers that are supposed to meet 
in the middle might very well miss each other or at best have two mis-aligned 
tunnel halves. This is illustrated by the following, fictitious conversation be
tween a model builder and a control designer that is taken from (Wahlberg 
and Ljung, 1992), in which the model builder defends his uncertainty bounds 
against the scepticism of the control designer: 

MB: Here is my model statement: A nominal Nyquist plot with confidence 
bounds. 

ODE: Fine, but can you guarantee that the true Nyquist plot is not outside 
these bounds. 

MB: Well, all I can say is that there is no evidence in the data of such a risk. 

ODE: But I want to be positive. 

MB: One can never be 100% positive about statements about the real world. 
You can increase your confidence, though, by collecting more observations 
under varying conditions and see if my model is still unfalsified with respect 
to these data. 

ODE: I see here that you have assumed that the disturbances are random. 
I don't believe in thàt nonsense. Disturbances can be very deterministic. 
Th.en the model discrepancy could be a lot worse. 

MB: Well, all I can say is that there is no evidence in the particular data set 
we worked with that we need to be so pessimistic. 
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The model builder does a good job in this conversation pointing out that the 
uncertainty bounds are an extrapolation or generalisation of a limited number 
of observations, but that we can be more or less confident about this generali
sation. In fact, this is characteristic for any natural scientific research. 

Up to this point, everything seems to be developing according to plan. 
U nfortunately, the conversation could have proceeded as follows. 

CDE: It is my experience that the control performance varies with the quality 
of the raw material we use in our plant. What does the uncertainty bound 
say about that? 

MB: There is no evidence in our data set that such an effect ever occurs. 

CDE: I was already afraid you were going to say that. Do your uncertainty 
bounds apply if we are making a product with different specifications? Or 
if a rain shower hits the reactor? 

MB: Sorry, 1 was only allowed to do a limited number of experimental runs. 
But don't worry, collecting extra data to establish the influence of these 
effects would only decrease (at least not increase) the size of my uncertainty 
bounds. 

CDE: 1 am glad to hear that, because, quite frankly, the bounds I have now are 
so big that 1 can say goodbye to any performance in my robustly designed 
controller. 

Note that this part of the conversation is not taken from (Wahlberg and Ljung, 
1992) any more .so that the complete responsibility for it lies with the author 
of this thesis. 

Three important issues come up in this second part of the conversation: 

• If the model builder and the control designer are talking about model 
uncertainty, they are thinking of different causes for this uncertainty. 

• If one wants to make statements about a plant in different operating 
conditions, data and prior knowledge about the plant should be collected 
for all (relevant) operating conditions. Although this is in itself a trivial 
observation, it may imply that the experiments that were sufficient to 
derive good nomina! models for a plant are insufficient to base tight, 
accurate uncertainty bounds upon. 

• While experience has shown in many practical cases that linear time
invariant models are a sufficiently good approximation of real plants, one 
has to keep firmly in mind during the uncertainty bounding that the true 
process is not linear time-invariant. A data set taken from the plant in 
one operating condition can not be used to reduce the uncertainty in the 
plant 's behaviour in a.nother operating condition. Instead, the form er 
data set reveals uncertainty that is not present in the latter data set and 
vice versa. The model builder is confused about this in his last remark. 
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The issues raised above suggest to take a closer look at model uncertainty 
as such. The remainder of this chapter is concerned with this. First it will be 
investigated what effects (should) contribute to the model error bound. Then 
some fundamental decisions often made implicitly in a model error bounding 
algorithm are discussed. Finally some general quality aspects of model uncer
tainty bounds are reviewed. 

To finish the tunnel metaphor discussed earlier: if two tunnel halves do not 
meet in the middle; it is not necessary to close both halves and start all over 
again. A small extra stretch is mostly sufficient to connect both ends. 

2.2 Otigins of model uncertainty 

In this thesis "model error" and "model uncertainty" are used for the same 
concepts. Three categories of contributions to model error bounds will be 
distinguished: 

• U ndermodelling 

• Strict sense uncertainty 

• Wide sense conservatism 

Strict sense uncertainty refers to a subset of all systems that can be represented 
exactly by the framework used for identification and uncertainty bounding, 
namely the subset of those systems that can not be falsified by the data or 
prior knowledge. If a plant is known to be a first order process with, say a DC 
gain and a pole location within certain known intervals, one could say that there 
is only model uncertainty and no model error if this plant is to be modelled by 
a first order transfer. In this case a subset of the set of first order transfers can 
be formulated having the properties that one of its members coincides with the 
real process and that for none of its members it can be concluded from data 
or prior knowledge that it is not the member coinciding with the real process. 
This subset represents in this example the strict sense uncertainty. 

Strict sense conservatism refers to those models that 

l. are consistent with the nomina! model(s) and the uncertainty bound, 

2. can be falsified by the data and prior knowledge and 

3. have a negative effect on the performance of the robustly designed con
troller. 

Wide sense conservatism refers to those models that satisfy only l. and 2. The 
extra requirement 3. distinguishes strict sense conservatism from wide sense 
conservatism. For model uncertainty bounding for other purposes than robust 
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control design another requirement than the one mentioned under 3. will be 
appropriate. 

Undermodelling means that the true system can not be represented by a 
model in the model set. If one has an exactly known second order plant that 
is modelled by a first order model, then, strictly speaking, there is undermod
elling (and possibly conservatism, depending on how this undermodelling is 
botmded), but no uncertainty: as the true plant is known, there is only one 
dynamical system that can not be falsified by the prior knowledge. 

Examples of these will be given below. 

2.2.1 Undermodelling 

At the risk of stating the obvious, the most important cause for a model error 
is that the model used to describe the process is a gross simplification of that 
process. Nevertheless one may consider this issue a little further to get an 
impression of what kind of model errors can be expected. 

The techniques for robust control design mentioned earlier require that the 
nominal model G in figure 2.1 on page 15 is a linear time-invariant model. 
They do not require that a is linear time-invariant; a is only required to be an 
1{00-norm bounded operator. This means that in the configuration of figure 2.1 
the following implication holds for certain d11 , dx E IR+: 

If ~ is not linear time-invariant, the interconnection of G and ~ is not neces
sarily linear time-invariant either. Contrary to this generality allowed by 1{00 -

control design, most identification techniques rely on the fact that, at least in 
an operating point, the plant can be approximated sufficiently well by a linear 
time-invariant model. This also applies to the algorithm discussed in chapter 4 
and 5. Allowing non-linear models G and/or non-linear uncertainty blocks ~ 
would mean giving up most of the tools used in identification and model error 
bounding. Nevertheless, the restriction to use linear time-invariant models is a 
self-imposed restriction. 

Given this restriction, one can distinguish the following aspects of under
modelling. 

1) Non-linear relation between u and y 
Everyone doing identification with linear models is probably well aware 
of the fact that the true process is not linear. This may manifest itself 

. in different ways. Most dearly present in an experimental data set is the 
non-linear response to the inputs whose response is to be modelled: a 
superposition of excitations does not give a response that is the corre
sponding superposition of responses, sealing an excitation does not lead 
to an accordingly scaled response. In chapter 3 a heuristic way to deal 
with, or rather limit, the effect of this phenomenon will be discussed. 
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2) Operating points 
It is also well known, that a process behaves different in different oper
ating points. In this context an operating point is interpreted as a set 
of operating conditions, such as ambient temperature, nomina! values of 
inputs, type of raw material used, etc. Another effect of non-linearities 
is that unmodelled inputs may change the dynamics between the inputs 
and outputs that are modelled. For example, most physical processes 
change their behaviour if they are operated at different temperatures. In 
chemica! plants, where temperature is an important parameter, this is 
clear, hut the effect can also occur in electronic or mechanica! devices. 
These differences in process behaviour are similar to those induced by 
a changing operating point. They are more difficult to deal with, be
cause these changes can not be influenced, or only partially, and often 
the initia! change that caused the shift in process behaviour is not directly 
measured. 

Not only is the linear part in linear, time-invariant models an oversim
plification of reality. Processes are also time-varying, due to the effects 
of aging..and wear. A catalyst in a chemical plant generally gets polluted 
and consequently less active during its life-span. A driving belt in a me
chanica! construction may stretch after extensive periods of heavy load, 
which will translate to a change in the dynamics of the transmission at 
hand. These effects are difficult to deal with using robust control if their 
quantitative effect is not reproducible or predictable: one can not do ex
periments to determine how a plant will respond in two years time, short 
of the cases in which another, similar hut older plant is available for ex
perimentation. One can try and gather sufficient information about the 
changes that can be expected from experience with other, similar plants. 
If the rate of change is not too high and the costs of experimentation, 
identification and controller design are not too high either, one could 
be better off re-identifying the plant and retuning the controller after a 
period of time. 

4) Limited dynamic range 
Forgetting for a moment about non-linearities and time variances, there 
is still plenty of room for undermodelling. In practice, experiments can 
cover only a limited dynamic range: the fastest response that can be 
identified is overbounded by half the sampling frequency. The slowest 
dynamics that one can "see" are limited by the length of the experiments. 
During the experiment design, sampling frequency and experiment length 
are chosen such, that the relevant dynamics of the plant are covered by 
the data. Nevertheless the effects of "irrelevant" dynamics may be visible 
in the model error bounds. 
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H the effect of this kind of underrnodelling can not be separated frorn the 
effects that are considered relevant, this visibility may be stronger than 
expected: if for example some high frequent behaviour of the plant is 
omitted frorn the transfer function of the model, this may be visible in 
the uncertainty of every sample of the impulse response of the plant. To 
interchange the role of time and frequency domain in this example, one 
may think of a large delay with a small associated gain that one chooses 
to omit from the process description. Although this simplification has 
a strongly localised effect in a time domain description of the plant, it 
will increase the uncertainty in the frequency domain for each and every 
frequency. A small simplification cán consequently lead to a consider
able increase in model uncertainty if the uncertainty description can not 
express the simplification properly. 

5) Distributed and high-order dynamics 
Not only may the dynamics of the true process have a wider range than 
covered by the experiments and consequently by the resulting model. It 
is also not uncommon that the actual process has distributed dynamics. 
The model is in general only of fini te order. Consequently reactions in 
chemical plants are usually assumed to take place under homogeneity 
conditions. In Hexible structures, only a few modes are considered and 
these modes can only be described approximately. Much more examples 
can be thought of where this simplification occurs. 

It is my conviction, that the kind of model uncertainty discussed in this 
section is exactly what a robust control design wants to be robust against. 
However, model uncertainty bounding algorithms have concentrated on bound
ing the effect of the causes discussed in the next two sections. - This is not 
meant to imply that all causes of model uncertainty that will be discussed sub
sequently should be ignored in robust control design, although it would be nice 
if some of them actually could. 

2.2.2 Strict sense uncertainty 

The conclusions that can be drawn frorn experimental data conceming the true 
process behaviour is principally restricted by at least two effects. 

• Firstly, the experimental data is finite. For many identification methods, 
asymptotic consistency results may be derived under "weak" or "reason
able" conditions - remarkably enough never called "realistic" conditions. 
These results state that the identified model tends to the true process if 
the experimental data length tends to infinity. Turning this statement 
around it says, that the identified model may not coincide with the true 
process for finite experimental data. Loosely speaking, some effects do 
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not "average out" on a finite data set that would on an infinitely long 
data set. 

Another illustration of the influence of finite data can be found by con
sidering the discrete Fourier transform (DFT). From any textbook on the 
subject it is known that the DFT may be interpreted as the transform of 
a periodic continuation of the finite length signal. Choosing a different 
continuation of the signal would result in different Fourier coefficients. 

• The second cause of strict sense uncertainty is the possible corruption 
of the experimental data by noise, disturbances, responses to unmodelled 
inputs, etc. As already mentioned, under suitable conditions these effects 
may vanish if the length of the data set goes to infinity. 

Remark 2.1 An obvious way to reduce the effect of finite data length is to 
extend the experiment duration. This is limited in practice by the allowed 
experimentation time, the computational load involved in estimating the model, 
etc. Also the process or the characteristics of its disturbances may change in 
very long experiments. 

Input design for the identification experiment may play an important role in 
shaping the influence of noise: one may expect an accurate model in frequency 
regions and, in case of MIMO or MISO processes, for input directions in which 
the input is strongly exciting. A less accurate model can be expected in regions 
where the input is hardly exciting and the experimental data consequently 
barely contains information about the process response. 

One may try to improve the signal to noise ratio in the experimental data 
by increasing the input amplitude. This is limited by actuator and operating 
constraints. Also one can expect a larger excitation of non-linearities for larger 
input amplitudes. 

In conclusion, the effect of finite data length and noisy measurements may 
possibly be reduced yet never eliminated. D 

2.2.3 Wide sense conservaäsm 

Contrary to the contributions discussed in the two previous sections, there is no 
fundamental impossibility to eliminate the effects of conservatism: these effects 
can be reduced or even removed by designing better model error bounding 
algorithms. 

A common cause of conservatism is, that one has more knowledge about 
the noise that is affecting the process than can be handled by the algorithm. 
In parameter set estimation techniques for example, the true output Ytr(t) of 
the process is generally assumed to be corrupted by a noise signal i::(t) with a 
known €00 bound: 

y(t) = Ytr(t) + i::(t), max li::(t)I < ë 
t 

(2.2) 
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A more detailed statement on the noise can be made by making e a function 
of time. This can be handled by parameter set estimation techniques as well, 
but this still does not address the unattractive property of the characterisation 
(2.2) that the noise can behave very wildly: at one sample instant €(t) may 
be equal to e, at the next it may be -e and it can keep alternating between 
these two extremes. It is very unlikely that the true noise and disturbance 
signals really show this behaviour. Neglecting for a moment the problem of 
quantifying this information, there remains the problem of incorporating this 
knowledge into the model error bounding algorithm. 

This example has many variants. Think for example of algorithms that 
require bounds on the noise in frequency domain. These can not handle (2.2) as 
such. To determine the largest possible deviation in frequency domain following 
from (2.2) fora certain frequency w, one would have to consider the power in a 
sinusoidal signal E(t) offrequency wand amplitude ë. For another frequency w 
the procedure has to be repeated. Considering only these maximal deviations 
in frequency domain is a very conservative representation of (2.2): it can be 
concluded from (2.2) that if for a certain frequency w the deviation is equal 
to its maximal value, then the deviation for all other frequencies is necessarily 
equal to zero! 

Another problem with the noise bound (2.2) is that it assumes that the 
noise and disturbances enter the process at the output. lt is likely that some of 
the noise enters the process at the inputs, so that it is filtered by the dynamics 
that are to be modelled. Much more difficult is noise that enters the process 
through unmodelled inputs. The noise can then be assumed to be filtered by 
some of the dynamics that are to be modelled, but one may be unable to say 
a priori by which part of the dynamics. 

One may also have information concerning the process transfer itself that 
can not be used by an error bounding algorithm. It is conceivable that one 
knows for a practical process the range of the frequency for which a resonance 
peak occurs. If the uncertainty structure that is used is an additive error with 
an 1l00-norm bound on the error, 

Gtr(() = G(() + A((), llA(()il1i
00 

<da, 

the reader may verify that this information can only be represented in an 
approximate way. Figure 2.2 shows this for an example. In this Bode amplitude 
plot, the continuous lines correspond to the transfers having the largest and 
the smallest value of the resonance frequencies. The dashed line shows the 
frequency characteristic of the chosen nominal model. This has been chosen to 
minimise the conservatism used by an additive error description, while being 
consistent itself with the prior knowledge. The shaded area can be expressed as 
a frequency dependent bound on the amplitude of the additive error A. lt is the 
smallest such area that contains all transfers consistent with prior knowledge. 
Nevertheless this area contains much more transfers than only those consistent 
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Figure 2.2: Approximate description of varying resonance frequency 

with the prior knowledge that only the resonance frequency may vary. 
As another example of a case in which the true undermodelling/uncertainty 

does not fit the measure that is used to quantify the uncertainty, think of the 
1l00-norm bound (2.1) fora SISO uncertainty block 6.. If the true uncertainty 
in A(jw) can be represented by the darkest shaded circle in figure 2.3 for a 
certain value of w, the amplitude-based 1l00-norm bound can represent this 
at best by the outer-bounding light shaded circle. One may wonder to what 

t Im.ó.(jw) ---i--

Figure 2.3: Conservatism in an amplitude bound 
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extent the situation shown in figure 2.3 is realistic. This may be illustrated 
by means of results obtained for the water vessel process shown schematically 
in figure 2.4. This example has been taken from (Van den Boom, 1993). The 
process consists of four vessels Vi, ... , V4 into which water can flow at the top 
and from which water flows through a restriction at the bottom. The out
flow of a vessel is roughly proportional to the water level in the vessel. The 
response from in-flow to water level is therefore roughly a first order response. 
The inputs to the total process are the water flows into the two top-most 
vessels. The outputs to be controlled are the water levels in the two bottom 
vessels. In (Van den Boom, 1993) the model uncertainty was characterised 
by means of the maximal H 00-norm of an uncertainty block ~ related to the 
additive error on a coprime factorisation of the nominal model of the process. 
It is beyond the scope of this example to explain the uncertainty bounding 
procedure in detail. The interested reader is referred to (Van den Boom, 1993). 
As a result of the worst-case approach followed in this technique, the largest 
possible absolute value for ~(jw) was calculated that was still consistent with 
the experimental data and the prior knowledge. The prior knowledge consisted 
mainly of a bound on the noise in the measured input and output signals in 
frequency domain and a stabilisation assumption. It would be interesting to 
compare this worst-case amplitude of !l(jw) with the best-case amplitude, i.e. 
the smallest possible absolute value of !l(jw) that is consistent with the data 
and the prior knowledge. 

In figure 2.5 both the maximal (worst-case) and minimal (best-case) ampli
tude of ~(jw) have been plotted for a number of frequencies. lt is interesting 
to see, that the best-case errors can have values significantly larger than zero. 
For all frequencies where this is the case, an effect similar to that of figure 2.3 
occurs: the worst-case amplitude corresponds for each frequency w1 to a disk in 
the complex plane that is known to contain ~(jw'). The best-case amplitude 
corresponds to a disk in complex plane that is known not to contain !l(jw1

). 

Nevertheless this "best-case disk" is completely contained by the "worst-case 
disk." 

All examples discussed so far in this section are cases in which =;;;...:;;::=:...== 
prior knowledge that can not be used by the algorithm. One may distinguish 
here the case that one has well-defined quantitative information that can not be 
used and the case that one has only vague, qualitative knowledge that can not 
be represented accurately, let alone be used by a formal algorithm. Ignoring 
the latter kind of knowledge is perhaps not so much a shortcoming of the 
model error bounding algorithm: one can not expect to derive well-defined, 
accurate noise bounds from knowledge that can not be stated accurately and 
unambiguously. 

Another cause of conservatism lies in the concessions that have to be clone 
in practical algorithms to the computability of the bound. A tight bound is 
often over-bounded by a bound that is less accurate, hut easier to compute. 
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Figure 2.4: Water vessel processtaken from (Van den Boom, 1993) 
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Figure 2.5: Best- and worst-case errors for the water vessel process 
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The final source of conservatism that is mentioned here is the data prepro
cessing that precedes the identification and error bounding steps. Detrending, 
linearising etc. have as objective to remove unwanted effects from the data. Un
fortunately this normally also distorts or removes information that one would 
actually like to keep. Nevertheless, deciding not to preprocess the data because 
of this is probably a cure that is much worse than the disease. 

2.3 Different types of model error bounds 

In this section some choices are discussed that are made by the designer of 
an algorithm for model uncertainty bounding, even though he/she may not be 
aware of this. 

2.3.1 Hard bounds or soft bounds 

The issue whether model uncertainty bounds should be "hard", i.e. determinis
tic, guaranteed to be correct, or "soft", i.e. probabilistic, correct up to a certain 
confidence level, has received much attention. Despite the discussion whether 
soft bounds can be reconciled with the phiiosophy of robust control design 
(more specifically 1{00 design and µ-synthesis) or only hard bounds are com
patible with the worst-case approach taken in these techniques, the difference 
between hard and soft bounds is not as sharp as it may seem. If one takes the 
size of a 99.53 confidence interval as a hard bound on the noise level in the 
experimental data and uses this subsequently in a "hard bounding" technique, 
are the resulting noise bounds hard or soft? H one decides that these bounds 
must be soft, then the issue can be closed, because in practical measurements 
there is always some random noise and the only bou,nds we can ever get are soft 
bounds. So, in order to discuss this problem a little further, let us agree that 
the bounds have to be considered "hard." How is the 0.53 possibility that the 
noise bounds are too small to be put in agreement with the earlier claims that 
hard guarantees were required? 

Still, it would go toa far to claim that the whole problem is a non-issue. 
One should be awa.re of the kind of assumptions made to properly interpret the 
results of an algorithm. It is probably not possible to pronounce one approach 
as correct and the other is incorrect. 

In (De Vries, 1994) it is argued that one should use a probabilistic measure 
on the uncertainty due to noise, because this leaves the possibility open that 
the infiuence of noise "averages out." This addresses the conservatism that 
was discussed in section 2.2.3 based upon equation (2.2) on page 23. It is 
further stated that undermodelling should be bounded in a deterministic way, 
as undermodelling does not average out over time and can have a worst-case 
nature indeed. 
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In (Goodwin and Salgado, 1989; Goodwin et al., 1992) the stochastics is 
taken one step further and both the noise and the undermodelling are taken to 
be samples from a random process. In the first reference the prior knowledge 
consists of the cross-covariance function in frequency domain of the additive 
error. In the second it consists of an exponentially decaying upper bound on the 
variance of the impulse response parameters of the additive error. "Additive 
error" is taken here with respect to some unknown optima! model. This prior 
information is then mapped in frequency domain into an aposteriori estimate of 
the expectation of the square of the additive error with respect to the nominal 
model. 

Another approach to ease the worst-case nature of many error bounds could 
be to attach a probability distribution to the bound. To our knowledge, this 
would be a new approach. It is therefore interesting to investigate this idea 
a little further. Restricting attention for a moment only to the influence of 
noise, a probability or likelihood can be specified for the diffetences between 
the measured signals ( Um, Ym) and all candidate "true", undisturbed signals 
( Utr, Ytr) where ( Utr, Ytr) are taken from some set Utr x Ytr. A map ping M is 
then to be formulated, mapping a candidate undisturbed signal ( Utr, Ytr) to a 
measure d on the model uncertainty: 

M: Utr X ltr -+IR+, (Utr, Ytr) r-+ d 

Any hard error bounding technique can be used for M. Note that in this sim
plified case no prior knowledge is involved in M. Define the "inverse map ping" 

)çt : IR+ -+ 2Utr XYtr, d r-+ {(Utr, Ytr) E Utr X Ytr 1 M(Utr. Ytr) :S d} 

Let fuy ( Utr, Ytr) be the probability density that was attached to the candidate 
undisturbed signals (utr,Ytr). The probability distribution Fd(d) of the bound 
d is then given by 

Fd : IR+ -+ [O, lJ, d.-+ [ fuy(u,y) d(u,y) 
l'Jvl(d) 

(2.3) 

Although the idea is simple, application of it seems almost impossible. Let 
us assume for simplicity that an explicit expression is available for ti(d), a 
very optimistic assumption indeed. It would still be unlikely that an analytic 
solution exists for the integral in (2.3). Reverting to numerical integration 
provides no solution, as, even in case of a SISO system, the integral is of 
dimension 2N where N is the number of data points in the experimental data. 

Remark 2.2 In the remainder of this section attention will seem to be re
stricted to hard bounds. This is by no means meant to imply that hard bounds 
are to be preferred over soft bound, it just allows for simpler expression of the 
statements to be made. Nevertheless all statements can also be reinterpreted 
in a soft-bounding sense and should apply as such as well. 0 
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2.3.2 Process in the model set or not 

An issue attracting little discussion but dividing the model uncertainty bound
ing approaches clearly in two different camps is the question whether the true 
process can be considered to be in the model set or not. In this section we will 
assume that the model set consists of parametric models. 

Considering model sets consisting of restricted complexity models and as
suming that the true process can be described exactly by one of those models 
provides a means to extrapolate information obtained during finite experirnents 
to statements holding true for all time instances. Using this approach it is pos
sible to say sornething about what experimental results would have looked 
like if the experiment had spanned a langer period. The assumption that the 
process is in the model set provides explicit conditions on the way in which 
time-extrapolation can occur. In frequency domain both interpolation between 
the sampled frequency-points and extrapolation to higher frequencies occurs. 
This is important to realise, because one needs to have an alternative for this 
if one refuses to assume that the process is in the model set: even though one 
does not assume that the process is in the model set, there must be some way 
of precluding the possibility that the process would start responding fiercely 
to the excitations after the experiment interval. For frequency domain data, 
there must be some way of ensuring that the frequency response of the system 
is in some sense smooth between the frequency samples. This can be achieved 
in several ways. 

A common way is to assume an exponentially decaying bound on the im
pulse response parameters of the true system. Similar to this is the assumption 
for discrete time systems that the poles of the true system are within a cir
cle of radius p, where p is known and less than one. Another method, used 
in (De Vries, 1994; Hakvoort, 1994) and chapter 4 and 5 of this thesis, is to 
assume an exponentially decaying bound on the generalised impulse response 
parameters of the system. For more information on the latter approach the 
reader is referred to the above references and to chapter 4 of this thesis. 

Remark 2.3 The smoothness assumption above can be thought of as the as
sumption that the true process is in some set. This set is a subset of the set 
of linear time-invariant processes. This subset will be encountered again in 
chapter 3. 0 

In parameter set estimation techniques, one basically assurnes that the pro
cess is in the model set, see (Walter and Piet-Lahanier, 1990) and the ref
erences therein. To some extent this has been generalised in (Milanese and 
Elia, 1993; Livstone and Dahleh, 1995; Vicino and Zappa, 1996). These ref
erences allow for an unstructured additive model uncertainty. However, it is 
assumed that this uncertainty is norm-bounded a-priori. The possible error this 
extra uncertainty induces in the estimated model parameters is then bounded 
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by the proposed algorithms. The problem of obtaining this prior knowledge, 
which is exactly what the problem of model uncertainty bounding is all about, 
is not addressed by these references. 

If one assumes that the process is in the model set, all of the undermodelling 
effects listed under 1) to 5) in section 2.2.1, page 20 onwards, are ignored 
completely. If one recognises that the process is more complex than any model, 
the effects listed under 4) and 5) can be accounted for. In the context of robust 
control design, this is definitely to be preferred. 

Remark 2.4 The effect of 2) "working points", page 21, can be accounted for 
by using separate data sets for a range of operating points and operating con
ditions. This range should cover the range of conditions that can be expected 
after the implementation of the controller that is still to be designed. One may 
then distinguish local uncertainty bounds, valid in one operating point, and 
global uncertainty bounds, valid for all operating points. The global bounds 
are simply obtained by taking bounds containing all local bounds. This idea is 
applied in the algorithm of chapter 4. 

This approach is valid only in cases where it can be relied upon that all of 
a particular data set was obtained in a single operating point under roughly 
constant operating conditions. If this is not the case, one is, possibly unknow
ingly, trying to reduce uncertainty of a model for one operating point by using 
data for another operating point. D 

2.3.3 Best case or worst case 

At a first glance it seems clear that robust control design methods need a spec
ification of an uncertainty description that, provided the the prior knowledge 
and assumptions are valid, guarantees to at least model the true process. In 
other words, uncertainty bounding should find the smallest possible bound that 
we can trust to be large enough to contain a description for the real plant. This 
leads to worst-case bounds: given a set that is known to contain the true pro
cess, the bound that is large enough to contain all processes in this set should 
be used. 

Nevertheless the opposite approach is encountered in the literature as well. 
In (Zhou and Kimura, 1993; Zhou and Kimura, 1994) the smallest bound that 
can not be falsified by data and prior knowledge is searched: the data and 
prior knowledge together define implicitly a set that is known to contain the 
true process. The bound on the uncertainty derived by Zhou and Kimura is 
chosen such that at least one process in that set satisfies the bound. The 
stronger statement that all processes in the set satisfy the böund can not be 
guaranteed. 

In connection with robust control design this seems a suspicious approach, 
even though the references consider noise-free data only. There is also another 
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strange effect: the more data is obtained from the process, the greater our 
"tools" to falsify an error bound. The error bound is a non-decreasing function 
of the amount of data that we have available! 

Remark 2.5 The effect that having more data increases the error bound was 
encountered earlier: if data is obtained in another operating point, the model 
error bound can not be reduced, hut is possibly increased. However, incteasing 
the bound has the benefit of extending the faith we can have in the error bound 
to an extra operating point of the process. 

Given this explanation, there might be a similar explanation for the case at 
hand. This explanation would be that a longer data set increases the validity of 
the error bound to a longer time span. This would imply that the error bound 
is only valid for the duration of the experiment. Clearly, this is unacceptable. 

D 

2.3.4 Bound for one process or any process 

The bounds on the worst-case model error derived in (Gu, 1994; Gu and 
Khargonekar, 1991; Helmicki et al., 1989; Helmicki et al., 1990a; Helmicki 
et al., 1990b; Helmicki et al., 1991) are the worst possible bounds that one 
may observe if the true system is any system in a restricted set. (This set is 
the kind of set discussed in section 2.3.2 if one does not want to assume that the 
true process is in the model set.) This means in particular, that the bounds are 
valid not only for the process for which we want to have a model but also for all 
other processes in that set. This in turn implies, that these particular bounds 
can not depend on the experimental data, because these are necessarily taken 
from only one member in the set. This differs from most other bounds, in which 
the data potentially does contribute to a reduction of the model uncertainty. 

Having a bound that applies for all possible processes is useful if one wants 
to compare the quality of different algorithms. H algorithm A gives a tighter 
bound than algorithm B for a certain process but algorithm B outperforms 
algorithm A on another process, one can not say that either is better than the 
other. If the bounds produced by the algorithms are not tied to particular 
processes, the algorithms can be compared. If one is "only" interested in a 
bound on the uncertainty for one particular process, namely the process that 
is to be èontrolled, one need not take such a worst-case approach. Nevertheless 
it may be attractive for reasons of computability to do this anyway. 

Remark 2.6 Only the bounds on the model uncertainty do not depend on the 
data in the above references. The identified model does depend on the data of 
course. In thiss.ense the data reduces the model uncertainty quite significantly! 

D 
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2.4 Quality aspects of uncertainty bounds 

In this section aspects concerning the practical applicability, or quality, of an 
error bounding technique will be discussed. These should be interpreted as 
"desirable properties." It is not the case that a technique having all of the prop
erties mentioned here is necessarily a good technique and a technique lacking 
some of them is useless in practice. 

The probably hardest requirement for practical application is that the al
gorithm provides a computable bound. Whether a bound is to be considered 
computable or not is to some extent up to personal taste. Bounds for which 
simply no algorithm to compute them are known, are obviously not computable. 
But, while one person may quite happily spend a week's worth of computing 
power on the calculation of a bound, someone else may find this already un
acceptable and consider the bound uncomputable. Apart from the subjective 
element in this decision it also depends strongly on the state of the art in (af
fordable) computing power, which has been developing rapidly during the last 
decades. 

In the context of uncertainty bounding for rohust control design, it is im
perative that the statement about the model uncertainty can be used by tech
niques for robust control design. This is related to, hut not identical to aiming 
for bounds that are in line with control objectives. The link between iden
tification and control has been studied for example in (Gevers, 1991; Gev
ers, 1993; Schrama and Van den Hof, 1992; Schrama, 1992). 

It should definitely be considered a practical advantage of an error bound 
if it can incorporate the kind of prior knowledge that one has in a certain 
situation. The match between what kind of knowledge is practically available 
and what can be used by error bounding techniques would benefit from a wide 
discussion between practicists and theorists. 

Also of much practical value is a bound that is interpretable in physical 
terms. An interpretable bound can be confronted with one's expectation for 
the model uncertainty. If the obtained hound is in line with this expectation, 
the faith in the bound is increased, even in the presence of the simplifying 
assumptions that were made in the derivation of the bound. If, on the other 
hand, the bound deviates significantly from what was expected, this is a sign 
that things need to be carefully checked. It may be that the error bound is 
conservative, hut it could also be that the nominal model, the input design, 
the experimental conditions etc. are the cause of the unexpected results. In 
summary, an interpretable bound can be validated, or invalidated, based on 
arguments that are not necessarily restricted to the theoretica! framework into 
which identification and error bounding have been cast. 

Contrary to what the name suggests, prior knowledge consists mostly of 
assumptions that are made about the process. These assumptions are hopefully 
very sensible indeed, hut they remain assumptions, not real knowledge. If the 
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error bounds turn out to be determined mainly by the prior "knowledge," one 
should realise that these assumptions have far-reaching consequences. If, on the 
other hand, certain aspects of prior knowledge did not contribute to a reduction 
of the uncertainty bounds at all, it may be worthwhile to investigate whether 
that particular specification was not too cautious. These considerations are 
only possible if it is known what actually determined the size of the uncertainty 
bounds. The ability of an uncertainty bounding algorithm to provide this 
information is the final desirable property we like to mention. 

2.5 Summazy 
There seems to be a different interpretation of the concept "model uncertainty" 
in the areas of control design and model error bounding. The three main 
categories of contributions to a model error bound are undermodelling, finite 
data and noise and conservatism. For a robust control design it is desirable 
that as many of these aspects of undermodelling as possible are bounded in a 
reliable way by the eventual error bounds. 

Model error bounds can be decreased by reducing conservatism. Important 
causes of conservatism are the inability to use all of the prior knowledge that 
is available and the inability to express all of the a posteriori knowledge about 
the model uncertainty in the uncertainty bound. 
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In chapter 2 model uncertainty was considered in an informal way. In this 
chapter a general formal framework is presented for process identification and 
model uncertainty bounding. The aim of this formalism is to describe at an 
abstract level the concepts involved in process identification and uncertainty 
bounding. This provides a framework in which one can think about model 
uncertainty bounding without being tied to a particular algorithm. 

The formalism is intended to be complete in the sense that every possibly 
relevant aspect of the process behaviour is covered by elements of the formalism: 
if the true system can not be fully represented by models in the chosen model 
class, which is always the case in practice, the formalism should provide enough 
alternatives to represent the mismatching parts by. As was already mentioned, 
the framework should not be restricted to a particular class of existing or 
prospective algorithms. Due to this generality, most terms in this formalism 
are rather abstract: for different algorithms the abstract notions may be given 
different forms. For clarity an example is developed along with the formalism. 

3.2 Formalism 

To represent systems and models, the behavioural representations described in 
(Willems, 1986) will be used. In this representation, dynaniical systems are 
considered sets of vector valued signals. More precisely, a dynamical system is 
considered to be a triple ('Jl', W, B), where W is called the signal alphabet, 'JI' 
the time set and B c WT the behaviour of the system. The behaviour B is 
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the set of all signals w(t), defined fort in the time set 'II', that the system may 
exhibit. 

Exaniple: Consider the example of a two phase asynchronous motor. For a 
further discussion of this kind of device, see section 6.5 on page 229. Of the 
many aspects of this device, we may choose to limit attention to the voltages Ui 
and U2 over the stator windings, the currents Ii and 12 through these windings, 
the mechanical torque T m exercised by the motor at its axis and the angular 
velocity w of the axis. If we abstract from the units in which these quantities 
are to be expressed, we can say that the signal alphabet is equal to lli6 : for 
t' E 'II' we have that w(t') := (Ui (t1

), U2 (t1),I1 (t1), I2(t1
), T m(t'), w(t')) E JR,6. 

If the system is considered in discrete time domain, 'II'= Z or 'II'= Z+. H 
it is considered in continuous time, then 'II' = lEi or 'II' = JEi+. Notwithstanding 
the name "time set" lor T there is nothing prohibiting that the engine is 
considered in frequency domain. This gives 'II' = C and W = C6 • Variants of 
this where T is a subset of C, such as the imaginary axis, the unit circle or 
sampled subsets of these, can easily be found. 

This is already a gross abstraction of the physical machine. The tempera
ture of the windings is not considered, nor the price of the engine, its manu
fäcturer or the colour of its case, to name only a few things. D 

To consider the behaviour of a system B on a subset T' of T, the notation 
BIT' will be used. This is formally defined as 

BIT' := { w' E wT' l 3w EB, Vt1 ET' w1(t1
) = w(t')}. 

It is assumed that for a certain behaviour B a partitioning of the signals 
w(t) E B into inputs and outputs is both possible and known. This will be 
denoted w(t) = (u(t),y(t)) where u(t) consists of the input signals and y(t) of 
the output signals. The same partitioning of w into u and y will be used for 
all behaviours in the formalism. This partitioning is used at one point in the 
formalism, but the formalism does not really rely on it. 

There are two reasons to suffer the loss of generality induced by distin
guishing between inputs and outputs. Firstly, it makes the formalism easier 
accessible for those used to thinking in terms of inputs and outputs, which is, 
despite the work of Willems and his followers, in my opinion the large majority 
of the identification and control community. For those trained in not thinking 
in terms of inputs and outputs the generalisation to a more symmetrie formula
tion should be straightforward. Secondly, in all practical cases where the signals 
can be partitioned into actuator signals and sensor signals, which constitutes, 
again at least in my view, by far the majority of cases, the partitioning in to 
inputs and outputs is trivia!. Therefore the loss of generality is not considered 
very significant. 
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Another departure of convention with respect to the behavioural frame
work is that behaviours will not be denoted B or /3 in this formalism. If a 
symbol describes a process, model or any other dynamical system then it is 
a behaviour, this is not further stressed by denoting it B. The variation in 
notation that is made possible by dropping this convention is used to denote 
different kinds of systems or models by different symbols. In the examples, also 
other representations of models will be used. 

An overview of the formalism is now given in the symbolism (3.1) below. 
At this point it will not make much sense yet, but throughout the remainder 
of this section, the various symbols in this framework will be introduced. lt is 
expected that the reader will often be referring back to this overview. Therefore 
it is repeated at the top of every left page in this chapter; this is meant as an 
aid to the reader and not as a vain attempt to make the formalism seem more 
important than it is. 

SE S -+ !> w 

} ~ I> Cstab 
'.Pc Q 1>Vu, (llull ::; du 11.;11 ::; d() -+ 

!> '.J'2, · · ·, '.J'N:P 

!>Jid (3.1) 

C"+".ó. } d(~ ) < d c -+ 0 K? C _ ác 

Before explaining all the symbols in this formalism in detail, it is worthwhile 
to mention a few conventions here. A behaviour of a system, process, model, 
etc. is denoted by a normal Roman capital letter, such as S, M, etc. Capital 
Roman script letters, such as S, '.P and Q, are used for sets of behaviours. 
Behaviours being sets of trajectories, these script capital letters denote sets of 
sets of signal trajectories. 

The items marked by a '1>' involve concepts that the formalism can not 
generate but that are required in later steps of the formalism. An example of 
this is the symbol W, that will turn out to represent the experimental data 
used in identification. In the formalism, experimental data can not be derived 
from other, known quantities. Nevertheless several steps in the formalism will 
require that experimental data is available. 

In the remainder of this section the various symbols will be explained. A 
discussion of a symbol is rnarked by a box containing that symbol and a '!>' 
sign. This makes it possible to see at a glance what symbolis being explained in 
a certain part of the text or where to find an explanation for a certain symbol. 

True system 
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-+ 
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I> w 
I> Cstab 

l>Vu, (llull ~du ==} ll~îl ~ dç) -+ 

1> P2, ... ,PN'.P 

c "+"6. } d(~ ) < d c -+ OK? 
C - D.c 

(3.1) 

[IJ I> The particular system under study is denoted S. Sis the behaviour of 
that "true" system, soit is the set of all signals w(t) that the true system 
can exhibit. It is implicitly assumed, that the signal alphabet W and the 
time set 'II' are known. Unless otherwise noted, this signal alphabet and 
this time set will also be used for all other behaviours in this formalism. 

In practical situations we may have access to (part of) the scalar valued 
signals in w(t) for some w(t) E S, where t E 'II'' C 'II' and 'II'' is some 
bounded subset of 'II'. Accessing these signals may contaminate the "true 
signals,'' for instance by introducing measurement noise. Also other ex
ternal influences may be present in a (partial) observation of w(t). These 
contaminations are assumed to be present in the signals w(t) E S. With 
this interpretation S represents somewhat more than only the true system 
including all its imperfections; it also includes the imperfections of the 
measurement equipment. 

The set S is not accessible for measurements. At best we can try to verify 
whether some w1 (t} is a member of S. As soon as we have carried out 
an experiment for t E 'II'', it is impossible to do another experiment for 
t E 7I'1• Apart from this, we can not do experiments for all t E 'II' if 'II' 
is unbounded, which will generally be the case. This implies that even 
elements of S are in practice not fully accessible for measurements. 

In advance of the introduction of the concept of stabilisability, which will 
. be formalised on page 41, it is already stated here that the system S is 
stabilisable. 

~ I> S is the set of all processes of the same kind as S. This is the place where 
one can put any prior knowledge about the system S that is available by 
virtue of the fact that it applies for any system of that kind. 

Example (cont.): If Sis the behaviour of the motor, then S may be (a subset 
of) the set of dissipative systems. Indeed, the law of preservation ·of energy 
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states, that all energy that has somehow entered the motor should have either 
been stored in the motor or have left the system. In practice one meets the 
problem here of accounting for all losses that occur in the system. A first 
attempt at this might be 

j_t
00 

U1(t)Ii(t) + U2(t)I2(t) dt = 2;: tLilf(t) + L tciv/(t) + 
i J 

L L tMi1,i2Ii1(t)Ii2(t) + L jt Rkii(t)dt+ 
i1 i2#i1 k -oo 

tJw2 (t) + [
00 

Tm(t)w(t) dt + other eflects (3.2) 

Skip ping the sign conventions that are implicitly assumed here, the meaning of 
the new symbols is as follows. U1Ii is the power that flows to the motor through 
the first stator winding, U2I2 is the same for the other stator winding. Li for i 
in some countable set is the set of all inductances that can be distinguished in 
the motor. Ii is the electrical current fl.owing through inductance Li. Mh,iz is 
the cross-conductance between two "ports" i 1 and i 2 . The currents fl.owing into 
these ports are Ii1 and !;2 respectively. Note that every pair of ports occurs 
twice in the summation, once as the pair (i1, i2) and once as the pair (i2, i1). 

Cj for j in another countable set is the set of all lumped capacitances in 
the motor. Vj is the voltage over capacitance Cj. Rk is a set of resistances, 
through which currents h fl.ow. They account for the electrical losses in the 
motor. 

T mW is the mechanical power exercised by the motor on its axis: T m is 
the torque that the motor exercises on an external load and w is the angular 
velocity of the axis. !Jw2 (t) is the kinetic energy in the turning parts of the 
motor. J is the inertia of those parts of the motor that participate in the 
rotating motion. 

With "other eflects" all other losses and buffers of energy are meant. This 
includes the mechanical losses due to friction, electro-magnetic radiation, edy 
current losses, etc. If the motor jumps from its position during operation, it 
will have a kinetic energy and, if it happens to jump up, also a potential energy, 
etc. 

Most eflects are hard to quantify exactly, but most of them can be bounded. 
A rough but simple conclusion to be drawn from (3.2) is 

H 1I' = IR and 1I' is indeed a time set in the literal meaning of the word, 
then this inequality can already be used to exclude certain behaviours from 
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S. For behaviours consisting of one-sided sequences, discrete time sequences 
or frequency domain sequences, additional work is involved before the law of 
preservation of energy can be used to determine membership of S for a certain 
S' CWT. This.is not further pursued here, because the purpose ofthis exam
ple was only to give an idea of the kind of knowledge that can be represented 
by the set S. 0 

~ ( cont.) [> The set S is certainly not a well-defined set! How broad or how 
narrow the set S is depends highly on the knowledge one has of the kind of 
device of which S is a particular realisation. If there is no knowledge that 
can be used to decide that a certain behaviour can not possibly represent 
a device similar to the true system S, then we have the extreme case that 

S=2w'.1I', 

S is the set of all subsets of WT. 

[> Some measurements have been taken of the system S on a time set 
7I'' C 7I'. These measurements are represented by a set W c WT' . Thus 

Wc SIT' 

Example (cont.): Assume that the asynchronous motor is considered in dis
crete time, so that 7I' = Z. Assume further that measurements of all ele
ments of w were taken from t' = Tsl to t' = Te1 2: T8 1 and from t' =. Ts2 to 
t' = Te2 2: T8 2. Assuming for simplicity that Te1 < Ts2, it holds 

and W consists of a single trajectory w = (U1,U2,l1,l2 ,Tm,w), specifying 
a measured value for U1(t'), U2 (t'), I1 (t'), h(t'), Tm(t') and w(t') for every 
t' E 7I'1

• 
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From this example it may be clear that W contains in general only one 
trajectory, even if multiple data sets were obtained from the system S. If W 
contains multiple elements, that implies that multiple measurements of the 
system have been taken simultaneously. O 

Modelling and uncertainty bounding aspects 

[ C stab [ 1> It is assumed that a stabilising controller for the system is both 
known and connected to the system during the experiments in which W 
was obtained. For stable systems this may reduce to a situation in which 
no controller is present. 

The interconnection of the system S and a controller Cstab will not be 
formalised. The scheme of figure 3.1 specifies it informally. The input u of 
the process S is partitioned into a "free" part u1 and a part u2 connected 
to the controller output. The output is partitioned similarly into a part 
used by the controller and apart not used by the controller. An extra set of 
free signals r is introduced. In genera! these signals represent the reference 
trajectories one wants the system S to follow in soine sense. Bath u1 and r 
may be empty. The signal 63 represents the disturbance and measurement 
noise effects that are part of S. The notation will become clear later in 
this chapter. Although these signals are considered in this formalism to 
be part of S, they may be external signals to the system from a physical 
point of view. In case both u1 and rare empty, the closed loop system has 
turned into an autonomous system. 

The controller C stab is said to stabilise S if 

(llu2ll < oo A llYll < oo) (3.3) 

This is generally referred to as bounded-input, bounded-output (BIBO) 
stability. S is said to be stabilisable if a controller Cstab exists that sta-

Figure 3.1: Interconnection of S and Cstab 
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(3.1) 

bilises S. For the sake of generality it is not specified what norm is actually 
meant with 11·11· 
lt can now be explained why the noise and disturbances 6 3 had to be drawn 
explicitly in figure 3.1. BIBO stability requires that the output remains 
bounded if the inputs remain bounded. However, it may very well be 
the case that the outputs become unbounded if the external inputs to the 
system that were absorbed in S, i.e. the noise and disturbance influences 
represented by 6 3 , become unbounded. If this happens, we do not want 
this to imply that the system is unstable. 

Note that it is not assumed that S is a normed set. S is intended to 
represent the "true" physical system and it is therefore not considered 
desirable to restrict the signal trajectories in S to those trajectories that 
have a finite value for llwl!, llull and/or llYll· 

In the remainder of this chapter it will be assumed that the reference signal r 
is bounded: 

llrll < oo. (3.4) 

@] (cont.) r> Another property of the systems in S has been introduced im
plicitly in the discussion of Cstab= all systems in S are .stabilisable. This 
corresponds to the assumption that the true process is stabilisable. This 
is reasonable to require. If the true system is not stabilisable, not much 
benefit can be derived from applying identification, uncertainty bounding 
and robust control to it anyway. 

@] [> The set Q consists of a class of systems that is present in every algorithm 
for model uncertainty bounding hut for which there is nevertheless not a 
general name. Usually, it is the class of systems to which the true system 
is assumed to belong, such as the class of linear, time-invariant systems. In 
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any case, it is a class of systems in which the outputs y can be completely 
explained from the inputs u, possibly up to transient effects if 'JI' is a one
sided time set. Because systems are represented in this formalism by their 
behaviour, Q is a set of behaviours. 

Contrary to the system S, the signals of the systems in Q do not contain 
measurement noise or external disturbances. ( A refinement could be made 
such that Q contaîns also some information considering the noise acting 
on the system, such as a filtering indicating the colouring. that ·is present 
in the noise. For convenience this is not carried out here.) If Q contains 
linear systems, non-linear side-effects are neither part of the systems in Q. 

In section 2.3.2 it was pointed out that one needs to assume more about 
the true process than merely that it is linear, time-invariant if one wants 
to stand a chance of, say, extrapolatîng data from a finîte, discrete time 
interval to an 7-l=-bound on the additive model error. It is exactly this 
kind of knowledge that is represented by the set Q. 

As the outputs can be explaîned from the inputs, there exists a mapping 
from the inputs, and possibly from initial condîtions, to the outputs. This 
mappîng is assumed to be a causal one, i.e. fora certaîn t 1 E 'JI', y(t1) does 
not depend on u(t2) for any t2 > ti. 
More requirements on Q will follow. 

Example (cant.): For the asynchronous machine it may be known that the 
response of the current through the windings to a pulse on the voltage over 
the windings falls off at a certain exponential rate. For Q one might tlierefore 
choose the set of linear, time-invariant processes having at least this decay rate 
in their impulse responses. 

Note that this is not meant to imply that the true system is a linear, time
invariant process; see the Eollowing discussion on Ç. 0 

[fJ t> The signal Ç accounts for everything in the true system S that can not 
be accounted for by a system Q E Q. Every w E S is decomposed into 
a component WQ, that can be accounted for by a certain Q E Q, and a 
component Ç as follows 

Vw = (u,y) E 8 w = WQ + Ç, WQ E Q E Q. (3.5) 

The signal Ç acts, possibly, on both inputs and outputs. Neither WQ nor Q 
are unique in (3.5), but some chokes for WQ and/or Q are more sensible for 
our purposes than others. Before considering this, figure 3.2 may already 
clarify to some extent the role of Ç. {u1 and Ç111 are genèrally considered 
disturbances and {u2 and Ç112 are normally regarded as measurement noise. 
In this formalism, both u1 and u3 may be considered the process input u. 
In case u1 is used as the process input, the signals that a human operator 
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(3.1) 

or a controller specifies for the plant is taken as "the" input. If U3 is 
considered the process input, the disturbances in Çu1 are elirninated frorn 
the signa! u, hut this goes at the expense of introducing measurement noise 
Çu2. If the formalism is applied in an open loop situation, one may choose 
whether to use u1 or u3 . However, in a closed loop situation one can only 
use ui, because it was assumed in the discussions on stability that the 
process input u was the signal that was generated by the controller, i.e. 
u1. At the output we do not have this choice. The only process output 
that is in general available is the measured. output y3 . 

Attention is now turned to two problems: which WQ E Q is to be used in 
(3.5) and which Q E Q? There is a simple solution to the first problem: 

Vw ES wo = arg~jg llw -wll (3.6) 

In words: for every trajectory in the true system S, find that trajectory in 
Q, called wo, that fits best to w. The misfit between a w ES and a w E Q 
is quantified here by llw - wil for some norm. For simplicity the problems 
that the minimum may not exist or may not be unique are ignored here. 

Çul Çyl 

Ut U2 Q Y2 y 

Ç"2 o-Ç112 

U3 Y3 ~ 

Figure 3.2: Possible interpretations for u and y 
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A first attempt at a solution to the other problem could be to take Q equal 
to 

Q = arg I!lin max mil! llw - tûll· 
QEQ wES wEQ 

(3.7) 

This takes a worst-case approach. It is not a feasible solution for two 
reasons: first of all, not for every w E S the expression llwll may be 
well defined. This problem also applies to (3.6), but it was no attention 
given there as the solution that will be developed below for (3.7) will be 
applicable. Even if llwll were well-defined for every w E S, the expression 
llw-wll can be expected to grow out of bounds if llwll grows out of bounds. 
The choice of Q is completely dominated by the fit that can be realised 
for large w. This may not be so much of a problem for linear S, but for 
non-linear S it certainly is. 

In order to resolve this problem, the assumptions that are made implicitly 
if a "real" system is approximated by a linear, time-invariant model need 
to be made more explicit. If a system is to be approximated by a linear, 
time-invariant model, this means that a linear, time-invariant description 
of the system has to be found, that gives a good account of the process 
behaviour locally. 

Locally means first of all locally in time: there once was a time that the 
system to be approximated <lid not exist yet and there will be another time 
in which it does not exist any more or at least does not behave any more in 
the way we expect it to now. Therefore, the norm used in (3.6) and (3.7) 
should be such that there is little or no weighing of mismatches between 
w and w that occur far in the past and far in the future. What "far in the 
future" means depends on the period of time that the model is intended 
to be valid. 

Weighing mismatches between w(t') and w(t') not at all in llw-wll (equa
tion (3.6)) for certain values of t' may turn the norm llw - wll into a 
semi-norm. The notation 11-11 may then be somewhat misleading, hut this 
is not considered a big problem. 

Locally also means locally in amplitude range. The model should be a good 
representation of the system in the amplitude range where the system 
is expected to be used. As this formalism is about model uncertainty 
bounding for robust control design, the relevant amplitude ranges are those 
that will occur in the eventual closed loop situation. 

Let the set R c WT be such that it contains only trajectories w for which 
the amplitudes of inputs and outputs are within the range discussed above. 
Then instead of (3.7) a second attempt at picking a sensibly optimal Q E Q 
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could be 

Q = arg :rp.in max mil! llw - wil (3.8) 
QEQ wESnR wEQ 

Further refinements can be made to the selection of Q, but the general idea 
is probably sufficiently clear by now. The optimal Q will be referred to as 
the manifestation of S in Q. In chapters 4 and 5 Q will be a subset of the set 
of linear, time-invariant processes. (See appendix C for a further discussion 
of the links between this formalism and the algorithm of chapters 4 and 5.) 
Then Q will be referred to as a linear, time-invariant manifestation of the 
process, or just the linear manifestation, which is shorter but less accurate. 

Given the fact that the behaviours in Q consist of trajectories in which the 
outputs y can be explained from the input u by relationships of a certain 
form, Ç has to account for three effects: 

l. The relation that is present between u and y may not be exactly of 
the form specified by elements in Q. 

2. . The outputs y will not be completely explicable by the limited number 
of signals that happened to be included in u. Other inputs to the 
system will have their influence on the outputs as well. This includes 
those inputs that are normally referred to as process disturbances. 

3. The measurements of y and possibly of u may not represent the true 
value of these signals. The actual measurements can be contaminated 
by measurement noise. 

The distinction between 2. (disturbances) and 3. (measurement noise) is not 
so relevant as far as identification is concerned, as in general no attempt is 
made during identification to distinguish between the two. However, for control 
design the difference is important. A controller is supposed to react to process 
disturbances but should be as insensitive to measurement noise as possible. 
Extra knowledge is then required to make a distinction between the two effects. 
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Example (cont.): Considering the inputs U1 and U2 of the asynchronous ma
chine and its outputs 11 and / 2 , it is known that for large currents Ii and 12 a 
saturation effect occurs in the magnetic material inside the machine. This has 
its influence on the relation between U1 and U2 on the one hand and Ii and 12 
on the other. If Q is taken to be a set of linear models, this effect can not be 
described by any Q E Q. This is an example of the effects mentioned under 1. 
that Ç has to account for. 

Suppose that the inputs U1 and U2 are specified in open loop by a feed
forward controller or signal generator implemented in some computing equip
ment. It is conceivable, although maybe not very likely in practice, that through 
electro-magnetic coupling extra stray signals are picked up by the cables con
necting the computing equipment to the motor. If the speciiied U1 and U2 are 
taken as the inputs to the process, the extra signals tha.t are added to the in
puts before they are really applied to the motor are to be considered exogenous 
inputs, or disturbances. This corresponds to an effect listed under 2. above. 

The same effect may occur to the measurements of Ii and 12 • Suppose 
these currents are converted to a volta.ge that is then lead to the computing 
equipment. If stray signals are picked up by the cables connecting the com
puting equipment to the current-to-voltage converter, these signals should be 
considered measurement noise and are an example of effect 3. 

The currents flowing through the motor windings have a limited range: if 
their amplitude gets too large, the windings will burn. This leads naturally to 
a range R for the currents Ii and 12 in which the motor behaves more or less 
as it is intended to. Outside this range, the behaviour of the motor may be 
predictable, but definitely not conforming to a linear model that could have 
been derived for the motor. 0 

Note that for the effects 2. and 3. the signal Ç represents the effect of the 
exogenous inputs. This does not mean that Ç contains these inputs directly. Ç 
is additive to the inputs and outputs that are included in the description S. 
The exogenous inputs may very well enter the system physically at a location 
that does not coincide with the location of any of the signals in w E S. 

Up to this point no assumptions were made about the degree in which the 
outputs y can be explained by the inputs u fora w = (u,y) E S. We could 
have taken u to represent the prices of certain flowers at a market place and y 
the number of employees called Piet in a company. The assumption that the 
outputs y have to be explicable, at least to a certain extent, by the inputs u is 
formalised next: 

'rlu, (ilull::; du ==> llÇll::; dç) !> Any feasible model Q E_ Q that specifies 

a relationship between u and y has the property that the data can be 
decomposed as 

W =WQ +Ç, 
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with WQ E Q. However, the output y is only to a large extent explicable 
by u if it holds that 

(3.9) 

provided both inputs and outputs contribute in roughly equal amounts to 
llÇll and l!wll· If these norms are completely dominated by the contribution 
of the inputs, the above statement is not true. In this case we can fit 
to a w E S a w E Q E Q such that the inputs in w and w are equal 
hut the outputs are completely different. This will nevertheless lead to 
llÇll = llw wll « llwll· A similar situation may occur if llwll or llw wll 
is completely dominated by the outputs. Assuming that such domination 
by neither the inputs nor the outputs is the case, (3.9) has far-reaching 
implications. 

As already stated, it means that y can be explained to a large extent 
through u. (3.9) will therefore not apply if u and y are two signals that 
have nothing to do with each other. (3.9) implies moreover that the ex
planation of y by u takes the form of a relationship between y and u of 
the sort Q. Assuming once more that Q consists of linear, time-invariant 
behaviours, (3.9) quantifies what it means that the non-linear system S 
can be approximated by a linear, time-invariant process. 

As was mentioned in the discussion leading to (3.8), it is in practice not 
reasonable to assume that (3.9) holds for every w E S. What is actually 
meant is that Ç should remain small if the inputs and outputs stay within 
a certain range. This latter requirement is intended to be implied by 
llull Sdu. This will be explained further below. 

The requirement 
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links the theoretica! descriptions in Q with the physical reality in S. A few 
reality-checks seem therefore in order. 

That llull ~ du can be expected to imply llÇll ~ di;, « llwll is not trivia!. 
The argumentation for this consists of two steps. First it is considered whether 
there exists a range of input and output amplitudes, such that 

a) S can indeed be approximated sufficiently well by a system Q E Q so that 
in this range it holds llÇll « llwll. 

b) this range is large enough to contain the range of input- and output-ampli
tudes that can be expected in the system during the eventual closed-loop 
operation. 

Second it will be discussed whether one can expect llull ~ du to be a sufficient 
condition for both inputs and outputs to stay in this range. 

Starting with the first issue, is it possible to find a proper description Q E Q 
for the system in the input- and output-ranges of interest? Whether this can 
be achieved depends on the system S and on Q. Practical experience shows 
for a lot of processes that the approximation of a real plant by a linear, time
invariant description is good enough to get away with. However, practice can 
also provide examples in which this standard tool fails miserably. As far as 
the formalism is concerned, this is an open question. Note that the range of 
interest for the input and output amplitudes was formalised on page 45 by the 
set R. 

Remark 3.1 In the previous parts with "ranges of interest" for inputs and 
outputs was more or less implicitly meant that the inputs and outputs should 
satisfy an upper bound. In practice it is also sensible to maintain a lower bound 
on the magnitude of u: it is not uncommon that an actuator performs poorly 
for very small excitations or that the process simply does not respond to signals 
below a certain threshold. Dead zone, hysteresis and backlash are examples of 
such effects. These effect will not further be considered here. D 

Moving on to the second issue, is the condition llull ~ du sufficient to ensure 
that both inputs and outputs remain in a certain range and is the condition 
llull ~du a reasonable one in the first place? For open-loop stable systems Sit 
is easy to see that the answer to both questions is "yes." Making sure that the 
answer is also affirmative for unstable systems S is exactly what the stabilising 
controller Cstab was introduced for. It may be assumed that the disturbances 
and the measurement noise are bounded. This implies for the signal 63 in 
figure 3.1 on page 41 

(3.10) 

(See also equation (3.3) on page 41.) A bound on u implies, together with 
assumptions (3.4) on page 42 and (3.10) above, indeed a bound on y. This can 
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be seen as follows. From the fact that Cstab stabilises S follows by definition 

(llu1ll < oo /\ llrll < oo /\ 116311 < oo) => 
{llu1ll < oo /\ llu2ll <co/\ llYll <co) (3.11) 

Given the assumptions that r and 63 are bounded, we have 

(llu1 Il < co ~ llull < co) => llYll < co 

u1 is in practice a bounded signal for the same reason as r is bounded: it is 
a variable specified by the user of the plant. It can now be concluded that 
bounding u will bound y and that it is reasonable to assume that u can be 
bounded. This completes the discussion of the second issue. 

This is the point in the formalism at which inputs are treated essentially 
different from outputs. One could replace the implication llull ::; d" => llÇll :::; 
dç by the implication llwll ::; dw => llÇll :::; dç. However, keeping u bounded 
is something that can be achieved simply by specifying bounded values for 
them, at least in the open-loop case. One can not specify that the outputs 
remain bounded. One can only apply an input and see what happens. In the 
closed-loop case it becomes more a matter of taste whether to require that u is 
bounded or that w is bounded: not all of u can be considered free variables any 
more and one has to resort to arguments given above to show that all signals 
in 1t remain bounded in practical circumstances. In exactly the same manner 
it could have been argued that all signals in w remain bounded. 

If the selection of inputs and outputs has been such, that the relationship 
between inputs and outputs is too weak for proper control, this will emerge 
here in the algorithm, even before the control design. In this case, choosing du 
such that u remains in the range of interest, a considerable part of y will not 
be explicable by u, so Ç will be a large signal and 
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will not hold. 
Consider once more equation (3.8) from page 46: 

Q argl!rln max mil! llw - wil 
QEQwESllRwEQ 
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(3.8) 

One can argue that this optimisation is a very hypothetical one. The set S is 
not known and even if it were, it would be a diflicult job to solve (3.8). However, 
things are not as bad as they may seem. The optimal Q that is determined by. 
(3.8) is never used. It is only introduced to express that as much as possible of 
the process behaviour should be explained by a relation in Q. In other words, 
the signal Ç accounting for the fact that S <t. Q, for disturbances, measurement 
noise etc. should be made as small as possible. That this should be confined to 
a certain amplitude range for both inputs and outputs, expressed by the range 
R, is nothing new. During the input-design for an identification experiment 
the amplitudes of the inputs have to be chosen exactly such, that input- and 
output-amplitudes are in a practically relevant range. During the input design 
a value for du is therefore already implicitly determined. All that remains to 
be determined is a bound on the effects 1. to 3. on page 46. After a number of 
identification runs with the plant, one should be able to determine at least an 
upper bound for these effects. 

1 W 1 ( cont.) C> The trajectories in W should satisfy 

l '.P2, ... , '.P Np 11> Prior knowledge that is available of the system is represented 
by '.P2, ... , '.P N~p. If it is known for example that the DC-gain of a certain 
SISO transfer in Sis equal to 1, while all others are known to be 0, '.P2 will 
consist of all behaviours in Q that are consistent with this information. If 
it is further known that there is a resonance peak near a certain known 
frequency, '.P3 will contain all members of Q that can be considered to be 
consistent with this prior knowledge, etc. 

To decide whether an element of Q is consistent with a certain type of prior 
knowledge about the system S, the influence of Ç has to be accounted 
for because prior knowledge is usually stated in terms of the noise-free, 
disturbance-free system. 

Now the experimental data and all prior knowledge in the formalism have 
been introduced. This information will subsequently be proce.ssed to identified 
models and uncertainty bounds. 

~ t> Apart from '.P2, ... , '.PNp we introduce '.Po Ç Q containing all elements of 
Q consistent with W and a noise level p. The noise level p will be specified 
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[> w 
[> Cstab 

·l>Vu, (llull ::; du ===> llÇll ::; dç) 

[> '.P2, • • ·, '.PN'.J' 

} ~ PcQ 

I> Jid (3.1) 

-+ { ~~~ ; +~s~ } { 
d(.ö.) ::; da -+Co E eo -+ 

[> requirements 

C"+".6. } d(~ ) < d c -+ OK? C _ ác 

later. Q E Q is said to be consistent with W and p if and only if 

Vw E W, 3w E Q, llw -w!I::; p. 

Until it is specified what noise level is to be used, we take '.Y0 = P0 (p) 
where Po is a function of an as yet unknown argument p: 

Po:IR+-+2°, pt-+{QEOIVwEW3ûiEQ, llw-wll:;p}. 
(3.12) 

The fact that the system is stabilised by Cstab is represented by the subset 
'.J\ of Q containing all systems in Q that are indeed stabilised by C stab. 
The role of Ç in this will also be considered later. 

All prior knowledge and experimental data about the system can now be 
summarised by stating that Q, the manifestation of Sin S (see (3.8)), is a 
member of the subset 

N'.J' 

'.P := n '.}\ 
i=O 

of Q. 

This set will be called the process uncertainty set. All elements of '.Y are 
non-fälsiffable by the experimental data or the prior knowledge. 

The Venn-diagram of figure 3.3 shows the relation between Q, '.Po, ... , 'YN'.J' 

and P for N'J' = 3. 

Remark 3.2 The aim of model uncertainty bounding techniques is to find a 
description of P that is as tight as possible. lt has been argued in section 2.3.2 
that this description should generally be taken such that it contains all of '.P, 
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although descriptions containing at least one element of '.P are encountered in 
literature as well. Robust control design techniques should design a controller 
having desired properties for all elernents of '.P. This will be discussed further 
in section 3.3.3. D 

set I> Existing techniques for robust control design are based on a nominal 
model and a bound on the error or uncertainty in this nominal model. lt 
is the job of the identification step to select a nominal model from a set of 
candidate nominal models. This set of candidate models, normally called 
simply the model set, is denoted by Mset· 

For all M E Mset, there exists a causal relationship from inputs to outputs. 
A specific technique may or may not require that Mset C Q. In general 
MsetnQ =fa 0. 

Example (cont.): Suppose, that one wants to model the SISO transfer Erom 
U1 to Ii of the asynchronous motor by an output error model: 

y(k) = !~2 u(k) + €(k) 

a(() = 1 + aiC1 + · · · + anCn 

b(() = bo + b1C1 + · · · + bn('"""n 

n E IN. 

Figure 3.3: Venn diagram of Q, '.Po, ... , '.PN:? and '.P 

(3.13) 
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SE S ---+ [> w 

} ~ I> Cstab 
'.Pc Q 

t>'r/u, (llull ~ du ==* llÇll ~ dç) ---+ 
[> '.P2, · · ·, '.J'Np 

[>Jid (3.1) 

---+ 
{ 

Mid C Mset } 
M·d "+" L.l 
d(L.l) ~ dil .· ---+Co E eo ---+ { 

[> requirements 

c "+"L.l } d(~ ) < d c ---+ OK? C _ !:.c 

e.(k) is assumed to be a white noise sequence, although asymptotically unbiased 
results will be obtained in output error identification if it is coloured. One may 
additionally require that for some m E IN, m < n 

Vk = 0, ... , m, bk 0. 

The set Mset is now equal to the set of all linear, time-invariant processes where 
the relation between u and y can be written in the form (3.13). 

Mset 

(Note that the noise sequence E is left out of the description of Mset.J 
For the purpose of model uncertainty bounding one may further require 

that Q is the set of linear, time-invariant processes whose impulse response 
parameters fall off with a certain exponential rate. Because the model set 
Mset contains in this example even unstable models, it holds 

Mset i. Q. 

For the class of parameter set estimation techniques, it holds on the other 
hand 

Q := Mset· 

D 

Mid and Jid [> As already mentioned, identification should select an optimal 

model from the model set Mset· This optimal model will be denoted Mid 
and referred to as the nomina] model. 
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In fact the possibility is left open that the identification selects more than 
one optimal model. This hardly complicates the formalism and is slightly 
more general. Therefore Jvt:id uses a script "M" and it would be more 
accurate to call Jvt:id the set of nominal models. However, as the major
ity of identification procedures yields a single nominal model, our verbal 
descriptions will be such that Jvt:id contains only one model. 

Which model in the model set is to be considered the optimal model should 
depend on many factors. The degree in which Jvt:id is able to explain 
the data W is one of the most important ones. The capability of Jvt:id 
to explain the data should be balanced with the complexity of Jvt:id: for 
models of sufficiently high order for instance, any finite data set can be 
explained completely by a linear, time-invariant model. For models for 
robust control design, the selection of the optima! model should further be 
based on "control relevant" arguments. 

It is not the aim here to delve <leep into the problems related to formulating 
an optima! notion of optimality. For the purpose of this formalism, the 
identification criterion function Jid attributes a cost to each model M E 
Mset for given data W. This is achieved by requiring Jid to bè a function 

T . 
from Mset x 2 w to a set where JE is a totally ordered set: 

For Jid to be suitable as a misfit criterion, it is required that 

VMi, M2 E Mset, Wc W'.II', 

M1 C M2 ===} Jid(Mi, W) ~ Jid(M2, W) 

and 

\:/ME Mset, Wi, W2 c W'.II', 

W1 c W2 ===} Jia(M, W1) :::; Jid(M, W2). 

It is customary that JE = IR or IE = IR+, i.e. Jid often takes its values in 
IR or IR+. 

We now simply have 

Because Mset is not necessarily a subset of Q it may turn out that 
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SE S -+ I> w 
I> Cstab 

i>'v'u, (llull :S du ===> llÇll :S df.) 

I> :J>2, · · ·, :J'Np 

-+ 
{ 

Mid C Mset } 
M·d "+"Ll. 
d(Ll.) ~ da -+ Co E eo -+ { 

I> requirements 

} ~ ~cQ 
. (3.1) 

1 Ll., d(Ll.) and da 11> Not only should an estimate for the nominal model be 
given. For robust control design one also wants to have ah indication of 
the uncertainty or error in the nominal model. For this purpose the model 
uncertainty Ll. is introduced . . Ll. "interacts" in some way, nàt specified 
by this · formalism, with the nominal model to yield a perturbed model 
Mid " + " Ll.. All perturbed models are assumed to be causal models. 

Ll. is assumed to be taken from some set á. It is not possible to give 
a precise description of a without specifying what the operation " + " 
means, so the formalism leaves the exact meaning of a open. a should 
be such, that all its elements can be used to perturb the nominal model in 
the way described above. 

lt is customary to bound the model uncertainty by bounding Ll. in some 
measure. This measure is represented here by the map ping d : a -+ ID, 
where ID is some partially ordered set. Bounding Ll. in this measure is then 
formalised by 

d(Ll.) :S da. 

Example ( cont. ): The most widely used perturbation is probably that of addi
tive model uncertainty. For this kind of perturbations, Ll. is a transfer function 
with the same number of inputs and outputs as the nominal model Mid and 
the perturbed model is simply obtained by the addition of Mid and Ll.. Taking 
into account that Mid was actually a set of nominal models, this transfates to 

M being a linear model and assuming Ll. is also linear, we may define the addi
tion of two behaviours simply by associating, say, an impulse response sequence 
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to both M and 8, adding those sequences and translating the resulting impulse 
response sequence back to a behaviour. 

Many other forms of perturbations have been reported in literature: mul
tiplicative uncertainty at the inputs or outputs, additive coprime factor uncer
tainty, etc. 

Another way to bound model uncertainty is to bound the uncertainty in 
the model parameters. This will be developed Eurther for the output error 
model structure given by (3.13). Let JV(id consist of one model, denoted here 
in transfer Eunction form, 

We may then proceed to define 

A = IR2n+1, 

Mid "+ "a = Mid "+ "(8bo, . .. ,dbn,da1, . .. ,dan)T = 

and 

so that 

= { (b& + dbo) +(bi + dbi)z- 1 + · · · + (b~ + dbn)z-n} 
1 +(ai+ da1)z-1 + · · · + (a~ + dan)z-n 

ID= JR4n+2. 

The partial ordering on ID as used by d(d) :5 d.ci. is then defined as 

Vk = 1, ... ,4n + 2, Xk < Yk (3.14) 

and 

(x1, ... X4.n+2) = (y1, ... ,y4n+2) :{=:::> 

Vk = 1, ... , 4n + 2, Xk Yk· (3.15) 

Naw let 

The set 
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SE S -+ I> w 

} ~ I> Cstab 
'.Pc Q 1>Vu, (!lul! :Sdu ===> llell $ d{) -+ 

I> '.P2, · · ·, '.PNp 

I> Jid (3.1) 

{ 

Mjd C Mset } 
M·d"+"Ll. 
d(Ll.) $ dA -+ Co E eo -+ { 

I> requirements 

c "+"Ll. } d(~ ) < d c -+ OK? C _ Ac 

( see below) contains those processes 

for which · it holds 

Vk=O, .. "n bkE[b~+Qk,b~+bk] A 

Vk 1"",n ak E [a~ +.!!k,a~ +ak]· 
(3.16) 

(3.16) represents an uncertainty bound that could have been the result of a 
parameter set estimation technique. 

(3.14) and (3.15) specify a partial ordering and not a total ordering. For 
example, neither of the three following relations is considered true: 

(0, l)T < (1, O? 
(0, l)T = (l,O)T 

(0, lf > (1, O)T 

The set of relevant processes is defined as 

{M "+"Ll.! ME Midi Ll. E A, d(Ll.) $ dA}· 

D 

The dependence on dA has been made explicit in this notation. These processes 
are called relevant because they contain those processes that are relevant to the 
step of robust control design. As far as this design is concerned, the true system 
can be any element of Mrel· Often one takes for dil the smallest value such 
that 

(3.17) 
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although (Zhou and Kimura, 1993; Zhou and Kimura, 1994) take the approach 
that dt:. should be the minimal value such that 

(3.18) 

Figure 3.4 shows what figure 3.3 on page 53 could look like for two different ap
proaches to determine '.MreJ(dt:.). '.Mrel,a corresponds to equation (3.17), '.Mrel,b 
to equation (3.18). 

Q 

Figure 3.4: Different approaches for '.Mrel 

The role that Pand Ç and consequently also '.MreJ(dt:.) and Ç should play in 
robust control design will be considered in the next section. 

Summruy of modelling aspects 

In several steps a representation for the true system S has been derived, consist
ing of a nomina! model '.Mid• a process uncertainty ~ and a signal Ç containing 
"all that remains." This is schematically shown in figure 3.5. The outer-most 
block represents the true system S. Disturbances and measurement noise are 
considered here to be part of S. The signal Ç represents those parts of S that 
do not fit in Q. The block marked Q represents the parts of S that do fit in 
Q. For a certain ~ E ä such that d(~) ::; dt:. the interconnection of '.Mid and 
~ should be identical to the block marked with a Q. Because neither '.Mid nor 
'.Mid " + " ~ need to be an element of Q, the blocks '.Mid and ~ stick out of the 
block Q. 
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SE S -t I> w 
I> Cstab 

1>\fu, (llull S du ===? !IÇll :S dç) } ~ TcQ 

1>P2, ... ,PNp 

{ 

Mid C Mset } 
M·d "+" b. d(ö} S dA -t Co E eo -t { 

I> reqmrements 

C"+"b. } d(~ . ) < d c -t OK? 
C _ Ac 

(3.1) 

Note that the true system is described by the nominal model(s) Mid• the 
uncertainty 6. and its bound dt::. and the bound dç on Ç. This will be further 
discussed in section 3.3.2. 

Control design, implementation and validation 

Not all of the symbols in (3.1) have been introduced yet. The symbols rep
resenting the control design still need to be discussed. These parts of the 
formalism are much less detailed than the ones discussed so far, because the 
formalism is mainly concerned with identification and uncertainty bounding. 
Because these are performed with the explicit goal of applying the results for 
robust control design, it is feit that the control design and implementation 
should have their place in (3.1) too. It is beyond the scope of this thesis to 
give a detailed account of these steps. 

y 

Figure 3.5: Processes and signals in the formalism 
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t> These are the requirements the controller has to meet. They 
'---~--' 

can very diverse: robustness, disturbance rejection, tracking behaviour, 
cost of the implemented control and computing time needed to calculate a 
control action are all factors that determine the quality of a control design. 
Many other factors may play a role as well. 

1 e0 1 t> This is the set of candidate controllers from which the control design 
procedure has to pick the optimal one. Often controllers are taken from 
the set of linear, time-invariant systems. In practice they may have to meet 
an a priori bound on their McMillan degree due to requirements following 
from the way in which they will be implemented. e0 contains all controllers 
satisfying these requirements in as far as the control design takes them into 
account. 

t> The controller that is eventually chosen from e0 is denoted Co. This 
the controller that, hopefully, is designed such that it meets all require

ments, or finds the best possible compromise between these. 

16.o, dt:..c 1 C> Due to variations in components, finite word length in the calcu
lation of results, the analog-to-digital or digital-to-analog conversion and 
possibly other effects, the controller that is actually implemented is not 
identical to Co, although we may hopefully assume that it is a good ap
proximation of it. Because there is also some uncertainty involved in the 
actual behaviour of the controller, the actual implementation is one out of 
a set of possible implementations. 

The difference between the designed controller and the implemented con
troller is described, analogously to the difference between the nominal 
model and the true system, by an uncertainty 6.a. This uncertainty is 
bounded by 

The controller that is actually implemented is denoted Co " + " 6.o, where 
" + " denotes an interconnection similar to the interconnection of the nom
inal model JV(id and the process uncertainty 6.. It is reasonable to assume, 
that 

Co "+" 6.c :::::: Co, 

although it may be wise to keep in mind, that 

Co " + " 6.o "/:- Co. 

1 OK? 1 C> The ultimate criterion to judge whether control design, identifica
tion, uncertainty bounding, etc. have met their goals is to evaluate the per
formance of the controller on the real process. If the performance meets the 
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!> w 
I> Cstab 

1>Vu, (!lul! ::; du ==> llell S df.) } ~ PcQ 

I> '.P2, · · ·, '.PNp 

c "+".à.. } d(~ ) < d c -+ OK? 
C - Ll.c 

(3.1) 

requirements, all previous steps have apparently given satisfactory results. 
If not, lots of options are open: a better implementation C of the controller 
may solve the problem, or a better design for the controller 0 0 . Maybe 
the requirements are not realistic and need to be reviewed. The model 
set :Mset or the uncertainty bound d.c,. may be too tight, the uncertainty 
description denoted by " + " may not be appropriate for the situation at 
hand, the identification data W may not be rich enough. Some of the 
prior knowledge '.P2, ... , '.PNp may be incorrect. Finally, one may decide to 
redesign the system S that needs to be controlled or choose another set of 
inputs and outputs. In short, any aspect of the formalism may need to be 
revised if it turns out in the end that the controlled behaviour of the plant 
does not meet the requirements. 

The reader is assumed to be familiar by now with the symbols in the algo
rithm. The repetition of the formalism on every left-hand side page is therefore 
terminated from this point onwards. 

3.3 Discussion 

3.3.1 Iterations 

The previous section may have given the impression that the steps in the frame
work are all one-shot algorithms, apart from a final validation at the end. lt 
should be stressed that this is not the case. In practice, validation does not 
only take place at the very end, but after about every step. The nomina! mod
els are normally validated immediately after the identification and it may be 
decided then already that the nomina! models require refinement. Also the 
model uncertainty description and the uncertainty bounds should be subjected 
to critica! evaluation before passing them on to the control design. It is also 
not likely that the first attempt at a control design is immediately implemented 
at the final plant. 
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The actual steps may further not be performed in the order indicated by 
(3.1). The values for du or dç may very well be determined after the identifi
cation of nominal models. The nominal model may also give an indication of 
how fast, say, the impulse response of the true system falls off. This may be 
reflected in Q and/or '.P. 

3.3.2 Relaäon between Ç and ~ 

It has already been mentioned that the uncertainty in the system's behaviour 
is bounded both by d(~) :S dfl and llÇll :S dç. In this section it is argued why 
this is the case and what the relation between Ç and ~ should look like. 

Write 

where Çz3 accounts for disturbances and measurement noise and 6 for the fact 
that even in the noise-free, disturbance-free case it would hold S f/. Q. This 
is in line with the partitioning of Ç into three effects on page 46. The effect 
mentioned under 1. is represented by 6 and the other two by Çz3. No distinction 
is made between effect 2. (disturbances) and 3. (measurement noise), because 
they are equivalent as far as identification and model uncertainty bounding is 
concerned. 

Effect of noise and disturbances 

Consider first the exclusive effect of 6 3 , so assume fa = 0, i.e. we know that 
under noiseless, disturbance-free circumstances it would hold S E Q. Because 
it was assumed that 

\/w E W, llull :Sdu, 

the implied inequality 

applies for all w E W. 
It was stated that '.Po contains all elements of Q that are consistent with 

the data W, given the uncertainty in this data. Which elements of Q are to be 
considered consistent with W depends on a noise level p: 

Po(P) = {Q E Q l 'Vw E W 3w E Q, llw-wll :S p}. 

An obvious candidate for the noiselevel pis dç, the bound on Ç. Po(dç) contains 
all elements of Q that can not be falsified by the data and the bound dç on the 
uncertainty in the data. If we dispose of exact data, i.e. dç = 0, there may still 
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be several elements in Q that could have generated this data. However, P0 (dç) 
will grow if dç increases and if '.Po = P0 (dç) this will generally imply that '.P 
grows. If the· latter implication would not hold, the process uncertainty set '.P 
would not depen.d on the data and we might as well have omitted collecting the 
data in the first place. However, this may happen ifthe apriori information is 
very restricting. 

Another candidate for p is 

dmin :=min { d E IR+ U {O} 1 '.Po(d) ::/. 0} (3.19) 

It is assumed for simplicity that the minimum in (3.19) exists. The idea is to 
take dmin as small as possible given the constraint that Po(dmin) should be 
non-empty and to take the noise level involved in the decision whether a Q E Q 
is consistent with the data W equal to this dmin· For this value of p as little 
of the data uncertainty as possible is expressed in Po(p). Contrary to dç, dmin 
is not known a priori. 

To decide whether to use '.Po = Po(dç) or '.Po = Po(dmin) as the proper 
interpretation for '.P0 , some further consideration is required. As it was assumed 
that 6 0, it is known that the true (noise- and disturbance-free) relation 
between u and y can be expressed by a Q E Q. Consequently the true system 
can be represented in the form 

S' E Mid " + " .D., 

where S' is the noise-free, disturbance-free part of S. 

(3.20) 

Remark 3.3 Actually (3.20) is not certain yet hut (3.20) needs to be made 
sure: the set á from which .D. 's are taken and the perturbed systero Mid" + ".D. 
should be taken such that 

Mid " + " á := LJ Mid " + " .D. .J Q. 
aEÄ 

Otherwise we may end up in a situation that part of the system behaviour is 
represented by '.P, but not by Mid" +" .D. fora .D. E á such that d(.D.) ::::; da, so 
that the robust control design does not take it into account. Part of the model 
uncertainty was lost in the process of bounding it. 

One may argue that this is allowed, as long as the aspects that are dropped 
in this way are not relevant for the control design. Although there is probably 
much truth in this, it is in principle better to let the control design decide this. 
If these aspects are really not relevant, they will - hopefully - not influence 
the control design. On the other hand, it may not be possible to represent the 
aspects that are dropped accurately by the interconnection Mid " + " .D. and a 
bound da or it may take a large effort to do so. 

Therefore, the point of view expressed above can not be considered to be 
"carved in stone." 0 
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It is known that P0 (df,) contains the manifestation of Sin Q. Consequently, 
if Po = Po(d.;) then P will contain the manifestation of Sin Q. This manifes
tation has the property that for all signals in the relevant amplitude ranges it 
holds 

Therefore the control design has to count on disturbance signals Ç of a size llÇll 
that is less than dt,. 

Hit is decided on the other hand to use Po= Po(dmin) as the interpretation 
for Po, then the value of dt::.. will possibly be smaller, which has in itself a 
beneficia! effect on the control design. However, assume that dmin = 0, so 
there exist systems in Q that could have generated the noisy data in W. The 
fact that dmin can be taken equal to zero does not mean that the data in 
W is actually noiseless. It means that the systems in P0 (dmin) consider, un
rightfully, the noise realisations present in W to belong to the input-output 
behaviour of S. Suppose now that the actual noise realisation present in W 
was Ç', with lle'll = dç. Suppose further that the part of Ç1 corresponding to 
the inputs u is equal to zero and that the systems in Q are time-invariant. If, at 
a later time, the same inputs as those present in W are applied to the models 
in P0 (dmin), the same noise realisation Ç1 will be reproduced, only shifted in 
time. If the same inputs would be applied later to the true system S, a noise 
realisation equal to a shifted version of -Ç1 could actually occur. Apparently 
there is a difference 2Ç1 between the signals observed for the true system and 
those generated by the models in Po(dmin)· The control design therefore has 
to count on a noise level at least as large as 2dç ! 

The above line of reasoning is depicted in figure 3.6. In this figure, iiJ repre
sents the input and output trajectories that the system would have generated 
during the experiments if there were no noise and disturbances. Due to noise 
and disturbances represented by the vector Ç1

, the experimental data set does 
not consist of the trajectories w but of the trajectories w1. If at a later time 
the same experiment would be repeated, the noise and disturbance free pro
cess behaviour would again be w in the example given above. If the noise and 
disturbances are now equal to , the experimental data will now consist of 
w2 instead of w. However, all behaviours in Po(dmin) will reproduce the be
haviour w1 under these conditions: apparently there is a difference 2Ç1 between 
the observed process behaviour and the behaviour of the models in Po(dmin). 

If this situation is analysed a little further, we see that the noise that the 
control design encounters can be split into two components ~o: and ({3. (o: repre
sents the difference between the signals generated by the systems in Po(dmin) 
and those generated by the real manifestation of S in Q. fo represents the 
diff erence between the signals generated by the manifestation of S and those 
generated by S itself. lt can be relied on that 11(.ell will not exceed dç if the 
inputs satisfy llull ::::; du, but the same does not apply for ll(o:ll· For input 
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Fîgure 3.6: Increase of noise level for Po(dmin) 

signals completely different than those in W, the value of Il Ç0 ll may very well 
be larger than d€. Consequently, the bound on Ç of 2dç derived above can be 
guaranteed only for those input trajectories that are present in W. The control 
design has to expect noise levels even larger than 2dç. 
· The problem of determining the maximum noise level that the control design 
can expect will not be considered further here, because it will be argued in 
section 3.3.4 that it is to be preferred to bound the model uncertainty by dt:. 
instead of by d€ . 

Summarising the above . line of reasoning, the influence of 6 3 can be ac
counted for by a bound on A and if we do this, the bound on the disturbances 
need not be increased for the control design. 

Effect of undermodelling 

In the previous paragraphs it was assumed that Ç accounted only for noise 
effects and disturbances, so 6 = 0. Now consider the other extreme, namely 

6 =fa 0 /\ 63 = o. 
In this case we are purely looking for what was called the manifestation of S 
in Q, no noise or disturbances are present in the system. It should be stressed 
that there is no A E .0. such that 

S = Mid "+" A. 

One may therefore decide to make dt:. as small as possible. This can be clone by 
taking pin (3.12) equal to dmin defined in (3.19) because the smallest possible 
value of p will results in the smallest bound on A. 

This is probably not a good idea. All that can be concluded from W and 
the bound dç is that the manifestation of Sin Q must be a member of P0 (dç): 

Po(dç) = {Q E Q 1 Vw E W, 3w E Q, llw wil~ dç}. 
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If one uses an interpretation for '.Po such that it does not necessarily contain 
the manifestation of Sin 0, and '.P0 = Po(dmin) is such an interpretation, then 
one can not be sure any more that there is an element Q' in '.P0 , such that 

Vw = (u,y) ES llull:::; du => (3w E Q', llw -wll ~ dd, 

the noise level that the control design must count on, on top of the uncertainty 
bounded by dt.., exceeds dç. In this case the signa} Ç can again be split in to a 
component Ça and ÇfJ where Ça accounts again for the mismatch between the 
systems in '.Po on the one hand and the manifestation of S in Q on the other 
and ÇfJ accounts for the mismatch between S and its manifestation in Q. llÇfJll 
will not exceed dç, but llÇall may be larger. Again a smaller value of dt.. has 
been achieved at the expense of a larger value of dç. It was mentioned above 
that this is undesirable, so in the case 6 3 = 0 one should use p dç too. 

Conclusion 

The effects of fa and Ç23 now turn out to lead to the same conclusion, namely 
that '.Po should be taken equal to Po(dç). In other words, the noise level p that 
should be used in (3.12) to decide which elements of Q are consistent with the 
data W should be taken equal to dç. Yet the situation is different for these two 

As far as 6 3 is concerned, there exists a relation between the "true" 
values of u and y that can be expressed by a Q in Q. The problem here is that 
due to the uncertainty in the data this Q simply can not be observed exactly. 
By using '.P 0 = Po ( dç) we can be sure that '.P contains the behaviour that 
represents this true relation bet ween u and y. It is not known which behaviour 
this is, but if we knew, then we could use it for example as a simulation model 
for the system S. Çz3 results in strict sense uncertainty, see section 2.2.2 on 
page 22. For 6 we have the situation that there is no Q in Q that can express 
the true relation between inputs and outputs, 6 is part of this true relation. 6 
represents undermodelling as discussed in section 2.2.1. This undermodelling 
is not bounded by dt... The eventual value of dt.. only makes sure that the 
value of Ç due to undermodelling and other effects can be bounded by dç. As 
a consequence of this, 6 may have its influence on the stability of the closed 
loop. This is discussed in the next section. 

The results of this section can be summarised as follows. If the process 
uncertainty set '.P uses Po = P0 (dç) and if dt.. is chosen such, that 'MreJ(dt..) ~ 
'.P then the same value for d~ can be used in identification and model error 
bounding on the one hand and robust control design on the other hand. If this 
is not the case, then the effects of undermodelling, disturbances and noise .as 
expressed by Ç may exceed the bound dç by a factor two and more. 

dt.. alone does not suffice to characterise the uncertainty in the nominal 
model 'Mid· The value of dç also accounts for part of the uncertainty. 



3.3.3 Closed loop iniluence of Ç 

As the signal Ç accounts, among other things, for a relation between u and y 
that can not be expressed by Q, Ç accounts also for influences that are "in the 
closed loop," and may therefore have its influence on the stability of the closed 
loop. Nevertheless it may seem at first glance that robust control design takes, 
as far as stability robustness is concerned, only the influence of Li into account. 

Ça çc 

.. ,Y 
U1 8-Ç ~ ~ 

.: 

U2 

çd çb Cstab r 

Figure 3. 7: Interconnection of S and Cstab• complete Ç 

Consider again figure 3.1, which has been redrawn in figure 3. 7 in a modified 
form. In this figure, all of Ç has been "pulled out of" S, leaving ·the block 
denoted "S - Ç." Note that, contrary to figure 3.1, some of the input/output 
behaviour of Sis now represented outside the block S - Ç: the part of Ç that 
accounts for the fact that S </. Q represents input/output behaviour of S, hut 
it is extracted from the hlock "S - f" It now holds 

and Cstab stabilises S if and only if 

(llu11l < oo /\ llrll < oo /\ ll~îl < oo) ==> (llu2ll < oo /\ llYll < oo). (3.21) 

If the controller now meets for every M E Mreb and thus for every A1 E '.P, the 
stronger requirement 

(llu1 Il $ dui /\ llrll $ dr /\ llÇll $ dç) ==> (llull $ du /\ llYll < oo) (3.22) 

then it also guarantees to stabilise the true plant S, provided we ensure that 

(3.23) 

The reasoning bebind this is simple: if the controller ensures that llull $ du 
for any Ç such that llÇll :$ dç then it will also do so far that particular Ç that 
represents the relation between u and y that could not be represented by a 
Q E Q. Ensuring that llull $du implies in turn that llÇll :$ dç. 
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It now turns out that it was correct to require for all elements in '.P to be 
stabilised by the controller Cstab' of which it was actually only known that 
it stabilises the true system and possibly not its manifestation in Q. However 
this is only shown above to be correct under the condition that Cstab satisfies 
(3.22) and that the data set W was collected under circumstances satisfying 
(3.23). 

3.3.4 d~ is more detailed than de 

In section 3.3.2 situations were encountered in which a smaller value of dt:.. 
could possibly be obtained at the expense of a larger value of d1;,. In fact, the 
signa! Ç can account for anything that Ll. can account for, provided it is allowed 
to grow sufficiently large. It is possible as an extreme case to have dt. = 0 
(or some other appropriate value for which it holds that Mrel = Mid) while Ç 
accounts for all the uncertainty and errors in the nomina! model. 

The reason why this is possible is closely related to the reason why it should 
be avoided: Ç can account for just about anything, whereas Ll. implies some 
structuring in the error, however rough this may be. If .6. is for example an 
additive error that is bounded by some induced operator norm, then it is known 
that the inftuence of .6. on the outputs y is small, in some sense, if u is small. 
Such structure is absent from a bound on Ç. 

As a result, a robust control design faces in principle amore difficult problem 
if all uncertainty has been expressed in Ç and not in .6.. It should therefore be 
preferred to use .6. where possible and Ç only if there is no other way, as was 
done in section 3.3.2. 

3.3.5 Multiple manifestations of Sin Q 

A refinement of the interpretation of the forma! framework can be given by 
allowing multiple manifestations of S in Q. During the discussion of the man
ifestation of S in Q it was already mentioned that this manifestation, say Q1 

should only be a good approximation of S locally, both in time and in ampli
tude. As far as. time was concerned, the normal life-span of the system S was 
taken to be the time-interval on which Q' should be a good approximation of 
s. 

An approach allowing a more detailed description of S would be to require 
Q1 to be only a good approximation of S for an even shorter period of time. 
This period of time should at least contain several times the largest relevant 
time-constant in S and this should also be contained by the time intervals on 
which the data sets in W are taken, or one can not expect to find an accurate 
approximation for Q' from W. What manifestation of S actually applies at a 
certain moment depends on a number of conditions, such as nominal values of 
the inputs to the process, external operating conditions, etc. A set of conditions 
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under which a certain manifestation of S applies is normally called an operating 
point. 

Based on physical reasoning one could then proceed to make sure that W 
contains a sufficient number of data sets to determine all relevant manifestations 
of S in Q, in other words W should cover all opérating points of S. The signal 
Ç accounts then also for the effects that occur during the transition from one 
operating point to another. An example of this approach is given in the next 
chapters. 

3.3.6 Norms in the formalism 

In many places in this chapter signal norms have been used to express the 
size of a signal. For example, the input/output range that is to be considered 
relevant as far as model validity is concerned was assumed to be induced by the 
requirement llull <du. The optimal WQ in (3.6) on page 44 was defined through 
minimisation of a norm, the disturbances Ç are assumed to be norm-bounded 
signals, etc. For the purposes of this formalism, norms are merely used as a 
measure for the size of a signal. It need not be the case that the measure that 
is appropriate at a certain pointis also the one that should be used at another 
point. 

For ease of exposition, little attention has been given to this issue in this 
chapter. In fact, up to technical details, the statements made in this chapter 
generalise straightforwardly to a situation in which different norms are used 
explicitly or in which even signal measures are used that are not norms in the 
strict mathematical sense. 

3.4 Summa.ry 

A formal framework for the process of identifying nominal models and bounding 
the uncertainty and/ or error in these models has been presented. By means 
of the concepts introduced in this framework it was analysed how to handle 
the practical situation that the combination of nominal models and bounded 
process uncertainties is known to provide insufficient freedom to represent the 
true plant exactly. It turned out that the effect of this inability to describe 
the true plant exactly can be handled in a way similar to the way in which 
disturbances and measurement noise can be handled. 

Most concepts in the formal framework have been left rather open for the 
sake of generality. 
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4.1 OveIView of contents 

In this chapter we will present an algorithm for bounding model uncertainty. 
A few considerations are underlying the design of this algorithm. These will be 
discussed in section 4.2. In section 4.3 the model parametrisation and uncer
tainty description used in the algorithm are presented. Section 4.4 describes 
the input to the algorithm. This will consist of experimental data and prior 
knowledge about the plant that the algorithm can handle or requires. After 
this basis, the algorithm is given in section 4.5, the main section of this chapter. 
The various steps are worked out in more detail in section 4.7 to 4.13. Some of 
these steps are taken from chapter 5 of Hakvoort (1994). This will be indicated 
where appropriate. In this chapter we follow the steps taken there closely. In 
the next chapter some of these steps are reconsidered or extended. This will 
hopefully help the reader who is already familiar with this work to focus better 
on the main issues instead of on technical details. 
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This chapter ends with a summary of the choices that were made and of the 
constraints under which they were made. This is intended as an aid for those 
who want to change some of the aspects of the proposed algorithm. Also, the 
original aspects .of the algorithm are summarised. 

This algorithm was published earlier in highly condensen form in (Ariaans 
et al., 1996). 

Example: Throughout this chapter, several steps in the algorithm will be 
illustrated by means of a simple SISO example. This example will be shown in 
the same way as this paragraph. 0 

4.2 Basic ideas 

The combination of model and uncertainty bound that is aimed for, should be 
suitable for current robust control design techniques. These techniques should 
include 1{00 control design and/or µ-synthesis, as these seem to have the widest 
practical acceptance. To our knowledge, current solution methods for the 1l00 -

control design problems use linear, time-invariant nomina] models. This does 
not mean that non-linear processes can not be handled at all. As long as the 
non-linearity can be represented as an 1l00-bounded model "uncertainty" these 
techniques can still be employed. Although the model uncertainty itself does 
not have to be linear, we will restrict attention to model uncertainties that 
are linear time-invariant operators. This means that only linear time-invariant 
processes will fall in the model uncertainty description. Fortunately, practical 
experience has shown, that for many processes operating in a fixed operating 
point, a linear time-invariant model is quite adequate for the purpose of con
trol design to describe the dynamic behaviour of that process. We therefore 
restrict attention to a combination of nominal model and process uncertainty 
description yielding a set of linear, time-invariant processes. 

For causal, stable, linear, time-invariant processes, the generalised orthonor
mal basis functions described in (Heuberger, 1991) and later successfully ap
plied in (De Vries, 1994) and (Hakvoort, 1994) seem to yield an attractive model 
parametrisation in the light of uncertainty bounding. Roughly speaking, gen
eralised orthonormal basis functions enable us to incorporate a rough model 
of the process dynamics into the model parametrisation. This rough model is 
called the basis generating system. The closer this model is to the true system, 
the fewer model parameters are needed to give an accurate description of the 
process. Moreover, bounds on the undermodelling can be given under weak 
conditions, which also become smaller if the basis generating system is a bet
ter approximation of the true process. In principle, these parametrisations are 
only suitable for stable processes, hut in (De Vries, 1994, chapter 6) a way to 
circumvent this problem due to (Schrama, 1992) is discussed. Based on these 
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considerations, we would like to use this model parametrisation, together with 
its attractive properties, in our algorithm as well. 

Having looked briefiy at how the process uncertainty is to be described, 
with still many open questions, we should now ask ourselves what the process 
uncertainty is meant to cover. 

In genera!, a whole set of process transfers is consistent with the data we 
gathered about the process in an identification experiment and the prior knowl
edge and assumptions we may have. This corresponds to the process uncer
tainty set '.P of chapter 3. The pair of nomina! model and process uncertainty 
bound is one way to cover all elements in '.P. We do not assume, that our nom
inal model or any other model in the model set are a member of '.P. This idea 
is a common starting point for current uncertainty bounding techniques. It is 
found for example in Helmicki et al. (1991), Goodwin et al. (1992), Van den 
Boom {1993), Mäkilä et al. (1994), De Vries (1994), Hakvoort (1994), Zhou 
and Kimura (1994) and many others. 

For application in robust control design, we want our algorithm to go one 
step further. Not only should our uncertainty description refiect the fact that 
the nomina! model is only an approximate description of a system that we 
can not pin-point exactly. It should also reflect, that if the process has moved 
from one operating point to another, a different linear time-invariant model 
may have become the most appropriate one to describe the true process. The 
process uncertainty set will also have changed in this situation: transfers that 
were consistent with the dynamica! behaviour of the plant in one operating 
point, may not be consistent with the dynamica! behaviour in another operating 
point and vice versa. Other, less intentional causes for a shift in the dynamic 
behaviour of the plant are conceivable too. Different characteristics of raw 
material, changing environmental conditions, aging catalysts etc. may change 
the process dynamics as well. 

The description of reality would be better if we went even one step further, 
and described not only the behaviour in various operating points, hut also the 
way in which transitions between different operating points are accomplished. 
This would lead us into the field of non-linear and/or time-varying models. For 
reasons mentioned above, we do not want to enter this complex field. This 
means that some dynamic behaviour of the plant, namely the non-linear and 
changing dynamics, will be missing from our process uncertainty set. However, 
we feel that recognising the effects that non-linearities have in operating points 
while omitting the effects between operating points is to be preferred over 
ignoring the effect of non-linearities both in and between operating points. 

The concept of varying operating points also applies to a situation in which 
the plant to be described is known to be one of a set of similar but not identical 
plants and in which it is unknown which of the plants will actually be dealt 
with. Ha product is produced in large series, small disturbances during the 
production process will result in, hopefully small, differences between the final 
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products. If a controller is part of the product, the same design will face 
slightly different plants. Each realisation of the product can be interpreted 
as a different operating point. In this case, the controller will not encounter 
transitions between these operating points. 

The list of situations that can be interpreted as a plant operating in differ
ent operating points can be extended further. One may think for example of 
standard controllers for slightly different production lines or of "reliable stabil
isation" in environments were plants ai:e affected by failures in actuators and 
sensors. In the latter example different operating points correspond to different 
sets of available actuators and sensors. Further extension is left to the reader. 

As the name implies, time-invariant processes have the same behaviour at 
any time instant. There seems to be a fundamental contradiction in using 
multiple linear time-invariant models and process uncertainty sets for a single 
plant. However, this is not a real contradiction. It is not the true process that 
we take time-invariant. It is only the approximate descriptions of it that we 
assume to be time-invariant. 

Successful applîcation of this idea puts stronger requirements on our experi
mental data and prior knowledge. Obviously, if we want our process uncertainty 
set to cover several operating points, all of these operating points have to be 
present in the data. This implies that we have to do experiments in each of 
these operating points. It also means that we have to adjust our behaviour 
in case of multiple data sets. "Traditionally," the overall process uncertainty 
set, resulting from the combination of data sets, could be taken equal to the 
intersection .of the local uncertainty sets for each data set: if the true process is 
known to be in both uncertainty sets then it is known to be in the intersection 
of both sets. In our situation this is still valid, provided the data sets belong 
to the same operating point. If the data sets belong to different operating 
points, we should take the union of the uncertainty sets. A discussion about 
how many operating points to use and tools to guide this decision is deferred 
to section 5.6.2. 

Taking the union of local uncertainty sets instead of the intersection is not 
a great help in our aim to reduce uncertainty bounds. Fortunately, the concept 
of different operating points also enables us to employ a technique that gives a 
tighter uncertainty description. Especially in the case of .\UMO processes, we 
can expect the changes in process transfer occurring between operating points 
to be highly structured. There is only a limited number of physical parame" 
ters that change if we move between operating points and these changes rnay 
even depend on each other. (With parameter is meant here a physical quan
tity causing the change in behaviour, not the parameters of the mathematical 
description that change as a result of this.) This suggests that there is some 
dependency between the change of the individual model parameters. If we 
manage to find this dependency and separate this effect from the other con
tributions to process uncertainty, we can split the uncertainty in a structured 
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part and an unstructured part. The structured part accounts for operating 
point changes, the unstructured part for all the effects that were not accounted 
for in the structured part. The structured part hopefully covers the dominat
ing aspects of the process uncertainty and is easy to use in µ-synthesis. The 
unstructured part is much less detailed, hut hopefully also much smaller. 

The algorithm tries to accomplish the separation in structured and unstruc
tured parts by estimating auxiliary nominal models for each operating point. 
U sing a technique called principal component analysis we try to find the cor
relation between the changes in model parameters and let these dictate the 
structured parts. We will discuss the implications this has for the allowable 
model parametrisations later. A brief introduction to principal component 
analysis is given in section 4.9. In section 5.7 we will discuss other ways to 
determine the error structure. 

Every new algorithm that tries to solve a problem in the field of model error 
bounding runs the risk that it actually does not solve the problem, hut only 
shifts it to the problem of obtaining the prior "knowledge." To avoid this, the 
algorithm should provide sensible guesses for every element of prior knowledge 
that it requires. If this is not possible without extra information, practical 
ways should be available to obtain that information. 

Finally the algorithm should indicate as far as possible what determined the 
final error bounds. This information is especially important if some "educated 
guesses" were made for the prior knowledge: elements of prior knowledge that 
really determine the error bounds should be investigated critically whether they 
were realistic and not over-optimistic indeed. On the other hand, preliminary 
cautious choices could be considered for refinement if they appear to be non
restrictive at all. 

4. 3 Model parametrisation and uncertainty de
scription 

4.3.1 Generalised orthonormal basis funcöons 

The standard basis for h2 is { ó ( t), ó ( t - 1), ó ( t - 2), ... } with the corresponding 
basis for 1-l2 given by {1, z-1 , z-2 , ... } If the time-domain basis is denoted 
{bk(t)}f:,0 , where in this case bk(t) = ó(t- k), then any element g(t) of h2 can 
be written 

CXl 

g(t) = 2: Okbk(t) ( 4.1) 
k=O 

where Ok are the parameters of g(t) expressed in the basis {bk(t)}. For this 
particular choice of basis {bk} it holds ok = g(k). 
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An obvious model parametrisation is obtained by truncating the infinite 
summation in (4.1) toa finite one. For this particular set of b1o(t), this corre
sponds to finite impulse response (FIR) models. An important advantage of 
this parametrisation is, that it is linear in the parameters 01o. The most impor
tant disadvantage is, that to approximate a system with large time constants 
( compared to the sampling time), a large number of parameters is required. 

This disadvantage can be alleviated by using a different set of basis functions 
{bk(t}}f:0 • It is for example well known, that a system with a single dominant 
pole can be approximated fairly well by a limited number of Laguerre functions. 
Systems with a dominant pair of complex conjugate poles can be approximated 
using Kautz models. A unifying framework as well as a generalisation for 
Laguerre and Kautz models is given by so called "system based orthonormal 
basis functions," described extensively in Heuberger (1991). In appendix B a 
more or less self-contained, though incomplete, introduction to these functions 
is given. 

At this point we suffice with the following imprecise interpretation: given a 
basis generatipg system Gb(() E 1ir1, a mapping 

'.13: 1i~xi -+ 21-l~xi G1>(() i-+ {Bo((), Bi((), ... } 

can be formulated such that the set '.13(G0(()) is an orthonormal basis for 1i2. 
(Note that we may use a SIMO system to generate a set of SISO basis func
tions. The construction of Bo((), ... from G0 will be treated in more detail in 
appendix B.) Any (stable) system G(() E 1i~xl can therefore be expressed as 

00 

G(() = L: ekBk(() 
k=O 

Moreover, there exist ME IR+ and p E [O, 1) such that 

\:Ik E IN !Bkl < Mpk (4.2) 

and pis smaller if the poles of the basis generating system Gb are chosen closer 
to the poles of the system G. This implies that from a certain value of kon, the 
values of M pk will be smaller, even if the value of M increases by the change 
in basis generating system. 

In the remainder of this chapter we will also need a property and a con
jecture. . The property will be proven in appendix B. In this appendix an 
argumentation will be given as well for the conjecture. Because both are used 
heavily in the rest of this chapter, they are restated here for convenience. They 
will be used to bound the effects of undermodelling, although that is probably 
not evident at this point yet. 

Property 4.1 Let {Bo((), B1 ((), ... } be a basis generated by a nnite dimen
sfonal system G0(() E 1i~xl. Let n denote the McMillan degree of Gb((), 
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then 

0 

Note that Bo(z) is intentionally omitted from property 4.1. This property is 
based on the fact that through the construction of the basis functions, B k ( () 

and Bk+nt(() differ only by an integer power of an all pass function. 

Conjecture 4.2 Let {Bo((), B1 ((), ... } and n be as in property 4.1. 

00 

l:tPlbk(t)I < C1 + C2 
p+i/2 

n 
t=:O 

0 

4.3.2 Model parametrisation 

In the previous section a basis for 1i~xl was discussed. As we will be deal
ing with MIMO systems, this concept needs to be extended. We take a very 
pragmatic approach: for a system with p inputs and q outputs, a basis for the 
transfer from each separate input to each separate output is generated. To 
formalise this, we introduce some notation and terminology: 

N otation: An entry of the transfer function of a MIMO system with p inputs 
and q outputs will be referred to as a subtransfer of that system. 

The set 

s := q x p 

is the set of sub transfer indices. Elements of S will in gener al be denoted a. 
The matrices Eu E JRqxp, a ES are defined as follows: 

[Eu] .. := {1 if (i,j) = a 
•3 0 if(i,j)#=a 

A basis for 1i~ x 1 will be called a SISO basis. A collection of pq SISO bases 
constitutes a MIMO basis for 1irP given by 

{Bg((),Bf((), ... }, a ES. 

This means, that any system GE 1i~xp can be written 

00 

G(() = LLOfEqBf(() 
o-ES k=:O 
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where {B0((),Bf(()"" }uES denotes the MIMO basis. For fixed u ES the 
sequence { B0((), Bï((), ... } denotes a SISO basis for 1-l2 with reference to the 
u-entry of G. · , D 

The model parametrisation used in our algorithm is now simply obtained 
by taking only .a finite number of basis functions. Given the basis 

{Bo((), Bf ((), .. · }uES, 

the model set therefore becomes 

k" 

Mset = { G(() E 1-l~xp 1 G(() = L L ()kE" Bk(()} (4.3) 
uES k=D 

where B'{. E JR, for (l ES, k = 0, ... , k" and {k"}uES is a set of properly chosen 
integer constants specifying the model complexity for each subtransfer. In this 
context, the ()k are called generalised FIR parameters. 

We will not discuss the general problem of choosing the right model com
plexity. For notational conveniènce, we will drop the superscript (l from k" 
wherever possible. The algorithm does not require that the k are the same for 
all subtransfers, however. This can be especially convenient if, say, we want 
low model complexity for all subtransfers except one. 

The fJ'{. involved in ( 4.3) are collected in a parameter vector 9 E lflC, where 
obviously c = EuEs(k" + 1). Given the values of k and the MIMO basis 
{BZ((), k E IN,O" ES}, equation (4.3) implies a bijection between members 
of Mset and parameter vectors 9 E me. In genera! we will assume the MIMO 
basis and the values of k implicitly. These are fixed in the early stages of the 
algorithm. We will therefore denote the member of Mset corresponding to some 
(JE me by Ge, although it should actually be denoted G9 (k",B'k;O" ES). 

Remark 4.1 Even if minimal state-space realisations are used for the B'k,, a 
MIMO state-space model obtained by simply combining the models for the 
subtransfers as indicated by ( 4.3) will in genera} not be minimal. Especially 
if the same SISO basis is used for all subtransfers, a considerable reduction 
in state-dimension can be achieved. Reducing the state-dimension afterwards 
does not infiuence the validity of the (reduced) results. D 

4.3.3 Uncertainty description 
The uncertainty description is given by 

n, 

a + Ll. + I: siAi (4.4) 
i==l 
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where 

G, il, Ai E tl~Xp 

Qi :::; Ji :::; di, 
llilll:::; dt:. 

dt:.,Qi,Ji,di E IR 

i Ens 
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G represents the overall nominal model. The algorithm which we present can 
work with an a priori given nominal model, or it can suggest a nominal model 
along the way. JiAi, i E ns are the structured error components. The transfers 
Ai are usually determined by the algorithm, however, they can be specified by 
the user as well. These error components are uncertain, because the gain 
factors ói can vary within the intervals [fii, di]· The transfer il will be called 
the unstructured error. It is bounded in some measure, indicated by llilll· 
Although llilll suggests that the measure used to bound il is a norm, this will 
not always be the case. The algorithm can bound the H 00 norm for every 
separate entry of il. It is also possible to bound the impulse response of il: 
for each time instant and for every separate entry of il" an interval will be 
determined to which the impulse response is restricted. This can also be done 
for the impulse response after weighting by a stable weighting filter and for 
the step response. These time domain bounds on il leave the possibility open 
to link the results of the algorithm with time domain based control strategies 
optimising over a finite horizon, such as the class of model based predictive 
controllers. Given the wide-spread application of these controllers in process 
industry, this is of major practical importance. 

Remark 4.2 The nominal model êJ need not be expressed in the model para
metrisation of section 4.3.2. If the algorithm suggests a G, it will be a model 
taken from Mset in (4.3). If the user specifies this model instead, he is free to 
specify any model in tlrv. D 

A fundamental choice has been made in this uncertainty description: the 
process signals have been divided into inputs and outputs. After chapter 3, 
where for that matter ~his distinction was made too, some justification of this 
choice may be in order. The first reason for this is that current techniques for 
robust control design use this separation. As the model and the uncertainty 
bounds are derived for application in robust control design, the separation into 
inputs and outputs is going to be made anyway, so we might as well make it 
now. Moreover, if signals can be separated into actuators ànd sensors, this 
leads to a natural separation into inputs and outputs. Finally it was argued in 
section 4.2 that a model parametrisation in terms of system based orthonormal 
basis functions was desired as such parametrisation enables us to obtain an 
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accurate description of a system using few parameters and to derive explicit 
bounds on the undermodelling. These benefits have been shown for systems 
interpreted as (linear, time-invariant) input/output operators. 

4.4 Experimental data and prior knowledge 

The algorithm will need several "inputs:" information that it can not or need 
not generate itself. Required information will be marked with '•' at the start 
of the paragraph, optional information by 'o'. 

The algorithm will involve identifying auxiliary models in every operating 
point of the process. We therefore require at least one experimental data set for 
each operating point. Multiple data sets in one operating point are possible. 

Notation: Let nw denote the number of operating points. W shall be used to 
denote the set of operating points. Elements of W are by convention denoted 
w. \Vith each w E W is associated a finite set 1>(w) of data set indices for 
w: each d E 1>(w) specifies a data set taken in the operating point w, but it 
is not the data set itself. A data set is typically a record of input and output 
measurements taken from the process during an experiment. The elements of 
1>( w) are used to enumerate these experiments. 

1) := LJ 1>(w) 
wEW 

1) is the index set of all data sets in all operating points. Elements of 1) and 
1>(.) are normally denoted d. dis a data set index then. 

nd(w) is the number of elements in 1>(w), w E W, while nd is the total 
number of elements in 1). D 

The required prior information can now be stated more precisely: 

• For each data set d E 1>, it is assumed that measurements ud(t) have 
been taken of the process inputs and yd(t) of the process outputs. The 
measurements have been taken on the time interval 'Jl'd C Z, so ud and 
yd are defined on 'Jl'd. Because this information will be used to identify 
time~invariant models, it is assumed without loss of generality that each 
'Jl'd starts at t = O. The length of the experiment interval shall be denoted 
Td, so 'Jl'd {O, . .. ,Td -1}. 

The data sets will be used to identify models in each operating point. This 
implies that the data sets have to be suitable for · this purpose: the sampling 
frequency should have been chosen sufficiently high to capture the fastest pro
cess behaviour that should still be modelled and the length of the data sets 
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should be sufficiently long to identify reliably the largest relevant time con
stants of the process. Also the input signal should be sufficiently rich to be 
sure that all relevant process dynamics are indeed observable from the output. 
The amplitude of the input signal should be small enough not to excite too 
much of the non-linearities present in the true plant, yet be large enough to 
have a sufficiently good signal to noise ratio at the outputs of the process. 

In order to fulfill these conditions, extra prior knowledge about the plant 
is required. Also proper anti-aliasing measures need to be taken to make sure 
that neglected high-frequency dynamics do not influence the results in the 
frequency range of interest. As the algorithm is not so much concerned with 
the identification of models as with the bounding and structuring of model 
uncertainty, this knowledge is not listed explicitly here. 

o For some data sets d E '.D, an instrumental variable vd ( t), t E 'II'd may 
be available. Whether this is needed or not depends on the identification 
methods that wil! be used in the algorithm and on the kind of experimental 
data that is available, closed loop or open loop. 

For the identification method that will be discussed as an example, the 
instrumental variables should be correlated with the inputs of the system, 
hut not with the disturbances acting on the system. In an open loop situa
tion, this means that the inputs of the system can be used as instrumental 
variables if one so desires. Therefore instrumental variables are considered 
optional in open loop: if they are not available the inputs will be used 
as instruments. In closed loop separate signals, for example the external 
references of the plant, are required. 

For the example identification method, the instrumental variable should 
contain p signals, i.e. equal to the number of inputs. 

• The algorithm requires a MIMO basis for JlrP as described in the previous 
section. For optimal results, the dynamics of this basis should resemble 
the dynamics of the true process, see appendix B. Therefore, either a 
MIMO basis has to be available a priori, or knowledge about the dominant 
dynamics of the process, so that a basis can be generated as explained in 
appendix B. 

o A nominal model G(() may be available for the process. Any stable, linear 
time-invariant model can be used. It need not be expressed in the model 
parametrisation used by the algorithm. 

Given the availability of a MIMO basis, the (linear manifestation of the) 
true system G'fr can be written in each operating point w E W as 

00 

ar,.(()= I: l.:(e;;)~E,,. Bk(ç) 
o-ES k=O 
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• For each operating point, and for each subtransfer <7 E S, values M 17 E IR+, 
p17 E (0, 1), O~ax E fR+ and (k*)" E IN are known, such that 

l(O )ui< Ö" ·- {O~ax k < (k*)u 
trk - k·- M<T(p")k k?::(k*)" 

(4.5) 

Essentially, ( 4.5) means, that the tail of the parameter sequence { ( Otr )k} ~=O 
decays exponentially. This implies, that the system has to be stable! This 
implication is not trivial, it is a property of system based orthonormal basis 
functions. 

(4.5) goes further than (4.2) in that not only the existence of M and pis 
stated, hut values for M and p are assumed to be known. To avoid too large 
bounds for small values of k, there is the option to switch to another bound for 
small values by means of (k*)u and O~ax· In fact, it would be possible to make 
o~ax dependent on k for k < (k*)U. In the actual implementation this has been 
carried out. However, this possibility will not be pursued here for notational 
convenience. 

In section 4.8.3 it will be discussed how one may estimate this prior infor
mation. 

• For each operating point w E W, the data sets d E '.D(w) are assumed 
to be affected by additive noise or disturbances €d(t) at the output only. 
Therefore, the following relation holds 

(4.6) 

For ease of reference, Ed(t) will be called output noise, although in chapter 3 
it has been argued that t:d(t) should be interpreted broader than just noise 
effects, see the discussion of~ in chapter 3. 

• For each data set d E '.D, a signal ëd : Td -t mi is available, such that 

(4.7) 

For q > 1, i.e. for multiple output signals, the absolute value and the in
equality should be taken element-wise. 

• For each data set d E '.D, a vector ud E IR~ is available, such that 

(4.8) 

This information will be used later to bound the influence of unknown initial 
conditions. 

At this point it is worthwhile to recall the discussion about the bound u 
on the input signals in chapter 3, denoted du there: the linear manifestation 
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of the process in an operating point depends not only on the operating point 
itself but may also depend on the level of excitation in that operating point. 
Therefore the level of excitation in the data sets should be similar to the level of 
excitation that can be expected in the practical situation for which the nominal 
model and uncertainty bounds are derived. Due to the heuristic nature of this 
argument it is not formally listed here as required prior information. 

o For some data sets d E 'D, instrumental variables rf (t) : 'Jl'd ~ lR and 
constants ëf E JRi, l = n~, n~ E IN may be available, such that the cross
covariance between i:d(t) and rf (t) is bounded by known constants ëf: 

1 2: éd(t)rf(t)I s ey 
tE'JI'd 

(4.9) 

Here also, the absolute value and inequality should be taken element-wise. In 
order to limit the effect of initial conditions, the summation may be started 
from some 0 < ts < Td. The value of ëf should be updated accordingly. It is 
discussed in section 4.8.3 how ey can be estimated. 

The instrumental variables vd(t) on page 81 and rf (t) above are used for 
different purposes. Each signal rf (t) is scalar valued, but as many rf (t) can be 
used as one wishes. The vd(t) on the other hand have the same dimension as 
the process input and only one vd(t) can be used. Provided one can obtain the 
corresponding ëf, the components of vd(t) can be used as (some of) the rf(t). 

Example: The simulation example discussed throughout this chapter will use 
a "true" process having two linear time-invariant manifestations. The two 
operating points corresponding to these manifestations are denoted a and b 
respectively, so that in this example 

W={a,b} 

The transfer in operating point a is given by 

1 
ca (z) = ---tr z _ 

and that in operating point b by 

G~r(z) = I.5Gf"(z) = 1.S 
z-

For bath operating points, one data set was generated. We can therefore 
identify the set of data set indices 'D with W and deline 'D(a) and 'D(b) corre
spondingly: 

'D = {a, b}, 'D(a) = {a}, 'D(b) = {b}. 
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The inputs in both operating points were zero mean, normally distributed white 
noise sequences. Input sequences of 1500 samples were generated. These were 
applied to the process, but only the last 1000 samples obtained in this way were 
recorded in the .data set. Prior to these excitations of the process, the process 
was in steady state. In this way a non-zero but realistically sized transient can 
be expected in the data sets. As both data sets contain 1000 samples it holds 

Ta = T 6 1000, 'JI'a = 'JI'b = {O, 1, ... '999}. 

Normally distributed, zero-mean white noise was added to the output sig
nals in the data sets. The signal to noise ratio in data set a was taken equal 
to 40 dB. The same absolute noise level was used in data set b. The noise was 
not correlated with the inputs. 

No separate instrumental variable vd(t), d E '.D was used lor the purpose of 
identification. The instruments were taken equal to the input sequences: 

For the cross-covariance bounds no separate instrumental variables were used 
either. Here too the inputs were used instrumental varia.bles. The number of 
instrumental variables was therefore equal to 1 in both data sets, 

n~ = 1, n~ = 1, 

and 

r~(t) = u"(t). 

In this simulation example, values for the parameter bounds ih, k E lN, 
the input bounds üd, d E { a, b}, the noise bounds ed, d E { a, b} and the cross
covariance bounds cf, d E { a, b} can be determined easily. This is not done 
here, as tbis approach is not realistic in practical cases. These bounds will be 
estimated later on in this chapter Erom information that one can assume to be 
available also in a practical situation. 

For completeness, the input and output signals in both data sets have been 
plotted in B.gure 4.1. (Continued on page 90.) D 

4.5 Outline of the algorithm 

The steps involved in the "basic" algorithm are now presented. This section 
is not intended as a self-contained description of the algorithm. It should be 
considered a frame-work in which the sections 4.7 to 4.13 fit. In these sections, 
ea:ch step is described in more detail. 

In the following, "apriori" means "before the algorithm starts." A priori in
formation therefore includes information that was obtained in an identification 
step carried out before the algorithm. 
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c) Input, data set b 

Figure 4.1: Input and output signals in both data sets 

STEP 1 If a MIMO basis is available apriori goto step 5. 

STEP 2 If we have a nominal model G, goto step 4. 

STEP 3 Identify one nominal model G (i.e. for all operating points) to generate 
a MIMO basis. 

STEP 4 Generate a MIMO basis {Bk},,.Es} for the model parametrisation. 
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STEP 5 For each operating point w E W, estimate an auxiliary model, repre
sented by a parameter vector 9w. 

STEP 6 Construct a central model from the 9w, w E W. Denote the corre
sponding parameter vector 9c. If the structured error components Ai are 
specified a priori, continue with step 8. 

STEP 7 Define b.(Jw := 9w - 9c, w E W. Analyse the b.8w using princîpal 
component analysis. This will yield ns dominating directions in the pa
rameter space, denoted OA,i, i E n 8 • These are the parameters of the 
structured error components Ai, for which bounds will be derived in the 
next steps. 

STEP 8 For each operating point w E W, translate the experimental data and 
prior knowledge to a set of linear constraints on the model parameters. 
The set of model parameters satisfying these constraints will be denoted 
C'/J. This set constitutes a polytope in parameter space. 

STEP 9 For each operating point w E W, bound the structured errors by solv
ing a linear programming problem. The parameters in this LP problem 
are restricted to C'IJ. This yields bounds for Ói, i E n 0 , locally in each 
operating point. 

STEP 10 For each operating point, bound the unstructured error, taking into 
account the structured error components. 

STEP 11 Combine the results for all operating points to bounds on oi, i E ns, 
and À that are valid globally, i.e. for all operating points. 

Amore detailed summary of the algorithm is given on pages 146 and 147. 
This summary is also printed on a separate sheet coming with the thesis, so 
that it can be kept alongside the text. The algorithm is divided into mayor 
steps, which are further split into a priori information for the step, marked 
by a '<', a posteriori information for the step, marked by a '>', and possibly 
sub-steps. The numbers at the right edge of the page refer to the page at which 
the relevant concept is introduced. 

The main steps in the algorithm as listed above can be recognised as follows 
in the summary. The steps "Do experiments" and "Gather prior information" 
are actually not part of the algorithm, they precede step 1 of the algorithm. 
"Choose basis Eunctions and model orders" covers steps 1 to 4. The auxil
iary models of step 5 are estimated in "Estimate auxiliary models" and the 
analysis of the error structure of steps 6 and 7 is carried out under the head
ing "Estimate error structure." Step 8, the translation of the prior knowledge 
to linear constraints on the model parameters is referred to on page 146 as 
"Construct set of linear constraints". This step is further divided into the 
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steps "Extend noise bound" and "Extend cross-covariance bound." In chap
ter 5 more steps will be added under this heading. Steps 9 and 10 are both 
summarised under the heading "Bound errors JocaJJy." Step 9 corresponds to 
the sub-heading "Bound structured errors," whereas step 10 corresponds to 
both the sub-headings "Bound unstructured errors in frequency domain" and 
"Bound unstructured errors in time domain." The sub-step "Split parameter 
uncertainty in structured and unstructured parts" is listed as a separate step 
on page 147. Actually this is not a separate step hut a step that is performed 
many times as part of the steps bounding the structured (step 9) and unstruc
tured (step 10) error. Step 11 of the algorithm is finally called "Combine local 
results" on page 14 7. 

At the beginning of a section in which a step of the algorithm is presented 
in detail, the summary on pages 146 and 147 is repeated in condensed form and 
in smaller print. In these condensed summaries, only the step being discussed 
is split further into required information, sub-steps and generated information. 
The other steps will only be indicated by their heading. Moreover, these other 
steps will be shown in lighter print. 

4. 6 Review of systems and models 

At this point it may be worthwhile to reconsider the various systems and models 
that have occurred so far. 

First of all there is the true system atr· atr can be non-linear, infinite di
mensional, time-varying etc. However, it is assumed that in an operating point 
w E W, atr can be approximated by its linear manifestation ar;_, where ar;_ 
is linear and time-invariant, possibly infinite dimensional. Note that it would 
be more accurate to refer to ar;, as the linear and time-invariant manifestation 
of a, hut for brevity it is simply called the linear manifestation of atr· The 
approximation of atr by ar;. should be interpreted as explained in chapter 3, in 
particular in section 3.3.5. Note that the behaviour of the true system atr that 
is not represented by ar;_ ends up in the noise sequence é(t). Fora system that 
can hardly be approximated in an operating point by a linear time-invariant 
system a~, the noise bound ë(t) will become excessively large. 

The nominal model G can be any linear time-invariant model for all oper
ating points, supplied by the user. In the remainder of this chapter we will also 
encounter a {J. Let the parameter vector be c-dimensional, then a {J is related 
to G through 

Ó = arg min ll!J(t) - ge(t)llh2 
8ElR° 

a {J is represented in the parametrisation used internally by the algorithm. 
The central model is merely a by-product of the algorithm during the anal

ysis of the structure in the model uncertainty. The central model is needed 
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only during the determination of the structured error components Ai((). It is 
not directly related to the nomina! model. It is indirectly related to the nom
ina! model because both are in some measure an approximation of all linear 
manifestations of the true system Gtr· The user may choose to use the central 
model as the nomina! model. In this case the central model and the nominal 
model "happen" to be identical. This is never assumed by the algorithm. 

The auxiliary models Gew are models estimated for the linear manifestation 
of the true system in the corresponding operating point w, so Ge"' is an ap
proximation of GY:.. Like the centra! model, they are required for the analysis 
of the structure in the model uncertainty. The auxiliary models may also be 
used to estimate some of the required prior knowledge, as will be explained in 
sections 4.8.3 and 4.10.3. 

Finally, the structured error components Ai are the models parametrised 
by OA,i, so 

4. 7 Step 1-4: obtaining a MIMO basis 

: ( hf~l ' 

Ï
. Choose basis funct.ions and model orders p. 88 

t > ~•(!): set of basis functions 1» 75 
> k: model order p. Ti 

The first four steps are concerned with generating a MIMO basis. For our 
purposes, this will be equivalent to finding a basis generating system. The 
procedure of appendix B will subsequently be followed to generate a basis that 
will be used for all operating points. 

As pointed out in section 4.3.1, the expansion coefficients in the tail of the 
basis tend to zero fastest if the poles of the basis generating system are close 
to the · poles of the true process. More exactly, this property applies for all 
expansion coefficients ()k for which k ;:::: max{k + 1, k*}. The faster the tail 
coefficients tend to zero, the smaller the undermodelling will be due to the 
truncation of the basis in the model parametrisation. In our case, the true 
process has a different set of pole locations for each operating point. The poles 
of the generating system should be chosen close to the poles in all these sets. 
As these pole locations are unknown, a rough model that finds a compromise 
between the different sets of pole locations is needed. If we have a model Ö, 
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this is a natural candidate. If we do not, we need to get an indication of the 
pole locations by other means. This is the purpose of step 3. 

The model order should not be taken too high. Some properties of the 
parameters 6tr,k can only be observed if k (estimated) model parameters are 
available, where k is equal to several times n, the McMillan degree of the basis 
generating system Gb. If nis large, many model parameters need to be esti
mated in order to observe these properties. This leads to a significant increase 
in the computational complexity of the algorithm and also to an increase in the 
variance error that can be expected in the estimated model parameters. On 
the other hand, the model order should be sufficiently high to represent all of 
the dominating poles of the true process. 

Most identification methods can in principle be used to find a basis gener
ating system: any method yielding a more or less accurate description of the 
(dominant) process poles will be suitable. Estimating FIR models of sufficient 
length does in general not yield a good basis generating system. All model 
poles will be located in the origin. Using this as a basis generating system will 
consequently generate the standard basis, thereby defeating the whole purpose 
of using system based orthonormal basis functions. A model reduction step 
should be performed first in such a case. 

Not withstanding this, the standard basis can be used as a MIMO basis. 
Conceptually there is nothing prohibiting this. It will be pointed out in sec
tion 4.14, how in general this will lead to conservative error bounds. 

Apart from these considerations, there are some practical constraints. Given 
the observation that the dominant poles of the process should be present in the 
basis generating system, the length of the impulse response of the generating 
system will be of the order of the length of the impulse response of the true 
system. Provided that we have done experiments of sufficient length, we can 
therefore assume that the impulse response of the basis generating system fits, 
say, five to ten times in the experimental data intervals for each data set. 

To be able to estimate values for Mand pin (4.5), the models to be esti
mated in step 5 need to have a number of parameters that is several times the 
McMillan degree of the basis generating system (see section 4.10). This implies, 
that parameters have to be estimated for basis functions that have impulse re
sponses that are langer than that of the basis generating system. Depending on 
the poles of the basis generating system, this may result in impulse responses 
that are langer than the length of the experimental data sets. The more energy 
of the impulse response of a basis function is outside the experimental window, 
the less faith we can have that we can estimate the contribution of this basis 
function reliably. In such a case the parameters corresponding to higher order 
basis functions will be unreliable. They will in general not reveal the exponen
tially decaying behaviour of the parameters that we were trying to estimate in 
the first place. This will be explained in more detail in the next section. 
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If this situation occurs, the "ideal" solution would be to do longer experi
ments. This is not always possible, or may lead to a computational load later 
in the algorithm that exceeds the available computing power or the patience of 
the user. In these cases, the only solution left is to generate the basis with a 
basis generating system that has a shorter impulse response. 

Example (Continued Erom page 84): A basis was generated for the example 
process using the basis generating system 

1 
Gb(z) = z - 0.95 

Note that the pole of this process is close to but not identical to the pole of both 
linear manifestations of the true process. In figure 4.2a the impulse responses 
of the first five functions of a basis generated by Gb are plotted. Figure 4.2b 
shows the Bode amplitude plot of the same functions. Due to property 4.1 on 
page 77 all amplitude plots lie on top of each other in this plot. 
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Figure 4.2: First five basis functions in the example 

(Continued on page 93.) D 
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4. 8 Step 5: estimating awdliazy models 

1 Estimate auxilia.ry models ... " ... " " ... " ...... " ....... p. 91 
~ 11{1),y(!),u(I). model parametrisation 

> 9w, parameters of auxiliary model for operating point w p. 92 

The next step in the algorithm is the estimation of auxiliary models, i.e. "nom
ina!" models for each operating point. To avoid confusiön with the "overall" 
nominal model G, these nomina! models will be referred to as auxiliary models. 

As with the estimation of G, the algorithm does not prescribe what identi
fication method to use for the estimation of auxiliary models. Contrary to G, 
the auxiliary models need to be expressed in the parametrisation of section 4.3. 
In this section we therefore describe an algorithm that estimates models of the 
form (4.3). 

4.8.1 Instrumental variable estimation 

The estimation of auxiliary models should be repeated for every operating 
point. We will drop the superscript w that indicates that the true process is 
considered in an operating point. Also, we will first consider multiple input, 
single output processes. 

For each data set d E '.D(w), we define matrices Uf and V:d, i E pas follows: 

Ud·= ' . 

V .d ·= ' , 

[ 

[Bal,i)(~)u~J(o) 

[Bal,i)(()ufärd 1) 

[ 

[B~l,i)(()vf](O) 

[B~1,ï)(()~f](Td - 1) 

[B~~~:Ji (()ufüü) l 
[B~~;'.?l (()~tJ(Td - 1) 

[B~~;'.?) (()vf](O) l 
. . . [B~~~·:i) (()~f](Td - 1) 

The columns of ut contain the ith input filtered by the basis functions for 
this input in the model parametrisation. (Recall that Bkl,i) is the kth basis 
function of the transfer from input i to the only output, numbered 1.) V:d is 
similar with the process input replaced by the instrumental .rai-iable. Ud and 
vd are in turn built from these ut and vt 

ud := [ut . . . ut] 
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yd shall be a column vector containing the output measurements: 

yd := [y(O) . . . y(Td - 1)(. 

Assuming that the order of parameters in 9 is compatible with the order of 
filtered inputs in Ud, the instrumental variable estimate {Jd for data set d would 
be 

(4.10) 

This estimation method has been analysed in (Hakvoort, 1994), section 5.3 
and 5.4. If the inputs are used as instrumental variables, (4.10) becomes the 
least squares estimate. This has been analysed using the framework of (Ljung, 
1987) in (Van den Hof et al., 1995). It is shown there that, provided the 
inputs are rich enough, the estimate (4.10) converges under weak conditions 
asymptotically to the true process parameters. 

To obtain one model for all data sets of an operating point, we finally 
introduce U, V and Y: 

Y = stack f dyd, 
dEi)(w) 

(4.11) 

where jd E IR+, d E '.D(w), are weighting factors for each data set. As the 
parameter estimate for the operating point is taken 

( 4.12) 

Being an instrumental variable estimate, it is hard to tell what criterion is 
optimised by the "optima!" parameter vector 8. If the instrumental variables 
are taken equal to the inputs, the instrumental variable method reduces to 
a least squares method. This can be restated as follows. Let €d(t, 8) be the 
prediction error for data set d at time t for the model with parameter vector 
8. It can easily be verified, that 

[ 

€d(O, 9) l 
Y - U9 = stack fd : =: Ê(fJ) 

dE'.D(w} . 
€d(Td - 1, 9) 

The estimate iJ from {4.12) minimises llÊ(8)11~, in other words 

iJ = argmjn llÊ(8)11~ = argmJn 2:: fd 2:: €d(t, 9)2 

dE1)(w) tE'Jl'd 

Taking all f d equal to 1 will weight each data set proportionally to its 
length. Provided noise levels are comparable in each data set, this seems most 
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reasonable. If noise levels are different, data sets with a higher noise level 
should be weighted less. 

For processes with multiple outputs, the procedure outlined above can sim
ply be applied for each output, taking instead of 9 the relevant sub-vector of 
8. This is possible, because transfers to different outputs are parametrised 
independently. 

Remark 4.3 The "gluing together" of the data sets does not give problems 
because of mismatching initia! conditions: the inputs are filtered by the basis 
functions first and then concatenated. 

This is not meant to imply that the initial conditions at the start of the 
data sets do not complicate the estimation. At the start of each data set 
there is a possible transient in the output, that is, at least in the least squares 
estimation discussed here, not taken into account in the estimation. Depending 
on the magnitude of the transient and the length of the transient compared to 
the length of the data set, this may lead to a smaller or larger bias in the 
estimation. 

This is the case for a single data set as well and does not result from the 
combination of data sets. The point that is made here, is that the concatenation 
does not cause additional problems, as would have been the case for example 
if the data sets were concatenated first and then filtered. 

See also section 5.2. D 

Remark 4.4 The estimate (4.12) has essentially the same properties as the 
corresponding estimate for a single data set. This means for example, that 
the prediction error can be weighted in frequency domain by prefiltering input, 
output and instrumental variable. (See for example (Ljung, 1987).) Also, the 
estimate ( 4.12) converges asymptotically to the true parameter values under the 
same conditions as the normal instrumental variable method does. "Asymp
totically" should be interpreted here such, that the length of at least one of 
the data sets goes to infinity. If the length of the data sets remains finite but 
the number of data sets tends to infinity, additional assumptions on the initial 
conditions in each data set are required for consistency of the estimate. D 

Example (Continued Erom page 90): The results obtained Eor the simulation 
example used in this chapter by the estimation method discussed above are 
shown in figure 4.3. This figure clearly shows, that the estimated model fäils 
to capture the initial transient. Indeed, the estimation method discussed in 
this section provides no means to represent the transient. After this transient, 
the residuals become small compared to the output signal. The power in the 
residuals becomes then comparable to the power in the true noise signals. 

Note that the comparison of figure 4.3 is carried out on the estimation set, 
not on a validation set. 



94 An algorithm for structured and unstructured error bounds 

5 

0 

-5 

-10~~~~~-'--~~~~--"~~~~~~~~~~ ........ ~~~~---' 
0 100 200 300 400 

10 

0 

-10 

500 600 700 800 

11 • 
,i~ 1 

-~ 

900 1000 

-20~~~~~-'--~~..__~__..~~~~~~~~~~ ........ ~~~---___, 
0 100 200 300 400 500 600 700 800 900 1000 

Figure 4.3: Residuals ('-')and outputs ('--') for data set a (top) and b (bot
tom) 

No plots of true and estimated impulse responses or Bode plots are provided, 
as the estimated plots can hardly be distinguished Erom the corresponding true 
plots. ( Continued on page 99.) 0 

4.8.2 Mismatch between data length and basis length 

As already indicated in section 4.7, identification will be troublesome if the 
length of the impulse responses of the basis functions in the model set exceeds 
the length of the data. (See also (1.2) on page 14.) To illustrate this, consider 
the situation of a SISO system for which one data set is available. The instru
mental variable is taken equal to the input. The estimate is given by (4.10), 
which reduces in this situation to 

fJ = [~uTu]-
1 

~uTy 
Let Q denote the matrix to be inverted in the right hand side: 

Q := ]:_uTu 
T 
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Assume the input u is a white, quasi-stationary sequence, where the value of 
u on each time instant t E 'JI'd is normally distributed with zero mean and 
standard deviation au. For the length of the data set tending to infinity, the 
element of Q in the jth row and the ith column becomes 

[Q]Ji = lim -T
1 

"[Bj(()u](t)[Bi(()u](t) 
T-too L...J 

tE'Jl' 

}~m00 ~ ~ (f0 
bj(Ti)u(t - T1)) · (i~o bi(T2)u(t T2)) 

T-1 

= )~m00 L L bj(T1)bi(T2) · ~ L u(t -T1)u(t T2) 
r1E'II'r2E7l' t=max{r1,r2} 

00 

a; L bj(T)bi(T) a;ó(j - i) (4.13) 
r=O 

where the third equality follows from the whiteness of the noise and the fourth 
from the orthonormality of the basis functions. (4.13) simply means that Q 
is asymptotically equal to a scalar times the identity matrix for the indicated 
input. 

To investigate the properties of this least-squares identification method, 
data was generated by filtering an input sequence with the system 

Gtr(z) = (z 
z - 0.5381 
0.95)(z - 0.80) 

The input u was a white noise sequence with a. distribution N(O, 1), consisting 
of 1000 samples. The output y was the response of Gtr(z) to this input. Initia! 
conditions were set to 0, no noise was added to either u or y. A basis was 
generated with the system 

G ( ) = 1.7918 
b z z -0.99 

30 basis functions were incorporated in the model, so k is taken 30. 
The true and the estimated impulse response of the system are shown in 

figure 4.4. In figure 4.4a the step responses are plotted for the first 100 samples. 
In figure 4.4b the same responses are plotted for the first 7000 samples. 

Although the true process seems to be estimated fairly accurately judging 
from the short step responses, the plot of the step responses for 8500 samples 
clearly demonstrates that the match between the estimated model and the true 
system is actually very bad. 

This can not be due to a varia.nee effect for which the identification pro
cedure happens to be extremely sensitive, because no noise was added to the 



96 

t 50 

h(t) 
40 

30 

20 

10 

20 

An algorithm Eor structured and unstructured error bounds 

40 

x 1011 

5~~~~~~~~~~~~ 

-5 

-10 

1 
1 
1 

1 
\ /---------
,\_;/ 

-15'--~~~~~~~~~~----" 

60 80 100 0 2000 4000 6000 8000 10000 

nr. of samples -t nr. of samples -t 

a) Short step response b) Long step response 

Figure 4.4: Step responses, '- ': true system, '-- ': estimated model 

input or output signals. The only "noise" that is present is the quantisation 
noise caused by round-off errors in the computer. Double precision arithmetic 
was used, so the signal to noise ratio is extremely good. As can be seen in 
figure 4.4a, the input record of 1000 samples should be long enough to identify 
this system. 

The actual singular values of Q are shown in figure 4.5. These do not 
correspond to Q = I which holds asymptotically according to (4.13). This in 
turn is caused by the fact, that the response of most of the basis functions is 
much longer than the 1000 samples in the experiment record. The responses 
of the basis functions are not plotted here, but one may get an idea of their 
length from the observation that the length of the response of the estimated 
model is roughly equal to the length of the response of the last basis functions. 
The length of the response of the model can be judged from figure 4.4b. 

Theoretically it can be shown, that the true model parameters decay expo
nentially with p = 0.9135. This can not be seen from the estimated parameters 
in figure 4.6! 

Remark 4.5 In section 5.3, a way to suppress the ill-conditioning of this prob
lem will be introduced and the results will be compared to those obtained in 
this section. A brief discussion of other methods known from literature to 
handle this problem will be held there as well. 

These results are not presented here, as the purpose of the current sec
tion was only to illustrate the problems that can be expected if the model 
set contains basis functions with an impulse response length that exceeds the 
experimental data record significantly. D 
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4.8.3 Estimating prior information 

Prior information that bas to be estimated from experimental data is not re
ally prior information. However, as the kind of information discussed here is 
generally called prior information, this name will be used here for it as well. 
This section is intended as a means to obtain the information if it is not known 
apriori. If it is, then the estimation treated in this section can be skipped. 

If no values of Mu, pa and O~ax in (4.5) are available, they may be estimated 
from the estimated auxiliary models. In the first place values Mu and p17 need 
to be fitted to the magnitude of the estimated parameters. To quantify the 
mismatch between an estimated parameter Ók' and the bound M"' (p"')k on its 
magnitude it is important to realise that a small difference M"'(p"')k IOZI 
should be considered a large mismatch if Ók' is small as well. 

This would suggest using the sum of "relative misfits" 

as a measure for the overall misfit. This measure is very sensitive to differences 
M,,.(p"')k - IÓk'I for values of Bk' close to zero. If this value is close to zero 
because of the exponential decay of the model parameters, this is exactly what 
is intended. However, such small values may also occur for smaller values of k 
for which the envelope M"'(pu)k should actually still be large, i.e. not close to 
zero, because the value of, say, 0k'_ 1 and Ók'+i is much larger. 

One can also weight the relative misfit hut be more robust against interme-



98 An algorithm for structured and unstructured error bounds 

diate small values of êf by using 

k" 

L jtn M" + k In(pa) - In iêkl 1 (4.14) 
k=O 

as a measure for the overall misfit. 
While (4.14) is a reasonable measure for the misfit between the estimated 

model parameters and the exponentially decreasing envelope Ma (pa)k for it, 
it is not sufficient to minimise (4.14) for Ma and p" to find the "optima!" 
envelope: the envelope is required to overbound the magnitude of the model 
parameters. This can be achieved by adding the constraints 

(4.15) 

to the optimisation. This implies that the outer modulus signs may also be 
dropped from (4.14). Finally, the envelope should be exponentially decreasing. 
This corresponds to the constraint 

( 4.16) 

By changing to the variables M' = ln M" and p1 = In p" equations ( 4.14) to 
(4.16) can (almost) be translated to the following linear programming problems: 

subject to 

k" 

minimise LIM1 + kp' - In IBkll for M 1,p', 
k=O 

Vk = 0, ... , k" M' + kp' ??: In IBkï 
p' ~ 0 

(4.17) 

(4.18) 

(4.19) 

For different a's, different optimisations have to be performed, yielding different 
values for M' and p1

• As a concession to numerical solvability, ( 4.19) also allows 
p' = 0 <=:> p = 1. For an exponentially decreasing bound this is actually not 
allowed. As an alternative one could require that p1 < -f for some small, 
positive value of€. 

o:;,ax can be taken equal to 

where se 2: 1 is a safety margin to be chosen properly. (k*),,. should be taken 
the largest integer such that . 

M<T(po-)(k*)" > O~ax· 
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Figure 4. 7: Estimated model parameters and parameter bounds for the simu
lation example 

Example (Continued from page 94): The parameters that were estimated in 
operating point a for the simulation example are shown in figure 4. 7. The 
corresponding values of Ma and pa are 12.95 and 0.4480 respectively. These 
bounds will be reconsidered in section 5.2. 

(Continued on the next page.) D 

An estimate for the noise bound ëd ( t) in ( 4. 7) is easily obtained by taking 

where se is another safety margin, Se ~ 1. The noise bound thus becomes 
a constant signal. For multivariate ëd(t), maximisation and absolute values 
should be taken element-wise. 

A tighter bound would be given by 

but this bound may be less realistic. As an extreme example, if €(t1) is equal 
to zero for some t 1

, the noise bound will be zero. For small €(t1) something 
similar, though less drastic, occurs. Therefore, it seems safer to deduce one 
noise level from the residuals for all samples and determine the noise bound for 
all samples from this noise level. 
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Estimating the cross-covariance bounds ey, l En~ proceeds analogously: 

where Se :2: 1 is a safety margin. 
If the order of the models considered during estimation is chosen ( too) high, 

it is likely that part of the particul(,!,I' noise realisation that is present in a data 
set is fitted by the estimated models. This will lead to smaller estimates of 
the residuals €d(t) and consequently too smaller values of ëd(t) and ët. If the 
model orders are such, that there is a clear risk of this, it is to be preferred to 
base the residuals €(t) on separate validation data sets and estimate the values 
of ë and ce from these. This requires for each data set d E 'D a companion data 
set in which the same noise level can be expected as in d. Note that under 
certain conditions, the same companion data set can be used for all d E 'D(w) 
with w E W. 

Example ( Continued from the preceding page): The estimated values for ë( t) 
are shown in figure 4.8 lor both operating points. For Se the value 1.2 was used. 
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Figure 4.8: Estimated residuals and noise bounds 

The noise bound is dominated by the transient in the residuals. 
The estimated cross-covariance bounds are 

cï = 0.1687, et 1.4681, 
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where for Se too the value 1.2 was used. 
In section 5.2 further attention will be paid to the infl.uence of the transient 

on the noise bound and the cross-covariance bound. 
(Continued on page 106.) D 

4. 9 Step 6 & 7: estimating the error structure 

,;.,~ 

·· L~:r[p,~~:c .;.~iu;!i;.~.ry :tdHlcl~:, 

1 
Estirnate error st.ruct.ure .. "." " .. " .................. ;,:·!~; 

ê 
:).8"' ; 8"' - mean".• ew' p. 105 
X: matrix with iu its columns the ~8111 p. 102 
(T~l'T: singular value decomposition of X 
n..,: munber of structured error components p. 105 

> BA.i = i:.i. i En.: parameters of st.ructured errors .4i p. 105 

Step 6 and step 7 are treated together, because the way in which the error 
structure is determined will turn out to be dictating the way in which the 
central model should be calculated. The error structure will be determined 
in this section by principal component analysis. Other ways are discussed in 
section 5. 7. 

4.9.1 Principal component analysis 

Principal component analysis is a technique encountered often in multivariate 
data analysis. In fact, subtle variants on the same theme are collectively re
ferred to as principal component analysis. For a thorough introduction into 
this subject, the reader is referred to Jolliffe (1986). This reference interprets 
principal component analysis in many different ways. Most textbooks on mul
tivariate data analysis can be consulted as well. In this section we interpret 
principal component analysis in a way that fits best to the application we have 
in mind. Our aim is not to be completely rigorous, just to provide enough 
information to appreciate the choices made later on. 

Consider a zero-mean n-dimensional stochastic variable Jè. This variable 
could be generated by a single, unknown random process ~: 

(The notation !!<. E IRn means that Jè is a stochastic variable taking its values 
in IRn.) On the other hand, it could be generated by n independent random 
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processes .!'l1, ... ,.\'ln, also assumed to be unknown: 

n 

;f. = 'L:P&i ;J;.,Pi E JR.n,.!'li E JR. 
i=l 

If (Pi)f=1 = lRn, it is clear that !f. being generated by more than n independent 
random processes can not be distinguished from the case that !f. is generated 
by n independent processes, provided we have no prior information about the 
probability distribution of fi· If (Pi}f=1 Ç mn we can find pj and fj, where 
j = l, ... ,n-1 such that 

n-1 

L ,, 
x= p.e. 
- J-3 

j=l 

The stochastic properties of ;J;. are not known, hut m samples have been 
taken from ;f., denoted x1 through Xm. Principal component analysis proceeds 
as follows. The x1 to Xm are collected in a matrix X: 

X := [ X1 ••• Xm 

Denote the singular value decomposition of X 

X=:UEVT 

(4.20) 

(4.21) 

with u1 ::'.:: u2 ::'.:: · · · ::'.:: Un the singular values. (This assumes m ::'.:: n. If m < n 
there are only m singular values.) ;f. can now be written as 

n 

;f = L u*i.!'li, .!'li E IR, var_!'li =ut 
i=l 

(4.22) 

This decomposition is optimal in the sense that U*1t:,1 minimises the variance 
of ;r. ;f. for all ;f. taken from the set of random variables generated by a single 
random process. Moreover, U*1.!'li + U*2~ minimises the variance of !f. - î 
if x is taken from the set of random variables generated by two independent 
stochastic processes. This can be extended for up to min{m,n} independent 
stochastic processes. 

The columns of U are called the principal components of X. According to 
(4.22), the singular values can be interpreted as the standard deviation of the 
processes "driving" the principal components. A column of V indicates how the 
different samples contribute to the corresponding principal component. This 
will be discussed in more detail in section 5.6.2. 

In figure 4.9 an example is shown for a stochastic variable !f. E JR2 . In this 
example 

*. = P1f1 + P2f2 (
1.86) 

PI = 1.23 , ( 
0.99) 

P2 = -0.06 . 
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The generating processes f.I and ~ are independent with a standard normal 
distribution. The dots in figure 4.9 indicate different samples taken from 2'.· The 
two straight lines are the vectors p1 and P2· The axes of the ellipse are c71 U*1 

and t7zU*2 • Denote the processes driving the principal components f.a and §.b 

respectively. In figure 4.9 the principal components are clearly not aligned 
with P1 or pz. So although the principal componènts t71 U*1f.a and t7zU*2§.b 

have the interpretation of independent stochastic variables yielding together 
the stochastic variable · g;:, principal · component analysis does not necessarily 
find the "true" stochastic variables P1f.1 and pz~ that constitute !f. 

6 

4 

t 
2 

Xz 
0 

-2 

-4 

-5 0 5 
X1-+ 

Figure 4.9: Example of principal component analysis (see text) 

Remark 4.6 The requirement that !fis a zero-mean signal is in practice re
moved by subtracting the mean of !f from the samples before doing the analysis. 

0 

Remark 4. 7 Principal component analysis is able to reveal correlation be
tween the elements of a varying, or. rather, stochastic vector. This means that 
the principal components describe the dominating linear relationships in a ran
dom vector. If the second element of a vector is for example always the square 
of the first element, principal component analysis will not detect this. It may 
reveal a linear relationship that happens to fit to the samples taken from the 
stochastic variable. What this relationship looks like depends entirely on what 
samples have been taken. 0 
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4.9.2 Principal component analysis and error structure 

As was demonstrated in the previous section, principal component analysis can 
be used to find the dominant (linear) relationships between the elements of a 
varying vector, fo.terpreted there as a multivariate random variable, based on a 
number of samples taken from that variable. The problem that is actually faced 
by the algorithm is to find the dominant relationships between the variations in 
a process transfer when the process moves between different operating points. 
The latter problem can be mapped onto the former by representing a process 
transfer in an operating point by the parameter vector of the auxiliary model 
for that operating point. This parameter vector is a varying quantity because 
the operating point of the process may vary. Because models are identified for 
a number of operating points, a number of "samples" of this varying quantity 
is available. 

In the previous paragraph it is implicitly assumed, or rather hoped, that the 
structure that is present in the changes in the transfer of the process, induced 
by the change of operating point, is reflected in the changes of the auxiliary 
model parameter vectors in a way that can be detected by principal component 
analysis. The structured error components in (4.4) are additive uncertainties. 
Such an additive uncertainty corresponds to a linear relationship between pa
rameter vectors if the model parametrisation is linear in the parameters. So, 
provided the structure in the process uncertainty is indeed of the form ( 4.4), 
principal component analysis of the auxiliary model parameter vectors will de
tect this structure if the model is linearly parametrised. Note that the model 
parametrisation used by the algorithm is indeed linear in the parameters. (In 
the remainder of this chapter, reasons of computational tractability will be 
given that restrict the model parametrisation toa linear parametrisation too.) 

Structure in the model uncertainty that is known to exist from physical 
reasoning, hut that can not be expressed as an additive error with a varying 
gain, will not be found by the principal component analysis. At best only a 
linear approximation to the structure will be found. 

One may wonder how restrictive the limitation to additive structured un
certainties is in practice. An important consequence of it is, that moving poles 
can only be described approximatingly as a structured error component. This 
kind of process uncertainty is often found in practical applications. On the 
other hand, in many practical applications reported in literature an additive 
process uncertainty is assumed, albeit an unstructured one, without physical 
or theoretical justification. As this leads nevertheless to useful control designs, 
one may be optimistic concerning the limitations imposed by the restriction to 
additive structured error components. 

If one wants to generalise the algorithm to different model parametrisations 
it should be verified what a linear relation between the model parameters means 
in terms of process transfers. Consider for example a simple second order ARX 



4.9. Step 6 & 7: estimating the error structure 105 

structure 

It is hard to think of a general reason why there should be a linear depen
dency between the model parameters if the process moves to different operat
ing points. This does not imply that no particular cases are conceivable where 
such a structure could give good results. To incorporate such structuring in the 
process uncertainty, the uncertainty description ( 4.4) has to be revised. Many 
other changes to the algorithm would be necessary as well. 

In section 5.8 an example is given in which a different uncertainty descrip
tion can be used with relatively small adjustments to the algorithm. 

The centra! model is introduced into the algorithm because of remark 4.6 
on page 103. This remark stated, that the samples of a stochastic process 
analysed by principal component analysis should have a mean value of zero. 
This makes it clear that the parameters of the centra! model should be taken 
equal to the mean of the parameters for each operating point: 

(4.23) 

Following the interpretation outlined above, the set of fl(Jw := (}w - (Je, w E 
W is now a set of samples from a zero mean process. Collecting these samples 
in the columns of a matrix X as in (4.20), the principal components are given 
by the columns of the matrix U in the singular value decomposition ( 4.21) of 
x. 

How many principal components to use is not easy to teil. The singular 
values can be taken as a first indication. If there is a sharp drop and then 
a stabilisation to an approximately constant level in the sequence of singular 
values, the location of the drop is likely to be a good value for the number of 
principal components. The variation beyond this number can be ascribed to 
"noise effects," which would translate in this situation to variance errors in the 
model parameters. In practice however, there are probably too few operating 
points for which we have experimental data to be able to see such a clear 
pattern. A more pragmatic approach would be to take a number of principal 
components of the order of the number of operating points first and check 
whether decreasing this number inflates the resulting unstructured error ll. 
As long as this is not the case, one can safely reduce the number of structured 
error components. In section 4.12 it will be argued that "the more the better" 
need not apply to the number of principal components. See remark 4.15 on 
page 132. 

Once the number n 8 has been determined, the parameters OA,i, i E ns 
are defined to be the first n 8 columns of U in the singular value decomposition 
X = U~vr. Using the model parametrisation (4.3) this results in the transfers 
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Example (Contmued from page 101): In the simulation example with only 
two operating points the problem of determining the error structure reduces to 
a somewhat trivia! situation. For two operating points one can use either zero 
or one structured error components. Moreover, it holds . 

so that the structured error component, jf it is used, is aligned with the differ
ence between the auxiliary models for the two operating points. 

(Continued on page 109.) 0 

4.10 Step 8: translating data and prior knowl
edge 

The experimental data and prior knowledge listed in section 4.4 will now be 
translated toa set of linear constraints on the parameter vector 6. The results 
presented here were published earlier in (Hakvoort, 1994, chapter 4). Com
putational details were presented in appendix 4.C of that reference. Readers 
familiar with these results can skip this section. 

The translation will consist mainly of an extension of the noise bound ( 4. 7) 
and of the cross-covariance bound (4.9). The parameter bounds (4.5), possibly 
estimated following section 4.8.3, need no further translation. 

4.10.1 Extended noise bound 

Construct set of linear constraints ................ , . , ... , . p. 106 
ii,li,.M,p,b•(t) 
Exteml noise bound .... , ... " ............. " .. " ...... " .. p. 106 

~
< ê(t): (unextended) noise bound. l'· 82 
> it(!): înllnence of basis k + 1 to k, no transient p. 107 
> b(t): transient of basis O tok p. 107 
> J: influence of basis k + 1 and higher, incl~ transient p. 108 
> - G"(ç)"(tJI $ ë.(t) :~ ê(t) + IÎ(t) + b(t) + li p. 108 

···i' 

'" 1 
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Introduce the noise-free process output for data set d, d E 1>(w): 

'Vt E Td Yfr(t) := yd(t) ed(t) 

Based on ( 4.6), we have 
00 

qESk=O 

Consider for a moment the case of a single inputi single output system, so that 
we can drop the superscript a and the summation over S. We will also drop 
the superscript don the signals u and y. We thus have for all t E Td: 

00 

Ytr(t') = LOtr,kBk(()u(t1) 
k=O 
00 00 

= L Otr,k L bk(r)u(t' - r) (4.24) 
k=O r=O 

This involves basis functions that are not incorporated in the model and also 
values u(t) are used fort< 0, which we do not have in our data set. (4.24) can 
be split into four components as follows 

k t' k t' 

Ytr(t') = L Otr,k L bk(r)u(t1 
- r) + L Otr,k L bk(r)u(t' - r) 

k=O 

k 00 00 00 

+ L Btr,k L bk(r)u(t1 - r) + L Otr,k L bk(r)u(t' - r) (4.25) 

where k E IN, k ;::: k is a parameter that can be manipulated to infiuence the 
conservatism introduced in the following steps. 

Now consider the second term in the right hand side of ( 4.25) (or rather its 
absolute value): 

k t' k t' 

L Otr,k L bk('t)u(t1 
- r) < L Bk L bk(r)u(t' - r) =: à(t') (4.26) 

r=O 

For all t ET, a(t) can be calculated with a finite number of calculations. The 
third term can be bounded as follows 

t. e"" J;_, b, ( r)u(t' - r) :S t. ii• IJ;_, b,(r)u(t' - ~)1 <; 

:S t, ii, j;;}•(r)IU = ut. ii, (llB,( ()111, t, lb,( r) 1) =' b(t') ( 4.27) 



108 An algorithm for structured and unstructured error bounds 

This can be calculated to any desired accuracy, see for example Fialho and 
Georgiou (1995). The results in this reference are derived for uncertain linear 
systems but can easily be reduced to the case of a single known linear system. 
The last term o( (4.25) requires unfortunately use of conjecture 4.2 on page 77 
with p taken equal to 0: 

00 ~ 00 00 

L Otr,k L bk(r)u(t - r) < L ëk L lbk(r)lum ::; 
T=O 

00 00 

Um L Ökl1Bk(()llt1 ::;um L Ó1i (c~ +c~-/k) =:Ó (4.28) 
k=k+l 

where um := max{ü, lu(O)I, lu(l)I, ... , lu(t)I} and ei and c~ are taken such that 
for all k 

< c1 + c1 v1k - 1 2 (4.29) 

c1 and c2 are chosen according to conjecture 4.2, p 0 .. Calculation of (4.28) 
involves summations of the form 

00 

:E pk-/k 
k=ko 

For this infinite sum, no analytic expression is known. It can be calculated to 
arbitrary accuracy however using 

k1 00 k1 00 

:E l-lk < :E lik< :E lik+ :E pkk 
k=ko k=ko k=ko 

The last term can be calculated analytically and can be made arbitrarily small 
by taking ki sufficiently large. 

The necessity to rely on a conjecture makes the foundation for the latter 
bound not rock solid. However, we will show later that in practice there is no 
risk that the bounds based on (4.26), (4.27) and (4.28) will be too optimistic. 

The noise bound ( 4. 7) can now be extended: 

k t' 

Ytr(t1) - L Otr L bk(r)u(t1 
- r) < 

k=O r=O 

k t' 

::; 1Ytr(t1) - y(t1) 1 + y(t1) - L Otr L bk( r)u(t1 - r) < 

::; ë(t') + à(t1
) + b(t') + 0 =: ëe(t') (4.30) 



4.10. Step 8: translating data and prior knowledge 109 

(The bound (4.30) accounts for effects of noise, undermodelling and unknown 
initial conditions. Following the terminology introduced in (Hakvoort, 1994), 
this will be referred to collectively as the extended noise bound.) For every 
t E 'II', (4.30) corresponds to two linear constraints on Btr: the upper and lower 
bound. The model parameters in () should obviously obey the same constraints. 

If the truncation value n would not have been introduced, or if it is taken 
equal to k, the only extension of the noise bound is actually through the value 
of 8. It is clear that this must be a very conservative bound. It does not depend 
on t for example, so that the influence of unknown initial conditions does not 
die out. The unknown initial conditions that are accounted for by b do die out 
for increasing t. Also the inputs that are known are not used in 8, except for 
possibly increasing the value of Urn· 

For multiple inputs, each input gives a separate a(t), b(t) and 8. These 
contributions should all be added to ë(t) to yield the proper ëe(t). For multi
ple outputs, the calculations should be carried out for each output separately. 
This is possible, because transfers to different outputs are parametrised inde
pendently. 

Example (Continued Erom page 106): Table 4.1 gives an excerpt of the values 
of the signals [Bk(()ua](t), i.e. the values of the input signals of data set a after 
filtering by the kth basis function, where k = 0, 1, ... , 9. From this table 
follows, that the following constraints on the model parameters are part of .qj: 

0.0163 ·Bo + 0.4504 · Bl + · · · - 0.3382 · Bg :::; -0.2358 + 3.1364 

0.0163 · Bo + 0.4504 · B1 + · · · - 0.3382 · Bg ~ -0.2358 - 3.1364 

-1.2871 · B0 + 0.4330 · B1 + · · · - 0.8529 · Bg :::; -0.1864 + 3.1364 

-1.2871 · Bo + 0.4330 · B1 + · · · - 0.8529 · Bg ~ -0.1864 - 3.1364 

-1.5533 ·Bo+ 0.0095 · B1 + · · · - 1.3874 · B9 :::; -1.4514 + 3.1375 

-1.5533 ·Bo+ 0.0095 · B1 + · · · - 1.3874 · Bg ~ -1.4514 - 3.1375 

(Continued on page 119.) 0 

Table 4.1: Filtered inputs, output and extended noise bound 

t [Bo(()u](t) [B1(()u](t) ... [B9 (()u](t) y(t) ee(t) 

400 0.0163 0.4504 ... -0.3382 -0.2358 3.1364 
401 -1.2871 0.4330 ... -0.8529 -0.1864 3.1364 
402 -1.5533 0.0095 ... -1.3874 -1.4514 3.1375 
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4.10.2 Extended cross-covariance bound 

····I'-
.. p. 

1 Construct set of linear constraints " ........... " ....... ""p. 106 

. !--< 
Extend cross-covru:iance hound .................. , .......... p. 110 

~
< ët, re(t): (tmextended) cross-covariance hound p. 83 
> d(f): basis function k + 1 tok, lruown inputs p. 111 
> /(f.): basis fnnctiou k_+ 1 to kê inputs u(-Ï) to u(-1) p. 111 
> fi1(f): basi.•functionk+l tok, 

inputs u(-t -1) to u(-oo) p. 111 
> ó2 (f): basisfnnction k+l and higher, all inputs p.111 
> IE, r1(t)(y(!) - G9(()u(t))i 

$ tl(f) + /(f) + 81(C) + ó2(l} + ë,,.ffJ p. 112 
> c;;: set of line ar constraints on (J for every operath1g point 

j : ~ : i 

For the cross-covariance bound ( 4.9) we have the same problems as for the 
noise bound (4.7): the model contains only a finite number of basis functions 
and we do not have access to inputs prior tot= 0. The solution is also similar. 

Consider first the single input, single output case. Choose truncation values 
k ?:. k and i E IN. Then 

Td-1 Td-1 Td-1 oo oo 

L c:(t)rt(t) = L y(t)r1(t) - L rt(t) L Btr,k L bk(T)u(t - T) 
t=O t=O t=O k=O r=O 

Tá-1 k Tà-1 t 

L y(t)rt(t) - L Btr,k L rt(t) L bk(T)u(t - T) 
t=O k=O t::::O r=O 

k Tà-1 t 

L Btr,k L rt(t) L bk(T)u(t - T) 
k=k+l t=O 

k Td-1 t+i 

- LBtr,k L rt(t) L bk(T)u(t-T) 
k=O t=O r=t+l 

k Td-1 00 

- L Btr,k L rt(t) 'E 
k=O t=O r=t+t+l 

co Td-1 00 

- L Btr,k L rt(t) L bk(T)u(t - T) (4.31) 
t=O 

The various terms of the right hand side will be bounded similarly to the 
situation in the previous section. The third term is treated first: 
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k Td-1 t 

L Otr,k L re(t) L bk(r)u(t - r) < 
t=O r=O 

k Td-1 t 

< 2: ëk L re(t) L bk(r)u(t - r) =: d(l). (4.32) 
k=k+l t=O r=O 

For the fourth it is found 

k Td-1 t+i 

LOtr,k L re(t) L bk(T)u(t -T) < 
k=O t=O 

k Td-1 t+t k t Td-1 

::; L ih L ri:(t) L bk(r)u(t r) ::; L iJk L L re(t)bk(t + r)ü 
k=O t=O r=t+l k=O r=l t=O 

k t Td-1 

üLiJkL l:re(t)bk(t+r) =:f(P) (4.33) 
k=O r=l t=O 

and for the fifth 

k Td-1 oo 

L Otr,k L rt(t) L bk(r)u(t - r) < 
k=O t=O r=t+t+l 

k Td-1 oo k Td-1 oo 

::; L iJk L re(t) L bk(r)u(t r) ::; L êk L h(t)I L lbk(r)!u 
k=O t=O k=O t=O 

The sixth finally can be bounded by 

00 yd_l 00 00 yd_l . 00 

L Otr,k L ri:(t) L bk(r)u(t r) ::; L iJk L h(t)I Llbk(r)lum 
k=k+l t=O r=O k=k+l t=O . r=O 

oo Td-1 

::; Um L Ök (ei+ c~v'k) L hCt)I =: Ö2(l), (4.35) 
t=O 
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where Um max{ü, lu(O)I, lu(l)I, ... , lu(k)I} and ei and c~ are chosen accord
ing to ( 4.29). We already had the prior knowledge that 

Td 
1 

r;:;q L t:(t)re(t) :; ëe 
vT~ t=O 

Rearranging (4.31) and substituting (4.32) - (4.36) gives 

Td Td k t 

LY(t)re(t) - L re(t) L Btr,k L bk(r)u(t - r) < 
t=O t=O k=O 

(4.36) 

5 d(l) + f(f) + 81 (l) + 82(f) + ëtVTd (4.37) 

This is the extended cross-covariance bound for a single input. In the 
multiple input case, every input gives a separate d( l), f ( l), 81 ( l) and 82 ( l) 
that should . be added to the cross-covariance bound to obtain the extended 
cross-covariance bound. In case of multiple outputs, calculations have to be 
repeated for each of the outputs. Here the independent parametrisation of 
different outputs is used again. This gives finally for every signal rf(t),l En~ 
and for every output two linear constraints on the model parameters. 

4.10.3 Esümating prior information 

This section is similar to section 4.8.3. The objective is now to find c~ and ~ 
for all a E S, solving 

subject to 

k 

minimise L jci + c~Vk - llBk(()lle1 1 for c~, c~, (4.38) 
k=O 

Vk=O, .. "k c~ +c~Vk2:: llBk(()lle11 

ei 2:: 0, c~ 2:: 0. 

(4.39) 

( 4.40) 

The resulting c~ and c~ can then be used as estimated values for ei and c~ in 
(4.29). 

The rationale bebind this optimisation is similar to that of (4.17). The 
absolute value can be dropped from (4.38) because of (4.39). k will in general 
be taken equal to k(J', though any other sufficiently large value can be used 
instead. As in section 4.8.3, this optimisation has to be performed for every 
subtransfer in S. 
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4.11 Step 9: bounding the local structured er
ror 

' l 

f- Bound errors locally .. " " " ..... . """" ... p.113 
i··· 
! trn:-~li ::F '. ~: p,ut:; , . . . . . · 1'· 

r 
Bound structured errors .. " ..... " .. "". "" ... · I'· 113 

t> il'!':= n1axe•et:; (IJA,1 JIJ' ê)e",,, 
upper bound 011 ith

1
st"!ctuxed compouent p. 114 

> !lt := min,,•eci (eA" 1 e -IJ) llA,i: 
lower bound on ith structured component p. 115 

' Ü1 

With local structured error is meant the components óiAi, i E ns in (4.4), 
considered in an operating point w E W. Local lower and upper bounds on 
ói will be derived. These will be denoted 4't: and d!f, respectively. The local 
errors will be combined in section 4.13 to the global bounds d.i and Ji of (4.4). 

Let ii contain those expansion coefficients of the nominal model ê that 
correspond to basis functions incorporated in the model parametrisation. This 
does not contradict our earlier claim that ê need not be expressed in the 
parametrisation of section 4.3.2. It is still allowed that 

The expansion coefficients corresponding to the tail of the basis need not be 
zero for G. 

In figure 4.10 a somewhat simplified situation is drawn. The parameter 
vector consists of two elements only. The two unit vectors lie along the axes 
of figure 4.10. The set of linear constraints C'tf is represented by a polytope 
containing all points that satisfy the constraints. There is one structured error 
component having a parameter vector 9 A,I · In this two dimensional example, 
the orthoplement of (} A,1 can be spanned by a single vector 9*,1. In practical 
cases, the orthoplement will be of higher dimension, corresponding to a hyper 
plane in the parameter space. 

It is known through the construction of C'lf that the true expansion coeffi
cients of Gtr (or rather those that are incorporated in the model parametrisa
tion) lie within C'tf. For an arbitrary model in C'IJ, denoted by 91

, the difference 
between this model and the nominal model fJ can be decomposed into a com
ponent along the structured error component 9 A,1, corresponding to the vector 
o;

1
, and a component perpendicular to () A,1, indicated by the vector ()~. The 
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C'tf -- fl\o~ 

9~\ 

Figure 4.10: Bounding of structured error components 

vector Oj1 is given by the equation 

As the model parametrisation is linear in the parameters, this means that the 
model G91 can be written as 

where 6.(() accounts for uncertainty in the direction perpendicular to (}A,I 

and for uncertainty due to the tail of the basis. See also remark 4.9. As for 
any (}1 E C"IJ, the gain factor for the structured error component is equal to 
( (J A,1 1 91 9c), the largest gain factor that can be encountered for a 91 

E C(j 
is 

- (o 18A1) + max (9' 1(JA1) =: dw1 
' 8'E.C0 ' 

( 4.41) 

If there are more than one structured error component, the bounds on the 
gain factor for the ith structured error component, i E n 8 , can be found by 
substituting 9A,i for 8A,1 in (4.41). This is possible due to the orthogonality 
of the 9 A,i· An upper bound on 8i is thus given. locally by 

\:/i E n 8 , w E W (};f := - (o 18A,i) + 8~q (9' l 9A,i) (4.42) 
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For all i and w, this constitutes a linear programming problem. 
The lower bound r.1.11!, i E n 8 , w E W can be found completely analogously: 

. 'r/i E ns, w E W 4i := (81 (JA i) + min (9' 1 (JA i) 
' 9'EC9 ' 

(4.43) 

In case the (} A,i are given by the user, they may not constitute an orthonor
mal set of vectors. This situation will be treated in section 5.7. 

Remark 4.8 In the previous derivation, a sealing factor in parameter space 
could be used as a gain factor. As was mentioned, this was possible because of 
the linear parametrisation of the model. This is the most stringent reason why 
the model should be linearly parametrised. D 

Remark 4.9 In the example given in figure 4.10, it was mentioned that Ll(() 
accounted for the uncertainty in the tail of the basis. The tail of the model G9 1 

is equal to zero. Therefore this uncertainty amounts in this particular case to 
à - G ir For the true system, the tail is in general not equal to zero. D 

Remark 4.10 If 0 f/. [di, Ji] for some i E n 8 , the nominal model is not con
sistent with the data and the prior knowledge. The nominal model is only 
consistent with the data and prior knowledge if ói = 0 for all i E n 8 and Ll =. 0 
turns out to be an element of the uncertainty description (4.4), which is clearly 
not the case in the aforementioned situation. This need not be alarming, as the 
nominal model is supposed to "resemble" the process in all operating points. 
This accounting for all operating points may cause so much bias in the nominal 
model in an operating point that it is not consistent with the data and prior 
knowledge in that particular operating point. This does not imply that the 
nominal model is a bad approximation of all operating points. 0 

The maxima and minima in ( 4.42) and ( 4.43) exist, provided C(/ is not 
empty: Frorn the definition of C1/} is clear that it is a closed set. It is also 
bounded, provided the data sets in '.D( w) contain sufficient samples, because the 
model parameters in CYJ can not grow without bounds without violating sooner 
or later the extended noise bound ( 4.30). This follows from the independence of 
the basis functions. If the basis functions were not independent, a combination 
of basis functions could be cornpensated by another combination. Orthonormal 
basis functions are independent provided the time interval that is considered 
is long enough. Having established that Cë is closed and hounded, taking into 
account that the function to be minimised is continuous and assuming that t::; 
is not ernpty, the maxima and minima exist. , 

If the prior knowledge is estimated according to section 4.8.3 and 4.10.3 and 
the considered time-interval is long enough in the sense explained previously, 
the set CYJ is not empty, because the auxiliary model for an operating point 
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satisfies all constraints for that operating point. C't/ therefore has at least one 
element. If prior knowledge was gathered in another way, there may be some 
inconsistency in the prior knowledge and experimental data. This can make C'IJ 
empty. The mi!!-ima and maxima in ( 4.42) and ( 4.43) will not exist. This can 
be detected easily, as the solver for the linear programs will report an infeasible 
problem. 

4.12 Step 10: bounding the local unstructured 
error 

After bounding the structured errors locally, now the remaining unstructured 
errors will be bounded locally. Results will be developed for bounds in fre
quency domain and time domain. The frequency domain bounds are more 
involved than the time domain results, so the former will be used to explain 
the procedure in detail. The time domain procedure will then be adapted from 
the frequency domain procedure. 

The procedure is presented first in frequency domain without considering 
the structured error components. These results, and the results in time domain 
without structured errors, come from (Hakvoort, 1994, section 4.4 and 4.5). 
Then will be explained how the structured error components can be removed 
from ~. Finally, the time domain procedure is presented. 

4.12.1 Structure-less frequency domain procedure 

,,,;,.·:, 

d"''''"t:• 
Bound errors locally ................ " ..... " ... " ......... p. 113 

nm:r.u,n.·.:t•·,l ~:nr.;-,.. ,., ,;:::," 
Ihmnd ~trnci-ur~d ,·n\E:;;; .. , ....... , . • .. 
Bound unstructured error in frequency domain .... !>· 116 

ei0• ,l = 1" .. ,m: set óf dlrecl:lons in complex plane J>· 117 
!l = {w;}: discrete set of frequencies p. 117 

> fei(w,) = ~·ec: Re((Gp;g•(eiw,) Ö.l.(&w<))e-10•) 

uncertainty in diTection &"' för frequency w, due to 
param. nncertainty not covered by struct. error p. 128 

> fi.(w;): error due to tail of basis J>. 118 
> P:,.(w;): uncertainty region in complex plane determlne<I 

by iit(w;) and fi.(w;) I" 128 
Bound the interpolation p. 130 

B-o\t.nd m1~;1.rth't.î!rt'd (·rr(,t' : ';,, 
- . \'· i·P) 

The aim of this section is mainly to translate the linearly constrained set of 
model parameters C"/j to uncertainty regions in the complex plane. The uncer
tainty regions will contain the unknown true frequency response of ~ on a grid 
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a) 1'...,, bounded in the direction ei4>t b) 1'w; bounded by an explicitly 
known polytope 'Pm(w;) 

Figure 4.11: Bounding Pw; 
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of frequencies. For every frequency in this grid there is a separate uncertainty 
region. These regions can be translated toa (weighted) 1l00-hound on 6. by 
bounding the interpolation error between consecutive frequencies on the grid. 

The procedure discussed here works only for SISO transfers. Therefore it 
has to be repeated for every sub-transfer of a MIMO transfer. Every element in 
6. is consequently bounded separately. For notational convenience, superscript 
w for the operating point and a for the sub-transfer will be dropped in this 
section. 

Frequency response uncertainty regions on a. frequency grid 

Let n := {w1, ... ,Wnn} where nn E Z+ and W; €IR, i E no. Consider the 
polytope in complex plane 

Pwi := {Ge(ejw;) -G(eiwi) l 9 E .Ce} 

This polytope is completely determined by the model parametrisation, G, .C9 

and w;, hut unfortunately finding all vertices of Pw, would require traversing 
all vertices of Ce. This involves a computational load that gets out of hand 
very quickly. 

However, Pw, can be bounded in the direction eJ<l>t by calculating 

( 4.44) 

Once again, this is a linear programming problem. Figure 4.lla depicts this 
situation. The dashed line indicates the direction eiifJt. Because obviously for 
x E .Ce 
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the polytope P w; contains no points in the half plane indicated by the shaded 
area. This procedure can be repeated for a number of directions </>t, l E m. 
The intersection of all half planes that do contain elements of P w; is agaîn a 
polytope, hut this polytope has only a number of vertices less than or equal 
to the number of directions <Pt that have been investigated. Such polytope will 
be denoted Pm(wi)· Figure 4.llb shows a situation in which m 8, leading 
to an outer bounding polytope with 8 vertices. In practice, if a number m of 
directions is investigated (m 2'.'. 3), </>t is taken equal to 

,1. _ ej2(L-1)7r /m 
'f'l - ' lEm 

The polytope P w, does not necessarily contain the true response of ~: . the 
tail of the basis has not been taken înto account. Choosing a truncation value 
k ;:::: k, the contribution of the tail in a direction </>e can be bounded as follows: 

00 

L Otr,k Re (Bk(ejwi)e-Nt) < 
k=k+l 

k 00 

< L 9tr,k Re (Bk(ejw•)e-Jtf>t) + L Btr,k Re (Bk(ejw;)e-Jtf>t) < 

m~ jBk(eJw 1 )j can be calculated easily because of property 4.1. 
k>k 

The true response of~ can now be bounded toa polytope Pm(w;), charac
terised as follows: 

( 4.46) 

Remark 4.11 A possibly tighter upper bound can be obtained instead of 
( 4.45) by using 

00 

L lhr,kRe(Bk(ejw,)e-itf>t) < 
k=k+l 

k 00 

< L Btr,kRe(Bk(eiw•)e-jtf>t) + L Btr,kRe(Bk(eJw;)e-Nt) < 
k=k+l k=k+l 



4.12. Step 10: bounding the local unstructured error 119 

For consistency with later uses of µ(wi), this is not used here. D 

Remark 4.12 We deviate slightly from (Hakvoort, 1994) in (4.45) by taking 
maxk>k IBk(eiw•)I instead ofmaxk>k llBk(()llH,,.,· This is less conservative and 
easier to calculate. 0 

Example (Continued Erom page 109): In table 4.2 the transfer function of the 
nomina] model G and some of the basis functions used in the example are listed 
for w' 0.01166. 

Table 4.2: Some transfer function values for w1 = 0.01166 

f J (eiw') 

Bo 1.0000 
B1 5.9302 l.3847j 

B9 -4. 7933 + 3. 7562j 

à 27.1152 - 11.4840j 

Suppose now m = 8, i.e. the outer bounding polytopes have at most eight 
vertices. For the set {e-i<Pt}L1 is taken {l,7f, -~i,-1, -V1'i,j,*2}· 
The linear programming problems that need to be solved to determine Pm(w1

) 

are 

ma:x:imise 

and 

1.0000 ·Bo+ 5.9302 · B1 + · · · - 4.7933 · 09 - 27.1152, 

0.7071·Bo+3.2142 · B1 + · · · -- 0.7333 · 89 - 11.0529, 

- 1.3847. 01 + ... + 3.7562. 09 + 11.4840, 

-0. 7071 ·Bo - 5.1724 ·Bi + · · · + 6.0454 · B9 + 27.2937, 

-1.0000 ·Bo - 5.9302 · fh + · · · + 4.7933 · ()9 + 27.1152, 

-0.7071 · Oo - 3.2142 · ()1 + · · · + 0.7333 · B9 + 11.0529, 

1.384 7 . fh + ... - 3. 7562 . B9 - 11.4840 

0. 7071 · 00 + 5.1724 · 01 + · · · - 6.0454 · 09 - 27.2937, 

subject to 

[Oo,81" .. ,09( E Ce. 

The solutions to these linear programming problems provide the values for 
P,i(w1

), f, E m. Calcufation of (4.45) or alternatively (4.47) yields values for 
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µ(w1
). The results of these calculations are shown in ngure 4.12. The arrows 

in this flgure indicate the direction eJ<l>t, f E m. The length of an arrow is 
equal to the corresponding value of flt(w1

) + P,(w'). The polytope Pm(w') is 
determined frorr:i these arrows, as indicated in ngure 4.11 on page 117. 

( Continued on the next page.) D 

Weighting, frequency domain interpolation error 

The frequency response uncertainty regions Pm(w), w E n will now be trans
lated to an 1l00-norm bound on the weighted unstructured error. In other 
words, a value dt;. is sought, such that 

( 4.48) 

where W ( () E 11.00 is a known, stable weighting function. 
The bound (4.48) introduces minimal conservatism if W(() is chosen such 

that IW(eiw)D.(eiw)I is an approximately constant function of w, equal to df!>.. 
The maximal value of jó.(eJw)I is already known for w En from the results of 
the previous section. One can try and fit IW(eJw)l-1 to these values for w En, 
while still obeying that W(() E 1l00 • This problem will not be discussed 
further. 

Let {vk(wi)}r=1 denote the set of vertices of the polytope Pm(wi). For 
simplicity we assume that this polytope has m vertices. In case this polytope 
has less than m vertices, only trivial modifications need to be made. Because 

0.2 

0 

-0.2 

-0.4 

-1 -0.5 0 0.5 

Figure 4.12: Determining Pm(w') Erom fle(w1
) + P,(w') 
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.6.(wi) E Pm(wi) it holds 

\:/w En IW(eiw).6.(eiw)I ::::; max IW(eiw)vk(w)I =: Óu(w) 
kEnt 

( 4.49) 

This bounds the value of W(eJW).6.(eiw) on the frequency grid n. 
At this point it is interesting to consider the situation that for some Wi E n 

it holds 0 </. Pm(wi)· This means that the nominal model is not consistent with 
the data and the prior knowledge. This does not mean that the nominal model 
is useless. It does mean that the frequency domain uncertainty bound will be 
very conservative for this frequency, as only the largest distance to the origin of 
the polytope Pm(wi) is retained. This situation is drawn in figure 4.13, where 
for simplicity W has been taken equal to the identity. The darkest shaded 

Figure 4.13: Conservatism in the frequency domain bound 

area is the polytope P w,. This corresponds to the set of linear constraints C,9 
augmented with a bound for the effect of the tail of the basis. This possibly 
complicated polytope is outer bounded by a polytope Pm(wi) where, in the 
situation of figure 4.13, m = 8, which is represented by the lighter shaded area. 
The information in this polytope is finally summarised to its largest distance 
to the origin, indicated by the light shaded disk. 

Example (Continued Erom the Eacing page): The vertices {vk(w')} are indi
cated in figure 4.12 by a 'o'. The vertex having the largest distance to the 
origin, i.e. the one determining Óu(w'), is indicated by an additional '+'. Note 
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that the vertex determining Óu(w') is independent of the value of W(ejw'). 
(Continued on page 129.) D 

The bound (4.49) is extended toa bound for all frequencies by interpolat
ing between the frequencies in 0. Basically a bound fJ on the derivative of 
W(ejw)~(eiw) is derived, such that 

This is achieved by theorem 4.4.8 of (Hakvoort, 1994). The theorem is restated 
here to facilitate the exposition of the adaptations that need to be made later 
to account for the structured error components. The basis of this theorem is 
the observation, that 

dW(eJw)~(ejw) 
--------= 

dJJJ 
dW(ejw) G (eiw) W( jw) dGtr(eiw) _ dW(ejw)G(eJW) 

dJJJ t" + e dJJJ dJJJ , ( 4.50) 

from which follows through elementary manipulations that 

Vw E lR 1 dW(eJw)~(éw)1 < dW(z)G(z) + 
dw - dz 

1-loo 

+Il d~~z) t= llGtr(z)llH00 + !IW(z)!IH00 Il dG:iz(z) 111-l= (4.51) 

Supposing for a moment that values fJ1 and fJ2 are available such that 

and 

(4.51) leads to 

Vw E lR 1dW(eJ2~(eJw)1 :::; 

s 11 I"~ + lld~;z) Lp,+ llW(z)ll11~fi, ~· fi (4.52) 

In the remainder of this section computable expressions for /31 and /32 will be 
derived. 

Figure 4.14 depicts a situation in which 5 frequencies have been taken in 0. 
The dots indicate the corresponding values of Óv.(w). The dash-dotted line is 
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Figure 4.14: Worst case interpolating functions 
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taken as a "worst case interpolating line." The phrase "interpolating" may be 
a bit misplaced considering the discontinuities in this interpolation. The slopes 
of the dash-dotted Iines correspond to the bound /3. The solid line which is 
drawn slightly offset could be used as an alternative interpolating function. As 
can be seen from figure 4.14, this may give a smaller interpolation error, at the 
expense of a somewhat more involved calculation. 

>.j, j E no are the distances between subsequent frequencies in 0: 

>..1 := max{2w1,w2 - wi} 

>.j := max{wi -w1-1,WJ+1 -w1}, j = 2, ... ,nn -1 

).no := max{Wn0 - Wn0 -1, 2(7r - Wn0 )} 

Using the dash-dotted lines as interpolation we find 

\;/w E IR IW(ejw)~(ejw)I ~ ~ax o"(wi) + ~Ài/3, 
iEno 

from which follows straightforwardly 

(4.53) 

Remains the problem of finding /31 and /32. A value for /31 can be found as 
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follows. Choose a truncation value k: 

Vw E IR 
1
dGtr(eiw)1 < ~ () Il dBk(z) Il < 

dw - L....t tr,k dz -
· k=O 1ioo 

The last term can be bounded using conjecture 4.2 and the fact for any transfer 
G(z) it holds llG(z)ll1l00 :::; llG(z)lle1: 

00 00 00 

= L Ök L rlbk(r)I:::; L Ök (c1 + c2kv'k) 
k=k+l r=O k=k+l 

Here c1 and c2 have been chosen such that 

00 

L rlbk(r)I :::; c_1 + c2kVk 
r=O 

The values of c1 and c2 can be estimated similarly to the values for c1 and c2 
in section 4.10.3. Simple combination of results gives 

A value for (32 can be obtained by using a procedure similar to the one used 
to bound llW(z)~(z)llHoo: Let v~(wi), Wi En be the vertices of the polytope 

Pm(wi) + G(ejw,) 

and let ó~(wi) be defined similarly to Óu(wi) as 

then 
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4.12.2 Removing structured error components in 
frequency domain 

Bound errors locally ............ " .. " " .... " ... " " " ..... p. 113 
Split parameter uncertainty in structured and 
unstructured parts ...................................... p. 125 

t
< ê,ê: nomina] model, vector ofits first k expansion 

coefficients in basis bk 
> (8A.i l 81 -ê) 8A,i: ith structured component for arbitrary 81 

> P: projection onto span of 8 A,î p. 128 
> Pl.: projection onto ort.hoplement of span of 8 A,i p. 128 
> pl.(81 

- ê): unstructured error component in 81 

> G.L = G - G piJ: uominal model with structured error 
directions removed p. 126 

Üdtt ,_[ :;.u,~t-r:1:.1,~tre,:l ,:i1-rt~r ·ir: frurn.n1<. y dom :it; . 

Lonnd un::=-.r!i,·~.=!t~·!J, i:n·~;r j.::.::. jr::(' dnmttin . 
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The procedure in section 4.12.1 did not take the structured error components 
into account. Obviously this should be clone, as otherwise the structured error 
components make the process uncertainty needlessly bigger. 

As all results in section 4.12 are local results, the results in this (sub )section 
apply in an operating point. 

Frequency response uncertainty regions on a frequency grid 

The adaptation of ÎJ,i ( w;) as defined in ( 4.44) on page 117 is considered first. 
Recall that fü(w;) bounded the uncertainty in Gtr(eiw;) resulting from the 
uncertainty in the model parameters of Gtr, in a direction ei<Pt. The uncertainty 
due to the tail of Gtr was bounded by p,(wi). 

Let Ótr,i be defined as 

Vi Ens Ótr,i := (oA,i 1 Otr -9) (4.54) 

where 0 contains the parameters of ê as discussed in remark 4.9 and Otr con
tains the true process parameters, i.e. the expansion coefficients of the linear 
manifestation of the process in the operating point that is considered (the su
perscripts w are still dropped.) Suppose that the structured error components 
were known exactly. More precisely, that for each i E n 8 the true value of Ói, 

given by Ótr,i defined above, are known. The values of Ótr,i are collected in a 
vector 

Ötr := [c5tr,1, · · ·, Ótr,n,]T. 
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For further notational convenience the values Ji, i E ns are introduced 

as well as the nominal model without any components in the directions () A,i, 

n. 

êj_(() := ê(() - L JiAi((). 
i=l 

By construction of 1:,9, the model parameters of the true system are known 
to lie within the polytope defined by L9. If the values of Ót,,. are known as well, 
the model parameters of the true system are within the subset of 1:,9 given by 

(4.55) 

In figure 4.15 an example is drawn for three-dimensional parameter vectors 
0. The set 1:,9 is indicated by a polytope. The light shaded area inside the 
polytope corresponds to the set above. 

Oa = J10A,l 
()b = Ótr,l () A,l 

()c = () - (Ótr,l + J1)0A,l 

Figure 4,15: Removing structured error components Erom~ 

All vectors () E J:,9(Ót,,.) have a component (ótr,i + J)OA,i in the direction 
of OA,i· These components need not be accounted for by ~((), because the 
part Jo A,i is in the nominal model and the part Ótr,i() A,i is taken into account 
by the structured error component. For any () E 1:,9 ( Ótr), only the part () -
:L~~ 1 (ótr,i+Ji)B A,i needs to appear in~((). Therefore only vectors () E C~(ót,,.) 
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are of interest for the determination of A: 

n. 

l:<otr,i + 3i)OA,i 1 

i=l 

C~ ( t5t") has the same shape as ,C9 ( t5i..), it is only translated in a direction that 
is a linear combination of the 0 A,i, i E ns such, that the translated set contains 
the origin. 

Consequently the transfers G9 a ( eiw) for 0 t::. E .Ce ( t5t") account for the 
uncertainty that remains in the model parameters after the structured compo
nents have already been taken care of. However, the uncerta.inty corresponds 
to the model error only to the extent that it differs from the nomina! model. 
The error in a transfer Gea (eiw) is equal to 

n, 

Gea (eiw) - G(eiw) - L Otr,iAi(eiw) = 

n, 

G8a (eiw) - Gl.(eiw) - L(Otr,i + Ji)Ai(eiw) 
i=l 

Assuming that the true system is one of the models in Ce ( t5t") the absolute 
value of A ( eiw') for some frequency w1 E IR, satisfies 

I
A(ejw')I :S max GBa(eiw)-G(eiw) 

eaE.Cs(6,~) 

n, 

L Otr,iAi(ejw) 
i=l 

= max ·1G8, (eiw) Gl.(eiw)I 
8~E.C~(.St") a 

The maximisation involved here is not a linear programming problem. In the 
same way as presented in section 4.12.1 this can be approximated by a series 
of linear programming problems 

(4.57) 

In practice one can not assume that the true system is in the model set. 
The same situation occurred in section 4.12.1. The tail of the basis has an 
effect that can be bounded by p.(w): 

00 

L Btr,k Re (Bk(eiw•)e-i<Pe) :S · · · :S [.t(wi) 
k=k+l 

( 4.45) 
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This expression can remain unchanged in the presence of structured error com
ponents: the tail of the structured error components is always zero, so that the 
uncertainty in the tail of the true system is not affected at all by the structured 
errors. 

The only problem that now remains, is that the true values for Ói, i E ns 
are not known. Let P} denote the orthogonal projection operator onto the 
complement of (9A,i)f~1 • As the 8A,i are an orthonormal set of vectors, P} 
satisfies 

n, 

P.t = I - :L: o A,io~,i (4.58) 
i=l 

The projection operator onto the span of OA,i, i E n 8 is 

n, 

PA L:oA,ioi,i (4.59) 
i=l 

The projection of Ce onto the complement of (8A,i)~ 1 shall be denoted C8: 

(4.60) 

For any value of Ót" it holds 

This implies 

(4.61) 

Combining the results obtained so far, it can be concluded that the true 
value of ~(eiw;) must lie in the polytope 

(4.62) 

This polytope corresponds to Pm(wi) for the case without structured error 
components. 

Remark 4.13 In practice, translating the set of linear constraints Ce to an
other set of linear constraints C8 is cumbersome. Fortunately, this is not 
needed. Because (4.61) is a linear programming problem, there exists a vector 
f of proper dimension, such that 
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(Actually the causal relationship is the other way round.) (4.61) can therefore 
be rewritten as 

where it was used that ( P}) * = P}. The change from Ce to C8 can apparently 
be accomplished by changing the object function in a straightforward way. D 

Remark 4.14 Another issue with respect to the optimisations is the fact that 
we may actually be dealing with a MIMO process. As the results in this section 
were derived fora subtransfer of such a MIMO process, the parameter vector 
(} used in this section was actually a subvector of the parameter vector (} of the 
MIMO model. 

For the generalisation to the MIMO case, consider the situation that we 
want to bound the uncertainty in subtransfer ( q1

, p'), ( q', p') E S. The value of 
fi'e(wi) for example would then be found for this subtransfer as 

where (}is the full length MIMO parameter vector. Only the parameter values 
og' ,p' to Bi~~~:, determine the value of the object function in this case. In the 
notation of the previous remark this means, that all elements off not assodated 
with one of these values are zero. 

This does not imply that for example the constraints 

IBfr,k 1 ::=; Ök Cl :/= ( q' 1P
1

) 

may be dropped from the calculation of P,'t_, even though these constraints seem 

to bear no relation with og' ,p' , ••• , Bi/:, . In the case of no structured error 
components this observation would hold true. In the case of structured error 
components, this is not true any more. This can easily be seen from the previous 
remark: the fact that only a subvector of f contains non-zero elements does 
not imply that only the same subvector of P} f contains non-zero elements. 
Thus the constraints on the parameters of other sub-transfers are relevant to 
the optimisations for the current sub-transfer as well! D 

Exarnple (Continued from page 122): In figure 4.16 the effect of removing 
the first structured error component from Pm(w') is shown. Similarly to fig
ure 4.12 on page 120, the arrows in this figure point in the directions eJ<l>e, e E 
m. The length of the arrows is equal to µ1(w1

) + µ(w1
). The polytope P:n(w1

) 

is determined Erom these values. The vertices of this polytope are indicated by 
o's. The vertex ha.ving the largest distance to the origin is marked in addition 
with a '+'. 
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0.6 / ' ' 0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-1 -0.5 0 0.5 

Figure 4.16: Determining P:n (w') from p/ (w') + µ(w1
) 

The polytope Pm(w') is drawn in the sa.me picture using dash-dotted lines 
for compa.rison. Its vertices are marked with 'x' signs. From this picture can 
be seen that the polytope P:n(w1

) is shifted with respect to Pm(w'). Moreover, 
the shape ofP:n(w') is somewhat different (smaller) than that ofPm(w'). Both 
effects contribute to reducing the largest distance of a vertex to the origin. 
Appa.rently the choice of the structured error component was a successful one. 

D 

Weighting, frequency domain interpolation error 

The procedure of section 4.12.1 to interpolate between consecutive w E n is 
basically followed in the case of structured error components as well. The 
derivate bound for W(z)ó.(z) needs to be extended, though. Instead of (4.50), 
the starting point of the derivation is now 

(4.52) gets an extra term {33: 
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< 
dW(z)G(z) 

dz 

(33 is a bound for 

t Ói Il dW(dzAi(z) Il 
i=l 1-loo 

which is obtained easily: 

Taking in (4.49) for vk(w) now the vertices of the polytope P:r,(w) instead of 
the vertices of Pm(w), the rest of the procedure in section 4.12.1 can remain 
unchanged. 

Influence of bad choice of structured errors 

Consider the highly simplified situation of figure 4.17. The left part of this fig

Bi,1 

Go (e3w;) 
A,1 

Figure 4.17: Example with bad structured component 

ure represents parameter space. The parameter space has only two dimensions 
in this example. Thereis one structured error component, OA,l· Consequently, 
the orthoplement of the span of 9 A,l is spanned by a single vector, 9*,1 . The 
right part shows, in a more or less worst case situation, the frequency response 
of 9 A,1 and 0*.1 . The end points of the two vectors, drawn there, are the points 
in the complex plane corresponding to GeA 1 (wi) and G9 J. (wf). Removing the 

' A 1 

structured error 9 A,l from Ce' resulting in c9' will incre~se the frequency re-
sponse uncertainty region: the polytope Ce is roughly aligned with the line 
eA,l = B*.1 · Because Got.,1 (wi) ~ -GoA,1 (wi) this means, that fora 9 E Ce 
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the contribution of G6:i.i is to a large extent compensated by that of GeA.i · 
Separating the structured and unstructured part will fail to further recognise 
this behaviour. Bath Ge:i.i (ejwi) and GeA,.(eiw•) will become large and it will 
be bidden that the true value of their sum is actually rather small. 

It should be noted, that the structured error direction 8 A,l bas been chosen 
intentionally very unfortunately in this example. 

This figure demonstrates an element of conservatism that is present in the 
derivation of the bounds d.i and Ji on the one hand and dtJ.. on the other. The 
link that may be present between the values of Oi and the worst-case value dt. 
is lost. 

Remark 4.15 Figure 4.17 can also be interpreted in another way: consider 
8 A,l and 8~,1 as two structured error components. Here the second structured 
error component becomes needlessly large, because there is a strong correlation 
with the first that is not used any more. In this picture this is mainly due to 
bad alignment of 8A,l to the dominating direction in .Ce. This situation will 
be discussed further in section 5.7. 

Obviously, any link that is present between the possible values of Si gets lost 
in the uncertainty description (4.4). As soon as this effect becomes important 
because of a misalignment of the 8 A,i to Ce, adding extra structured error 
components increases conservatism. It is therefore of major importance to 
choose the structured components properly. 0 

To avoid the inflation of the unstructured error due to the structured error 
components, we may define the polytope P::,(wi) containing 6.(w) as follows: 

P- 11 ( ·) _ {Pm(wi) in case 1 mw, - -
P:n(wi) in case 2 

(4.63) 

Either case 1 or case 2 applies, whichever makes maxzeP;:,.(wi) lzl smallest. 
It is assumed that the decision whether case 1 or case 2 applies is made 

repeatedly for every w E nn. Otherwise one could rather decide whether or not 
to use structured error components at all: deciding for case 1 for all frequencies 
and still using structured error components is pointless. Making this decision 
for every frequency separately may seem harmless at first sight. It does have 
a subtle but important consequence: the value of Si in (4.4) on page 78 has 
become a function of w now! This function assurnes one of two values for w E 0. 
It is either zero or an unknown hut constant value in [d.i, Ji]· 

This is unimportant if 6. and Oï, i E n 8 are used in µ-design. The situation 
at hand is depicted in figure 4.18. The structured uncertainty block of µ-design 
is denoted D to avoid confusion with the unstructured error 6.. The uncertainty 
block D consists of scalar factors ó1 , ... , On, and a block 6.1

• 6.' is also a black 
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w z 

G 

Figure 4.18: Uncertainty description in µ-design 

of scalars: 

tJi.n(w) 0 

tJi.'= 

0 

w represents external inputs, z controlled outputs. G is the controller to be de
signed. Ö' is a generalised plant containing the nominal model G and weighting 
filters representing the design requirements. As far as "standard" µ-synthesis is 
concerned, (Packard and Doyle, 1993) the Ói are 1l00-norm bounded functions 
of w, where they are commonly scaled such that their norm-bound is equal to 1. 
The uncertainty description (4.4) is described better by the so-called complex
real µ-synthesis, where it is taken into account that Ói is a real function of w. 
The /:Ji,.ij are complex functions of w. Complex-realµ does not use the fact that 
Ói is not a function of w at all, so if this property is lost, it is no a real loss. 

The change of Ói from real constant to real function is important if the 
frequency domain procedure is transferred to time domain. It also complicates 
bounding the interpolation error. It can be accomplished by switching be
tween the "worst case interpolating functions" that are constructed during the 
bounding of the interpolation error with and without structured errors. This 
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switching would select the smallest of the two worst case functions. This is not 
further developed here. 

4.12.3 Time domain procedure 

,,'. 'il j·. 1 

Bound unstructured error in t.ime domain ...... l" 134 

E 
W((): stable weighting filter or z/(z -1) I'· 134 
tm""": time afte:r which constant bounds a.re used Jl. 134 
s(t): upper bo11nd for W(()Ll.(t) J>. 137 

> !(1): lower bound for W(()Ll.(t) p. 139 

'I.i 

As with the frequency domain bounds, the procedure for time domain bounds 
is a procedure for SISO transfers. This means, that every element of ~ is 
bounded separately. Hence, every transfer in this section should be considered 
superscripted by a u E S. Superscripts w for the current operating point are 
also omitted. 

Signals §.(t) and s(t) will be derived, such that 

Vt E IN ~(t) :::; W(()~(t) :::; s(t) 

(The convention to denote impulse responses by lower case letters is not fol
lowed for the unstructured error ~ to avoid confusion with the gains Oi of the 
structured errors.) W(() is either a stable weighting filter or z/(z - 1). In the 
lat ter case, the step response parameters of ~ are bounded. If W ( () = 1 the 
impulse response parameters of ~ are bounded. The signals s are calculated 
for every t up to some tmax· Fort > tmax a constant value is given. 

Consider first the situation for t :::; tmax· This can be compared to the 
derivation of frequency response uncertainty regions for w E n. The problem 
that these uncertainty regions have many vertices does not occur in· time do
main: the uncertainty regions are real intervals. The uncertainty region has 
again two components, one due to the uncertain model parameters, correspond
ing to P,k ( w) and one due to the tail of the basis, similar to µ( w). Because the 
uncertainty region is a real interval we only need to consider the directions 
<P1 = 0 and </i2 = 7f. This will now be worked out in somewhat more detail. 

Let Pk(z) = W(z)Bk(z) with corresponding impulse response Pk(t). By 
convention, 9tr(t), fj(t), go(t) and ai(t), i E na are the impulse responses of 
the transfer functions Gtr(z), G(z), Ge(z) and Ai(z), i E na, respectively. It 
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holds 

Following a line of reasoning completely similar to the one leading to (4.61) in 
section 4.12.2, from this fellows 

00 

W(()~(t) :::; ift<:J W(() (g9(t) - gl-(t)) + ~ jjk IPk(t)I (4.64) 
9 k=k+l 

One can see that the maximisation is a linear programming problem by realising 
that 

In case W(() is a stable filter, the second term on the right-hand side in 
(4.64) can be bounded by using the fact that for any stable G((), it holds 

Vr E IN lg(r)I :::; llG(()ll1i= 

which can be verified easily by considering the response to the input ó(t - r) 
and using that the 1l00-norm is the i2-induced norm. Choosing a truncation 
value k ;?: k, we thus have 

00 k 00 

2:: ihlPk(t)I = 2:: ÖklPk(t)I + 2:: ëkiPk(t)I:::; 
k=k+l k=k+l 

k 00 

:::; 2:: ëkiPk(t)I + 2:: ÖkllPk(()lb-l= 

Using the sub-multiplicative property of the 1l00-norm: 
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which is computable in finite time because of property 4.1. Combination of 
results gives 

00 

For the case W(z) z/(z-1) the derivation above can not be used because 
the 1l00-norm of W(z) does not exist; W(() tl. 1l00 • This does not infiuence 
the first term in (4.64), hut the second term has to be bounded in a different 
way. The Pk(t) are in this case the step response parameters of Bk((). Two 
bounds can be formulated for the step response h(t) of a genera! transfer G(z): 

Vt E IN lh(t)I $ (t + 1) · maxIN lg(r)I $ (t + 1) · llG(()ll7i00 (4.66) 
TE 

lh(t)i $ llG(()1ie1 (4.67) 

Using (4.66) the second term on the right-hand side of (4.64) is bounded by 
s1(t) as follows: 

00 ;;, 00 

Vt $ tma:x I: BklPk(t)I = I: BkiPk(t)I + I: êkiPk(t)I ::; 
k=k+l k=k+l k=k+l 

k 00 

< I: êkiPk(t)I + (t + 1) I: OklJBk(()JIHoo $ 
k=k+l k=k+l 

k 
$ L UkiPk(t)I + (t + 1) m~ llBk(()ll11:00 L uk=: s1(t) (4.68) 

k=k+l k>k k=k+l 

( 4.67) leads to this bound: 

00 k 00 

Vt $ tmax L ökiPk(t)I I: êkiPk(t)I + I: lhiPk(t)I ::; 
k=k+l k=k+l k=k+I 

k 00 

:::; I: êkiPk(t)I + I: UkilBk(()llt1 $ 
k=k+1 k=k+l 

k 00 

$ L êkiPk(t)I + L Uk (c1 + c2v'k) =: 82(t) (4.69) 
k=k+l k=k+l 
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c1 and c2 have been chosen such (conjecture 4.2), that 

(4.70) 

Combination of results gives in this case 

Vt .$ tmax W(Ç)~(t) ~ ~~ W(Ç) (ge(t) - gJ_(t)) + 

+ min{81(t),82(t)} =: s(t) 

For t > tmax a bound is needed not involving t. It holds 

oo n, 

W(Ç)~(t) = L)tr,kPk(t) W(Ç)g(t) - L ÓiW(Ç)ai(t), (4.71) 
k=O i=l 

As 

~Btr,kPk(t)I ~ ~8tr,kllW(Ç)Bk(()il1loo 
00 

~ llW(Ç)lh-too ~~11Bk(()ll1l= Lök 
k=O 

IW(()g(t)J ~ IJW(()G(()IJ'h'.00 ~ l1W(()JIH00 l\G(()ll'h'.00 

na ns 

LóiW(()ai(t) ~ I:max{Ji, -di}llW(Ç)Ai(Ç)JJ'h'.oo 
i=l i=l 

n, 

~ llW(()ll1loo I:max{Ji, -di}JIAi(()ll1l=• 
i=l 

a conservative bound for ( 4. 71) is 

00 

JW(()~(t)J ~ llW(Ç)ll1loo (~~ llBk(()llHoo Luk+ llG(()Jl'h'.= + 
k=O 

n, 

I:max{di,-dï}l1Aï(()il1l00 ) s(t), t>tma.x 
i=l 

This bound does not apply in the case W(z) = z/{z 1) as llW(()ll1l= is not 
finite then. Observe that for general g(t) E h2, t > tmax 

(4.72) 
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Assume for a moment that g(r) ;::: 0, so that 

~g(r) + r=E+l lg(r)I = (~g(r) - lg(r)1) + ~ lg(r)I 

= (~g(r) - lg(r)I) + llg(t)llt1 

For L:;~Ö g( r) < 0 it holds 

~ g(T) + ,~E+, lu(r)I = (~ -g( r) lu( r )1) + ~ lu( r)I 

= (~ -g(r) - lg(r)I) + llg(t)llt1 

Now define l3 : h2 x IN -t JELU {O} 

!
I:g(r) - lg(r)I 

B(g(t), tmax) ....+ 't;::'~ 

'L-g(r) - lg(r)I if 
r=O 

Substituting the results above in (4.72) gives 

g(r) < 0 

Vt > tmax tg(r)I ~ B(g(t),tmax) + llo(t)llt1 (4.73) 

We now proceed with 

00 00 

00 k 
~ L jjk (c1 +c2Yk) + L B(bk(t),tmax), t > tmax 

k=k+l k=k+l 

where k ~kis some truncation value and c 1 and c2 are as in (4.70) . .Further 
it holds for t > tmax 

IW(()g(t)I ~ llg(t)llt1 + B(g(t), tmax) 
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ns n" 

LóïW(()ai(t) ~ l::max{di,di}(llai(t)lle1 +B(ai(t),tmax)) 
i=l i=l 

Combination of results gives the following bound for ( 4. 71): 

00 k 
IW(().6.(t)I ~ LÖk (c1 + c2v'k) + LB(bk(t),tmax) 

k=O k=O 

+ llG(()lle1 + B(g(t),tmax) 
n, 

+ L max{di, -dï}(llAi(()!le1 + B(ai(t), tmax)) =: s(t), t > tmax, 
i=l 

with c1 and c2 as in (4.70) and k 2:: 0 a truncation value. 
The derivation of the lower bound 11(t) is completely analogous. The results 

for stable W(z) are given first: 

k 

Vt ~ tmax W(().6.(t) 2:: ~~1: W(() (ge(t) - g.L(t)) - ~ Ök IPk(t)I 
9 

k=k+I 
00 

- llW(()llnoo · m~ l!Bk(()lln00 L Ök =: §.(t) (4.74) 
k>k 

k=k+I 

and 

W > tmax !1(t) := -s(t). (4.75) 

For W(z) = z/(z - 1) the results are 

and, again, 

W(().6.(t) 2:: min W(() (ge(t) - g.L(t)) 
9E.C~ 

min{s1(t),s2(t)} =: !1(t) (4.76) 

W > tmax !1(t) := -s(t). 
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4.13 Step 11: combining the local results 

. i<"<t\'1"Ily . n 

L Combine local results ........................... "." ··· I'· 140 
J, lllax~ew J;: upper bound fot ith struetured component 

minwew 4t: lower bound för ith strnctnred component 
11nio11 of all unstrnctnred bonnds 

Combining the local results from section 4.11 and 4.12 is relatively simple to 
do. The upper and lower bound on the gains Ói are 

'Vi En.., ai:= maxd1P 
wEW i 

di :=min 4 
wEW 

(4.77) 

(4.78) 

If 0 (/. [4i, di] for some i E n..,, the nominal model is falsified by the data (and 
prior knowledge): in every operating point a non-zero value for the correspond
ing Ói is required to reconcile the model with the data. 

A similar situation was discussed in remark 4.10 on page 115. However, 
remark 4.10 applied locally to an operating point. It is not surprising that the 
nomina! model is not consistent with the data and prior knowledge in an operat
ing point, as it may very well be possible that no linear time-invariant process 
exists that is consistent with the data and prior knowledge in all operating 
points. If 0 (/. [4i, di] holds globally, where the interval [d.i, cli] should contain 
all values of Ói that are encountered across all operating points, it means that 
Ói has the same sign in all operating points, so that, say G +Ai· (4i + cli)/2 
may be a better model for all operating points. This is likely to increase the 
order of G, which may be a reason for the user not to use this proposed model. 
One should however be aware, that µ-synthesis can not use the bounds 

as such; it can only handle 

which turns out to be particularly conservative in the case discussed here. 
In frequency domain one may take two different approaches for the global 

bound on ~. The simplest one is to combine the bounds d'g, 
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to the global bound 

(4.79) 

An alternative would be to derive polytopes that are valid for each operating 
point and bound the interpolation error similarly to section 4.12.2. This could 
proceed as follows: Let iiY:(w) be defined as 

Vw E W, k E m,w E 0 ji'/:(w) := (jt~)w(w) + pk(w) 

and the global iik(w) as 

Vk E m,w E 0 jj,k(w) := maxjj,):1(w). 
wEW 

The polytope 

will contain A(ejw) in all operating points. One may proceed to bound the 
interpolation error between the frequencies in n by using the derivative bound 

VwEW 

(4.53) will then give a global bound on llW(()A(()li?-t
00

• However, this will 
result in a bound not less and possibly larger than the one obtained in (4.79): 
the "worst case polytopes" over all operating points are interpolated by the 
"worst case derivatives." It may very well be, that the operating point yielding 
the worst case polytope is not the one giving the worst case derivative. (The 
reader going through the calculations involved here will probably recognise 
these somewhat vague statements.) 

Yet it may be useful to calculate the polytopes P:?i ( w). Contrary to the 
1l00-norm bound, they also contain phase information. 

The global time domain bounds are calculated similarly. Recall that 

The globally bounding signals §.(t) and s(t) are defined as 

Vt E IN §.(t) := miwn .§.w(t) 
wE 

s(t) := max ;sw(t), 
wEW 

so that 

Vw E W, t E IN .§.(t) S W(()A(t) S s(t). 

(4.80) 

(4.81) 

(4.82) 
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4.14 Influence of the choice of the basis 

Now that all calculations have been presented, it is a good time to consider the 
influence of the choice of basis generating system on the results we may expect. 

In section 4. 7 it was mentioned that the poles of the basis generating system 
should be taken close to the poles of the linear manifestations of the true system. 
From appendix B follows that this will lead to small values of f/' in the bounds 
on the model parameters 

(4.5) 

These bounds influence the size of the polytopes C1/j, w E W in various ways. 
These polytopes in turn determine the size of the local errors and through these 
of the global errors. 

The most obvious way in which (4.5) influences the size of the polytopes 
C'(j is that the constraints on the model parameters that follow immediately 
from (4.5) are some of the constraints that constitute this polytope. Ina well 
conditioned situation, these constraints should have a minor influence on the 
size of the.error bounds, compared to the influence of the constraints resulting 
from data related quantities such as noise bounds. Otherwise the rather suspi
cious situation would occur, that the experimental data hardly contributes to 
reduction of the modèluncertainty. 

Also, in the extension of the noise bound ( 4. 7) to the extended noise bound 
(4.30) and of the cross-covariance bound (4.9) to the extended cross-covariance 
bound ( 4.37) the bounds ii'k are used to bound the effect of the tail of the basis 
and of unknown initia! conditions. As a result of this the final model uncertainty 
bounds are never determined by the data alone: changing the bounds ( 4.5) will 
always change the size of the polytopes C'/j. 

Finally, the bounds on the unstructured error .ó.(() always consist of a 
component due to the uncertainty of the model parameters that is not covered 
by the structured error components and of a component due to the uncertainty 
in the tail of the basis. The latter uncertainty is also bounded by means of ( 4.5). 

One may not expect to obtain small model error bounds if the basis gen
erating system is badly matched to the true system. The values of p,,., a E S 
will be close to one, which will in turn cause a large influence of the tail of the 
system on the result.ing error bounds. This will be the case for example if the 
standard basis is used to model a system having a largest time constant that 
is much larger than the sampling interval. In this case a fast system is used to 
generate a basis for a slow system. In the reverse situation that a slow system 
is used to generate a basis for a fast system the same problems will occur. (The 
interested reader may verify this from theorem B.2 in appendix B. 
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4.15 Summmy 

In this chapter a coherent algorithm has been presented to separate the model 
uncertainty for a process operating in different operating points into a detailed, 
structured part and a less-detailed, unstructured part. The presentation has 
been such, that a complete algorithm has been described starting after experi
ments and pre-processing and ending with the aforementioned separation and 
bounds on both the structured and unstructured part. Several extensiöns, side
steps and discussions that seem interesting have not been discussed to make 
the main line of steps stand out more clearly. These digressions are discussed 
in the next chapter. 

Stripped from all technicalities, the algorithm can be summarised as follows: 
for every operating point of a process, identify an auxiliary model. Deduce 
from these auxiliary models the dominating components in model uncertainty, 
the structured error components. Bound the uncertainty of these components 
separately. The unstructured error then consists of two parts: the possible 
variation in model parameters that is not covered by the structured components 
and a part due to undermodelling. The structured error is expressed as a real 
interval in which the gain factor for an explicitly determined transfer function 
varies. The unstructured error can be expressed as a weighted 1l00-norm bound 
on every subtransfer of the unstructured error or as real intervals in which the, 
possibly filtered, impulse response parameters or the step response parameters 
lie. 

4.15.1 Requirements on the model parametrisation 

Many choices have been made in this algorithm. A choice influencing almost 
every aspect of the algorithm is the model parametrisation used. A lot of tech
nica! problems can be expected if one wants to use a different parametrisation 
than (4.3) in this algorithm: 

• It has been argued at several points that the parametrisation itself should 
be linear (as opposed to a non-linear parametrisation of linear models.) 
This is required for the translation of prior knowledge to constraints in 
parameter space and back to constraints in terms of transfer functions, 
gains or other control-related entities. It would make sections 4.10, 4.11 
and 4.12 considerably more difficult if the parametrisation were not linear. 
It will most likely result in optimisation problems that are not linear 
programming problems any more hut are even non-convex, non-linear 
problems. 

• Linear parametrisation is also required for a sensible interpretation of the 
principal components in terms of process uncertainty. Although principal 
component analysis will give a set of dominating directions for · any set 
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of parameter vectors corresponding to the different auxiliary models, one 
should ask oneself what information these components contain regarding 
the process uncertainty in case of a non-linear parametrisation. 

• Further it was used several times that different subtransfers are para
metrised independently. This was used mainly during the translation of 
the prior knowledge to a set of linear constraints on the model parame
ters. It was used to break the computational problems into sub-problems. 
It also made it possible to split the estimation of a MIMO model into the 
estimation of several MISO models in section 4.8. It would not be too 
difficult to change the algorithm such that this feature of the parametri
sation is not required any more. 

• Finally, it was used that 

and 

k=k 
00 

L fJ"ljBk((}ll'l-loo l 

k=k 
00 . 

L Öki1Bk(()llt1 
k=k 

00 00 

L Uk 2.: rlb"(r)I 
k=k r=O 

can be calculated or at least bounded in finite time for the chosen model 
parametrisation. 

Remarkably enough, the fact that system based orthonormal basis functions 
form an orthonormal set was not used, at least not explicitly. (Section 5.6 
reveals by looking more closely at one of the arguments of this chapter that it 
was used implicitly.) 

A lot ·of the machinery used in this chapter was taken from other authors. 
Nevertheless the algorithm contains many original aspects. By far the most 
important aspect is the algorithm itself. 

The idea to use different models in different operating points and deduce 
model uncertainty from those models is used by other authors as well. The fact 
that these models are analysed to reveal structure in model uncertainty, while 
still allowing for other sources of model uncertainty, is, to our knowledge, new. 
In many practical applications different models in different operating points 
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are used as well. Contrary to the algorithm in this chapter, these different 
models are either translated to an unstructured error bound or translated to a 
structured model uncertainty in an unsystematic, ad-hoc way. 

The combination of structured and unstructured error components has been 
used before in for example (Zhou and Kimura, 1994). A new aspect of our 
algorithm is, that the structured components need not be specified a priori. An 
attempt is made instead to match these components to the observed process 
uncertainty. 

The application of methods from stochastics / statistics on different model 
estimates was used in (De Vries, 1994) in a way that vaguely resembles the 
way in which it is used here. The variations in the model parameters however 
are treated/interpreted completely differently there. This holds a forterîori for 
(Goodwin et al., 1992). 

The construction of a linear set of constraints on the model parameters 
based on prior knowledge and experimental data is taken from (Hakvoort, 
1994). The bounds on the unstructured error are also based on (Hakvoort, 
1994), although the procedure to remove the structured error components is 
new. 

Other original ideas with respect to the algorithm are presented in the next 
chapter. 
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Algorithm 
Do experiments 

Ë
< W, '.D(w): sets of operating points and (prospective) data sets 
> ud(t), yd(t): input/output measurements, data set d 
> vd(t), rf (t): instruments for identification/cross-covariance bound 

Gather prior information ........ , ............................. p. 80 

E
> ü: input amplitude bound p. 82 
> ë(t): noise amplitude bound p. 82 
> ëe: cross-covariance bound p. 83 
> IJk, M, p: model parameter bounds p. 82 

Choose basis functions and model orders ................... p. 88 

t > ~k(t): set of basis functions p. 75 
> k: model order p. 77 

Estimate auxiliary models .................................... p. 91 
u(t),y(t),v(t), model parametrisation 
ow: . parameters of auxiliary model for operating point w p. 92 

Estimate error structure ..................................... p. 101 
j.(}W = (}W - IDeaDwt (JW' p. 105 
X: matrix with in its columns the tJ.(JW p. 102 
UEVT: singular value decomposition of X 
ns: number of structured error components p. 105 
() A,i = u*i' i E ns: parameters of structured errors Ai p. 105 

Construct set of linear constraints .......................... p. 106 
ü, ëk, M, p, bk(t) 
Extend noise bound ........................................ p. 106 

~
< ë(t): (unextended) noise bound p. 82 
> à(t): influence of basis k + 1 tok, no transient p. 107 
> b(t): transient of basis 0 tok p. 107 
> 8: influence of basis k + 1 and higher, incl~ transient p. 108 
> lv(t) - Go(()u(t)I ::; ëe(t) := ë(t) + à(t) + b(t) + ó p. 108 

Extend cross-covariance bound ............................. p. 110 
< ët,rt(t): (unextended) cross-covariance bound p. 83 
> d(l): basis function k + 1 tok, known inputs p. 111 
> f (l): basis function k + 1 to k, inputs u(-i) to u(-1) p. 111 
> &1 (l): basis function k + 1 to k, 

inputs u(-i - 1) to u(-oo) 
> 82(l): basis function k + 1 and higher, all inputs 
> IL:t rt(t) (y(t) - Go(()u(t)) 1 

::; d( l) + f ( l) + 81 ( l) + 82 ( l) + êt JTd 
> C(j: set of linear constraints on 8 for every operating point 

p. 111 
p. 111 

p. 112 
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Bound errors locally .......................................... p. 113 
Split parameter uncertainty in structured and 
unstructured parts ...................................... p. 125 

< G, 9: nominal model, vector of its first k expansion 
coefficients in basis bk 

> ( 0 A,i 1 O' - 9) 0 A,i: ith structured component for arbitrary 61 

> P: projection onto span of 0 A,i p. 128 
> p1-: projection onto orthoplement of span of OA,i p. 128 

J_ I A I > P ( 0 - 0): unstructured error component in 0 
> ê;1- = G - G p{J: nominal model with structured error 

directions removed p. 126 
Bound structured errors ................................ p. 113 

t> d'f := maxe'E.CO (OA,i 1 O' - 0) OA,i: 
upper bound on ith 1stn~ctured component p. 114 

> 4.'f := mine'E.CO (OA,i 10 - 0) OA,i: 
lower bound on ith structured component p. 115 

Bound unstructured error in frequency domain ..... p. 116 
< eJ<l>l, f = 1, ... , m: set of directions in complex plane p. 117 
< n = {wi}: discrete set of frequencies p. 117 
> P,~(wi) = maxe'E.CO Re((GpL81(ejw,) - ê;1-(ejw•))e-Nl) 

uncertainty in direction eJ<l>l for frequency Wi due to 
param. uncertainty not covered by struct. error p. 128 

> P,(wi): error due to tail of basis p. 118 
> P:,, ( Wi): uncertainty region in complex plane determined 

by P,e(wi) and p,(wi) p. 128 
Bound the interpolation error for w ~ f! p. 130 

Bound unstructured error in time domain ........... p. 134 

E
< W((): stable weighting filter or z/(z - 1) p. 134 
< tmax: time after which constant bounds are used p. 134 
> s(t): upper bound for W(()~(t) p. 137 
> .§.(t): lower bound for W(()~(t) p. 139 

Combine local results ......................................... p. 140 

Ë 
di := maxwEW di: upper bound for ith structured component 
d.i := minwEW d.i: lower bound for ith structured component 
Take union of all unstructured bounds 
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5 
Extensions to the basic 

algorithm 

5.1 Introduction 
5.2 Estimating initial conditions 
5.3 Regutarisation of Least 

Squares estimates 
5.4 Prior knowledge of statie gains 
5.5 Prior knowledge of 

complex gains for 
arbitrary frequencies 

5.1 Introduction 

5.6 Weighting of parameters 
5. 7 Other ways to determine 

the error structure 
5.8 Unstable systems and 

closed loop experiments 

The algorithm of chapter 4 farms a more or less complete recipe for the iden
tification of structured and unstructured error components. Some of the steps 
in this framework deserve reconsideration. This will lead to some discussions 
that are useful in their own right, others are only valuable within the context 
of the algorithm. 

For proper appreciation of the points made in this chapter, a firm under
standing of the algorithm of chapter 4 is required. As in chapter 4, a summary 
of the algorithm is given at appropriate points in this chapter to indicate with 
what part of the algorithm the following remarks will be concerned. 
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5.2 

Extensions to the basic algorithm 

Estimating initial conditions 

····i" 

''''""''. ··I" 

. " 
Construct set of linear constraints " .. "" """" .... " .... p. 106 

ü,ii •• M,p,V.(t) 
Extm:id noise bound ... " " " " .• " . " .•. " ... " ............ p. 106 

~
< ë(t): (1mextended) noise bound p. 82 
> il(t}: inlluence of basis ii + 1 tok, no transieut p. 107 
> b{t): transient of basis 0 tok p. 107 
> .ï: influence of basis k + l and higher, incl. transient p. 108 
> iy(t) - Ge(O•(t)I $ e,(t) := e(t) + ii(t) + b{t) + 8 p. 108 

Extend cross-oowuiance hound .................. "." ...... p. 110 

~ 
ê1,r1(t): (uuextended) cross-covariance bouml p. 83 
d(i): basis function k + 1 to k, known inputs p. 111 
/(l): basis function k_ + 1 to k2 inputs u(-Ï) to it(-1) p. 111 

> 8, ( e): basis function k + 1 to k, 
inputs n(-Ï-1) to u(-oc) p.111 

> O.,(t): basis function k + 1 and higher, all inputs p. lll 
> IL:, r,(t){y(t) G•(()11(tl) 1 

S d(f) + f(f) + ó1(f} + J,(t) +ëc/f'J p. 112 
> !.',f: set of linear constraints Oll 8 for every operatiug point 

Brn!>d ... i' 

5.2.1 Motivaäon 

The extended noise bound ( 4.30) and the extended cross-covariance bound 
( 4.37) are in genera! quite conservative with respect to the infl.uence of initia! 
conditions. In order to demonstrate this, data was generated by filtering a nor
mally distributed, zero mean white-noise sequence with standard deviation 0.95 
by the system 

Gtr(z) = z ~-~.9 . 

No noise was added to the output and a basis was generated using the true 
system. Theoretically this means that in this case only flt",o and 8tr,1 can be 
non-zero in the expansion 

00 

Gtr(() = L 8tr,kBk((). 
k=O 

This information could have been given to the algorithm through prior values 
of tJ, M and p, hut this was not done; the algorithm estimated these quantities 
based on the estimated auxiliary model as suggested in section 4.8.3. The input 
was used as instrumental variable. 
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The following bounds on the model parameters were found: 

Ö0 = 20.65 

Ök = 5.49 · 106 · (5.65 · 10-6)k, k ;::: L 

The bound on inputs prior to t = 0 was set to 2.48, the maxim.al absolute value 
of the input sequence. 

Five basis functions were used in the model set. The truncation value k 
in ( 4.25) was set to ten. In figure 5.1 the output signal is plotted, together 
with the signal a(t), bounding the effect of the known inputs through the basis 
functions B6 to B10 , and b(t), bounding the effect ofunknown initial conditions 
of basis functions Bo to Bio· 

80 

60 

40. 

20 

y(t) 
a(t) 
b(t) 

-20~~~~~~~~~~~~~~~~~~~~~~ 

0 20 40 60 80 100 

Time (samples) -+ 

Figure 5.1: Output signal and extensions to the noise bound 

Due to the very small values of the bounds on the model parameters Ö6 to 
Ö10 , the signal a(t) is very small. lts standard deviation is of the order 10-21 • 

The signal b(t) is initially very large. Compared to the standard deviation of 
1.3 of the output signal, its initial value of about 85 is excessive. 

Notwithstanding the large value of b(t), the situation is in one respect op
timised towards reducing the bound on the initial conditions: due to the exact 
match of basis generating system and true system, the influence of all hut the 
first two basis functions is negligible in b(t). In practice, more basis functions 
will have a significant contribution to b(t). The more basis functions become 
relevant in b(t), the larger it will become and, more importantly, the longer it 
will take to die out. 

This effect does not only occur in the extension of the ·noise bound. A 
similar effect occurs for the extended cross-covariance bound. A good relative 
comparison is in this particular case not possible. The output being noise-free 
and the system being in the model set, the residuals found by the estimation 
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routine are very small. The standard deviation of the signa! of residuals is 
about 10-15• This implies that the non-extended value for the cross-covariance 
bound ët in (4.9) will be very small, making comparison to the other contribu
tions to the extended cross-covariance bound meaningless. 

The unrealistic inflation of the extended noise bound and the extended 
cross-covariance bound is caused by the fact that a worst case bound on the 
transient due to the inputs before t = 0 is used. The bound is based on ê1-

norms, which means that the input is assumed to be against its bound for every 
t < 0 with the sign determined such, that the output magnitude for t = 0 is as 
large as possible. Based on the prior knowledge, this input is possible before 
t = 0, hut it is highly unlikely that it occurs. Apparently, the output reaches its 
l 1-norm based upper bound only fora very specific and unlikely input sequence 
for t < 0. For different transfers, this specific input sequence is likely to be 
different. Some conservatism is therefore introduced by summing l1 norms in 
(4.27), (4.28), (4.34) and (4.35). 

An alternative to this approach is to use an estimate of the transient and 
adapt the algorithm to use it properly. 

5.2.2 Estimate of transient 

Estimating the effect of non-zero initia! conditions can be incorporated fairly 
simply into (4.12) in case of a least squares estimation if attention is restricted 
to the transient of the model. The difference between the transient of the model 
and the transient of the process will be discussed in remaxk 5.3 on page 156. 
Instead of writing the model output as a weighted sum of inputs filtered by 
basis functions, it should now be expressed as a weighted sum of filtered inputs 
and free-run responses to non-zero initia! conditions of these filters. 

In the case of system based orthonormal basis functions the first basis func
tion - Bo(() - is equal to a constant gain. It has no transient behaviour 
and need not be considered as fax as initia! conditions are concerned. Assume 
the basis generating system has McMillan degree nb. In appendix B, Bk(() 
will be constructed as one of the sub-transfers of an nb-output, 1-input system 
of McMillan degree f k l nb. (Recall that the notation fa lb was introduced for 
"a rounded up to the nearest multiple of b" as a generalisation of ral for "a 
rounded up to the nearest integer.") This rneans that the space of signals that 
can be observed at the output of a filter Bk(() due to non-zero initia! conditions 
is at most r k l nb -dirnensional. lt can be less than this value if not all states axe 
fully observable from this single output. 

For a model being a lineax cornbination of n basis functions, the space of 
all output signals generated by initia! conditions can obviously be spanned by 
E~::;if k l nb different output signals. This number is of the order n 2 • For
tunately, the actual dimension ·of the aforementioned space is of order n, see 
appendix B. The problern of obtaining a (nearly) minimal number of output 
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signals spanning the space of output signals that can observed as a result of 
non-zero initial conditions will not be discussed here. In appendix B a pro
cedure is derived by which such a set of signals can be constructed, without 
generating the full set of order n2 signals. 

Let n~i be the number of signals that are produced by the aforementioned 
procedure to span the space of possible transients in the subtransfer from the 
ith input to the jth output, i E p, j E q. It is assumed that the result of 
the procedure is available in the form of matrices Xfi E JR,Tdxn~• such that for 
each data set d E 'D, the columns of Xfi span the space of all transients that 
can be exhibited by the model for the subtransfer.at hand on the time interval 
JI'd. In other words, let xMt) : IN~ IR, be the transient in data set d due to 
the initial conditions of the model for subtransfer (j, i), then 

[xt,::t~ J E imgXf; 

Xfi depends only on the data set through the value of Td: the data set 
determines only the number of rows in Xfi· If all data sets are the sarne 
length, the value of Xfi will not depend on d. Further, if the same basis is used 
for all sub-transfers sharing an output and the model order is also chosen the 
same, then the value of Xfi will not depend on the input index i. This has a 
straightforward analog in cases where the same basis and model order are used 
for all sub-transfers sharing an input. 

Analogously to section 4.8.1, first the situation with one output will be 
considered. The subscript j will therefore be dropped. Xd is built from the 
Xf similarly to Ud in section 4.8.1: 

Vd E 'D(w) xd := [xf . . . x;] 

X is finally obtained as 

x := diag fd xd. 
dE'.D(w) 

The weighting by jd is applied here for consistency with U and Y, it is not 
strictly necessary. The values of U and Y are as in ( 4.11). 

Let <Pm and <ÎJm be column vectors having as many elements as X has 
columns. The combined estimation of both the model parameters and the 
transients due to initia! conditions is now performed by solving 

(5.1) 



154 Extensions to the basic algorithm 

for fJ and ef,,,,. fJ is the estimate of the model parameters similar to (4.12). The 
vector X(i>,,, contains estimates of the transients for each data set d E 1>(w), 
stacked on top of each other, weighted by the weighting factors f d. For fut ure 
reference, we introduce fj:, d E 1>(w) implicitly through the equation 

dAd ~ 
stack f Ym := X<J>,,,, 

dE'D(w) 

where fj~ has as many rows as yd has, so that the partitioning of the matrix on 
the left hand side is compatible with the partitioning of X into its constituents, 
Xd, d E 1>(w). 

Remark 5.1 X is a block diagonal matrix containing the weighted Xd, where
as U is built from the weighted Ud by stacking them on top of each other. This 
difference is due to the fact, that for every data set of an operating point, the 
model parameters are taken the same, whereas the transient can be different 
for every data set. D 

If the matrix [U X] has full column rank, {J and (i,,,, are unique. Ordinary 
Least Squares algorithms can be used to solve (5.1). The remainder of this 
section will be concerned with the situation that [U X] does not have full column 
rank. 

It is assurned that [U X] is a tall matrix. For rank deficient [U XJ, three 
different kinds of "deficienciès" can then be distinguished. These rnay occur 
simultaneously. Because it was assumed that [U X] does not have full column 
rank, at least one occurs: 

1. X does not have full column rank, i.e. a column of X can be written as 
a linear combination of other columns of X. 

2. U does not have full column rank, i.e. a column of U can be written as a 
linear combination of other columns of U. 

3. The intersection of the image of U and the image of X has rank one or 
more, i.e. a column of U can be written as a linear combination of other 
columns of U and at least one column of X. 

Situation 1 is merely inconvenient: the actual values of <Pm are not required, 
only the values of fj:(t). It is easily verified through a projection argument, 
that for all (/;.,, satisfying (5.1), X (i>.,, is unique provided situation 3 does not 
occur. For numerical reasons, an unambiguous value of tÎ>m is obtained by 
picking the value among all (b,,, satisfying (5.1) that has minimum norm. Any 
other selection could have been made instead. 

Situation 1 is likely to occur: for a multiple input system with the same basis 
used for all subtransfers, the space of possible transients of input i is contained 
by that of input j if the model order for input i is less than or equal to that of 
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input j. (For multiple outputs this argument applies on a per-output basis.) 
This is related to the non-minimality discussed in remark 4.1 on page 78. 

Situation 2 corresponds to a fundamental problem. Apparently the input 
signal was not rich enough to uniquely identify a model for the experimental 
data. There is simply insufficient information in the data record. For a multiple 
input system it might be the case, that the signals applied to each input are 
sufficiently rich separately, but that there is a relationship between the various 
input signals making it impossible to attribute the outputs to an unambiguous 
combination of inputs. Whether or not this applies, additional experiments 
should be carried out with a better input design. 

Situation 3 is strictly speaking as much of a fundamental problem as situ
ation 2 is. The best thing to do is, again, performing additional experiments. 
As the transients are only relevant in the first part of an experiment of suffi
cient length, occurrence of this situation means either that the input was only 
exciting in the very beginning of the experiment, the experiment was too short 
or that too many basis functions are being used in the model set. If it is not 
possible to do further experiments, the "explanation" of the measured output 
has to be distributed over the responses to the inputs on the one hand and 
the "responses" to the initial conditions on the other hand. Any choice here is 
arbitrary and it is trivia! to construct for any choice an example in which that 
choice works out particularly badly. In the following, as much of the output 
signal will be attributed to the inputs as possible. This is inspired by the fact 
that practical identification in which no initial conditions are estimated implic
itly does the same. This is admittedly not a very strong argument, the more so 
because this situation will not occur in practice for proper experimental data 
and model orders. 

The actual estimation now proceeds as follows. The matrix [U X] is decom
posed into an orthogonal matrix Q, a (singular) upper-triangular matrix Rand 
a permutation matrix P: 

Ri2] p-1 
0 ' (5.2) 

where Q and R11 are square matrices. By an orthogonal transformation Z this 
can be transformed into 

(5.3) 

The factorisation (5.3) is .called a complete orthogonal factorisation of [U X], 
see (Anderson et al., 1995). The solution [tF $.,, T]T is finally obtained as 

(5.4) 
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This is the minimum norm solution to (5.1), Le. of all vectors [t:F <Î>,,, T]T satis
fying (5.1), the one obtained by (5.4) is the one having the smallest norm. 

Situation 2 should not occur, as argued above, so that U is of full column 
rank. Situation.1 is properly handled by (5.4). Situation 3 can be handled 
by requiring that the first nu columns of P are the first nu unit vectors of 
appropriate length, in any order, where nu is the number of columns of U. 
Because U is of full rank, this still implies Rn is of full rank. 

The functionality outlined above is present in the LAPACK routine DGELSX. 

Remark 5.2 For numerical reasons, the decomposition (5.2) is in genera! not 
possible. It is very unlikely that R22 is exactly zero in practical cases. This is 
handled by DGELSX by defining both the permutation Pand the partitioning 
of R such, that R11 is the largest leading sub-matrix whose estimated condition 
number does not exceed a certain threshold value, related to numerical preci
sion. The remaining value of R22 is then neglected and the procedure continues 
as explained above. 

A positive side-effect of this is, that "a is a linear combination of b" in 
the descriptions of the three situations in which [U X] is rank deficient can be 
reinterpreted as "ais a linear combination of b up to numerical accuracy." 0 

For multiple output systems, the procedure should simply be repeated for 
each output. In summary, for each operating point we have obtained an esti
mate IJ for the model parameters. Also, for each data set and for each output 
indexed by j E q, an estimate for the transient in that output is obtained in 
the form of u!,j(t). 

Remark 5.3 Note that the estimate of the transient obtained in this way is 
always in the space of transients that can be exhibited by the model. The 
transient of the tail of the basis is not estimated. The transient of the process 
for a data set d E 1J can therefore be outside the image space of Xd. The 
transient of the model is in fact fitted to the experimental data of the process. 
This "undermodelling" of the transient will result in a bias on the estimated 
parameters and/or an increase in the residuals. The farmer effect becomes 
smaller if the length of the data set increases with respect to the length of the 
transient. 

The undermodelling of the transient can obviously be reduced by increasing 
the model order. The order that is used to estimate the transient can be chosen 
independently of the actual model order. The matrices Xd can without any 
problem be chosen such that they span the space of possible transients of a 
different set of basis functions than the set that is incorporated in the model. 
In this case the term "transient of the model" is actually not completely correct. 
For brevity we will nevertheless use this phrase to refer to the quantity that is 
estimated by u!(t). 0 
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5.2.3 Adaptation of the transient bounds 

In the extended noise bound 

êe(t) = ë(t) + à(t) + b(t) + 0 
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defined in (4.30) on page 108, the transient of the model is bounded by the 
term b(t), as can be seen from 

k 00 

L fhr,k L bk(r)u(t1 - r) $ · · · $ b(t1) (4.27) 
k=O r=t'+l 

It is assumed that the transient of the first k + 1 basis functions is estimated 
in the estimates y~(t), d E 'D from the previous section. This makes fj:(t) an 
estimate for the quantity that is overbounded by b(t). In principle s · !Y~(t)I 
could be used as an alternative for b(t), where s ~ 1 is a safety margin. Given 
the worst case nature of b(t), this alternative is likely to be a smaller bound 
than b(t). However, this would even for s = 1 include the transient -fj:(t), 
which corresponds to an error in the estimate of 2003. 

A more realistic approach is to subtract the estimated transient from the 
output and use s1 

• lii:(t)j as a bound on the remaining transient of the model. 
l ;::: 0 is another safety margin. This amounts to 

k t 

y(t) Yx(t) L Btr L bk(1)u(t - r) ::::; ë(t) + a(t) + S1 
• l:Yx(t)I + o. (5.5) 

k=O r=O 

(5.5) corresponds to the original extended noise bound (4.30) with the term 
b(t) replaced by s1 

• liJ"(t)I. 
In the extension of the cross-covariance bound the terms f ( l) and 01 ( l) 

account for the influence of the transient of the model: 

k Td-1 t+t 
L Btr,k L re(t) L bk(1)u(t 1) $ ... $ f (l) (4.33) 
k""O t""O r=t+l 

and 
k Td-1 00 

L Btr,k L rt(t) I: bk(r)u(t r) $ ". $ c51(l) (4.34) 
k=O t=O r=t+t+l 

The true transient of the model, i.e. of the first k + 1 basis functions in the 
expansion of the linear manifestation of the true process in an operating point 
d E 'D, will be denoted y~(t). The original bound was 

Td-1 

L re(t)y:(t) ::::; f(l) + Ö1(l). 
t=O 
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Using the estimate i)~(t) for y~(t) and a safety margin s' ~ 0 this bound can 
be replaced by 

Td-1 Td-1 Td-1 

L rt(t)y~(t) - L re(t)i)~(t) :5 s' L lrt(t)y~(t) 1 =: êx,e (5.6) 
t=O t=O t=O 

Instead of the extended cross-covariance bound 

Td-1 Td-l k t 

L y(t}rt(t) - L re(t) L Otr,k L b1;(r)u(t - r) < 
t=O t=O k=O 

:::; d(e) + f(f) + 61 (f) + 62(€) + ëeVTd ( 4.37) 

the bound 

Td-1 Td-1 Td-1 k t 

L y(t)re(t) - L 'f)~(t)re(t) ~ L rt(t) L Otr,k L bk(r)u(t r) < 
t=O t=O t=O k=O 

:::; d(e) + êx,t: + ~(l) + ëeVTd (5.7) 

is used. 
The linear constraints based on (4.30) and (4.37) are finally removed from 

the set of linear constraints Ce and those following from (5.5) and (5.7) are 
added. The algorithm of chapter 4 can then proceed as before. 

For an example of the potential value of this approach, see section 6.2. 

5.3 Regularisation of Least Squares estimates 

I' Estimate anxiliary models ..... "". " .. ".:.".: : . : . : .. "~: 91 t< u(t),y(t), v(t), model parnmetrisation 
> 8111

: parameters of auxiliary model for operating point w p. 92 
... L~: 

In chapter 4 least squares/instrumental variable estimation was used as an ex
ample in all steps where identification of a model by the algorithm was required. 
In section 4.8.2 it was shown, that this may lead to numerically ill-conditioned 
problems and unrealistic estimated models if the length of the experimental 
data sets is much smaller than the impulse responses of the high order basis 
functions that are incorporated in the model. 
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Consider the situation of a SISO system for which one data set is available, 
as was done in section 4.8.2. The parameter estimate is in this case 

where 

U = [ [Bo(()u](O) 

[Bo(()uJ (T- 1) 

Y= L::O) J 
[Bx;(()u](O) l 

[Bx;(()uJ(T-1) 

T is the length of the data set and k + 1 is the number of basis functions in 
the model. The ith column of U contains the signal u(t) filtered by Bi-i((). 
In section 4.8.2 the matrix 

Q 

was introduced and it was shown that for a white input sequence u Q -+ u!I 
if T-+ oo, with O'u the standard deviation of u. It was also demonstrated that 
for finite T the value of Q can be near singular. 

If this effect occurs, it can be reduced by extending the length of the data 
set. This is likely to be undesirable in a practical situation: it is time con
suming, it may be expensive, it will increase the computational load of the 
identification, etc. However, one can extend the input sequence with zeroes. 
Let T be the length of the original data set and T 1 the length of the extended 
data set. Moreover, let er~ be the standard · deviation of u on the time interval 
t = 0, ... ,T-1. lt is obtained 

T' 

T 1 [Q]Jï = lim '°'(BJ(()u](t)[Bi(()u](t) 
T'-;oo L..,; 

t=O 

= ,J":'oo t, ( i;, b, ( r.)u( t - Ti)) · (f 0 b; ( r2 )u( t - r2)) 

00 

Ri To-~ L bj(r)bi(T) 
r=O 

(5.8) 
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The fourth (approximate) equality deserves some further explanation. Due to 
the assumed whiteness of the noise it holds 

For finite T one may expect the va.lues for r 1 = r2 to be much larger than those 
for r 1 f r 2 and moreover those for r 1 = r 2 = Ta to be approximately equal 
to those for r 1 = T2 = Tv f ra. How good these approximations are can be 
influenced by the input design. 

The matrix Q can apparently be made approximately equal to the identity 
by extending the input sequence with zeros. Unfortunately it requires knowl
edge of the process transfer to tell how the process will respond to this extended 
sequence. As the aim of the identification was to find an approximate descrip
tion of this transfer, this information is not available yet, but one may assume 
that the largest time constant in the process transfer is known already: this 
knowledge is required to decide how long the experimental data record should 
be. One may assume that two or three times the largest time constant after the 
input was fixed to zero the output of the process would have become zero in 
good approximation as well. This divides the extended data set in three parts: 
first the original experimental data records, then a change-over part, in which 
the process inputs are zero and the process outputs settle to zero and finally 
the steady state part in which both inputs and outputs are (approximately) 
zero. 

U= 
[ 

[Bo(()u](O) 

[Bo(()uJ (T1 
- 1) 

where the partitioning of U in Uexp, Utra and Uss corresponds to the separation 
of the extended data set into three parts. Provided the extension of the data 
set is long enough, it will hold 

Q = ~uTu 1 (UT u T T ) T T exp exp + utraUtra + uss Uss ~ I 

if the input that is applied to the process during the experiment interval is a 
white noise sequence with standard deviation one. 

Consider Y for the zeroes-extended data set. Let Yexp, Ytra and Yss be 
a partitioning of Y compatible with that of U in Uexp, Utra and Uss· Yexp is 
known, Ytra is unknown and Yss is assumed to be (approximately) zero. Leaving 
the unknown part of the output out of the identification criterion, the optima! 
model parameter vector should satisfy 

(5.9) 
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As in the unextended case, a projection argument can be used to show that it 
holds 

(5.10) 

Comparing this expression with the one for the unextended case, it appears 
that an extra term U'!;Uss has heen added to U[xpUexp· This term is likely to 
have a regularising effect, as it was derived previously that 

1 T 1 T 1 T 
7.Ue:xpUexp + TU88 Uss:::::: l - ifUtraUtra 

for white input sequences u. 
Another interpretation of this estimation procedure can be given based on 

(5.9). In the original, unextended case there was no penalty for large system 
outputs after t T. In the new scheme model outputs that are unequal to 
zero for t = T, . .. , T' - 1 are penalised. This also indicates how T' should he 
chosen: T' - T should he taken such, that the longest of the impulse response 
sequences bo(t) to bk(t) reaches steady state in this period of time. 

So called ridge regression replaces the "standard" Least Squares estimate 

with the estimate 

Generalised ridge regression uses the estimate 

(5.11) 

See (Draper and Van Nostrand, 1979) fora review of these and related regu
larisation methods. These expressions bear some resemblance to (5.10). The 
estimate (5.10) is more general in the sense that it drops the restriction on C 
in (5.11) to be diagonal. Moreover, the problem of choosing c or the diagonal 
elements of C does not occur in (5.10). The only choice that needs to be made 
is where to draw the line between the transient effect, represented by Ytra and 
the (approximate) steady state situation of Y88 • As has been argued already, 
this can he based on knowledge of the largest relevant time constant of system, 
which should be known prior to the experiment design. 

It should be stressed, that almost nothing was added artificially in this re
finement of the original least squares algorithm: the only part that was more 
or less made up is that Y88 0 and that the systern reaches this steady state 
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after two or three times the largest time constant of the system. These approx
imations are definitely very sensible. 

To get an impression of the capabilities of the proposed modifications, the 
example of section 4.8.2 is reconsidered here. The data set was extended to 
8500 samples. Of the extra 7500 samples, the first 200 samples were consid
ered a transient effect. Therefore Yss consists of 7300 samples and Ytra of 200 
samples. Figure 5.2 shows the step response of the model obtained in this way. 
Comparing these results to those shown in figure 4.4, it is clear that the results 
have improved significantly by the regularisation. For further comparison, fig
ure 5.3 shows the model parameters. This figure shows also a big improvement 
over figure 4.6. 
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5.4 Prior knowledge of statie gains 

1- Cons~ruct set o;· linear cons;,raints . : . : ... : . : . : ..... 1). 106 
1 u.ll;,.\f,p,11,(t) 
· k>u;cl .. 

In practice it is not uncommon that prior knowledge exists with respect to the 
statie gains of certain transfers. Especially if a process output is controlled by 
a primary controller that is designed such that there is no final error, the statie 
gain from almost all inputs to the output is equal to zero. The only exception 
is the setpoint for that specific output, for which the statie gain is equal to one. 
Prior knowledge of statie gains may also result from step experiments. These 
experiments are aften carried out to obtain information required for the design 
of the actual identification experiments. 

In forma! terms, the prior knowledge consists of values ïi,w,cr and h.w,cr for 
some operating point w E W and for some sub-transfer a E S such that 

G~'cr(z) S hw,crlz=l 

aw,cr(z) > hw,crl tr - - z=l 

(5.12) 

(5.13) 

The superscripts w and a will further be dropped. This implies that all transfers 
do not have their normal MIMO meaning but denote only a SISO subtransfer. 

From (5.12) follows 

00 

Gtr(l) = l:Btr,kBk(l) s h :::} 
k=O 

k k 00 

L Btr,kBk(I) S h + L BkBk(l) + L iikBk(l) (5.14) 

k=k+I 

The first term on the right hand side of (5.14) can be calculated without further 
modifications. The second term can be bounded by 

00 00 

:L ëkBk(l) ::; ma~ IBk(l)I L ok 
- k>k -k=k+I k=k+l 
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The maximum can be found easily through property 4.1. 
In the same way (5.13) yields 

k k 00 

I>1tr,kBk(l) ;?: fJ. - L ihBk(l) L ÖkBk(l) (5.15) 
k=O k=k+l 

The prior knowledge (5.12) and (5.13) of the true system translates to the 
linear inequality constraints (5.14) and (5.15) on the model parameters. 

Note that the true statie gain is not restricted to the interval [fJ., ii] by the 
inequalities (5.14) and (5.15). It can only be guaranteed that 

k 00 

fJ. 2 L ÖkBk(l) 2 L ÖkBk(l) :S Gtr(l) :S 
k=k k=k+l 

k 00 

$ h + 2 L ëkBk(l) + 2 L ÖkBk(l.) 
k=k 

The factors 2 stem from the uncertainty in the sign of the contribution of the 
tail. In the determination of the upper bound (5.14) a negative sign bas to 
be assumed to make sure that (5.14) always contains the true system. If the 
actual sign is positive, then the true statie gain is larger than ii by twice the 
contribution of the tail. 

5.5 Prior knowledge of complex gains for arbi
trary frequencies 

Î- Const~ct set or;inear constrai~ts ......... : : .. : ... ~. 106 
1 ü,O,,M,p,l!k(t) 
' llüi:î', ):,,!!dil.' ' :::(; 

The case of statie gains treated in the previous section corresponds to prior 
knowledge of the complex gain for w = 0. This situation is easier than the 
situation for all other frequencies in the range w E (-rr, rr), because the complex 
gain is known to reduce to a real gain. 
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As in the previous section, only SISO subtransfers will be considered. To 
fit into the framework of chapter 4, the prior knowledge has to be translated 
to linear constraints on the model parameters. Not all prior knowledge can be 
translated to linear constraints. Also, due to the uncertainty in the tail of the 
basis, only an approximate description of the prior knowledge can be given. 

The kinds of prior knowledge that will be treated are 

1. An interval in which the phase of Gtr is known to lie for a certain fre
quency w' E (-7r, 7r): 

arg Gtr ( ejw') E [_t, (i)] 

for known </> and ef>. The size of the interval f</>, ef>J may not exceed 7r, or 
the constraînt corresponds to a non-convex reiîon in the complex plane, 
which can not be described by a set of linear constraints that can be used 
in a linear programming problem. Using the convex hull instead offers 
no solution in this case because the convex hull is equal to C. 

2. A phase interval as in 1. combined with a lower bound on the absolute 
value of Gtr· 

3. An upper bound for the absolute value of Gtr: 

IGtr(eiw')I $ {J 

4. An estimate for the gain together with a bound on the uncertainty: 

IGtr(ei"'') - GI < dG 

The estimate à need not be related to the nominal model or the auxiliary 
model for the operating point at hand. 

3. is a special case of 4. with à = 0 and dG = G. Therefore 3 will not be 
treated separately. 

In the following sections it will be shown how each of these types of prior 
knowledge can be translated - approximately to linear constraints on the 
model parameters. These constraints can be added to Ce, after which the 
algorithm of chapter 4 can be applied as before. 

5.5.1 Phase interval 

In this section it will be assumed that Gtr(ei"'') ::j:. O. This is mostly to ease the 
presentation, as the argument of Gtr ( eiw') is undeterrnined for Gtr ( eiw') = 0. 

The actual value of argGtr(eiw') is only deterrnined modulo 271". However, 
it is assumed that ii> > P. and ef> - P. < 27r. H the first inequality does not 
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hold, the interval of allowable phase shifts is empty, which can not happen 
in practice. If the second inequality does not hold then any direction in the 
complex plane is allowed, so the cons.traints do not form a true restriction and 
can be ignored. Apart from this fundamental consideration it is also required 
that ef> - </> ::::; 7r, due to limits imposed by the translation to linear constraints 
on the model parameters. 

Figure 5.4: Phase bounds on Gtr(eiw') 

In figure 5A the situation has been drawn for specîfic values of w', ef> and 
</>. The shaded area indicates values that can not be assumed by Gtr(ejw' ). lt 
ho Ids 

(5.16) 

It can also be seen from this figure that the equivalence does not hold if 
ef> </> > n. The equivalence (5.16) holds neither in case Gtr(eiw') = 0. The left 
hand side is undetermined in that case, whereas the right hand side is satisfied. 

Restricting attention to the first inequality on the right of {5.16), it holds 

Im (e-j<fiGtr(eiw')) :S: 0 

{::} Im (e-jfP f Btr,kBk(eiw')) :S: 0 
k=O 

(5.17) 
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k 00 

L fltr,kBk ( ejw') + L Otr,kBk(ejw') 
k=k+l k=k+l 

::;} Im (e-j~ t Otr,kBk(ejw')) ~ 
k=O 

k 00 

L ëkiBk(ejw')I + m~ IBk(ejw')I L {jk 
k=k+l k>k k=k+I 

where k ;:::: k is a truncation value. The second inequality on the right hand 
side of (5.16) implies in a similar way 

k 00 

L ëkiBk(ejw')I - m~IBk(eiw')I L IJk 
k>k 

(5.18) 

In figure 5.5 the values for G9(eiw) satisfying (5.17) and (5.18} are shown. 
The offsets from the continuous straight lines to the dotted straight lines, in
dicated by an = sign, are equal to the right hand side of (5.17). The dark 
shaded area contains those points that do not satisfy either (5.17) or (5.18) or 
both. The light shaded area contains values of G9(eiw') that do satisfy (5.17) 
and (5.18) but that are not consistent with the prior knowledge and the uncer
tainty in the tail. By adding additional linear constraints, the size of this extra 
included area can be reduced. 

5.5.2 Gain Iower bound 

An (absolute) gain lower bound in itself constitutes a non-convex region in 
complex plain. As already mentioned on page 165 this can not be translated to 
constraints for a linear programming problem. The convex hull of this region 
is C; using the convex hull as a basis for the linear constraints required by the 
LP problem is obviously not a solution. By combining the gain lower bound 
with a phase constraint as in the previous section, it is possible to arrive at a 
set of linear constraints that describes approximately the prior knowledge at 
hand. 
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Figure 5.5: 'Iranslation of phase bounds to permissible values of G 6 ( é·;) 

The gain lower bound is taken to be 

IGtr(eiw')I 2: G 

In figure 5.6 the values of Gtr ( eiw') that are consistent with the phase bounds 

Figure 5.6: Phase bounds and gain lower bound on Gtr(eiw') 

(i> and <P and the gain bound are indicated by the unshaded area. 
The derivation concerning the phase bounds is identical to the one of the 

previous section and will not be repeated here. For the gain lower bound it 
holds 

IGtr(eiw')l 2: G 
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00 

{::} L Btr,kBk(eiw') ~ G 
k=O 
k 

:::} L(}tr,kBk(eiw') ~ G-
k=O 

k 

:::} LBtr,kBk(eJw') > 
k=O 

k 
L Btr,kBk(eiw') 

k=k+l 

00 

L Btr,kBk(eiw') 
k=k+l 

k 00 

L ÖklBk(eiw')l -m~IBk(eiw')I L lik 
- k>k -k=k+l k=k+l 

(5.19) 

Figure 5. 7: Translation of phase bounds and gain lower bound to permissible 
values of G ê ( eiw') 

k . 1 

The lower bound on the absolute value of I:k=O Btr,kBk(eJw ) is not a lin-
ear constraint. Figure 5.7 shows how this can be approximated by a linear 
constraint. Let µ(w) be defined as 

k co 

µ(w') := L IJk IBk(eiw')I + L iJkm~IBk(eiw')I 
k=k+l k=k+l k>k 

(5.20) 

for some truncation value k ~ k. Note that this definition is consistent with the 
earlier definition of µ(w) in (4.45) on page 118. The straight line in figure 5.7 
representing the gain lower bound goes through the points 

z1 := (G - µ(w1 ))ei~ and z2 (G µ(w1))eiP.. 

One can verify with elementary mathematics that the set of points on this line 
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Figure 5.8: Phase bounds and gain lower bound on Gtr(eiw') 

is 

and all points in the set 

satisfy the original bound on the amplitude. Substituting the expression for 
z1 and taking z = Gé(eiw), thfä yields the following constraint on the process 
parameters: 

k 

L êk Re ( Bk(ejw')e-i(ii>+p)!2 ) .;:: (G - p,(w')) cos((<i) ef>)/2) (5.21) 
k=O 

Equation (5.21) together with (5.17) and (5.18) constitute the approximate 
description of the phase bounds and amplitude lower bound in the form of 
linear constraints on the model parameters. · 

5.5.3 Uncertain complex gain estimate 

The prior knowledge 

represents an area in complex plane drawn in figure 5.8. The uncertainty in the 



5.5. Prfor knowledge of complex gains for arbitrary frequencies 171 

model amplitude due to the unknown tail of the basis is bounded as follows: 

00 

<==> L 8t.,.,kBk(ei"'') - G <.5, dG 
k=O 

k 
=> L,et.,.,kBk(ei"'') - à < 

k=O 

k 
dG + L, 8tr,kBk(ei"'') + 

00 

L 8tr,kBk(é"'
1

) 

k=k+l k=k+l 

k 
=> L,et.,.,kBk(ei"'') à < 

k=O 

k 00 

dG+ L, ihlBk(ejw')l+m~IBk(ei"')I L, ëk 
k>k 

(5.22) 

The same approach as in section 4.12 .1 is used to approximate this area by a set 
of linear constraints. An outer bounding polygon with m vertices, m ~ 3 will 
approximate the circle in complex plane. The line partly coinciding with the 
edge of the polytope bounding the component in the direction eN, cfl E [O, 21T) 
is given by 

{ z E C 1 Re (e-i<li(z -à))= dG + P,(w1
)} 

with P,(w) as in (5.20). Taking <P = 21T(i.1 l)/m, f, E m, the set of m linear 
constraints representing the outer bounding polytope becomes 

k 

V1.1 E m Re (e-i2"(t-i)/m (-à+ 'L,Ot.,.,kBk(ei"''))) ~ dG + µ(w') (5.23) 
k=O 

The approximations involved are shown in figure 5.9 for m = 8. 
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Figure 5.9: Translation of ga.in upper bound to permissible va.lues ofG9(eiw) 

5.6 Weighting of parameters 

t:,;?.r.J1:L'-:.\'.;i 

Estimate error st.ruct.ure .... """"" .. " .... """"" .... p. 101 

[ 

,::,.ew = ew meau"• nw' p. 105 
WL: weightiug of para.meters for one modf'J p. 173 
W R: weighting of para.meters for one operat,ing point p. 180 
X: matrix with in its colunms the t}.f/11

' p. 102 
UEVT: singular value decomvosition of WLXWn. 
n": munber of strnctm'fXi error cotuponents p. 105 

> llA,î = i E n.: param/s of stnt<"tnred <~rtors .41 p. 178 

In section 4.9 the model parameters of the structured error components are 
determined as the left singular vectors of a matrix 

X := sbs f:l.(Jw 
wEW 

(5.24) 

where f:l.(JW are the differences between the parameters of a central model (Je 

and the parameter vectors of auxiliary models for the operating points w. In 
this section a number of situations will be discussed which give rise to weighting 
of the rows or columns of X. Also the meaning of the right singular vectors of 
X will be investigated. 
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5. 6.1 Weighäng of model parameters 

In chapter 4 no attention has been paid to the preprocessing of the experimental 
input and output signals. It was assumed that the data sets had already been 
detrended, outliers had been removed and the different signals had been scaled 
properly. All of these steps are crucial for obtaining good models, irrespective 
of whether the models are used as "the" nominal model, as an auxiliary model 
for an operating point or otherwise. 

Many approaches can be used for the sealing of the signals. Some of them 
are listed below. 

1. In practical processes, both actuators and sensors have a limited range. 
These ranges correspond to ranges on the inputs and the outputs. Signals 
may be scaled such that these ranges correspond to the interval [-1, 1], 
where it is assumed for simplicity that these ranges are symmetrie around 
zero. As the signals have already been detrended, this zero value corre
sponds in physical terms to the value of the trend. 

2. For identification, signals are often scaled such that they all have a vari
ance of one. 

3. Another meaningful sealing in identification is a sealing such, that the 
noise level becomes the same in all signals. Depending on the identifi
cation framework used, this may be applicable to the outputs only or to 
both inputs and outputs. 

The third sealing is often aimed for by applying the second. This uses the 
implicit assumption that the signal to noise ratio is the same in all signals. 

Consider a q x p model with for each subtransfer a model order k: 

k k 
LBk1,1) Bk1,1)(() LBk1,p) Bk1,p)(() 
k=O k=O 

Ge(()= (5.25) 

k k 
L oiq,1) Biq,1) ( C) L oiq,p) Biq,p) ( () 
k=O k=O 

The ordering of the elements in the parameter vector () is free, as long as the 
same ordering is used consistently. Let 

()" = [Bo . . . Bf]T 

be a "block" containing the model parameters for subtransfer a, a E S. A 
possible ordering for () is then 

() = [(o(l,l))T ... (o(q,l))T (O{l,2))T ... (o(q,p))Tr 
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Obviously, if the ith input signal, i E p, is scaled by a factor f u,i, all model 
parameters occurring in the ith column of (5.25) should scale by a factor 1/ f u,i 

in order to keep the model equivalent to the unscaled version. If the jth output 
is scaled by a factor fy,j, j E q, then the model parameters occurring in the 
jth row of (5.25) scale along by a factor fy,j· 

Definition 5.1 Two models using different scalings for inputs and/or outputs 
are called equivalent or physically identical if the sequence of 

1. sealing the input signals corresponding to the sealing used by the model, 

2. filtering the scaled inputs by the respective model and 

3. sealing the model outputs back to unscaled values 

produces identical output signals for both models. D 

Remark 5.4 Given the informal definition 5.1 it is straightforward to for
malise the concept of model equivalence. This would involve extra notational 
dutter because the sealing has to be made explicit in the notation. Notwith
standing that this would remove some ambiguity that is now present in the 
notation, it is felt that this would not enhance the readability of this exposi
tion. 

The definition does not allow for different initial conditions. Again, this 
can be fixed at the expense of a more involved definition. D 

In the algorithm of chapter 4 the auxiliary models identified with different 
sealing factors for inputs and/or outputs will in general not be equivalent. Non
equivalent auxiliary models will result in non-equivalent central models and in 
different parameter vectors A8w. The left singular vectors of X in (5.24) will 
in turn change as well, so that finally the non-equivalent identified auxiliary 
models result in non-equivalent structured error components. 

One can easily make the identified models independent of this sealing by 
changing to a sealing for both inputs and outputs that is fixed in some way, 
identifying the models and then transforming the models back to the original 
sealing. This will make the parameter vectors of the auxiliary models equiv
alent in the sense of definition 5.1. This in turn means that a matrix X as 
in (5.24) obtained for one sealing is equivalent to a matrix X' obtained for 
a different sealing, where equivalence of parameter matrices is obtained as a 
straightforward extension of definition 5.1: a matrix can be transformed into 
a matrix with which it is equivalent by a sealing of its rows. Which rows scale 
depends on which inputs and outputs have different scalings. An important 
observation is, that for two equivalent matrices the matrices of their left sin
gular vectors are not equivalent. So even if the identification procedure for the 
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auxiliary models is independent of sealing in the sense that it yields equivalent 
models, the structured error components will not be equivalent. 

Apparently sealing is a design parameter for the algorithm. This holds a 
forteriori if one realises that the sealing used for identification need not be 
identical to the one used in the principal component analysis. As can already 
be concluded from the short and incomplete list of scalings at the beginning 
of this section, there is no such thing as the optima! sealing. This holds for 
identification and it will turn out to apply to the principal component analysis 
as well. 

In the next section some considerations will be given concerning the interac
tion between sealing and struetured error components. Also the sealing will be 
generalised to weightings of the rows of X that do not neeessarily correspond 
to sealing of inputs and outputs any more. 

Choice of weighting factors 

Sealing on a per input basis or a per output basis, as discussed above, has 
a clear interpretation. It may be worthwhile to generalise the sealing of the 
rows of X to scalings, or weightings, per subtransfer. One may have concluded 
from the results of a robust control design or by physical reasoning that the 
bottleneck in the robustness of the control design is the uncertainty in one 
or two subtransfers. By up-sealing the parameters of these subtransfers they 
will become more pronounced in the structured components and thus will be 
bounded in a more detailed way. (Another approach would be to explicitly 
specify the structured error component. This will be treated in section 5.7.) 
Sealing on a per parameter basis can also be considered. It is difficult to find 
a reason for doing so. 

If the rows of X are weighted differently prior to principal component anal
ysis and are scaled back after the analysis, the 8 A,i, i E ns, need not be 
orthonormal any more. Loosing normality is not so important; it requires 
normalising some of the formulas, especially those in sections 4.11 and 4.12. 
Loosing orthogonality may provide more reason for concern. Orthogonality in 
parameter spaee may be interpreted as a form of independence of the structured 
error components. However, this rather intuitive argument can be applied to 
both the scaled and the unscaled parameter space, but the conclusions to be 
drawn are different in physical terms. It is therefore worthwhile to investigate 
whether orthogonality in parameter space corresponds to some meaningful no
tion in physical terms. 

Consider first the situation of two SISO models having orthonormal param
eter vectors 8 1 and 82 in the unscaled case. Because of the orthonormality of 
the unscaled basis functions it holds 

k k 

(81 182) = (L)l,kBk(eiw) j L)2,kBk(eiw)) = 0 
k=O k=O 
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The first inner product is the standard inner product in JRfc+i and the second 
the standard inner product in 11.2. So the models G1 (eJw) and G2(eJw) are 
orthogonal to each other and the sarne holds for their impulse responses 91 (t) 
and 92(t). Now consider a combination of these two models 

The energy in the irnpulse response of g' ( t) is 

(g' (t) 1 g' (t)) = a 2 (91 (t) 1 91 (t)) + 2a,8 (91 (t) 1 g2(t)) + ,82 (g2(t) 1 92 (t)} 

= a 2 llg1(t)lli2 + /32ll92(t)lii2 (5.26) 

Apparently, the energy in 91(t) due to ag1 (t) is never compensated by the term 
flg2 (t) and vice versa. This can be interpreted as a way of independence. From 
the point of view of reduction of conservatism, it seems worthwhile that none of 
the structural error components G A,i ( (), i E ns, gets compensated by another 
structural error component GA,J((),j E n 8 ,j # i. 

This form of independence of the error components is lost if the parameters 
are scaled on a per parameter basis. This sealing will therefore not further be 
considered. In (5.26) only the orthogonality of 91(t) and g2(t) was used, not 
the fact that they were normalised. The independence is therefore maintained 
if all parameters are scaled by the same factor. 

Moving on to MIMO models G1 ( () and G2 ( (), it holds for the parameter 
vectors 81 and 82 

(8i l Bj) = L (8f \ 8j), i,j E {l, 2}. (5.27) 
nES 

It should be noted that the values per subtransfer scale along with the squares 
of the parameter sealing. Whether or not two parameter. vectors are orthogonal 
therefore depends on the scalings per subtransfer. As was argued above, this 
can be used to influence the outcome of the principal component analysis. 
There is no universa! physical interpretation for (5.27) providing an answer as 
to how to scale the parameters of a MIMO transfer. 

The answer to that question should depend on an interactioU; between prior 
knowledge and the results of principal component analysis. The sealing is 
likely to have a corrective nature: if sorne aspects of the process uncertainty do 
not come out of the principal component analysis as could be expected from 
physical i:easoning and if this can be tracked down to an unfortunate sealing of 
the model parameters, an extra sealing applied before the principal component 
analysis can compensate for this. 

To give some extra guidance as to what initial weighting to ehoose, three 
options are given with their interpretation: 

• No separate weighting can be applied to the parameter vectors. This as
sumes that the weighting that is suitable for identification of the auxiliary 
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models is also appropriate for the determination of the structured error 
components. 

• Scale the !::J..(Jw inversely proportionally to the parameters of the centra! 
model, 9c. As it was argued before that the weighting should be the same 
for all parameters of a subtransfer, some averaging has to be carried out 
over all parameters fora subtransfer of the central model. Let 9c,u, a E S, 
be the sub-vector of oc containing only the parameters pertaining to the 
subtransfer a and let !::J..Ow,u be the corresponding sub-vector of !:l(Jw, w E 
W. As the arguments above rely hêavily on inner products and 2-norms, 
the weighting 

(5.28) 

is an obvious candidate. To apply this weighting, the values of !::J..Ow,u 
have to be divided by r before building x. 
The implicit assumption behind this weighting is that the contribution 
of a subtransfer to the structured error components should be roughly 
proportional to its contribution to the central model. Large subtransfers 
are expected to have a large uncertainty. To avoid that these large uncer
tainties completely dominate the smaller ones in the principal compcaent 
analysis, this weighting can be used. 

• Another approach to the previous idea is to assume that the uncertainty 
per subtransfer is roughly proportional to the variation over the different 
operating points in the parameters of !::J..(Jw,u A suitable measure for the 
variation of the parameters is 

llstack !::J..(Jw,u Il 
u ·- wEW 2 

f .- nw(ku + 1) (5.29) 

Note that this measure is sensitive to a bias component in !::J..6. This is 
nota problem if the central model has been chosen according to (4.23), 
as the bias component will be zero then. 

As in the previous weighting, the parameters of !::J..Ow,u have to be divided 
by r before building x. 

• A combination of both approaches is given by 

Il stack 9w,u Il 
u ·- wEW 2 

f .- nw(k"' + 1) · (5.30) 
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In this case, both the variation in the parameters of a subtransfer and 
the size of these parameters determine the weighting of that subtransfer 
in the principal component analysis. 

The argumentation above regarding which weightings to choose relies al
most entirely on physical interpretation. As is indicated by the different choices 
that can be made, there is no general notion of optimality that can be specified 
in terms of, say, only the dt and di, i E n 8 , In the context of identification for 
robust control design optimality corresponds obviously to optimal performance 
of the final controller, hut this criterion is too complex to be used here. As 
an alternative it has been tried to provide means to tune the structured error 
components to what seems reasonable from a physical point of view. 

Incorporation of weightings in the algorithm 

It will now be assumed that the weighting of the parameter vector to be applied 
in principal component analysis is available in the form of a matrix W such 
that WO is the properly weighted form of the unweighted párameter vector 
9. In the previous section interpretations have been given that all lead to a 
diagonal weighting matrices W. Note, that the following derivation is valid for 
any non-singular weighting matrix W. The weighting W propagates as follows 
through the algorithm: 

Let X be as in (5.24), i.e. without any weighting. The singular value de
composition of W X is 

WX UwEwVJ (5.31) 

where Uw and Vw are orthogonal matrices and Ew is a diagonal matrix con
taining the singular values a1 ;::: • · · ;::: O"n" ;::: 0. In the unweighted case the 
structured error components At(() were taken equal to the models having as 
their parameter vectors the first n 5 columns of U. In the weighted case, they 
are to be taken equal to the first ns columns of w-1 Uw. Note that the first ns 
columns of Uw are the parameter vectors for the structured error components 
in "weighted parameter space" and these are still a set of orthonormal vectors. 

In sections 4.11 and 4.12 the difference between a model Ge', 91 E L'tJ, 
and the (partial) representation of the nominal model G {J was decomposed into 
parts accounted for by the structured error components Ai((), i E n 8 on the 
one hand and parts to be accounted for by the unstructured error~(() on the 
other hand. (Recall that the representation G {J of the nominal model is only 
partial because the tail of ê is not present in G 6.) This decomposition used 
the orthonormality of the 9 A,i heavily. This should now be revised. 

In this revision, the weighting W is interpreted such, that orthogonality in 
the weighted parameter space corresponds to the kind of independence that is 
wanted among the Ai(() and also between the Ai(() on the one hand and~(() 
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on the other. This means that wherever an orthogonal projection occurred 
in the sections 4.11 and 4.12, this should be replaced by a transformation to 
weighted parameter space, an orthogonal projection and a transformation back 
to unweighted parameter space. 

In section 4.11 it was derived for the unweighted case that 

'efi E n 8 , w E W d':f := 

corresponding to a largest component in the direction of 9 A,i equal to 

ÖA,i := d'f9A,i· 

(4.42) 

(5.32) 

See also figure 4.10. According to the previous paragraph, all parameter vectors 
in (4.42) and (5.32) should be replaced by their weighted counterparts, yielding 
a weighted largest component 

WÖA i = (- (WÓ I WOA i) + max (WO' 1 WOA ï)) WOA i 
' ' 8 1 E.C:9 ' ' 

The unweighted largest component then is 

ÖA · ,i 

so that equation ( 4.42) should read in case of a weighting W on the model 
parameters 

(5.33) 

In the. same way it is found that the original equation 

'efi Ens, w E W 4.'!1 := - (fJ l 9A i) + min (O' I OA i) (4.43) 
' ' 8'Et:.'(J ' 

for the unweighted case should become 

(5.34) 

in the weighted case. 
The way in which the structured error components are removed from the 

unstructured error in section 4.12 also needs updating. Basically the structured 
error components were removed from the unstructured error by projecting all 
parameter vectors 91 E C'tJ onto the orthoplement of the span of the structured 
error components. For this projection the operator P} was i:ritroduced as 

n, 

P} = I - L 9A,i9~,i (4.59) 
i=l 
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This becomes in the weighted case 

P± = w-' (r -t,wo.,;(woA,•?) w = r-t,o •. ,oI,wTw. (5.35) 

where it was used that wr = W. In the middle expression in (5.35) we 
recognise, from right to left, the transformation to weighted parameter space 
through the matrix W, the original orthogonal projection and the transforma
tion back to unweighted parameters through w-1• The projection operator 
onto (8 A,i)iEn. becomes in the weighted case 

n, 

p A = L 8 A,i8~,i wrw (5.36) 
i=l 

This change should also be reflected in the definition of .C~ in (4.60) on page 128. 
This concludes the changes that need to be made in the algorithm to allow 

for a weighting of the model parameters. If frequency domain bounds are 
required, no changes are required for the interpolation between frequencies for 
which the uncertainty has been bounded explicitly. The combination of local 
bounds to global bounds can remain unchanged as well. 

5.6.2 Weighting of operating point parameters 
In this section weighting of the columns of the matrix X from equation (5.24) 
will be considered. Further, the matrix V of right singular vectors in the 
singular value decomposition will be interpreted. This interpretation will be 
presented by means of a numerical example. 

Let the matrix X denote again a matrix having the !::,.8w as its columns, 

X = sbs !::,.8w, 
wEW 

and let X be the matrix obtained by putting the ew, w E W, next to each 
other, 

Suppose that X has for example the following numerical value 

1.03 1.00 0.04 -0.04 0.00 0.01 0.34 0.31 
1.02 1.05 -0.02 0.03 0.02 0.03 0.32 0.33 

x= 0.00 0.01 1.02 1.00 0.01 0.02 0.33 0.34 
0.01 0.03 0.99 0.98 0.02 -0.07 0.38 0.32 

-0.02 -0.04 0.00 -0.02 1.01 0.99 0.36 0.32 
0.05 -0.02 -0.04 0.03 0.96 0.99 0.34 0.35 
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This matrix was generated in MATLAB by adding a random perturbation matrix 
to the matrix 

Xoff= 

1 1 0 0 0 0 1/3 
1 1 0 0 0 0 1/3 
0 0 1 1 0 0 1/3 
0 0 1 1 0 0 1/3 
0 0 0 0 1 1 1/3 
0 0 0 0 1 1 1/3 

1/3 
1/3 
1/3 
1/3 
1/3 
1/3 

where the entries of the perturbation matrix were normally distributed with 
zero mean and standard deviation of 0.03. In this way it was achieved that 
the columns of X are clustered in four pairs consisting of the first and second 
column, the third and fourth column, the fifth and sixth column and finally 
the seventh and eighth column. 

After removal of the mean of the columns from X this yields for X 

X= 

0.69 
0.67 

-0.35 
-0.34 
-0.37 
-0.30 

0.66 
0.72 

-0.33 
-0.31 
-0.38 
-0.36 

-0.29 
-0.35 

0.69 
0.66 

-0.33 
-0.37 

-0.37 
-0.30 

0.67 
0.65 

-0.35 
-0.30 

-0.34 
-0.32 
-0.32 
-0.31 

0.68 
0.62 

-0.32 
-0.30 
-0.31 
-0.40 

0.66 
0.66 

0.00 
-0.03 
-0.01 

0.04 
0.01 
0.00 

-0.02 
0.00 
0.01 

-0.01 
0.00 
0.02 

The clustering in X is maintained in X. Omitting for simplicity any weighting 
of the model parameters as discussed in the previous section, the singular value 
decomposition of X 

is used to determine the structured error components. The following values are 
found for U, E and V 

0.57 -0.05 -0.48 -0.47 0.24 -0.41 
0.58 -0.06 0.47 0.45 -0.27 -0.41 

U= 
-0.25 0.52 0.37 -0.53 -0.28 -0.41 
-0.23 0.53 -0.36 0.54 0.28 -0.41 
-0.35 -0.48 -0.37 0.07 -0.58 -0.41 
-0.32 -0.46 0.37 -0.06 0.61 -0.41 

2.0125 0 0 0 0 0 0 0 
0 1.9991 0 0 0 0 0 0 

E= 0 0 0.0976 0 0 0 0 0 
0 0 0 0.0650 0 0 0 0 
0 0 0 0 0.0385 0 0 0 
0 0 0 0 0 0.0000 0 0 
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and 

0.58 -0.06 0.11 -0.35 0.49 -0.19 0.50 0.00 
0.59 -0.03 0.21 0.25 -0.68 -0.25 0.02 0.08 

-0.23 0.54 -0.28 -0.49 -0.39 -0.19 0.36 0.17 

V= 
-0.24 0.52 0.64 0.35 0.19 -0.26 0.16 -0.11 
-0.33 -0.46 -0.14 0.38 -0.11 -0.07 0.71 0.04 
-0.31 -0.48 0.47 -0.49 -0.14 -0.40 -0.16 0.03 
-0.01 0.00 -0.37 0.24 0.26 -0.69 -0.26 0.45 
-0.01 0.00 0.29 -0.01 0.04 0.40 0.05 0.87 

Let c be the number of parameters in 0, in this exarnple 6. The columns of 
:EVT or, equivalently, the rows of V:ET specify to what extent the structured 
error components OA,i = u.i, i Ens, are present in Aow, w E W. This sterns 
from the equality 

c 

Aow = 2:: [vr:T] . u*i w,i 
i=l 

Looking at 

1.17 -0.12 0.01 -0.02 0.02 0.00 
1.20 -0.06 0.02 0.02 -0.03 0.00 

-0.46 1.07 -0.03 -0.03 -0.02 0.00 

V'.ET = -0.48 1.04 0.06 0.02 0.01 0.00 
-0.66 -0.91 -0.01 0.02 0.00 0.00 
-0.63 -0.96 0.05 -0.03 -0.01 0.00 
-0.03 0.01 -0.04 0.02 0.01 0.00 
-0.01 -0.01 0.03 0.00 0.00 0.00 

it is clear that the contribution of the last four columns of U is dominated by 
that of the first two. (This can be concluded even clearer from :E.) Looking 
at the columns of vr;T corresponding to the two dominating columns of U, it 
is remarkable that the first row resembles the second, the third resembles the 
fourth and the the fifth resembles the sixth. This corresponds exactly to the 
clustering of the 9w and the AOw. 

The clustering could have been discovered without using VET by looking for 
examples at the angles between the vectors A(Jw, w E W. In fact, because U is 
an isometry the angles between the AOw are identical to the angles between the 
rows of vr;T. But there is more to be seen from VET. Looking for example 
at the second column of VET it can be seen that IJ A,2 is mainly present in 
AOwlw' w E {3,4,5,6}. This means in turn, that the second structured error 
component is determined mainly by the auxiliary models for the third, fourth, 
fifth and sixth operating point. From the first column of VET can be concluded 
that the first structured error component is determined mainly by the first and 
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Figure 5.10: InBuence of weighting of operating points 

second operating point. In this way the rows of yr;T give a rough indication 
of which operating points are accounted for by the different structured error 
components. This information can be valuable for a physical interpretation of 
the structured error components. 

It now can occur that a structured error component turns out to correspond 
mainly to, say, the auxiliary model for a single operating point, that happens 
to be based on a rather short data set with a relatively high noise level. In 
figure 5. lüa this is illustrated for another set of example values for t::..ew collected 
in the columns of 

x = [ -0.9921 -1.0434 1.0374 5.0173 ] 
1.0262 0.9790 -1.0192 1.9892 . 

These values of D.,(JW are indicated by 'x' symbols. The fourth è::..(Jw has deliber
ately been chosen somewhat as an outlier. It largely determines the main prin
cipa1 component U*1. There is considerable structure in the remaining three 
operating point models, they all lie near the line (fi + ()2 = O. Because of the 
dominating infiuence of the fourth operating point, this information is hardly 
present in the principal components. The direction of the line fli + B2 = 0 is in
dicated by the dashed line in the figure to facilitate comparison of the principal 
components to this direction. 

The value of VL:T is for this example 

yr;T = 1.9669 -0.6179 l l.9076 -0.6546 l 
0.3011 1.7374 

-4.1756. -0.4648 
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From the first column it is clear that U*1 is mainly determined by the auxiliary 
model of the fourth operating point. The first and second operating point seem 
to have a significant contribution. This is due to the fact that the central model 
is "pulled towards" 9w lw=4 . As a result of this, the first and second operating 
point get a large error in this direction as well, hut with an opposite sign. This 
can be recognised as well from the first column of VET. 

If the faith in the fourth operating point model is low, for example due to a 
bad signal to noise ratio or a short data set, it seems reasonable to reduce the 
infiuence of this model on the structured error components. To achieve this, 
the weighting matrix 

WR = [l l l J 
and the scaled matrix 

X' :=XWR 

are introduced and the principal components are determined by a singular value 
decomposition of X 1 instead of x. 

The reasoning bebind the weighting is, that values of ow that have a large 
infiuence on the singular value decomposition can have their influence reduced 
by moving them towards the center, in some sense, of the ow. The sealing is 
applied to X, so to the t::.Ow, and not to the 9w. This corresponds to a sealing 
of the distances between the fr and oc: oc is taken as the center of the ow. 
Because of this, this procedure is insensitive to a translation of the origin. This 
is a desirable feature, as the structure in the model uncertainty should reveal 
something about the position of the ow relative to each other, not relative to 
the origin. 

The result of this weighting is shown in figure 5.lûb. The singular vectors 
U.1 and U.2 have changed, hut U*1 is still not much in line with the structure 
in the first three operating points. This is due to the fact that after the simple 
weighting leading from X to X 1 the columns of X 1 are not zero mean any more. 
The new mean value of the operating point parameter vectors has moved to 
9ci. The direction 9ci - 9c has a large influence on U.1. 

If the mean is subtracted from the columns of X' before performing the 
singular value decomposition the results shown in figure 5.11 are obtained. 
Now the first singular vector U*1 is dominated indeed by the structure in the 
first three operating points. The influence of the fourth operating point is still 
recognisable, so it has not been completely discarded. 

It is straightforward to generalise the procedure presented in this section 
by means of an example to other situations. Basically it boils down to the 
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following steps: first, reduce the distance between the centra! model parameter 
vector and the parameter vector of an operating point that is undesirably dom
inating the principal component analysis. Then establish a new centra! model 
for the new set of operating point models and proceed with the principal com
ponent analysis as before. Of course, this procedure need not be restricted to 
a single auxiliary model. As many parameter vectors can be weighted as seems 
necessary. 

There is insufficient information in the auxiliary model parameter vectors 
themselves for the algorithm to decide which values should be considered true 
system behaviour and which ones should be distrusted. It has already been 
mentioned that noise levels and lengths of data sets can be a reason to suspect 
models a priori. Also the results of any validation criterion can be used to 
establish the reliability of the models for different operating points. Different 
levels of reliability should be reflected in different weighting factors for the 
operating points. 

Remark 5.5 One may have reservations regarding the quality of the new cen
tra! model (Je' that has been obtained by the previous procedure. However, 
things are not as bad as they may seem. Firstly, the new central model can 
be shown to be a weighted average of the original auxiliary models, with a 
lower weighting on models in which there is relatively little faith. Secondly, the 
central model (Je' is only a by-product of the determination of the structured 
error components. Apart from this use, the algorithm never uses it as a model 
for the process, unless the user decides to use it as the nominal model for the 
process. In view of the first remark, it still seems better to use the central 
model Ge0 1 instead of Ge•. D 
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5. 7 Other ways to determine the error structure 

Up to this point, principal component analysis has been used to determine the 
structured error components. In the preceding section means were developed 
to tune this analysis to various kinds of insight we may have. In this section 
principal component analysis will be circumvented altogether. Alternative ways 
to determine structured error components and modifications that should be 
made to the algorithm will be discussed. 

5. 7.1 Overview of alternaäves to principal component 
analysis 

• The most important alternative way to find the dominating parts in the 
model uncertainty is probably through physical insight. Based on such 
knowledge of the plant, it can be possible in certain circumstances to 
indicate a priori what aspects of the plant behaviour will change with 
changes from one operating point to another. If this prior knowledge is 
detailed enough, it may be possible to translate it to n 8 structured error 
components Ai((), i E n 8 • 

• In section 5.6.1 it was already mentioned that it can be a sensible as
sumption for some plants that the uncertainty is roughly proportional to 
the nomina! model: it can be expected that subtransfers that are large 
in the nominal model also have a large uncertainty. In fact, the previous 
two statements are not equivalent. Assuming that the uncertainty is pro
portional to the nomina! model requires that the same dynamics should 
be present in the uncertainty. Assmning that one is large where-the other 
is large does not require this. 

In section 5.6.1, more specifically equation (5.28) on page 177 this was 
less of an issue, because the parameters for a subtransfer were averaged 
in (5.28) and these averages were used only as a weighting, not as a direct 
specification of the error components. Another, less important, difference 
with the situation here is that in section 5.6.1 the central model was used 
instead of the nominal model. The nomina! model instead of the centra! 
model could have been used in section 5.6.1 equally well. 
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Nevertheless it can be worthwhile to take ns = 1 and 9 A,I ê. If 
the nominal model is in the model set used by this algorithm, in other 
words, if G(() = G9((), the bounds d1 and 4.1 will give a bound on the 
multiplicative uncertainty: 

Gtr(() = (1 + /)G(() + Ll(() 

f E (!J.i,di] 

Note that fis a scalar, even for MIMO processes. 

• A third approach is to let the results of control design dictate which parts 
of the model uncertainty should be bounded separately as structured 
error components. This is closely related to the first approach, based on 
physical insight: it probably requires physical insight to recognise what 
phenomenon is acting as a bottleneck in the control design. On the other 
hand, there is a different emphasis in this approach and the first one. 
The first approach tries to answer the question "Where can the model 
uncertainty be expected to be large?", whereas this approach tries to 
answer the more relevant hut also more difficult question "Where can 
the model uncertainty be expected to have a large impact on control 
performance or robustness?" 

• All ways to determine the model uncertainty have relied on information 
for more than one operating point. This does not mean that the algorithm 
is completely useless in case of only one operating point. It does mean, 
that one has to search for alternative ways to find the structured error 
components. 

In principle, one can base the structured error components on the infor
mation that is present in the set of Iinear constraint C9 • If the polytope 
represented by this set is large in one direction and much smaller in the 
others, it is definitely worthwhile to bound the large direction separately, 
as a structured error component. 

In fact, it is not only the size of the polytope itself that is relevant, it 
is also its position relative to the nominal model. The largest error in 
parameter space is given by 

max 119' - êll 
9 1 El:.e 

(5.37) 

where the Euclidean norm in parameter space has been used as a measure 
for the distance between two models. Equation (5.37) seems promising 
at first: it is a quadratic programming problem .with li:r;iear constraints, 
and efficient algorithms exist to solve these problems. However, these 
algorithms solve the minimisation problem 

min9T PO+ cT9 
(J 
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where P is basically required to be a positive definite matrix. General
isations exist for semi-definite P and indefinite P, but especially in the 
latter case the algorithms get much less efficient. The problem (5.37) is 
in facta minimisation with a negative definite P. 

Using a geometrical argument one can see that the solution of (5.37) must 
be obtained for a 61 E Co that is a vertex of the polytope Co. There 
seems to be no other solution method to (5.37) than simply traversing 
all the vertices of Co. For a moderately sized plant with reasonable data 
set lengths, Co already contains thousands of constraints. Traversing all 
vertices is practically not feasible any more. With computers getting 
faster and faster, it may nevertheless be worthwhi.le to pursue this path 
a little further. What is not feasible at present may become possible in 
five or ten years. This situation may also benefit from the improvement 
of algorithms. 

One need not restrict oneself to the largest direction only. Once the 
largest direction is found, the orthogonal complement may be searched for 
the second largest direction and so on, until the size of the largest vector 
found in a direction does not seem to qualify for the term "dominating" 
any more. 

As mentioned in remark 4.13 on page 129 it is not necessary to project 
the polytope Ce itself onto the orthogonal complement of the structured 
error components found so far to find the next largest direction. Let P} 
denote the projection onto the orthoplement of the span of the structured 
error components found so far. The next one is obtained by solving 

max llP}(O' - 0)11 = max (O' - Of (P})
2 

(O' - 0) 
9'ECo 91 El9 

which is a quadratic programming problem like (5.37). 

The idea of using a QP-problem to find the dominating error components 
need not be restricted to the case of one operating point. In case of multi
ple operating points one should search in the polytope that is the convex 
huil of the union of the polytopes for different operating points. Find
ing the farmer polytope wîll require at the moment (also) an excessive 
computational laad. 

5. 7.2 Modtfi.cations to the algorithm 

It this section it will further be assumed that the structured error components 
are available in the form of n 8 independent vectors (J A,i, i E n 8 • The 9 A,i are 
neither assumed to be normalised nor orthogonal. 
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lt may seem that this information is sufficient to specify how a certain 
system G' ( () should be written as 

n, 

G1
(() = G(() + l:ó~Ai(() +il(() (5.38) 

i=l 

This is not the case. 
Consider a system G8 1 where (}' E C'J for an operating point w E W. For 

all 9' E C'/J, the difference (}' fJ should partly be accounted for through a 
sum 2:~~1 ó~(J A,i, corresponding to the second term on the right of (5.38), and 
partly be accounted for by some rest term, corresponding to il(() in (5.38). 
This implies that 91 should be written as 

n, 

(}' = {J + .L ó:o A,i + (JA (5.39) 
i=l 

where (JA represents the part that should be accounted for by il((). (Recall 
that il(() also accounts for any mismatches in the tails. This means that 
(JA = 0 does not imply il(() = 0.) If B' - fJ E {O A,i)ien. then there is a unique 
set of values óL i Ens, such that 

n. 

B1 fJ+ _Lö~BA,i, BA= 0. 
i=l 

If O' '/. {O A,i)iEn. then a value BA has to be found, such that 

Of1 := 8' - fJ - OA E {B A,i)ien. 

For Bj1 a projection of 81 onto the span of 6 A,i> i E ns, will be used. From 
section 5.6.l it is clear that this projection need not be orthogonal in case of 
weighting and this is what causes the non-uniqueness of 6A and the fact alluded 
to earlier that the directions 0 A,i alone do not determine uniquely the values 
of ói in (5.38). In this section the non-uniqueness will be resolved by using the 
orthogonal projection. If this is not desired, then the results obtained in this 
section can be combined with the results of section 5.6.1. 

lt will now be shown how the algorithm should be updated to reflect the 
choices made above. 

Let the 6 A,i be collected in a matrix 4>: 

4> := .sbs 6 A,i 
iEn. 

(5.40) 

and let c be the number of entries in the parameter vectors 6. The operator PA 
mapping an arbitrary vector (J E JR,C to its orthogonal projection onto img <li is 

(5.41) 
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and the operator P} mapping a 8 to its projection onto the orthoplement of 
img <I> is 

Note that these expressions reduce to (4.59) and (4.58) if the 8A,i form an 
orthonormal set of vectors. The remarks made above translate to the equalities 

and 

Substitution of (5.40) and (5.41) in (5.43) gives 

or 

Bii = [OA,1 ·· .OA,n,] {<PT<I>) <PT(8' - 0) 
n, 

= ~ [(<1>T<P)-1<PT(O' -iJ)L8A,i 
i=l 

Ö~ = ( e~·? ( <J>T <J> )-1 <J>T (O' - 0) 

= ( <P {<I>T<I>f1 e~· l B' - iJ) 

(5.43) 

(5.44) 

This should be reflected in the calculation of the bounds d'f and d.'t, i E 
ns.' w E W. In section 4.11 it was derived for the upper bounds d'f for the 
case of orthonormal 0 A,i that 

Vi Ens, w E W d't' := - (0 1 OA,i) + 6~q (0' 1 OA,i) (4.42) 

Based on (5.44), this should now become 

and for the lower bound we find 

The only change that is required for the calculation of the unstructured error 
bound is that (5.41) and (5.42) should be used instead of (4.59) and (4.58) for 
the definition of the projection operators PA and P}. The combination of local 
errors to global errors can proceed as before. 



5.8. Unstable systems and closed loop experiments 191 

Remark 5.6 In this section it was shown how to use arbitrary structured error 
components. In section 5.6.1 the direction of the structured error components 
could be infiuenced by weighting the model parameters before doing principal 
component analysis. One may wonder to what extent the use of arbitrary 
structured error components is more genera! than weighting. 

The example below will demonstrate that through weighting only a limited 
set of structured error components can be obtained. 

Consider the case of two arbitrary vectors lh and 62 , both in me. Let 

w Wi > 0, i E c 
[
Wl . . Wel ' 

be a weighting matrix such that W 61 and W 62 would be two of the left singular 
vectors of WX in (5.31). It would hold 

c 

(W61 1 W62) = L wr81,i82,i 
i=l 

The first vector in the second inner product has only positive entries. The inner 
product can now only be zero if the entries of the second vector are either all 
zero or do not have the same sign. This may not be true. Consequently, 
structured error components 61 and 82 can not be obtained by weighting. 
Being able to specify structured errors explicitly is truly more genera! than 
weighting. D 

5. 8 Unstable systems and closed loop experi
ments 

The algorithm is only suitable for stable systems. This is due to the fact that 
only for stable systems G( () the expansion 

00 

G(() = L ()kBk(() 
k=O 

is possible with an exponentially decaying sequence of f)k 's. This exponential 
decay was in turn used heavily to bound the effect of undermodelling. 

The algorithm itself is not restricted to open loop situatioris: as long as the 
prior information can be obtained, the algorithm can be applied. This does not 
mean, that experimental data obtained in closed loop do not complicate things 
at all. The complications occur at the level of the identification steps that 
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+ 

Figure 5.12: Feedback configuration 

are part of the algorithm, for example for the estimation of auxiliary models. 
These identification steps have to be able to deal with closed loop data. The 
least squares algorithm that was proposed by way of example is not suitable 
for closed loop data. 

A technique going back to (Hansen and Franklin, 1988; Hansen et al., 1989; 
Hansen, 1989) can be used to circumvent both problems. The technique was 
elaborated further in (Schrama, 1992; Schrama and Van den Hof, 1992) and 
was applied by (De Vries, 1994) and later by (Hakvoort, 1994) for the purpose 
of model uncertainty bounding. See De Vries (1994) for more references on the 
subject and for further motivation of the framework. 

The idea is not to identify the possibly unstable plant itself, hut (stable) 
coprime factors of this plant. This will be explained in more detail shortly. 
Then the implications this scheme has for the application of the algorithm will 
be considered. 

5.8.1 Coprime factor representation 

First, the following assumptions are made: 

1. The linear manifestations Gf;. of the plant in the operating point w E W 
are linear time-invariant finite dimensional (LTIFD) systems. 

2. For all operating points w E W, Gt;. is stabilised by the same known 
LTIFD controller C in the configuration of figure 5.12. 

3. A (LTIFD) nominal model G for Gtr is available that is stabilised by C. 

Assumption 1 is new only as far as the finite dimensionality of Gf;. is con
cerned. The linear manifestations of the true system were almost by definition 
considered linear time-invariant processes. 

In the feedback configuration of figure 5.12 e(t) is a signal representing 
noise, disturbances and possibly also other effects related to undermodelling, 
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Figure 5.13: Extended dual Youla parametrisation 

see chapter 3. r1 (t) and r2(t) are reference signals. They need not both be 
present for the purposes of this section. Note that the effect of r2(t) can also 
be achieved by increasing r1 ( t) with a term C r2 ( t). 

For completeness the definition of right-coprime factorisations is given: 

Definition 5.2 A pair (N((), D(()) is called a right-coprime factorisation over 
R1i00 of a linear, time-invariant, finite dimensional q x p system G if 

l. G(() = N(()D(()-1 

2. N(() E R1i'!};P and D(() E R1i~P 

3. 3U(() E R1i~q' V(() E R1i~P, U(()N(() + V(()D(() = I 

D 

Loosely speaking, the coprime factors N and D can be seen as a stable numer
ator and denominator of P satisfying that there is no cancellation of unstable 
zeros in the quotient N n-1 . 

Given the assumptions made above, Gt:,., w E W, C and ê admit a 
right-coprime factorisation over R1i00 , see (Vidyasagar, 1985). Let (Nt:.,Dt:,.), 
(Nc, De) and (JÎ/, D) be right coprime factorisations of Gt!,., w E W, C and 
ê respectively. The assumption that all Gt!,. are stabilised by a controller 
C that is known to stabilise ê is equivalent to the assumption that there 
exists for all w E W a Rt!,. E R1i00 such that the system drawn in fig
ure 5.13 is equivalent to the part drawn in a dashed box in figure 5.12. In 
that case it also holds that St;. E RH.00 for all w E W. This result is shown in 
(Schrama, 1991; Schrama, 1992). The interconnection drawn in figure 5.13 is 
known as the extended dual Youla parametrisation. 
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In (Schrama, 1991; Schrama, 1992) it is further shown that for u and y 
obtained in an operating point w, w E W, it holds 

x = (b + CN)-1(r1 + Cr2) = (b + Cfe)-1(u + Cy) 

z = R'frx + s;:_e = D-;1(y - Nx) 

u = D'frx - NcS:':.e 

y = N;':.x + DcSf:.e. 

(5.47) 

Provided the external references r 1 and r 2 are not correlated with the distur
bance e, x is uncorrelated with e. Note that x and z are computable because 
r 1 , r 2 , N, b and C are known. This means that the transfer from x to z can 
be estimated in an open loop fashion. Moreover 

D'fr = b - NcRt,W,. 

N;':. = N +DcR'fr 
(5.48) 

so that Df:. E 'R1lf:P and Nt"i- E 'R1l'f:;P. These transfers being stable, the 
algorithm can be used to bound the uncertainty in D'f:. and N'f::.. However, 
bounding the uncertainty in D'f:. and N'f::. separately ignores the fact that these 
transfers are related through (5.48), where fv, b, Nc and De are known trans
fers. Ignoring the relation that exists between the uncertainty in n;::. and Nt:. 
leads to more conservative error bounds, so it is better to bound the uncertainty 
in R;:J.. 

Note that the coprime factors Df:. and N;::. and the Youla parameter Rt:, 
that will be found depend on the factors of the nominal model. For a different 
nominal model or even for a different factorisation of the same model, different 
factors Dt;. and N;::. will be found. (IT the identification of Df;. and N;::. is un
biased, the quotient N;_(D'f;.)- 1 does not depend on the factors of the nominal 
model of course.) This may even go so far, that the order of Nf::. and Df:. is 
different for different (factors of) the nominal model. This interesting issue is 
not investigated further here. The interested reader is referred to (Van den Hof 
and Schrama, 1995). 

5.8.2 Implications for the algorithm 

The most important implication for the algorithm is, that the model uncer
tainty is no longer additive uncertainty hut "Youla parameter uncertainty." 
The uncertainty description is 

Ntr = N + DcRtr 

Dtr = D NcRtr 
n. 

Rtr Ro + D..R + L ÓiAR;i 
i=l 

(5.49) 
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where 

Ntr,N,Nc E 1l~xp, Dtr,D,Dc E 1l~xp, 
qXp -

Rtn Jlo, f:::..R, AR,i E 1l2 , d.i :5 <Îi :5 di 

111:::..Rll :5 dR,fi, dR,ti,d.i,öi,di E IR, 

i Ens 

This structure is visualised in figure 5.14. The uncertainty consisting of t::..R 
and Ö1 , ••• , Ón, can be used by µ synthesis as well. . 

z 

Figure 5.14: Coprime factor uncertainty structure 

The prior knowledge that is required for successful application of the al
gorithm is the same as that for the original algorithm, with the modifications 
that x and z take the role of the original u and y. Also Rt.. acts like Gf:. did 
in the original algorithm. Nevertheless some further discussion is desirable, 
as these substitutions may have some consequences for the ways in which this 
prior knowledge can be obtained. 

• The same data sets are required as for the "standard" algorithm. Further 
the controller that was present in the loop during the experiments bas to 
be known. According to (5.47) this is sufficient to reconstruct the signals x 
and z. · 

o For some data sets d E ']) an instrumental variable v4 (t), t E T 4 may be 
available. This instrumental variable should be correlated with x but not 
with the disturbances e. This is equivalent to requiring thát the instrumen
tal variable is correlated with r 1 and/or r2 but not with e. 

Similarly to the open loop case, x itself can be used as an instrumental 
variable if no other qualifying signal is available or desired. As the identifi-
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cation of the relation between x and z is an open loop problem, there is no 
strict need for instrumental variables other than x. 

• For each operating point w E W, the data is assumed to be affected by 
noise that is ·additive to z. According to {5.47) ~nd figure 5.13, a sufficient 
condition for this is, that the noise is additive to the output, as in the open 
loop case. Being in a closed loop situation, the input u is now affected as 
well by the noise. 

The Youla parameter of the linear manifestations of the true system is 
expressed in the MIMO basis in the following way: 

00 

R~(() = L L(Bltr}~Eu Bk((), a ES 
uES k=O 

• For each operating point, and for each subtransfer a E S of the Youla 
parameter Rt";., values MR. E IR+,PR. E [O, 1),BR.,max E IR+ and k'R E IN are 
known, such that 

{5.50) 

In the open loop case, the poles of the basis generating system had to be chosen 
close to the poles of the true system in order to make pu small. Conversely, in 
case of bounding the uncertainty in the Youla parameter the poles of the basis 
generating system should be taken close to the poles of the Youla parameter 

Rt":.· A A 

If the nominal model is used for the factors N and D, then the Youla 
parameter will be zero for the nominal model. Perturbations of the nominal 
model correspond to perturbations of the Youla parameter around 0. Although 
the fact that Rt":. is a stable transfer follows from the fact that the true system 
is stabilised by the controller C, it is difficult to be more precise about the pole 
locations of R'f:. in this case. This makes it difficult to generate a basis with a 
basis generating system having its poles close to those of Rr;,. 

It may therefore be advisable to base N and ÎJ on a model that is known 
not to coincide with the true system, so that non-zero values for R'f:. can be 
expected. This model has to be stabilised by C, but using a preliminary Youla 
parametrisation it is easy to find such models. The procedure suggested in 
section 4.8.3 should probably be used subsequently to estimate the bounds MR_ 
and pR_, a ES. 

• For each operating point w E Wand for each data set d E 'D(w), a signal 
ez : 'JI'd -t mi is available, such that 
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Basically the signal ë~(t) can be derived from the signal ë(t), the l 1-norm 
of s;::. and suitable assumptions concerning the extension of ë(t) for t < 0. 
Unfortunately the transfer Sf':. is not known exactly. It holds, see for example 
(Van den Hof and Schrama, 1995), 

s;::. = D;-1(1 + Gt,.c)-1 H 

This involves the unknown transfer Gfr.. Also it was demonstrated in section 5.2 
that such a bound based on the €1 norm may be very conservative. It seems 
to be a better idea to base the bound on the residuals in the identification 
of RrJ. as was proposed in section 4.8.3. 

• For each data set d E '.D, a vector xd E JR~ is available, such that 

Let fd be a bound for lr1 (t) + Cr2(t)j, t < 0. Then it follows from (5.47) 
that 

Once again, this is probably a conservative estimate for xd, see section 5.2. 
The procedure suggested in section 4.8.3 should be preferred. 

This concludes our discussion of the main types of prior knowledge that may 
be or should be available to the algorithm in the closed loop case. The cross
covariance bound ( 4.9) and the extensions discussed in section 5.4 and 5.5 can 
also be incorporated into this closed loop procedure with little modifications, 
similar to the ones discussed above. 

Once the prior knowledge is available, the a1gorithm can be followed unal
tered to obtain finally the fully specified uncertainty description given in (5.49) 



198 Extensions to the basic algorithm 



6 
Examples and case studies 

6.1 Overview 
6.2 A simple SISO simulation 

example 
6.3 A more complex SISO 

simulation example 

6.1 Overview 

6.4 A MIMO simulation example 
6.5 Case study: 

Asynchronous motor 
6.6 Conclusions 

In this chapter the algorithm of chapter 4 and 5 will be tested by means of a 
number of examples. 

The first example is a SISO simulation example that was constructed in 
such a way that it fits the assumptions and uncertainty description of the 
algorithm. This example was already presented throughout chapter 4. The 
results presented there are briefly repeated and some new results are given. 
The second example is also a SISO simulation example, hut the structure that 
is present in the model uncertainty can not be represented exactly by the 
uncertainty description of the algorithm. This example gives an indication 
of the capabilities of the algorithm to capture in an .approxîmating way the 
structure that is present in the uncertainty of the transfer of a process if that 
structure does not fit the uncertainty description (4.4). The third example 
is a MIMO simulation study. Some of the effects that may occur in MIMO 
situations, including the effect of weighting as discussed in section 5.6, will be 
shown. 

The final example uses practical data taken from an asynchronous motor. It 
is known from physical reasoning and practical experience that the character
istics of this motor change if the magnetic material inside the. motor saturates. 
It will be investigated whether this influence on the dynamics of the motor can 
be described by structured error components and whether these components 
can be found by the algorithm. 
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6.2 A simple SISO simulation example 

6.2.1 System and data 

A system with two "operating points" is considered. In the first · operating 
point, denoted operating point a, the transfer of the process is 

Gfr(z) = z ~.97 
and for the second operating point, denoted b, the transfer is 

G~r(z) l.5Gfr(z) = z ~i.97 
A basis was generated using the system 

1 
Gb(z) = z - 0.95 

The poles of the basis generating system were deliberately chosen close to but 
not equal to the poles of the linear manifestations of the true process. Only 
one data set per operating point was used. For bath operating points a data 
set was generated containing 1500 samples, with zero initial conditions. The 
first 500 samples were discarded, the remaining 1000 samples were taken as the 
experimental data sets. The experimental data sets therefore had unknown, 
non-zero initial conditions. 10 basis functions were incorporated in the model. 
This gave sufficient freedom in the model set to contain an accurate approxi
mation of the true process. 

The inputs were random white noise sequences having a standard normal 
distribution. Additive noise was added to the output. The signal to noise ratio 
at the output was 40 dB in the first operating point. In the second operating 
point the absolute noise level was taken the same, so that the signal to noise 
ratio was better in this operating point. The noise was uncorrelated with the 
inputs, was not coloured and had a zero-mean Gaussian distribution. The fact 
that the noise was not coloured was not used by the algorithm itself, nor in the 
identification of auxiliary models. 

No prior information was given to the algorithm concerning the decay rate 
of the model parameters. As the poles of bath the true system and the basis 
generating system are known in this example, it can be calculated that there 
exist Ma, Mb E JR+, such that 

l8fr,kl :::; Ma0.255k 

18Zr,k 1 :::; Mbo.255k 

where 8fr,k and 8fr,k are the true expansion coefficients of Grr and Gîr expressed 
in the basis generated by Gb. No noise levels or bounds on past inputs were 
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given either. The inputs were used as instrumental variables in the cross
covariance bound (4.9). The value of ët, which is the actual cross-covariance 
bound, was estimated by the algorithm. 

6.2.2 Results 

First the results obtained using one principal component are discussed. The al
gorithm was run once without estimating initial conditions, using the extended 
noise and cross-covariance bounds ( 4.30) and ( 4.37) and once while estimating 
initial conditions, using the extended noise and cross-covariance bounds (5.5) 
and (5.7). 

The extended noise bound limits the influence of noise and transients on 
the output. In figure 6.1 the bounds are shown using dashed lines and the 
sum of the true transient and the true noise are plotted with a continuous line. 
The left part of the picture shows the results obtained with the bound (5.5), 
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Figure 6.1: Extended noise bound, with (left) and without (right) estimating 
initial conditions 

i.e. while estimating initial conditions. The right part shows the results using 
the bound (4.30), without estimating initial conditions. The areas between 
the dashed lines are the areas that are consistent with the respective extended 
noise bounds. It is clear that estimating the transient improves the extended 
noise bound considerably. 

The truncation value k was taken equal to 19 in the calculation of the 
extended bounds. In this way the same number of basis functions is used for 
the model and for the first part of the tail of the basis. The undermodelling 
due to the first part of the tail is bounded in a less conservative way than 
that due to the rest of the tail. It seems reasonable that if ten basis functions 
are enough to get sufficiently accurate models, then ten extra basis functions 
should be enough to get a sufficiently non-conservative bound on the influence 
of the tail. 
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Given the above value of k, à(t) in (4.26) accounts for the possible influence 
of known inputs through basis function 10 to 19 and b(t) in (4.27) bounds 
the possible influence of unknown inputs through basis function 0 to 19. 8 in 
(4.28) accounts for the infiuence of all inputs, known and unknown, through 
basis function 20 and higher. 

In the Ieft hand picture, the mean and standard deviation of à(t) were 0.0011 
and 0.0007, respectively. The value of the noise bound ë(t) was estimated to be 
0.14 for all t and the value of 8 was 0.59 .10-5. It is clear that the contribution 
of à(t) and 8 is negligible. This is mainly due to the fast decay of the estimated 
model parameters. This will be discussed in more detail shortly. 

In the right hand picture, two effects occur. Most visible is the large value of 
b(t). It is the contribution of b(t) that causes the excessive initial values for the 
extended noise bound. The other effect is that the residuals of the estimation 
become larger, because they also have to account for an unmodelled transient 
in the data. This manifests itself in the larger estimated noise bound ë(t): the 
value 3.05 was estimated for all t. 

The lack of modelling of the transient results in less accurately estimated 
model parameters. This leads to worse values for M and p and in turn to larger 
values for a(t) and 8. The mean value and standard devi.ation of a(t) are in this 
case 0.0049 and 0.0028. The value of 8 is 0.12 · 10-3. These values are larger 
than in the case that the transient is estimated, hut they are still negligible. 

The absolute values of the estimated model parameters and the parameter 
bounds êk, k = 0, ... , 9 that were estimated from these are shown in figure 6.2. 
If the transient is not estimated, the parameters of the high order basis func
tions become less exact, which means in this case that they become larger. 
Therefore the estimated bounds êk become larger as well. 
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Figure 6.2: Estimated model parameters and their bounds 
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Not estimating the transient that is present in the data inflates the poly
topes C'tJ, w E W containing the true model parameters: the extended noise 
bound, the extended cross-covariance bound and the bounds ijk all increase 
(except for ij0, see figure 6.2). The slower decay of the bounds ijk also causes a 
larger influence of the tail of the basis on the uncertainty bounds. In figure 6.3 
the impact this has on the uncertainty regions due to the unstructured error 
is shown for a number of frequencies. The uncertainty regions apply globally, 
i.e. for both operating points. There is clearly a dramatic increase in the size 
of the uncertainty regions if no transients are estimated. 
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Figure 6.3: Frequency uncertai.nty regions with one structured error compo
nent; light areas: uncertai.nty without estimated transient, dark areas: uncer
tai.nty with estimated transient, x: models estimated for an operating point 

With this the comparison of results with and without estimating initial 
conditions is ended. Based on these results only the algorithm that estimates 
the transients along with the model will be used further. 

Now the results with a structured error component are compared to those 
without one. Figure 6.4 shows the uncertainty for a number of frequencies. The 
x's in this plot show the transfer of the estimated auxiliary models for the two 
operating points. The line roughly halfway between the two lines connecting the 
x's corresponds to the transfer of the nomina! model. The light areas represent 
the uncertainty that is found without a structured error component. The dark 
areas show the uncertainty when one structured error component is removed 
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Figure 6.4: F'requency uncertainty regions with estimated transient; light areas: 
no structured error, dark areas: one structured error component 

from the unstructured error. The size of this structured error component as 
bounded by 41 and d1 is shown by dashed lines. The dark areas in figure 6.3 
and figure 6.4 are the same. 

Figure 6.5 shows the process transfers and the uncertainty bounds in a 
Bode amplitude plot. The light shaded area represents the nominal model 
together with the uncertainty due to the unstructured error if no structured 
error components are used. The two continuous lines near the edges of this 
area represent the true transfers in the two operating points, the one on top 
in operating point b, the other in operating point a. The unstructured error, 
which is the only model uncertainty if no structured error is used, appears to 
be large enough to contain the difference with the nominal model for both true 
transfers. 

The darker shaded area represents the nominal model and unstructured 
error if one structured error component is used. Adding a structured error 
component has clearly shrunk this error. The dashed line is the amplitude plot 
for 

The dotted line right below it is the amplitude of the true difference between 
the process and the nominal model. Actually there are two dotted lines, one for 
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Figure 6.5: Uncertainty in Bode amplitude plot, global results 

each operating point, but they are so close that they can not be distinguished 
in this plot. As far as one can tell from the Bode amplitude plot, the structured 
error component is consistent with the nominal model and the two true process 
transfers. 

Comparing the Nyquist plot in figure 6.4 with the Bode plot in figure 6.5, 
the Nyquist plot looks probably more dramatic than the Bode plot. This is 
due to the logarithmic sealing that is employed in the Bode plot. 

6.2.3 Discussion 

It is not surprising that the algorithm performs satisfactory in the situation 
analysed in this section: the undermodelling is small and so are the noise levels. 
The uncertainty in the process transfer is clearly dominated by the difference 
between the transfers of the two operating points. 

With two operating points and one structured error component, one can 
expect the algorithm to find a nominal model equal to the mean of the two 
transfers. The structured error component is then "aligned" with the difference 
between the two transfers. This is exactly what happens. In this academie 
example there is no point in asking whether the structure that was found in 
the uncertainty is correct. Having only two operating points, the structure is 
correct if the uncertainty description ( 4.4) is consistent with the true transfers. 

In a practical example much more care should be taken. It is likely that a 
practical process does have more than two operating points. In fact, the set of 
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operating points is likely to be an uncountable set in many cases. If one wants to 
"extrapolate" the validity of the uncertainty bounds to more operating points 
than those for which data was obtained, it is wise to gather data for more than 
two operating points. One should also select these operating points carefully 
to make sure that they cover the relevant changes in process behaviour that 
one wants to capture by the uncertainty description. 

Nevertheless it can be concluded that the algorithm performs as could be 
expected in a situation that fits the algorithm. In the next section a situation 
that fits the algorithm less well is analysed. 

The other conclusion to be drawn from this section is that modelling the 
transient can have a large beneficia! effect on the size of the extended noise 
bound. How large this effect is depends on the noise level and the level of 
undermodelling in an operating point. 

6.3 Amore complex SISO simulation example 

6.3.1 System and data 

In this section a system will be considered that can be described by the following 
set of transfers 

Grr,(z) = (0.003 
w (1-aw)z 

O.Ola ) (z - 0.97 - O.law)(z - 0.9)' 

where aw takes the values listed in table 6.1. Different values of aw correspond 
to a different operating point. Data was generated for all operating points in 
table 6.1. The DC-gain of Gf;.(z), i.e. Gfr(l), is equal to 1 - aw. The Bode 
amplitude plots for the system in different operating points are collected in 
figure 6.6. The changes in process transfer are highly structured, they can be 
described with a single parameter aw, hut this structure can not be represented 
by the uncertainty description ( 4.4) used ·by the algorithm. 

For each operating point, a data set of 2000 samples was generated, where 
the input was normally distributed, zero-mean white noise. The first 1000 
samples were then discarded, so that reasonably sized transients may be ex
pected in the data sets. Additive noise was added to the output. The signal to 

Table 6.1: Operating points and their values of a 

f;f 1 2 3 4 .5 

-0.2 -0.1 0 0.1 0.2 
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Figure 6.6: Bode amplitude plots for different operating points of the example 
of section 6.3 

noise ratio at all outputs was 40 dB. The output noise was white, zero mean, 
normally distributed and uncorrelated with the inputs. 

10 basis functions were used in the model. The truncation value k in the 
calculation of the extended noise and cross-covariance bounds was taken equal 
to 19. A basis was generated with the system 

z 
Gb(z) = z - 0.975. 

The basis generating system was deliberately not tuned too much to the true 
system to investigate the influence this has. The single pole in the basis gener
ating system is in particular relatively far away from the pole in 0.9 in the true 
system. Better results would be obtained if a basis was generated by a second 
order system having an additional pole near z = 0.9 compared to Gb(z) above. 

6.3.2 First results, discussion 

Before presenting the results, figure 6.6 is first considered somewhat closer. 
Although the plots may seem to be close to each other, they are very different 
as far as additive errors are concerned. The largest transfer, corresponding 
to aw = -0.2, is for high frequencies an order of magnitude larger than the 
smallest transfer, which is obtained for aw = +0.2. One may also verify, that 
the time constant corresponding to the pole that moves for differing operating 
points varies by a factor 5. 
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This is refiected in figure 6. 7 in which Bode amplitude plots of the nomina! 
model and of the true errors between the nominal model and the process in 
different operating points are shown. The nominal model was taken equal to 
the central mo~el in the algorithm. The true errors are, especially for high 
frequencies, of the same order of magnitude as the nomina! model itself. 

---

w -r 

Figure 6. 7: Bode amplitude plot of true additive errors for different operating 
points ('-')and nominal model ('--') 

In figure 6.8 the structured and unstructured errors that were found by 
the algorithm are shown in a Bode amplitude plot. The dotted lînes give 
the unstructured errors, the dashed lines the structured errors. The dotted 
line with no additional marker is the unstructured error if no structured error 
components are used. The dotted line marked with * 's is the unstructured error 
for one structured error component. On very close inspection it can be seen 
that there is also a dotted line marked with +'s. This line can be distinguished 
between w = 10-2 and w = 10-1 • It is a little bit below the line marked with 
*'s. It gives the unstructured error if two structured components are used. 

The unstructured error is significantly larger than the true error, especially 
for large frequencies and for small frequencies. In the remainder of this section, 
this is analysed further, thereby showing the capability of the algorithm to 
indicate what effect actually determined the final noise bounds. 

For the analysis of the noise bound, attention is restricted to the single 
frequency w = 10-3 . The case for one structured error component is considered, 
the cases for zero or two structured error components would given comparable 
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Figure 6.8: Structured and unstructured uncertainty in Bode amplitude plot 

results. Figure 6.9 on page 213 shows the transfer function uncertainty regions 
for this frequency for different operating points. It turns out that the operating 
point for aw = -0.1 has the largest uncertainty region, containing all the 
others. Consequently the global uncertainty region, i.e. the one that is valid 
for all operating points, is in this case determined solely by the uncertainty for 
aw = -O.I. (This situation is not only encountered for w = 10-3 , hut also for 
other low frequencies. For higher frequencies the size of the uncertainty region 
for aw = -0.2 becomes comparable in size to that for aw = -0.1 and both 
uncertainty regions then determine the global uncertainty region.) 

Figure 6.10 on page 213 separates the transfer function uncertainty regions 
for aw = -0.1, w = 10-3 into a part due to the uncertainty in the model 
parameters and a part exclusively due to the tail of the basis. The part induced 
by the model parameter uncertainty is enclosed by a dashed line, the remainder 
of the area enclosed by a continuous line is caused by the tail of the basis. 

As far as the uncertainty due to the tail of the basis is concerned, there are 
basically two ways to reduce this uncertainty. The first is to use more basis 
functions in the model. This may increase the size of the uncertainty due to the 
model parameters, hut the reader may verify in section 4.12 that this increase 
will never be larger than the decrease of the uncertainty due to the tail of the 
basis. 

The second way to reduce the uncertainty caused by the tail of the basis is 
to use a set of basis functions for which the expansion coeffi.cients for the basis 
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functions in the tail are smaller. This can be achieved by choosing the poles 
of the basis generating system closer to the poles of the linear manifestation 
of the system in this operating point. This may deteriorate the decay rate of 
the expansion coeffi.cients for the tail of the basis in other operating points. As 
the poles of the linear manifestation of the system in the operating point that 
we are considering are not known in a practical setting, matching the poles of 
the basis generating system better to those of the true system involves either 
an extra identification of the true system in this operating point or a model 
reduction step of the corresponding auxiliary model. Recall that the poles of 
the auxiliary models coincide with the poles of the basis generating system (up 
to multiplicity). 

In this particular example, the decay rate of the tail could be improved 
by generating a basis with a second order system. It was already mentioned 
that the pole in z 0.9 of the true system is not accounted for in the basis 
generating system. Leaving this pole out of the basis generating system has 
apparently a significant inffuence on the size of the tail of the basis. 

Remark 6.1 The previous discussion may suggest that the area enclosed by 
dashed lines in figure 6.10 is independent of the tail of the basis. This is not 
true. This area is determined, among other things, by the extended noise and 
cross-covariance bounds. In the extension of these bounds, the tail of the basis 
is involved as well. D 

Attention is now focussed on the uncertainty due to the model parameter 
uncertainty. For w = 10-3 this corresponds to the area within dashed lines in 
figure 6.10. The size of this part of the uncertainty is determined by the set 
C'/J of linear constraints. C'/J consists in this case of ten upper and ten lower 
bounds for each of the model parameters, 1000 upper and 1000 lower bounds 
corresponding to the extended noise bound and one upper and one lower bound 
originating from the extended cross-covariance bound. It turns out, that the 
only constraints that were ever active during the linear programming problems 
that were solved in this operating point are constraints that come from the 
extended noise bound. The cross-covariance bound was never active; if it were 
omitted from the problem, the same uncertainty regions and structured error 
bounds would have been obtained! (One can not tell in advance whether this 
situation will occur: in some examples it <lid and in others it did not.) 

To keep the memory requirements of the algorithm reasonably small, it was 
only recorded which constraints were active at least once in all linear programs 
in an operating point. This means that the constraints that were reported to 
be active may not have been active during the bounding of the unstructured 
error for w = 10-3 . They may have been active instead while bounding the 
unstructured error for other frequencies or while bounding the structured error 
component. 
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Figure 6.11 on page 214 shows the residuals together with the extended 
noise upper and lower bounds. The noise bounds that were active are marked 
with a 'o'. There seems to be a tendency to avoid making the noise bound 
active for samples that correspond to a local peak in the noise bound. This is 
to be expected, as these constraints are less strict than those for samples for 
which the noise bound does not peak. Surprisingly enough, for some of the 
samples for which the noise bound peaks, the corresponding constraints have 
been active as well. 

To continue the search of the effects that eventually determine the unstruc
tured error in figure 6.8, the extended noise bound is separated in figure 6.12 
on page 214 into its constituents. The straight line at a constant level of 0.0069 
is the unextended noise bound. The line that is for small t a bit above the un
extended noise bound is the sum of the unextended noise bound and the bound 
on the transient as derived in section 5.2. The "noisy" line above that is the 
sum of unextended noise bound, transient bound and ii(t). In this example, 
ii(t) is a bound on the response of basis functions 10 to 19 to the inputs in 
the experimental data set. In the last line in the top of the plot the term ó is 
finally added. ó is a bound on the response of basis functions with index 20 
and higher, both to the inputs in the experimental data set and to the inputs 
preceding the experiments. 

Clearly the contribution of ó, i.e. the response of basis functions 20 and 
higher, is the largest one in this example. From equation (4.28) on page 108 
can be seen that, given a set of basis functions, the value of ó is determined by 
max{u, lu(O)I, ... , lu(T - 1)1} and Ök, k = 20, .... In this example it holds 

max{u, lu(O)I, ... , lu(T - 1)1} = u, 
Ök = Mpk, k = 20, ... 

In table 6.2 the values of ó, u, M and p that were found for different operating 
points are listed. The change in magnitude of ó over different operating points 
is in good agreement with the change in magnitude that is observed for the 
uncertainty regions in frequency domain. It is interesting to compare the values 
found for a:w = -0.2 with those for a:w = -0.1. Both u and Mare larger for 
a:w = -0.2 than for a:w = -0.1, which leads in principle to a larger value of 
ó. However, this is more than compensated by the decrease in p from 0.681 
to 0.666: the value of ó appears to be very sensitive to the value of p. This 
also explains the small values of ó for a:w = 0.1 and a:w = 0.2. These can be 
attributed to the small value of p that is estimated in these operating points. 

6.3.3 Further results 

The example in this section was designed to get insight into the capabilities 
of the algorithm to describe structure in a process uncertainty that does not 
fit the uncertainty description (4.4). Figure 6.8 on page 209 seems to indicate 
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aw ó ü M p ó/ü 
·103 ·103 

-0.2 20.1 3.79 0.324 0.666 5.3 
-0.1 26.1 3.62 0.266 0.681 7.2 
0.0 14.0 3.82 0.220 0.666 3.7 
0.1 0.8 3.88 0.184 0.587 0.2 
0.2 0.1 3.27 0.176 0.542 0.0 

Table 6.2: Va.lues of/determining ó for different operating points 

that these capabilities are very restricted: using one or two structured error 
components hardly changes the unstructured error. Moreover, the unstructured 
error bound is much larger than the true model error. 

The analysis in the previous part of this sectîon suggests that the unstruc
tured error is dominated by contributions which can be traced back to the 
influence of undermodelling and the way in which this is bounded. The tail of 
the basis infiates the extended noise bound such, that the uncertainty in the 
process transfer is mainly determined by this effect. This, in turn, was caused 
by leaving out a pole of the true system from the basis generating system. 

To verify whether this is indeed the case, the algorithm was run again, but 
this time the tail of the basis was ignored. This was achieved by setting 

uk= o, k > 9. 

For k = 0, ... , 9 the original values for Uk were maintained. This gives the 
results shown in figure 6.13 on page 215. The meaning of the plots in this 
figure is the same as in figure 6.8. The dotted line with no markers is the 
unstructured error that is obtained without structured error components. The 
dotted line marked with *'s is the unstructured error that remains after one 
structured error component is removed and the dotted line marked with +'s 
the unstructured error with two structured error components removed. The 
dashed line with x's is the first structured error component, that with o's is 
the second. 

A number of things can be observed from this figure. First of all, the un
structured error that is obtained if no structured errors are used is in much 
closer agreement with the true size of the model errors in different operating 
points than was the case in figure 6.8. Secondly, the first structured error 
component is very close to the unstructured error. It leads in deed to a signifi
cant reduction of the unstructured error if this component is removed from the 
unstructured error. Removing a second error component has a much smaller 
influence on the size of the unstructured error. This is in correspondence with 
the size of the singular values that are found in the singular value decompo-



6.3. A more complex SISO simulation example 213 

t ImGw(ejw) 

0.5 

Qw marker 

-0.2 + 
0 -0.l * 

0 0 

0.1 x 
0.2 (none) 

-0.5 

Figure 6.9: Frequency uncertainty regions in different operating points for 
w = 10-3 
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tail of basis (--) for w = 10-3 
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Figure 6.11: Residuals and extended noise bounds. Active bounds are marked 
with a 'o' 
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Figure 6.12: Constituents of the extended noise bound (see text) 
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Figure 6.13: Structured and unstructured uncertainty in Bode mnplitude plot, 
effects of undermodelling ignored ( see text) 
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Figure 6.14: Residuals and extended noise bounds. Active bounds are marked 
with a 'o '. Effects of undermodelling are ignored. 
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sition involved in the principal component analysis, see table 6.3. The first 
principal component has an associated singular value that is about six times 
as large as that of the second principal component. 

Table 6.3: Singular values of the four structured error components 

<71 <72 <73 <74 

0.097 0.015 0.006 0.003 

For comparison the extended noise bound has been drawn in figure 6.14 for 
the sa.me operating point as in figure 6.11 on page 214. The active constraints 
are again marked with a 'o'. This time the extended noise bound consists 
only of the unextended noise bound and a bound on the transient in the data. 
All other contributions to the extended noise bound appearing in figure 6.12 
on page 214 are zero in figure 6.14 because the tail of the basis is forced to 
zero through the values of ih. The extended cross-covariance bound has been 
active as well, both at its upper bound and its lower bound. As in figure 6.11, 
there seems to be no pattern in the active constraints, such that (most) active 
constraints could have been selected beforehand from the total set of linear 
constraints. This issue will be further considered in section 6.5.3. 

By platting the local uncertainty regions for all operating points (not done 
here), it can be seen that the unstructured error is no langer determined by a 
single operating point. The uncertainty regions now overlap mostly. In general 
an uncertainty region for one operating point is no langer fully contained in 
those for other operating points. 

The first structured error component is drawn in figure 6.15 fora number of 
frequencies. The normal continuous lines are the Nyquist plots of the system 
in different operating points. The dotted lines connect points on different 
Nyquist plots for the same frequency. The thick continuous lines represent the 
uncertainty due to the first structured error component for these frequencies. 
The structured error seems to give indeed a good account of the changes that 
occur if the system moves between different operating points. 

The uncertainty bounds were further tested by confronting both the struc
tured and unstructured error bounds with the transfers in two "intermediate" 
operating points, namely for a 1 = -0.15 and aII = +0.15. As in this example 
the process is completely known in these operating points, the true values of the 
structured error gains ói, i = 1, 2 can be calculated. The results of these cal
culations together with the lower and upper bounds d.i and di are summarised 
in table 6.4. The results do not falsify the structured error bounds d.i and 
di, i = 1, 2. 

Figure 6.16 on page 218 shows the unstructured errors for both operating 
points, together with their bounds for the three cases of no structured error 
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Figure 6.15: First structured error component in Nyquist plot (see text) 

Table 6.4: Structured error bounds and true structured error gains for operating 
points I and II 

1 -0.0634 0.0639 
2 -0.0113 0.0115 

0.0465 
-0.0005 

component, one structured error component and two structured error compo
nents. Here too, the results do not falsify the error bounds that were found 
earlier. 

An interesting thing happens in the left plot in figure 6.16 for w = 0.088. 
For this frequency the unstructured error increases if two instead of one struc
tured error components are removed from the unstructured error. Apparently 
a situation as discussed in figure 4.17 on page 131 occurs for this frequency: by 
separating the second structured error component from the unstructured error 
the relation that exists between these two is lost. This relation must have been 
such, that for w = 0.088 a large unstructured error (with two structured errors 
removed) can only occur if at the same time the second structured error compo
nent has a value that partly compensates the unstructured error. Because this 
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relation is still present in the unstructured error bound if only one structured 
error component is removed, the unstructured error with one structured error 
component removed is for this frequency smaller than that with two structured 
error components removed. 

Bode amplitude plots 
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··Q.'.l!j· .. ~ .. 

··."x 

104
'---------''---------'-----' 

10-2 10° 

w,--+ 

10° .------.-------...------, 

104 
·~. 

·. 

10-• '---------'---------'-----' 
10• 

w,--+ 

Figure 6.16: Validation of unstructured error bounds. left: a = -0.15, right: 
a = +0.15; '-': error bound, ': ': true error;· no marker: no structured error, 
'x': one structured error component, 'o': two structured error components 

6.3.4 Conclusions 

In this example it turned out, that the size of the extended noise bound is 
very sensitive to the decay rate of the model parameters. A slightly smaller 
decay rate leads to a significantly larger contribution of the tail of the basis in 
the extended noise bound and the extended cross-covariance bound. Therefore 
it is of major importance for obtaining good results that the basis generating 
system has its poles close to those of the linear manifestations of the process. 

It was possible to pinpoint undermodelling as the cause of rather large un
structured errors because the algorithm can provide very detailed information 
with respect to the separate components of the error bounds it generates. 

Even for structure in the errors that can not be represented by the uncer
tainty description used by the algorithm, the algorithm is still able to reduce the 
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unstructured error significantly by using a number of structured error compo
nents. In this case using one structured component already gave good results. 
For the example in this section at least, the algorithm can approximate a large 
part of the structure in the error by its structured uncertainty description. This 
is promising, especially because the variation in process transfer was relatively 
large for different operating points. 

6.4 A MIMO simulation example 

6.4.1 System and data 
In this simulation example, the set of systems 

[ 

(0.035 a)(l.1 + lOa) 0.1 · (0.025 - ,8)(1+15,8) l 
z - 0.965 - a z 0.975 - ,8 

Gtr(z) 
0.1 · (0.02 - ,8)(1+17/3) (0.03- a)(l + lOa) 

z 0.98 - ,8 z - 0.97 a 
(a, /3) E { (0.01, 0.01), (0.01, -0.01), (-0.01, 0.01), (-0.01, -0.01)} 

is considered. The DC-gain of the system is given by 

G (l) = [ 1.1 + lOa 0.1·(1+15/3) ] 
tr 0.1·(1+17/3) 1 + lOa: . 

In every operating point, all sub-transfers are first order transfers with no zero. 
The off-diagonal terms are smaller in magnitude than the diagonal terms. As 
in the previous example, the structure that is present in the changes in process 
transfer over the different operating points can not be described exactly by 
the uncertainty structure of the algorithm. The relative changes in the off
diagonal transfers are larger than those of the diagonal transfers, both in terms 
of DC-gain and of time constant. 

A basis was generated by the system 

1 
G1t(z) = z - 0.9725 

Gb(z) could have been determined through identification but this involves the 
risk that an (un)fortunate identification result will turn out to be the explana
tion of the main features of the results obtained by the algorithm. To rule out 
this risk, a basis generating system was chosen by hand. The transfer of the 
basis generating system was chosen close to all subtransfers. The pole location 
is the mean of the largest and smallest pole that can be found in any of the 
subtransfers of the system in any of the four operating points. For none of the 
subtransfers there is an operating point in which the pole location of the basis 
generating system matches the pole of the subtransfer exactly. 
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As Gb(z) is a SISO transfer, the same set of basis functions was used for 
every subtransfer. Seven basis functions were used in the models for every 
subtransfer of this system. This number seems large enough to obtain accurate 
models while not being so large that it has large repercussions in terms of 
computing time required by the algorithm. To make the points that are to be 
raised in this section stand out more clearly, the tail of the basis is consequently 
ignored in this example! 

As in the previous examples, the input sequences in the identification exper
iments were taken to be white noise sequences having a Gaussian distribution 
with zero mean and standard deviation one. The length of each data set was 
1000 samples. Realistically sized initial conditions were obtained as in the pre
vious two examples. The output signals were disturbed with additive white 
noise. The output noise was uncorrelated with the inputs and had a Gaussian 
distribution with zero mean and standard deviation 10-2·5 • 

Figure 6.17 shows the Bode amplitude plots for the four subtransfers of the 
system in different operating points. 

Figure 6.17: Bode amplitude plots. no marker: a: = 0.01; 'x': a: = -0.01; 'o': 
/3 = 0.01; '+': /3 = -0.01 

6.4.2 Results and discussion 

Figure 6.18 on page 222 shows the uncertainty regions that were obtained for 
the different subtransfers using zero and one structured error component. A 
weighting as discussed in section 5.6.l was applied. Recall that this weight-
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ing means, that the differences aow between the auxiliary model parameters 
for different operating points and the central model are pre-multiplied by a 
weighting matrix W L before performing the principal component analysis: 

WLX = WL sbs aow = UwEwVX 
wEW 

where Uw Ew VJ is a singular value decomposition of the weighted matrix 
WLX. In section 5.6.l it was argued, that WL should be a diagonal matrix, 
having the same weighting for model parameters belonging to the same sub
transfer. In this example, W L is therefore a block diagonal matrix, where 
each block on the diagonal consists of a scalar weighting w<r times the identity 
matrix. 

The weighting w<r was chosen according to equation (5.30) on page 177. 
This means that subtransfers with parameters that are either large or have a 
large variation (in absolute sense) are weighted less in the derivation of the 
principal components. In this way, the principal components are no langer 
completely determined by the large transfers. This gave the singular values 
listed in table 6.5. 

Table 6.5: Singular values of the principal component decomposition 

0"1 0"2 0"3 

0.0636 0.0071 0.0010 

The most striking fact that can be seen in figure 6.18 is probably the rel
atively large uncertainty regions for the off-diagonal subtransfers. As far as 
the transfers on the diagonal are concerned, results are not as good as in the 
previous SISO examples: the uncertainty regions are small compared to the 
nominal transfer hut removing a structured error component hardly reduces 
them further. 

The singular values shown in table 6.5 suggest that removing a second 
structured error component has little effect. The results obtained with two 
structured error components confirm this (not shown). 

Because the tail of the basis was ignored in this example, the large uncer
tainty regions in the off-diagonal subtransfers can not be due to a slow decay 
rate of the tail-coefficients for these subtransfers. Ignoring the basis corre
sponds to an infinitely fast decay rate for the coefficients beyond those in the 
model parametrisation. The large uncertainty regions must be induced by the 
set of linear constraints C'IJ for the operating points w. 

Having a closer look at the constraints in C9 , it becomes clear why the off
diagonal uncertainty regions turn out so large. In this example, Ce basically 
contains three kinds of constraints: 



222 

0.2 0.05 

0 "" 

0 
-0.2 

-0.4 
-0.05 

-0.6 

-o.s~-~--~--~-~ -0.1. 
-0.5 0 0.5 1.5 -0.1 -0.05 0 0.05 0.1 0.15 0.2 

0.05 0.2 
U2 -t Y2 

0 
0 

-0.2 
-0.05 

-0.1. 
-0.6~ 

-o.1s~~-~-~-~-~- -0.B 
-o. 1 -0.05 0 0.05 0. 1 0. 15 0.2 -0.5 0 0.5 1.5 

Figure 6.18: Uncertainty regions in Nyquist plot. Dark areas, '-. ': one princi
pal component removed; Light areas, '--': no principal component 

L The explicit bounds on the model parameters 

-êk S 9tr,k S (jk, k = 0, .. "k (6.1) 

2. The extended noise bounds 

p k,(i,i) t 

Vj E q, Vt E '][' YJ(t) - L Le~~:~ L Ui(r)b~,i) (t - r) ::::; ëe,j(t) 
i=l k=O r=O 

(6.2) 

3. The extended cross-covariance bounds 

Vl E nr,Vj E q 

P fcU,i) t 

L rt(t)yj(t) L rt(t) L L e~~:~ L Ui(r)b~,i) (t r) :::; ët,j 
tE'Jf' tE'Jf' r=O 

(6.3) 

In previous examples it has already been found, that the extended noise bounds 
and the extended cross-covariance bounds are the bounds that eventually de
termine the size of the uncertainty regions. The explicit bounds ëk do not 
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contribute to a further reduction of the model uncertainty, they are too weak. 
However, the extended noise bounds and also the extended cross-covariance 
bounds provide basically a bound on the model parameters per output. They 
do not discriminate between the contributions of different inputs. Therefore, 
the extended noise bound can be small compared to the contribution to the 
output of one input, but large compared to that of another input. This is the 
case in this example. The extended noise bound is small compared to the con
tribution of input one to output one, but large· compared to the contribution 
of input two to output one. Because the extended noise bound does not dis
criminate between different inputs, one may expect unstructured error regions 
of roughly the same size for all subtransfers of an output. This is confirmed by 
figure 6.19. The unstructured error is roughly the same size in all sub-transfers. 
Therefore the unstructured error is relatively much larger in the off-diagonal 
sub transfers. 

U2 --+ Yl 
10° 

10-• 

10 ... 10"' 

10"" 10-2 10-• 10' 

10' 

10"" 

10-' 10-· 10' 10_, Hf 

Figure 6.19: Structured and unstructured errors in Bode amplitude plot. '-'· 
nomina] model; ': ': unstructured error, no princ. comp.; ': *': unstructured 
error, one princ. comp.; '--x': structured error component 

Influence of other inputs 

Things are made slightly worse by the following effect. To determine the un
structured error for, say, the subtransfer from input 2 to output 1, linear pro-
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gramming problems of the form 

Maximise (f 1 81
) subject to 81 E Co 

are solved, where f is a vector containing the coefficients of the object function. 
In this example and for this subtransfer, f is of the form 

J = [o . . . o 1á1
•
2

> . . . 1~ 1 •2) o . . . o], (6.4) 

only the parameters in 8 pertaining to subtransfer (1,2) are involved in the 
object function. This means that in the extended noise bounds, the parameters 
in 8 belonging to different subtransfers to the same output can (and will) be 
manipulated such, that the contribution of the other inputs to the output 
compensate the contribution of the input at hand as far as possible. Provided 
the input signals are independent of each other, there is fortunately not much 
room to manoeuvre. In this example there is only one subtransfer from different 
inputs to the same output, subtransfer ( 1, 1). If the transfer from the first input 
to the first output is manipulated such, that it compensates the contribution 
from the second input to the first output for a sample instant t 1 , then it is 
likely that this manipulation has an adverse effect for another sample instant 
t2 i= t 1 . Nevertheless, the more inputs a system has, the more freedom there 
is in this respect. Due to this effect, the uncertainty regions will increase with 
the number of inputs. 

The exact structure of (6.4) is lost if one or more structured error compo
nents are used, see remark 4.14 on page 129. This means that there is not 
complete freedom any more to manipulate the parameters of other subtrans
fers. However, a lot of freedom is still left, so that essentially the same effect 
as discussed above will occur also if structured error components are used. 

Influence of we1ght1ng 

The results above were obtained using weighting during the principal compo
nent analysis. The inftuence of this weighting can best be demonstrated by 
comparing the principal components that were obtained in this way by those 
obtained without weighting. Figure 6.20 shows in the upper plot the first two 
principal components with weighting and in the lower plot without weight
ing. The dotted vertical lines separate the parts of the principal components 
belonging to different subtransfers. 

In the lower plot, the first principal component is only concerned with 
subtransfers (1, 1) and (2, 2), while the second has only significant non-zero 
values for subtransfer (1, 2) and (2, 1). At first sight this may seem a good 
result. After all, the uncertainty was constructed such, that uncertainty in the 
diagonal terms was governed (in a non-linear way) by a parameter a and the 
off-diagonal terms by another parameter f:J. However, the principal component 
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Figure 6.20: Principal components. (Top: with weighting; Bottom: without 
. ht. ' ' (} ' ' (} ) we1g mg; - : A,1; -- : A,2 

analysis does not "know" this, it just happens to find this separation because 
the parameters that are related to a are an ol'der of magnitude larger than 
those related to fJ. Moreover, the variation in :subtransfers (1, 2) and (2, 1) 
(measured in l 2-sense) is relatively larger than that in subtransfers (1, 1) and 
(2, 2). We would therefore like to see that variation expressed in the first 
principal component and not in the second. 

Things are better for the off-diagonal subtransfers in the upper plot. In 
this case the first principal component is largest m the subtransfers (1, 2) and 
(2, 1). This is achieved at the expense of some cros6-'coupling with subtransfers 
(1, 1) and (2, 2}. 

Figure 6.21 is the unweighted counterpart of figure 6.19. Comparing these 
two figures, it can be seen that the unweighted structured errors indeed ignore 
the off-diagonal terms. The structured errors in these subtransfers are much 
smaller than the unstructured errors now. The structured errors in the weighted 
case seem much more realistically sized. However, as far as the unstructured 
errors are concerned, this does not make much difference. In the weighted case 
they were about equally large with and without a structured error component 
and in the unweighted case the same applies. 

If we look at the subtransfers on the diagonal, the unweighted results are 
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Figure 6.21: Structured and unstructured errors in Bode amplitude plot, no 
weighting. '-': nominal model; ': ': unstructured error, no princ. comp.; ':*': 
unstructured error, one princ. comp.; '--x': structured error component 

better than the weighted results. Because the structured error is in fact only 
concerned with these two transfers, it fits better to the error in these sub
transfers. There is indeed a clear reduction of the unstructured error if one 
structured error component is removed. 

In figure 6.22 the structured errors are plotted together with the Nyquist 
plot of the two diagonal entries. The Nyquist plots of the true transfers for 
a: = 0.01 and a = -0.01 are drawn using continuous lines. Some frequency 
points are marked with x's on these plots. For these frequencies, both the 
structured errors with and without weighting ate plotted too. Those with 
weighting are drawn using dotted lines, those without using dashed lines. The 
dashed lines are on top of the dotted lines, but it can be seen that the dotted 
lines protrude a bit further. 

For the diagonal entries weighting hardly changes the direction of the first 
structured error component in the Nyquist plane. Weighting of the principal 
components does change the bounds on the structured errors. As the dotted 
lines are longer than the dashed lines, d1 is larger and d1 is smaller with weight
ing than without. It is not exactly known what determined these bounds in 
both cases. All that can be said is that the different directions in parameter 
space of the structured error components with and without weighting must be 
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Figure 6.22: Nyquist plot oftrue transfers and structured error component (see 
text) 

responsible for these different bounds. The Nyquist plot for the diagonal terms 
do not show much difference in direction for these two cases, but figure 6.20, 
which also includes the off-diagonal terms, clearly does. 

In both cases the direction in the Nyquist plane of the first structured error 
is in close agreement with the true change in dynamics that occurs in the diag
onal entries. Despite the large unstructured uncertainty, the structured error 
describes indeed the changes in dynamics that can be attributed to operating 
point changes! 

Sensitivity to noise level and data length 

In this example the data sets consisted of 1200 samples. Reducing this to 
900 samples has far reaching consequences. In figure 6.23 the central model 
parameters for subtransfer (2,1) are shown. The two parameter vectors are 
very close. There is a large relative error in the last parameter, but compared 
to the size of the other parameters, this error is not so big. Nevertheless, this 
error can have a large influence on the uncertainty regions. If the decay rate 
of the model parameters is estimated from these parameters, the decay rate 
for N = 900 will be much less than that for N = 1200. In the example above, 
that would not make such a big difference, because all tail effects are ignored 
there. However, if tail effects are taken into account, as they probably should, 
then the slower estimated decay rate will give a much larger influence of the 
tail. Recall that in the previous example it was found that the size of the tail 
effects is very sensitive to the decay rate of the model parameters. 

To demonstrate that the data length of 900 samples is not unreasonably 
short, figure 6.24 shows the impulse response of subtransfer (2,1) for f3 = 0.01. 
The time constant of this impulse response is about 100, so that a data length 
of 900 samples should not be considered too short to identify this subtransfer 
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Figure 6.23: Model parameters for subtransfer (2,1) 
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One of the causes of the inaccuracy in the estimated model parameters for 
smaller data sets is, again, the influence of the other input on the output. The 
influence of input 2 on output 2 is much larger than that of input 1. A relatively 
small error in the estimated parameters of subtransfer (2,2) may therefore cause 
a significantly larger error (in a relative sense) in the parameters of subtransfer 
(2,1). Asymptotically this mechanism will not be present: for infinite data 
length, the parameters estimated for subtransfer (2,1) are independent of those 
estimated for subtransfer (2,2), but for finite data lengths the cross-coupling is 
observed. 

In the same way does an increase of the noise level in the outputs lead to 
problems. The higher noise level will lead to less accurately estimated model 
parameters. This effect will be relatively largest in the off-diagonal terms. 

t (samples) -+ 

Figure 6.24: Impulse response of subtransfer (2,1), (:) = 0.01 
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6.4.3 Conclusions 

The example in this section demonstrated that relatively large errors can be 
expected in a subtransfer if the contribution of the input of the subtransfer to 
its output is small compared to the contribution of other inputs to that output. 
This is mainly due to two effects: 

• The information that mainly determines the size of the error bounds is the 
extended noise bounds and the extended cross-covariance bounds. These 
bounds discriminate only between outputs, not between the effect of dif
ferent inputs on the same output. Therefore these bounds are relatively 
large for small subtransfers. 

• The auxiliary models will have a larger relative error for small subtrans
fers than for large subtransfers. This translates to a less accurately esti
mated decay rate for the model parameters of a small subtransfer. The 
size of the effects of the tail of the basis are very sensitive to this decay 
ra te. 

It was also shown, that small subtransfers are ignored by the first struc
tured error components if no weighting is applied. H this is not desired, it can 
be easily avoided by weighting the model parameters before applying principal 
component analysis: sealing up these parameters before doing the principal 
component analysis and sealing them down afterwards will have the desired ef
fect. However, this can not solve the problem of the relatively large uncertainty 
in small subtransfers. 

6. 5 Case study: Asynchronous motor 

6.5.1 System and data 

A schematic view of an asynchronous machine is shown in figure 6.25. In this 
scheme, four windings are drawn through which electrical currents can flow. 
The three large windings labeled a, b and c re;present the stator windings of 
the machine. These are fixed to the house of the machine. H current or voltage 
sources are connected to these windings, stator currents Ia, h and Ic will flow. 
The fourth winding, labeled r, is the rotor winding. This winding is mounted 
on a shaft that may rotate with respect to the rest of the machine. The rotor 
winding is short-circuited. 

The stator windings act as inductances: currents Ia, h and Ic will generate 
a magnetic field inside the machine. This field is indicated here by its magnetic 
flux density vector B. By proper manipulation of the currents Ia, h and Ic 
a vector B can be realised that rotates around the main axis of the machine. 
This rotating magnetic field causes a changing magnetic flux through the rotor 
winding r. This induces an electric field in the rotor winding. As the rotor 



230 

winding is short-circuited, a rotor current L" will flow. The rotor current !" 
and the magnetic flux density B lead toa Lorentz force FL on the rotor. As a 
result of this force, a torque is exercised on the rotor, which will start to rotate. 

Figure 6.25: Schema.tic representation of an asynchronous motor 

In case the rotor rotates as fast as the magnetic flux density B, the magnetic 
flux through the rotor winding is constant. No rotor current /" will flow any 
more and consequently there will be no Lorentz force and no torque will be 
exercised on the rotor. This situation corresponds to the no-load situation. As 
the motor is· normally not operated in a way in which no torque is exercised 
on the rotor, this situation will hardly ever occur. Consequently it will hardly 
ever be the case that the rotor rotates synchronously with the magnetic field 
inside the machine. This is why this kind of motor is called an asynchronous 
motor. 

Figure 6.25 is highly simplified. The stator inductances do not consist of 
a single winding but have multiple windings. Hereby a larger magnetic field 
is induced inside the machine for the same stator currents Ia, h and J". In 
the motor used for the experiments reported in this section, the rotor consists 
of three inductances, each having multiple windings. These inductances are 
mounted under angles of 60° relative to each other. This improves the ro
tational symmetry of the machine. The inductance of the stator windings is 
further increased by the presence of iron in the construction of the machine. 
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This too aids in generating a large magnetic flux density from stator currents 
Ia, h and Ic. Apart from the fact that the drawing is too simple, also many 
side effects have not been mentioned in the discussion above. One of these 
side effects, saturation of the magnetic material for high flux densities, will be 
encountered later. 

In the test setup used in this section, voltages Ua, Ub and Uc are applied to 
the stator windings. These voltages are generated by an inverter. This device 
transforms a DC voltage into a triple of AC voltages. These AC voltages have 
the same frequency hut are shifted in phase. This is done in a way that is 
suitable for their application as driving voltages for the three stator windings. 
The stator voltages Ua, Ub and Uc are used as the input signals for the machine, 
the resulting currents in the windings are considered the output signals of the 
machine. The interested reader is referred to (Gorter, 1997, Appendix A) fora 
more thorough description of the test-setup: the experimental data described 
in this section are taken from this thesis. 

As the machine under test has three stator windings, the machine is called 
a three-phase machine. Under certain symmetry conditions, the three stator 
voltages and currents can be transformed to two stator voltages and currents 
of an equivalent two-phase orthogonal machine. This approach is used here. 
The actual machine considered in this section is therefore a fictitious two phase 
machine. The two stator windings of this machine are referred to as a and j3. 
This fictitious machine is related in a well-defined way to the physical three
phase machine. By considering the equivalent two-phase machine, the original 
three-input three-output problem reduces to a two-input two-output problem. 
In this two-phase machine, the two stator windings are perpendicular to each 
other. Neglecting leakage fluxes and assuming linear magnetics, this means, 
that there is no magnetic coupling between these two phases. Therefore the 
two-input two-output two-phase motor can be split into two decoupled SISO 
systems. As practical conditions are not completely ideal, it appears that 
there is a small coupling between the two SISO systems. Therefore the system 
is regarded here still as a two-by-two MIMO system. 

The experimental data used in this section were collected with a locked 
rotor: the rotor position was fixed so that it could not rotate any more with re
spect to the stator. Under this condition and assuming full decoupling between 
the two stator windings, the electrical circuit drawn in figure 6.26 is "seen" in 
each stator port. Rs represents the resistance of the stator winding. The ideal 
transformer in the middle of the figure models the magnetic coupling between 
the stator windings and the rotor windings. Lu is the so-cafü;id leakage induc
tance and Lm the main inductance. Rr is the resistance of the rotor winding. 
Amore detailed discussion can be found in (Gorter, 1997). 

The relation in frequency domain between any of the two stator voltages 
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Figure 6.26: Locked-rotor equivalent circuit 

Figure 6.27: Bode amplitude plot of locked rotor equivalent circuit 

Ut(jw) and the corresponding stator current It(jw) is 

or, equivalently, 

which is the transfer function from the input Ut(s) to the output It(s). This 
transfer function has two real poles and one zero. Figure 6.27 shows the Bode 
amplitude plot for this transfer based on the values of Rn R 8 , Lm and Lu as 
specified by the manufacturer of the motor. For completeness, these values are 
listed in table 6.6. The locations of the poles and the zero are indicated by 
vertical dotted lines. The zero is located between the two poles. 
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Table 6.6: Machine parameters 

Rs 0.220 0 
Rr 0.348 0 
Lm 97.4 mH 
Lu 9.0 mH 
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The inputs of the motor were excited by generalised pseudo-random binary 
noise sequences. A generalised PRBS differs from a normal PRBS in that 
its spectrum is smoother for higher frequencies. The frequency spectrum was 
designed such, that much energy was put in the frequency region where the 
poles and the zero are located. In this way, the experimental results will contain 
more energy in the frequency region that is of interest for good estimation of 
the physical parameters of the machine. The inverter normally supplying the 
machine was used to supply it with the designed generalised PRBS signals. 

As a result of saturation of the magnetic material inside the machine, the 
value of the main inductance Lm decreases for large magnetising currents Im· 
The magnetising current has been selected with a DC-current value of lt. To 
investigate the influence of saturation and in particular whether this influence 
can be described by a structured error component, experiments were done 
with different DC levels for lt. Different DC levels are interpreted as different 
operating points for the asynchronous motor. These levels gave ten operating 
points, labeled A through J. Table 6.7 gives the DC levels. The DC levels 
for lt were translated to corresponding DC levels for Ut and the excitations 
discussed in the previous paragraph were superimposed on these DC levels. 

The experimental results in operating points A and C turned out to be 
unsuitable for identification of accurate models: the residuals obtained in these 
operating points were so large that the model uncertainty would be completely 
dominated by these operating points. This was explained by the fact that the 
power electronics in the inverter is operating in these operating points only just 
above the threshold values required for proper operation. The eight remain
ing operating points were used during the estimation and model uncertainty 
bounding. 

The doek frequency of the generalised PRBS was 250 Hz. Measurements 
were taken at 1 kHz and were later downsampled to 250 Hz. As a standard part 
of data preprocessing, inputs and outputs were scaled such, that their standard 
deviations were approximately one in all operating points. The physical ranges 
of these signals are such, that no numerical problems are to be expected if this 
sealing would not have been applied. 
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Table 6. 7: DC level of I!f in a-axis and (3-axis for different operating points 

wp. a-axis (3-axis 
[A] [A] 

A -0.0473 -0.0177 
B 4.0178 -0.2477 
c -0.1031 3.6220 
D 3.6400//2 3.8884//2 
E 12.2533 -0.2759 
F -0.1270 11.6856 
G 11.3079//2 11.3677//2 
H 20.0661 -0.3854 
I -0.1682 19.4153 
J 19.4526//2 20.0339//2 

6.5.2 Results and discussion 

The two-phase asynchronous motor is very similar to the MIMO simulation 
example in the previous section. Here too the subtransfers on the diagonal 
are much larger than the off-diagonal transfers. Based on the results in the 
previous section, no weighting was applied before determining the structured 
error components. The reasoning behind this is as follows. Because the ex
tended noise and extended cross-covariance bounds do not distinguish between 
different inputs, the unstructured error can be expected to be relatively large in 
the off-diagonal transfers. There is not much that the structured error can do 
about this, so we might as well concentrate on the subtransfers on the diagonal 
while determining the structured errors. In these subtransfers, the structured 
errors do have the potential to reduce the unstructured error. Tuning the struc
tured error to the subtransfers on the diagonal is achieved automatically if no 
weighting is applied, as was demonstrated in the previous section. 

The unstructured errors and the structured errors were determined without 
taking the influence of the tail of the basis into account. The reason for this 
will become clear shortly. A basis was generated by the system 

1 
Gb(z) = z - 0.945 

The pole location of the basis generating system was based on preliminary 
identification runs. 

The singular values that were obtained in the principal component analysis 
are give in table 6.8. 

The Bode amplitude plots of the central model and of the unstructured 
error bounds for zero, one and two structured error components are given in 
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Table 6.8: Singular values for the structured error components 

0"1 0"2 0"3 0"4 0"5 0"6 (]'7 

0.1554 0.1114 0.0456 0.0320 0.0247 0.0165 0.0157 

figure 6.28. There is so little difference between the three unstmctured error 
bounds that it is not really relevant which is which. Clearly the unstructured 
errors are too large to have any hope for performance if they are used in a 
robust control design. 

U13 -t la 
10' ..------;-----~ 

10° .•. '''l' •1.,, .",,, 

10~'----~-----....: 
lo' 1o' 

10~'----~-----_...., 
10' 1o' 

f (Hz)-+ f [Hz]-+ 

U13 -t 113 
10' ,.----~'---"'-----~ 

10° 10" 

"· 
.""" 

10-' 

10-'---~-----....., 
10' 10' 

10"'----~-----_...., 
1o' 1o' 

f [Hz]-+ f [Hz]-+ 

Figure 6.28: Centra] model('-') and unstructured error bounds ('--') 

Because the tail of the basis was ignored, many causes for the large unstruc
tured errors can already be excluded beforehand. The only possibly reasons for 
the large unstructured error are large noise bounds and large cross-covariance 
bounds. Note that the extended noise bound differs in this example only from 
the unextended noise bound by the estimated bound on the transient. The 
transient only takes significant values during the first 400 samples. As the data 
sets consist of over 2000 samples, the transient can not be the explanation for 
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a large extended noise bound. 
Analysing the local unstructured errors it turns out that the global unstruc

tured error for the transfer from Ua to I(X is determined for low frequencies only 
by the unstructured error for operating point J. For higher frequencies operat
ing points F and H become relevant as well. For the transfer from Up to I(X the 
global unstructured error is also mainly determined by operating point I. In 
this case operating point G also plays a minor role. For the subtransfers to the 
other output, 113, the uncertainty in the transfer from Ua is determined solely 
by operating point J and the uncertainty in the transfer from Up is determined 
by operating points D, E, G, Hand J. 

Table 6.9 provides further insight into the causes of this. In this table the 
rms-value of the residuals is listed, together with the value of the estimated 
noise bound ë and the signal to noise ratio at the output. The latter is esti
mated as the ratio between the energy in the output signa! and the energy in 
the residuals. If attention is restricted to the subtransfers to output J<:>., the 
unstructured error is mainly determined by operating point I. According to 
table 6.9 the rms-value of the residuals is not excessively large in this operating 
point. The rms-value of the residuals in operating point H is larger, hut oper
ating point H plays a much smaller role in the unstructured error bounds for 
this output. However, the estimated noise bound is not based on the rms-value 
of the residuals hut on the maximum absolute value. Apparently there have 
been some unfortunate samples in the residuals of operating point I, because 
its noise bound ë is considerably larger than that of operating point H, which 
had even a larger rms-value for the residuals than operating point J! 

Table 6.9: Noise levels, noise bounds and signal to noise ratios 

a-axis /J-axis 

wp. rms € ë S/N (dB] wp. rms € ë S/N [dB] 

B 0.1113 0.4180 19.1 B 0.0506 0.2494 25.9 
D 0.0641 0.2880 23.9 D 0.0762 0.3712 22.4 
E 0.1647 0.5485 15.7 E 0.0851 0.3969 21.4 
F 0.1284 0.6952 17.8 F 0.0644 0.2865 23.8 
G 0.1759 0.6308 15.1 G 0.1123 0.4471 19.0 
H 0.2057 0.6230 13.7 H 0.1173 0.5114 18.6 
I 0.1754 0.8051 15.1 I 0.0778 0.3076 22.2 
J 0.1706 0.5808 15.4 J 0.2311 0.7513 12.7 

Another conclusion that can be drawn from table 6.9 is that the signa! to 
noise ratio is considerably worse than in the previous simulation examples. At 
signal to noise ratios of 20 dB or worse, the unstructured error becomes very 
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large. The structured error components can only be expected to reduce the 
unstructured error if the error induced by operating point changes is large or 
at least comparable to other error sources. This explains why removing one or 
two structured error components from the unstructured error hardly influences 
the size of this error in figure 6.28. 

There is another effect that increases the unstructured error: the unstruc
tured error describes for every frequency the largest possible uncertainty that 
can be encountered for that specific frequency. It does not contain information 
of the sort "if the uncertainty for this specific frequency is at its bound, the 
uncertainty for all remaining frequencies can only be this large." Any correla
tion that exists between the uncertainty at different frequencies is lost in the 
algorithm. More specifically, the linear constraints on the model parameters 
{,9 still contain information of this type hut using this information in different, 
independent linear programming problems to bound the unstructured error 
looses this information. 

It is exactly this type of information that is present in the structured error 
components. However, if no "uncertainty directions" dominate the others, ( too) 
many structured error components are needed before the unstructured errors 
start to decrease. Moreover, a similar loss of information occurs here as well: 
the correlation that exists between the structured error components and also 
between the structured errors on the one hand and the unstructured error on 
the other hand is lost. This is not a real problem if the structured components 
rapidly decrease in size, hut it can become a significant source of conservatism 
if the structured components are about the same size. 

For completeness, the unstructured error that is obtained if the tail of the 
basis is not ignored is plotted in figure 6.29. As could be expected, the un
structured error is increased for all subtansfers by incorporating the influence 
of the tail of the basis. 

6.5.3 Computational load 

The unstructured errors were bounded in this example for 30 frequency points. 
For every frequency point, the error in eight directions in the complex plane 
was bounded and this was done for all four subtransfers. Having eight operat
ing points, this gives a total of 7680 linear programming problems that need 
to be solved to bound the unstructured errors. If a different number of struc
tured error components is removed from the unstructured errors, another set of 
7680 linear programming problems needs to be solved. The data sets for each 
operating point were not exactly the same size. On average they contained 
2125 samples. This gives for every output 4250 linear constraints because of 
the extended noise bounds. The cross-covariance bounds account for anöther 
eight constraints, and the explicit bounds on the model parameters represent 
another 40 constraints. On average there were a total 8588 constraints in each 
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Figure 6.29: Central model ('-') and unstructured error bounds ('--'), tail 
effects included 

linear programming problem. 

If no structured errors are used, solving the 7680 linear programming prob
lems took about 35.5 hours (on a 90 MHz pentium running no other tasks and 
with sufficient memory to make sure that no swapping occurs.) If one or more 
structured errors are used, computing time increases to about 91 hours. This 
increase is probably related to remark 4.14 on page 129: if no structured error 
is used, the unstructured error in a subtransfer is independent of the extended 
noise bounds for other outputs than the one corresponding to that subtransfer. 
If one or more structured error components are used, this is no longer true. 

After solving all linear programming problems, the algorithm sets off to 
collect all results in a binary output file. Intermediate results are saved to disk 
to keep total memory requirements of the algorithm reasonable. Saving the 
results is therefore mainly a matter of copying data from one file to another. 
In the configuration that was used for these calculations, this took another eight 
hours. The configuration was not optimised towards minimising this time. 

The computing time required to perform the other steps in the algorithm 
are neglegible compared to that required for the two steps mentioned above. 
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Therefore it takes about 300 hours or 12Ï days of computing time to get results 
for zero, one and two structured error components. 

Literature reports, see (Murtagh, 1981), that the time required to solve one 
linear programming problem is roughly proportional to the cube of the number 
of constraints in the problem. The number of constraints is mainly determined 
by the number of extended noise bounds. For q outputs and N samples in a 
data set, 2N q constraints due to the extended noise bounds are found. The 
number of linear programming problems that needs to be solved is próportional 
to m, the number of directions that are bounded in the complex plane. It is 
also proportional to no, the number of frequencies for which the unstructured 
error is bounded, to the number of subtransfers and to nw, the number of 
operating points. If p denotes as before the number of inputs in the system, 
the computing time Tip to solve all linear programming problems satisfies 

T1p ,...., mnnnwpq(N q)3 

The asymmetry between inputs and outputs results from the fact that the 
number of constraints in the linear programming problem is proportional to 
the number of outputs only. 

Taking into account that the number of parameters that need to be esti
mated is proportional to the number of subtransfers, and that this should have 
its infl.uence on the length of the experimental data sets, it is clear that the 
required computing time gets out of hand very quickly if the number of inputs 
and/or outputs of the system grows. 

The computational load can be reduced if it is possible to select a priori 
most samples from the extended noise bound that will correspond to active 
constraints. To investigate this, consider the histogram in figure 6.30. In 
this histogram the distribution of residuals for output 1 in operating point J 
is plotted. Also the distribution in the subset of residuals corresponding to 
active constraints is shown. No structured error components were used in this 
example. Judging from this histogram, a considerable number of constraints 
can be skipped a priori: if all constraints for which the residual is small are 
skipped, the number of constraints will decrease significantly, hut hardly any 
constraints that would become active will be dropped. 

It is interesting to see that also constraints for which the residuals are very 
small can become active. Making such a constraint active involves manipulating 
the model parameters such, that the mismatch between process output and 
model output becomes so large for that particular sample that it hits the noise 
bound, without violating any of the other noise constraints. Apparently there 
is sufficient freedom in the model parametrisation and in the extended noise 
bound to make it possible that this happens for some of the 'small residuals. 

The situation gets slightly worse if the tail of the basis is taken into account. 
This gives the histogram shown in figure 6.31 on page 241. In this case, where 
the difference between the extended noise bound and the residuals gets larger, 
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Figure 6.30: Histogram of all residual values (light) and of those corresponding 
to active constraints (dark) 

more constraints corresponding to small residuals get active. This shows that 
it is not a trivia! exercise to formulate a selection rule selecting the majority of 
active constraints hut skipping as many inactive constraints as possible. 

Even if such a selection rule can he found, it will not solve the problem of 
the heavy computational load, it will only alleviate it to some extent. 

6.5.4 Conclusions 

As this example is very similar to the previous simulation example, most obser
vations that were made for that simulation example can also be made for this 
example. For example, the unstructured error in the off-diagonal subtransfers 
is of the same order of magnitude as that in the diagonal subtransfers. This 
makes the unstructured error in the off-diagonal subtransfers relatively very 
large. 

In this example the unstructured errors can also be called large in the 
subtransfers on the diagonal. This is due to the fact that the signal to noise 
ratio at the output is 20 dB or worse. As the unstructured errors resulting 
from a consequently large noise bound are truly unstructured, removing one 
or two structured error components hardly makes any difference. For such 
noise levels, no significant gain can be expected from the use of structured 
error components. This is a serious limitation for practical application of the 
algorithm. 
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Figure 6.31: Histogram of all residual values (light) and of those corresponding 
to active constraints (dark), infl.uence of tail of basis not ignored 

Another effect that infiates the unstructured error and that becomes more 
important if the noîse levels become higher is that the correlation that may 
exist between the unstructured error at different frequencies is lost. Similarly 
the correlation that may exist between different structured error components 
is lost. This effect is not restricted to this example, it just becomes more 
important due to the higher noise level. 

Another practical problem with application of the algorithm is that the com
putational load gets out of hand very quickly if the number of inputs and/or 
outputs increases. For this relatively small example already four days comput
ing time is required to bound the unstructured erwr using one or two structured 
error components. Bounding the uncertainty for .eystems with say sixty inputs 
and ten outputs is therefore presently completely out of the question. 

6. 6 Conclusions 

The algorithm gives good results for the SISO simulation examples in this chap
ter. This is not restricted to the example that "fits" the uncertainty description 
of the algorithm. Also for structure in the model uncertainty that can not be 
described exactly by the algorithm good results are obtained. In thîs case the 
real structure is obviously not found by the algorithm, but it finds a sufficiently 
good approximation of it to reduce the unstructured error significantly. 

By tracing back through the intermediate results, the different contributions 
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to the uncertainty bounds can be separated well. In this way it was found that 
the uncertainty bounds are very sensitive to the exponential decay rate that is 
estimated for the model parameters. A small decrease in the decay rate can 
cause a large increase in the model uncertainty bounds. 

For MIMO systems it turned out that the prior knowledge determining the 
size of the uncertainty ·bounds does not discriminate between different sub
transfers to the same output. Therefore the unstructured error is of roughly 
the same order of magnitude for all subtransfers to the same output. If the 
influence of one input on an output is much smaller than that of another input 
on the same output, the unstructured error will be relatively much larger for 
the subtransfer of the former input-output pair. 

Weighting can be applied successfully to make small subtransfers contribute 
to the structured error components. Without weighting, only large subtransfers 
will determine the structured error components. However, the usefulness of this 
is decreased by the previous observation. 

For signal to noise levels of 20 dB or worse, the noise bounds get so large that 
unstructured errors get of the same order of magnitude as the nominal transfer. 
There is very little structure in these errors, so that removing structured error 
components does not improve this situation. lt is not quite clear to what extent 
this result is restricted to the example worked out in section 6.5. Nevertheless 
it seems clear that application of the algorithm is only useful in cases where 
there is a good signal to noise ratio. 

The computational load of the algorithm increases rapidly with the number 
of inputs and outputs of the system and with the length of the data sets. For 
very patient users, two by two systems are within the reach of the algorithm. 
For larger systems the computing time on a 90 MHz pentium gets currently in 
the order of weeks. 
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7. 1 Introduction 

7.1.1 ()vervieiv 

In the previous chapter some results obtained with the algorithm of chapters 4 
and 5 were presented. Obviously the algorithm has been implemented in a com
puter program of some form. The initial idea was to implement the algorithm 
in MATLAB. However, thinking about how to arrange the data operated on 
and generated by the algorithm, it became clear that MATLAB's programming 
language would provide insufficient support to complete this task in a struc
tured and maintainable way. These considerations are given in section 7.1.2 
below. In this section it is also argued why C++ was chosen as the alternative 
to MATLAB. 

The first task that was faced after deciding to implement the algorithm in 
C++ was to implement matrices and related data structures in C++, so that 
in C++ equally powerful expressions operating on matrices are possible as in 
MATLAB. This is described in section 7.3. As soon as these structures are 
available, more complicated structures can be built from these, which was the 
original reason for implementing the software in C++. These structures are 
discussed in section 7.4. They were designed with the goal of being more 
generally applicable in the field of Computer Aided System IDentification than 
just for the algorithm described in this thesis. Finally, section 7.5 describes the 
way all these components were arranged in a single data structure that keeps 
all relevant information of an identification session. 
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The sections on the implementation of matrices and more complicated data 
structures are preceded by a section on the object-oriented aspects of C++. 
The discussion of this subject is kept to the minimum required to appreci
ate some of the .design decisions that were made in the implementation. The 
chapter concludes with user interface aspects and sotne remarks concerning the 
performance of MATLAB and C++. 

7.1.2 Comparison of programming in MATLAB and pro-
gramming in C++ 

MATLAB has become a very popular tool in the fields of control engineering 
and systems theory. Compared to programming languages as C or PASCAL, 
MATLAB has a number of important advantages: 

1. MATLAB supports dynamically sized real and complex matrices. The user 
has the freedom to change at will the dimension of a matrix contained in a 
variable, and he/she does not have to bother with allocating a new chunk 
of memory to store the new matrix and releasing the memory containing 
the previous value. Moreover, if one wants to multiply a matrix a with 
a matrix b and store the result in variable c, one can simply write in 
MATLAB 

c = a * b; 

In C this would require a subprogram of the form 

Code fragment 7.1 
for (rowCnt = O; rowCnt < m; rowCnt++) 

for (colCnt = O; colCnt < n; colCnt++) 
{ 

c[rowCnt][colCnt] = O; 
for (inCnt = O; inCnt < p; inCnt++) 

c[rowCnt][colCnt] += a[rowCnt][inCnt] * b[inCnt][colCnt]; 
} 

The cryptic C syntax probably looks daunting at first, hut that is not 
the real problem with code fragment 7.1. The C-code requires five lines 
of code for the same operation that is carried out by one line of code in 
MATLAB. Moreover, the C code requires that integer variables rowCnt, 
colCnt and inCnt have previously been defined and the variables or 
constants m, n and p have to be set up previously such that they contain 
the number of rows in a, the number of columns in b and the "inner 
dimension," respectively. 
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2. MATLAB provides easy access to high quality routines for matrix inver
sion, QR-decomposition, Schur-decomposition, etc. Standard C provides 
no routines for this. 

3. MATLAB has flexible and powerful functions for plotting and 3D visuali
sation. 

4. C is a compiled language. This means that the C-code is converted to 
a series of machine instructions. Execution of these machine instructions 
will have the same effect as execution of the C-code would have, provided 
we had a machine that knew how to execute C-code. The process of 
conversion is called compilation. A program can be divided into different 
modules and these modules can be compiled independently. Combining 
these different modules to a program is done in the linking-phase. 

Every tiny change in a program requires a recompilation of at least the 
unit that changed. To reflect the change in the compiled unit in the 
final program, the program has to be relinked. This can be quite time
consuming. 

MATLAB has an interpreted language. This means that the MATLAB 
interpreter figures out during execution of a user-written function, what 
the function is supposed to do. One can start testing a new function as 
soon as it has been saved to disk. This saves a lot of time during the 
prototyping phase of an algorithm. The price that has to be paid for this 
is that execution of the function is somewhat slower, see below. 

5. Despite the existence of an ANSI standard for C, most C-programs not 
specifically designed to be platform independent tend to be platform de
pendent, as anyone will know who has ever gone through the trouble of 
porting, say, a C-program written for a UNIX machine to DOS. This 
problem can be alleviated to some extent by using libraries of routines 
that are explicitly supported by its developers on many platforms. For 
example, several software libraries exist to support writing graphical user 
interfaces on different windowing systems. The software library hides all 
differences between the various windowing system and provides a uniform 
interface on all supported platforms. However, high quality software that 
is available on as many platforms as MATLAB is often both scarce and 
expensive. 

There is another advantage of MATLAB that follows from the previous ad
vantages and perhaps clever marketing of "the Mathworks," its manufacturer. 
By now MATLAB has become a de-facto standard in the field of control design 
and system identification, at least as far as research institutions in this field 
are concerned: someone who has developed a new algorithm and who wants to 
share the code he has written with the rest of the world is likely to do so in 
the form of MATLAB routines. 
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All disadvantages of C apply in principle also to C++, hut C++ provides 
more tools to work around the disadvantages. For example, it is possible in 
C++ to define a new type, say matrix:Cls, such that variables a, b and c 
behave like matrices. (The postfix -Cls .stands for "class," see below.) Code 
fragment 7.1 may then read in C++: 

matrixCls a, b, c; 

c = a * b; 

The only drawback with respect to the MATLAB-code is, that the variables a, 
b and c need to be declared explicitly. 

This example already illustrates the first of a number of important advan
tages of C++ over MATLAB: 

1. The MATLAB-language is restricted to variables of type matrix. Scalars 
and vectors are considered special cases of matrices. In C++ a variable 
that is used as a counter in a loop can be declared to be an integer 
variable. Calculating with a single integer value is much faster than 
calculating with a matrix that may be either real or complex and which 
can only be found to be a scalar during the execution of the routine. 

Not only can C++ use simpler types than MATLAB in situations where 
that is convenient, it can also define types that are more complex than 
matrices. In MATLAB all objects have to be described in terms of matri
ces. For example, a state-space description of a transfer function G(z) is 
represented in MATLAB by a quadruple of matrices, say a, b, c, d, where 

G(z) c (zl - a)-1 b + d. 

Adding two transfers G1(z) and G2(z) can be achieved with 

Code fragment 7.2 
(asum,bsum,csum,dsum]=parallel(a1,b1,c1,d1,a2,b2,c2,d2); 

Surely this is awkward. In C++ a type SStransferCls can be defined, 
such that one could write instead of fragment 7.2 

Code fragment 7.3 
SStransferCls G1, G2, Gsum; 

Gsum = G1 + G2; 

(In MATLAB this problem is recognised in several toolboxes. These tool
boxes provided packed representations for systems, signals, etc. Unfortu
nately the representations used by different toolboxes are incompatible.) 

A number of benefits follow from C++'s capabilities to define new types 
and operators for these types: 
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(a) Much more detail concerning the representation of a type can be 
hidden from the user. For example, discrete time signals are rep
resented in MATLAB using matrices where different scalar signals 
appear in different columns of the matrix and different sample in
stances in different rows. In C++ a type signalCls can be defined 
such that the user does not need to know. This is generally referred 
to as information hiding. 
The importance of information hiding is. that .if .it is dedded for 
whatever reason to interchange the role of rows and columns in the 
implementation, none of the code using variables of this type needs 
to be changed. This makes maintaining the code much easier. 
Obviously the code defining the type needs to undergo some changes, 
hut this too can in some cases be a matter of only a few lines of code. 
The concept of information hiding can be applied not only at the 
level of using the type, hut also at the level of implementing the 
type. 

(b) Code can be implemented more efliciently. In the implementation 
of the state-space type SStransferCls it need not constantly be 
checked whether the dimensions of the system-, input-, output- and 
input/output matrices are compatible. This is checked only when 
these matrices are changed or first created. From then on it can be 
relied on that they are compatible. 

( c) Provided suflicient tools have been implemented to support this, 
the developer can code his algorithm at the level of abstraction at 
which he designed it. For example, if pl, p2 and p3 are variables of 
type polynomialCls that behave like polynomials, one could write 
in C++ 

p3 = p1 + p2; 

In MATLAB polynomials are represented by vectors containing the 
coeflicients of the polynomials. Before two polynomials can be added 
in MATLAB, one has to make sure that the two vectors representing 
them have the sa.me length. This may involve padding one of the 
two vectors with zeros. 

2. As C++ is a compiled language, the translation of C++-source code to 
instructions that the machine understands occurs in the separate steps 
of compiling and linking. During the actual execution of the code, the 
machine is not con.cerned with this any more. There is less overhead 
during the execution of the code and consequently the code executes 
fa.ster. 

Note that the same difference between MATLAB and C++ was earlier 
considered a disadvantage of C++ during the prototyping of an algorithm. 
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3. Related functions can be grouped in a single file in C++. A file can contain 
several routines and the name of these routines can have long, meaningful 
names. If a programmer gives one of his routines the same name as 
another, tl;üs is most likely detected during compilation or linking. Also 
it is possible to make some auxiliary routines available only inside the 
module in which they are used. Outside the module such routines are 
unknown. Different routines with the same names can coexist without 
problems in this way. (This does not apply to routines that need to be 
available in all modules.) 

In MATLAB every separate function is stored in a separate file. If one 
wants to run these routines on all platforms supporting MATLAB, the 
MS-DOS/MS-Windows platform restricts the length of the name of the 
routine to eight characters. (The recent successor of this platform, Win
dows 95, supports file names up to 256 characters, but there is no MAT
LAB version yet that supports this.) Moreover, to avoid conflicts with 
routines with the same name in other toolboxes it is good practice to 
start all routines in a toolbox with the same sequence of two or three 
characters. This further restricts the effective length of a routine name. 
These effects make the code both more difficult to read and more difficult 
to maintain. 

4. More diagnosing tools are available for C++ compilers than for MATLAB. 
Although MATLAB has limited debugging facilities, the debugging tools 
for C++ are in general much more powerful. Finding out which parts of 
a program are time-critica! is also better supported in C++. 

Comparing the advantages and disadvantages of C++ and MATLAB, the 
advantages of C++ seem to get more important for larger projects with more 
complex data structures. For smaller projects whose data can be represented 
sufficiently well using matrices only, MATLAB seems to be the proper tool. 

7.1.3 Aims of the software structures in this chapter 

It was felt that the data structures that are required for the implementation of 
the algorithm of chapters 4 and 5 are insufficiently supported by MATLAB. It 
was therefore decided to implement the algorithm in C++. At the time when 
this was decided, no routines had been written to make matrices, polynomials, 
signals, state-space realisations of transfer functions etc. available in C++. In 
this respect this decision was a big step backward. However, filling this gap 
between C++ and MATLAB is an effort that one needs to go through only once. 
Provided the tools that are developed are powerful and general enough, they 
can be applied also for other projects. This has been the aim in the development 
of the data structures presented in this chapter. 
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Due to time constraints and the fact that developing the software tools 
discussed above was only a derived goal of the research reported in this thesis, 
some of the functionality that was considered desirable in a general library for 
Computer Aided System IDentification was not implemented. In these cases, 
care has been taken to make sure that the overall structure permits relatively 
easy extension in this respect. 

This chapter is not concerned with numerics. The difficult problem of im
plementing efficient, robust and reliable numerical algorithms to operate on 
the data was circumvented by using software libraries for these purposes that 
were available on the internet. Routines for QR-decomposition, singular value 
decomposition and other operations from linear algebra were taken from the 
LAPACK library. This library is documented in (Anderson et al., 1995). The 
linear programming problems that are an important part of the algorithm were 
solved by version 2.0 of the LP ..SOLVE package by Michel Berkelaar and Jeroen 
Dirks, (Berkelaar, n.d.). These libraries were treated as black boxes as far as 
possible. 

7.2 Object-oriented aspects of C++ 

In the previous comparison between MATLAB and C++ a big difference between 
the two has not been mentioned yet: C++ supports object-oriented program
ming, while the MATLAB programming language does not. 

The phrase "object-oriented" is used in many different contexts these days 
and in each of these contexts it is usually presented as something advantageous. 
Indeed, in the field of software development object-orientation is expected to 
give faster development and maintenance of code, more natura! ways of trans
lating a real-world problem into a program solving it, more reuse of existing 
code, etc. In this light it would have seemed reasonable to mention object
orientation in the previous section as an advantage of C++. 

This section does not consider whether the promises of object-oriented de
sign have been fulfilled in recent years and if so to what extent. It is restricted 
to explaining as little as possible about object-oriented programming to under
stand the design of the software that will be outlined in the next sections. 

In (Pree, 1994) the following basic concepts of object-orientation are dis
tinguished: 

1. Data abstraction 

2. Inheritance 

3. Polymorphism and dynamic binding 

These will be discussed below. 
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Data abstraction 

Data abstraction is achieved by the use of objects. In (Pree, 1994) an object 
is described as follows: "Objects are instances of abstract data types. Thus an 
object is an entity that has attributes (=data representing an object's state) 
and provides certain operations that are defined for the particular object." 

An exarnple may clarify this. Complex numbers all share the same abstract 
data type, the type of complex numbers. A varia.bie of type complex number 
is an insta.nee of this type. If a program contains three complex variables z1, 
z2 and z3, the program contains three instances of type complex. 

It may be that the complex varia.bles are represented as a pair of real num
bers, corresponding to the pair of real and imaginary part. This pair of real 
numbers are in this case the attributes of the data. To make a useful type 
of the type of complex numbers, varia.bles (or expressions) of this type should 
"know" how to add to or subtract from another complex number, multiply by 
a real number or another complex number, etc. These are the operations that 
are provided for the object. They are called the methods of an object. 

A complex number may equally well be defined as a pair of real numbers 
corresponding to its modulus and its argument. The sa.me operations should be 
provided for the object as in the previous implementation using real and imag
inary part, but these operations should now opera.te differently on the internal 
varia.bles. It should be completely invisible which of the two representations for 
complex numbers are used internally by the object. This is how data abstrac
tion is achieved: a complex number "behaves" according to the usual axioms 
of complex numbers, but how this is realised is unimportant. 

Inheritance 

A data type can be derived from another data type through inheritance. The 
derived data type is called the subclass and the data type derived from is the 
superclass. The subclass is a descendant of the superclass. A subclass has all 
the attributes and methods of its superclass. It may have some extra attributes 
or methods and it may change some of the methods of the superclass, hut all 
operations that are defined on the superclass are "automatically" defined on 
the subclass as well. This terminology reflects the convention to call a data 
type a class. With this terminology we can say that objects are instances of a 
class. 

The power of inheritance lies in the reuse of code: if a certain existing 
data type matches already most of the requirements one has, one may derive 
a new data type from it. The aspects of the data type that already match the 
requirements can then be used straightaway. The mismatching parts need to be 
changed or supplemented, but this may require a lot less work than designing 
the new type from scratch. 
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Consider for example a program manipulating publications. We may re
quire that every publication has a title, an author and a year of publication. 
Different kinds of publications may add different information to this: an article 
is published in a journal or in proceedings, a book may be part of a series, etc. 

To present relations between classes, the Object Model Notation proposed in 
(Rumbaugh et al., 1991) will be used. The example above could be represented 
in a diagram as shown in figure 7 .1. Each class is represented by a rectangle 
divided into three parts. The upper part shows the name of the class in hold. 
The middle part lists the attributes of a class and the lower part has room for 
the methods of the class. In the remainder of this chapter, the middle and lower 
part will often be omitted. The triangle pointing up on the lines connecting 

Publication 

title 
author 
year 

... 

A 
1 1 1 1 

.. lnProceedings - Proceedings .. 
pages editor 
volume conference 

... . .. 

Figure 7.1: Example class hierarchy 

the classes InProceedings and Proceedings with Publication indicates that 
InProceedings and Proceedings are derived from Publication. The line 
connecting InProceedings with Proceedings and terminated with a diamond 
at the side of InProceedings indicates that an instance of InProceedings 
refers to one instance of Proceedings. 

Figure 7.2 finally shows relations between classes that are not present in the 
hierarchy of figure 7.1 hut that will be needed later on in this chapter. The line 
connecting A with B in the left part of figure 7.2, terminated with a diamond 
and a solid circle, indicates that an instance of class A refers to zero or more 
instances of class B. If the solid circle is replaced by an open circle, A refers to 
zero or one instance of B. 

A class can inherit from multiple other classes. In this case it will have all 
the properties (attributes and methods) of all classes it derives from. 
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A J B A B 

Figure 7.2: A refers to zero or more B (left) or zero or one B (right) 

Polymorphism and dynamic binding 

Polymorphism means that a variable can contain values of different types. In 
the example above this would mean that a variable of type Publication actu
ally contains a value of type Proceedings. The type with whieh the variable 
was introduced to the program is called its statie type, the type of the value it 
actually contains is called its dynamic type. The dynarnic type of the variable 
is always equal to its statie type or a descendant of it. 

In the example above one could think of a list of publications. Such a list 
would be designed to refer to zero or more instances of class Publication. 
In reality it would not contain instances of class Publication hut Articles, 
Books, Proceedings, etc. Such a list is made possible through polymorphism. 

If a method of an object is called, one would want that the method corre
sponding to the dynamic type of the object is called: the dynamie type of the 
object may be a descendant of the statie type of the object and the descendant 
may have changed the method of the statie type. This means that only during 
the execution of the program, when it is known what the dynamic type of the 
object is, can be decided which method should really be called, that of the 
statie type of the object or maybe that of one of its descendants. This is called 
dynamic binding. 

In C++ polymorphism and dynamic binding can not be applied in all cases. 
A prograrnmer has to take special precautions to make sure that these concepts 
are available at a certain point in bis program. This technicality will be ignored 
further, although it gives rise to a lot of design decisions that need to be made 
during the coding of a new class. 

7.3 Matrices and related data structures 

7.3.1 Vectors 

Near the bottom of the class hierarchy that will be described in this chapter is 
the class of vectors, the vectorCls. A vector is a one-dimensional array of real 
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or complex numbers on which a number of operations are defined: addition of 
another vector, a complex scalar or a real scalar, multiplication with or division 
by a scalar and element-by-element multiplication or division. Moreover, one 
vector may be assigned to another. 

Before looking into the details of this, Iets assume for now that this is 
implemented. It is now possible to write 

c = a + b; 

to add the instances a and b of type vectorCls and store the result in another 
instance c of type vectorCls. This line of code is executed in the following 
steps. 

1. Create a temporary instance of class vectorCls to hold the result of the 
addition. 

2. Perform the addition, storing the result in the temporary object. 

3. Discard the old contents of c and make sure that c is of the same dimen
sion as a and b. 

4. Copy the contents of the temporary instance to c. 

5. Discard the temporary instance. 

Step 4 is inconvenient: memory needs to be allocated for c to receive a copy of 
the information in the temporary instance and then this copy has to be made. 
At this point in the program there exist two copies of the same data. The next 
step then throws away one of these copies. It would be both faster and less 
memory consuming if c and the temporary instance would share the same data 
instead of making a separate copy for both. 

This can be taken even a step further. After 

Code fragment 7 .4 
a = b; 

a and b might as well share the same data. Only if the value contained in a or 
b changes the two instances need to be given their own copies: if the value of 
b after execution of code fragment 7.4 changes it is not intended that the value 
of a changes along! 

This is a wide-spread idea in class design. It is called deferred copying. lt 
is implemented here by using an extra class called vectorData. An instance 
of vectorData contains the actual data of a vector. A vectorCls refers to 
an instance of vectorData. After the assignment in code fragment 7.4 the 
instances a and b refer to the same instance of class vectorData. This gives 
the preliminary class hierarchy shown in figure 7.3. An instance of vectorCls 
may also refer to no instance of vectorData, which is indicated in figure 7.3 
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vectorCls K::::--a vectorData 

Figure 7.3: Preliminary hierarchy for the implementation of vectorCls 

by the open circle. This special case is interpreted as the empty vector: the 
instance of vectorCls represents a vector of dimension zero. 

A lot of the functionality of a vector is actually implemented by vector Data. 
vectorData "knows" whether its data is real or complex, can switch between 
these two cases, can add two instances of vectorData, etc. It is also concerned 
with allocating sufficient memory to store all data in the vector and releasing 
this memory again if the instance of vectorData ceases to exist. In principle, 
vectorData hides all details concerning how the vectors are stored, how a real 
vector can be told from a complex one and how many elements the vector has. 

Now suppose ais a vector containing four elements and b is a vector con
taining three elements. If we want to assign the value of b to the last three 
elements of a, we would like to be able to write: 

Code fragment 7.5 
a[1:3] = b; 

Some technica! details of C++ need to be introduced now: in C++ one indices 
into a vector using square braces, in MATLAB this is done using parentheses. 
Moreover, in C++ the first element of a vector has index 0, where in MATLAB it 
has index 1. Finally the notation 1: 3 has been borrowed from MATLAB. This 
notation can not be used in C++. The problem of specifying ranges of indexes is 
discussed later. The equivalent MATLAB code for the previous example would 
be 

a(2:4) = b; 

Code fragment 7.5 is implemented by letting a[1: 3] return an instance 
of type vectorClsRef. An instance of vectorClsRef refers to (part of) an 
instance of vectorCls. For now assume that an instance of class indexRange 
specifies what part of the vectorCls is to be used. Assigning an instance b of 
class vectorCls to an instance of vectorClsRef referring to an instance a of 
class vectorCls is now implemented by overwriting the part of a with b. The 
vectorClsRef does not know how to do that, it has to ask vectorData to do 
that. 

Now let us take the example in code fragment 7.5 a step further. Consider 
the following example: 

Code fragment 7 .6 
a[1:3] = a[0:2]; 
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The intention of this line of code is that after the assignment the elements 
1, 2 and 3 of the vector a contain the values that the elements 0, 1 and 2 
had before the assignment. a[1: 3] plays a different role in this example than 
a[0:2]. a[1:3] refers to the second to fourth element of a hut a[0:2] should 
refer to a copy of the first to third element of a. Fortunately this can be 
handled relatively easily. In the implementation of vectorClsRef assigning a 
vectorClsRef b to a vectorClsRef a is implemented by converting b first to 
a vectorCls and then assigning that to a. 

Converting a vectorClsRef to a vectorCls could be implemented by let
ting the new vectorCls refer to a new vectorData that contained a copy of 
the subvector referred to by the vectorClsRef. In figure 7.4 this is shown 
schematically for the example given above. In this figure the convention to 
represent instances of a class by rounded rectangles and put the name of 
the class in parentheses is used. The upper part of the figure shows an in
stance of vectorClsRef referring to the second, third and fourth element of 
a vectorCls containing the value [10, 11, 12, 13]. The lower part shows the 
instance of vectorCls that is made from this vectorClsRef. 

(indexRange) 

[1,2,3] 

(vectorData) • 
(vectorClsRef) K::::>----, (vectorCls) K::::>---+------1 

[10,21,12,17} 

(vectorData) , 
(vectorCls) IC::>----+------l 

[21,12,17] 

Figure 7.4: Conversion of vectorClsRef to vectorCls by explicit copying 

It was chosen to arrange the actual implernentation somewhat differently. 
To avoid making unnecessary copies of vectorData instances it was decided 
to make it possible that a vectorCls instance refers to part of a vectorData 
instance. What part it refers to is indicated by an optional indexRange. If 
no indexRange is associated to an instance of vectorCls, the vectorCls is 
assurned to refer to all of its associated vectorData. Figure 7.5 shows how a 
vectorCls can now be created from a vectorClsRef without the need to copy 
the vectorData instance. · 

It may seem that one problem has now been replaced by the other. Instead 
of copying the vectorData instance an instance of type indexRange needs to 
be copied. However, most indexRanges can be represented in a much more 
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(indexRange) 

[1,2,3] 

1 

[ (vectorClsRef) } [ (vectorCls) }-
(vector Data) 

[10,21, 12,171 

[ (vectorCls) }-

? (indexRange) 

[1,2,3] 

Figure 7.5: Conversion of vectorClsRef to vectorCls without copying of a 
vectorData 

compact way than genera! vectors of the same length. Therefore copying an 
indexRange is in general much faster than copying a vectorData contain
ing the same number of elements. On the other hand, checking whether a 
vectorCls has an indexRange and getting the elements out of such a range 
one by one implies a lot of overhead. However, this overhead occurs also during 
the copying of a vectorCls. It depends on the actual sequence of actions in a 
program whether using an indexRange in the way described above speeds up 
the program or slows it down. 

The assignment in code fragment 7.6 now consists of the following steps. 

1. a [1: 3] is evaluated, thereby creating a vectorClsRef that refers to the 
second, third and fourth element of a. 

2. a[0:2] is evaluated, resulting in a vectorClsRef referring to the first, 
second and third element of a. 

3. The vectorClsRef created in step 2 is converted to a temporary vector
Cls. This involves making a copy of the indexRange of the vectorClsRef 
created in step 2 and sharing an instance of vectorData with a. 

4. The vectorClsRef created in step 1 requests permission from its vector
Cls (in this case instance a) to change the vectorCls's data. The 
vectorCls will request this permission in turn from its vectorData and 
this will report that it can not grant this permission, because other in
stances of vectorCls are referring to this instance of vectorData, ex
pecting that the vectorData instance remains constant. This is resolved 
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by creating a new copy of the vectorData that only a will refer to. The 
vectorData instance that a is now referring to is shared by no other 
vectorCls instance, so a grants permission to change its data to the 
vectorClsRef that requested it. 

5. The actual change of the data of a is carried out. 

6. The vectorClsRef that had permission to change a's data informs a that 
it no langer needs this permission. 

7. The temporary vectorCls created in step 3 is discarded. To clean things 
up, the temporary vectorCls first deletes its indexRange. Then it an
nounces to its vectorData that it will no langer use it. The vectorData 
responds that it is now no longer used by any vectorCls instance, so that 
the vectorCls instance knows that it is safe to delete the vectorData 
instance. 

8. Both vectorClsRef instances are deleted. 

If the assignment to be performed had been of the form 

Code fragment 7. 7 
a[1:3] = b[0:2]; 

where b is a vectorCls instance independent of a, the creation of a new 
vectorData in step 4 would not have occurred, provided no other vectorCls 
instances are referring to a's vectorData instance. Saving this copy operation 
was the reason to create the possibility that a vectorCls refers to part of a 
vectorData. 

The hierarchy of vectorCls-related objects is finally given in figure 7.6. 

~--< ,! indexRange 1 

vectorCls K>--a vectorData 

Figure 7.6: Class hierarchy implementing vectors 

Remark 7 .1 Figure 7.6 is still a simplification of the true hierarchy. The 
exchange of information between a shared object and other objects that share 
it is implemented by means of two classes, one encapsulating the actions to be 
performed by the shared object, the other encapsulating those to be performed 
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by the sharing object. Therefore vectorData is derived from the former class, 
vectorCls from the latter. 

Also vectorCls objects are able to print a representation of themselves 
to a file or on the screen and they know how to convert input from a file or 
from the keyboard to a value of type vectorCls. The interaction with files, 
terminals or any other form of a stream is arranged by deriving from a class 
streamableCls. 

These and other details are not further discussed here. 0 

7.3.2 Specifying sets of indices 

In the previous section subvectors of a vector were considered. It was discussed 
how to handle subvectors assuming that it was known what part of a larger 
vector to consider. The task of specifying that part was left to a class called 
indexRange. In this section the class indexRange and its descendants are 
described. 

The class indexRange represents in fact nothing else than a collection of 
integer values. Several ways to specify such a range come to mind: 

• A collection containing all values at equidistant steps between given start
ing and ending values. In MATLAB these indices are specified by the colon 
operator: 1 : 5 or 10: -2: 1 are examples of such sets. 

• A trivia] set containing only a single integer value. 

• A collection containing an explicit list of all its elements. 

• A collection containing an explicit sorted list of all its elements. Sorting 
the elements in the list can be useful to remove duplicated elements or 
to check whether a value is a member of the collection. 

• A combination of other collections, representing the union of the respec
tive collections. 

For every item in the previous list a different class is derived from indexRange. 
This gives the hierarchy of figure 7. 7. In this hierarchy a sorted collection of 
integers is implemented as a special case of an explicit list of integers. 

indexRange does not have the full functionality of a set of integers. It only 
specifies how to interact with such a set no matter what its actual form is. Due 
to polymorphism a vectorCls or vectorClsRef can think that it is dealing 
with an indexRange where it is in fact dealing with, say, an explici tRange. 
This makes it possible to define new forms of sets of integers without the need 
to inform vectorCls or vectorClsRef about this. As long as the new set 
is derived from indexRange, vectorCls and vectorClsRef will already know 
how to interact with it. 
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steppedRange combinedRange 

explicitRange 1<:>---.a explicitData 

sortedRange 

Figure 7. 7: Hierarchy of sets of indices 

An explici tRange is vaguely similar to a vectorCls. It refers to inte
ger values similarly as vectorCls refers to real or complex values. Indeed, 
explicitRange is implemented like vectorCls, referring to an auxiliary class 
explicitData that takes care of allocating memory for the list, etc. Two in
stances of explicitRange can share the same instance of explicitData in the 
same way as two instances of vectorCls can share a vectorData. 

Every descendant of indexRange is required to define an auxilîary class 
called an iterator. Every instance of an iterator class is associated with an 
instance of an indexRange descendant. The task of the iterator is to return 
one by one the elements of its associated indexRange. This functionality could 
have been implemented in indexRange and its descendants, but the scheme 
outlined here makes it possible to have two simultaneous iterations over a 
collect ion without the need to copy the . collection. This scheme violates the 
principle of information hiding a bit. An iterator for a class needs to know 
how the class it belongs to stores its information and furthermore it needs to 
have access to this information. This is not considered a problem as long as 
the programmer implementing or maintaining these classes is aware of it. To 
a user of these classes it is still invisible how a certain set is implemented. 

7.3.3 Matrices 

Matrices are derived from vectorCls. They are considered an extension of 
vectors. The extensions involve 

• specifying how many rows or columns the matrix has. The total number 
of elements in the matrix should be a multiple of this number. 

• defining two dimensional indexing. The expression 
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m(2,1) 

refers to the element in the third row and the second column of a matrix 
m. Note that here too indexing starts at index zero. 

• implementing multiplication of a matrix with another matrix or with a 
vector. 

The actual calculations of matrix addition and of all operations involving a 
scalar can be performed by the corresponding vectorCls operations. Never
theless separate methods have to be defined for the matrix class, because the 
type of the result of these operations is no langer a vector hut a matrix. The 
matrix functionality is present in the class matrixCls. As already mentioned, 
this class is derived from vectorCls. 

vectorCls being the superclass of matrixCls it is clear that the entries of 
matrixCls are somehow stored as a long vector. Whether the row vectors are 
concatenated to one vector or the column vectors are stacked on top of each 
other is irrelevant for the use of matrixCls. A user of the class can find out 
if he insists without looking at the code, but it would be unwise to write any 
code that relies on the choice that has actually been made. 

Submatrices 

Taking submatrices of a matrix is arranged in the same way as taking subvectors 
of a vector is. If m is an instance of matrixCls and ra and rb are indexRanges, 
the expression m(ra,rb) returns an instance of type matrixClsRef. This time 
parentheses instead of square brackets are used because C++ does not support 
the syntax m[ra,rb]. Using the syntax m[ra] [rb] would cause other problems. 

There are some subtleties involved in the implementation of these aspects 
in matrixCls and matrixClsRef. Two indexRanges are involved in selecting 
a submatrix from a matrix, one referring to the row indices of the matrix, the 
other referring to the column indices. In the superclass vectorCls there is 
only the possibility to refer either to all elements of a vectorData instance or 
to a subset of it indicated by a single indexRange. The problem of where to 
store the other indexRange can not be solved by creating a new attribute for 
matrixClses that can contain this extra indexRange. Suppose for example 
that a matrix consists of three rows and three columns and that it refers inter
nally to all elements of a vectorData. Because a matrixCls is derived from a 
vectorCls it is a vectorCls and can be treated as such. As the matrix con
tains nine elements, the vectorData instance that the vectorCls superclass 
refers to must also have nine elements in this case; it was assumed that all el
ements of the vectorData were used to represent the matrix. The matrixCls 
interpreted as a vectorCls will appear to be a vector with nine elements. Now 
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consider the same three by three matrix, but now represented as a submatrix 
of a larger matrix, say a four by four matrix. The vectorData referred to by 
the matrixCls now contains sixteen elements, only nine of which are used by 
the matrixCls. If one of the indexRanges, say the one selecting three out 
of four possible rows, is stored in the vectorCls and the other indexRange 
selecting the column indices is stored in the matrixCls, the vectorCls will 
"think" that it refers to only three of the elements of the vectorData instead 
of nine, because the extensions to vectorCls defined by matrixCls are invisi
ble to vectorCls. Not only is this inconsistency confusing for the user, it also 
makes that all element by element operations that the vectorCls superclass 
is supposed to perform, such as multiplication by a scalar, operate only on a 
fraction of the data on which they should operate. To make things even worse, 
the reader may verify that the fraction of the vectorData that the vectorCls 
is referring to may not even be part of the submatrix that is actually intended. 

The solution of this problem is to derive a class from indexRange that 
can store two indexRanges. This functionality is present in the twoDRange 
class. The twoDRange needs to know whether a matrixCls stores its data as 
a concatenation of rows or as a concatenation of columns. In the first case it 
also needs to know how many columns the matrix has it is supposed to select 
a submatrix from. In the second case the number of rows needs to be known. 
The twoDRange can now calculate which elements of the vectorData instance 
a matrixCls instance is referring to and present itself as a collection of indices 
corresponding exactly to those elements. 

The difference between a matrixClsRef and a vectorClsRef is that a 
matrixClsRef always refers to a matrixCls, never to its superclass vectorCls. 
A vectorClsRef refers to a vectorCls, which may or may not actually be a 
matrixCls. Also a matrixClsRef refers to a collection of indices which is 
required to be of type twoDRange. A vectorClsRef refers to a collection of 
indices that may be represented by any descendant of indexRange. 

Figure 7.8 shows the extension of the hierarchy described in this section. 

Matrix functions and decompositions 

A matrix class is not very useful if only multiplications and additions are de
fined. What is really needed is a set of functions to calculate a matrix's eigenval
ues and eigenvectors, its Schur decomposition, its singular value decomposition, 
its QR decomposition, its LU decomposition and its inverse. Fora description 
of these decompositions and ways to calculate them numerically, see (Golub 
and Van Loan, 1989). 

Writing numerically sound routines solving these problems is not a trivial 
task. Moreover, even merely implementing the routines from a textbook like 
(Golub and Van Laan, 1989) would be a time consuming enterprise. Fortu
nately, the LAPACK library provides a collection of routines that performs all 
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Figure 7.8: Hierarchy of objects implementing matrices 

these tasks. This library is publicly available on the internet and is documented 
in (Anderson et al., 1995). All of the problems mentioned above are relatively 
easily solved by calling routines from LAPACK. 

The routines in LAPACK expect that matrices are stored in a well-defined 
way. indexRanges are unknown to LAPACK. Therefore if a LAPACK routine 
expects a matrix, it can not handle a matrix whose entries are a subset of a 
vectorData accessed through a vectorCls. It can only handle an array of 
values containing one column of that matrix after the other, together with 
two integers specifying how many rows and columns the matrix has. Separate 
routines are provided for real matrices and complex matrices. It is the task 
of matrixCls's methods to make sure that the appropriate LAPACK routine is 
called and that LAPACK finds the matrices in the way it expects them. Also any 
temporary working space required by LAPACK is allocated by the matrixCls 
methods, so that all these technica! details are invisible to the user. 

The storage of vectors in vectorData has been arranged such that real 
numbers and complex numbers are stored in a way that is compatible with 
LAPACK. Also an instance of matrixCls stores its elements one column after 
the other. Therefore the storage of entries in vectorData is exactly what LA

PACK expects, except fora possible indexRange in vectorCls that selects a 
subset of that vectorData. The matrix entries do not need to be rearranged 
to call LAPACK routines. Strictly speaking, this violates the concept of in
formation hiding. matrixCls uses information on how vectorData stores its 
information. The alternative would be not to use this information and to make 
a copy of every matrix such that the copy is stored in the way LAPACK expects 
it, regardless of how the original matrix was stored. This has large repercus
sions in terms of memory usage and computing time. This was considered ari 
unreasonably high price to pay for information hiding. 
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Wherever it makes sense, routines are implemented in two ways: one in 
which the result of an operation overwrites the arguments to the operation and 
one in which the original arguments are preserved. For example 

a.invO; 

overwrites the matrix a with its inverse, assuming a is a square, non-singular 
matrixCls,and 

inv(a}; 

is an expression returning the inverse of a, leaving the original value of a intact. 
Using the first approach saves memory. Because the LAPACK routine mostly 
use this approach as well, it also saves an extra copy operation, so it also saves 
time. Nevertheless the second approach is easier in some circumstances and is 
therefore provided as well. 

Special forms of matrices 

Apart from genera! matrices LAPACK also supports triangular matrices, band 
matrices, symmetrie and hermitian matrices, positive matrices and some special 
orthogonal matrices. Exploiting the structure that a matrix is known to have 
can result in lower demands on memory. Special "packed" representations of 
triangular matrices, band matrices and symmetrie matrices exist in LAPACK 

that rernove the redundancy that otherwise would be present in the "full" 
representation of the matrix. For exarnple, instead of mapping the square, 
upper triangular matrix 

(
a~1 

A= . 

0 

... ::~) 

0 aqq 

to the vector representation 

one could map it to the more compact representation 

Extension to the lower triangular and the non-square case is straightforward. 
The same storage scheme that can be applied for triangular matrices can be 
used for symmetrie and hermitian matrices. As an alternative, one rnay use the 
non-packed storage scheme that matrixCls uses and simply ignore the values 
that would be omitted frorn the packed scheme. In this case there is no gain 
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in terms of memory, but execution can be faster, because the implementation 
need not be concerned any more with keeping the entries up to date that are 
ignored any way. 

Another advantage of using structure of a matrix is that some problems can 
be solved more easily if the matrix has a certain structure. For example, the 
eigenvalue problem is easier to solve numerically for symmetrie matrices than 
for non-symmetrie matrices. Also, taking the inverse of an orthogonal matrix 
is an especially easy operation; taking its transpose suffices. 

Due to time constraints, these structured matrices have not been imple
mented, but below will be indicated how such an implementation could pro
ceed. 

The first thought that comes to mind considering how to implement these 
special matrix forms is to make these matrices a descendant from matrixCls. 
After all, they are matrices that have, compared to general matrices, some 
extra properties. From an implementation point of view, this is not such a good 
idea. For example, in a genera! matrix, one can assign an arbitrary value to 
any of its entries. If, say, a symmetrie matrix is implemented as a descendant 
of matrixCls, this operation also exists for the derived (symmetrie) class. 
Assigning a value to a single entry of a symmetrie matrix is likely to destroy 
the symmetry of the matrix and should not be allowed. As another example, a 
symmetrie matrix that is stored in non-packed form uses only either the upper 
triangular or lower triangular part of the general matrix that is used to store 
it. The entries below resp. above the diagonal are simply ignored and contain 
random data. If a general multiplication is performed with such a matrix, these 
entries will no langer be ignored and will give an erroneous result. 

Of course these deficiencies can be fixed by adapting the appropriate meth
ods in the derived classes such that these problems are avoided. Provided 
dynamic binding is used, this seems a solution to the problem in the true 
object-oriented spirit. There are two points of criticism one may raise: 

• In C++ a class designer has the option whether or not to use dynamic 
binding. Dynamic binding implies some overhead in the execution of 
the code that is not present in statie binding. A class designer may 
therefore tend not to use dynamic binding, provided he is not cutting off 
any valuable possibilities for himself. 

• A class should be derived from the superclass with which it has most in 
common. Some of the methods of matrixCls would need to be changed 
to reap the performance benefit that can be obtained by exploiting the 
structure in the matrix or to avoid destroying the structure of the matrix. 
If it is analysed which methods need to be changed, it turns out that these 
special matrices might as well be derived from vectorCls. 

Because of this it is proposed to derive these matrices from vectorCls instead 
of matrixCls. 
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If the calculation of the result of an operation can not benefit from the 
structure in the matrix, the easiest thing to do is to omit implementation of 
that operation for the structured matrix but implement instead a method that 
converts the structured representation of the matrix to an equivalent matrix 
in genera! form. If the C++ compiler encounters an operation that it does 
not know how to perform for, say, a triangular matrix hut that it is able to 
perform for a matrixCls, it will convert the triangular matrix automatically 
( under certain conditions) to a copy of the matrix in matrixCls representation 
and use the matrixCls in the operation instead. If the run-time overhead 
implied by this conversion is not desired, one can decide to opt for the less easy 
possibility of implementing the operation explicitly for this matrix structure. 

Having defined such a conversion method, a class representing a structured 
matrix still needs to do two things: change those methods of vectorCls that 
need special attention for structured matrices and add methods for matrix 
operations that preserve or exploit the structure. For each type of structure, 
one has to decide what this general observation means in practice. 

7.4 Building on vectors and matrices 

7.4.1 Polynomials 

Scalar polynomials can be relatively easily derived from vectors. A vector is 
used to contain the coefficients of the polynomial. Addition or subtraction 
of two polynomials involves padding the shortest of the two polynomials with 
zeroes to the same length as the longest polynomial. Th~n a simple vector 
addition/subtraction will give the coefficients of the sum/difference of the two 
polynomials. 

Other methods that one wants to have for a polynomial are multiplication 
by a real or complex scalar or another polynomial. Also evaluation of the poly
nomial using a real or complex scalar as its argument is supported. Evaluation 
of the polynomial with a square matrix argument is also straightforward to 
implement. The problem of finding the zeros of a polynomial can be translated 
to an eigenvalue problem. Class matrixCls can then be used to solve this 
problem. All this functionality is available in the class polynomialCls. 

These methods make it possible to write for example 

m1 = (p1*p2+p3)(m2); 

for p1, p2 and p3 of type polynomialCls and ml and m2 of type matrixCls. 
This line of code means: calculate the polynomial that is the sum of p3 and of 
the product of p1 and p2. Then evaluate this polynomial for m2 and store the 
result in ml. 
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7.4.2 Signals 

Discrete time signals defined on a finite interval are very similar to matrices. 
Multiplication by a scalar, addition or subtraction of a scalar and addition or 
subtraction of two signals all require the same calculations as the corresponding 
operations formatrices. Therefore the class signalCls that implements signals 
uses a matrixCls internally to represent signals. 

Despite this similarity between signals and matrices, signals and matrices 
can also be very different. Formatrices the norm used most often is the matrix 
norm, the largest singular value of the matrix. This norm is rather meaningless 
for signals. Also multiplication of two matrices is defined, multiplication of two 
signals is not. Taking the autocorrelation of a signal has a clear interpretation, 
for a matrix this interpretation is unclear, unless the matrix is interpreted as 
a discrete time signal any way. For this reason signalCls is not derived from 
matrixCls. It just has an attribute of type matrixCls. 

Whether a signal needs to know at what rate it was sampled and at what 
time instant sampling started is a point of discussion. It seems that important 
information regarding the signal is missing if these attributes are not part of 
the signalCls specification. On the other hand, experience with the imple
mentation of the algorithm presented in this thesis is that this information is 
never used. Keeping these attributes up to date amounts in this case to extra 
overhead from which no real benefit can be derived. 

Practice has to show whether there is really a need to record sampling 
frequency and starting time of a signal. As an intermediate solution, this 
functionality is present as an option. 

7.4.3 Linear, time:-invariant processes 

Software intended to support system identification is useless if it does not sup
port mödels of some form. In this implementation models for linear, time
invariant processes are supported that can be interpreted as input/output op
erators. As in chapter 3, some generality is lost by distinguishing between 
inputs and outputs in the set of signals for which a model is derived. The ca
pability of the software to avoid making this distinction would require a large 
programming effort to implement. As the algorithm of chapter 4 distinguishes 
between inputs and outputs, this capability would not be used. This applies 
also to many other algorithms. Therefore it was not considered a problem that 
models make this distinction. 

Having decided that the models to be used represent linear time-invariant 
processes, there are a number of things that every type of model should be 
capable of: 

• A model should be able to filter a signal, mapping an input signal to an 
output signal. 
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Figure 7.9: Constructing models Erom other models. Left: addition, middle: 
cascading, right: appending 

Suppose that the input signa! is cut into two signals, representing the first 
and the second half of the experiment. If these two inputs are filtered by 
the model and the two outputs are concatenated, the result should be the 
same as when the input signal was filtered in one operation. This implies 
that every model should have an attribute representing its state or its 
initia! condition. This attribute will be called state further on. This does 
not imply that only state-space models are admissible. 

• A model should be able to store its state in a variable and restore it from 
that variable. Resetting the state to zero initia! conditions should also 
be possible. 

• The response to a number of special input signals should be generated 
without creating that input signa! explicitly. In particular, the impulse 
response and step response for zero initia! conditions should be accessible. 
Moreover, the response to an input equal to zero for the given state of 
the model bas to be made accessible. All these operations should update 
the state of the model, so that the various responses can be extended 
without starting from scratch. 

• The frequency response of the model for a certain frequency or a number 
of frequencies needs to be available. 

• New models can be constructed from existing models. This includes 
addition of two models, cascading two models and appending two models, 
see figure 7.9. Also selecting a subsystem consisting of a subset of the 
original system's inputs and outputs needs to be supported. 

All of the functionality mentioned above is encapsulated by the class L Tl -
transferCls. (Maybe the name LTimodelCls would have been more appropri
ate.) The LTitransferCls is, like indexRange, an abstract dass. It does not 
implement the functionality itself, it just specifies how its descendants should 
make this functionality accessible to their outside world. The class stateCls 
represents the state of a model. For every descendant of LTitransferCls there 
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should be a corresponding descendant of stateCls to hold the state informa
tion of that type of model. 

Polymorphism and dynamic binding is again used to increase the flex
ibility of the classes: if a user writes a routine to make a Bode plot for 
class LTitransferCls, the routine will function with any descendant of LTI
transferCls too. No separate routines for different model representations are 
used any more. 

LTltransferCls 
1 

SStransferCls 

Figure 7.10: LTitransferCls hierarchy 

Two descendants of LTitransferCls have been implemented: SStrans
f erCls and MPitransferCls, see figure 7.10. SStransferCls represents a 
state-space realisation of linear, time-invariant models: 

G(z) = C(zl - A)-1 B + D 

The model class MPitransferCls is derived from the Minimal Polynomial Iden
tification toolbox, a toolbox used in our group written by H. Falkus, based on 
(Falkus, 1994, chapter 2). The relation between inputs and outputs used by 
this model is 

B(z) . C(z) 
a(z)y(k) = f(z) u(k) + d(z) E(k) (7.1) 

E(k) is a noise sequence, u(k) is the process input and y(k) is the process 
output. a(z), f(z) and d(z) are scalar polynomials, B(z) and C(z) are matrix 
polynomials of appropriate size. As far as the MPitransferCls is concerned, 
both u and E are considered inputs to the model. The inputs are just partitioned 
into two parts, one filtered by ~?;],the other by ~~f. 

The popular FIR, ARX, output error and Box-Jenkins models are all a spe
cial case of the model structure (7.1). These model structures can therefore be 
implemented by deriving them from MPitransferCls. For different structures, 
different polynomials in (7.1) need to be fixed to one or the identity, depend
ing on whether it is a scalar polynomial or a matrix polynomial. The task of 
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the derived classes is now to restrict the capabilities of the superclass, not to 
expand it. In this case this is particularly easy to do. 

In order to keep the structure flexible, one can not require that every de
scendant of LTitransferCls "knows" how to convert to any other descendant 
of LTitransferCls. Nevertheless it is desirable to be able to convert from 
one representation of a linear, time-invariant model to another. The solution 
that has been adopted here is that every descendant of LTitransferCls must 
be able to convert to and from a state-space representation. This excludes 
the possibility of handling non-proper models, which can not be represented 
in state-space form hut which are in principle possible in other model struc
tures. This is not considered too big a problem, because non-proper models 
correspond in discrete time to non-causal models. It is assumed that the parti
tioning of signals into inputs and outputs has been carried out correctly. This 
implies that there exists a causal relationship between inputs and outputs. 

How should one descendant of LTitransferCls be added to another? If a 
model g2 needs to be added toa model g1, g1 may check whether g2 is the same 
type of model as itself and perform the addition without further conversion if it 
is. This implies that every model structure should be able to add two instances 
of that structure together, which seems reasonable to require. If g2 is not the 
same structure as g1 is, g2 should be converted to state-space. One can then 
choose whether to implement a routine that adds the state-space representation 
of g2 to g1 or to use the conversion from state-space representation to the model 
representation used by g1 and add the converted model to g1. 

This approach is still not a full solution to the problem. An ARX model can 
not be added to an output error model with an output error model as a result. 
One may use polymorphism in this case and decide to use a minimal polynomial 
representation for the result. This involves a lot of C++ technicalities, hut in 
principle it can be clone. The choice which representation to use for the sum 
of two systems is then made during the class design. If new types of model 
structure are added to the class hierarchy, these choices may not be optima! 
any more. It is probably better not to pick a conversion in the class design 
hut to generate an error if addition of two incompatible model representations 
is requested. This forces the programmer to be more explicit concerning his 
intentions with respect to the sum of the model. If the programmer can not 
say what model structures he will encounter in a routine, he can decide to use 
a state-space representation. The class design already imposed the restriction 
that every model should be convertible to a state-space representation, so he 
can be sure not to run into trouble if he uses a state-space representation. 

7.4.4 Generalised bases and generalised FIR models 

In appendix B it is shown that a generalised basis for h2 can be derived from 
a basis generating system. In order to represent a basis, one could therefore 
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suffice with a class storing the basis generating system and routines to extract 
the required basis functions from this system. According to appendix B, ex
tracting this information involves an input balanced system derived from the 
basis generating system and an all-pass system, also derived from the basis 
generating system. To avoid repeated balancing and generating of an all-pass 
system, a basis for h2 is represented by a pair of SISO transfers, the input 
balanced transfer and the all-pass transfer. The two SISO transfers are stored 
in two instances of type SStransferCls. This is done by the class SISOpair. 

This class "knows" how to calculate the impulse response of any of the basis 
functions in the set of basis functionsit represents. It can also perform all other 
operations that were defined above for a LTitransferCls, either for a single 
basis function or fora combination thereof. A difference between an infinite set 
of basis functions and models is that it is unknown how many basis functions 
out of the infinite set of basis functions are actually used. A consequence of this 
is that the operations constructing models from a combination of other models 
are not implemented for sets of basis functions. Another consequence is that 
it is impossible to store the states of all basis functions in the basis. There
fore the states of the basis functions are stored outside the class SISOpair. 
Consequently a filtering operation requires not only a signal to filter, hut also 
a variable containing the states of the basis functions at the beginning of the 
filtering operation and another variable that will hold the states after the op
eration. If the last variable is omitted from the request to filter a signal, the 
states at the end of the filtering operation are simply discarded. If the initial 
states are also omitted, zero initial conditions are assumed. 

A MIMO basis is simply obtained as an array of SISO bases. Most C++ 
implementations provide ways to create with very little effort dynamically sized 
arrays containing arbitrary types. This is also required by the draft ANSI C++ 
standard. Maintaining the array of SISO bases is therefore easily realised. 
This task is carried out by the class ortFirSet. ortFirSet is not an array of 
SISOpair instances hut of SISOpairCopy instances. A SISOpairCopy instance 
can share a SISOpair instance with other SISOpairCopy instances in the same 
way as a vectorCls instance can share a vectorData instance with other 
vectorCls instances. This reduces the memory requirements of ortFirSet if 
the same SISO basis is used for all input/output pairs in a MIMO basis. 

ortFirSet is derived from MIMOtransferSet. The MIMOtransferSet spec
ifies the interface of ortFirSet with the outside world. This makes it possible 
to derive other classes from MIMOtransferSet representing other ways to gen
erate a MIMO basis. Programs using ortFirSet without using any of the 
specific properties of system based orthonormal basis functions will then be 
able to handle other types of bases without further modifications. 

Having a class that represents a MIMO basis, implementing a generalised 
FIR model class requires the following actions: 

• Provide an array of integers specifying the number of basis functions to 
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use in each SISO subtransfer. 

• Store the states of the basis functions incorporated in the model some
where. 

• Provide sufficient "glue" between these component and the MIMO basis, 
so that the resulting model class is accessible through the LTitransfer
Cls interface. 

The last step suggests that the resulting model class shall be a descendant of 
LTitransferCls. This is indeed the case. The ortFirModelCls is a descen
dant of LTitransferCls and implements generalised FIR models using the 
components discussed above. 

The hierarchy between the different classes discussed in this section is as 
shown in figure 7 .11. The classes representing the states of the ortFirModelCls 
and the number of basis functions for each input/output pair are not shown 
for clarity. 

LTltransferCls MIMOtransferSet 

SStransferCls ortFirModelCls K>--1 ortFirSet 

SISOpairCopy 

~-----------• SISOpair 

Figure 7.11: Classes involved in the implementation of ortFirModelCls 

lt is now interesting to consider the data that is contained in an instance of 
ortFirModelCls. For every input/ output pair, there is an integer specifying 
the number of basis functions to use and a pair of state-space models defining 
a SISO basis. Every state-space model is represented by four matrices. The 
state dimension of these state-space models need not be the same for different 
input/output pairs. It was the frightening idea of having to implement this 
in MATLAB that led to the decision to implement the algorithm in C++ and 
looking back on the whole project, it still seems the most important reason to 
switch to C++. 
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7. 5 Keeping all data of an identification session 

While implementing the algorithm the question rose how to make it possible 
to add different identification algorithms for the identification of the auxiliary 
models to the program, without requiring changing any of the other code. As 
before, polymorphism seemed an obvious candidate to tackle this problem. A 
general "identification procedure class" could be defined and every identifi
cation procedure derives from this class. lndeed, a class idProcCls having 
exactly this purpose was defined. 

Unfortunately this can only be a partial solution. Different identification 
procedures require different prior knowledge. One can not pass all this prior 
knowledge explicitly to the methods of the identification procedure class: as 
soon as an identification procedure emerges that requires prior knowledge that 
was not anticipated on, the idProcCls needs to be changed. For a specific 
identification method it also means that it is offered a lot of data, a considerable 
part of which it is probably not using. 

This was solved by creating a tree structure of different pieces of informa
tion, see figure 7.12. The root of the tree represents the complete identification 
project. Below this root, information is organised in different subtrees, repre
senting the main categories of information. "Data" represents (initially) the 
experimental data and prior knowledge of the process, "Identification" specifies 
which identification method to use together with possible extra information the 
identification method needs to have, such as model order or signal sealing. Un
der "Data" information is organised according to the operating point it belongs 
to. To each operating point belongs one or more data sets and maybe other 
information. For each data set, there must be input and output measurements. 
Additionally there may be other information that is specific to this data set, 
etc. 

Every node in this tree is an instance of (a descendant of) class property
Cls. propertyCls handles the connection with other nodes. lt also contains 
the name of the node. If this is all the information that a node requires, an 
instance of propertyCls suffices to represent this node. For anode representing 
a data set, the node should also contain the input and output signals. A node 
representing a transfer should contain some representation of that transfer, 
etc. The ability to contain this information is obtained by deriving properly 
extended. descendants from propertyCls. 

Helper classes are provided to iterate over all or part of the nodes in the 
tree, either starting from the root or from any other node. Functions searching 
for certain nodes are also implemented, as well as an extensible set of classes 
that can express conditions that a node must satisfy before being considered 
as a candidate for a search. 

Different parts of the algorithm put their results at appropriate places in 
this tree. The identification of auxiliary models should put the model it finds 
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Figure 7.12: Tree of all information pertaining to an identifkation session 

for an operating point in the subtree corresponding to that operating point. 
Information required by the identification should also be found somewhere in 
the tree. It is the user's responsibilîty to make sure that all information required 
by the identification method he requests is available either beforehand or is 
made available in the steps preceding the identification. 

This structure has proved ftexible enough to meet all the needs of the im
plementation of the algorithm. 

7.6 User interface 

The user interface for the algorithm has deliberately been kept very rudimen
tary. There were three reasons for this. 

• It is generally considered good practice to separate computational aspects 
in a software design from user interface issues. Therefore no user interface 
aspects have been built into the class design, except perhaps for the 
methods to read from and write to files or the terminal. 

• Software is called stable if it does not (or hardly) change any more in the 
future. Because this prototype of the algorithm is not stable software, it 
was considered unwise to go through a lot of effort to provide an easy to 
use interface for it, 

• A lot of class libraries exist that facilitate the development of graphical 
user interfaces on different platforms. Some of them provide a unified 
framework for different platforms: all details concerning the windowing 
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system under which a user interface is running are hidden by the class 
library. The same source code can be used on all supported platforms. 
Unfortunately these libraries are more expensive if more platforms are 
supported. 

As it is at this point not clear on which platforms the algorithm will 
be running in the future, it was decided not to make a decision which 
platforms to support. In this way it is avoided that an expensive library 
is purchased that supports a lot of platforms that will never be used. It 
is also avoided that a cheap library turns out not to support a platform 
that will turn out to be attractive in the future. 

Basic terminal and file I/O routines are used to communicate with the user. 
This was never felt to be a severe restriction in the use of the software. 

7. 7 Performance 

It is difficult to assess the performance of the class hierarchy that has been 
introduced only superficially in this chapter. Making statements about perfor
mance amounts to making statements about the quality of software. It is a 
large subject of dispute how to measure the quality of software. A discussion 
of the more general aspects of the quality of the class hierarchy discussed in 
this chapter would largely mean a repetition of section 7.1.2. The reader is 
therefore referred to that section for a consideration of these aspects. 

There is at least one aspect of the quality of the software that can be 
measured objectively. This is the speed with which the code executes. 

It depends highly on the kind of code that is executed what a comparison 
between MATLAB and the class library described in this chapter will look like. 
Three different situations will be distinguished. 

• If a routine is mainly concerned with manipulation of matrices, without 
spending rnuch time on decornpositions and the like, MATLAB turns out 
to be more than twice as fast. 

This is due to the flexibility of the class library. Every access of a vector 
or a matrix requires some communication betwee:p. a vectorData and a 
vectorCls. Moreover, if subvectors and submatrices are used, there is a 
lot of overhead in the communication with the indexRange descendants 
and their iterators. Some optimisation of the code is still possible to 
reduce the current amount of overhead, but even after optimisation 
nificantly more overhead will still be involved cornpared to the MATLAB 
code. 

• If a routine is rnainly concerned with decomposing a matrix, calculat
ing an inverse, etc. the speed comparison comes down to a comparison 
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between the MATLAB routines and the LAPACK routines. Both routines 
have common ancestors: the EISPACK and LINPACK libraries. Neverthe
less the MATLAB routines turn out to be faster than the LAPACK routines, 
at least on a MS-DOS machine running Windows 3.11. 

The Mathworks must have invested a lot of effort in optimising their 
routines. It is not surprising that their code outperforms the LAPACK 
library in this respect. 

• Pieces of code that do not rely heavily on matrix manipulations or on 
functions decomposing a matrix tend to be relatively slow in MATLAB. 
Therefore MATLAB is unsuited for heavy numerical optimisations. In 
these cases the benefits of compiled code make C++ outperform MATLAB. 
Speed gains of a factor three or more are not unusual. 

It is clear that the advantages of the classes described in this chapter should 
not be sought in the speed of the executing code. The advantages lie more in 
the speed and the relative ease with which one can develop this code. 

If speed of execution would have been of the utmost importance in the im
plementation of this library, a number things should have been arranged differ
ently. For example, the ability of a vectorCls to refer to part of a vectorData 
instance implies extra overhead in some circumstances. It is not quite clear 
whether the savings in execution time that can be obtained by the current 
scheme outweigh the extra computing time spent due to this overhead. In 
fact, using a vectorData instance as an intermediate between the vectorCls 
instance and its data may not be such a good idea as far as minimisation of 
computing time is concerned. There are other ways to prevent the unnecessary 
copying of data during the evaluation of an expression. 

Also one may choose to implement only equivalences of steppedRange and 
explicitRange and implement all operations on sub-vectors and sub-matrices 
in the respective vectorCls or matrixCls. 

Every decision above that is made for the sake of speed of execution sacri
fices part of the modularity of the current design. This means that the structure 
that will result from these decision is less Hexible than the current structure. 
It will become more difficult to maintain and the initial coding will probably 
take longer too. 

As far as the algorithm in chapters 4 and 5 is concerned, these consider
ations are irrelevant as far as computing time is concerned. This algorithm 
spends by far most of its computing time in solving the many linear program
ming problems that are part of the algorithm. The only way to speed up the 
algorithm, apart from using a faster computer, is to use a fas~er LP-solver. 
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8 
Conclusions and 
recommendations 

8.1 Conclusions 8.2 Recommendations 

8.1 Conclusions 
The first goal of this thesis was formulated in chapter 1 as: 

Provide a fundamental analysis of the factors that lead to model un
certainty in the context of black-box identification for robust control 
design. Moreover, analyse the steps that are involved in deriving error 
bounds Erom experimental data and prior knowledge. Provide a justi
fication for the choices that are generally made in the design of such a 
technique. 

Chapter 2 considered which factors lead to model uncertainty. These fac
tors were divided into three categories. (a) The model is only a simplified 
representation of the true process. Often only linear, time-invariant approx
imations to the true process are considered that, moreover, have only a low 
order. (b) Experimental data from which the model is derived is incomplete 
and inaccurate. The duration of experiments is only finite, as is the sampling 
frequency with which measurements are taken. Moreover, data is corrupted by 
noise and disturbances. (c) Model uncertainty manifests itself in both shape 
and magnitude. The uncertainty bounds contain in general processes that can 
be shown, based on experimental and prior knowledge, not to be the true pro
cess. This is called conservatism. An important reason for this is that the 
shape of the uncertainty bound does not correspond to the true shape of the 
uncertainty. 

A technique for model uncertainty bounding should try to reduce conser
vatism as far as possible. However, compromises have to be made concerning 
computability and applicability for robust control design. It should further 
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be possible to interpret the bounds in physical terms and to tell what deter
mined the eventual error bounds: the experimental data, prior knowledge, or 
a combination thereof. 

A framework in which model uncertainty bounding can be discussed without 
restricting attention to a particular algorithm was presented in chapter 3. In 
this framework it is made explicit that model uncertainty can not be bounded 
by experimental data alone. Prior knowledge/assumptions of some form are al
ways required. In a sense, model error bounds are therefore always determined 
directly or indirectly by the prior assumptions. 

In general, model error bounds alone can not account for all aspects of the 
process behaviour. Part of the process behaviour should be represented by a 
"noise" bound. This noise bound does not only represent noise and distur
bances, hut also relations between process inputs and outputs that can not be 
described by the model uncertainty bounds. For example, if the model un
certainty bounds contain only linear models, as is normally assumed in model 
uncertainty bounding algorithms, non-linear relations that exist between in
puts and outputs can not be represented by the uncertainty bound and thus 
have to be considered disturbances. 

Given the fact that both model uncertainty bounds and noise bounds de
scribe the process, the uncertainty bounding procedure should search for the 
largest model uncertainty that is compatible with the noise and the prior knowl
edge. This worst-case approach is commonly used in uncertainty bounding, hut 
the reason for this is not that the noise now has been "absorbed" in the model 
uncertainty. The true reason is that this is the only way to stand a chance 
that the noise that is faced by the eventual controller does not exceed the noise 
bound that was used during the identification. 

The previous results were formulated in a deterministic fashion, hut they 
can be refonnulated in a probabilistic way too. For simplicity this has not been 
further developed. 

Given these results, it can be concluded that the first goal of this thesis has 
been achieved. 

The second goal of this thesis reads (see chapter 1): 

B:ased on the results of the aforementioned analysis, adapt cAJ,",""15 

techniques for model error bounding for application in robust control 
design or develop new ones such that they fit better to the require
men ts of robust control design in genera] and are less conservative in 
particular. 

The basic idea behind the algorithm presented in chapter 4 and 5 is the 
hypothesis that in practice only a limited number of physical causes induce 
shifts in process dynamics. Because this number is limited, there must be a 
considerable amount of structure in the changes in the process dynamics they 
generate. This means that the changes that occur in. a process transfer for 
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one frequency should be related to those that occur for another. In the sarne 
way, changes that occur in the transfer from one input to one output should 
be related to those occurring in transfers for other input/output pairs. 

This bas led to the formulation of an algorithm in which both structured 
and unstructured errors are distinguished. The structured errors account in a 
detailed way for the effects that were mentioned above, the unstructured errors 
account for all other effects in a much less detailed way. The algorithm can 
estimate how the separation between structured and unstructured parts should 
take place. 

This algorithm has, potentially, two advantages: first, the large contribu
tions to the error are bounded in a detailed way. The remaining parts are 
bounded much less accurately but they can be much smaller. Second, the 
assumption that the process is linear, time-invariant is relaxed further than 
in other techniques: the new algorithm recognises explicitly that the process 
dynamics change in different operating points. 

Clearly, the algorithm is in line with the spirit of the second goal of this 
thesis. This was enhanced further by the extensions presented in chapter 5. By 
means of these extensions, more prior knowledge can be used in the uncertainty 
bounding: by estimating the transients in the data,· more accurate bounds on 
their infiuence can be given. Prior knowledge concerning the DC gain of the 
process or concerning the complex gain for arbitrary frequencies can be used. 
Solutions are provided to tune the separation into structured and unstructured 
parts. Alternatively it is also shown how the user may overrule the algorithm 
completely in this respect and specify this separation explicitly. 

The algorithm relies heavily on the use of models containing a finite number 
of system-based orthonormal basis functions. Chapter 5 also shows how the 
estimation of such models can be improved in two ways. It is shown that it is 
relatively easy to estimate transients for these models. Further a regularisation 
procedure is proposed for model sets containing models whose impulse response 
is considerably longer than the experiment intervals. Contrary to other regu
larisation schemes, this regularisation has a very clear physical interpretation 
and justification. 

The case studies in chapter 6 show that the algorithm is indeed capable of 
reducing the unstructured error by splitting off structured error components. 
Simulation results suggest that this even applies in cases where the structure 
in the model uncertainty can not be represented exactly by the algorithm. 
The algorithm then finds an approximation to the true structure in the model 
uncertainty that it can represent and bounding this separately still reduces the 
unstructured error signifkantly. 

Application of. the algorithm to practical data obtained from an asyn
chronous machine showed that there are two requirements that need to be 
fulfilled before application of the algorithm pays off: It seems that the signal 
to noise ratio needs to be at least 40 dB and the poles of the system on which 
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the system based orthonormal basis function are based need to be sufficiently 
close to those of the true process. 

If the latter requirement is not fulfilled, the bounds on undermodelling will 
dominate the total model uncertainty. The relatively strict requirements on 
the noise, especially in a practical setting, have two causes. Deterministic as
sumptions are made on the noise. This worst-case approach allows much more 
noise sequences than seems realistic. Moreover, any relation that exists be
tween different structured error components is lost in the algorithm, because 
the structured errors are bounded separately. This also applies to the relation 
between unstructured errors in different input/output channels, for different 
frequencies in case of frequency domain bounds on the unstructured error and 
for different sample instances in case of time domain bounds. See also sec
tion 8.2.2. 

Apart from these problems there is another issue that limits practical ap
plication. The computational load of the algorithm increases rapidly with the 
number of inputs and outputs of the system and with the length of the data 
sets. Application of the algorithm for systems with more than two inputs and 
two outputs will easily result in computing times in the order of weeks or worse, 
making application of the algorithm impractical. 

The algorithm was implemented in C++ because MATLAB, the obvious alter
native, seemed to provide insufficient support for this. A generally applicable 
library for computer aided system identification was developed. Use of this 
library makes it possible to code an algorithm at a level of abstraction that 
is much higher than that of matrices and vectors. This makes the code faster 
to develop and easier to maintain. The advantages of C++ over MATLAB be
come more important for large programming projects. For small programming 
projects, the advantages of MATLAB over C++ are clear. 

Overlooking the results that were obtained, it seems that a number of im
portant steps towards realisation of the second goal of this thesis have been 
made. Given the practical problems that the proposed algorithm still exhibita 
the second goal can not be considered completely achieved. 

8.2 Recommendations 

8.2.1 General remarks concerning the algorithm 

Some recommendations, including a potential solution to the problems indi
cated in the previous section, are given below, but some more general remarks 
seem in order first. The argumentation for the expectation that splitting off 
structured error components reduces the remaining unstructured error lies in 
the physical causes of model uncertainty. In the categorisation of model un
certainty sources that was made above, these causes fall in category (a). The 
explanation for the large uncertainty bounds that were obtained for the asyn-
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chronous motor was found to be a large noise bound, corresponding to an 
effect of category (b), and the fact that some knowledge about the uncertainty 
bound was not used. This is by definition called conservatism, so it falls in 
category ( c). 

It seems that the wrong effects determine the error bounds. These effects 
are considered the wrong effects, not because they are irrelevant for robust 
control design, but because they represent our inability to give tight bounds 
on the true process behaviour, even if it were linear, time-invariant. The fact 
that different linear representations for the true process are appropriate under 
different conditions, which is in my view what robust control is all about, is 
completely overshadowed by that inability. 

The solution to these effects can probably only be found by using more or 
more accurate knowledge in procedures for bounding model uncertainty. As 
much prior knowledge as possible should be incorporated in the uncertainty 
bounds. This requires further improving uncertainty bounding algorithms to 
make the use of this information possible. 

It was mentioned earlier that information was lost in the algorithm con
cerning the relation between the structured error components and between the 
structured errors and the unstructured errors. Also the relation between the 
unstructured errors for different input/ output channels, for different frequencies 
or for different sample instances is not represented by the uncertainty bounds. 
It is not quite clear what should be considered the true origin of this loss of 
information. Certainly, designers of model uncertainty bounding techniques 
should continue to seek the fault with themselves and try to avoid such loss 
of information in their algorithms as far as possible. Nevertheless one may 
start wondering to what extent conservatism is induced by the format in which 
robust control wants to get its uncertainty bounds. The system identification 
community has spent some years catching up with the robust control design
ers. Maybe it is time now to continue together and to increase the awareness 
in the robust control design community of the kind of information that can be 
assumed to be available in practice. 

The algorithm presented in chapter 4 may serve as an example for the lat
ter remark. In this algorithm, complex polytopes in the Nyquist plane were 
outerbounded by polytopes having only a small number of vertices. Of these 
simple polytopes, the vertex having the largest distance to a nominal model was 
then used to bound the absolute value of the model error for that frequency. 
This effectively outerbounds these polytopes by a circumscribed circle with 
its center "in the nominal model." Of these circles, the one with the largest 
(weighted) radius is finally selected to bound the 1l00-norm of the model un
certainty, where care has been taken to take into account the effects that occur 
between the frequencies for which such circles have been calculated. In each 
of the steps, a more compact hut less accurate representation of the available 
data is derived, yielding finally a representation that is suitable for robust con-
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trol design. If robust control design develops such, that the results that are 
now intermediate results can be used directly as a characterisation of model 
uncertainty, conservatism will be reduced. · 

As another example one may further think of using probabilistic bounds on 
the uncertainty, derived from probabilistic assumptions on the noise, instead 
of the hard, deterministic bounds that are now used by robust control design. 

8.2.2 Stochasäc assumpäons on noise 

The algorithm was formulated in chapter 4 using a deterministic framework 
for the noise. These deterministic bounds on the noise were then mapped to 
deterministic bounds on the model parameters and these were finally translated 
to deterministic bounds on the structured and unstructured error components. 

This is not essential to the algorithm. From stochastic assumptions on noise 
the variance of model parameters can be derived using Cramer-Rao bounds. 
The derivation of Cramer-Rao bounds relies on the fact that the process can be 
represented exactly by a model in the model set, which is a serious drawback of 
Cramer-Rao bounds in this context. Fortunately it is shown in (Falkus, 1994) 
how stochastic bounds on the model parameters can be estimated even if the 
process can not be represented exactly by a model in the model set. This still 
results in an estimate for the covariance matrix of the model parameters. 

Another option to come to an estimate of the model parameter covariance 
matrix can be derived from the results in Hakvoort (1994, section 5.4). In their 
present form, these results do not estimate the covariance matrix of the model 
parameters, hut only minor modifications are required to achieve this. 

Based on an asymptotic normality assumption, the covariance matrix of 
the model parameters ·can be translated to ellipsoidal confidence regions for 
these parameters. These confidence regions can be outerbounded by an or
thotope, representing a number of constraints equal to two times the number 
of parameters. If these and only these constraints are used in the algorithm, 
the number of constraints that needs to be handled in the subsequent linear 
programming algorithms reduces enormously. This may provide a solution for 
the long computing times that are now required by the algorithm. 

Another benefit that may be derived from this approach is that the worst
case nature of the bounds is relaxed. This may result in smaller, more realistic 
model uncertainty bounds. The price that has to be paid for this is that more 
stringent assumptions on the noise acting on the system need to be made, which 
may in turn be unrealistic. 

As a further refinement to this approach, it can be considered whether the 
linear programming problems can not be eliminated all together in the algo
rithm: the uncertainty in any (linear combination of) model parameters maps 
linearly to uncertainty in Nyquist plane. This is due to the linear parametri
sation of the models. Let the matrix of the operator mapping the param-
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eter uncertainty to frequency response uncertainty for a certain frequency 
w' be denoted X(w 1

). Then the covariance matrix of the model parame
ters maps to the covariance in Nyquist plane through pre-multiplication by 
[ReX(w 1)T,ImX(w1)T]T and post multiplication by [ReX(w 1)T,ImX(w1)T]. 
This basic procedure needs to be modified to exclude the structured error com
ponents from the unstructured errors. As only linear operations are involved 
in this exclusion, this seems straightforward. 

8.2.3 Other uncertainty structures 

The algorithm was developed for structured uncertainty that manifests itself as 
additive uncertainty with an unknown hut bounded gain factor. This limits the 
class of uncertainty structures that can be described exactly by the algorithm. 
The practically relevant case of a moving pole for example can not be described 
in this way. 

In section 5.8 the algorithm was applied to bound the uncertainty in the 
Youla parameter of a system transfer instead of the uncertainty in the system 
transfer itself. Translating the structured uncertainty in the Youla parameter 
back to uncertainty in the system transfer, a kind of structure is found in the 
system uncertainty that could not be obtained by direct application of the 
algorithm. In section 5.8 this was mainly done to bound the uncertainty in 
unstable systems, but a similar approach could possibly be used to make the 
algorithm suitable for more kinds of structure in the model uncertainty. 

Being able to handle many uncertainty structures is important, because the 
more error structures can be recognised by the algorithm, the less conservative 
the eventual error bounds will be. 

8.2.4 Basis generation 

In the presentation of the algorithm it has been argued that the poles of the 
basis generating system should be chosen as close as possible to the poles of the 
true system in different operating points. Although some suggestions were given 
how to achieve this, some further automation of this step seems worthwhile. 



284 Conclusions and recommendations 



Overview of notation 

A.l Latin symbols 
A.2 Greek symbols 
A.3 Other symbols 

A.4 Other notations 
A.5 Acronyms and abbreviations 

A.1 Latin symbols 

a(t) Contribution of basis functions 0 tok to the extended noise . p.107 
bound due to inputs u(O) to u(t). 

ai(t) Impulse response of the ith structured error component Ai, .. p. 78 

b(t) 

Co 
eo 
Cstab 
d(R.) 

i Ens. 
ith structured error "direction": the structured error com- . . p. 78 
ponents are equal to óiAi((), i E n 8 • 

Contribution of basis functions k to k to the extended noise . p.107 
bound due to inputs u{-oo) to u(-1). 
Impulse response of the kth basis function. . . . . . . . . . . . . . . . . . p. 75 
Transfer function of the kth basis function. . ................ p.75 
Complex plane. 
The designed controller. ..... "" .... " .. " ... " ........ " .. p.61 
Set of candidate controllers. . " ......... " .................. p.61 
A stabilising controller for the system S. . .................. p.41 
Contribution of basis functions k to k to the extended . p.111 
cross-covariance bound due to inputs u(O) to u(Td). (R. is 
the index of the instrumental variable involved.) 
Bound on the inputs u, used in chapter 3. . ................. p.47 
Bound on the model uncertainty ~- . . . . . . . . . . . . . . . . . . . . . . . . p. 78 
Bound on the difference between the designed controller and . . p.61 
the implemented controller. 

dç Bound on Ç, used in chapter 3. " .... " .. " " .... " ..... " .. p.47 
.......................... Continued on next page ......................... . 
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. " ........... "Latin symbols, continued from previous page ............... . 
'.D The set of all data set indices. . " ... " ..... " ... " .... " . " . p.80 
'.D(w) The set of all data sets of operating point w. . .............. p.80 
diagXi The blode diagonal matrix having the Xi, i EI on its diag- .. p.11 
iEI onal. 

ef ith unit vector in IRn or en. 
E(f A matrix in IRqxp having a one in row j, column i and zeros .. p. 77 

elsewhere (o- = (j,i)). 
f ( i) Contribution of basis functions 0 to k to the extended . p.111 

cross-covariance bound due to inputs u( -f) to u( -1). ( l 
is the index of the instrumental variable involved.) 

jj(t) Impulse response of the nominal model G . .................. p.78 
g~ ( t) Impulse response of the linear manifestation of the true pro- . . p.81 

cess in the operating point w. 
g9(t) Impulse response of the model G9. " ... " .... " ... " ". " .. p.78 
G Nominal model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 78 
G~ Linear manifestation of the true process in the operating . . p.81 

point w. 
G9 Model corresponding to parameter vector 0. . ............... p.78 
G9 Approximation of the nominal model by truncating its ex- . p.113 

pansion in a certain basis to a finite number of basis func-
tions. 

G9w Auxiliary model, intended as an approximation for Gtw. . . . . p.85 
1l2 The field of complex valued functions that are analytic out- .. p.12 

side the unit disc and square integrable over the unit circle. 

1l00 The field of complex valued functions that are analytic out- .. p.13 
side the unit and are bounded on the unit circle. 

In 
Imz 
irngP 

Identity matrix in IRnxn. 
Imaginary part of complex number z. 
Image space of a linear operator P or column span of a .. p.11 
matrix P. 

Jid The identification criterion used in chapter 3. . . . . . . . . . . . . . . . p.54 
k* First parameter for which exponentially decaying bound on . . p.82 

tail applies: Vk 2 k*, IB%î < th = M(pO')k. 
C2 The field of complex valued functions that are square inte- . . p.11 

grable over the unit circle. 
C8 Set of linear constraints on the model parameters in the wth . p.106 

operating point representing data and prior knowledge. 
C~ Projection of C.~ onto the orthogonal complement of the . p.128 

span of the parameter vectors of the structured error com
ponents for an implicit operating point j E W . 

. . . . . . . . . . . . . . . . . . . . . . . . . . Continued on next page ......................... . 
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................ Latin symbols, continued Erom previous page . .............. . 
M 17 Part of the bound on the tail parameters: p.82 

'Vk ~ k*, IBZI <ijk= M(p17 )k. 

IN 
p 
'.P 

P} 

q 
Q 

IR 
rankM 
Rez 
'R1l2 
'R1loo 
s 
s 

s 
sbsXi 
iEJ 

stackXi 
iEJ 

Set of nomina! models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.54 
Set of all processes consistent with the nomina! model and .. 
the uncertainty bound. 

p.58 

Set of all possible models. . " " .. " .... " " .. " " " " .... " . p. 78 
Number of structured error components. . ............... ; . . . p. 78 
The number of operating points for which experimental data . . p.80 
has been collected. 
Set of non-negative integers: 0, 1, 2, ... 
Number of inputs. 
Process uncertainty set. The set of all processes consistent .. p.51 
with prior knowledge and experimental data. 
Projection onto (0 A,i)iEn •. In case of orthonormal (} A,i this . p.128 
is given by 9A,i9~,i· 
Projection onto the complement of (9 A,i)ien.. In case of . p.128 
orthonormal (} A,i this is given by I - L;~,,;; 1 8 A,iO~,i. 
All processes in Q consistent with a certain type of prior .. p.51 
knowledge. 
Outer-bounding polytope for Pw;i obtained by intersecting . p.118 
m half-planes. 
Polytope in complex plane containing Ll(eiwi) . .. "." "". p.118 
Polytope in complex plane containing all values representing . p.117 

the set { G9 (eJw;} - G(eJw,) I (} E C,9 }· 

Number of outputs. 
Class of processes to which the true process S is assumed . . p.42 
to belong approximately. 
Set of real numbers. 
The rank of a matrix M. 
Real part of complex number z. 
The subset of 1l2 consisting of finite dimensional systems. 
The subset of 1l00 consisting of finite dimensional systems. 
True system, interpreted as a behaviour: s c w'.Jl'. . . . . . . . . . p.37 
(chapter 3): Set of all systems of the same kind as the true .. p.38 
system S. 
(except chapter 3): Set of subtransfers: S = q x p . .......... p.77 
The matrix obtained by putting the Xi, i EI next to each .. p.11 
other (Side By'Side). 
The matrix obtained by putting the Xi, i E I on top of .. p.10 
each other . 

. . . . . . . . . . . . . . . . . . . . . . . . . . Continued on next page ......................... . 
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........... " ... Latin symbols, continued Erom previous page ............... . 
'II' (chapter 3): The time set of a behavioural representation ... p.35 

'II' 

w 

A.2 

c51(l) 

µ(w') 

A behaviour is a subset of wT. 
(except in chapter 3): The time interval on which a data set .. p.80 
is collected. 
The time interval on which data set d is collected. . . . . . . . . . . p.80 
The experirnental data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.40 
The signal alphabet of a behavioural representation. A be- .. p.35 
haviour is a subset of w'.lf'. 
The set of operating points. . ............................... p.80 
General input. 
Bound on inputs before t 0: 'rit< 0, iu(t)I < ü. . .......... p.82 
Input measurements for data set d . ......................... p.80 
Instrumental variable for data set d. . . . . . . . . . . . . . . . . . . . . . . . . p.81 
General output. 
Output measurements for data set d. . ...................... p.80 
Set of integers: ... , -2, -1,0, 1, 2, ... 

Greek symbols 

Contribution of basis functions k + 1 to oo to the extended . p.108 
noise bound due to inputs u(-oo) to u(t). 
Contribution of basis functions 0 to k to the extended . p.111 
cross-covariance bound due to inputs u(-oo) to u(-t - 1). 
(lis the index of the instrumental variable involved.) 
Contribution of basis functions k to oo to the extended . p.111 
cross-covariance bound due to the inputs u(-oo) to u(Td). 
(lis the index of the instrumental variable involved.) 
Genera! model uncertainty. In chapters 4-6 more specifically .. p. 78 
the unstructured model uncertainty. 
The uncertainty in the implernented controller. ............... p.61 
Forward shift operator: [(f](t) = f(t + 1). . ................... p.12 
Model parameter vector ......... " .... " ........ " " ......... p.78 
Model parameter bound: IOkl < Ök . ... " .. " .... " .... " ... ". p.82 
Uncertainty of 6.(jw') in the direction eJ<l>t due to the model . p.117 
parameter uncertainty. 
Uncertainty of 6.(jw') in any direction in the complex plane . p.118 
due to the tail of the basis. 

Ç Signal accounting for all effects that can not be accounted for . . p.43 
by a relation between u and y present in Q (non-linearities, 
disturbances, noise, etc.) 

.......................... Continued on next page ......................... . 
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............... Greek symbols, continued from previous page .............. . 
µ<; Part of the bound on the tail parameters: . . p.82 

\:/k 2::: k*, IOk°I < ö" = M(pu)k. 
er sub-transfer index: er = (j, i) E q x p. . . . . . . . . . . . . . . . . . . . . . . . . p. 77 
O"i ith singular value of a matrix. Singular values are sorted in 

order of decreasing magnitude. 

A.3 Other symbols 

al\ b 
aVb 
a ==::} 

a -<==> 
a := b 
a=: b 

b 
b 

a and b (logical and). 
a or b (logical or). 
a implies b. 
a is equivalent to b, Le. a if and only if b 
a shall be defined as b. 
a shall be the definition of b. 

A.4 Other notations 
In this section, it is not the symbols that determine the interpretation, hut the 
way in which they are denoted: 

2s 
laJ 
ral 
ralb 
(a, b, c) 
(a 1 b) 
Mi* 
M*i 
n 
ff. 
Xi 

var J;. 

A.5 

The complex conjugate of z E C. 
The transpose of a matrix A E IRmxn, the complex conjugate 
transpose of a matrix A E cmxn. 
The set of all subsets of S. 
The largest integer not exceeding a. 
The smallest integer not exceeded by a. 
The smallest multiple of b not exceeded by a, ralt> := r%lb. 
The span of vectors a, b, c. 
The inner product of vectors a and b. 
ith row of matrix M. 
ith column of matrix M. 
The range 1, 2, ... , n (n E IN). 
A stochastic variable/process x. 
A sample from the stochastic process J;.. 

The variance of the stochastic process J;.. 

Acronyms and abbreviations 
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ARX 
CASID 
FIR 
MATLAB 

MIMO 
MISO 
PRBNS 
SIMO 
SISO 

Overview of notation 

Auto Regressive with eXternal input; a model structure. 
Computer Aided System IDentification. 
Finite Impulse Response; a model structure. 
A commercial software package for matrix manipulation and 
graphical presentation. 
Multiple input, multiple output. 
Multiple input, single output. 
Pseudo random binary noise sequence. 
Single input, multiple output. 
Single input, single output. 



System based orthonormal 
basis functions 

B.1 Generating a basis from a 
genera! system 

B.2 Properties of system 
based orthonormal basis 
functions 

B.3 Transients of a generalised 
FIR model 

In (Heuberger, 1991) system based orthonormal basis functions were intro
duced. This section will briefly present a number of results on these orthonor
mal basis functions taken from (Heuberger, 1991; Heuberger et al., 1995). Also 
a conjecture taken from (Hakvoort, 1994, Section 4.B) and used in chapters 4 
and 5 of this thesis is stated. 

After these results by other authors, some original result& are presented. 
These results are concerned with the space of transients that an unknown linear 
combination of a (known) number of basis functions may exhibit. In general 
this space is spanned by a number of signals that is equal to the sum of the 
McMillan degrees of the basis functions involved in the linear combination. For 
this particular basis, a procedure is derived yielding a much smaller number of 
signals spanning this space. These signals can then be applied in the estimation 
of transients as discussed in section 5.2. 

Before presenting these results, first some preliminary definitions: Let Gb(z) 
be the transfer function of a single-input, multiple-output, stable, finite dimen
sional, discrete time, causal, linear, time-invariant system, so let Gb E R1lr 1

, 

where q denotes the number of outputs of Gb· Let nb denote the McMillan 
degree of G". The notation 

Gb(z) = (A, B, C, D) 

means that 

Gb(z) D + C(zl - A)-1 B, (B.l) 
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where 

The quadruple ( A, B, e, D) is called a state-space representation of G b ( z). Such 
a representation is called minimal if n = nb. A realisation (A, B, e, D) is 
called stable if it is minimal and all eigenvalues of A have an absolute value 
that is less than one. Equivalently, Gö(z) is stable if Gb(z) is analytic outside 
the unit circle. For such a realisation, the controllability gramian P is defined 
as the solution of 

APA* +BB* P 

and the observability gramian Q as the solution of 

· A*QA+e•e = Q. 

A stable realisation is called balanced if P = Q = E and input balanced if 
P = I and Q = , where E is a diagonal matrix containing the Hankel 
singular values in decreasing order on its diagonal. Finally, a system G E RH2 
is called inner if it is stable and satisfies 

B.1 Generating a basis from a general system 

Given an arbitrary Gb E RH~xi, an inner function Gi(z) can be derived 
from Gh using the following theorem. In the statement of this theorem, the 
convention to denote the impulse response parameters of a system Gi(() by 
gi(k), k 0, ... has been used. 

Theorem B.1 (see (Heuberger et al., 1995)) Let Gb E RHgx. 1 have a 
(minimal) input balanced realisation (A1>, Bb, eb, Dti)· Denote the McMillan 
degree of Gb by nb and let nb > 0. It now holds: 

(a) There exist ei E JEllxnb and Di E IEl such that (Ab, Bb, ei, Di) is a 
minimal balanced realisation of an inner function G;, with jg.(O)I < 1. 

(b) (A1>, Bb, ei, D;,) has the property (a) il and only if 

e;, = Bi;(I + Ai;)-1 (1 + A1>) 

Di = B;(I + A;)- 1 Bb -1 

0 
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In the derivation of the inner function Gi(z) from the transfer function Gb(z) 
only the matrices Ab and Bb of an input balanced realisation (Ab, Bb, eb, Db) 
of Gb(z) were used. Instead of saying that Gi(z) was derived from Gb(z), 
we might as well say that Gi(z) was derived from the input balanced pair 
(Ab, Bb)· Because G0 and Gi can be represented by state-space realisations 
using the same system matrix A0, G; has the same poles as Gb. 

With Gb = (Ab, Bb, eb, D0) and Gi = (Ab, Bb, Ci, Di) as in theorem B.l, 
define Vk E R,11,~b x 1 , k E 1IV recursively as 

Vo(z) := (zl Ab)-1 Bb = (Ab, Bb, Inp 0) 
Vk(z) := Vi-1(z)Gi(z), k E IN\ {O} 

The Vi(z) have the following property (see (Heuberger et al" 1995)) 

(B.3) 

'Vk, f, E JIV ~ v (t)T v (t) = {I.n, if k. = t (B.4) 6; k l 0 ifk#f 

where vk(t) is the impulse response associated with the transfer function Vi (z). 
Any system G0 E n1-l.2 can now be written as 

00 

Go(z) D + LLkVk(z), DE IR,Lk E JR1 xn•. 

k=O 

This is already very similar to the expansion 
00 

Go(z) = L lJkBk(z), (Jk E IR, Bk E 1?..1-l2 
k=O 

that was used in chapter 4 and further. Indeed, the Bk, k E J1V are obtained 
as follows 

Bo(z) = 1 
Bkn&+e(z) = [Vk(z)]l' k E JIV,f, E nb 

The Bk, k E JIV obtained in this way represent .a basis for 1?..11.2 generated by 
G0• Because of (B.4), the basis is an orthonormal basis. The Lk are called the 
grouped expansion coefficients of Go expressed in the basis generated by Gb. 
The Vk are c.alled the grouped basis iunctions generated by G0 or by (A0, Bb)· 
lt holds 

L1c = [81cn0 +1, · · ·, (J(k+l)nb] · 

A system of the form 

k 

G(z) = L (JkBk(z) 
k=O 

is called a generalised FIR model. The expansion coefficients Ok, k = 0, ... , k 
are called generalised FIR parameters. 
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B.2 Some known properties of system based or
thonormal basis functions 

Property 4.1 on page 77 is now trivial. In the notation of this appendix, 
property 4.1 reads 

This equality follows immediately from the fact that 

jBkn;H( ejw') j jBt ( ejw' )G~ (ejw') j 

== jBt(ejw') 1 · IG~ (ejw') j jB1(eiw') j • l. 

The fact that the expansion coefficients fh of a system G expressed in a 
basis generated by Gb decay tO zero faster if the poles of Gb are closer to the 
poles of G follows from the following theorem. For convenience, this theorem 
is stated in terms of the grouped expansion coefficients Lk instead of fh. 

Theorem B.2 (see (Heuberger et al., 1995)) Let GE R1l2 have a state
space representation (A, B, C, D). Denote the McMillan degree of G by n 
and let (Ab, Bb) be an input bafanced pair that generates a set of grouped 
basis functions {ViJ~0 , Ab E JRnbxnb, Bb E 1Rn°. Denote the eigenvalues of 
A by µi, i E n. Denote the eigenvalues of Ab by p;, j E nb. Express G as 
follows 

00 

G(z) = D + LLkVk(z) 
k=O 

0, Lo, L1 , . . . is the sequence of impulse response coefficients of a dynamical 
system 

00 

G'(z) LLkz-k-l 
. k=O 

with state-space representation (X, Y, Z, 0) satisfying 

(a) X has dimension n, i.e. the McMillandegree of (X, Y, Z, 0) does not 
exceed that of G. 

(b) X has eigenvalues Ài, i E n for which it holds 

Vi En, l,\l=Ilnb.I µi-Pj I· 
l-µ·p· j=l i J 
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D 

In the remainder of this appendix, the following theorem will be used 

Theorem B.3 (see (Heuberger et al., 1995)) Let Gb E 'R1l2 be a system 
with minimal input balanced state-space representation (Ab, B1>, Cb, Db) and 
with McMillan degree n1>, nb > O. Let (Ab, B", Ci, Di) be the representation 
of an inner transfer function derived Erom G". IE a transfer function G(z) can 
be expressed by a sum of m grouped basis functions vk k = 0, ... , m - 1, 
generated by Gb, m E IN+, i.e. there exist Lk, k = 0, ... , m - 1, such that 

m-1 

G(z) = D + 2: LkVk(z), 
k=O 

then G(z) has a state-space realisation (Am, Bm, Cm, D) with state dimension 
m·nb, 

and Form 2:> 1 

Ab 
BbCi 

0 
0 

0 
0 

0 

0 
B"Df'-2Ci BbDf'-3Ci BbCi Ab 

Form 1 it holds in particular Am =Ab, Bm = B". 

Bb 
B1>Di 

Bm = B1>Dt 

In (Hak.voort, 1994) the following conjecture is stated: 

D 

Conjecture B.4 Consider the pulse response representation of any basis func
tion, generated with the procedure described in (Heuberger et al., 1995), 

00 

'Vi En&, [Vk(z)]; == L [vk(t)]i 
t=O 

then it is conjectured that for any p 2:: 0, 

= 
l:tPl[vk(t)]il::; c~ +c2kP+l/2 

t=O 

for some fini te constants ei, c~ which are independent of k, but possibly depend 
on p. This implies that 

D 
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The notation in the statement of this conjecture has been slightly changed to 
put it more in line with the notation used in the rest of this appendix. The 
conjecture is motivated in (Hakvoort, 1994) by "extensive simulations." 

The reader may verify that conjecture 4.2 on page 77 is implied by the 
above conjecture. 

B.3 Transients of a generalised FIR model 

In this section the following problem is considered. For a system of the form 

k 

G(z) = I: OkBk(z) (B.5) 
k=O 

but with unknown coefficients fh, k = 0, ... , k, find a set {ytr,1 (t), ... , Ytr,i(t)} 
of signals, such that all transients that a system of the form (B.5) may exhibit 
can be written as a linear combination of the signals in {Ytr,1 (t), ... , Ytr,l(t)}. 
Moreover, to reduce computational complexity, an attempt should be made to 
makel small. 

For a general stable q x p system having a state-space representation with 
state dimension n given by (A, B, C, D), the transient of that system for an 
initial state x0 is given by 

yT(O) x'{;CT 
yT(l) xijATCT 

x'{;(Ak)TCT 
=: Ytr(Xo). 

yT(k) 
(B.6) 

For a single-output system, (B.6) can be rewritten 

y(O) C 
y(l) GA 

= Xo. (B.7) 
y(k) CAk 

Ytr(xo) is linear in xo. Therefore the space of all transients that the system 
(A, B, C, D) may exhibit is spanned by 

{Ytr(ef), ... ,Ytr(e~)}. 
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Naw consider the first n samples of the state signals in response to an impulse 
on t = 0. It is easily verified that it holds 

[x(O),x(l), ... ,x(n -1)] = [B,AB, ... ,An-1B]. 

For a controllable representation ( A, B, C, D) we have 

rank [B, AB, ... An-l B] = n, 

so that 

(er, ... ,e~) = (B,AB, ... ,An-1B). 

If h E h~ denotes the impulse response of (A, B, C, D), then it follows that 

where the shifted signals are defined on JN. This is summarised by the following 
lemma. 

Lemma B.5 The space of transients of the system (A, B, C, D) with state
dimension nis for controllable (A, B) spanned by the n signals that are obtained 
by shifting the impulse response of ( A, B, C, D) 1 to n samples forward in 
~e D 

Now let (A, B) be an input balanced pair with B E mn. According to 
lemma B.5, the space of transients of the system represented by (A, B, In, 0) 
is spanned by 

Instead of the 1 x n system (A, B, In, 0) consider now the following set of 
SISO systems 

9 := {G(z) E n1l2 l 3C E m1 xn, G(z) = (A, B, C, 0) }. (B.8) 

and let 

1J := {y E n1l2 l 3G E 9, y is a transient of G}. 

be the set of transients that can be exhibited by all systems in 9. 
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Clearly, 

Because 

the n + lst to n2th signal on the right hand side of (B.9) depend linearly on 
the first to nth signal. As a result 

(B.10) 

The connection of this result with the space of transients that a generalised 
FIR model can exhibit is given by the following lemma. 

Lemma B.6 The matrices Am and Bm, m E Z+ as def:ined in theorem B.3 
on page 295 form an input balanced pair. D 

The reader may convince himself of this result by noting that the Z-transform 
of the impulse response of the system (Am, Bm, I, ü) is given by 

[Vo(zf, ... , Vm-1(zff. 

and that the controllability gramian P of this system satisfies 

Remark B.1 In (Heuberger, 1991) the line ofreasoning was actually the other 
way round. It was established there by other means that (Am, Bm) was an 
input balanced pair and that lead to the conclusion that the Vi must satisfy 
equation (B.4). D 
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These results are now combined in the following way. The set of systems of 
the form 

mn& 

G(z) = L (}kBk(z), m E IN 
k=O 

for unknown Bk is a set like 9 in (B.8), where the input balanced pair {A, B) is 
to be taken equal to (Am, Bm) as given in theorem B.3. According to (B.10), 
the space of transients of all systems in this set can be spartned by the impulse 
responses of basis functions 1 to mnb shifted one sample forward in time: 

Lemma B. 7 Let }J be the set of trnnsients that can be exhibited by models 
G(z) of the form 

mn& 

G(z) = L ekBk(z), m E IN (B.11) 
k=O 

where {Bk(z)} is a set of basis functions generated by a system Gb(z) with 
state space representation (Ab, Bb, eb, Db) and with McMillan degree nb. Let 
bk(t) be the impulse response of the kth basis function, then 

0 

This gives a particularly easy procedure to generate a set of signals to span 
the space of transients that can be exhibited by models of the form (B.11): for 
every basis function B k ( z), k = 1" .. , mnb, calculate the impulse response of 
that basis function and discard the first sample. The set of signals obtained in 
this way spans the space of transients. B0 (z) is excluded from this procedure, 
because bo(t) = ó(t) and (b(t) = 0. 

That only mnb signals are needed to span the space of transients is not 
surprising considering the realisation that was given for such systems in theo
rem B.3. However, lemma B.7 goes beyond that result by specifying an explicit 
set of mnb signals spanning that space. 

For models of the form (B.5) with k/nb f/. IN lemma B.7 does not provide 
a procedure to generate a set of signals spanning the space of transients for 
all such models. To state the procedure for such models, some extra notation 
needs to be introduced. 

Let { B k ( z)} be a set of basis functions generated by the system G b with re
alisation (Ab, Bb, eb, Db) and with McMillan degree nb. Let (Ab, Bb, ei, Di) 
be a realisation of an inner function derived from Gb. Let m be the smallest 
integer such that mnb > k. The set 

9{ := { G(z) E R1i2 j 3ek, k = i, ... ,j, G(z) = t; OkBk(z)} 
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contains all models that are linear combinations of basis functions i through j. 
Assume that all models of the form (B.5) are represented by a realisation as 
given in theorem B.3. Note that a number of elements of the last grouped FIR 
parameter is zero if k < mnb and nb > 1: 

[Lm-1h+1-(m-l)no = ... = [Lm-i]n& = 0 

For X c mmnb the set 

i!(X){ := {y E 1l1i2 1 3G E 9{, x EX, y is the transient of G with xo x} 

contains all transients of models in 9{ for initia! states restricted to the set X. 
In this notation, lemma B. 7 states that 

iJ(JRmnb)~no = ((b1, · · ·, (bmn&}. 

The problem that needs to be solved is to find a set of signals that spans 

ij(JRmno)~. 

There always exist models G E 9~n· such that the realisation of G according 
to theorem B.3 is fully observable. Because this may not be the case for G E 9~, 
k < mnb, this problem can not be solved by applying lemma B.7. As an 
example of this, consider an input balanced pair (Ab, B1,) from which an input 
balanced pair (A2 , B2) with state dimension equal to twice the state dimension 
of (Ab, Bb) is constructed according to theorem B.3: (A2, B2) is taken equal to 
(Am, Bm) form= 2. Suppose that the dimension of Ab is nb and that k = nb, 
so nb + 1 of the basis functions generated from (A2, B2) are incorporated in the 
model set 9~- .from the structure of A2 , see theorem B.3, can be concluded that 
for any GE 9~ the nb + lst to 2nbth entry of the state vector of its realisation 
according to theorem B.3 are not observable. Consequently the response to 
initia! states x for which 

Vk E nb, [x]k = 0 

is zero for all models in 9~ and so 

ij(JR2n1> )~ Ç i!(IR2no )~nb. 

Let 

X' := {x E IRmno 1 Vk E nb, [x]k = O}, 

then the structure in Am implies that 

il(X')mno = U(JRmn&)(m-l)n& = U(JRmn6 )(m-l)n0 • 
(m-l)n0+1 O (m-2)n0 +1 O 0 

(B.12) 

(B.13) 
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In words this means that any transient that can be observed for B(m-I)nb+l 

to Bmnb in response to an initial condition for which the first nb entries are 
equal to zero can also be observed for at least one of the basis functions Bo to 
B(m-I)nb in response to some other (arbitrary) initial condition. It generally 
holds 

(B.14) 

and 

Due to the linearity of a transient in the entries of its initial state vector it 
follows that 

(B.15) 

where X' is as in (B.12) and X" is any subspace of !Rmnb such that 

The second equality in (B.15) follows from (B.13) and (B.14). Now consider the 
first nb samples of the state vector of (Am, Bm, I, 0) if the system is excited 
by ó(t). These nb samples span a space that satisfies the requirements on X"! 
This follows from the structure in Am and Bm and the fact that 

The interpretation of this result is, that 'd(X")f m-l)nb+l can be spanned by the 
impulse responses b(m-l)n&+l (t) to bx;(t) shifted forward in time for one to nb 

samples. 
The above result is summarised in the following extension of lemma B.7. 

Theorem B.8 Let }J be the set of transients that can be exhibited by any 
model G(z) of the form 

k 

G(z) = L fhBk(z), k E IN (B.16) 
k=O 

where {Bk(z)} is a set of basis functions generated by a system Gb(z) with 
state space representation (Ab, Bb, Cb, Db) and with McMillan degree n0• Let 
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m be the smallest integer such that k < mnb and let bk(t) be the impulse 
response of the kth basis function, then 

1:J =((b1, ... ,(b(m-l)nb' 

(b(m-l)nb+l' (
2
b(m-l)nb+l' · · · '(n"b(m-l)nb+l • (b(m-l)nb+2• · · · '(nbbk) 

D 

The set of signals spanning 11 in theorem B.8 need not be a minimal set of signals 
spanning }J. However, the computational effort that is involved in calculating 
the set of signals spanning 1i according to theorem B.8 seems acceptable, so no 
additional effort is spent to further reduce the number of signals spanning }J. 

Theorem B.8 reduces to lemma B.7 if k/nb E JN. 



c 
Application of the formal 

framework: the algorithm of 
chapter4 

As an example of application of the formalism in chapter 3, it will be shown 
how the algorithm of chapters 4 and 5 fits in the formal framework. Only the 
aspects of the formalism concerned with modelling and uncertainty bounding 
will be discussed. The algorithm does not require amore specific interpretation 
for the true system than was given in chapter 3, aspects of control design and 
implementation are not part of the algorithm. 

1 W and 1I' 1 [> The signal space W is assumed to be partitioned as 

w = JRP x IRq, 

where JRP represents the signal space for the input component u of a w = 
( u, y) E W'.ll' and IRq the signal space for the output component y. 

All signals are interpreted as discrete time signals, so the time set 1I' = z. 
1 W 1 [> The data W contains for every data set d E 'D a pair of input mea

surements and output measurements. 

Notation was simplified in the algorithm by assuming that every data set 
started at t = 0. This was possible because the data sets will be used to es
timate time-invariant models anyway. In the formalism this is not possible 
for the sake of generality. Therefore the experiment intervals JI'd, d E 'D 
should be reinterpreted as corresponding to the "real" times at which the 
measurements were taken. All these separate experiment interva.ls can then 
be combined into a single "experiment time set" T' according to 

Then T' corresponds to the notation used in chapter 3, the right hand side 
corresponds to notation used in chapter 4, with the modification mentioned 
above. 
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W consists now of a pair of signals u and y, 

so that 

W = {(u,y)}. 

As extra information conceming W it is known which parts of W belong to 
different manifestations of Sin Q, as was briefiy mentioned in section 3.3.5. 

1Cstab11> The algorithm applies only to stable systems. For stable systems 
it is known that Cstab is equal to the null controller. 

@] C> The set Q consists for the SISO case of all systems whose transfer func
tion can be represented as 

00 

Q(z) = LOkBk(z), 
k=O 

· subject to 

The generalisation to the MIMO case is straightforward. 

It would be more accurate to say that Q contains the input-output be
haviours of these systems. 

j llÇll :$ dç 1 C> In the algorithm, all noise effects and disturbances are lumped 
at the output. The signal Ç contains both inputs and outputs. Lumping 
all uncertainty at the output can be interpreted as a limiting case of the 
more general bounds on Ç. Let fu, fy E IR+ be given and let the norm 11·11 
on Ç be defined as 

With this definition we have 

so that for f u -+ oo 
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(Obviously, convergence of Çu is to be interpreted in the topology induced 
by the l 00 norm.) Taking fy = 1, the norm on Ç defined above reduces 
therefore in the limit to the l 00-norm on the output component Çy of Ç, 
with the additional requirement that Çu = 0. This in turn corresponds to 
the way in which the algorithm bounds the uncertainty. 

If the same value ë can be used for all ë(t), t E 'II', d E '.D, the bound on 
Ç that is used by the algorithm is simply given by 

If a truly time-dependent bound ëd(t) is to be used, or a different bound 
for different data sets, the definition of the norm on Ç can be adapted 
accordingly. 

[> The algorithm does not use explicitly the bound on the inputs .___ __ _, 

represented by llull ~ du in the formalism. Therefore there is no imple
mentation for this requirement in the algorithm. 

For the application of the algorithm on a physical process, the bound is 
used implicitly: obviously some constraints on the input signals need to be 
satisfied to ensure that the linearisation of the process remains a sufficiently 
accurate approximation of the process. 

The bound ü on past inputs that is used by the algorithm does not corre
spond to llull ~du. The purpose of the bound llull :::; du is stated in the 
previous paragraph. The purpose of the bound û is to bound the effect of 
unknown initial conditions. 

1 P2, ... , PN:P 1 [> The different types of prior knowledge that are used by the al
gorithm are each represented by a set :J\. This includes the aforementioned 
bound on past inputs, the noise bounds ëd, d E '.D, the cross-covariance 
bounds and bounds on the statie gain or on the complex gain for any fre
quency. The only type of prior knowledge that is not represented in this 
way is 

This is represented by Q. Because every :Pi is a subset of Q, every Pi 
represents (part of) this prior knowledge as well. 

1 Jid• Mid, Mset 1 t> The algorithm does not specify how its nominal model G 
is to be identified, it only requires that the nominal model is linear, time
invariant. Therefore nothing can be said about Jid and all that can be said 
about. Mset is that it should be a subset of the set of linear, time-invariant 
models. The algorithm assumes that t.here is one nominal model, so M1d 
should be a singleton. 
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In the estimation of auxiliary models, an identification criterion and a 
model set are used. In the presentation of the algorithm, least squares 
estimation was mentioned as a possible estimation method for the auxiliary 
models. For this method, the identification criterion Jid is identical to the 
sum of squares of the residuals fora certain model M E Mset· The model 
set Mset contains all models M whose transfer function can be represented 
as 

k 

M(z) = L fhBk(z). 
k=O 

Here too, the set of identified models Mid is a singleton taken from Mset· 

1 Mid "+" A 11> The A used by the formalism corresponds to (A, 61, ... , 6n,) 
used by the algorithm. The interconnection of this uncertainty description 
and a nominal model Mid• or ê in the notation of the algorithm, is obtained 
by 

n, 

ê "+" (A,61" .. ,6nJ := ê + A + L6iAi· 
i=l 

where the addition on the right hand side is to be interpreted as addition 
of transfer functions or impulse responses. Part of the interpretation of 
"+" is now determined by the uncertainty bounding: the Ai, i E n 8 are 
determined by the algorithm during the uncertainty bounding 

1 d(A) :::; dt:..11> To avoid confusion of the two different symbols A, the A as 

used by the formalism will be denoted ( A, 61 , ... , 6n.), where these symbols 
have the meaning as used by the algorithm. The uncertainty bounding 
function d( A) is consequently denoted 

d(ó.,61, ... ,6nJ· 

As in chapter 3, d is assumed to take its values in a partially ordered set 
ID. 

The uncertainty bounds derived by the algorithm consist of two compo
nents. One is a bound on A, the other is a set of intervals, one for every 
6i, i E n 8 , to which that 6i is constrained. Ignoring the unstq1ctured error 
A fora moment, we can define 

d(A, 61, ... , 6nJ := (61, ... , 6n,, -61, · · ·, -6n,f, 

so that in this case ID = IR2n•. Using moreover the partial orderirig 

Va, b E IRn, a < b :{:::::::} Vi E n ai < bi 



and 

Va, b E JRn, a = b :<===:> Vi En ai= bi 

on JRn for any n E Z+, the fa.et that 

ViEns, oiE[.di,di] 

can simply be expressed as 
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Adding a bound on A can be clone in several ways. For the simple case of 
an 1i00-norm bound on A, it suffices to (re)define 

d(A, 01, ... , ón.) := (JIAll1i"", 01, ... , ón., -oi, ... , onJT. 

If the bound on the 1i00-norm is denoted dt:i., then the bound on both the 
structured and unstructured errors can be expressed as 

- - T 
d(A, Ó1, .. "On.) :::; (dt:i., di, .. "dn,, -Qi, ... , -dn.) . 

More detailed bounds on A can be added in a similar way as the struc
tured errors were bounded. Examples of such more detailed bounds are 
(weighted) impulse response bounds and bounds defining the simple poly
topes in the complex plane that are obtained as an intermediate result of 
the algorithm. 

It is interesting to consider what it means that ":::;" is only a partial or
dering on ID. Because the ordering is not a total ordering, we can not say 
which of the two situations below is "better:" 

case 1 
llAllK'° ::; 1.0 

-0.1 :::; Ó1 :::; 0.1 

case 2 
JJAll1t"' :::; 0.9 

-0.11 s &1 s 0.09 

Being able to decide which of the two is best might be interesting for the 
formulation of an optimisation criterion for the determination of the struc
tured error components Ai. One could then search explicitly for those 
structured error "directions" that lead to the tightest uncertainty descrip" 
tions in terms of dt:i. and .dii di, i E ns. 
In principle it can be determined which of the two cases is to be preferred 
by designing a robust controller for both uncertainty descriptions and by 
looking which controller performs best. Apart from the fàct that a similar 
problem may now occur in deciding which controller performs best, this 
would specify an ordering on, in this case, triples (dt:i.,!l1,di) that is far 
too complex to be used in an optimisation criterion. 
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Apart from the fact that this possibility to specify a total ordering on ID 
is impractical, it goes beyond the problem of uncertainty bounding. This 
is recognised by the formalism by only requiring a partial ordering on ID. 
In that case. the uncertainty bounding technique is allowed to be unable to 
decide which of the two cases mentioned above'is "best." 
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Samenvatting 

In veel processen worden regelingen toegepast om het dynamisch gedrag van 
het proces zodanig te veranderen dat het proces in bepaalde zin beter presteert. 
Moderne technieken voor regelaarontwerp zijn in het algemeen gebaseerd op een 
model voor het proces. Als de modelonzekerheid of modelfout, d.w.z. het ver
schil tussen het model en het werkelijke proces, begrensd kan worden en als het 
regelaarontwerp rekening kan houden met deze begrensde onzekerheid, wordt 
de aldus verkregen regelaar robuust genoemd. Dit proefschrift behandelt het 
probleem van het vinden van grenzen voor modelonzekerheid voor toepassing 
in robuust regelaarontwerp, uitgaande van experimentele data en voorkennis. 

Praktische toepassing van modelonzekerheidsgrenzen wordt momenteel be
moeilijkt door het feit dat deze grenzen vaak onrealistisch en onbruikbaar groot 
blijken uit te vallen. Geanalyseerd is, welke effecten (moeten) bijdragen aan de 
modelonzekerheidsgrens. Deze effecten kunnen in drie categorieën worden on
derverdeeld: (a) modellen die voor robuuste regelingen worden gebruikt zijn li
neair, tijd-invariant en hebben een lage orde, het onderliggende proces heeft die 
eigenschappen niet. (b) experimentele data van een proces geeft een incompleet 
en onzeker beeld van het procesgedrag t.g.v. eindige experimentduur, eindige 
bemonsteringsfrekwentie en onbekende externe factoren zoals ruis. ( c) bepaalde 
kennis die over het proces beschikbaar is, kan niet of slechts bij benadering door 
het nominale model en/of de onzekerheidsgrenzen worden gerepresenteerd. Dit 
leidt tot conservatisme. De praktische reden om robuuste regelingen toe te 
passen is voornamelijk om onzekerheid uit categorie (a) het hoofd te kunnen 
bieden. Huidige modelonzekerheidsgrenzen begrenzen slechts de onzekerheid 
ten gevolge van categorie (b) en (c). 

Een algemeen raamwerk is ontwikkeld om de interactie te onderzoeken tus
sen verschillende factoren die een rol spelen in een procedure voor onzekerheids
begrenzing. In tegenstelling tot andere kaders waarin identificatieprocedures 
worden "ingebed" vermijdt dit kader zorgvuldig dat onrealistische aannames 
voor het proces of de ruis gedaan worden. Enkele èigenschappen die alle pro
cedures voor onzekerheidsbegrenzing gemeen (zouden moeten) hebben worden 
onderzocht. Bovendien wordt de relatie verduidelijkt die er moet bestaan tus
sen ruis, verstoringen en vereenvoudigingen zoals lineariteit en tijd-invariantie 
aan de ene kant en de onzekerheidsgrenzen aan de andere kant. 

Naar aanleiding van de opmerkingen in het bovenstaande wordt een al
goritme voorgesteld dat modelonzekerheid voor MIMO systemen opsplitst in 
zogenaamde gestructureerde en ongestructureerde componenten. De gestructu
reerde component wordt gedetailleerd begrensd en dient om de veranderingen 
in procesdynamica te beschrijven die optreden als het proces in verschillende 
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werkpunten wordt bedreven. In de ongestructureerde component worden alle 
andere bronnen van modelonzekerheid samengevoegd en op een veel minder 
gedetailleerde manier begrensd. Als de gestructureerde componenten de do
minante factoren in de procesonzekerheid beschrijven, zal de resterende on
gestructureerde component veel kleiner uitvallen dan zonder een afzonderlijke 
begrenzing van de dominante factoren het geval zou zijn. Bovendien omvatten 
de zo verkregen onzekerheidsgrenzen meer aspecten van modelonzekerheid die 
voor robuuste regelingen relevant zijn dan tot dusver vaak het geval was. 

De dominante bijdragen aan de modelonzekerheid kunnen geschat worden 
uit data sets voor verschillende werkpunten. Er wordt afgeleid hoe deze bij
dragen uitgesloten kunnen worden van de grenzen op de ongestructureerde 
fout. Deterministische aannames worden gedaan voor de ruis en verstoringen 
die op het proces ingrijpen. Verschillende uitbreidingen op het basisalgoritme 
zijn ontwikkeld om het gebruik van meer voorkennis mogelijk te maken bij het 
begrenzen van de modelonzekerheid en het bepalen van de dominante factoren. 

Het algoritme is geïmplementeerd in een C++ programma. Na een zorgvul
dige overweging van een implementatie in MATLAB is geconcludeerd dat MAT

LAB onvoldoende ondersteuning biedt. Een algemeen toepasbare bibliotheek 
is ontwikkeld voor de implementatie. Uit eenvoudige objecten als vectoren en 
verzamelingen van gehele getallen worden complexere objecten samengesteld, 
zoals signalen, modelsets, identificatiesessies, etc. Hoewel deze hulpmiddelen 
werden ontwikkeld voor de implementatie van het algoritme, hebben ze hun 
eigen waarde op het gebied van computerondersteunde systeemidentificatie. 

Het algoritme is getest op simulatiedata en op praktijkdata van een asyn
chrone machine. Uit de resultaten kan worden geconcludeerd, dat het algoritme 
inderdaad een significante reductie van de ongestructureerde onzekerheid kan 
opleveren door een beperkt aantal gestructureerde componenten af te splitsen 
die door het algoritme zijn bepaald. Bovendien kan het algoritme een benade
ring vinden voor foutstructuren die het niet exact kan representeren. Dit leidt 
opnieuw tot een duidelijke afname van de ongestructureerde fout. 

Zowel de grenzen op de gestructureerde als op de ongestructureerde com
ponenten zijn erg gevoelig voor de manier waarop de invloed van ondermodel
lering wordt begrensd. Bovendien is data van hoge kwaliteit vereist om zinvol 
onderscheid te kunnen maken tussen gestructureerde en ongestructureerde bij
dragen aan de totale onzekerheid. De sîgnaal/ruisverhouding lijkt tenminste 
40 dB te moeten zijn voor een succesvolle toepassing van het algoritme. Aange
zien de ruis dit niveau overschrijdt in het voorbeeld van de asynchrone motor, 
vermindert afsplitsen van gestructureerde componenten hier nauwelijks de on
gestructureerde fout. Dit is voornamelijk te wijten aan de deterministische 
(worst-case) aannames op de ruis. Het verdient aanbeveling in toekomstig on
derzoek het gebruik van stochastische aannames op de ruis te onderzoeken. 
Dit kan resulteren in kleinere, maar zwakkere, foutengrenzen, die echter beter 
praktisch toepasbaar lijken voor realistische signaal/ruis verhoudingen. 



Curriculum vitae 

November 4, 1968 
September 1981 -

June 1987 
September 1987 

January 1993 

April 1991 
July 1991 

January 1992 -
January 1993 

January 1993 -
January 1997 

January 1997 -

Born in Thorn, the Netherlands. 
Secondary school: Gymnasium (:J, Scholengemeenschap 
St. Ursula, Horn, the Netherlands. 
Master student at the Eindhoven University of Technol
ogy, Department of Electrical Engineering, Eindhoven, 
the Netherlands; with 
Practical training at the Université des Sciences et Tech
niques du Languedoc CEM, Montpellier, France: Ex
periments and theories on low-frequency noise in GaAs 
resistors under supervision of F. Pascal, M. de Murcia 
and prof. G. Lecoy. 
Master project at the Unilever Research Laboratories, 
Vlaardingen, the Netherlands: Specific growth rate con
trol for fed-batch fermentation of bakers' yeast under su
pervision of dr. ir. A.R.M. Soeterboek, dr. ir. M. Keulers 
and prof. dr. ir. P. Eykhoff. 
Ph.D. research at the Measurement and Control group, 
Department of Electrical Engineering, Eindhoven Uni
versity of Technology, Eindhoven, the Netherlands: 
Structure in practical model error bounds under su
pervision of dr.ir. A.A.H. Damen, dr. S. Weiland and 
prof. dr. ir. A.C.P.M. Backx. 
Process engineer; AspenTech Europe B.V" Best, the 
Netherlands. 



SUMMARY 

of the algorithm presented in 
chapter 4 of the Ph.D. thesis 

Structure in Practical Model 
Error Bounds 

by 

Leon Ariaans 

Eindhoven, February 26, 1997 



Algorithrn 
Do experiments 
j-< W, '.D(w): sets of operating points and (prospective) data sets 
[> uà(t), yà(t): input/output measurements, data set d 

> và(t),rf(t): instruments for identification/cross-covariance bound 

Gather prior information ...................................... p. 80 

Ë
> û: input amplitude bound p. 82 
> ë(t): noise amplitude bound p. 82 
> et: cross-covariance bound p. 83 
> Ok, M, p: model parameter bounds p. 82 

Choose basis functions and model orders ................... p. 88 t> ~k(t): set of basis functions p. 75 
> k: model order p. 77 

Estimate auxiliary models .................................... p. 91 t< u(t), y(t), v(t), model parametrisation 
> ew: parameters of au.xiliary model for operating point w p. 92 

Estimate error structure .. " " ........... "." ........... " .. p. 101 

~
( /).(}W = aw mean,,,• ew' p. 105 
> X: matrix with in its columns the l).(Jw p. 102 
> UEVT: singular value decomposition of X 
> n8 : number of structured error components p. 105 
> (JA,i U.;, i E n 8 : parameters of structured errors A; p. 105 

Construct set of linear constraints ..... " . " " ... " ..... " .. p. 106 
< u,iik,M,p,b1o(t) 

Extend noise bound ........................................ p. 106 

§ 
ë(t): (unextended) noise bound p. 82 
a(t): infiuence of basis k + 1 tok, no transient p. 107 
b(t): transient of basis 0 tok p. 107 
ó: infiuence of basis k + 1 and higher, incl~ transient p. 108 

> ly(t) G9(Ç)u(t)I ::;; ee(t) := ë(t) + a(t) + b(t} + ó p. 108 
Extend cross-covariance bound .............. "" ..... " .... p. 110 

et, rt(t): (unextended) cross-covariance bound p. 83 
> d(l): basis function k + 1 tok, known inputs p. 111 
> /(f.): basis function k + 1 tok, inputs u(-i) to u(-1) p. 111 
> 81 ( f.): basis function k + 1 to k, 

inputs - 1) to u(-oo) 
> ó2 (f.): basis function k + 1 and higher, all inputs 
> !Et rt(t)(y(t)- G9(()u(t))J 

::;; d(l) + /(f.) + Ó1(t) + ó2(t) + êtvfTd 
> .C~: set of linear constraints on (J for every operating point 

p. 111 
p. 111 

p. 112 



Bound errors locally .......................................... p. 113 
Split parameter uncertainty in structured and 
unstructured parts ...................................... p. 125 

< ê, 0: nomina! model, vector of its first k expansion 
coefficients in basis bk 

> ( 9 A,i 1 91 
- IJ) 9 A,i: ith structured component for arbitrary fJ' 

> P: projection onto span of fJA,i p. 128 
> p.L: projection onto orthoplement of span of(} A,i p. 128 
> p1-(fJ' - il): unstructured error component in(}' 
> 61- G - G Pif nomina! model with structured error 

directions removed p. 126 
Bound structured errors ................................ p. 113 

t> d'f := maXEJ'Eq (9A,i l 9' IJ) 9A,;: 
upper bound on ith 1stn~ctured component p. 114 

> := min9'E.qf (9A,i l 9 - 9) OA,;: 
lower bound on ith structured component p. 115 

Bound unstructured error in frequency domain ..... p. 116 
< ei<l>t, l 1, ... , m: set of directions in complex plane p. 117 

fl = {w,}: discrete set of frequencies p. 117 
> Vi(w;) = maXEJ'E.Cw Re((Gp.:. 9•(eiw,)- ê.L(eiw'))e-i<l>t) 

è . 
uncertainty in direction eJ<I>< for frequency w; due to 
pararn. uncertainty not covered by struct. error p. 128 

> ji.(w;): error due to tai! of basis p. 118 
> P:,. (w;): uncertainty region in complex plane determined 

by f".t1.{w;) and µ(w;) p. 128 
Bound the interpolation error for w tl fl p. 130 

Bound unstructured error in time domain ........... p. 134 

Ë
< W((): stable weighting filter or z/(z - 1) p. 134 
< tmax: time after which constant bounds are used p. 134 
> s(t): upper bound for W(()Ll(t) p. 137 
> !!(t): lower bound for W(Ç)a(t) p. 139 

Combine loc al results ......................................... p. 140 

Ë 
d; := maxwEW upper bound for ith structured component 
i!,.; := minwEW fk lower bound for ith structured component 
Take union of all unstructured bounds 
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1. Het is grotendeels schijn dat de aansluiting tussen de vakgebie
den robuust regelaarontwerp en modelonzekerheidsbegrenzing 
de laatste jaren verbeterd is. 

Hoofdstuk 2 van dit proefschrift. 

2. Het schatten van structuur in modelonzekerheid gebaseerd op fy
sische voorkennis van het te modelleren proces kan een bijdrage 
leveren aan het verminderen van conservatisme in modelonze
kerheidsgrenzen. 

Hoofdstuk 4 t/m 6 van dit proefschrift. 

3. De MATLAB programmeertaal en de implementatie daarvan zijn 
niet geschikt voor software projecten die een omvangrijke pro
grammeerinspanning vergen. 

Sectie 7.1 van dit proefschrift. 

4. Voor succesvolle toepassing van black-box identificatietechnie
ken kan het te identificeren proces niet als een black box worden 
opgevat. 

5. Een procedure voor robuust regelaarontwerp die een uniforme 
kansverdeling over de hele set van procesonzekerheden kan han
teren zou minder conservatieve resultaten geven dan de huidige 
worst-case technieken, daar deze huidige technieken de kansver
deling van de onzekerheden concentreren in die onzekerheden 
die de slechtst mogelijke prestaties geven. 

6. Dynamica in de stapresponsie van een proces is als een kater. Je 
moet even wachten en dan gaat het meestal vanzelf over. Wie 
daar geen genoegen mee wil nemen haalt er een doctor bij. 

7. De argumenten van economische noodzaak die worden aange
voerd voor het aanleggen van de Betuwelijn maken duidelijk 
dat het spoor geen oplossing biedt voor het file-probleem. 

8. Het voorschrijven van een standaard voor de typografie van enig 
onderdeel van een op zichzelf staande publicatie doet de schrijver 
van het betreffende werk tekort. 



9. De opvatting, gebezigd in Orwell's "Nineteen eighty-four,'' dat 
begrippen waarvoor iemand geen woord heeft uit de gedachten
wereld van die persoon verdwijnen, is onjuist. 

G. Orwell, Nineteen eighty-four: a navel (1949) 
Dit proefschrift, de set Q in hoofdstuk 3 

10. De term niet-parametrische modellen is misleidend. Modellen 
van deze soort bevatten doorgaans juist meer parameters dan 
andere veel gebruikte modellen. 

11. Promovendi zouden in het laatste half jaar voor hun promotie 
vrijstelling moeten krijgen van het betalen van kijk- en luister
geld. 


