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Abstract

When the equations of linear elasticity are solved by the standard Galerkin method
the equations become stiff for nearly incompressible materials. This results in a per
turbed numerical approximation. To avoid this problem a well known technique em
ploys a saddle-point formulation of the equations. In this paper a new technique will
be presented which is based on a least-squares (re)formulation of the problem. The
original second order elasticity equations are rewritten as a first order system and the
least-squares functional arises from this system. Numerical examples are presented to
show the difference between this method and the Galerkin method. A drawback of
the least-squares method is that the condition number of the corresponding system
of equations is depending on the incompressibility of the material, which will also be
shown.

KEY WORDS elasticity equations, least-squares, finite element method

1 Review of linear elasticty

Many structures in everyday life deform when this structue becomes subject to some
pressure and this deformation disappears as soon as this pressure is removed. In this
case we speak of an elastic deformation of an elastic body. One can think of a pier of a
bridge as an example of such a structure. When a train is riding over this bridge, a force
works on this pier such that this pier starts to deform. As soon as this force is removed,
the pier will return into its original state. Two types of forces working on this pier can
be distinguished: the body forces that work on the entire pier and the surface tractions
working on a part of boundary, e.g. the gravity is a form of a body force whereas the
pressure of the train is to be considered as a surface traction.
In practical situations, when such structures are made of concrete or steel, the deformations
are very small. Therefore the problem may be considered linear. Another assumption is
that the material is isotropic, i.e. the materialproperties are the same for all directions,
and this reduces the number of elasticity constants from 21 to 2.
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For the deformation of an isotropic material, these two materialproperties or elasiticy
constants are important. The first constant is the Poisson ratio v, 0 ~ v ~ !' and
measures the degree of (volumewise) compressibility of the material. v = ! corresponds
to a volumewise incompressible material; rubber-like materials have a Poisson ratio close
to !. For steel and concrete the Poisson ratio is 0.29 and 0.2 respectively. The second
constant is the elasticity, or Young's, modulus E which is the fraction between stress and
strain. For steel and concrete the modulus is 2.15 1011Pa and 0.315 1011Pa respectively.
An alternative for this pair of elasticity constants are the Lame-coefficients fL and A which
are also depending on the material. The relation between the two pairs is:

E
fL = ---,

2+2v

A
Ev

= (1+v)(1-2v)'

(1)

So, for v ~ ~, A~ 00.

The problem to be solved can now be formulated as follows and for simplicity the two
dimensional case is considered: find the displacement u = [Ul, u2]T of an isotropic, homo
geneous body n c 1R2 subject to a body force F and a surface traction t. Moreover, on
fa c f = an the displacement u is prescribed, Le. u = f.
Furthermore the stress C'T and strain € are of importance. The strain is defined by the
partial derivatives of u as follows:

C"Z'J' = ~(aUi + aUj),
Co i,j = 1,2.

2 aXj aXi

Although € is in fact a matrix, we will write it as an array for notational reasons:

(2)

(3)

The stress is related t.o the strain by means of constitutive relations, Hooke's law, and for
isot.ropic materials this relation takes t.he form

2

(Jij = 2fL£ij + 8ijA L £55'

5=1

(4)

Since the strain, and therefore the stress, are functions of the displacement u, e(u) will
denote the strain with respect to the displacement u.
Subsequently the Lame-Navier equations of linear elasticity can be formulated. This are
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conditions which must hold if the body n is in its equilibrium:

2-L OO"ij(U) = Fi, i = 1,2 III n,
j=l OXj

2 (5)L O"ij(u)nj = ti i = 1,2, on fl>
j=l

u = I, on fo·

The equilibrium conditions stated in (5) can also be formulated in an alternative and
perhaps more familiar way in terms of u:

{

-J.t~u - (oX + J.t)V'V' . u = F, III n,
(T • n = t, on f l ,

u = I, on fo·

For later use, (6) is rewritten as

{

-V'·AV'u = F, III 0,

n· (AV'u) = t, on f l ,

u = I, on fo,

where

(

oX + 2J.t 0 0 oX )

A= 0 J.t J.t 0 .
o J.t J.t 0
oX 0 0 oX + 2J.t

(6)

(7)

For this second order boundary value problem, (6) and (7), the solution space U for u is
defined as

The problem of finding the equilibrium state, i.e. the solution, of (6) is equivalent to the
following variational problem (see [10]):
Find u E {H l (O)2 : u = Ion f o} such that

f 2J.te:(u).e:(v)+oX(V'.u)(V'.v)dO= f F'vdO+ f t·vdf, \:fvEV, (8)
in in irl

where the testfunctions v are taken from the space
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The numerical solution computed with the Galerkin method is based on this variational
formulation.

Note that this variational form arises also from the problem of finding a minimizer u for
the energy functional

<I>(u) = rf.le(u)2 + ~(V' . u)2 - F· udO - r t· udr.
in 2 ir l

(9)

In the preceding pages a variational problem (8) was stated and a solution for this prob
lem is an equilibrium state of the boundary value problem (6), since both formulations are
equivalent. By Korn's inequality (e.g. [5]) coercivety of the bilinear part of the variational
formulation is established. Also boundedness of the bilinear part is readily proven. Hence,
the Lax-Milgram Lemma ensures existence and uniqueness of an equilibrium, so we can
speak of the equilibrium state of the problem.

In order to compute the solution of the variational problem (8), the Galerkin method can
be used (see [2]). This results in a positive definite system of equations, and hence a
solution is readily found by use of an iterative solution method. However, in practice it
turns out that this direct approach has several disadvantages:

• As the material becomes more incompressible, Le. 1/ ~ ~, the differential equation
(6) will become stiff, and therefore the variational problem will become more sensitive
for small perturbations of the displacement variable. This results in so-called locking
of the numerical approximation. For the effects of locking on the finite element
approximations see [4] for more details.

• Besides the displacement, other entities like stress and strain can also be of interest
in practical situations. Since they are a combination of partial derivatives of u they
can be derived directly. However, this will cause loss of accuracy, Le. the order of
approximation weakens from order 2 to 1.

A general technique to avoid these problems is to rewrite the variational problem into a
saddle-point problem by introducing the pressure p = ~V' . u as auxiliary variable (see
[3]). However, this saddle-point formulation shows also some difficulties, when solved
numerically:

• The number of unknowns in the resulting linear system of equations is larger than
for the Galerkin system, even for a relatively large meshsize.

• The two finite element spaces used in the discretization of the problem have to satisfy
a inf-sup condition (in literature known as the Ladyzhenskaya-Babuska-Brezzi (LBB)
condition).

• The resulting system of equations will be indefinite in general.
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The last two problems can be solved by defining a least-squares functional based on a
first-order system for the original problem and the mixed variable problem. The resulting
system of equations is always positive (semi-)definite which facilitates the use of standard
iterative solution methods. Moreover, the finite element spaces do not have to satisfy the
inf-sup condition and therefore all unknowns can be approximated by the same type of
basis functions, if so desired.
Despite these nice properties, there are also a number of disadvantages: ellipticity (i.e.
coercivity) of the least-squares functional has to be checked and the system of equations
can be ill conditioned.

2 Least-squares method for linear elasticity

For this least-squares approach, first introduce the displacement flux variable U := Vu,
that is

U = [txUI, tyUl, txu2' tyU2]T = [(VUl)T,(VU2)TV.

This is the same notation as used for the stress and strain in the first seciton.
Operations on this vector function U = [U l, U 2]T are defined as

VU = (VUl )
VU 2 '

(10)

(11)

for some differential operator V.
This variable U will be the second variable in the mixed variable formulation. Remark
that the choice of U is more general than the choice of stress or strain as second variable
since the latter can be derived easily from the first.
By the definition of U and the definition of operations on this function (11) it is seen that

v x U = curl(U) = 0

because for a two dimensional vector function v, V x is defined as

V x v = txu2 - gyUl. (12)

Combining all the above, the following first-order system is obtained:

U - Vu = 0, 111 n
-V·AU = F, 111 n

VxU = 0, in n (13)

n·AU = t, on f l

u = j, on fa

For the primitive variable u, the solution space is defined by

(14)
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while for the displacement flux variable U the solution space is defined as

A least-squares functional, based on the system of equations (13), is then defined as

leU, Uj F, t) := IIU - Vull 2 + IIF + \7 . AUI1 2 + IIV X UII 2 + lin· AU - tll}l

for (U, u) E V x W, where II . 11 2 denotes the standard L2(n)6-innerproduct. In order
to find an equilibrium, consider the minimization of this functional. This results in the
variational formulation:
Find (U, u) E V x W such that

-(F, V· AV) + (t,n· AV)rl'

where

{
A(U, V) - b(V,u) =

-b(U,v)+M(u,v) = 0,

VVE V,

VvEW,
(15)

A(U, V) In U· V + (\7. AU)· (\7. AV) + V xU· V x Vdn +

r (n· AU)· (n. AV)dr,
Jrl

M(u,v) = In \7u· \7vdn,

b(U, u) = In U· Vudn,

(F, V· AV) = In F· (V· AV)dn,

(t,n·AV)rl = r t·(n·AV)dr.
Jrl

In order to show existence and uniqueness of a solution (U, u), ellipticity and continuity,
i.e. coercivity and boundedness, of the least-squares functional have to be satisfied. Like
what has been done in [9] it is possible to show that the least-squares functional leU, Uj 0)
is uniform equivalent with a modified H1(n)-type norm defined as

(16)

trU is defined as U1 + U4 . Uniform equivalence means independent of the Poisson ratio
1/. This norm M(·) in turn is equivalent with the H 1(n)4 x Hl(n)2-norm on V x W.
Thus, the results can be summarized as follows:

Lemma 1. There eTists a positive constant C independent of 1/ such that

1
Cl'vf(U,u) ~ I(U,u;O) ~ CM(U,u).
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Proof. In [9] the relation stated in this Lemma is proven for the least-squares functional

f'(U,u;F) = IIU - V'u11 2 + IIF + V'. AUI1 2 + IIV' X U11 2.

By adding the boundary integrallln.AUllf1 to I'(U, u; 0) and applying a trace inequality,
Le.

the Lemma is proven. o

Remark that the there are in fact two different C's, a Ct and a Cu for the lower and
upper-bound respectively. By taking C = max{Ct, Cu } both are taken into account by
one constant.

Lemma 2. There exist positive constants II and 12 such that

II (11Ulli + IluliO ~ M(U, u) ~ ,2(IIUlii + lIulli)·

Proof. The lower bound is readily established by applying Friedrich's inequality on IIV'uIl 2

such that

where a is a positive constant.
The upper bound follows from the fact that

(17)

slllce

IitrUI15 - l Uf + ul + 2U1U4dO

< l2(U; + Ul)dO

< 211 U I15

and

IIV'trUI15 = l (;x(UI + U4 ))2 + (;y(Ul + U4 ))2dO

< l2((V'U1 )2 + (V'U4 )2)dO

< 211V'UI15·

Hence, inequality (17) holds for 12 = 2(,X2 +,X) and it follows that

min{1, ~HllUlli + Ilulli) ~ M(U, u) ~ (2(,X2 +,X) + l)(IIUlli + Ilulli). (18)

o
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Corollary 1. The functional I(U, u; 0) and the H 1(fl)4 x Hl(fl)2- norm on V X Ware
equivalent:

min~, ~} (/IUlli + Ilu/li) ~ I(U, u; 0) ~ C(2(,x2 +,x) + 1)(/Iu/li + IIulli). (19)

The constants C and a are independent of the Poisson ratio 1/.

Proof. Follows by combining the two previous Lemma's. o

Hence, it has been proven that the least-squares functional I(U, U; 0) is elliptic and contin
uous. The Lax-Milgram Lemma ensures the existence of an unique solution (U, u) E V X W
for the variational problem (15).

3 Numerical issues

For the discretization of the variational problem (15) we construct finite element spaces
Vh C V and Wh C Wand the finite element variational formulation then reads:
Find (Uh, Uh) E Vh x Wh such that

{

A(Uh,Vh)-b(Vh,Uh) = -(F,\7·AVh)+(t,n·AVh)rl'

-b(Uh,Vh)+M(Uh,Vh) = 0,
(20)

The solutions U hand Uh of the above variational problem can be expressed in terms of
the basis functions as

_" (1) . '"' (2) .U h - L..J 'Yi ('l/J., 0, 0, 0) + L.J 'Yi (0, 'l/J" 0, 0) +
i

and

The finite element basis functions 7/Ji and ¢i are of piecewise linear conforming type.

(21)

(22)

By substituting this definition of U hand Uh into (20) and by taking for Vh and Vh the
basis functions 'Ij'i and ¢i respectively, the following linear system of equations in matrix
form is obtained:

(23)

The contributions for G arise from the body forces F and the surface tractions t; 9 occurs
because of the boundary conditions imposed on roo
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The following observations are obvious: since the original variational formulation (15) is
elliptic, the matrix in (23) is positive definite. Furthermore the matrix is symmetric.

Before the actual examples are presented there are two other issues to be discussed: the
condition number of the system (K(A)) and the discretization error of the finite element
approximation.
With regards to K(A) we shall assume that the triangulation T of n satisfies the inverse
assumption, Le. there exists a positive constant B such that for all t E T

h ~ Bdiam(t).

Under this assumption, many standard finite element spaces satisfy the inverse inequality,
I.e.

IUh!I < kh-11lUhllo
IUhll < kh-11luhllo

Furthermore, let 1,1 and 1.81 denote the l2-norms of'Y and f3 as used in the notation of U h

and Uh respectively. Then, under the inverse assumption, there exist positive constants
a1> a2, b1 ,b2 such that

and

Lemma 3. Under the assumption that the above inequalities hold, we have

(24)

Proof. The norm-equivalence stated in Corollary 1 also holds on Vh x Who Combining this
result with the inequalities yields the statement of the Lemma. 0

Since U h is written in the form (21), it follows that

where
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Then it is easily found that a1 and a2 are the smallest and largest eigenvalues of the matrix
h-2A respectively. Similarly the same values are found for b1 and b2. In [2J a derivation
for estimating these extreme eigenvalues is found and according to that derivation

aI, b1 > 1,

a2, b2 < 24.

To obtain an estimate for k, note that

IUh 11 = [1'(1), ,y<') ,1'(3),./')j (L L L

where

It is seen that

where Cmax is the largest eigenvalue of L.

) (

,(1) ),(2)
(3) ,

L ~(4)

For the discretization error, we assume that (U,u) E V x W is the solution of (15) and
that (Uh, Uh) E Vh x Wh is the solution of (20). By use of Cea's Lemma (see [5]) it follows
that

IIU - Uh l1 1 S C inf IIU - Vhll1
VhEVh

and

By taking for V hand Vh the interpolants Uland UI respectively and by using interpola
tion properties of piecewise linear functions it can be shown that

IIU - U hilI SChIU\2

and

We thus find:

Corollary 2. For the finite elem.ent solution (Uh, Uh) of (20) the following a priori error
estim.ate holds:

(25)
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4 Numerical example

In this example the deformation of a pier of a bridge is computed using the two methods,
i.e. the Galerkin and the least-squares methods. Since such a pier can have a very
complicated geometry and material properties, the pier will assumed to be square and
isotropic to simplify the computations. Thus n = [0,1]2 and the Lame-coefficients J.l and
A are constant over the domain. In order to show the difference between the two methods,
the Poisson ratio 1/ is chosen as 0.4999, a choice which is perhaps a bit unrealistic for
structures like a pier.
For this pier n, the displacement is assumed to be 0 on

fa = {(x, y) : 0 :::; x :::; 1, y = O},

while the remainder f l of the boundary is divided as follows:

f l = fl,l U f l ,2 U f l ,3

= {(x,y):x=O,O:::;y:::;l}

U {(x,y):O:::;x:::;l, y=l}

U {(x,y):x=l,O:::;y:::;l}

The surface tractions t are chosen as (0, -o.lf and are working on f l ,2. Thus a vertical
load is placed on the pier, as is illustrated in Figure 1.

1 1 t 1 1

u = 0 r o

Figure 1: The domain and surface tractions

Figures 2 and 3 illustrate the displacement computed with the Galerkin and least-squares
method respectively; the mesh-size has been taken l6' In these graphics only the displace
ment 112 is given and note that the solutions are multiplied by -1 in order to get a better
view at the graphics and the behavior of the solution.
Figure 2 clearly shows the locking of the Galerkin solution, whereas Figure 3 shows linear
deformation. The little irregularity of the solution in Figure 3 is due to the coarseness of
the grid and direction of the triangulation.

11



· Figure 2: -U2 computed with the Galerkin method

Figure 3: -U2 computed with the least-squares method

We will conclude this example with an analysis for the condition number in this particular
case. For the type of triangulation used in this examples, it follows that Cmax ~ 8, thus
k ~ V8 (the definitions of Cmax and k are stated in section 3).
Hence the bound for the condition number in (24) can be replaced by

(26)

One should recall that the remaining constant C and a are independent of the Poisson ratio
1J. When comparing these estimates for the condition number with the actual condition
number, the approximation in (26) is relatively accurate since the remaining constant term

Co =: .(~'t!!} is of order 0(1) and this is illustrated in Table l.
Inin 12
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v A K(A) Co
0 0 5.7594 ·10:) 10.4
0.2 0.2778 7.2804.105 7.70
0.4 1.4286 2.0462.106 4.66
0.45 3.1034 6.1181 .106 4.18
0.49 1.6443·10 1.1915.108 3.75
0.4999 1.6664.103 1.1176 . 1012 3.64

Table 1: Condition numbers

5 Conclusions

It has been shown that the least-squares approach for solving the equations of elasticity
has certain advantages compared with the standard Galerkin method. For nearly incom
pressible materials the solution was not subject to 'locking' and besides the displacement
the displacement flux was also computed. However, since the number of unknowns is
multiplied by 3, the storage of the discretized system of equations can become a prob
lem. Another serious drawback is that the system of equations is ill-conditioned since it
depends quadratically on the Lame-coefficient A. This is a serious drawback when solving
the system of equations iteratively.
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ments given during the time the author was writing his master of science thesis.
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