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Abstract

In this paper� a novel approximate inertial manifold for the two�dimensional Navier�
Stokes equations and its related postprocessing procedure are discussed� This new approx�
imate inertial manifold intends to seek some kind of approximate relationship between the
standard Galerkin approximate solution �approximate large eddies� and its residue �ap�
proximate small eddies�� The result shows that this manifold can approximate the system
attractor up to a more accurate level than other approximate inertial manifolds we ever had
and its associated postprocessing procedure can get a more accurate approximate solution
at any given time with great savings in computing time�

� Introduction

Despite the considerable increasing in the available computing power during the past few years�
numerically solving the partial di�erential equations� especially the integration of evolution
partial di�erential equations on large time intervals� and under physically realistic situations
still remains a di�cult problem whose solution is not close at hand� We thereby intend to
solve dissipative evolution partial di�erential equations in dynamically nontrivial situations�
i�e�� when the long�term behavior is not merely the convergency to a steady state� In this
case� the solution to be simulated remains time dependent and� as time goes to in�nity� it
convergences to a set� the attractor� which can be a complicated set �a fractal	� Studying the
complicated structure of this set which is re
ected by the long term behavior of the solution to
some extend is of great importance to understand the nature of turbulent phenomena� That is
one of the main reason why people are so interested in the long�term behavior of the solution�

An important attempt in that direction is the theory of inertial manifold� which was intro�
duced by Foias� Sell and Temam ��� Fabes� Luskin and Sell ��� Temam���� Constantin et al����
and the references therein� The idea is to imbed the attractor in a smooth �nite�dimensional
manifold and to reduce all the dynamics to this manifold� Unfortunately� the existence of such
�nite�dimensional manifold requires a very strict condition� the spectral gap condition� which
is not valid for some important dissipative systems including the Navier�Stokes equations� A
more 
exible and less restrictive idea is to look for a so�called approximate inertial manifold�
which should be a smooth �nite�dimensional manifold approximating the attractor up to a
certain accuracy� and to build numerical schemes providing orbits lying on this manifold� This
manifold is in fact the graph of some smooth �nite�dimensional mapping� From a physical point
of view� this kind of mappings can be viewed as approximate interactive laws between large
and small eddies�
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For a given Hilbert space H in which the solutions of dissipative systems are sought� tradi�
tional construction of approximate inertial manifold is to seek some �nite�dimensional mappings
from Hm �large eddy subspace	 to �H �small eddy subspace	� where Hm is a �nite�dimensional
linear space spanned by the �rst m functions of the Galerkin basis and �H is the L� orthogonal
complement of Hm in H� so that people can use it to approximately describe the interactive
relation between large and small eddies� For example� we refer readers to ��� ���� ���� ��
and etc� This leads to solving coupled systems of large and small eddy components at each
time step� As has been illustrated in ���� their associated numerical scheme� nonlinear Galerkin
method� is so computationally costly that it is generally less e�cient than the standard Galerkin
method in spite of its higher accuracy� On the other hand� the standard Galerkin method can
provide us an approximation of the solution in Hm� According to the idea of approximate
inertial manifold� there should be some approximate interactive laws between large and small
eddies of the solution� Now that the standard Galerkin approximation in Hm is a reasonable
approximation of the large eddies� there is no reason to prevent us from seeking some similar
approximate relationship between this approximate large eddy components and the residue of
it which can be regarded as a reasonable approximation of small eddies� These consideration
leads to construction of a certain novel approximate inertial manifold which is the graph of
some �nite�dimensional mapping from Hm to H� If this kind of approximate inertial manifold
could be constructed successfully� we can use it to get an approximation of the residue corre�
sponding to the standard Galerkin approximation and we expect that the standard Galerkin
approximation together with this kind of approximate residue can generate a more accurate
approximation of the solution� Because this kind of approximate inertial manifold is used
to describe an approximate interactive law between standard Galerkin approximation and its
residue� the related numerical scheme is expected to obtain a more suitable approximation of
the solution at any given time� That is the reason why we will call this related numerical
scheme the postprocessing procedure� Obviously� this procedure will lead to substantial savings
of the computing time� Those mentioned above are the goals of our paper� We will proceed
our investigation in the case of the two�dimensional Navier�Stokes equations� However� all the
results which will be obtained here can be extended to many other dissipative equations�

The goal of this paper is similar to that of ���� That is we also want to get a more accurate
approximate solution at any given time by postprocessing the standard Galerkin solution� The
main di�erences are as following� The construction of the postprocessing procedure in ��� is
still based on the traditional construction of approximate inertial manifold� which is to get an
approximationof the real small eddy components in �H � �H�Hm � �	 from the approximate large
eddy components �Galerkin solution	 in Hm� Of course the �nal accuracy is restricted by both
the accuracy of standard Galerkin solution in Hm and the accuracy of the approximate small
eddy components in �H� The idea in this paper as we said just now is to get an approximation
of the residue in the whole space H from standard Galerkin solution� So the �nal accuracy only
depends on the approximation of the residue and may be better than the large eddy accuracy
of the standard Galerkin solution �accuracy in Hm	� Our result shows that the H� error of our

postprocessing scheme is of order O�Lm�
� �

�

m��	 while it is of order O�L�
m�

��
m��	 in ���� Here

Lm is of order O���
p
ln�� � �m		� On the other hand� we also construct a novel approximate

inertial manifold which is the graph of a smooth mapping fromHm intoH and can approximate

the system attractor up to order O�Lm�
� �

�

m��	� In fact� our postprocessing scheme is a direct
application of this new approximate inertial manifold�

The paper is organized as follows� In section �� we give some functional settings of the two�
dimensional Navier�Stokes equations� In section �� we investigate an approximate interactive
law between the standard Galerkin approximation and its residue for the solution of the steady
Navier�Stokes equations� Also a numerical scheme based on this law is presented together
with its error analysis and it demonstrates a great improvement of the convergence rate of the
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standard Galerkin method� In section �� we give the de�nition of our novel approximate inertial
manifold based upon the mapping derived in section �� And some important properties of this
manifold are also studied in detail in this section too� It will show this approximate inertial
manifold can approximate the attractor up to a higher level than any other approximate inertial
manifolds we ever had� In the last section� a related postprocessing procedure is constructed
together with its error analysis�

� Functional Settings

Let P be the classical L� orthogonal divergence free projection on L���	� and H be the Hilbert

space of the projection of L���	� by P with usual L� scalar product ��� �	 and norm j � j � ��� �	 �� �
Here � � R� is a bounded domain� We consider the following functional evolution Navier�
Stokes equations in H �

du

dt
� �Au�B�u� u	 � f�

u��	 � a�
��	

where u is the velocity� a � H the initial velocity� � � � the viscosity parameter and f � H
the time independent external force� A � �P� is the Stokes operator which is known to be a
linear self�adjoint unbounded and positive closed operator in H with domain D�A	� And A��

is compact� We can then de�ne the powers As of A for s � R� As maps D�As	 into H and
D�As	 is a Hilbert space when equipped with nature scalar product �As�� As�	 and norm jAs � j�
We set V � D�A

�
� 	 and denote by ���� �		 the inner product in V associated with the norm

k � k � jA �
� � j� The nonlinear term B�u� u	 � P ��u �r	u de�nes a bilinear operator from V �V

into V � and we denote by b the following trilinear form on V given by

b�u� v� w	 �� B�u� v	� w �V � � �u� v� w � V�

Furthermore� we give some traditional properties of b��� �� �	����������
�����

b�u� v� w	 � �b�u�w� v	� �u� v� w � V�
b�u� v� w	 � c�jujL�kvk jwj� �u � L���	�� v � V�w � H�

b�u� v� w	 � c�juj jA �
� vjL� jwj� �u�w � H�A

�
� v � L���	��

b�u� v� w	 � c�juj kvk jwjL�� �u � H� v � V�w � L���	��

b�u� v� w	 � c�jA
s�
� uj jA s���

� vj jA s�
� wj�

��	

The last estimation holds for any u � D�A
s�
� 	� v � D�A

s���

� 	 and w � D�A
s�
� 	 with s��s��s� 	

� and �s�� s�� s�	 
� ��� �� �	� ��� �� �	 and ��� �� �	�
The above settings apply in particular to the two�dimensional Navier�Stokes equations in a

bounded domain � associated to the nonslip or space�periodic boundary condition�
To introduce the Galerkin approximation of ��	� let us denote by wk� k � N an orthonormal

basis of H consisting of the eigenvectors of Stokes operator A�

Awk � �kwk� � � �� � �� � � � � � �k � � � � � � as k ���

For any �xed m � N � we denote by Pm the L� orthogonal projection from H onto the space
Hm spanned by the �rst m eigenvectors w�� � � � � wm� We also set Qm � I � Pm� It is classical
that�

jA�Qmvj � ����m��jA�vj� jA�Pmvj � ����m jA�vj� �	 � 
� v � D�A�	� ��	

Furthermore� we give the following Brezis�Gallouet inequality�� for any v � D�A	�

jvjL� � ckvk�� �
s
ln�� �

jAvj
kvk 		�
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and especially� for v � Hm� we have

jvjL� � Lmkvk� ��	

where Lm  ��
p
ln�� � �m	� Now the standard Galerkin approximate equations of ��	 admits�

�nd um�t	 � Hm such that

�
dum
dt

� �Aum � PmB�um� um	 � Pmf�

um��	 � Pma�
��	

As is said in the introduction� we are interested in the interaction between um and the
deference between u and um which will be denoted by

� � u� um

in the rest for the sake of convenience� So we can get the equations of � by substituting
u � um � � into ��	� By noticing ��	� we �nally get

�
d�

dt
� �A� �B�um� �	 � B��� um	 �B��� �	 � Qm�f �B�um� um	�

���	 � Qma�
��	

As usual� we de�ne the following bilinear form on V � V �

a�u� v	 � ���u� v		� �u� v � V�

It is very easy to verify that a��� �	 is symmetric continuous and positive on V � V � In fact

a�u� u	 � �kuk��

Then we can give the weak formulas of ��	� ��	 and ��	 as

�
du

dt
� v	 � a�u� v	 � b�u� u� v	 � �f� v	� �v � V� ��	

�
dum
dt

� v	 � a�um� v	 � b�um� um� v	 � �f� v	� �v � Hm� ��	

�
d�

dt
� v	 � a��� v	 � b�um� �� v	 � b��� um� v	 � b��� �� v	

� �Qmf� v	� b�um� um� Qmv	� �v � V�
��	

The estimations of � are classical and we will not address them here� By using the methods
which are classical for these equations� for example see ��� we can check that the initial boundary
�or initial	 value problems ��	 and ��	 have unique solutions u � u�t	 and um � um�t	 for t � ��
Moreover� if we demand

a � D�A	� f � H� ���	

there exist �nite constants M��M��M� � � such that

sup
t��

ku�t	k� kum�t	k �M��

sup
t��

jAu�t	j� jAum�t	j �M��

sup
t��

ju�t	jL�� jum�t	jL� �M��

���	
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It is well known that� for the above problem ��	 and ��	 �or ��	 and ��		� regularity properties
hold under the condition ���	� In particular� we can state the following results involving �u and
�um in

Lemma ��� Under the condition ����� we have

j �u�t	jH����� � j �um�t	jH����� � ��t	� �t � ��

where ��t	 � � depends on �t� a� f	 and is bounded on �t���	 for any t� � ��
The above lemma can be proved� for example� by combining the techniques in Johnson et

al� �� and Marion ����

� Finite�Dimensional Mapping� Steady State Case

Although we are interested in the long�term behavior of system ��	 �or ��		 in dynamically
nontrivial situation� we also believe that the studying of the steady case will be very helpful
and may enlighten us when we consider the unsteady case�

In this section� we will study the relationship between um and � for the steady Navier�Stokes
equations� We want to construct a �nite�dimensional mapping from Hm into V such that it
can re
ect the interaction between the approximate large eddies and small eddies� namely� um
and �� Then in the next section� we will show that this mapping is suitable to be applied to
unsteady case to generate a novel approximate inertial manifold which can approximate the

attractor with accuracy of order Lm�
� �

�

m��� Here we will not write down the steady equations
associated with ��	� ��	 and ��	 �or ��	��		� Readers should keep in mind that we mean their
associated steady equations when we talk about these equations within this section�

As is said in the previous section� there is a natural decomposition of u when its standard
Galerkin approximation um is at hand� namely

u � um � �� ���	

If we can get some mapping � from Hm into V such that

k��um	� �k � o�k�k	�
the following function

 u �� um � ��um	 ���	

is a more accurate approximation of u than um� Though the residue equations ��	 can provide
us a manner to derive � exactly from um� it is in fact to solve the Navier�Stokes equations
and has no practical meanings� On the other hand� when we consider the space derivatives�
B��� um	 � B��� �	 should be a higher order small quantity compared with �A� � B�um� �	�
According to this observation�

�A�� �B�um� ��	 � Qm�f � B�um� um	

may be a reasonable approximation of ��	� Noticing ��	 and Lax�Milgram theorem� the following
property is obvious�

Lemma ��� The following problem�
for any � � Hm� �nd ���	 � V such that
a����	� v	 � b������	� v	 � �Qm�f �B��� �	� v	� �v � V

���	

can determine a single value mapping from Hm into V �
By using this mapping� we will give our main result of this section in

�



Theorem ��� For f � H� we have

ku�  uk � c��j�j k�k� LmjA� �
� �j	�

where u is the solution of �	��  u de�ned by ��
� and c� is a positive constant�
To prove this theorem� we need a new estimation on the trilinear form b��� �� �	�
Lemma ��� For any v � D�A�

�
� 	� w � V and � � Hm� there exists a constant c� � �

independent of v� w �� and m such that

b�v� �� w	 � c�LmjA� �
� vj jA�j kwk�

And if we suppose that w � D�A	� we have

b���w� v	 � c�Lmk�k jAwj jA��
� vj�

Proof� Let us recall the de�nition of b�

b�v� �� w	 �

Z
�

�v � r	� �wdx�

We denote w � �w�� w�	T and � � ���� ��	T where wi� �i� i � �� �� are scalar functions on ��
By a simple calculation� it is easy to rewrite the kernel of the integration as

�v � r	� �w � �w � r�	 � v

where w � r� �� w�r�� � w�r��� Therefore�

b�v� �� w	 � �w � r�� v	�

Meanwhile� we denote by D any space derivative on R�� Then

D�w � r�	 � �Dw � r�	 � �w � rD�	�

For any  � H� it yields

�D�w � r�	� 	 ��Dw � r�� 	 � �w � rD�� 	 � �� � r	��Dw	 � �� � r	D��w	
�b�� ��Dw	 � b��D��w	�

Noticing the estimations of b in ��	� the Brezis�Gallouet inequality ��	 and � � Hm� we have

�D�w � r�	� 	 � b�� ��Dw	� b��w�D�	

�c�jj jA �
��jL�kwk� c�jj kwk jA �

��jL� � �c�LmjA�j kwk jj�

Thus we have
jD�w � r�	j � �c�LmjA�j kwk�

Now let us return to our estimation of b�

b�v��� w	 � �w � r�� v	 � �A
�
� �w � r�	� A��

� v	 � jA �
� �w � r�	j jA��

� vj

� jD�w � r�	j jA��
� vj � �c�LmjA�j kwk jA��

� vj�

Denote c� � �c� and we can get the �rst estimation�

�



Similarly� we have

b���w� v	 ��A
�
�B�� � r	w�A�

�
� v	 � jA �

� �� � r	wj jA��
� vj

�jD��� � r	w	j jA��
� vj � �j�D� � r	wj� j�� � r	Dwj	jA��

� vj�
For any  � H

��D� � r	w�	 �b�D��w� 	 � b�D�� Pmw�	 � b�D��Qmw�	

�c�k�k jA �
�PmwjL�jj� c�jA �

��j jA �
�Qmwj jj

�c�Lmk�k jAwj jj� c�k�k jAwj jj
��c�Lmk�k jAwj jj�

��� � r	Dw�	 � b���Dw�	 � c�Lmk�k jAwj jj�
Combine the above three inequalities� we can get the second estimation� �

In the proof of lemma ���� we used a well known result that the semi�norm in V is equivalent
to the complete norm jA �

� � j � k �k� To avoid having too many constants� we simply treated the
constant related to these two equivalent norms as unit and this will not cause any signi�cant
di�erence�

Proof of Theorem ���� Noting ���	 and ���	� we have

u�  u � � � ��um	�

Here ��um	 is the solution of�
�nd ��um	 � V such that
a���um	� v	 � b�um���um	� v	 � �Qm�f � B�um� um	� v	� �v � V�

���	

Denoting e � � � ��um	 and subtracting the above equations from ��	� we have

a�e� v	 � b�um� e� v	 � �b��� um� v	 � b��� �� v	�

Taking v � e and using lemma ��� and ��	� we can get

�kek� �jb��� um� e	j� jb��� �� e	j � c�LmjA��
� �j jAumj kek� c�j�j��

�

kek

�c�LmjAumj jA��
� �j kek� c�c

�
�j�j k�k kek�

Here we used the following Sobolev interpolation inequality

j�j �
�
� c�j�j k�k� �� � V� ���	

Then by noticing ���	�

kek � c�
�
LmM�jA� �

� �j� c�c
�
�

�
j�j k�k�

Denote

c� � maxfc�M�

�
�
c�c

�
�

�
g�

we can get the result� �

From the result of theorem ���� we know that k����um	k is a higher order small quantity
compared with k�k� Then we can construct the following postprocessing procedure for ��	�
Postprocessing Procedure �

�



�Step �� Solve ��	 to get um�

�Step �� Solve ���	 to get ��um	�

�Step �� Form the postprocessed solution  u � um � ��um	�

The result of theorem ��� indicates that this postprocessing procedure can produce a more
accuracy approximate solution of ��	�

� Approximate Inertial Manifold

In this section� we will show that the �nite dimensional mapping � derived in last section is
applicable to generate a kind of novel approximate inertial manifold for system ��	� First of all�
we want to do a little modi�cation on ��

We recall that the Navier�Stokes equations ��	 has a compact absorbing set B � V � For
any initial value a� there must be some positive time ta such that u�t	 will enter this compact
set B and can not escape from it since t � ta� For convenience� we de�ne

B � fv � V� kvk � �M�g�
Here we used the constant M� appeared in ���	 to denote the radius of B� Generally speaking�
M� appeared in ���	 is dependent on the initial value a� Concerning the absorbing property�
if we give M� in advance such that B is still an absorbing set of the system� there must be a
�nite ta � � such that u�t	 � B when t � ta for any a � D�A	� Without loss of generality� we
will always assume a � B�

Now� we introduce a smooth function

��s	 � C��R�	

with the following properties

��s	 � ��� �� j���s	j � �� ��s	 � �� �s � ��� �� ��s	 � �� �s � �����	�

And we do a little modi�cation of ���	 by using ��s	��
for any � � Hm� �nd ���	 � V such that

a����	� v	 � ��k�kM�
	b������	� v	 � ��k�kM�

	�Qm�f �B��� �	� v	� �v � V�
���	

Because of the same argument of lemma ���� ���	 can determine a single value mapping � from
Hm into V �

Theorem ��� The �nite dimensional mapping � de�ned by ��	� have the following prop�
erties�

i� ���	 � � for any � 
� B
ii� For any � � Hm�

k���	k � c	Lm�
� �

�

m��
�
� �m� ���	

jA���	j � �

�
�c�j�jL��m � c�M�j�jL� � jf j	� ���	

where c	 � ����jf j�Lm � �c�M
�
� 	� Moreover� if we assume f � V � we have

jA���	j � c
L
�
m�

� �
�

m��
�
� ��m� ���	

jA �
����	j � �

�
�c�M�Lm��m � c�M�jA�jLm � kfk	 �� Lm  �m� ���	

�



where c
 � ����c�c	M��kfk�L�
m�c�M�jA�j�Lm	� Obviously� ��m will tend to zero as m tends

to � and  �m is bounded if we suppose � � B �D�A	�
iii� � is a global Lipschitz smooth mapping� There exists some constant lm � � such that

k����	� ����	k � lmk�� � ��k� ���� �� � V� ���	

And lm � � when m� ���
iv� If we denote

M � Graph��

for any given initial value a � D�A	 and external force f � V of the system ���� there exists a
positive constant ta such that

distt�ta�u�t	�M	V � c�Lm�
� �

�

m��� ���	

where c� � � is independent of m and t�
Proof� i	 � 
� B means k�k � �M�� Then� ���	 becomes

a����	� v	 � �� �v � V�

Obviously� we have ���	 � ��
ii	 For � 
� B �Hm� the result is obvious because of i	�
Now let us consider � � B �Hm� Take v � ���	 in ���	 and notice ��	� we have

�k���	k� �j�f�Qm���		j� jb��� ��Qm���		j � jf j jQm���	j� c�j�jL�k�k jQm���	j

��� �
�

m��jf j k���	k� c�Lm�
� �

�

m��k�k�k���	k � �
� �

�

m���jf j� �c�LmM
�
� 	k���	k�

Denote c	 � ����jf j�Lm � �c�M�
� 	 and �m � c	Lm�

� �
�

m��� we can get ���	�
Again� by taking v � A���	 in ���	� we have

�jA���	j� �jb������	� A���		j� j�Qm�f �B��� �	� A���		j
�c�j�jL�k���	k jA���	j� �jf j � c�j�jL�k�k	jA���	j�

By using the result we just got� we can get the estimation ���	�
Now we consider the further regularity result of ���	 for f � V � First of all� we can get

a rigorous estimation on jA���	j� In fact� following the proceeding estimation procedure and
noticing lemma ���� we have

�jA���	j� �c�M�Lm�mjA���	j� �
� �

�

m��kfk jA���	j� �
� �

�

m��jA
�
�B��� �	j jA���	j

�c�M�Lm�mjA���	j� �
� �

�

m���kfk � c�LmM�jA�j	jA���	j�

If we denote

c
 �
�

�
�c�c	M� � kfk�L�

m � c�M�jA�j�Lm	 and ��m � c
L
�
m�

� �
�

m��� ���	

we can get ���	� Of course� if we suppose � � B �D�A	� we know that ��m � � as m� ���

For the estimation of jA �
����	j� we have

�jA �
����	j� � jb������	� A����		j� j�Qmf�A

����		j� j�QmB��� �	� A����		j�

�



For each term on the right hand side of the above inequality� we have

jb������	� A����		j � c�Lmk�k jA���	j jA �
����	j � c�M�Lm ��mjA �

����	j�

j�Qmf�A
����		j � kfk jA �

����	j�
j�QmB��� �	� A����		j � jA �

�B��� �	j jA �
����	j � c�LmM�jA�j jA �

����	j�
Combine these estimations and we can get the regularity result ���	�

iii	 For any ��� �� � Hm� we denote

w� � ����	� w� � ����	� �� � ��
k��k
M�

	� �� � ��
k��k
M�

	�

Moreover� we introduce

�e � �� � ��� we � w� �w�� �e � �� � ���

Then we have

a�we� v	����b��e� w�� v	 � b���� we� v	 � �eb���� w�� v	

��e�Qmf� v	 � ���b��e� ��� Qmv	 � b���� �e� Qmv	 � �eb���� ��� Qmv	
���	

For ��� �� 
� B �Hm� we have w� � w� � � by i	 and ���	 is valid for this case�
For the case of ��� �� � B �Hm� we take v � we in ���	�

�kwek����b��e� w�� we	 � �eb���� w�� we	

��e�Qmf� we	 � ���b��e� ��� Qmwe	 � b���� �e� Qmwe	 � �eb���� ��� Qmwe	�
���	

To estimate each term in ���	� we must estimate �e in advance� From the de�nition of �� it is
easy to know that

j�ej � j����	j j k��k � k��k
M�

j � �

M�
k�ek� ���	

where � is a constant between
k��k
M�

and
k��k
M�

� Noticing ii	 and ���	� we majorize the estimation

of each term in ���	 as follows�

��b��e� w�� we	 �jb��e� w�� we	j � c�k�ek kw�k kwek

�c��mk�ek kwek � �

��
kwek� � �c���

�
m

�
k�ek��

�eb���� w�� we	 � �

M�
k�ek jb���� w�� we	j � �c�

M�
k�ek k��k kw�k kwek

��c��mk�ek kwek � �

��
kwek� � ��c���

�
m

�
k�ek��

�e�Qmf� we	 � �

M�
k�ek jf j jQmwej �

��
� �

�

m��

M�
jf j k�ek kwek

� �

��
kwek� �

��jf j����m��

M�
��

k�ek��

��



��b��e� ��� Qmwe	 �jb��e� ��� Qmwe	j � c�j�ejL�k��k jQmwej

�c�M�Lm�
� �

�

m��k�ek kwek �
�

��
kwek� �

�c��M
�
�L

�
m�

��
m��

�
k�ek��

��b���� �e� Qmwe	 � c�M�Lm�
� �

�

m��k�ek kwek �
�

��
kwek� �

�c��M
�
�L

�
m�

��
m��

�
k�ek��

�eb���� ��� Qmwe	 ��c�
M�

k�ek j��jL�k��k jQmwej � �c�M�Lm�
� �

�

m��k�ek kwek

� �

��
kwek� �

��c��M
�
�L

�
m�

��
m��

�
k�ek��

Combining the above estimations with ���	� we can �nally get ���	 with

lm �
�

�

q
��c���

�
m � ��jf j�M��

� ���m�� � ��c��M
�
�L

�
m�

��
m���

We know that lm � � when m�� from the de�nition of �m� which is the expected result�
At last� we consider that one of �� and �� is not in B �Hm and the other one is inside this

set� Without loss of generality� we assume �� 
� B � Hm� Then we have �� � �� Again� by
taking v � we in ���	� we have

�kwek� � �eb���� w�� we	 � �e�Qmf� we	 � �eb���� ��� Qmwe	�

Noticing ���	 and the estimations we just did� we have

�eb���� w�� we	 � �c��mk�ek kwek � �

�
kwek� � �c���

�
m

�
k�ek��

�e�Qmf� we	 �
�jf j�� �

�

m��

�
k�ek kwek � �

�
kwek� �

�jf j����m��

M�
� �

k�ek��

�eb���� ��� Qmwe	 � �c�M�Lm�
� �

�

m��k�ek kwek �
�

�
kwek� �

�c��M
�
�L

�
m�

��
m��

�
k�ek��

Combining the above estimations� we can get ���	 again with

lm �
�
p
�

�
�c��m �

jf j
M�

�
� �

�

m�� � c�M�Lm�
� �

�

m��	�

and it is obvious that lm � � when m��� Then we can draw our conclusion�
iv	 As we said before� for any given initial value a � D�A	� we can choose ta � � such that

u�t	 � B �D�A	� �t � ta�

In fact� this ta can be determined easily if one notices the classical energy estimation of u�t	�
To simplify our presentation� we denote

p�t	 � Pmu�t	� q�t	 � Qmu�t	

and
�p�t	 � ��p�t		�

For any t � ta� we know that
�u �� p�t	 � �p�t	 �M�

��



If we denote
� � u�t	� �u�t	 � q�t	 � �p�t	�

we have
distt�ta�u�t	�M	V � k�k�

Because of u�t	 � B� we have p�t	 � B �Hm� Therefore ��
kp�t	k
M�

	 � �� Equations ���	 now

become
a��p� v	 � b�p� �p� v	 � �Qm�f �B�p� p	� v	� �v � V� ���	

And q�t	 satis�es

�
dq

dt
� v	 � a�q� v	 � b�p� q� v	 � b�q� p� v	 � b�q� q� v	 � �f �B�p� p	� v	� �v � QmV� ���	

On the other hand� we decompose � as

� � Pm��Qm�
�
� �p � �q�

Now let us estimate �p and �q respectively� It is obvious that �p � �Pm�p� Taking v � �p in
���	 and noticing the regularity result in ii	� we have�

�k�pk� � jb�p�Qm�p� �p	j � c�jpjL�jQm�pj k�pk � c�M�Lm �m�
� �

�

m��k�pk�

Thus

k�pk � c�M�

�
 �mLm�

� �
�

m��� ���	

Because jAuj � M�� it is easy to verify that  �m is bounded� And for �q� by restricting ���	 on
QmV and subtracting it from ���	� we have

a��q� v	 � b�p� �� v	 � ��dq
dt
� v	 � b�q� p� v	� b�q� q� v	� �v � QmV�

Since we consider t � ta � �� we know ��t	 in lemma ��� is bounded and we will use � to denote
this time independent bound� Taking v � �q in the last equation and noticing ��	� it yields

�k�qk� �jb�p� �p� �q	j� j�dq
dt
� �q	j� jb�q� p� �q	j� b�q� q� �q	j

�c�jpjL�k�pk j�qj� jA� �
�
dq

dt
j k�qk� c�LmjA��

� qj jApj k�qk� c�jqj��
�

k�qk

��c�M��
� �

�

m��k�pk� ��
� �

�

m�� � c�M
�
�Lm�

� �
�

m�� � c�M
�
��
� �

�

m��	k�qk�

Combining this inequality with ���	� we know there must exist some constant c� � � indepen�
dent of t and m such that

k�k � c�Lm�
� �

�

m���

�

This theorem indicates that � is a smooth Lipschitz mapping from Hm into V and the

associated manifold M is bounded and the attractor of the system ��	 is in the Lm�
� �

�

m��

neighborhood of it�

��



� Postprocessing Algorithm

The �nite dimensionalmapping� and its associated inertial manifoldM provide us some kind of
relationship between the large and small eddies of the long�term behavior of the solution of ��	�
In fact� they re
ect the relation between the approximate large eddies �the standard Galerkin
approximation	 and the approximate small eddies �the associated residue	� The theorem ���

indicates that all of the solutions of ��	 will enter a Lm�
� �

�

m�� neighborhood of M after a short
time period ta � �� So� we could use this kind of relation� namely �� to improve the accuracy
of the standard Galerkin approximation and get a more suitable approximation at any time
t � ta� That is the problem we will address in this section�

To avoid the contradiction in regularity� we assume

�H� the initial value a of system ��	 is the evolution result of another initial value a� � D�A	
given at t � �ta� where ta is a positive constant such that the constant ��t	 in lemma
��� is bounded for t 	 � just like what we demanded in the proof of theorem ���� And we
still denote this bound by � which depends on ta and a�

Under this assumption� we give our postprocessing procedure based on � in the following three
steps�
postprocessing Procedure �

�Step �� Solve ��	 to get the standard Galerkin approximate solution um�t	�

�Step �� At any time when you want to get a more accurate approximate solution� please
solve the following linear equations in V�

�nd ��um�t		 � V such that
a���um�t		� v	 � b�um�t	���um�t		� v	 � �Qm�f � B�um�t	� um�t		� v	� �v � V �

�Step �� Get a more accurate approximation of u at time t

 u�t	 � um�t	 � ��um�t		�

Notice that we did not use the function � in �Step �	 as what has been done in ���	� The
reason is that � � � because of the estimations in ���	� Therefore� we know  u in �Step �	 is on
the approximate inertial manifoldM�

Before we give the error estimation of this postprocessing procedure� we need some estima�
tion on ���t	� We denote

�e � Qm ��� em � Pm ���

Then from the residue equations ��	 and assumption �H	� we have���
��

dem
dt

� �Aem � Pm�B� �um� �	 � B�um� em � �e	 �B�em � �e� um	

� B��� �um	 �B�em � �e� �	 �B��� em � �e	 � �
em��	 � ��

���	

Lemma 	�� Under the assumption �H�� we have

jA� �
� emj � ���t	Lm��

� �
�

m�� � kjA�
�
� �jkt	� for any given t ���

where kjA� �
� �jkt � sup

��s�t
jA��

� ��s	j� and ���t	 � � is independent of m�

Proof� The proof of this lemma is quite simple and we only sketch it in the following�

��



Multiplying the both sides of ���	 with A��em and integrating them on �� we have

�

�

djA� �
� emj�
dt

��jemj� � jb� �um� �� A��em	j� jb�um� em� A��em	j

�jb�um� �e� A��em	j� jb�em� um� A��em	j� jb��e� um� A��em	j
�jb��� �um� A��em	j� jb�em� �� A��em	j� jb��e� �� A��em	j
�jb��� em� A��em	j� jb��� �e� A��em	j�

Now we need to estimate each term on the right hand side of the last inequality by using ��	
and lemma ���� The estimation of each term can be obtained without di�culty if one notice
the rigorous estimation of b in lemma ���� Here we only give the �nal result�

djA� �
� emj

dt
� c�

�
jA� �

� emj� c
�
LmjA� �

� �j� c�
�
Lm�

� �
�

m���

where c� � c��M�	 � �� c � c�M�� �	 � � and c� � c��M�� �	 � � are time independent

constants� Now by integrating the above di�erential inequality of jA��
� emj� we can get the

result with

���t	 ��
c � c�
c�

e
c�
�
t�

�

By using this lemma� we can get an error estimation of our postprocessing procedure ��
Firstly� we denote

E�t	 � u�t	�  u�t	 � ��t	 ���um�t		�

Theorem 	�� Under the assumption �H� and choosing m large enough such that

�m�� 	 �c��M
�
�����

we have

kE�t	k � ���t	Lm��
� �

�

m�� � j�j k�k� kjA�
�
� �jkt	� for any given t � ���

where ���t	 � � is independent of m�
Proof� Subtracting the equations of �Step �	 from ��	� we have

a�E� v	 � b�um� E� v	 � �� ��� v	� b��� um� v	� b��� �� v	� �v � V� ���	

We decompose E as

E � PmE �QmE
�
� Em � �E�

Taking v � Em in ���	 and by using ��	 and ���	� we have

�kEmk� �j�em� Em	j� jb��� um� Em	j� jb��� �� Em	j� jb�um� �E�Em	j

�jA� �
� emj kEmk� c�LmjA� �

� �j jAumj kEk� c�c
�
�j�j k�k kEmk� c�jumjL�kEmk j �Ej

��jA� �
� emj� c�M�LmjA��

� �j� c�c
�
�j�j k�k� c�M��

� �
�

m��k �Ek	kEmk�

Thus
kEmk � ����jA��

� emj� c�M�LmjA� �
� �j� c�c

�
�j�j k�k� c�M��

� �
�

m��k �Ek	� ���	

��



Taking v � �E in ���	� it admits

�k �Ek �j��e� �E	j� jb��� um� �E	j� jb��� �� �E	j� jb�um� Em� �E	j

�jA��
� �ej k �Ek� c�LmjA��

� �j jAumj k �Ek� c�c
�
�j�j k�k k �Ek� c�jumjL�kEmk j �Ej

����� �
�

m�� � c�M�LmjA� �
� �j� c�c

�
�j�j k�k� c�M��

� �
�

m��kEmk	k �Ek�
Therefore� we have

k �Ek � ������
� �

�

m�� � c�M�LmjA� �
� �j� c�c

�
�j�j k�k� c�M��

� �
�

m��kEmk	� ���	

Combining ���	���	 and demanding

�m�� 	 �c��M
�
�����

we can get

kEk ��������� �
�

m�� � jA�
�
� emj� �c�M�LmjA��

� �j� �c�c
�
�j�j k�k	

������ �

Lm
� ���t		Lm�

� �
�

m��

� ������c�M� � ���t		LmkjA��
� �jkt � ����c�c

�
�j�j k�k�

If we denote
���t	 � ����maxf �

Lm
� ���t	� ���t	 � �c�M�� �c�c

�
�g�

the result can be achieved� �

Remark �� It is classical that

j�j � C�t	���m��� k�k � C�t	�
� �

�

m���

And from the appendix we know that there also holds

jA��
� �j � C�t	�

� �
�

m���

Then the result of theorem ��� tells us that

kEk � C��t	Lm�
� �

�

m���

Of course� the postprocessing procedure � can greatly improve the convergence rate of standard

Galerkin approximation from �
� �

�

m�� to Lm�
� �

�

m�� at any time t� especially for large m� The
substantial saving of the computing time is then obvious because we should solve the standard
Galerkin approximate equations in a larger �nite dimensional subspace HM with M  m� to

get an approximate solution of order �
� �

�

m���
Remark �� As is said before� �� which is used to generate the novel approximate inertial

manifold and to construct the postprocessing procedures in our context� is a �nite dimensional
mapping from Hm into V � Then for �Step �� in both postprocessing procedure � and �� we must
solve the linear problem in the whole space V � But� a simple investigation of � will show that
this mapping is in fact a �nite dimensional mapping from Hm to some subspace of V �

First of all� we will construct a new projection Pm from H onto Hm based upon the solution
of ���� For this purpose� we introduce some new symbols�

L�w� v	 �� a�w� v	 � b�u�w� v	� �w� v � V�

��



Lm�w� v	 �� a�w� v	 � b�um� w� v	� �w� v � V�

where u and um are the solutions of �	� and ��� respectively�
Obviously� both L��� �	 and Lm��� �	 are continuous on V � V and positive if we notice ���

and ����� Then by Lax�Milgram theorem� the following variational problem�
�nd w � Hm such that
Lm�w� v	 �� g� v �V � � �v � Hm�

���	

has a unique solution for any given g � V �� Now let us give the de�nition of our new projection��
for any given w � H� �nd Pmw � Hm such that
Lm�w � Pmw� v	 � �� �v � Hm�

���	

Because �
�� is well�posed for any given g � V �� �
�� can really de�ne a projection from H
onto Hm and we denote by Qm � I � Pm� Now for any vector in H� we have the following
decomposition

w � Pmw �  w� with  w � Qmw�

And �
�� indicates that  w is orthogonal with Hm in the sense of Lm��� �	� Similarly� we can
decompose space V as

V � Hm �  V � with  V � QmV�

It is obvious that ��um	 �  V because we have

a���um	� v	 � b�um���um	� v	 � �� �v � Hm�

So� to get the solution of �Step �� in our postprocessing procedures� we only need to solve the
linear problem in  V � a subspace of V � Unfortunately� the construction of  V is also a time
consuming procedure� And for the unsteady case� the structure of  V is dependent on time t�
Concerning about these facts� we still prefer to solve this linear problem in whole space V unless
we can �nd a simple construction of  V or at least its approximation�

In practice� the second step of postprocessing procedure � must be accomplished in some
�nite dimensional subspace of V whose dimension should be much larger than m� That is� for
some N � N with N � m� we should restrict �Step �	 and �Step �	 on VN �

�Step �!	

�
�nd �N �um	 � VN such that
a��N �um	� v	 � b�um��N �um	� v	 � �Qm�f �B�um� um	� v	� �v � VN

�Step �!	  uN �t	 � um�t	 � �N �um�t		�

Then the error of the practical postprocessing procedure �Step �	� �Step �!	 and �Step �!	
satis�es

ku�t	�  uN �t	k � ku�t	�  u�t	k � k��um�t		 ��N �um�t		k � kE�t	k� k  E�t	k�
where  E�t	 �  u�t	 �  uN �t	 � ��um�t		 � �N �um�t		� Now we give the error estimate of this
practical postprocessing procedure as following corollary� Because the proof is quite simple� we
will omit it and only state the result�

Corollary 	�� Under the conditions of theorem ���� the error of the scheme �Step ��� �Step
��� and �Step 
�� admits

ku�t	�  uN �t	k � C��t	Lm�
� �

�

m�� �C��
� �

�

N���

where C� � � is a constant independent of t� m and N �
It is quite clear that� to balance the two error terms in the corollary� we should take N

large enough such that N  m�

L�
m

� In other words� the result of the postprocessing procedure is

equivalent to solve the equation ��	 in a very large �nite subspace VN � This obviously leads to
signi�cantly saving of the CPU time�

��



Appendix

In this section� we will present a further property of �� the estimate of jA��
� �j�

First of all� let us decompose � as

� � Pm� �Qm�
�
� p� q� ���	

Noticing ��	� it is easy to know that p satis�es�
dp

dt
� �Ap� PmB�um� p� q	 � PmB�p� q� um	 � PmB�p � q� p� q	 � ��

p��	 � ��
���	

On the other hand� it is well known that Stokes operator A can generate an analytic semigroup
fe��Atgt�� on H with �see ��	

kA�e��AtkL�H�H� � c����t	
��e���t� t � �� 	 � �� ���	

where � � � is only dependent on A and c�� � � is a constant depending only on 	�
By using the semi�group presentation� we can rewrite ���	 as

p�t	 ��
Z t

�

e��A�t�s�PmfB�um� p	 �B�p� um	 �B�p� p	 �B�p� q	 �B�q� p	

� B�um� q	 �B�q� um	 � B�q� q	gds

��
Z t

�
e��A�t�s�PmB��p	ds �

Z t

�
e��A�t�s�PmB��q	ds�

where
B��p	 � B�um� p	 � B�p� um	 �B�p� p	 � B�p� q	 � B�q� p	�
B��q	 � B�um� q	 �B�q� um	 �B�q� q	�

Then by using ���	� we have

jA� �
� p�t	j �

Z t

�

jA� �
� e��A�t�s�PmB��p	jds�

Z t

�

jA� �
� e��A�t�s�PmB��q	jds

�

Z t

�

jA �
� e��A�t�s�A��PmB��p	jds�

Z t

�

jA �
� e��A�t�s�A��PmB��q	jds

�c�����
�

Z t

�

�t� s	�
�
� e���t�s�jA��PmB��p	jds

� c���
��
�

Z t

�

�t� s	�
�
� e���t�s�jA��PmB��q	jds

Let us estimate each term of jA��B��p	j and jA��B��q	j� First of all� we consider each term
of jA��B��p	j� For example� consider jA��PmB�um� p	j� To do this� we need following property
of trilinear form b��� �� �	 whose proof is almost the same as lemma ����

Proposition For any v � D�A	� w � D�A
�
� 	 and � � D�A�

�
� 	� we have

jb��� v� w	j � c�jA� �
��j jAvj jA �

�wj� ���	

jb�w� v� �	j � c�jA �
�wj jAvj jA��

��j� ���	

��



where c� is a positive constant which has the same meaning as in lemma 
���
Now let us continue our estimation� From ���	� we have for any v � Hm

jb�um� p� A��v	j � jb�um� A��v� p	j � c�jA �
�umj jA��

� pj jvj�
Thus we have

jA��PmB�um� p	j � c�jA �
�umj jA��

� pj� ���	

Similarly� we can derive
jA��PmB�p� p	j � c�jA �

�uj jA��
� pj� ���	

jA��PmB�q� p	j � c�jA �
�uj jA��

� pj� ���	

For the other two terms� we will use ���	 to cope with them� For any v � Hm

jb�p� um� A��v	j � jb�p�A��v� um	j � c�jA �
�umj jA��

� pj jvj�
So we get

jA��PmB�p� um	j � c�jA �
�umj jA��

� pj� ���	

By doing this to the last term in the same way� we have

jA��PmB�p� q	j � c�jA �
�uj jA��

� pj� ���	

Combining ���	���	� we derive the �rst estimation

jA��PmB��p	j � �c��kjA �
�ujk� kjA �

� umjk	jA��
� pj� ���	

where kj � jk � sups�� j � �s	j and we will also denote kj � jkt � sup��s�t j � �s	j in the following�
For the estimation of jA��PmB��q	j� the method is completely the same as the above one�

We can use ���	 to deal with B�um� q	 � B�q� q	 and ���	 to deal with B�q� um	� So we just
give the result in the following

jA��PmB��q	j � �c��kjA �
�ujk� kjA �

� umjk	jA��
� qj� ���	

Obviously�

sup
t��

Z t

�

�t� s	�
�
� e���t�s�ds � ���	�� �

�
� ��

where

�� �

Z �

�

s��e�sds � "��� � 		�

By introducing the following constants

c�� � �c��c��
� �

� � �
�
�kjA �

�ujk� kjA �
�umjk	� c�� � �c��c��kjA �

�ujk� kjA �
�umjk	�

we can get a new inequality about jA��
� pj� That is

jA� �
� p�t	j � c���

��
�

Z t

�

�t� s	�
�
� e���t�s�jA��

� pjds� c���
��
� kjA� �

� qjkt�

Set
g�s	 � jA��

� p�s	je�s�
and we have

g�t	 � c���
��
� e�tkjA��

� qjkt � c���
��
�

Z t

�

�t � s	�
�
� g�s	ds�

��



To give the estimation of g� we must introduce an inequality� Many inequalities of this type
can be found in Henry��� The following special version� lemma A��� was proven in ����

Lemma A�� Let T � 	� � and � be positive constants� � � � � �� Then for any continuous
function f � ��� T � �����	 that satis�es

f�t	 � 	� �

Z t

�

�t� s	�
f�s	ds� � � t � T�

we have
f�t	 � c�	 expfc���	���
�tg� � � t � T�

with a positive constant c� that depends only on ��
Now by using lemma A��� we can immediately obtain

g�t	 � c��c
���

�
� e�t expfc�c������tgkjA�

�
� qjkt�

Denoting by T��t	 � � the constant c��c
� expfc�c������tg� �

�
� � we have

jA��
� p�t	j � ���

�
�T��t	� �	kjA��

� qjkt� ���	

Now we summarize the above deducing into the following
Theorem A�� For any given data a � D�A	 and f � H� we know the Navier�Stokes

equations ��� and its Galerkin approximate equations ��� have unique solutions

u�t	 � L��R�� D�A		� um�t	 � L��R�� D�A		�

Then for any t � �� we have

jA� �
� �j � ��

�
��
� �

�

m��T��t	kj�jkt�

Proof From �� and ���	� the result can be obtained immediately� �
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