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Bit Error Evaluation of Optically Preamplified
Direct Detection Receivers with Fabry–Perot

Optical Filters
Idelfonso Tafur Monroy and G̈oran Einarsson

Abstract—The error performance of a preamplified, direct
detection receiver with an optical filter of the Lorentzian type
is studied. The analysis takes into account the influence of the
optical intersymbol interference (ISI). A closed-form expression
of the moment generating function (MGF) of the decision variable
is derived. Error probabilities are evaluated from the MGF using
a saddlepoint approximation. The Gaussian approximation is also
examined. The detection sensitivity in terms of a quantum limit is
calculated. The results show that there exists an optimum optical
bandwidth, the reason being a tradeoff between the effect of
ISI and the spontaneous emission noise. It is also shown that
the Gaussian approximation gives a good estimate of the error
probability, allowing to find in a simple manner the optimum
parameters of optically preamplified, direct detection receiver.

Index Terms—Error analysis, intersymbol interference, op-
tical amplifiers, optical communication, optical filters, optical
receivers.

I. INTRODUCTION

I N optically preamplified direct detection receiver the optical
amplifier increases the power levels, but at the same time,

the erbium-doped fiber amplifier (EDFA) generates sponta-
neous emission noise which is added to the photodetector
input signal. Amplified spontaneous emission (ASE) noise is
an inherent noise source of the fiber optical amplifier which
impairs the receiver performance. To limit the effect of ASE,
which is a wide band noise source, an optical filter is needed.
Filtering, however, can distort the optical pulse and introduces
intersymbol interference (ISI). Fabry–Perot filters are widely
used in experimental optical transmission systems, e.g., [14].
They are well described by a Lorentzian impulse response [28].

The main question of the performance analysis is to deter-
mine the statistics of the receiver decision variable, taking into
consideration ISI, and to further evaluate the bit-error proba-
bility. Most of the previous analysis of optically preamplified
receivers were made under the assumption that the signal
passes the optical filter unaltered, which means that the ISI is
neglected or the optical filter bandwidth is assumed to be large
[1]–[5]. The performance analysis for a receiver with a perfect
rectangular bandpass optical filter is documented in [6], [7],
and in [8] for a receiver with a traveling-wave semiconductor
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optical preamplifier. Ben-Aliet al. [25] derived upper bounds
on the bit error probability. Chernoff and modified Chernoff
bounds together with an improved bound on the bit error
probability are presented in [26]. Chinn [27] considered a
probability density function (pdf) of the decision variable
obtained by convolving individual pdf for a finite number of
modes of a Karhunen–Loève expansion of the signal and noise.
A Karhunen–Lòeve expansion approach is also used in [13]
for deriving a moment generating function (MGF), but the use
of the MGF is limited to finding the first and second moment
of the decision variable. These works take into consideration
the significance of the ISI, but a closed-form expression of
the MGF, (statistics), of the decision variable that explicitly
incorporate a Fabry–Perot optical filter is not given.

In this paper, a closed-form expression of the MGF of
the decision variable, explicitly incorporating a Fabry–Perot
optical filter, is derived. The MGF is then used to calculate bit-
error probabilities by the so called saddlepoint approximation
(spa). Some previous works have considered the decision
variable to be Gaussian distributed [9]–[13]. In this paper
the Gaussian approximation, including ISI, is also examined.
The results shows that the Gaussian approximation gives a
fairly accurate estimate of the error probability of optically
preamplified receivers.

This paper is organized as follow: In Section II the reference
scheme and the model of the receiver under analysis is pre-
sented. The general form of the MGF for the decision variable
is derived with the help of a Karhunen–Loève expansion
of the signal and noise. The method of deriving the MGF
for the decision variable is also presented. In Section III,
the expression for the error probability is presented and
the saddlepoint approximation is introduced. A closed-form
expression of the MGF for the decision variable is given. The
performance of the Gaussian approximation is also studied.
Numerical results, and comparison with previous work are
presented in Section IV. Finally, in Section V, summarizing
conclusions are drawn.

II. SYSTEM MODEL

The system under analysis is depicted schematically in
Fig. 1. The optical preamplifier (EDFA) is characterized by
an optical field amplifier with power gain , an additive
noise source , representing the spontaneous emission and
an optical filter with complex equivalent baseband impulse

0733–8724/97$10.00 1997 IEEE
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Fig. 1. Complex baseband model of preamplified direct detection receiver.

response . The equivalent baseband form of the optical
field at the output of the EDFA is

(1)

where stands for a convolution operation and is
the envelope (modulation) of the input optical signal ,
expressed as the real part of a complex field function

Re (2)

where , being the optical frequency.
The optical field illuminating the photodetector pro-

duces an output shot noise current . The signal at the output
of the postdetector filter, with impulse response , is

This signal is sampled at time instants to form
the decision variable. The decision device derives the estimate
of a transmitted bit in a particular bit interval by comparing
the decision variable with an optimal, preselected, detection
threshold . By an optimal threshold is meant the detection
threshold that yields the lowest error probability.

To continue further, we introduce some definitions and
normalizations. The input signal is assumed to be a
rectangular pulse of duration . The amplitude of is
chosen (normalized) such as is the average number of
photons contained in . In the sequel, it is assumed that
for a transmitted “zero” bit “zero” photons are received. For
equally likely symbols “one” and “zero,” is the average
number of received photons per bit at the input to the EDFA.

For a given bit pattern the
normalized information signal at the output of the optical filter
is denoted by

(3)

(4)

where

;
statistically independent binary symbols representing
a data “zero” and a “one,” respectively. ;
average number of received photons per bit;
input unit rectangular pulse of duration;

The first term in (4) represents the desired information signal
while the last term is the ISI. At the output of the optical
amplifier, the average noise power measured in a bandwidth

is [1]

W

where is the Planck’s constant and is the spontaneous
emission factor of the amplifier. For reason of compatibility
with the normalization of the density of should
be expressed in photons per second. The photon intensity
corresponding to the stochastic optical field is [35]

photons/s

At the output of the optical filter the real and imaginary parts
of the Gaussian noise are independent,
with mean zero and autocorrelation

(5)

where [15]

(6)

with denoting complex conjugate.
With the above notations the optical field at the output of

the EDFA becomes

The photo-electron intensity is proportional to the square of
the optical field (optical power) falling upon the photodetector
[28]. It is assumed that the photodetector quantum efficiency

is equal to one, and the optical field is normalized so that
the photo-electron intensity is

(7)

The signal , the postdetection filter output signal, is
a doubly stochastic process: it depends on the information bit
pattern and on the stochastic mechanism of photodetection.
The mathematical model for is the filtered compound
Poisson stochastic process [16], [17] whose stochastic intensity
is . With no loss of generality we consider a time interval
of duration and denote the decision variable by

. Conditioned on the value of the MGF for is [16]

(8)
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In this work, we restrict ourselves to a specific type of
postdetector filter: the integrate-and-dump filter. The impulse
response of the integrate-and-dump filter is given by

otherwise.
(9)

Thus, the unconditional MGF of is given by

(10)

being the probability density function of . In terms
of the MGF for

(11)

where

(12)

is also called thePoisson parameter function[16]. The
expression (11) appears in an early paper by Personick [19].
The MGF is given by

E (13)

We expand in a Karhunen–Lòeve
expansion, in the time interval , choosing the set of
orthonormal functions such that

with

and

with and being the eigenfunctions and eigenvalues,
respectively, related to the following equation [20]:

(14)

where E . By Parseval’s theorem,
the integral (12) becomes

(15)

The coefficients are zero mean Gaussian independent
variables whose real and imaginary part ( and , re-
spectively) have a variance Var Var
[20]. We observe that are independent variables with mean

; hence, the MGF of a particular is that of a stochastic
variable with a noncentral chi-square distribution [15]

From (13) and (15), we have that

E

Thus, the general mathematical form for the MGF ofis
[18], [19]

Re (16)

The choice of the integrate-and-dump filter simplifies the
analysis, but it yields a suboptimum receiver. An MGF in the
form of (16) can also be obtained for a general postdetector
filter [25], [36].

The MGF (16) can be represented in terms of the resolvent
kernel [21], [24], [30] related to the integral
equation

(17)

as

(18)

where

(19)

and , also called the Fredholm determinant, is given by
[22]

(20)

The MGF given in the form of (18) is more convenient for
numerical computations than the MGF expressed in terms of
an infinite product [cf. (16)].

III. A NALYSIS

A. The Error Probability

The error performance analysis is conducted by conditioning
on the sent symbol and considering the finite sequence

of symbols surrounding .
Assuming that the symbols and are a priori
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equally probably, the conditional error probability given a
sequence is

(21)

As it is shown in [31], the tail probability is approx-
imately equal to

(22)

the so-calledsaddlepoint approximation. The function is
related to the MGF for , by

(23)

The parameter is the positive root of the equation

(24)

and stands for the second derivative of (23) at .
The lower probability tail is approximated by

(25)

with equal to the negative root of (24). See [31] or [35] for
further details. The error probability is minimized by adjusting
the detection threshold . The optimum value of and the
parameters and may be found numerically by solving an
appropriate set of equations [35]. The saddlepoint approxima-
tion has been proposed by Helstrom [31], as an efficient and
numerically simple tool for analyzing communication systems.
The saddlepoint approximation has shown a reasonably high
degree of accuracy in the analysis of optical communication
systems [32]–[34].

The average error probability, for a fixed threshold, is
obtained by averaging the conditional error probability with
respect to with a given

E E

(26)

The expression (26) is general with respect to the sta-
tistics of the transmitted binary message. In this paper, we
consider the case in which the message consists of mutually
independent binary symbols.

In optical communications, the (standard)Quantum limitis
defined as the average number of photons per bit in the optical
signal needed to achieve a bit error probability of 109

assuming ideal detection conditions, which means that
and .

B. Lorentzian Optical Filter

The normalized Lorentzian filter impulse response is spec-
ified by

(27)

and consequently the covariance kernel is

(28)

where is the 3-dB optical filter bandwidth.

The output signal of the EDFA (after the optical filter) is
given by

A more concise expression for is presented in [25]

(29)

in which

(30)

In order to obtain an expression for the MGF of the type in
(18) the resolvent kernel should be known. For
the case of the Lorentzian filter the resolvent kernel is given
in the literature, e.g., [20], [30]

(31)

for . For the roles of and just
interchange in (31), in which

with

and

The Fredholm determinant is given by (see the Appendix)

(32)

The expression for

in which

turns out to be

(33)

The expressions for , and are shown in
(33a), (33b), and (33c) at the bottom of the next page. The
derivation of the above expressions is straightforward but
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tedious. In the Appendix a more detailed presentation is given.
According to (11) the MGF for the decision variable,, is

(34)

The validity of the derived MGF can be tested by considering
the following cases: 1) Only noise being present. The MGF
for the decision variable is then given only in terms of the
Fredholm determinant . We obtain the same result as for
the well studied case of detecting purely incoherent light with
a Lorentz spectral density, e.g., [21]. 2) If both signal and
noise are present, then the mean and variance of the decision
variable derived from (36) and those obtained from (37) and
(38) are identical, as expected from the properties of the MGF.

C. The Gaussian Approximation

The Gaussian approximation to the error probability
[cf. (21)] is given by

(35)

with and being the mean and the variance of
the decision variable for a transmitted binary symbol “zero”
and “one,” respectively. The function is the normalized
Gaussian tail probability

If the MGF for is known, the mean and variance
are given by [15]

(36)

respectively. Alternatively, and are also given by the
following relations:

(37)

and

(38)

respectively. The mean and the variance of the decision
variable are given in term of the mean and the variance

of according to thePoisson transformby [29]

For the case of the Lorentzian optical filter the covariance of
the noise is from (28)

(39)

The mean of results to be

(40)

and the variance

(41)

IV. RESULTS

The Lorentzian filter is a causal filter [see (27)] and the
ISI is caused by the bits preceding the information bit. We
are going to examine the situation for two past information
bits. Averaging over a larger sequence of past bits does
not substantially changes the result for the average error
probability [25], [36]. The computations are performed for
the On–Off keying (OOK) modulation format with a value

and . The observation time is the interval
. The value of was calculated for all possible sequences

and the average error probability was
evaluated by (26) using a saddlepoint approximation for each
term. The receiver optimum threshold, yielding the lowest
error probability, is determined numerically.

The quantum limit for different values of the bandwidth
bit-time product BT, yielded both by the saddlepoint and the
Gaussian approximation, is displayed in Fig. 2. The quantum
limit, with optimized BT 7 and optimum decision threshold,
is 49.9 [photons/bit] compared to the 38 [photons/bit] for a
receiver with a matched optical filter [1]. The bounds on the
error probability derived in [25] yielded a quantum limit of

(33a)

(33b)

(33c)
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Fig. 2. The Quantum limit as a function of the bandwidth bit-time product BT. The solid line shows the results of the exact analysis (spa). The dotted
line illustrates the results by the Gaussian approximation.G = 100, nsp = 1.

56.5 [photons/bit] for an optimum BT 8. The quantum
limit derived in [27] is 44.5 [photons/bit] for an optimum BT

3.7 and optimized observation time. Experimental results
for a receiver with a value BT 7 reported a quantum
limit of 76 [photons/bit] [14]. The present work predicts for
this case a quantum limit of 49.9 [photons/bit], which is in
good agreement with the experimental result, considering that
penalties may be incurred in the postdetection signal treatment.

The Gaussian approximation, the dotted line in Fig. 2, gives
a good estimate of the error probability. The resultant quantum
limit is 54.5 compared to 49.9 [photons/bit] yielded by the
exact analysis (spa). The Gaussian approximation also predicts
the optimum bandwidth bit-time product with high degree of
accuracy.

V. CONCLUSIONS

In this paper, the impact of ISI on the performance of
optically preamplified, direct detection OOK receivers with
a Lorentzian optical filter has been studied. A closed-form
expression for the MGF of the decision variable has been
derived. Bit-error probabilities have been calculated by the spa
(exact analysis) and the Gaussian approximation. The optimum
filter bandwidth, minimizing the bit-error probability, and the
penalty incurred by using a nonmatched filter, Lorentzian, is
found.

The Gaussian approximation predicts the performance of the
optically preamplified receiver with good accuracy; see Fig. 2.
The parameters required by the Gaussian approximation, the
variance and the mean of the decision variable, may be found
without the knowledge of the MGF. Different type of optical
filters [covariance kernels ] may be considered with no

need of solving integral equations of the Fredholm type. Thus,
optimum parameters of optically preamplified, OOK direct
detection receiver may be determined by the simple method
of the Gaussian approximation.

Although this paper deals only with OOK modulation
format, the technique employed here can be used for receivers
with other types of modulation. Independent additive noise
contributions at the receiver can be incorporated in the exact
analysis by just multiplying their MGF. The Gaussian approx-
imation is expected to work well for modulation schemes with
nonzero decision threshold [37].

APPENDIX

In this Appendix is presented the derivation of the MGF
for the direct detection, optically preamplified receiver with
an optical filter of the Lorentzian type.

Introducing the following auxiliary functions:

and

in (31) can be expressed as
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with

(42)

The moment generating function is expressed as [see (18)]

where

(43)

and , the Fredholm determinant, is given by [22]

(44)

We start by integrating with respect toin (19)

(45)

After substitution of (29) can be expressed as

(46)

We recall that

in our case

(47)

where is the primitive function of . Then

(48)

The integration operation leading to , is
straightforward but tedious. The resulting expressions contain

many terms. In the derivation that follows we do not reproduce
the long intermediate expressions, but focus on the main steps
toward the final result for the desired MGF.

Continuing with the derivation, we now perform integration
with respect to

The expression for the variable turns out to be

(49)

Finally, rearranging common terms in , and we get

where , , and are shown at the bottom of the
page and the Fredholm determinant takes the form

with

and

The same result for (considering the difference in
notation) is given in an early paper by Helstrom [21].
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