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Chapter 1

Introduction

Over recent decades the role of images in the communication of informa
tion has steadily grown. Advances in technologies underlying the capture,
transfer, storage, and display of images have created a situation in which
the use of images as a means of communicating information has become
technologically and economically feasible. More importantly, however,
images are in many situations an extremely efficient means to communi
cate information, as may be witnessed by the proverb "a picture is worth
a thousand words". Without a doubt, this has been the most prominent
factor pushing the above technological development.

Notwithstanding the above technological advances, the current state-of
the-art still requires that certain compromises be made in the design of
algorithms and devices for capture, transfer, storage, and display of im
ages. Examples of such compromises are temporal resolution versus noise
sensitivity (for capture), spatial resolution versus image size (for transfer
and storage), and luminance range versus gamut (for displays). These and
similar choices will, when made, affect the appearance of reproduced im
ages, as well as the impression of how well the images are reproduced. To
make optimal choices, it is therefore necessary to have knowledge of how
particular design choices translate into the appearance of images and sub
sequently into the impression of how well these images are reproduced.
In a nutshell, this is the central question of all image quality research.

Current image quality research can be divided into two fundamentally dif
ferent approaches. The first approach focusses on experimental evaluation
(Roufs 1993). A typical setup would include a small group of human sub
jects judging quality, and possibly some related attributes such as sharp
ness, contrast, or colourfulness, of a set of displayed images which are ma-
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1. Introduction

nipulated to simulate the effects of several different design choices. In this
way, the influence of these design choices on image quality can be mea
sured and, by means of interpolation, approximately optimal choices can
be made. Two serious drawbacks of this approach are: (1) it is extremely
time-consuming, as well as tiresome for the participating subjects; and
(2) the obtained knowledge cannot easily be generalised since all relations
found between design choice and image quality are descriptive rather than
based on an understanding. As a result, in a single series of experiments
only a small fraction of the possible design space can be investigated, and
in practice the experimental procedure must be repeated for almost every
possible set of design choices.

The second approach tries to address these drawbacks by means of the
development of models which describe the influences of several physi
cal image characteristics on image quality, usually through a set of im
age attributes thought to determine image quality. When the influence of
a set of design choices on physical image characteristics is known, these
models can be used to predict image quality instead of having to measure
image quality experimentally. Two different types of models can be dis
tinguished here. Both types share the common characteristic that image
quality is expressed in terms of the visibility of distortions, or artefacts,
introduced in the image as a result of certain design choices. Examples
of such distortions are flickering, blockiness, noisiness, or colour shifts. A
hypothetical version of the image devoid of any such visible distortions
is regarded as the "original", that is, the version of the image assumed
to be of highest quality, and the visibility of distortions in the image, re
ferred to as impairment, is used as a measure of quality degradation. The
fundamental difference between the two types of model lies in how this
impairment is calculated.

In the first type of model, physiologically or psychophysically inspired
models of early visual processing are used to calculate impairment from
a difference between two versions of an image, for example the "input"
or "unprocessed" version, which is substituted for the original, and the
"output" or "processed" version of a certain device or image processing
algorithm. A well-known example of this approach is the JND-map (just
noticeable differences map) presented by Daly (1993). The two most im
portant drawbacks of this approach are: (1) it is unclear what exactly the
"unprocessed" version of an image is; and (2) what in fact is calculated
here is the visible difference between two versions of an image, not im
age quality itself, and it remains unclear how the translation from visible
difference to image quality should be performed. Usually this translation

2



is made by means of fitting certain model parameters to experimentally
obtained quality judgments of human subjects.

The second type of model differs from the first type in the sense that it
tries to estimate visibility of distortions directly from the image instead
of using a visible difference with an original. In this type of model, vis
ible distortions of an image, such as unsharpness or noisiness, are pre
dicted by estimating relevant physical attributes of the image, such as blur
and noise spread. Using psychophysically established relations, these es
timated physical attributes are then translated to visibility of distortions
in the image. Finally, image quality is expressed in terms of these visible
distortions using some kind of combination rule. The work presented by
Nijenhuis & Blommaert (1997) is a good example of this approach. The
uncertain translation from visibility of distortions to image quality, which
usually must be fitted to experimentally obtained data, remains an impor
tant drawback of this approach.

As may be concluded from the above description of the state-of-the
art in image quality modelling, images are primarily regarded as two
dimensional signals. Similarly, early visual processing is regarded as sig
nal processing, with image quality being determined by a set of character
istics of the resulting output signal. There are a few serious shortcomings
to this view, the most important of which is the fact that the fundamental
question "What is image quality?" is never asked, nor answered. To give
an answer to this question, based on a thorough understanding of visuo
cognitive processing and the role of images therein, is the very aim of this
thesis.

The approach we will pursue in this thesis distinguishes itself from the
above approaches in four fundamental ways:

• We will regard images not as signals but instead as carriers of visual
information. Since an image is the result of the optical imaging pro
cess, which maps physical scene properties onto a two-dimensional
luminance distribution, it encodes important and useful information
about the geometry of the scene and the properties of the objects lo
cated within this scene.

• We will regard visuo-cognitive processing not as signal processing
but instead as information processing. Following Marr (1982) and
Newell (1990), we will regard vision and cognition as the processes
in which, first, physical object properties, or correlates of these, are

3



1. Introduction

reconstructed from a two-dimensional luminance distribution using
a set of dedicated computational algorithms and, second, resulting
descriptions are interpreted by comparing them with descriptions
stored in memory.

• We will regard visuo-cognitive processing not as an isolated process
but instead as an essential stage in human interaction with the en
vironment. Descriptions of scene content, as produced by visuo
cognitive processing, are used as input to subsequent stages in the
process of interaction with the environment, such as semantic pro
cessing and action. Hence, visuo-cognitive processing plays a vital
role within the interaction process.

• We will regard the quality of an image not in terms of the visibility
of distortions in this image but instead in terms of the adequacy of this
image as input to the vision stage of the interaction process. The
basic definition of quality we will use is formulated in terms of the
degree to which imposed requirements are satisfied. When images
are considered to be input to the interaction process, requirements
must be imposed on these images to guarantee the successfulness of
the interaction process. In this view, the degree to which an image
satisfies these requirements determines the quality of this image.

The structure of this thesis is as follows. In chapter 2 Image quality semantics
we formulate an answer to the question "What is image quality?" based
on the philosophy outlined in the above four points. In this chapter, we
give a description of image quality in terms of two components, usefulness,
that is, the precision of the internal representation of the image, and natu
ralness, that is, the degree of match between the internal representation of
the image and representations stored in memory. The results of two series
of experiments are used to demonstrate the validity of this concept.

Chapter 3 Visual metrics: discriminative power through flexibility focusses on
the internal quantification of outside world attributes. Using a rather tech
nical view on visual processing, we regard vision primarily as a process in
which attributes of items in the outside world are measured and inter
nally quantified with the aim to discriminate and/or identify these items.
In chapter 3 we show that the scale function of metrics optimised with re
spect to these tasks should be (partially) flexible. Furthermore, we show
that such metries exhibit properties resembling phenomena such as adap
tation, crispening, and constancy.

4



A straightforward implementation of the image quality concept of chap
ter 2 using the partially flexible metrics of chapter 3 is the topic of chapter 4
Predicting the usefulness and naturalness of colour reproductions. In chapter 4
a measure for usefulness is developed, based on the overall discriminabil
ity of the items in the image. Furthermore, a measure for naturalness of
the grass, skin, and sky areas of the image is developed, based on memory
standards for grass, skin, and sky colour. These memory standards are
themselves constructed from the grass, skin, and sky areas of a large set of
images.

As its title suggests, chapter 5 Image quality revisited returns to the concept
for image quality introduced in chapter 2. Following a strict, top-down
analysis the entire trajectory is completed from the semantics of image
quality down to the development of algorithms for the prediction of use
fulness, naturalness, and image quality. Chapter 5 therefore contains a
complete, thorough and explicit description of image quality according to
the four-point philosophy outlined above.
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Chapter 2

Image quality semantics

Abstract

In this paper we will discuss image quality in the context of the visuo
cognitive system as an information-processing system. To this end, we
subdivide the information-processing as performed by the visuo-cognitive
system into three distinct processes: (1) the construction of a internal rep
resentation of the image; (2) the interpretation of this representation by
means of a confrontation with memory; and (3) task-directed semantic
processing of the interpreted scene in order to formulate a proper re
sponse.

A successful completion of these processes can only be ensured when two
main requirements are satisfied: (1) the internal representation of the im
age should be sufficiently precise; and (2) the degree of correspondence
between the internal representation and "knowledge of reality" as stored
in memory should be high.

We then relate these requirements to the attributes "usefulness" and "nat
uralness" of the image, and give a functional description of image quality
in terms of naturalness and usefulness. To conclude, experimental results
supporting this description of image quality will be discussed.

°This chapter is a slightly modified version of Janssen & Blommaert (1997).
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2. Image quality semantics

2.1 Introduction

A major part of research activity in the field of image quality is directed to
wards the development of reliable, widely applicable, instrumental image
quality measures. There are two important reasons for developing instru
mental measures: (1) quality evaluation by means of subjective assessment
tests is quite expensive and time consuming; and (2) a posteriori assessing
the image quality of a given design does not allow for an a priori optimisa
tion of this design, thus condemning the design of image (re-)production
systems to remain an iterative procedure.

At present, much of the research concerning instrumental image quality
measures is based upon an approach which can be characterised as a "sig
nal evaluation" approach. In this approach, the image is regarded as a
complex signal which deviates more or less from the complex signal that
represents the ideal or "original" image. Images are defined in the phys
ical or perceptual domain, in the latter case using models of the earliest
stages of visual perception, and quality measures are defined as distances
in an appropriate function space, for example, Euclidean distance between
actual and original image.

In contrast to this approach, we regard the processing of images by the
visuo-cognitive system not as the evaluation of complex signals but in
stead as the processing of visual information. Realising that this informa
tion processing is an essential part of an observer's interaction with his
environment we characterise the quality of an image in a more mean
ingful manner as the degree to which the image can be successfully ex
ploited by the observer. We will therefore consider the visuo-cognitive
system (1) as an information processing system (Marr 1982, Barrow &
Tenenbaum 1986, Eimer 1990, Watt 1991); and (2) as an integral part of an
observer's interaction with his environment (Bruce & Green 1985, Gibson
1950, Gibson 1966, Gibson 1979).

2.2 Quality and information processing

2.2.1 Understanding information-processing systems

We adopt the general viewpoint in computational cognition (Newell &
Simon 1972, Newell 1990) that (1) the visuo-cognitive system can be con-
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2.2. Quality and information processing

sidered to be an information-processing system; and (2) information
processing systems can only be completely understood when they are un
derstood at three distinct levels. These levels are (1) the semantic level,
that is, the level describing the system in terms of computational goals
and strategies; (2) the algorithmic level, that is, the level describing the
implementation of the computational theory into algorithms and associ
ated representations; and (3) the level of physical implementation, that is,
the level describing the physical implementation of these algorithms and
representations l .

As stated above, any information-processing system can only be com
pletely understood when it can be appropriately described at all three lev
els, which for reasons of simplicity may be designated as the levels of
"what & why", "how" and "where". The approach we choose to pur
sue here is strictly top-down, that is, we first try to gain a fundamental
understanding of the "what & why" of the processing of images by the
visuo-cognitive system in order to arrive at an understanding of what im
age quality is, and then proceed with the "how" and "where". Our present
purposes are therefore served best with a description of visuo-cognitive
information-processing at the semantic level.

2.2.2 The quality of information

At a semantic level, the interaction of an observer with his environment
can be described by a cycle consisting of three activities: (1) perception,
that is, acquiring information from the environment and constructing an
internal representation from it; (2) cognition, that is, interpreting the ob
tained internal representation; and (3) action, that is, responding appro
priately to this interpretation2.

At this point, we may already infer that in order to ensure a proper re
sponse to occurrences in the outside world, certain requirements must be
imposed upon the information which is acquired from the environment.
When the quality of information is considered to be the degree to which
these requirements are satisfied, we arrive at two important conclusions:

1Marr (1982) refers to these levels as the level of the computational theory, the level of
representation and algorithm, and the level of the hardware implementation, respectively. The
semantic level therefore corresponds to Marr's computational level.

2Throughout this thesis we will use the term cognition rather loosely to refer to almost
the entire set of processes following perception and preceding action. Note, however, that
action may depend on other inputs as well, such as emotions.
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2. Image quality semantics

(1) the quality of information can only be defined within the context of an
observer interacting with his environment; and (2) the quality of informa
tion refers to the appropriateness of this information as a basis for a proper
response to outside world occurrences.

2.2.3 The quality of images

Realising that images are the medium for visual information, we now fo
cus our attention on the question what requirements should be imposed
upon an image. At first thought, the requirements that a "good" image
should satisfy would seem to be precision and reliability. The above out
lined ideas, however, lead to a somewhat more complicated requirement:
for an image to be of "good" quality, the observer's interpretation of this
image should be successful, that is, should with high probability be cor
rect. The imposition of this requirement is justified by realising that it is
of vital importance that there is no discrepancy between "what really is there"
and what the observer assumes is there. The next section will focus on the
question how this can be optimally secured.

2.3 Image quality semantics

2.3.1 Image processing by the visuo-cognitive system

We will subdivide the processing of images by the visuo-cognitive system
in three distinct processes (Marr 1982, Barrow & Tenenbaum 1986): (1) per
ception, that is, the construction of a internal representation of the image
using primarily low-level knowledge of the visual world; (2) interpreta
tion, that is, the confrontation ("matching") of this internal representation
with memory representations; and (3) task-directed semantic processing
of the interpreted scene in order to formulate a response. A diagrammati
cal depiction of the processing of images by the visuo-cognitive system is
shown in figure 2.1.

The collection of memory representations of the outside world, which we
will from this point onwards refer to as "knowledge of reality", we regard
as well-defined but nevertheless fuzzy. As an example of this, consider
that although observers "know" what the prototypical characteristics of
a certain object are, they usually are unable to define a clear distinction

10



2.3. Image quality semantics

perception

internal
representation

interpreted
scene

~ semantic

~ -'---_p_ro_c_er-s_si_n_9----'

Figure 2.1: A diagrammatical depiction of visuo-cognitive processing of
images. In this diagram, ellipses denote representations of information,
and rectangles denote processes transforming one representation into an
other. Note that we consider the "response" to be a formulated sequence
of actions, not its manifestation in terms of motoric events.
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2. Image quality semantics

between prototypical and non-prototypical object characteristics. Knowl
edge of reality therefore may be thought of as accumulated knowledge of
(the behaviour of) outside world statistics. Instead of referring to a match
between the internal representation and a memory representation, we will
henceforth more appropriately refer to a match between the internal rep
resentation and knowledge of reality.

2.3.2 Naturalness, usefulness and quality

Given the visuo-cognitive processes as outlined above, we now ask how
a successful interpretation of an image can be secured best. Returning to
figure 2.1, we may readily conclude that for a successful interpretation of
an image, the interpretation process should result in a satisfactory match
between the internal representation and knowledge of reality. We there
fore quite directly arrive at two principal requirements that an image of
"good" quality should satisfy: (1) the internal representation of the im
age should be sufficiently precise; and (2) the degree of correspondence
between the internal representation and knowledge of reality as stored in
memory should be high.

We are now able to formalise the preceding discussion by defining (1) the
usefulness of an image to be the precision3 of the internal representation of
the image; and (2) the naturalness of an image to be the degree of corre
spondence between the internal representation of the image and knowl
edge of reality as stored in memory. Using these definitions, we define the
quality of an image to be the degree to which the image is both useful and
natural.

The sets of requirements that one needs to impose upon an image in order
to maximise the usefulness or the naturalness of this image will in general
not coincide. For example, detection or discrimination of objects in an im
age may require "exaggeration" of certain features of this image, resulting
in a less natural reproduction of the image. Therefore, given the above def
inition of image quality, we postulate that the quality of an image will be
given by a compromise resulting from simultaneously evaluating to what
degree the image satisfies the sets of requirements that lead to maximising
the usefulness or the naturalness of the image.

3We use the term precision here to refer to a kind of internal signal-to-noise ratio.
Precision therefore does not necessarily mean a one-to-one correspondence with reality.
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2.4. Experiments

2.4 Experiments

2.4.1 Experiment 1: Influences of naturalness and usefulness
on image quality

Aim

In order to test the semantic description of image quality as given above,
we performed an experiment allowing us to measure the influences of nat
uralness and usefulness upon image quality. To this end, we selected two
kinds of manipulation, that is, varying the colour temperature of the ref
erence white4 and varying chromas (Hunt 1992), which we expected to
affect naturalness and usefulness in distinctly different ways. The first
manipulation was expected to influence only the naturalness of the im
age, whereas the second manipulation was expected to influence both the
naturalness and the usefulness of the image.

Description

The experiment, similar to experiments described by Fedorovskaya,
de Ridder & Blommaert (1997), de Ridder, Fedorovskaya & Blommaert
(1993), and de Ridder (1996), was performed using four colour images of
natural scenes taken from a Kodak Photo CD. The colour temperature of
the reference white was varied between 4650K and 10300K, 6500K being
the original, in seven steps of perceptually equal size, and chroma was
scaled by a constant ranging from 0.5 to 2.0 in seven steps.

Seven subjects participated in the experiment. In three separate sessions
they were shown on a CRT (cathode ray tube) the complete set of images,
in random order, with three replications. In the first session, subjects' task
was to judge the quality6 of the images, in the second session to judge
the colourfulness7 of the images, and in the third session to judge the nat-

4Defined as "the temperature of a Planckian radiator whose radiation has the same
chromaticity as that of a given stimulus". Unit: Kelvin, K

sDefined as "the colourfulness of an area judged as a proportion of the brightness
of a similarly illuminated area that appears to be white or highly transmitting". In the
experiments C~", a correlate of chroma in the CIELUV colour space, was scaled.

6Defined as "the degree to which you like the colours in the image".
7Defined as "the presence and vividness of the colours in the image".
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2. Image quality semantics

uralness8 of the images. Subjects were instructed to use an eleven-point
numerical scale ranging from 0 ("bad" or "weak") to 10 ("excellent" or
"strong").

Results

Colourfulness judgments (averaged over subjects and scenes) versus
chroma (diamonds) and colour temperature of the reference white (tri
angles) are shown in figure 2.2. The effect of scaling chroma on judged
colourfulness is clearly visible. Less clear, although still significant, is the
influence of colour temperature of the reference white on judged colour
fulness; images are judged less colourful for higher temperatures of the
reference white.

Quality judgments (diamonds) and naturalness judgments (triangles) ver
sus colourfulness judgments, all averaged over subjects and scenes, are
shown in figure 2.3 for the conditions chroma (solid curves) and colour
temperature of the reference white (dashed curves). The figure shows
that, as expected, quality correlates well with naturalness, although for
the condition chroma the curve for quality is shifted with respect to the
curve for naturalness towards higher values of colourfulness (and hence
towards higher values of chroma). Note that a similar shift does not occur
for the condition colour temperature of the reference white. This seems to
dismiss the possibility of a straightforward "preference" for images with
higher colourfulness.

Quality judgments versus naturalness judgments, depicted in figure 2.4,
again show that the quality-naturalness curve for the condition chroma
deviates significantly from a linear relation. The curve has a V-formed
shape resulting from the abovementioned shift between quality judgments
and naturalness judgments.

Interpreta tion

The first-order effect, that is, the high correlation (r = 0.93) between natu
ralness judgments and quality judgments for both conditions, can readily
be interpreted in terms of the outlined semantic theory of image quality. In
order to interpret the second-order effect, that is, the shift between natural
ness judgments and quality judgments for the condition chroma, we adopt

8Defined as "the degree to which the colours in the image seem realistic to you".
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Figure 2.2: Colourfulness judgments (averaged over subjects and scenes)
for the conditions chroma (diamonds) and colour temperature of the ref
erence white (triangles). The error-bar denotes a distance of two average
standard errors in the mean. The numbers 1-7 on the horizontal axis de
note, for chroma, scaling by 0.50,0.63,0.79,1.00,1.26,1.59 and 2.00, and for
the reference white a colour temperature of 4650K, 5150K, 5800K, 6500K,
7400K, 8650K and 10300K.
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two average standard errors in the mean, and the arrows denote the im
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Figure 2.4: Quality judgments versus naturalness judgments (both aver
aged over subjects and scenes) for the conditions chroma (diamonds) and
colour temperature of the reference white (triangles). The error-cross de
notes a distance of two average standard errors in the mean, and the ar
rows denote the images with lowest chroma and lowest colour tempera
ture of the reference white, respectively.

17



2. Image quality semantics

the CIELUV colour space (recommended in 1979 by the Commission Inter
nationale de l' Eclairage) as an appropriate, perceptually uniform colour
space.

In CIELUV, the image can be thought of as a "cloud of dots", each dot cor
responding to one pixel in the image. Scaling chroma can be described as a
radial contraction or expansion of the cloud of dots towards or away from
the reference white, while changing the colour temperature of the refer
ence white can be described by a displacement of the entire cloud along
the yellow-blue direction. The relevant difference between the two manip
ulations follows quite directly from their descriptions in CIELUV: chang
ing chroma results in increased or decreased distances in colour space be
tween any pair of dots of which the members do not represent exactly the
same colour, while changing the colour temperature of the reference white
has no effect on these distances.

Contrary to manipulations which preserve distances in colour space, ma
nipulations which do affect distances in colour space will also affect the
precision with which the image can be represented internally (since at a
presumed, constant level of internal noise, affecting distances in a percep
tually uniform space is equivalent to affecting an internal "signal-to-noise
ratio"); and hence the usefulness of the image. The above discussion can
therefore be concluded as follows: manipulations which do not affect the
usefulness of an image, for example, changing the colour temperature of
the reference white, will have approximately identical parameter settings
for optimising the naturalness and the quality of the image. Manipula
tions which do affect the usefulness of an image, for example, changing
chroma, will have different parameter settings for optimising the natu
ralness or the quality of an image. In the latter situation,. the parameter
settings optimising quality will tend to deviate with respect to those op
timising naturalness towards values which increase the usefulness of the
image.

2.4.2 Experiment 2: Image quality regarded as a compro
mise between naturalness and usefulness

Aim

In order to test the description of image quality in terms of a compromise
between naturalness and usefulness, we devised an experiment in which
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we manipulated the brightness contrast of black-and-white images of nat
ural scenes. Assuming that (1) usefulness is linearly related to perceived
brightness contrast; and (2) the compromise can be adequately described
by a linear combination of naturalness and usefulness, we may write im
age quality Q in terms of naturalness N and brightness contrast Cas:

(2.1)

and fit the vector Xto subjects' judgments of quality, naturalness and con
trast as obtained in the experiment.

Description

The experiment was performed using four black-and-white images of nat
ural scenes, obtained by transforming images from a Kodak Photo CD to
the CIELUV colour space and setting u* and v* to zero. We then applied
the global, pixel-wise transformation:

L*'

L*'

(2.2)

(where L* represents the original lightness value of a pixel, L*' its new
value, and the subscripts "min", "max" and "ave" indicate the minimum,
maximum and average lightness values of the original image) on the im
age using for "( the values 0.25, 0.35, 0.50, 0.71, 1.00, 1.41, 2.00, 2.82 and
4.00. Applying this transformation will, for "( < 1 decrease, and for "( > 1
increase the brightness contrast of the image. The minimum and maxi
mum lightness of the image are not affected, while in general the average
lightness will remain at approximately the same lightness value.

Eight subjects participated in the experiment. In three separate sessions
they were shown on a CRT the complete set of images, in random order,
with three replications. In the first session, subjects' task was to judge the
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quality9 of the image, in the second to judge the brightness contrast10 of the
images, and in the third session to judge the naturalnessll of the images.
Subjects were instructed to use an eleven-point numerical scale ranging
from 0 ("bad" or "low") to 10 ("excellent" or "high").

Results

Contrast judgments (averaged over subjects and scenes) versus the param
eter 'Yare shown in figure 2.5. The figure shows that, as expected, contrast
increases for increasing values of ""y. Figure 2.6 shows quality judgments
(diamonds, averaged over subjects and scenes) and naturalness judgments
(triangles, also averaged) versus contrast judgments (also averaged). The
curve for quality is shifted with respect to the curve for naturalness to
wards higher values of contrast; a result which is similar to the results for
the condition chroma in experiment 1. To conclude, figure 2.7 shows qual
ity judgments versus naturalness judgments. The V-formed shape already
found in experiment 1 is clearly visible.

Interpretation

We again find a high (r = 0.95) correlation between naturalness judgments
and quality judgments, confirming that naturalness is a principal factor
constituting image quality. The shift of the curve for quality with respect
to the curve for naturalness towards higher values of contrast can readily
be interpreted when realising that higher contrast allows for more accu
rate detection and localisation of edges in the image, and thus for a more
precise internal representation of the image.

The least-squares fit of our model to the quality judgments obtained in the
experiment is given by:

Q
X

)'qN + A2C + A3
(0.90,0.25, -1.08). (2.3)

Figure 2.8 shows this fit (circles), together with the quality (diamonds) and

9Defined as "the degree to which you like the image".
IODefined as "apparent light-density differences".
IIDefined as "the degree to which the image seems realistic to you",
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angles) versus contrast judgments (all averaged over subjects and scenes).
The figure also shows the model fit (circles). The error cross denotes a dis
tance of two average standard errors in the mean, and the arrow denotes
the image with lowest 'Y.

naturalness (triangles) judgments. The correlation between the fit and the
quality judgments is very high (r = 0.99). Considering (1) the primitive
nature of the model; and (2) the strong non-linearity of the correlation co
efficient as a measure for goodness-of-fit (that is, goodness-of-fit increases
strongly for correlation r approaching one), we may conclude that our de
scription of image quality in terms of a compromise between naturalness
and usefulness fits the data very well.

2.5 Concluding remarks

In pursuing a top-down, analytical approach, we have achieved a funda
mental interpretation of the processes which playa role in the estimation
of the attribute "quality" of an image. We have argued that image qual-
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ity is, to the observer, a useful attribute of an image, expressing how well
the observer is able to employ the image as a source of information about
the outside world; a view of image quality which is strikingly different
from the "perceived distance to the original" philosophy often employed
in image quality research.

The results of the experiments discussed in the previous sections support
the concept developed here that the quality of an image can be described in
terms of a compromise between the naturalness and the usefulness of that
image. A logical next step to proceed from this point onwards would be to
more thoroughly specify the naturalness and usefulness requirements im
posed upon an image, for example, by means of formulating algorithms.
Implementations of such algorithms will enable (1) the development of
instrumental measures for the prediction of image quality; and (2) estima
tion of parameter settings optimising the quality of images.

At this point, two generalisations of the ideas discussed here may be in
teresting to note. First, our description of quality is essentially formulated
independently of modality, suggesting (1) the possibility of simply applying
the same ideas to, for example, the fields of sound or speech quality; and
(2) the possibility to generalise the current description of image quality
to a multi-modal semantic description of perceived quality of information
presentation. It is highly likely that such a description will prove valu
able in the design and evaluation of applications in which a multi-modal
presentation of information plays a central role.

Second, in our description of image quality we have concentrated on the
requirements imposed upon the information which is acquired from the
environment. However, requirements ensuring a proper interaction be
tween observer and environment should necessarily include requirements
which ensure the ability to adequately respond to the environment. These
requirements may then, in general, be imposed upon the means the ob
server is employing to control his environment. Such an approach is likely
to result in a general theory of the quality of man-machine interaction12 .

12See chapter 6 for a short discussion of two philosophical issues involved in this.
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Chapter 3

Visual n1.etrics: discriminative power
through flexibility

Abstract

An important stage in visual processing is the quantification of optical at
tributes of the outside world. We argue that the metrics used for this quan
tification are flexible, and that this flexibility is exploited to optimise the
discriminative power of the metrics. We derive mathematical expressions
for such optimal metries and show that they exhibit properties resembling
well-known visual phenomena. To conclude, we discuss some of the im
plications of flexible metrics for visual identification.

3.1 Introduction

Vision is often referred to as "inverse optics" (Poggio & Koch 1985), that
is, the process of measuring the characteristics of an optical image of the
eiwironrnent and reconstructing the material properties of this environ
ment. Defined this way, vision involves a stage in which optical attributes
of the outside world and the objects located within it are measured and in
ternally quantified. Examples of such internally quantified measures are
position, shape, size, texture, colour and brightness. The metrics used for
this quantification will be the main topic of our discussion.

First, to clarify what we mean here by the term metric, we will consider

°This chapter is a slightly modified version of Janssen & Blommaert (1999c).
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the measurement process. To enable the measurement of the strength of a
certain attribute, an origin and a unit must first be selected. For example, to
measure temperature one might select the melting point of water for the
origin, and select one hundredth of the temperature difference between
the boiling point and the melting point of water for the unit. Unit and
origin together define a scale, in this case the Celsius temperature scale.
Thus, to measure the temperature of an item one would take the temper
ature difference between the item and the origin of the scale and express
this difference in the number of temperature units. The number obtained
in this way is the Celsius scale value for this particular temperature.

In the above example, equal differences in the attribute strength will lead
to equal differences in the scale value. Scales having this property are re
ferred to as linear scales, since the relation between attribute strength and
scale value is linear. Most familiar scales are of this type, however some
well-known scales are not. Take, for example, the dB scale for sound pres
sure or the pH scale for the degree of acidity. These scales are known as
logarithmic scales, since their unit is not defined in terms of a difference
but instead in terms of a ratio. For logarithmic scales, equal ratios in the at
tribute strength lead to equal differences in the scale value, and the relation
between attribute strength and scale value therefore is logarithmic. For a
certain scale, the exact relation between attribute strength and scale value
is made explicit by the scale junction. The scale function, together with the
scale, the origin and the unit, defines what is called a metric (Watt 1989).

Standardised metrics as the Celsius, dB or pH metrics share one important
and useful property: rigidity. Rigidity refers to the property that the scale
function is uniquely defined and constant throughout time. For most mea
surements this property is essential. The Celsius temperature scale would
be of little value when a temperature of 37° C as measured today would be
different from a temperature of 37° C as measured tomorrow. At least, pre
dicting tomorrow's temperature in terms of the Celsius temperature scale
would make little sense. Rigidity of a metric allows for a unique specifica
tion of the attribute strength in terms of the scale value; 37° C is one and
the same temperature, whenever and wherever you measure it.

We now return to vision and visual metrics. Traditionally, the view in vi
sual research has been that visual metrics, such as the brightness metric,
are essentially rigid (Weber 1846, Fechner 1860, Riesz 1933, Stevens 1957).
Several exceptions to this rigidity are well known, for instance dark- and
light-adaptation and crispening for the case of brightness, however each
of these phenomena has traditionally been described and modelled sep-
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arately. As far as we know, there have been few attempts to unify these
phenomena into one consistent description.

What we will try to do here is to follow an approach in which we will
regard visual metrics no longer as being rigid. More specifically, we will
assume that visual metrics are: (1) limited in range, that is, the scale has
fixed lower and upper bounds; (2) limited in accuracy, that is, scale val
ues cannot be represented with arbitrary precision due to the presence
of noise; (3) intrinsically flexible (Blommaert 1995), which means that the
scale function is allowed to vary in time; and (4) optimised with respect to
overall discriminative power (Blommaert 1995, Watt 1989, Watt 1991), which
means that the scale function is chosen such that the ability to discrim
inate between items in the outside world using the scale values of their
measured attributes, is maximised.

We will divide our discussion of flexible metrics into four parts. First,
we will consider the above four assumptions and discuss how and under
what circumstances flexibility can be exploited to improve the discrimina
tive power of a metric. Second, we will derive mathematical expressions
for metrics satisfying the above assumptions. Third, using the obtained
expressions we will explore some of the properties of these metrics, and
relate these properties to well-known visual phenomena, namely bright
ness constancy and crispening. Last, we will consider some of the conse
quences of flexibility for the process of visual identification.

3.2 The usefulness of flexibility

We have assumed that visual metrics are limited in range and accuracy
and, most importantly, that they are flexible and optimal with respect to
discriminative power. The assumptions of limited range and limited ac
curacy seem straightforward, certainly when the constraints imposed by
physical, or biological, implementations of these metrics are taken into ac
count. Flexibility, however, is a less straightforward assumption. Flexibil
ity mayor may not prove useful, depending on the type of measurement
which is performed. Noticeably, a measure requiring a strict one-to-one
correspondence of the scale value with the attribute strength, as in the ex
ample of the temperature scale, will leave little space for flexibility of the
metric.

The goal of early visual processing, however, is to extract the maximum
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possible amount of the information contained within the optical image,
and to represent this information in a way which maximises its usefulness
to the organism. Here, usefulness does not necessarily imply a one-to
one correspondence with reality. Instead, a more meaningful criterion for
usefulness often is the ability to discriminate between items in the outside
world based on information about these items as it is represented inter
nally. For example, the ability to discriminate between items on the basis
of their colours may often be more important than establishing the exact
colours of these items. For the aim of discriminative power, a one-to-one
correspondence between internal representation and outside world is un
necessary. In fact, it is likely that such strict correspondence only decreases
the ability to discriminate.

How can flexibility be exploited to improve discriminative power? To an
swer this question we will consider the assumptions of limited range and
accuracy again. When scale values cannot be represented with arbitrary
precision, for example due to the presence of noise, the ability to discrim
inate items in the outside world using their scale values will essentially
be limited by the noise level. Items will only be discriminable when their
scale values are at least in the order of one noise level apart and, assum
ing the noise level to be constant, discriminability will increase mono
tonically with scale value difference. Ultimately, to increase the overall
discriminative power of a metric all scale value differences should be in
creased. Again assuming the noise level to be constant, this could be done
by "stretching" the entire scale to a larger range. However, this range was
assumed to be limited and constant.

Alternatively, overall discriminative power may be increased by locally
stretching the scale, by means of locally increasing the derivative of the
scale function, and by compressing the scale elsewhere. Such a mecha
nism allows for increased scale value differences while it simultaneously
preserves the range of the metric. When the locations where the scale is
stretched or compressed are carefully chosen, this may lead to a signifi
cant increase in overall discriminative power. This principle is illustrated
in figure 3.1. The figure shows a simplified situation for the example of
brightness (the internal measure) versus luminance (the attribute strength,
given on a logarithmic scale). The situations for rigid and flexible metrics
are shown in the left and right panel, respectively. The open circles on
the luminance axes denote the luminances of a set of items under daylight
illumination. The filled circles denote the luminances of the same set of
items, this time under nocturnal illumination conditions.

30



luminance (log)

3.2. The usefulness of flexibility

(/)

~ metric during day
:E and at nightft

ht : da

(/)
(/)
Q)
c:
E
OJ.C:
.0

metric
during day

Figure 3.1: Rigid metric versus flexible metric. Simplified case for bright
ness (internal measure) versus luminance (physical attribute, on a loga
rithmic scale). Shown are the luminances and corresponding brightnesses
of a set of items under daylight (open circles) and nocturnal (filled circles)
illumination conditions.
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First, consider the left panel of figure 3.1. For a rigid metric to be able to
represent all possible attribute strengths, the entire range of the attribute
strength somehow has to be mapped onto the internal scale. For the case of
luminance the range of the attribute strength is estimated to be ten orders
of magnitude, however at any particular moment the luminance range
found is typically only a small fraction of this entire possible range, usu
ally only about three orders of magnitude (McCann 1988). Thus, even
if the scale function of our rigid metric would be logarithmic, only about
thirty percent of the metric would really be used at any particular moment.
Boldly stated, this would be a waste of resources.

By locally stretching the scale we might increase all scale value differences
by a factor of up to three, thereby significantly increasing overall discrimi
native power at any particular moment. However, to do this effectively,
the locations where to stretch the scale need to depend on the current
range of the attribute strength. Intuitively, the conclusion may already be
that the amount of stretching of the scale must be closely related to the mo
mentary distribution of the attribute strength, as shown in the right panel
of figure 3.1. Here we encounter flexibility again, since in this case the
scale function must be allowed to "follow" fluctuations in the momentary
distribution of the attribute strength.

In the above discussion we have assumed the presence of noise, and it is
therefore important to characterise the sources of this noise in more de
tail. First, we distinguish noise sources acting directly upon the attribute
strength. For the case of luminance such a noise source would be photon
noise. Second, we distinguish noise sources acting directly upon the scale
value. When scale values are assumed to be encoded in neuronal impulse
rates, random variability in these rates may be regarded as such a noise
source. The first type of noise typically originates outside of the "mea
suring device", whereas the second type is generated by the measuring
device itself. We will therefore refer to the first and second type of noise as
external and internal noise, respectively. Figure 3.2 gives a graphical sum
mary of this. Both internal and external types of noise can be regarded as
compound noise, that is, each type can be thought to consist of a number
of independent contributions from different sources. Usually, compound
noise can be adequately modelled by assuming that the noise has Gaussian
properties. This assumption will also facilitate the mathematical descrip
tion in the next section, since Gaussian noise can be completely speCified
in terms of the two parameters mean and standard deviation.

Before we can start to derive mathematical expressions for optimal met-
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external noise internal noise

attribule -Lll7LlL L scale
strength-~-~~~ value

scale function

Figure 3.2: Block diagram showing the definitions we use here of external
and internal noise.

rics, we will need to define a measure for overall discriminative power.
The measure we will use here is the total number of topological errors made
in the mapping of attribute strength onto scale value. Such topological er
rors occur when the ordering of a set of items by their scale value differs
from the ordering of this same set of items by their attribute strength. The
main justifications for this choice of measure are: (1) the number of topo
logical errors is likely to be highly correlated with discriminative power,
since when topological errors occur, discriminative power must be poor;
and (2) the number of topological errors is a straightforward measure to
calculate.

3.3 Recipe for an optimal metric

3.3.1 Problem specification

Assume that the values of the attribute strength x (for example, lumi
nance) are measured for a given set of N items (an abstraction for the
environment), and that the momentary distribution of the values of x for
this set of items is given by J-t(X)l. Furthermore, assume that the measure
ment results are represented by scale values on an internal scale s which
is monotonic with x, that is, s = s(x) and ds(x) / dx ~ 0 for all x, where s(x)
is the scale function. Notice that monotonicity is required here, since any
deviations from monotonicity will inevitably result in topological errors
being made in the mapping from x to s. The momentary distribution of

lIn this chapter, /-L(x) is defined such that Ix /-L(x)dx = N, where X is the range of the
attribute strength x and N is the number of items.
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the scale values on s for a given distribution J1(x) of the attribute strengths
and a given scale function s(x) will be referred to as ry(s). If we want to
optimise the scale s such that overall discriminability of the items on s is
maximised, an obvious strategy here is to find the scale function s(x) which
minimises the number of topological errors.

The solution to this problem is as follows. Consider a small interval ds on
the scale s; the number of scale values in the interval ds is then given by
ry(s)ds. When the probability of a topological error is written as a function
of s, that is, pe = Pe(s), we may write the number of topological errors in
the interval ds as:

Ne,ds = Pe(s)ry(s)ds. (3.1)

The total number of topological errors, N e, is found by integrating this
expression along the entire scale. Assuming that the range of the scale is
given by 5, we thus find:

Ne =1Pe(s)ry(s)ds. (3.2)

Based on the assumption that the noise limiting the precision with which
scale values can be represented is Gaussian, we show in appendix 3.6 that
the probability of a topological error can be expressed as a monotonic func
tion2 of the total noise level O"(s) times the item density ry(s):

1 1 1
Pe(s) = 2: - 2: erf 2ry(s)0"(s) (3.3)

Assuming Gaussian noise propagation, the total noise level in equation 3.3
can be expressed in terms of the internal noise level O";(s) and the external
noise level O"e(x(s» as:

(3.4)

Finally, the link between ry(s) and J1(x) has to be made to solve the problem.
This link follows from s(x) being monotonic and the number of items being
preserved, that is:

2Figure 4.4 in chapter 4 shows a plot of pc(s) versus d/cr(s) (where d = 1/1](5)).
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1](s)ds = f-l(x)dx. (3.5)

The optimal scale s is found by substituting equations 3.3, 3.4 and 3.5 into
equation 3.2 and minimising the resulting equation for ds(x) / dx.

Before trying to solve the set of equations 3.2-3.5, we will first consider
an important consequence of equation 3.4. We have argued that locally
stretching the scale can be used to increase discriminability. By regarding
equation 3.4 we may investigate under what circumstances this mecha
nism will work. To this end, consider that the derivative of the scale func
tion, ds(x) / dx, is used here as the instrument to increase the scale value
difference ds of two items with attribute strength difference dx:

(3.6)

Discriminability of these two items will be determined by the ratio of scale
value difference to the total noise level (SNR):

SNR
ds

I7(S)

_1 (dS(X)) dx.
I7(S) dx

(3.7)

where I7(S) is given by equation 3.4. We now distinguish between two ex
treme cases: (1) external noise dominant; and (2) internal noise dominant.
For the first case, equation 3.4 can be approximated by:

(
dS(X))I7(S) = I7c(X(S)) dX .

The ratio of scale value difference to total noise level then reduces to:

dx
SNR = I7c(X(S)) '

(3.8)

(3.9)

which is independent of ds(x) / dx. When the influence ofexternal noise is dom
inant, discriminability cannot be improved by stretching of the scale! For the
second case, equation 3.4 can be approximated by:
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0-(5) = 0-;(5),

and equation 3.7 reduces to:

SNR = (d5(X)) ~.
dx 0-;(5)

(3.10)

(3.11)

Here, SNR increases proportionally with the amount of stretching of the
scale, and therefore stretching of the scale can indeed be used as a mech
anism to improve discriminability. Having observed this, we will in the
remainder of our discussion assume that the influence of internal noise is
dominant, that is, we will assume that equation 3.4 can be approximated
by equation 3.10. In some situations this assumption may not be true, for
example at very low illumination levels where photon noise becomes im
portant.

3.3.2 Solution

We start deriving the solution to our problem by regarding the Maclaurin
series of the error function:

2 00 zZm+l
erfz= - L ---

yIir m=O m!(2m + 1)
(3.12)

Substituting z = 1/(27](5)0-(5)) in equation 3.12 and substituting the result
in equation 3.3, we get:

1 1 00 (27](s)0-(s))-(Zm+l)
Pe(s) = 2- yIir];o m!(2m + 1) . (3.13)

Substituting the obtained expression for Pe(s) in equation 3.2, we find for
the total number of topological errors N,,:

1(1 1 00 (27](S)0-(sn-(Zm+l»)- - - L 7](s)ds
s 2 yIir m=O m!(2m + 1)

11 1 00 1(27](S)0-(S))-(z.m+l)7](S)
- 7](s)ds - - L ds.
2 s yIir m=O S m!(2m + 1)
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The first term of equation 3.14 is constant, since 'T](s) integrated over the
range 5 should always be equal to N, the number of items. As can be con
cluded from equation 3.14, the contribution dNeof each individual term in
the sum of equation 3.14 to the total number of errors N e has the general
form:

(3.15)

where n = -(2m + 1) and all Cn are negative. We will first concentrate
on finding a solution for this general form, and then infer the solution of
equation 3.14 from it. When equation 3.5 is substituted in equation 3.15,
the latter can be written as:

(
d ( ))-n

dNe= CnIx a(s(x)t JL(xt+1 ~: dx, (3.16)

where X is the range is the attribute strength. Assuming that internal and
external noise are additive, the noise levels will be constant, that is, aj(s) =
aj and ae(x) = ae. Using equation 3.4, we obtain:

dN = 1(2 (dS(X))
2

2)n/2 ( )n+l (dS(X))-n de Cn a, + d ae JL x d x,
x x x

(3.17)

which should be minimised for ds(x)/dx. As discussed at the end of the
previous section, we will look at the solution of equation 3.17 for the case
that internal noise is dominant, that is, we assume that ai » (ds(x)/dx)ae
and approximate equation 3.4 by equation 3.10. For equation 3.17 we then
find:

CnIx afJL(X)n+l (d~~)) -n dx

cnaf Ix JL(xt+1 (d~~)) -n dx, (3.18)

since a, was assumed to be constant. The problem of minimising equa
tion 3.18 is an example of the general problem of finding the extremes of
the integral:
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l
X2

J = ¢(x, y, y')dx,
Xl

(3.19)

where y = y(x) is some function of x, y' = dy(x) / dx and ¢ is a function of
the variables x, y and y'. The integral of equation 3.19 can be interpreted
as a line integral along some path r = y(x) joining the points (Xl, YI) and
(xz, yz), see, for example, Irving & Mullineux (1959). Therefore, the prob
lem is to find the path ro = Yo(x) which extremises the integral J. The
solution to this problem is given by the Euler-Lagrange equation:

8¢ _~ (8¢) -0
8y dx 8y' - ,

which, when ¢ does not contain y explicitly, reduces to:

~ (8¢) _0
dx 8y' - .

Integrating equation 3.21 with respect to X yields:

(3.20)

(3.21)

(3.22)

where k is a constant. After substitution of y' = ds(x)/dx and of ¢ =
J.1,(x)n+I(ds(x)/dx)-n into equation 3.22 we obtain the solution to our prob
lem:

ds(x) = k' ( )
dx J.1, x. (3.23)

By integrating equation 3.23 over the range X, it can easily be shown that
the constant k' must be equal to 5/N. Interestingly, the solution we have
found is independent of the value of n, which means that we have found
one solution which extremises every individual term in the sum of equa
tion 3.14. The entire sum will therefore be extremised as well, and equa
tion 3.23 represents the solution to the overall problem of minimising Ne

in equation 3.14.

The solution we have found here resembles histogram equalisation of J.1,(x)
since, substituting equation 3.23 into equation 3.5:
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7](S) Jl(X) ( d~~)) -1

constant. (3.24)

Histogram equalisation is a well-known image processing tool used to in
crease image contrast or detectability of image features, see, for example,
Ballard & Brown (1982). The principal difference between the solution we
find here and standard histogram equalisation is that here the character
istics of a flexible "measuring device" are adapted to the characteristics of
the input signal, whereas in histogram equalisation the characteristics of
the input signal are adapted to a supposedly rigid measuring device.

3.3.3 Flexibility versus rigidity: performances compared

How much can be gained by using flexible metrics? To obtain an im
pression of this, we used for the momentary distribution Jl(x) the calcu
lated luminance distributions of forty digitised images of natural scenes
taken from a Kodak Photo CD, assuming that these images were to be dis
played on a CRT (cathode ray tube) with 'Y = 2.5. We then assumed three
types of brightness metric: (1) a linear metric, that is, a metric of the type
s(x) = x/xo, where Xo is an arbitrary reference value such that x/xo ~ 1; (2)
a compressive metric, that is, a metric of the type s(x) = (1 + (3)(x/ XO)1/3 - f3
(which for .8 = 0.16 is proportional to CIE 1976 lightness L*, see Hunt
(1992)); (3) an optimal metric, that is, a metric according to equation 3.23.
The optimal metric therefore varied from image to image, whereas the
other metrics remained invariant. To facilitate a comparison of the per
formances of the three metric types, their ranges were chosen such that
s(x) E 5 = [0,1] for all x E X = [0, xo].

We then calculated, using equations 3.2, 3.3 and 3.5, for each image and
each type of metric the number of topological errors Nc• To this end, we
assumed that the total noise level a(s) is dominated by a constant internal
noise level ai equal to one percent of the range of the metric, that is, we
assumed that a(s) = ai = 0.015 = 0.013 . Furthermore, we scaled the dis
tributions 7](s) by a factor one hundred, thereby assuming that each image
contained exactly one hundred items to be discriminated.

3This assumption is consistent with a dynamic range of approximately 100 JND's (just
noticeable differences).
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Figure 3.3: Discriminability, expressed in the number of topological errors,
calculated for forty images of natural scenes and for three types of metric:
linear, compressive and optimal.

Figure 3.3 shows frequency distributions of the number of topological er
rors for the linear, compressive and optimal metrics. Note that the num
ber of topological errors for the optimal metric is the same for all images,
something which is explained by 1](s) being constant and independent of
J-l(x) for optimal metrics. Figure 3.3 shows that, as expected, the optimal
metric outperforms the two rigid metrics; the average number of topolog
ical errors for the linear, compressive and the optimal metrics is 34.0 ± 3.8,
29.3 ± 2.2 and 24.0, respectively.

It is important to realise here that the above performance difference as
calculated for digitised images is still relatively low, since the luminance
ranges of the individual images are mapped into approximately the same
range as a result of nearly optimal choices for diaphragm and exposure
times when the images were taken. It is in everyday situations, where
luminance ranges differ enormously, where the improved performance of
flexible metrics becomes a distinct advantage.

3.3.4 Concluding remarks

Two important issues relating to the momentary distribution J-l(x) of the at
tribute strength x have so far not been addressed. The first issue is related
to the influence of the factors time and location on J-l(x). Consider, for ex
ample, the influence of time. According to the ideas we have forwarded,
the scale function of a flexible metric should instantaneously follow any
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changes in the momentary distribution of the attribute strength. However,
adaptation in real vision is known to be much faster when the illumina
tion level increases then when the illumination level decreases. Although
this asymmetry may simply be due to constraints in the biological imple
mentation of the adaptation process, it may also serve to reduce the risk of
physical damage resulting from exposure to high illumination levels.

The second issue is related to the concept of p,(x) itself, which is ill-defined
in the context of real vision. We have introduced p,(x) as the momentary
distribution of the attribute strength of "a set of items". The question arises
what the correlate of p,(x) may be in real vision. Considering that flexibility
can be most successfully exploited during the earliest stages of visual pro
cessing, where measures of attribute strength are least affected by the cu
mulative influence of internal noise, we may conclude that it would have
to be a very early visual property.

Notwithstanding these issues, many well-known properties of vision fit
in very well with the description of optimal visual metrics we have de
rived. For example, it can easily be shown that optimal metrics as speci
fied by equation 3.23 exhibit properties which resemble phenomena such
as dark- and light-adaptation, brightness constancy (Whittle 1994a), and
crispening (Whittle 1994b). First, to demonstrate the case for brightness
constancy, consider that when the momentary luminance distribution is
given by p,(x), the brightness So of an item with luminance Xo is given by:

So j XO ds(x)
--dx

-00 dx
5 jXO
N -00 p,(x)dx. (3.25)

When the illumination level changes by a factor e, all luminances will in
crease by this factor, since luminance is the product of illuminance and
surface reflectance, and surface reflectance remains constant. We there
fore find that the new luminance x~ of our item will be equal to exo, and,
in analogy, that the new luminance distribution p,'(x) will be equal to
lie· p,(xle). The new brightness s~ of our item is given by:

5 jX;,
s~ N -00 p,'(x)dx

5 jCXO 1 x
- -p,( - )dx
N -00 e e
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5 JXO
N -00 J.L(x')dx'

(3.26)

that is, the brightness of our item is not influenced by the illumination
level.

Second, to demonstrate the case for crispening, consider that for a smalllu
minance difference dx the corresponding brightness difference ds is given
by:

ds

(3.27)

The background luminance Xo will usually appear in the luminance dis
tribution J.L(x) as a distinct peak for x = xo. We therefore find that, for a
constant luminance difference dx, the associated brightness difference ds
will also peak around x = xo. In other words, we find that sensitivity for
luminance differences is highest around the background luminance.

To conclude this discussion, we would like to stress that the above phe
nomena can now be understood as logical consequences of visual metrics
having one essential property which itself is extremely useful: continuous
optimisation of discriminative power by exploiting flexibility.

3.4 Vision & visual memory

3.4.1 Visual identification: vision versus memory

The ability to discriminate between items based on their visual attributes is
essential to any seeing organism. However, advanced vision is also char
acterised by the ability to identify or recognise items or item properties
using past observations of these items. For this process we will assume
the simple model shown in figure 3.4, in which identification is performed
by comparing, or matching, scale values of measured item attributes with
"standards" stored in memory.
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attribute strength

scale function

matching

memory standards

accumulation

Figure 3.4: A simple model for the identification of items in the outside
world. Identification is assumed to be performed by means of matching
scale values with standards stored in memory. The memory standards
themselves are assumed to be constructed by means of accumulation of
scale values of past observations.
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The obvious way in which these standards are themselves constructed in
memory is by the accumulation of past observations of the items. Such
a long-term temporal integration will inevitably result in memory stan
dards which are essentially rigid, at least when regarded on short-term
intervals. This finding immediately raises an interesting question: how
are observations, represented by scale values on a flexible visual metric, to
be compared with standards which are essentially rigid?

3.4.2 Calibrating visual metrics

One way to cope with the above problem of comparing measurements
represented on a flexible visual metric with rigid memory standards, is to
"calibrate" the visual metric. Such calibration can be performed in several
ways. We distinguish three possible calibration methods:

• First, the visual metric can be calibrated when the noise properties,
or estimates of these, are known. Referring to equation 3.4, the met
ric can be found using:

0"(S)2 - O"j(S?

O"e(X(S))2
(3.28)

• Second, the attributes of already recognised items can be used to
estimate the current visual metric. This method explicitly requires
that other item attributes be used to recognise these items first. For
example, shape might be used to identify several items first, after
which their "known" colours could be used to calibrate the metric
for colour.

• Last, invariants in the momentary distribution of the attribute
strength can be used to roughly estimate the current metric. Well
known invariants include the grey-world assumption and the as
sumption that the brightest item is perfectly white. Other, more com
plex invariants may include various statistical assumptions about
the momentary distribution of the attribute strength.

It is highly likely that other ways of calibrating the visual metric exist, in
cluding combinations of various calibration methods. However, another,
perhaps more interesting situation occurs when the visual metric is left
uncalibrated.
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3.4. Vision & visual memory

3.4.3 Uncalibrated visual metrics: partial flexibility

The only information available for the accumulation and matching pro
cesses mentioned above is the measured attribute as represented by its
scale value on the visual metric. When this metric is left uncalibrated,
memory standards inevitably become fuzzy due to variability in the scale
value as caused by the flexibility of the visual metric. Therefore, besides
the difficulties which arise when this scale value is to be compared with
memory standards, these memory standards themselves become less pre
cise. It may therefore be useful to restrict the flexibility of the visual metric.

Assume that such restricted, or partial, flexibility can be formalised by in
troducing the eternal distribution J-le(x), that is, the momentary distribution
J-l(x) integrated over a long-term interval. We can now introduce a weight
ing parameter 0 :S .A :S 1 expressing the relative importances of J-l(x) and
J-le(x) for the current visual metric s(x). When equation 3.23 is generalised
to:

(3.29)

.A can be regarded as the degree offlexibility of the visual metric. The influ
ence of flexibility on the variability in the scale value is now easily shown
to be proportional to the degree of flexibility, since:

So j XO ds(x)
--dx

-00 dx
5 jXO
N -00 (.AJ-l(x) + (1 - .A)J-le(x» dx

5 jXO 5 jXO
N.A -00 J-l(x)dx + N(l -.A) -00 J-le(x)dx, (3.30)

where the first term represents the variability in the scale value So for a
given attribute strength Xo. This variability, together with variability in
Xo itself and together with the influences of external and internal noise,
will be the main source of fuzziness of memory standards when the lat
ter are assumed to be constructed by accumulation of scale values of past
observations. Therefore, although partial flexibility will result in reduced
discriminative power, memory standards will be less fuzzy and the com
parison of scale values with these standards will be facilitated. The degree
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of flexibility of the visual metric then becomes the subject of optimisation
in which both discriminability and identifiability playa role.

To conclude, the combination of an uncalibrated flexible metric with rigid
memory standards should lead to contextual effects when what is ob
served is judged in relation to what is represented in memory. Interest
ingly, Yendrikhovskij, Blommaert & de Ridder (1998) found such contex
tual effects. In a series of experiments, subjects were asked to judge the
similarity of the object colour of a banana located on differently coloured
backgrounds and displayed on a CRT to what they thought was the colour
of a prototypical ripe banana. Subjects' judgments showed a significant
influence of the colour of the background. This influence suggests that
what is compared to the memory prototype is the apparent object colour,
that is, the object colour as it is observed without correction for the colour of
the surroundings. This is an important experimental result which seems to
indicate that visual metrics are not calibrated.

3.5 Conclusions

We have shown that flexibility of a metric can be exploited to optimise
the overall discriminative power of this metric. We have derived math
ematical expressions for optimal metrics, and we have shown that such
optimal metrics exhibit properties which correspond to well-known vi
sual phenomena, such as brightness constancy and crispening. We have
argued that these phenomena can therefore be understood as logical con
sequences of visual metrics being flexible and optimal with respect to dis
criminative power.

Furthermore, we have briefly investigated some of the consequences of
flexible visual metrics for the process of visual identification. We have
examined the problems which arise when observations represented on a
flexible visual metric are compared to memory, and we have proposed two
mechanisms for dealing with these problems. The first proposed mecha
nism is based on calibrating the visual metric. The second proposed mech
anism leaves the visual metric uncalibrated and instead restricts the flexi
bility of the visual metric.
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3.6 Probability of a topological error

Consider the mapping from attribute strength x to scale value s. Ideally,
for two items i and j this mapping will be given by Sj = s(Xj) and Sj = s(Xj).
However, due to the presence of noise we need a statistical description of
this mapping:

N(S(Xi), a(s(xj)))

N(s(xj), a(s(xj))), (3.31)

where N is the normal probability density function, x is the ideal noiseless
attribute strength, s(x) the scale function, and a(s) the total noise level.
Now, if we assume that item j is the successor of item i in terms of or
dering the items by attribute strength, we may use the approximations
Xj - Xi = 1/JL(x), s(Xj) - s(Xj) = 1/T](s) and a(s(xj)) = a(s(xj)) = a(s), where
JL(x) and T](s) are the momentary distributions of attribute strength and
associated scale value, respectively. We may now write the probability
density function for the scale value difference ds = Sj - Si as:

ds = N(I/T](s), a(s}\I2). (3.32)

A topological error occurs when item j becomes the predecessor of item i
in terms of ordering the items by scale value, that is, when ds < O. To find
the probability of a topological error, we must therefore integrate equa
tion 3.32 from ds = -00 to ds = 0:

Pe(S) = [0
00

N (1/T](S), a(s)v'2) d(ds). (3.33)

Using the linear transformation u = (ds-l!TJ(s))/a(s), this can be ex
pressed as:

or, equivalently, as:

1
_('1(S)O"(S)v'2)-l

Pe(S) = -00 N(O,I)du,

1 1 1
Pe(s) = 2" - 2" erf 2T](s)a(s)
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Chapter 4

Predicting the usefulness and naturalness
of colour reproductions

Abstract

We present algorithms for predicting the usefulness and naturalness of
colour reproductions of natural scenes. The algorithms are based on a
computational model of the stages which lead to an observer's impres
sion of the usefulness and naturalness of an image. These stages are (1)
the perception, or internal quantification, of colour; (2) the construction of
a memory standard for an object's colour based on its colour as observed
in the past; and (3) matching of observed object colours with memory stan
dards. In the first of the above stages, the internal quantification of colour,
the concept of (partially) flexible metrics (chapter 3) plays a central role.

To test the usefulness algorithm, it was used to predict the discriminabil
ity of detail in black-and-white images of which the contrast was manip
ulated by applying an s-shaped transform on CIE 1976 lightness L*. The
naturalness algorithm was tested by using it to predict the naturalness of
the grass, skin, or sky areas of images of which the colour was manipu
lated by shifting CIE 1976 hue angle huv and scaling CIE 1976 saturation
Suv of the grass, skin, or sky areas of the images. The predictions produced
in these tests correspond quite well to experimentally obtained judgments
of human subjects.

°This chapter is a slightly modified version of Janssen & Blommaert (1999b).
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4.1 Introduction

Image quality is often considered in terms of a difference signal between
the current, reproduced image and its "unprocessed" or "original" ver
sion. Well-known examples of this approach include JND (just-noticeable
difference) maps (Daly 1993) and SQRI (square root integral) measures
(Barten 1990), both of which are based on processing of the image and its
original by implementations of visual front-end models and subsequent
calculation of a difference measure from the two processed images. A se
rious drawback of this approach is that the fundamental question of what
image quality is remains unanswered, as is the related question of what ex
actly the "original" of an image is. Thus, measures for differences between
two versions of an image can be calculated, however what this tells about
image quality remains unclear. Fitting the predictions of such models to
experimentally obtained quality judgments of human subjects usually is
the only means of attempting to make this translation.

We will follow a different approach here which does not suffer from this
drawback. Essential to this approach is that we regard the quality of an
image as the adequacy of this image as an input to visuo-cognitive informa
tion processing (chapter 2). The output of this visuo-cognitive processing
determines in turn how well an observer is able to respond to occurrences
in the outside world. Thus, in this view, the quality of an image becomes
indeed a meaningful attribute of an image, telling how well the image can
be employed as a source of information about the outside world.

When looking more closely at visuo-cognitive processing of images, see
figure 4.1, we can discern three processing stages: (1) the construction of
an internal representation of the image; (2) the interpretation of this rep
resentation by means of matching with representations stored in memory;
and (3) semantic processing of the interpreted scene to formulate a proper
response. For these stages to be completed successfully, the image should
in general satisfy two main requirements: (1) the internal representation
of the image should be precise; and (2) the match between the representa
tion of the image and memory should be close. We refer to the degree to
which an image satisfies these two requirements as the usefulness and the
naturalness of the image, respectively.

Evidence for the appropriateness of the above description of image qual
ity in terms of usefulness and naturalness was found in a series of experi
ments (see chapter 2). In these experiments, the separate influences of use
fulness and naturalness on image quality were revealed by varying colour
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image
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Figure 4.1: Visuo-cognitive processing of images. In this diagram, ellipses
denote representations of information, and rectangles denote processes
transforming one representation into another.
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temperature and chroma of a set of images of natural scenes and asking
subjects to judge the quality and naturalness of the manipulated images.
Manipulating colour temperature was expected to influence only the nat
uralness of the images, whereas manipulating chroma was expected to in
fluence both naturalness and usefulness. Indeed, quality was found to be
one-to-one related to naturalness when colour temperature was manip
ulated, whereas systematic differences between quality and naturalness
were found when chroma was manipulated.

To predict the usefulness and naturalness of an image, we need to know
what the internal representation of an image looks like. In other words, we
need to know which attributes are represented and what metrics1 are used
to quantify these attributes. Here, we will simply assume that the struc
ture of the internal representation can be adequately described as a set of
measured attributes such as position, shape, size, texture, brightness, and
colour. When we focus on the attributes brightness and colour, as we will
do in the remainder of this paper, we may conclude that the metrics used
to quantify these attributes need not be rigid, that is, the scale function
need not be constant over time. Moreover, when the scale function of these
metrics is allowed to vary in time, this flexibility can be used to improve
the discriminative power of the metric (Watt 1989, Watt 1991). Extending
this idea, it is possible to find expressions for metrics which are optimal
with respect to discriminative power (chapter 3). Interestingly, such opti
mal metrics exhibit properties resembling several well-known character
istics of colour vision, such as adaptation, crispening, and brightness- and
colour-constancy.

Our aim here is to show how the ideas about visuo-cognitive processing
of images, combined with the ideas about flexible metrics, can be used to
implement algorithms for predicting the usefulness and naturalness of re
productions of colour images of natural scenes. The proposed usefulness
algorithm is first presented with a set of images from which it calculates
the luminance and chromaticity distributions of the pixels of the entire
set of images, as well as the luminance and chromaticity distributions of
the pixels of the image of interest. These distributions are used to calcu
late the (partially) flexible metrics upon which the brightness and colour
distributions of the image of interest are represented. The algorithm then

1A metric is a system used for the quantification of measurements. A metric is defined
by its origin, unit, scale, and scale function. Origin and unit together constitute the scale,
upon which measurements of the strength of a certain attribute are represented by their
scale values. The exact relation between attribute strength and corresponding scale value
is given by the scale function.
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calculates overall discriminability from these distributions.

Besides the above steps, the naturalness algorithm also calculates the
brightness and colour distributions of the areas of each image containing
grass, (caucasian) skin, and sky. Averaged over the entire set of images, the
brightness and colour distributions of the grass, skin, and sky areas rep
resent the algorithm's "memory standards" for grass, skin, and sky. The
algorithm calculates naturalness by comparing the brightness and colour
distributions of the grass, skin, or sky areas of the image of interest with
these memory standards. As we will show, the predictions produced by
the usefulness and naturalness algorithms correspond well with experi
mentally obtained judgments of human subjects.

4.2 Metrics for brightness and colour

The concept of (partially) flexible metrics plays a central role in the algo
rithms we present here, and we will therefore start by introducing this
concept. A metric is the instrument to quantify the measurement of an at
tribute's strength. The constituents of a metric are its scale, defined by an
origin and a unit, and its scale function, which defines the relation between
attribute strength and corresponding scale value (Watt 1989, Watt 1991). For
physical (or biological) implementations of metrics, we may assume that
the range of the metric is finite, that is, the scale has fixed lower and upper
bounds, and that the precision with which scale values can be represented
is limited, for example due to the presence of noise in the system which
encodes the scale values. Therefore, when objects are to be discriminated
by measurements of their attribute strengths, we find that the discrimina
tive power is essentially determined by the ratio of scale value difference
and noise level.

The central assumption we will make here is that the metrics used for the
quantification of brightness and colour are optimal with respect to their
discriminative power. Assuming a constant noise level, discriminative
power can be increased by increasing scale value differences. One way to
accomplish this would be to simply stretch the scale to a larger range. This,
however, is no solution here since the range of the scale was assumed to be
limited and constant. Another, slightly more complicated way to increase
scale value differences is to locally stretch the scale there where an increase
in discriminative power is desired, by locally increasing the derivative of
the scale function, and to compress the scale elsewhere. In this way, the
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Figure 4.2: An example of how discriminative power can be increased by
locally stretching the scale. For the thermometer, the scale function relates
the attribute strength "temperature" to the measure "length of a mercury
column". The exact relation between temperature and column length is
determined by the amount of mercury in the reservoir and the diameter
of the glass tube. For the thermometer at the right, discriminative power
in the range 35° to 45° has been increased by locally reducing the diameter
of the glass tube. The range of the scale, that is, the maximum length of
the mercury column, has nevertheless been preserved by increasing the
diameter of the glass tube elsewhere.

range of the scale can be preserved while scale value differences can be
selectively increased. An example of this principle is shown in figure 4.2.

Extending this idea, it can be shown that to optimise overall discrimina
tive power, the derivative of the scale function should be proportional
to the momentary distribution of the attribute strength, as explained in
chapter 3. This result, which is found under the conditions of an internal
noise level (due to, for example, random variability in neuronal response
rates) which is constant and an external noise level (due to, for example,
photon noise) which is negligibly small, can intuitively be understood
by realising that to optimise overall discriminative power, the amount
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of stretching of the scale should be largest for those ranges of attribute
strength which occur most frequently. Such a mechanism bears a close re
semblance to the image processing tool known as histogram equalisation
(Ballard & Brown 1982) and, most importantly, requires the scale function
to be flexible. Interestingly, such flexible, optimal metrics exhibit properties
resembling some well-known visual phenomena, such as dark- and light
adaptation, crispening (Whittle 1994a, Whittle 1994b), and brightness- and
colour-constancy.

The above type of metric is optimal with respect to discriminative power.
However, for the aim of identification a metric must satisfy other, par
tially conflicting requirements. Most notably, identification requires that
the scale function be rigid, to facilitate the comparison of what is observed
at the present with what has been observed in the past. To satisfy this re
quirement and to simultaneously preserve discriminative power, the de
gree of flexibility of the metric must be restricted yet not reduced to zero.
We will therefore use the concept of partially flexible metrics (chapter 3).
Mathematically, such metrics can be specified by:

(4.1)

where x is the attribute strength, s(x) the scale function, Jl(x) the momen
tary distribution of the attribute strength2, Jle(x) the "eternal" distribution
of the attribute strength, and 0 :S >. :S 1 the degree of fleXibility of the met
ric. Here, the eternal distribution Jle(x) can be thought of as the momentary
distribution Jl(x) integrated over a long-term interval.

Measurement usually involves a stage in which a sensor converts the at
tribute to be quantified into another attribute which is more accessible for
measurement. For example, the thermometer of figure 4.2 converts the
attribute "temperature" into the attribute "length of a mercury column"
which can be measured easily. The receptors in the retina perform a simi
lar task, by converting a complex spectrum of radiated or reflected energy
into the set of three values we experience as a colour. These three val
ues can be regarded as three separate dimensions, with each having its
own metric assigned to it, which make up the attribute colour. In the al
gorithms we present here, we have chosen to use luminance Y and eIE
1976 chromaticity coordinates u' and v' for these dimensions. We have

2In this chapter, p,(x) is defined such that Ix p,(x)dx = 1, where X is the range of the
attribute strength x. Note that this definition differs from the one used in chapter 3, where
p,(x) was defined such that Ix p,(x)dx = N, where N is the number of items.
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4. Predicting the usefulness and naturalness of colour reproductions

made this choice for two reasons: (1) the dimensions Y, u', and v' resem
ble the early-visual dimensions of colour, namely brightness, red-green,
and yellow-blue; and (2) Y, u', and v' coordinates can be relatively easily
calculated for digitised images displayed on a CRT (cathode ray tube).

In practice, to calculate what the metrics for Y, u', and v'look like for a par
ticular image we therefore need to perform the following two steps. First,
the momentary and eternal distributions Mand Me must be calculated sep
arately for Y, u', and v'. To model the eternal distribution Me we calculated
the frequency distributions of the Y, u', and v' coordinates of the pixels of
a set of 77 images of natural scenes taken from two Kodak photo CD's,
and to model the momentary distribution Mwe calculated the frequency
distributions of the Y, u', and v' coordinates of the pixels of the image of
interest. For these calculations we assumed that the images were to be
displayed on a PAL (European colour television) compliant CRT with 'Y
corrected to the value 2.5. Second, the metrics for Y, u', and v' were cal
culated from the above distributions for a particular degree of flexibility A
by calculating the weighted sum AM + (1 - A)Me and integrating the result.
Figure 4.3 summarises this procedure with an example.

4.3 Predicting usefulness

In the introduction, we have defined usefulness in terms of the degree of
precision of the internal representation of an image. Here, precision does
not necessarily imply that an item's attributes as they are represented in
ternally should correspond one-to-one to the physical characteristics of the
item. Instead, the ability to discriminate between items in the outside world
on the basis of their internally quantified attributes is likely to be a more
meaningful criterion for precision. In this section we will therefore define
a measure for usefulness which is based on the idea that the usefulness of
an image is essentially determined by the overall discriminability of the
items in the image. An essential stage in the definition of such a measure
is the internal quantification of attribute strength. For this we will use the
concept of (partially) flexible metrics presented in the previous section,
and limit ourselves to the attributes brightness and colour.
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Figure 4.3: A calculated set of (Y, u' , v') metrics for an image. The upper
left panel shows calculated (Y, u' , v') frequency distributions for the entire
set of 77 images, representing the eternal distributions. The upper right
panel shows calculated (Y, u' ,v') frequency distributions for one particular
image, representing the momentary distributions. The lower left panel
shows the weighted sum of momentary and eternal distributions for A =
0.5. Integrating these distributions yields the set of metrics for Y, u', and Vi

for this image. Note that the ranges of u' and v' on the horizontal axes are
set to [0,1] and that the range of Y is normalised to fit in this range. Plots
for Yare drawn with solid lines, those for u' with dotted lines, and those
for v' with dashed lines.
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4. Predicting the usefulness and naturalness of colour reproductions

4.3.1 Discrirninability

In the previous section we have assumed that scale values can only be
represented with a limited precision, for example due to the presence of
noise in the system encoding these scale values. Discriminability of two
items by their measured attribute strengths will therefore essentially be
determined by (1) the scale value difference between the items; and (2) the
noise level. The measure for discriminability which we will use here is the
probability of a topological error. Topological errors occur when the order
ing of a set of items by their scale values differs from the ordering of the
same set of items by their physical attribute strengths, and the occurrence
of topological errors therefore is a strong indicator that discriminability is
poor. Assuming Gaussian noise properties, the probability of a topological
error, pcrr, can be shown (see chapter 3) to be given by:

(4.2)

where d is the ideal, noiseless scale value difference between any pair of
items and u the noise level. In figure 4.4, perr is plotted versus d/ u on a
logarithmic scale. The figure shows that pcrr increases asymptotically to a
maximum value of 0.5 when d / u approaches zero, and that pm remains
essentially constant when d/ u decreases below 10-1 or when d/ u increases
beyond 101 .

When the attribute strength distribution of the set of items is given by f1(x),
the associated scale value distribution TJ(s) on the metric s(x) will be given
by:

TJ(S) = f1(x) ( d~~)) -1 , (4.3)

where ds(x) / dx is the derivative of the scale function, which for a (par
tially) flexible metric is given by equation 4.1. The probability of a topo
logical error will be highest for neighbouring items. For neighbouring
items on the metric, the scale value difference d will in close approxima
tion be given by l/NTJ(s), where N is the number of items in the set. We
may therefore approximate equation 4.2 by:

1 1 1
Perr(s) = 2 - 2erf 2NTJ(s)u(s)
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Figure 4.4: The probability of a topological error, pem versus the ratio of
scale value distance d and noise level a (on a logarithmic scale).
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4. Predicting the usefulness and naturalness of colour reproductions

To obtain the overall probability of a topological error, we must integrate
this expression along the entire range 5 of the metric:

Perr = ~ Perr(s)T/(s)ds. (4.5)

The measure Perr must be calculated for each dimension separately. For
multi-dimensional attributes like colour, overall discriminability D must
somehow be derived from the values found for Perr along the n individual
dimensions. Since there is no obvious way in which this can be done, we
will decrease the set of possible solutions by imposing some desired char
acteristics. Assuming that overall discriminability D is normalised to the
range zero to one, these characteristics are: (1) when Perr increases for one
or more dimensions, then overall discriminability D should decrease; (2)
when Pcrr = 0 (that is, discriminability is perfect) for at least one dimen
sion, then overall discriminability D = 1; and (3) when Perr = 1/2 (that
is, discriminability is poorest) for all n dimensions, then discriminability
D = O. Perhaps the simplest way to satisfy these characteristics is when:

n

D = 1 - 2
nII Perr,i'

i=l

(4.6)

To conclude, the measure we now have was derived for a set of N items.
Although for Mondrian-like images the individual patches composing
such images may be regarded as the items, for the category of natural im
ages it is unclear what exactly these items are and, therefore, what the
value of N is for a particular image. In our calculations we have made the
arbitrary choice to set N to the value one hundred. Furthermore, assuming
approximately one hundred JND's (just-noticeable differences) along each
dimension, we have set a to the value 0.01 and 5 to the range [0,1]. For
the ratio d/a these choices lead to an average value of exactly one, which
in figure 4.4 lies in the centre of the interval where Perr is most sensitive to
changes in d/ a. In general, although absolute values found for D will de
pend on the choices made for N, 5, and a, we have found that when ratios
of D values are used to compare different images or different versions of
one image, results are quite robust to changes in d/ a of up to one order of
magnitude from the value we have used here.

In practice, calculation of the usefulness of an image can now be per
formed as follows. First, the metrics for Y, u', and v' must be calculated
for the image following the procedure discussed in the previous section.
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4.3. Predicting usefulness

Next, using equation 4.3, the scale value distributions TJ(s) can be calcu
lated from the momentary distributions J.L(x) and the scale functions s(x)
for the dimensions Y, u', and v' separately. From the obtained scale value
distributions, Pm can then be calculated for the individual dimensions us
ing equations 4.4 and 4.5. Finally, overall discriminability D is found by
substituting the obtained results in equation 4.6. Part of this procedure is
summarised in figure 4.5 with an example.

4.3.2 Results and discussion

In this subsection we will compare predictions of the above algorithm with
experimentally obtained judgments of human subjects. To this end, we
manipulated the brightness contrast of four digitised black-and-white im
ages of natural scenes by applying a pixel-wise, s-shaped transformation
on eIE 1976 lightness L*:

L"

(4.7)

where L' represents the original lightness of a pixel, L" the new value, and
where L~in' L~ax' and L;ve represent the minimum, maximum, and average
lightness of the pixels in the original image, respectively. Furthermore, the
parameter 'Y is specified in terms of a gain-factor gas:

'Y = 109. (4.8)

The transformation is shown in figure 4.6. Applying this transformation
will, for g < a, decrease the brightness contrast and, for g > 0, increase
the brightness contrast of the image. Minimum and maximum lightness
of the image remain at their original values, while the average lightness
value in the image remains at approximately the same level. We used nine
versions of each scene, with gain-factor values of -0.60, -0.45, -0.30, -0.15,
a, 0.15, 0.30, 0.45, and 0.60.
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Figure 4.5: Summary of the procedure to obtain the probability of a topo
logical error, Pem for an image. The upper panels show the momentary
distributions fJ, (left) and scale functions s for Y, u' and v' (right) for the im
age of interest (note that we again used A = 0.50; these plots are identical
to the ones shown in figure 4.3 in the upper right and lower right panels).
The lower left panel shows the associated scale value distributions 'TI, and
the lower right panel shows perr for these distributions, assuming that N
is 100 and a is 0.01. Integrating the areas under the curves yields Perro In
this particular case Perr is 0.23, 0.20, and 0.23 for Y, u' and v', respectively.
Plots for Yare drawn with solid lines, those for u' with dotted lines, and
those for Vi with dashed lines.
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s-shaped transform

60
L*

80 100

Figure 4.6: The s-shaped transformation we applied to CIE 1976 lightness
L*. On the horizontal axis the original lightness, and on the vertical axis
the lightness after applying the s-shaped transformation. Curves shown
are for g = -0.60, g = -0.45, g = -0.30, and g = -0.15 (dotted curves,
with decreasing dot gap for increasing g), g = 0 (solid curve), g = 0.15, g =
0.30, g = 0.45, and g = 0.60 (dashed curves, with increasing dash length
for increasing g). Minimum, average, and maximum values for L* are 0,
40, and 100 in this example.
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Figure 4.7: Visibility of detail as judged by human subjects (solid lines,
the error bars denote a distance of two standard errors in the mean) and
overall discriminability D (dotted lines for A = 0, short-dashed lines for
A = 0.25, and long-dashed lines for A = 0.5) versus the gain factor of the
s-shaped transformation on lightness. Results have been z-scored to facil
itate a comparison.

Eight subjects were instructed to judge overall visibility of detail of the
resulting images, which were shown in random order, with three replica
tions, on a PAL-compliant CRT. For their judgments, subjects used an 11
point numerical scale ranging from a("bad") to 10 ("excellent"). Results,
averaged over subjects and replications, are shown as the solid curves in
figure 4.7. Furthermore, results produced by the algorithm are shown as
dotted, short-dashed, and long-dashed curves for A = 0, A = 0.25, and
A = 0.50, respectively. Note that to facilitate a comparison, all curves in
the figure were z-scored.

Figure 4.7 shows that subjects' judgments of visibility of detail are slightly
asymmetrical around g = 0, with visibility of detail being maximal for
g = a (images 1 and 4) to g = 0.15 (images 2 and 3). For predictions
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4.4. Predicting naturalness

made by the algorithm this asymmetry is more pronounced, with maxi
mum discriminability occurring for g = 0 (image 4), g = 0.15 (image I),
and g = 0.30 (images 2 and 3). In general, predictions made by the al
gorithm correspond well to subjects' judgments of visibility of detail for
values of g below zero. For values of g above zero, the algorithm tends to
over-estimate discriminability compared to subjects' judgments. Subjects
report that decreased visibility of detail for g smaller than zero is primar
ily due to decreased contrast of the manipulated images. Likewise, for
values of g slightly larger than zero, subjects report increased visibility of
detail due to increased contrast. For higher values of g, however, subjects
report that visibility of detail is decreased due to the existence of areas in
the manipulated images where detail is lost due to clipping to either black
or white. Apparently, the algorithm is underestimating the impact of this
effect on overall visibility of detatL Such underestimation is probably due
to the fact that the algorithm is analysing luminance statistics only glob
ally, that is, without taking into account how these statistics vary from one
location in the image to another. Alternatively, subjects' attention may be
drawn to areas where clipping occurs, resulting in an over-proportional
influence of clipping on their judgments. Nevertheless, overall correspon
dence between model predictions and subjects' judgments is quite good,
certainly given the assumptions and simplifications which underly the al
gorithm.

4.4 Predicting naturalness

In the introduction, we have defined naturalness in terms of the degree of
match between the internal representation of an image and memory. Re
alising that the content of images is usually made up of objects which are
more or less familiar, we may specify this further as the degree to which
perceived object attributes match remembered object attributes, or mem
ory standards. As stated in the introduction, in the algorithm we present
here we will restrict ourselves to the attributes colour and brightness. To
predict naturalness, we therefore need to specify: (1) how colours are in
ternally quantified; (2) how the memory standard for a particular object's
colour is constructed; and (3) how the perceived colour of an object is
matched with the memory standard for that object's colour. We will ad
dress the second and third issue here, since the first issue has already been
addressed in the section about metrics for brightness and colour.
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4. Predicting the usefulness and naturalness of colour reproductions

4.4.1 The construction of memory standards

When observing a particular scene, the scale function of a partially flexi
ble metric will be determined by the distribution of the attribute strength
for that scene (the momentary distribution) and by the distribution of the
attribute strength for all scenes observed in the past (the eternal distribu
tion). Observation of a particular object in this scene will therefore result
in a scale value for that object which is determined by, first, the attribute
strength for that object and, second, the scale function at the moment of
observation. For a given attribute strength x and scale function SeX) the
corresponding scale value S is simply given by s = sex). However, the at
tribute strength measured for a particular object at a particular moment
will usually be given by a distribution of values instead of one unique
value. For example, the colour of grass in a particular scene is not uni
form but instead varies from location to location. This attribute strength
distribution will have its associated scale value distribution on the met
ric. The relation between the attribute strength distribution J.Lo(x) and the
associated scale value distribution 1]o(s) is simple and given by:

(
dS(X)) -1

1]O(S) = 1-L0(X) CiX ' (4.9)

where ds(x) / dx is given by equation 4.1. The scale value distribution 110

for an individual object will therefore depend not only on the attribute
strength distribution of the object itself but also on the attribute strength
distribution of the scene in which it is located.

We will assume that the memory standard for an object is constructed by
the accumulation of past observations of that object, see figure 4.8. As
explained above, the observation of an object will result in a distribution
of scale values on the metric. Scale value distributions of past observa
tions therefore constitute the information from which memory standards
are constructed. How this accumulation is performed is unclear. Here,
we will simply assume that the memory standard for a particular object is
constructed by a long-term integration of the scale value distributions ob
served for this object. Alternatively, accumulation may also be performed
by calculation and storage in memory of parameters such as mean and
standard deviation of observed scale value distributions. We have cho
sen not to pursue this approach to avoid making assumptions about the
shapes of the observed distributions.
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attribute strength
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Figure 4.8: A simple model for the accumulation and matching processes.
Matching is performed by means of comparing scale value distributions
with standards stored in memory. The memory standards themselves are
assumed to be constructed by means of accumulation of scale value distri
butions of past observations.
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Figure 4.9: Calculated memory standards 'T/p(s) for grass (upper row), skin
(middle row), and sky (lower row) for degree of flexibility 0 (left column),
0.25 (middle column), and 0.5 (right column). Plots for Yare drawn with
solid lines, those for u' with dotted lines, and those for v' with dashed
lines,

Figure 4.9 shows calculated memory standards for the objects grass, skin,
and sky. These standards were obtained by calculating the Y, u', and v' dis
tributions of the image areas containing grass, skin, and sky. The associ
ated scale value distributions were then calculated using equation 4.3. fi
nally, the memory standards were constructed by averaging the obtained
scale value distributions over the sets of images containing grass, skin, or
sky. This procedure was repeated for three degrees of flexibility: A = 0,
A = 0.25, and A = D,S.
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4.4.2 Matching perceived object colours with memory stan
dards

The aim of the matching process is to identify an object using its observed
scale value distribution. The obvious way in which this task can be accom
plished is by matching the observed scale value distribution with mem
ory standards and selecting the memory standard for which the degree of
match is highest. The performance of such a mechanism may be judged by
three main criteria: (1) success, that is, the overall probability of identify
ing correctly; (2) sensitivity, that is, the degree to which distinctions can be
made in the identification of objects; and (3) robustness, that is, the degree
to which the identification of an object remains stable under small varia
tions in the observed scale value distribution as caused by, for example,
noise.

There is no unique solution to this problem, and for the algorithm we
present here we have made the rather arbitrary choice to express the de
gree of match between an observed scale value distribution and a memory
standard by a normalised correlation measure:

( () ( »
_ J1]o(s)1]p(s)ds

m 1]0 s , TIp S - ,JJ1];(s)ds J TI~(s)ds
(4.10)

where m(.) is the degree of match, Tlo the observed scale value distribu
tion, and 1]p(s) the memory standard. The main advantage of this measure
is its robustness, specifically its independence of assumptions about the
shape of the distributions which are to be matched. It produces results
which lie in the range zero (perfect mismatch) to one (perfect match, when
1]o(s) = Tlp(s». However, since we have to deal with three dimensions, a
measure of overall match must be derived from the degrees of match along
the individual dimensions. The criteria which may be imposed on such a
measure are: (1) overall match should increase monotonically with the de
gree of match in the individual dimensions; (2) overall match should be
zero when there is at least one dimension for which the degree of match is
zero; and (3) overall match should be one only when the degree of match is
one for all individual dimensions. The obvious candidate for this measure
is a simple product of the degrees of match along the individual dimen
sions:

(4.11)
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where m is the overall degree of match, and where my, mu" and mv, are the
degree of match along the dimensions Y, u', and Vi, respectively.

To conclude, we have defined naturalness as the degree of match between
perceived object attributes and memory standards. Assuming that an ob
ject has already been identified by selection of the memory standard for
which the degree of match is highest, this degree of match represents the
naturalness of that object. With m we have a measure for predicting the
naturalness of the grass, skin, and sky areas of colour reproductions of
natural scenes. To predict the naturalness of the entire image, the above
predictions should in principle be calculated for each individual object de
picted in the image. However, since most colour manipulations applied to
images are global, that is, not restricted to specific locations in the image,
a weighted average of naturalness predictions for a limited set of objects
depicted in the image will usually be sufficient to predict the naturalness
of the entire image. Yendrikhovskij, Blommaert & de Ridder (1999) have
shown that such an approach can indeed be successfully used to predict
the naturalness of an entire image from naturalness predictions for the
grass, skin, and sky areas of this image.

4.4.3 Results and discussion

In this subsection we compare naturalness predictions produced by the
above algorithm with experimental results reported by Yendrikhovskij
et al. (1999). In these experiments, human subjects had to judge the natu
ralness of manipulated colour reproductions of natural scenes which were
displayed on a CRT. To this end, the portions of the images showing grass,
skin, or sky were manipulated by shifting CIE 1976 hue angle huv and by
scaling CIE 1976 saturation Suv. The obtained naturalness judgments, av
eraged over subjects and scenes, were then plotted versus the average u'
and Vi coordinates of the manipulated grass, skin, or sky areas, and subse
quentlya two-dimensional Gaussian f(u ' ,Vi) was fitted to this data:

f(u',v')

U'n

Vi
n

1 ( 12 2 I I 1 2 )ex: exp - 2( _ 2 ) Un - Pu'v'Unvn + vn
1 Pu'v'

u' - J.Lu'

(Tu'

Vi - J.Lv'
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where Mil', (Til', Mv', (Tv', and PII'V ' were the free parameters to be fitted. fi
nally, the authors plotted what they referred to as "one-sigma ellipses" in
the (u' ,Vi) plane. These ellipses, which connect locations of equal natural
ness in the (u' ,Vi) plane, are given by the equation:

(4.13)

To compare the naturalness predictions as produced by the algorithm with
the data of Yendrikhovskij et al., we applied the same manipulations to the
grass, skin, or sky areas of twelve images which were selected from the set
of 77 images3 . In particular, hue angle hllv was shifted by -~1r, -~1r, -~1r,

-~1r, a, ~1r, ~1r, ~1r, and ~1r, and saturation SIIV was scaled by 0.41, 0.51,
0.64, 0.80, LOa, 1.25, 1.56, 1.95, and 2.44. Naturalness of the manipulated
grass, skin, or sky areas was then predicted using the algorithm, and a
Gaussian fit was made for each image separately. Resulting one-sigma
ellipses for these fits are shown in figure 4.10 for four images of which the
grass areas were manipulated, in figure 4.11 for four images of which the
skin areas were manipulated, and in figure 4.12 for four images of which
the sky areas were manipulated.

In general, locations, sizes, and orientations of the one-sigma ellipses fitted
to the algorithm's predictions correspond well to the one-sigma ellipses
found by Yendrikhovskij et al. A degree of flexibility A = 0.25 produces
best results for grass, A = aproduces best results for skin, and A = 0.50
produces best results for sky. This seems to indicate that some degree of
flexibility is needed to produce best overall results. It would neverthe
less be too strong to conclude this, since the validity of such a conclusion
is strongly influenced by the characteristics of the set of 77 images which
were used to "train" the algorithm. This influence is difficult to estimate
since there is no set of images which can be called representative for what
humans observe in everyday life. Nevertheless, given the constraints im
posed by having to use a limited set of images, the algorithm produces
results which correspond quite well with results produced by human sub
jects.

3We are aware that by selecting our test images from the set of images used to con
struct memory standards, we are introducing some unwanted correlation between the
test images and the memory standards. For the construction of one-sigma ellipses we ex
pect this effect to be negligibly small, since the one-sigma ellipses are constructed using
81 versions (nine saturation settings times nine hue settings) of each test image. Of these
81 versions, only one version corresponds to the image which is originally used in the
construction of the memory standard.
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Figure 4.10: Comparison of the results ofYendrikhovskij et al. with predic
tions made by the algorithm for images of which the grass areas were ma
nipulated. One-sigma ellipses for degrees of flexibility>. = 0, >. = 0.25, and
>. = 0.50 are shown with dotted, short-dashed, and long-dashed lines, re
spectively. The one-sigma ellipse found by Yendrikhovskij et al. is shown
with a solid line. The dots represent the average (u', v') coordinates of the
grass area of the manipulated images.
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Figure 4.11: Comparison of the results ofYendrikhovskij et al. with predic
tions made by the algorithm for images of which the skin areas were ma
nipulated. One-sigma ellipses for degrees of flexibility .A = 0, .A = 0.25, and
.A = 0.50 are shown with dotted, short-dashed, and long-dashed lines, re
spectively. The one-sigma ellipse found by Yendrikhovskij et al. is shown
with a solid line. The dots represent the average (u' , v') coordinates of the
skin area of the manipulated images.

73



4. Predicting the usefulness and naturalness of colour reproductions

sky: image 1 sky: image 2

0.5

~
0.5

~m"'···0.4 :t· :!t~::::· . 0.4
"> "> "\:::; .. " " , . ,',

0.3 0.3 \:/ .

0.2 0.2
0.1 0.1

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
sky: image 3 sky: image 4

0.5
'~.

0.5

"crJ0.4 .. ~~:~:~ '....:': . . . 0.4
1'1~"'~ 1<:' ..

li" \1\ ". ' •• .
"> . , . -> :~ ~I ' ,

0.3 0.3 . ,}/
::. . .

0.2 0.2
\ J'
~ :
\ ../

0.1 0.1
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

u' u'

Figure 4.12: Comparison of the results ofYendrikhovskij et al. with predic
tions made by the algorithm for images of which the sky areas were ma
nipulated. One-sigma ellipses for degrees of flexibility A = 0, A= 0.25, and
A = 0.50 are shown with dotted, short-dashed, and long-dashed lines, re
spectively. The one-sigma ellipse found by Yendrikhovskij et al. is shown
with a solid line. The dots represent the average (u' ,Vi) coordinates of the
sky area of the manipulated images.
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4.5 Conclusions

We have presented algorithms for predicting the usefulness and natural
ness of colour reproductions of natural scenes, which are the two princi
pal components determining the quality of these reproductions. The al
gorithm for predicting usefulness is based on the idea that usefulness is
given by the overall discriminability of the items in the image using their
observed attributes. The algorithm for predicting naturalness is based on
the idea that naturalness is given by the degree of match between object at
tributes as observed in the reproduction with standards for these attributes
as stored in memory. To predict usefulness and naturalness, the following
stages must therefore be specified: (1) the observation of object attributes,
that is, the internal quantification of these attributes; (2) the construction of
memory standards from object attributes as observed in the past; and (3)
the matching of observed object attributes with memory standards. For
the internal quantification of object attributes we have used the concept
of partially flexible metrics presented in chapter 3, for the specification of
memory standards we have assumed a simple accumulation of object at
tribute distributions observed in the past, and for the matching process we
have assumed a simple correlation between observed object attribute dis
tributions and memory standards. The usefulness algorithm was tested by
using it to predict the discriminability of detail in manipulated black-and
white images of natural scenes, and the naturalness algorithm was tested
by using it to predict the naturalness of the grass, skin, and sky areas of
manipulated colour reproductions of natural scenes. The predictions pro
duced by the algorithms correspond quite well with experimentally ob
tained judgments of human subjects.
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Chapter 5

In1age quality revisited

Abstract

We present a concept for image quality which is based on a definition of
quality in terms of the degree to which something satisfies the require
ments imposed on it. An answer to the question what image quality is,
must therefore necessarily include answers to the questions: what are im
ages, what are images used for, and what are the requirements which the
use of images imposes on them. In this paper we therefore start by formu
lating answers to these questions. To this end, we distinguish two main
requirements which are imposed upon images. First, the items in the im
age should be successfully discriminable and, second, the items in the im
age should be successfully identifiable. Based on the concept of (partially)
flexible metrics presented in chapter 3 we then formulate algorithms for
predicting discriminability, identifiability, and overall performance. To
demonstrate the validity of this concept, we compare predictions made
with these algorithms with experimentally obtained judgments of human
subjects.

5.1 Introduction

Image quality is usually described in terms of the presence of visible dis
tortions of the image such as colour shifts, blur, noise, or blockiness. His
torically, the most common way to model and predict image quality there
fore has been a quantification of the visibility of these distortions, for ex-

°This chapter is a slightly modified version of Janssen & Blommaert (1999a).
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ample using models of early visual processing or using judgments of hu
man subjects obtained in psychophysical experiments. Since this approach
seems so obvious, the question of what image quality really is has tradi
tionally been neglected, denying a better interpretation and deeper under
standing of what has been measured and modelled during the past.

Our aim here is to answer the above question what image quality is, and
to present a concept for image quality which is both generic and directly
applicable. The concept is generic in the sense that the approach we use
here can equally well be used to describe sound or speech quality. Fur
thermore, it is directly applicable in the sense that the description we give
of image quality, and the algorithms we base upon this description, follow
straightforwardly from the answer to the above question. Finally, to show
the value of this concept for real applications, we show some predictions
made with algorithms based on this concept together with corresponding
judgments of human subjects.

5.2 What is image quality?

There can be no good answer to the question "what is image quality?"
when the question "what is quality?" has not been answered. Perhaps the
most general answer to this last question is "the degree to which some
thing satisfies the requirements imposed on it". Though vague, this an
swer certainly is intuitively correct. We tend to think of things as "bad",
"good", or "excellent" according to the degree to which they exhibit de
sired characteristics (a book; a house), or according to the degree to which
they are adequate for the task we want them to perform (a car; a washing
machine). So, if we wish to answer the question what image quality is, we
will need to answer the questions: (1) what are images; (2) what are im
ages used for; and (3) what are the requirements which the use of images
imposes on them.

To begin with the answers to the first two questions, there can be no doubt
that images are the carriers of visual information about the outside world,
and that they are used as input to human visual perception. Visual per
ception itself is part of the three processes perception, cognition, and ac
tion, which together constitute human interaction with the environment
(see figure 5.1). Images, therefore, can be regarded as input to the percep
tion stage of interaction. If we use a rather technical view of perception,
we may define perception as the stage of human interaction in which at-
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image

perception

action

cognition

Figure 5.1: Schematic overview of the interaction process. Images are the
carriers of information about the environment, and serve as input to visual
perception. The result of visual processing is used as input to cognition
(for tasks requiring interpretation of scene content) or as input to action
(for example in navigation, where the link between perception and action
is mostly direct). Since action will in general result in a changed status of
the environment, the nature of the interaction process is cyclic.

tributes of items in the outside world are measured and internally quanti
fied. The aim of this quantification is essentially two-fold. First, items in
the outside world can be discriminated from one another using their in
ternally quantified attributes. The result of this process is an essential step
towards the construction of higher-level descriptions of scene geometry
and object location, descriptions upon which later processes such as nav
igation in the scene are based. Second, items in the outside world can be
identified by comparing their internally quantified attributes with quan
tified attributes, stored in memory, of similar items observed in the past.
Identification of what is depicted in the image is an essential step in the
interpretation of scene content; it determines our semantic awareness of
what is in the scene.

So far, what we have found is that images are used as input to the percep
tion stage of human interaction, and that the primary task of perception is
to measure and internally quantify attributes of items in the outside world
with the aim to discriminate and identify these items. These observations
lead us to the answer to the third question: the requirements which the use
of images, that is, their use as input to perception, imposes on them, is that,
first, the items depicted in the image should be successfully discriminable,
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and, second, the items depicted in the image should be successfully identi
fiable. We are now able to formulate the following answer to the question
what image quality is: (1) The quality of an image is the adequacy of this
image as input to visual perception. (2) The adequacy of an image as input
to visual perception is given by the discriminability and identifiability of
the items depicted in the image. This concludes our discussion of what
image quality is.

5.3 The internal quantification of attributes

If we wish to predict image quality, we will need to specify how discrimi
nation and identification of items is performed, and to do this we need to
specify how item attributes are internally quantified. The instrument for
the quantification of attribute strength is the metric. Metrics are defined by
an origin and a unit, which together constitute the scale, and a scale func
tion, which relates physical attribute strength to the position on the scale,
or scale value (Watt 1989, Watt 1991). The scale function is usually assumed
to be rigid, that is, constant in time. Essentially all metrics defined by hu
mans are of this type, the reason for this being that we wish to use these
metrics to uniquely specify attribute strength in terms of scale value; 1.78
metres should be one and the same length, wherever and whenever it is
measured.

As we have pointed out, perception is the stage in human interaction with
the environment in which attributes of items in the outside world are mea
sured and internally quantified, with the aim to discriminate and identify
these items. The metrics which are used for this task must somehow be
physiologically implemented. Any such physiological implementation,
and in general any physical implementation of a metric, will inevitably
result in, first, a limited scale range and, second, a limited precision with
which scale values can be represented. Therefore, if we consider the lim
ited precision with which scale values can be represented to be a source
of noise, the ability to discriminate two items using their internally repre
sented scale values will essentially be determined by the ratio of the differ
ence of their scale values to the noise level. This, together with the limited
scale range, represents an upper limit to the discriminative power of any
physically implemented metric.

Watt (1991) has argued that the discriminative power of a metric can be
considerably increased when the scale function of that metric is allowed to
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be flexible instead of rigid. Flexibility allows for an adaptation of the scale
function to what is currently being measured, thus sacrificing a unique
specification of measured item attributes for an improved ability to dis
criminate these items. In chapter 3 we have extended this idea to find ex
pressions for scale functions which are optimal with respect to discrimina
tive power. We found that such metrics exhibit properties which resemble
several well-known characteristics of human colour vision, such as adap
tation, crispening, and brightness- and colour constancy. However, since
flexibility of the scale function no longer allows for a unique specification
of measured item attributes, the ability to compare what is observed at the
moment with what has been observed in the past is reduced, resulting in a
reduced ability to identify. The solution for this problem is to use partially
flexible scale functions (chapter 3). The degree of flexibility of such scale
functions can then be used to optimise the overall performance in terms of
both discriminability and identifiability.

Since the aim of quantification in perception is to discriminate and iden
tify items, and since discrimination and identification are of such impor
tance to a successful interaction, it is to be expected that the properties
of the metrics used for this quantification are optimally, or nearly opti
mally, chosen. We will therefore adopt the concept of partially flexible
metrics here, and start by deriving expressions for metrics which are opti
mal with respect to either discriminability, identifiability, or a combination
of these two. Based on the expressions we derive, we will then formulate
expressions for discriminability and identifiability. To this end, we will
regard the outside world as a simple set of items of which the values of
a one-dimensional attribute are measured and quantified with the aim to
discriminate and identify these items. We will further simplify the sit
uation by assuming that the influence of external noise sources, that is,
noise sources acting directly on the attribute strength, may be neglected.
In the last part of this paper we will apply the obtained measures for dis
criminability and identifiability to predict the quality of reproduced black
and-white images of natural scenes of which the contrast has been manip
ulated, and compare the predictions with experimentally obtained judg
ments of human subjects.
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5.4 An optimal metric for overall discriminability

Assume that, at a certain point in time, the strength of an attribute x is
measured for a set of N items. The momentary distribution! of the strength
of x for the items in the set is given by J-l(x, t), where J-l(x, t) is scaled to yield
unity when integrated over the range X of the attribute strength:

l J-l(x, t)dx = 1. (5.1)

The measurement results are represented by scale values on an internal
scale s. The range of the scale s is given by S, and the scale function
s(x, t) which relates attribute strength x to scale value s is monotonic with
x, that is, ds(x, t)/dx 2 O. Furthermore, assume that the precision with
which scale values can be represented is limited by the presence of Gaus
sian noise with mean zero and spread (j. Finally, assume that the influence
of external noise on the attribute strength x may be neglected.

The questions we now ask are: (1) when the items are to be discriminated
using their scale values, what is the overall discriminability of the items
in the set (expressed in the overall probability of a topological error) for a
given scale function s(x, t); and (2) what scale function s(x, t) will optimise
this overall discriminability (that is, minimise the overall probability of a
topological error2)?

5.4.1 A measure for overall discriminability

The scale function s(x, t) maps attribute strength x to scale value s. When
the attribute strength distribution of the set of N items is given by J-l(x, t),
then the corresponding scale value distribution TJ(s(x, t)) will be deter
mined by the relation:

lWe will assume that the momentary distribution J1(x, t) varies slowly with respect to
the time in which adaptation-like effects occur. We assume this since we are not interested
in a description of temporal aspects here. At any moment in time we will therefore regard
the momentary distribution J1(x, t) as quasi-static.

2Topological errors occur when the ordering of the set of items by their scale values
differs from the ordering by their attribute strengths. The occurrence of topological er
rors is an adequate indicator of poor discriminability, and we will therefore substitute the
problem of minimising the probability of a topological error for the problem of maximis
ing discriminability.
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'T](S(X, t))ds(x, t) = f-L(x, t)dx,

so that:

(
dS(X, t))-l

'T](S(X, t)) = f-L(X, t) -----ciX

(5.2)

(5.3)

When the items are ordered by their attribute strengths, we find that the
attribute strength differences between subsequent items are in close ap
proximation given by ilx = I/Nf-L(x, t). The corresponding scale value dif
ference will be given by ils = I/N'T](s(x, t)), with 'T](s(x, t)) given in equa
tion 5.3. However, due to the presence of noise on the internal scale val
ues, the corresponding scale value S for a certain attribute strength x will
be given by a Normal probability density function with mean s(x, t) and
spread a. For an item with attribute strength x and its successor with
attribute strength x + ilx we therefore find for the scale value difference
a Normal probability density function with mean ils = I/N'T](s(x, t)) and
spread aV2. A topological error occurs when ils < O. To find the probabil
ity of a topological error, we thus have to integrate the above probability
density function from ils = -00 to ils = 0:

Pd(X, t) = I: N(ils; 1/N'T](s(x, t)), (0)d(ils), (5.4)

which after substitution of u = (ils -1/N'T](s(x, t)))/ aV2 can be written as:

r-1/ NIJVZ1)(S(X.t»

Pd(X, t) = 1-00 N(u;O,I)du,

or:

1 1 1
Pd(X, t) = 2 - 2erf 2Na'T](s(x, t))

The overall probability of a topological error is now given by:

Substituting equations 5.6 and 5.3 in this, we obtain:
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P () - { (~- ~ f dS(X,t)/dX) ( )d
d t - lx 2 2er 2NaJ..l(x, t) J..l x, t x.

5.4.2 Optimising overall discriminability

(5.8)

The question we ask here is: what scale function sex, t) will minimise the
overall probability of a topological error Pd(t) for a given attribute strength
distribution J..l(x, t)? Referring to equation 5.8, we have to solve:

. 1(1 1 f ds(x, t)/dX) ( )dmm - - -er J..l x, t X.
ds(x.tJ/dx X 2 2 2NaJ..l(x, t)

(5.9)

In chapter 3 we have shown that the solution to this problem is given by:

ds(x, t) _ 5 ( )
d

- J..l x,t,x . (5.10)

which shows that the optimal scale function sex, t) depends on the momen
tary distribution of the attribute strength and therefore should be flexible.
For an optimal metric, the ideal, noiseless scale value s for a particular
attribute strength x is therefore given by:

s = sex, t) = 5 [X
oo

J..l(u, t)du. (5.11)

Substituting the above solution in equation 5.8, the overall probability of
a topological error for an optimal metric is given by:

(5.12)

which defines the upper limit of discriminability for given values of 5,
a, and N. In contrast, the lower limit of discriminability is given by the
maximum value of Pd(t), which independently of the values of 5, a and N
is always given by:

1
Pd,max = 2'
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Discriminability may now be specified on a scale from zero (worst) to one
(best) by using:

(5.14)

5.5 An optimal metric for overall identifiability

We will assume that identification of an item is performed by means of
selecting the item whose accumulated distribution of scale values as mea
sured in the past is most likely to give rise to the presently measured scale
value. Furthermore, we will assume that an optimal scale function as spec
ified in equation 5.11 is used for the mapping of attribute strength x to
internal scale value s.

The questions we wish to answer here, are: (1) what do the accumulated
distributions of measured scale values for the items look like; (2) in what
decision rule does the above identification procedure result; (3) what is the
overall identifiability at a certain point in time (expressed in the overall
probability of an identification error) using the above identification proce
dure; and (4) what scale function will optimise this overall identifiability
(that is, minimise the overall probability of an identification error)?

5.5.1 The accumulation of scale value distributions

We have found that, for a metric which is optimal with respect to discrim
inability, the scale value s for a particular attribute strength x at a particular
point in time t is given by equation 5.11. Over time, the average scale value
s measured for a particular item with attribute strength x will therefore be
given by:

s = s(x) ~ ~ s(x, t)dt

~ ~ 5 [~/l(U, t)dudt

5[~ ~ ~ /l(u, t)dtdu
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(5.15)

where /-lex) is the average over time of the momentary attribute strength
distribution /-leX, t):

/-leX) = ~ ~/-l(X, t)dt. (5.16)

At any particular point in time, the deviation L1s(x, t) from the average
scale value given by equation 5.15 will be given by:

L1S(X, t) sex, t) - sex)

5 [~/-l(U, t)du - 5 [~/-l(U)dU

= 5[~ (/-l(u, t) -/-l(u))du. (5.17)

Assuming that the above difference L1s(x, t) may be adequately described
by a Normal probability density function, the mean of this distribution
will be zero and the spread L1s(x) will be given by:

L1S(X) ~ ~ (L1s(x, t))2 dt

1 ( x )2- r 5 r (/-l(u, t) -/-l(u})du dt.
T iT i-oo

(5.18)

Note that, due to the separate and independent influence of noise on the
scale values, the total spread 5 will be higher and given by:

(5.19)

The accumulated scale value distribution for an item with attribute
strength x may now be characterised by a mean s given by equation 5.15,
and a spread 5 around this mean given by equation 5.19. Equation 5.19
shows that the spread of the distributions will not be constant along the
scale s. However, for the remainder we will assume that the spread varies
slowly along S and that, locally on s, the spread may be considered con
stant.
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5.5.2 A decision rule for identification

We have assumed that identification is performed by selecting the item
whose accumulated distribution of scale values as measured in the past
is most likely to give rise to the presently measured scale value. Further
more, we have found that the accumulated scale value distribution for an
item with attribute strength x can be characterised by a mean and a spread
given by equations 5.15 and 5.19, respectively. Since we have assumed
that, locally on s, the spread of the scale value distributions is constant,
selection of the most likely distribution reduces to the simple task of selec
tion of the distribution whose mean lies closest to the currently measured
scale value. Such a strategy results in the construction of decision bounds
along the scale s which lie midway between the distribution means of ad
jacent distributions. Our task here is to find an expression for the positions
of these decision bounds.

We will assume here that a set of N; items, representative for the entire set
of observed items, is to be identified. Specifically, we will assume that (1)
the momentary attribute strength distribution of the items to be identified
may at any point in time be approximated by the attribute strength distri
bution of the set of N observed items; and (2) the attribute strength distri
bution of the entire set of N; items to be identified may be approximated
by the average over time of the momentary attribute strength distribution
of the set of observed items, as specified by equation 5.16.

Having assumed this, we are now able to formulate an expression for the
positions of the decision bounds for the set of N; items defined above.
We have found that the scale value distribution mean s of an item with at
tribute strength x is given by s(x). When the attribute strength distribution
of the set of N; items is given by /-L(x), the resulting distribution 1](s(x» of
the scale value distribution means will be given by:

1](s(x»ds(x) = /-L(x)dx,

so that:

(
d(»)-l

1](s(x» = /-L(x) ~:

From equation 5.15 it follows that:
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(5.22)

For the distribution of the scale value distribution means we therefore
find:

'l}(s(x)) = 1/5, (5.23)

that is, the distribution means of the N i items are distributed homoge
neously along the scale s and consequently are a distance 5/Ni apart. For
an item with attribute strength x this means that the decision bounds for
selecting this item are given by s(x) ± 5/2Ni, with s(x) given by equa
tion 5.15.

5.5.3 A measure for overall identifiability

We are now ready to formulate an expression for the overall identifiability
at a particular point in time. The scale value observed for an item with
attribute strength x will, at a particular point in time, be given by a Normal
probability density function with mean s(x, t) given by equation 5.11 and
a spread around this mean of a. The item will be correctly identified when
this scale value lies within the decision bounds which identify it as the
item with attribute strength x, that is, when it lies within the interval s(x) ±
5/2Ni . To find the probability of an identification error, we therefore have
to integrate this probability density function over the interval s = s(x) 
5/2Ni to s = s(x) + 5/2Ni and subtract the result from one:

l
SIX)+S/2N;

Pi(X, t) = 1 - N(s;s(x, t), a)ds,
s(x)-S/2N;

(5.24)

which after substitution of u = (s - s(x, t))/ a and of tls(x, t) = s(x, t) - s(x)
can be written as:

or as:

i
(-tis(x,I)+S /2N;) / rr

Pi(X, t) = 1 - N(u; 0, l)du,
(-tis(x,I)-S/2N;)/rr
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( ) _ 1 f L1s(x, t} - S/2N, 1 f L1s(x, t) + S/2N, (5.26)
Pi x, t - 1 + -er r,:; - -er r,:;'

2 (Jy2 2 (Jy2

The overall probability of an identification error at a particular point in
time is now given by:

P;(t) = Ix Pi(X, t)J..l(x, t)dx, (5.27)

which again assumes that the attribute strength distribution of the items
to be identified may at any point in time be approximated by the attribute
strength distribution of the set of N items. Substituting equation 5.26, we
obtain:

P.(t) -1 (1 ~ f L1s(x, t) - S/2N; _ ~ f L1s(x, t) +5/2Ni ) ( t)d
1 - + 2er r,:; 2er r,:; J..l x, x,

X (Jy 2 (Jy2
(5.28)

where L1s(x, t) is given by equation 5.17.

5.5.4 Optimising overall identifiability

The problem we wish to solve here, is: what scale function s(x, t) will min
imise the overall probability of an identification error Pi(t) for given at
tribute strength distributions J..l(x, t) and J..l(x)? Referring to equation 5.28,
we have to solve:

. 1(1 1 f L1s(x,t)-S/2Ni 1 f L1S(X,t)+S/2Ni) ( )dmm + -2er r,:; - -er M J..l x, t x,
L\S(X,t) X (Jy 2 2 (Jy 2

(5.29)

and then derive s(x, t) from L1s(x, t) and s(x) using equations 5.17 and 5.15.
The solution to this problem is easily found: if we wish to minimise equa
tion 5.28, we will have to find a L1s(x, t) such that p;(x, t) is minimised for
all x. Referring to equation 5.26, we are looking for a L1s(x, t) such that:

f
L1s(x, t) + S/2Ni f L1s(x, t) - S/2N;

er M -er M
(Jy 2 (Jy 2
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is maximised. This equation represents the area under the curve of a Nor
mal probability density function with mean zero and spread a over the in
terval L1s(x, t) - 5/2Ni to L1s(x, t) + 5/2Ni• Evidently, this area is maximised
when the interval lies symmetrically around the mean of the distribution,
that is, when L1s(x, t) = O. From equation 5.17 it follows that for L1s(x, t) to
be zero, s(x, t) should be equal to s(x), with s(x) given by equation 5.15.
For an optimal metric, we therefore find here:

s(x, t) = s(x) = 5 [X
oo

f-l(u)du, (5.31)

with f-l(u) the average over time of the momentary frequency distribution
f-l(x, t). Equation 5.31 shows that the scale function s(x, t) should in this
case be rigid. Substituting the solution we find here in equation 5.28, the
overall probability of an identification error for an optimal metric is given
by:

5
Pi min = 1- erf..j2 ,

, 2 2Nia
(5.32)

which defines the upper limit of identifiability for given 5, a, and N i. The
lower limit of identifiability will be given by the maximum value of Pi(t),
which independently of 5 and a and for N i > 1 is given by:

Pi,max = 1. (5.33)

Identifiability may now be specified on a scale from zero (worst) to one
(best) by using:

(5.34)

5.6 Estimating the number of discriminable and
identifiable items

To estimate the number of discriminable items, we return to equation 5.12.
When we rewrite this equation to:
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(5.35)

this equation allows us to estimate the maximum number of discriminable
items using an optimal metric for a given allowable error probability Pd of,
say, 25%, and a given internal dynamic range 5/ rr. A plot of the maximum
number of discriminable items versus the dynamic range 5/ rr is shown as
the solid line in the left panel of figure 5.2.

In a similar way, we may rewrite equation 5.32 to:

(5.36)

Here, too, the maximum number of identifiable items using an optimal
metric may be estimated for a given allowable error probability Pi and a
given dynamic range S/rr. The solid line in the right panel of figure 5.2
shows a plot of the maximum number of identifiable items versus the dy
namic range 5/ rr obtained this way for Pi = 25%.

Figure 5.2 shows that, for an allowable error probability of 25%, the num
ber of discriminable items N using a metric which is optimal with respect
to discriminability is about the same as the dynamic range 5/ rr. The num
ber of identifiable items N i using a metric which is optimal with respect to
identifiability is, however, a factor 2.4 smaller than the dynamic range.

5.7 Partial flexibility

We have found expressions for overall discriminability (equation 5.8) and
overall identifiability (equation 5.28). Furthermore, we have found that
optimising overall discriminability requires that the scale function be flex
ible (equation 5.11), and that optimising overall identifiability requires that
it be rigid (equation 5.31). What we wish to do here, is to find a partially
flexible scale function which is chosen such that the total performance (in
terms of both discriminability and identifiability) is optimised. This prob
lem can be solved using regularisation, see, for example, Poggio, Torre
& Koch (1990). If we express the total performance T(t) in terms of the
discriminability D(t) and identifiability I(t), total performance can be op
timised by solving:
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Figure 5.2: The number of discriminable items (left panel) and identifi
able items (right panel) versus the dynamic range S/ a of the scale, for a
maximum allowable error probability of 25%. The solid lines represent
optimum performance, that is, a completely flexible metric for discrim
inability and a completely rigid metric for identifiability. The dashed lines
show the influence of decreased flexibility for the number of discriminable
items, and the influence of decreased rigidity for the number of identifi
able items. See section 5.7.3 for how the dashed curves have been ob
tained.

min T(t) = ED(t) + (1 - E)I(t),
s(x,t)

(5.37)

where E expresses the relative importances of discriminability and identi
fiability for the overall performance.

Here, we will assume that the general solution to this problem belongs to
the class of scale functions:

S(x, t) = ASl~ /1(u, t)du + (1 - A)Sl~ /1(u)du, (5.38)

where the optimal value of the parameter A will depend on the choice
made for E. The parameter A can be interpreted as the degree offlexibility
of the scale function, since for A = a we obtain a completely rigid scale
function which is optimal with respect to identifiability, while for A = 1 we
obtain a completely flexible scale function which is optimal with respect
to discriminability. Note that the average over time of a partially flexible
metric as specified in equation 5.38 is still given by:
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s ~i s(x, t)dt

~i (AS [~Jl(U, t)du + (1 - A)S [~Jl(U)dU) dt

AS jX ~ r Jl(u, t)dtdu + (1 - A)S jX -T
1 r Jl(u)dtdu

-00 T iT -00 iT
AS 1:00 Jl(u)du + (1 - A)S [X

oo
Jl(u)du

S [~Jl(U)dU
s(x). (5.39)

Therefore, the results derived for the accumulation of scale value distribu
tions and the decision rule based upon this accumulation are still valid.

In the remainder we will derive expressions for discriminability D(t, A)
and identifiability l(t' A), given a certain degree of flexibility A. The per
formance optimisation problem as formulated above now becomes:

min f D(t, A) + (1 - f)l(t, A),
.\

(5.40)

which can be solved by taking the derivative with respect to A and setting
the result to zero:

8
8A (fD(t, A) + (1 - f)l(t, A)) = o.

5.7.1 Discriminability for partial flexibility

(5.41)

When substituting equation 5.38 into equation 5.8, we obtain for the over
all probability of a topological error:

P ( A) - r(~_ ~ f ASJl(X, t) + (1 - A)SJl(X)) ( )d
d t, - ix 2 2er 2N(JJl(x, t) Jl x, t x. (5.42)

Discriminability D(t, A) can be derived from this by using equation 5.14.
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5.7.2 Identifiability for partial flexibility

For the overall probability of an identification error we have already found
equation 5.28:

P.(t ') =1(1 ~ f ~s(x, t) - S/2N; _ ~ f ~s(x, t) + S/2N;) ( )d
I ,/\ + 2er M er M /-L x, t x.

x ay2 2 ay2
(5.43)

For a partially flexible metric as specified by equation 5.38, ~s(x, t) will be
given by:

~s(X, t) = ASl~ (/-L(u, t) - /-L(u»du. (5.44)

Identifiability I(t, A) can be derived from this by using equation 5.34.

5.7.3 Re-estimating the number of discriminable and identi
fiable items

Our aim here is to re-estimate the number of discriminable and identifiable
items, this time for a partially flexible metric as specified by equation 5.38.
We will first regard the number of discriminable items. For items having
a small difference 8x in their attribute strengths, the corresponding scale
value difference 8s is given by 8s = (ds(x, t) / dx)8x, where ds(x, t) / dx for
a flexible metric is given by ds(x, t)/dx = AS/-L(X, t) + (1 - A)S/-L(X). Fur
thermore, when the items are ordered by attribute strength, the attribute
strength difference between subsequent items is in good approximation
given by 8x(x, t) = 1/N/-L(x, t). For the corresponding scale value differ
ence 8s(x, t) we therefore find:

1
8s(x, t) = N ( ) (AS/-L(X, t) + (1 - A)S/-L(X» . (5.45)

/-L x, t

Defining ~/-L(x, t) = /-L(x, t) - /-L(x) we may rewrite this to:

8s(x, t)
1

N ( ) (AS/-L(X, t) + (1 - A)S(/-L(X, t) - ~/-L(x, t»).
/-L x, t
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~ _ ~(1 _ )./l/-L(X, t)
N N /-L(x, t)

8s(x, t) + 8s~ t). (5.46)

The second term of this equation may be regarded as a source of variability
on the average scale value difference 8s(x, t) = 5/N, which is proportional
to the degree of rigidity (1 - A). Since this variability is primarily caused
by the term ti/-L(x, t)/ /-L(x, t), we may not expect this variability to be Nor
mally distributed. Ifwe nevertheless assume a Normal probability density
function, the mean of this distribution will be zero and the spread given
by:

(5.47)5s = ~ r ~ r(8s(x, t))2dtdx.xix T iT
For the scale value differences we have already found that the variability
as caused by internal noise is given by a Normal probability density func
tion with a spread (5,,(i. When we include the above variability as caused
by rigidity, and when we assume that the approximation by a Normal
probability density function is more or less valid, we find a total equiv-

alent variability which is given by a spread of (5' = J«(5,,(i)2 + g-/ Sub
stituting (5' for (5,,(i in equation 5.35 now allows for an estimation of the
number of discriminable items for a partially flexible metric. Resulting
plots for 5s = (5,2(5, ... , 5(5 are shown as the dashed lines in the left panel
of figure 5.2. The figure indeed shows that the number of discriminable
items is reduced when the metric is less than completely flexible. How
ever, since 5s is effectively determined by the product of rigidity (1 - A)
and the difference between momentary and average distribution ti/-L(x, t),
the reduced number of discriminable items is the result of a combined ef
fect, and reduced flexibility will therefore only result in a reduced number
of discriminable items when /-L(x, t) is not equal to /-L(x).

Related to this, it is interesting to notice that if we regard the number of dis
criminable steps in attribute strength x, as measured in terms of JND's (just
noticeable differences), we find that this number should for rigid metrics
be essentially equal to the dynamic range 5/ (5. For a (partially) flexible
metric this no longer holds, and the dynamic range 5/(5 becomes the lower
limit for the number of discriminable steps. The explanation for this is as
follows. For a small step tix in attribute strength, we find a correspond
ing scale value difference tis = (ds(x) / dx)tix. Any scale value difference tis
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which exceeds the noise level (J on the scale effectively corresponds to a
discriminable step. Therefore, ~x = (J / (ds(x) / dx) defines the size of a dis
criminable step. Due to adaptation of the (partially) flexible metric to the
momentary frequency distribution of the attribute strength, ds(x) / dx will
always be relatively high for the value of x currently used as the reference
for ~x. The resulting discriminable step size ~x will, for a (partially) flex
ible metric, therefore be relatively small, and the total number of discrim
inable steps correspondingly high. The conclusion which may be drawn
from this is that measurement of the dynamic range of a certain metric
in terms of the number of JND's will result in an over-estimation of the
dynamic range when the metric under consideration is (partially) flexible.

We now turn to estimating the number of identifiable items. The use of a
partially flexible metric as given in equation 5.38 will result in a mapping
from attribute strength x to scale value s given by:

s = S(x, t) = S(x) + ~S(x, t), (5.48)

with ~s(x, t) given by equation 5.44. If we assume that ~s(x, t) may be
approximated by a random variable which is Normally distributed, the
spread of the Normal probability density function will be given by:

s= ~ r .!. r(~s(x, t))2dtdx.xix TiT (5.49)

Using this approximation, we have found a source of variability which
adds to the internal noise on the scale values and which is proportional to
the degree of flexibility A. The total equivalent noise on the scale values is
therefore given by a Normal probability density function with mean zero
and spread (J' given by:

(5.50)

Substituting (J' for (J in equation 5.36, we may now re-estimate the number
of identifiable items when a partially flexible metric is used. Resulting
plots for s= (J, 2(J, ... , 5(J are shown as the dashed lines in the right panel
of figure 5.2.

The figure shows a profound effect of flexibility: the number of items
which can be identified with a maximum allowable error probability of,
in this case, 25%, is no longer a fixed factor 2.4 smaller than the dynamic
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range 5/ (T, and rises asymptotically to a value which is essentially de
termined by the variability s caused by the flexibility of the metric. This
result is in good correspondence with a well-known experimentally es
tablished fact: when subjects are asked to identify stimuli which vary in
one-dimensional attributes like loudness, brightness, or length, they are
usually unable to successfully identify the stimuli with more than the fa
mous "seven plus or minus two" stimulus categories (Miller 1956), even
though the number of discriminable steps in these attributes is in the order
of one hundred.

Within the framework of (partially) flexible metrics we have found a ten
tative explanation for this effect: for a rigid metric we have estimated that
the number of identifiable items should be about 2.4 times smaller than the
dynamic range 5/ (T, whereas the number of discriminable steps should
be essentially equal to the dynamic range. Due to the flexibility of the
metric, the additional variability sin the mapping from attribute strength
x to scale value s essentially becomes the limiting factor for the number
of identifiable items, whereas the dynamic range 5/ (T now becomes the
lower limit for the number of discriminable steps (refer to what has been
concluded earlier about the number of JND's for partially flexible metrics).
We therefore expect that the ratio of the number of discriminable steps to
the number of identifiable items will be around 2.4 for those attributes for
which the metric is rigid, with values exceeding 2.4 for those attributes
whose internal metrics are increasingly more flexible.

5.7.4 Optimising the degree of flexibility

Our aim here is to give an example of the solution to the flexibility optimi
sation problem (equation 5.41) for a simplified situation. To this end, we
have assumed that the average distribution /-l(x) is uniform between x = 0
and x = 1 and the momentary distribution /-l(x, t) is Normal between x = 0
and x = 1 with mean 0.5 and spread 0.15. Furthermore, we have assumed
that the scale range 5 is one, and we have assumed a dynamic range 5/ (T

of one hundred. For the noise level (T these choices result in a value of
0.01. Last, we have assumed that the number of items to be discriminated,
N, is one hundred (the maximum number of discriminable items for the
chosen dynamic range of one hundred and for a maximum allowable er
ror probability of 25%), and that the number of items to be identified, N i ,

is ten (a number which for a partially flexible metric, a dynamic range of
one hundred, and a maximum allowable error probability of 25% is close
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Figure 5.3: The influence of the degree of flexibility on discriminability D,
identifiability I, and total performance T for a simplified case. The left
panel shows the assumed momentary distribution /-l(x, t) (dotted line) and
average distribution /-l(x) (solid line). The right panel shows calculated
discriminability (dotted line), identifiability (dashed line) and total per
formance (solid line) versus the degree of flexibility. For this particular
case, total performance is optimised for a degree of flexibility of 0.15. See
text for further details about the assumed values for parameters such as
dynamic range.

to the maximum number of identifiable items). Figure 5.3 shows a plot of
discriminability D (dotted line) and identifiability 1 (dashed line) versus
the degree of flexibility A. The solid line represents total performance T
when the value of E in equation 5.41 is set to 0.5.

The plot indeed shows that discriminability rises monotonically with the
degree of flexibility. It also shows that, for a degree of flexibility below
approximately 0.20, identifiability is relatively unaffected by increasing
flexibility. However, for degrees of flexibility of about 0.25, identifiability
decreases dramatically with increasing flexibility. Figure 5.3 shows that
improved discriminability compensates for decreased identifiability up to
a degree of flexibility of 0.15, where total performance T reaches its max
imum of approximately 0.87. Therefore, for this specific case a relatively
small degree of flexibility of 0.15 optimises overall performance.

To conclude, the particular degree of flexibility which optimises overall
performance will in general depend on the relative importances of dis
criminability and identifiability, with increasing importance of discrim
inability resulting in a higher degree of flexibility and, conversely, increas-
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ing importance of identifiability resulting in a lower degree of flexibility.
Quantification of outside world attributes is an early stage in perception,
and we therefore expect flexible metries to be a property of the earliest
stages in perception. Having observed this, it is unlikely that the degree of
flexibility can be changed from one moment to the next according to what
is required by the task at hand. Instead, it is more likely that the optimal
choice for flexibility will be given by the successfulness of the interaction
process during a longer period in time, for example in terms of the number
and severity of the errors made during the interaction.

An important parameter determining how discriminability and identifia
bility will vary for a given degree of flexibility is the statistical behaviour of
the momentary distribution in time. Luminance is a particularly interest
ing case in this respect. A typical range of luminance is about three orders
of magnitude at any particular moment, however the total range of lumi
nance is estimated to be about ten orders of magnitude (McCann 1988).
For a rigid metric this entire range is somehow to be mapped onto the
internal scale, therefore even for a strongly compressive scale function,
such as a logarithmic scale function, only about thirty percent of the scale
would really be used at any particular point in time. For a flexible metric
this situation is dramatically improved, with the lowest luminance in the
scene mapped onto the lower end of the scale, and the highest luminance
in the scale mapped onto the upper end of the scale. In this situation,
scale values will roughly correspond to relative luminances, and therefore
to surface reflection coefficients. Since surface reflection can be regarded
as an invariant object property, the use of a flexible metric in this particular
case actually helps to identify items using their measured luminances.

5.8 Application: black-and-white images of natu
ral scenes

Our aim in this section is to compare discriminability, identifiability, and
total performance predictions for four black-and-white images of natural
scenes with experimentally obtained judgments of sharpness, visibility of
detail, naturalness, and quality. Judgments of sharpness and visibility of
detail were chosen since these attributes are in different ways related to
discriminability. Judgments of naturalness, which in the experiment was
defined as the degree to which the image is realistically reproduced, were
chosen since this attribute is indirectly related to identifiability; the less re-
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alistically an image is reproduced, the less well the image can be matched
with what is in memory, and therefore the less identifiable the items in
the image will be. The aim of this comparison will not be to analyse the
accuracy with which the predictions correspond to experimental results.
Instead, the aim will be to check whether several non-trivial tendencies in
the obtained experimental data, most notably the differences between nat
uralness judgments and quality judgments reported earlier in chapter 2,
can be adequately predicted.

We selected our images from a set of 77 digitised colour images of natural
scenes recorded on two Kodak Photo CD's. We produced black-and-white
versions of these images by transforming the images from the RGB system
space to the CIELUV colour space (Hunt 1992) and setting the chromatic
ity coordinates u* and v* to zero. Finally, we manipulated the brightness
contrast of the obtained black-and-white images by applying an s-shaped
transformation on lightness L*:

L*'
(

L* - L~in ) I * * *
L* _ L* . (Lave - Lmin )+ Lmin

ave mm

for L~zn ::; L* ::; L;ve

(
L~ax - L* ) I * * *

L* _ L* (Lave - Lmax)+ Lmax
max ave

for L;ve < L* ::; L~wx, (5.51)

where L* represents the original lightness value, L*' the new value, and
where L~in' L~ax' and L;ve represent the minimum, maximum, and aver
age lightness in the original image, respectively. The parameter 'Y in equa
tion 5.51 is specified in terms of a gain-factor gas:

(5.52)

Applying the above s-shaped transformation will decrease the brightness
contrast for negative values of g, and increase the brightness contrast of
the image for positive values of g, while the average lightness of the im
age remains at approximately the original level. Nine versions of each
scene were used, with gain-factor values of -0.60, -0.45, -0.30, -0.15, 0,0.15,
0.30, 0.45, and 0.60. Subjects, eight in number, were in separate sessions
instructed to judge sharpness, visibility of detail, naturalness, and qual
ity of the resulting images. The images were shown in random order and
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P;=5%

Table 5.1: Calculated number of identifiable items for the luminance distri
butions of the set of 77 images, assuming 5 = 1.00 and u = 0.01 (dynamic
range 5/u = 100). The number of identifiable items was calculated for de
grees of flexibility>. of 0.00, 0.25, 0.50, 0.75, and 1.00, and for a maximum
allowable error probability Pi of 25% and 5%, For the predictions in this
section we have chosen Pi = 25% and>. = 0.25, hence N i ~ 13.

with three replications on a PAL-compliant CRT (cathode ray tube). Sub
jects were instructed to use an ll-point numerical scale ranging from 0
("bad") to 10 ("excellent") for their judgments. The resulting judgments
were z-scored and averaged over subjects and replications.

For our predictions we assumed the following. First, for the momentary
distribution J.L(x, t) we used the luminance distribution of the image under
consideration, and for the average distribution J.L(x) we used the average
luminance distribution of the entire set of 77 images. We again assumed
a scale range of one, a dynamic range of one hundred, and one hundred
items to be discriminated. Furthermore, we assumed equal weighting of
discriminability and identifiability for overall importance (E = 0.5) and, in
correspondence with what was found for the simplified case in the previ
ous section, a relatively small degree of flexibility, >. = 0.25. This particular
choice for the degree of flexibility was also found to best describe experi
mental results in the colour domain (see chapter 4). Last, we checked for
our set of 77 images whether the deviation L1s(x, t) (equation 5.44) could
indeed be adequately described by a Normal probability density func
tion. This proved to be the case, and the spread s (equation 5.49) which
we found for the set of images was approximately 0.128>'. Using equa
tion 5.36, we arrived at a maximum number of identifiable items of ap
proximately thirteen for the above choices of >. = 0.25 and Pi = 25% (see
also table 5.1).

Figure 5.4 shows judgments of visibility of detail (dotted lines) and sharp
ness (dashed lines) together with z-scored discriminability predictions
(solid lines). For images 2 and 3 discriminability predictions closely corre
spond to sharpness judgments, for image 1 predictions are roughly mid
ways the judgments of sharpness and visibility of detail, and for image 4
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predictions closely correspond to judgments of visibility of detail. The
difference between sharpness and visibility of detail for values of g larger
than zero is probably due to two separate effects of the s-shaped transform.
For small positive values of g both sharpness and visibility of detail are in
creased due to increased contrast. However, for large positive values of g
visibility of detail is decreased due to the presence of increasingly larger
areas in the manipulated images where all detail is lost due to clipping to
either black or white. Sharpness, which is closely related to contrast, is
not influenced much by the existence of such areas. It is not exactly clear
to us why predictions correspond more closely to sharpness for some im
ages and to visibility of detail for other images, and in the remainder of
this discussion we have therefore chosen to consider the average of the
judgments for sharpness and visibility of detail as an adequate correlate
for discriminability.

Figure 5.5 shows naturalness judgments (dotted lines) and identifiability
predictions (solid lines). Agreement between predictions and judgments
is quite good for image 4, and somewhat less good for images I, 2 and 3.
The naturalness judgments for these three images show some asymmetry,
with naturalness being judged best for small positive values of g. The
position of the maximum of the naturalness judgments for these images
nevertheless corresponds nicely with the position of the maximum of the
identifiability predictions. The most important difference is the increased
asymmetry of the identifiability predictions with respect to the naturalness
judgments.

Figure 5.6 shows quality judgments (dotted lines) and predictions for to
tal performance (solid lines). Here, agreement between predictions and
judgments is quite good for all images. The only important difference is
the over-estimation of the predictions for total performance with respect
to quality judgments for image 2 for large positive values of g.

Figure 5.7 shows the average of the judgments for sharpness and visibility
of detail (dotted lines), naturalness judgments (dashed lines) and qual
ity judgments (solid lines). The figure shows that quality judgments lie
approximately halfway naturalness and the average of sharpness and vis
ibility of detail. This result strongly supports the central idea of this paper
that quality is determined by both discriminability and identifiability.

To conclude, figure 5.8 shows predictions for discriminability (dotted
lines), identifiability (dashed lines), and overall performance (solid lines).
Compare the predictions in this figure with the experimental results in fig
ure 5.7. Although smaller in size, the differences between discriminability
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Figure 5.4: Experimentally obtained judgments for visibility of detail V
(dotted lines) and sharpness 5 (dashed lines), versus the gain factor g of
the s-shaped transform. The error bars denote twice the standard error in
the mean. The solid lines represent the predictions for discriminability D.
Both judgments and predictions have been z-scored to facilitate compari
son.
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Figure 5.5: Experimentally obtained judgments for naturalness N (dotted
lines) and predictions for identifiability I (solid lines), versus the gain fac
tor g of the s-shaped transform. The error bars denote twice the standard
error in the mean. Judgments and predictions have been z-scored to facil
itate comparison.

104



5.8. Application: black-and-white images of natural scenes

image 1 image 2
2 2

...yA--.-I.,

I-- I-- \1.
a 0 a 0 -' ..

..1' \f
,,/

I"
...

-2 -2
-0.5 0 0.5 -0.5 0 0.5

image 3 image 4
2 2

I-- I--

a 0 a 0

1',.-

-2 -2
-0.5 0 0.5 -0.5 0 0.5

gain factor gain factor

Figure 5.6: Experimentally obtained judgments for quality Q (dotted lines)
and predictions for total performance T (solid lines), versus the gain factor
g of the s-shaped transform. The error bars denote twice the standard error
in the mean. Judgments and predictions have been z-scored to facilitate
comparison.
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Figure 5.7: The average of the experimentally obtained judgments for vis
ibility of detail and sharpness, U (dotted lines), experimentally obtained
judgments of naturalness N (dashed lines), and experimentally obtained
judgments of quality Q (solid lines) versus the gain factor g of the s-shaped
transform. The error bars denote twice the standard error in the mean. All
judgments have been z-scored to facilitate comparison.
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Figure 5.8: Predictions for discriminability D (dotted lines), identifiability
1 (dashed lines) and total performance T (solid lines) versus the gain factor
g of the s-shaped transform.

and identifiability correspond nicely to the differences between the aver
age of sharpness and visibility of detail and naturalness. Especially the
small but systematic differences between naturalness and quality, with
quality being higher than naturalness for large positive values of g (all
images) and quality being lower than naturalness for negative values of g
(most dearly in image 4), are correctly reflected in the predictions of iden
tifiability and total performance. Therefore, although there are significant
differences between experimental results and predictions, the validity of
the concept we have developed here is supported by the correct prediction
of several non-trivial characteristics of the obtained experimental results.
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5.9 Conclusions

We have presented a concept for image quality which is based on answer
ing the questions: what are images, what are images used for, and what
are the requirements which the use of images imposes on them. We have
argued that images are the carriers of visual information, and that they
are used as input to the perception stage of interaction. Furthermore, we
have argued that the aim of perception is to measure and internally quan
tify attributes of items in the outside world in order to discriminate and
identify these items. Therefore, the requirements imposed on an image
are that, first, the items in the image should be discriminable and, second,
the items in the image should be identifiable.

Since the internal quantification of outside world attributes is of such im
portance for a successful interaction, we have argued that the metrics used
for this quantification should be of the type proposed in chapter 3, that is,
partially flexible and optimised with respect to discriminability and iden
tifiability. We have derived expressions for such metrics, together with
measures for discriminability, identifiability, and total performance. For
the case of manipulated black-and-white reproductions of natural scenes,
we have compared predictions made using these algorithms with experi
mentally obtained judgments of human subjects. Although there are sig
nificant differences between predictions and judgments, correspondence
between predictions and judgments is quite good. Moreover, several im
portant and non-trivial characteristics of the obtained judgments, such as
the small but systematic difference between quality and naturalness judg
ments, are correctly predicted.
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Epilogue

In this thesis a new concept for image quality has been presented. The
concept is based on a top-down analysis of visuo-cognitive processing, in
particular of the role of visuo-cognitive processing within the interaction
process. Starting with a fundamental definition of quality in terms of the
degree to which imposed requirements are satisfied, we have obtained a
description of image quality which explicitly takes into account the fact
that images are input to the vision stage of the interaction process. The
result is a definition for image quality in terms of the adequacy of the
image to serve as an input for the interaction process.

As stated in the conclusion of chapter 2, the concept we have presented
here is basically formulated independently of modality, which opens the
possibility to apply this concept to, for example, sound or speech quality,
or to generalise it to the quality of multi-modal information presentation.
An interesting possible extension mentioned in the conclusion of chapter 2
is a generalisation towards a concept for the quality of user-system inter
action. The topic of this final chapter will be a short discussion of two
(philosophical) issues related to the development of such a concept.

To start with the first issue, Newell & Simon (1972) and Newell (1990)
have argued convincingly that various aspects of human behaviour, such
as reasoning, search, and problem solving, and therefore interaction in
general, can be regarded as information-processing tasks. There is an im
portant philosophical consequence to this position, namely that humans
may be regarded as information-processing systems. Marr (1982) has ar
gued that, in order to fully understand information-processing systems,
these systems should be studied at the levels of semantics, algorithms, and
implementation. Typical questions asked at these three levels are: what is

109



6. Epilogue

the system doing, and why is it doing what it is doing (semantics), how is
it doing what it is doing (algorithms), and what is it using to do what it is
doing (implementation).

The second issue we wish to consider here is the structure of information
processing tasks, which seems to be strongly hierarchical. This is probably
due to the fact that most information-processing tasks are performed by
means of sequences of procedures, where each individual procedure often
is an information-processing task in its own right. Hence, information
processing tasks can be subdivided into smaller tasks (subtasks) and are
themselves part of larger tasks (supertasks). An important consequence
of this hierarchical structure is that the goal of an information-processing
task is in fact defined one level upwards in the hierarchy of information
processing tasks being performed.

The above two observations have a profound influence on the meaning
of the concept quality within user-system interaction. Two consequences
are particularly interesting here, and we will discuss them in order. The
first is the fact that the concept of quality can be hierarchically defined
across the three levels of semantics, algorithm, and implementation. The
second is the fact that, at the semantic level, quality can only be meaning
fully defined when the hierarchical structure of information processing is
explicitly taken into account.

If we consider the semantic level, quality can be defined (as before in this
thesis) in terms of the adequacy of the information-processing task for
reaching the desired goal. Suitable criteria at the semantic level may for
example be: has the desired goal been successfully accomplished (effectiv
ity) and at what effort (efficiency). At the algorithmic level, quality refers
to the adequacy of the algorithms which are performing the information
processing task, with criteria such as the ability to work on distorted input
(robustness) or applicability to a wide range of different inputs (flexibility).
Finally, at the level of implementation, quality refers to the adequacy of
the hardware used to implement the information-processing algorithms.
Typical criteria at this level are physical limits to the precision with which
signals can be represented (noise), or representable signal strength (range).

The level of implementation is the level where quality is usually defined.
Think, for example, of quality definitions for audio-visual equipment,
where quality is defined in terms of limits to the precision and range with
which signals can be represented. In this thesis we have successfully de
veloped an alternative concept for image quality at the semantic level. We
have made this choice for one very important reason: quality at the level
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Figure 6.1: Anatomy of the user-system interaction cycle.

of implementation, or at the algorithmic level, is a necessary but insufficient
condition for quality at the semantic level. In other words: although qual
ity at the algorithmic and implementation level is important, and although
quality at the semantic level depends upon quality at these two levels, it
is quality at the semantic level which ultimately determines how well hu
mans are able to use the image. This will not be different for a possible
future concept for the quality of user-system interaction, where the user
interface takes the role the image has in the present concept.

As stated earlier, the nature of information-processing tasks, and hence of
user-system interaction, is strongly hierarchical. We will start at what is
perhaps the lowest distinguishable hierarchical level in user-system inter
action: the level of the individual user-system interaction cycle. Further
more, we will assume that the goal of user-system interaction at this lowest
hierarchical level is to manipulate the system from its current state to some
desired state, as specified one level upwards in the hierarchy. Figure 6.1
shows the anatomy of a single user-system interaction cycle.

The figure shows two flows of information between the user and the sys
tem, both of which are mediated by the user-interface. The information
flow going from the system to the user is typically encoded visually, for
example by means of images displayed on a screen, and is usually about
the current status of the system. The information flow going in the op
posite direction, from the user to the system, is usually encoded motori-
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cally, for example by means of mouse movements and mouse clicks, and
often contains instructions from the user to the system. The user part of
the interaction cycle in figure 6.1 is again divided into the stages percep
tion, cognition, and action. Within this division, the aim of the perception
stage is to "decode" the information flow from the system to the user. In
the cognition stage, this decoded information is used to (re-)formulate the
strategy for achieving the desired system state and deriving a procedure of
instructions to the system. The aim of the action stage is then to "encode"
these instructions into a format which can be interpreted by the interface
and subsequently mediated to the system.

We have already observed that, at the semantic level, quality can only be
meaningfully defined when the hierarchical structure of information pro
cessing tasks is taken into account. We are now at a point where we are
able to explain why. To this end, consider that, at the level of implementa
tion, quality may be defined in terms of the adequacy of the user-interface
hardware as a means to mediate system status information to the user and
user instructions to the system. Similarly, quality may be defined at the
level of algorithms in terms of the adequacy of the formulated set of in
structions to perform the task of manipulating the system from its present
state to some new state, using the available user-interface. Finally, at the
semantic level, quality may be defined in terms of the adequacy of the
interaction strategy with respect to successfully, that is, effectively and effi
ciently, achieving the desired final system state. It is exactly for this that we
need to know what the role of the interaction task is within its interaction
supertask one level upwards in the hierarchy.

To conclude, the development of a concept for user-system interaction
quality will require an in-depth analysis of the structure of the inter
action process, as well as a careful analysis of the definitions for qual
ity at the levels of semantics, algorithms, and implementation. A pos
sible means to achieve this may be the definition of relatively well
defined, autonomous information-processing tasks at higher levels in the
information-processing task hierarchy, such as the search task, similar to
the discrimination and identification tasks we have defined earlier for
visuo-cognitive processing. The knowledge thus obtained can be used
to formulate requirements which should be imposed on user-interfaces
in order to ensure a successful interaction, and subsequently to develop
measures for quantifying the degree to which these requirements are sat
isfied. The availability of such measures will be an extremely important
step towards the design of high-quality user-interfaces.
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Sample stimuli

The following pages show three sets of sample stimuli similar to those
used in the experiments described in chapter 2. The first set (page 119)
shows the effect of scaling CIE chroma, C~v. The chroma scale factors used
are: 0.50 (upper left), 0.71 (upper right), 1.00 (centre), 1.41 (lower left), and
2.00 (lower right). The second set (page 121) shows the effect of varying
the colour temperature of the reference white, Te• The colour temperatures
used are: 4000K (upper left), 5000K (upper right), 6500K (centre), 10000K
(lower left), and 25000K (lower right). The third and last set (page 123)
shows the effect of applying the s-shaped transformation on CIE lightness,
L*. The values of "y used are: 0.25 (upper left), 0.50 (upper right), 1.00
(centre), 2.00 (lower left), and 4.00 (lower right). The corresponding values
for the gain factor g are -0.60, -0.30, 0.00, 0.30, and 0.60, respectively.
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Summary

In this thesis an attempt is made to answer the fundamental question
"What is image quality?". The approach we pursue to answer this ques
tion is based on the following four-point philosophy: (1) images are car
riers of visual information; (2) visuo-cognitive processing is information
processing; (3) visuo-cognitive processing is an essential stage in human
interaction with the envirorunent; and (4) image quality is the adequacy of
the image as input to the vision stage of the interaction process.

The structure of this thesis is as follows. In chapter 2 we formulate an an
swer to the question "What is image quality?" based on the philosophy
outlined above. In this chapter, we give a description of image quality
in terms of two components, usefulness, that is, the precision of the in
ternal representation of the image, and naturalness, that is, the degree of
match between the internal representation of the image and representa
tions stored in memory. The results of two series of experiments are used
to demonstrate the validity of this concept.

In chapter 3 we focus on the internal quantification of outside world at
tributes. Using a rather technical view on visual processing, we regard
vision primarily as a process in which attributes of items in the outside
world are measured and internally quantified with the aim to discriminate
and/or identify these items. We show that the scale function of metrics
optimised with respect to these tasks should be (partially) flexible. Fur
thermore, we show that such metries exhibit properties resembling visual
phenomena such as adaptation, crispening, and constancy.

In chapter 4 we implement the image quality concept of chapter 2 using
the partially flexible metrics of chapter 3. In this chapter a measure for use
fulness is developed, based on the overall discriminability of the items in
the image. Furthermore, a measure for naturalness of the grass, skin, and
sky areas of the image is developed, based on memory standards for grass,
skin, and sky colour. These memory standards are themselves constructed
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from the grass, skin, and sky areas of a large set of images.

To conclude, chapter 5 returns to the concept for image quality introduced
in chapter 2. Following a strict, top-down analysis the entire trajectory
is completed from the semantics of image quality down to the develop
ment of algorithms for the prediction of usefulness, naturalness, and im
age quality. The result is a complete, thorough and explicit description of
image quality according to the above four-point philosophy.
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Samenvatting

In dit proefschrift wordt een poging gedaan een antwoord te geven op de
fundamentele vraag "Wat is beeldkwaliteit?". De aanpak die wij voor het
beantwoorden van deze vraag volgen is gebaseerd op de volgende vier
punts filosofie: (1) beelden zijn dragers van visuele informatie; (2) visueel
cognitieve processen zijn informatie-verwerkende processen; (3) visueel
cognitieve processen vormen een essentieel onderdeel van menselijke in
teractie met de omgeving; en (4) beeldkwaliteit is de adequaatheid van
het beeid ais invoer voor het visueel-cognitieve onderdeel van het interac
tie proces.

De structuur van dit proefschrift is ais voIgt. In hoofdstuk 2 geven we een
antwoord op de vraag "Wat is beeIdkwaliteit?" dat gebaseerd is op de
bovenstaande vier-punts filosofie. In dit hoofdstuk geven we een beschrij
ving van beeldkwaliteit uitgaande van twee componenten, usefulness (of
bruikbaarheid), d.i. de precisie van de interne representatie van het beeId,
en naturalness (of natuurlijkheid), d.i. de mate van overeenkomst tussen de
interne representatie van het beeld en representaties die Iiggen opgesiagen
in het geheugen. We gebruiken de resuitaten van twee experimenten om
de geldigheid van dit concept aan te tonen.

In hoofdstuk 3 concentreren we ons op de interne kwantificatie van at
tributen van de buitenwereld. We kiezen hier een tamelijk technische
invalshoek op het visuele proces, en beschouwen het zien voornamelijk
als een proces waarin attributen van items van de buitenwereld worden
gemeten en intern gekwantificeerd met als doel het van elkaar onderschei
den en het identificeren van deze items. We tonen aan dat de schaalfunc
ties van metrieken die voor deze taken zijn geoptimaliseerd (gedeeitelijk)
flexibel moeten zijn. Verder Iaten we zien dat zulke metrieken eigenschap
pen vertonen die overeenkomen met bekende visuele fenomenen zoals
adaptatie, crispening, en constantie.

In hoofdstuk 4 implementeren we het concept voor beeldkwaliteit uit
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hoofdstuk 2 met behulp van de gedeeltelijk flexibele metrieken uit hoofd
stuk 3. We ontwikkelen een maat voor bruikbaarheid die is gebaseerd
op de onderscheidbaarheid van de items in een beeld. Bovendien ont
wikkelen we een maat voor de natuurlijkheid van de gras-, huid-, en
hemel-delen van een beeld die is gebaseerd op geheugen-standaards voor
de kleur van gras, huid en hemel. De geheugen-standaards zelf zijn
gebaseerd op de gras-, huid-, en hemel-delen van een grate set van
beelden.

In hoofdstuk 5 tenslotte keren we terug naar het concept voor beeld
kwaliteit dat in hoofdstuk 2 werd gemtraduceerd. We kiezen in dit hoofd
stuk voor een strikte top-down analyse en volgen zo het gehele traject
van de semantiek van beeldkwaliteit tot aan de ontwikkeling van algo
ritmen voor het voorspellen van bruikbaarheid, natuurlijkheid en beeld
kwaliteit. Het resultaat van deze aanpak is een complete, degelijke en
expliciete beschrijving van beeldkwaliteit uitgaande van de bovenstaande
vier-punts filosofie.
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Stellingen

behorende bij het proefschrift
Computational Image Quality

van T.J.W.M. Janssen

1. Histogram egalisatie kan met recht een typisch Nederlandse manier
worden genoemd om beelden te verbeteren.

2. Een nog typischer Nederlandse manier om beelden te verbeteren zou
zijn het op het gemiddelde zetten van aIle grijswaarden in het beeld.

3. Flexibiliteit laat zich uitstekend op een rigide wijze beschrijven.
(dit proefschrift)

4. Meting van het dynarnisch bereik van een metriek door middel van
het bepalen van het totale aantal JND's ('just-noticeable differences')
leidt voor een (gedeeltelijk) flexibele metriek tot een overschatting
van dit bereik. (dit proefschrift)

5. Het fenomeen 'seven plus or minus two' voIgt logisch uit het concept
van (gedeeltelijk) flexibele metrieken. (dit proefschrift)

6. Kwaliteit op de beschrijvingsniveaus van irnplementatie en alga
ritrne is een noodzakelijke maar onvoldoende voorwaarde voor
kwaliteit op het semantische beschrijvingsniveau. (dit proefschrift)

7. Wiskundige elegantie zou geen geldig criterium voor de beoordeling
van een modelmatige beschrijving mogen zijn.

8. De uitspraak "Mensen zijn geneigd zich aan een regel te houden als
ze die redelijk vinden" (P.-G. Steenwijk over maximum snelheden)
roept de vraag op waarom mensen dan zo onredelijk zijn.

9. "What's the use of power if you don't make people do what they
don't like?" (Benjamin Disraeli)

10. Frequentie en lengte van veel reorganisaties roepen het beeld op
dat het doel van menige reorganisatie eerder het bevestigen van het
bestaansrecht van de manager dient dan het voortbestaan van de or
ganisatie.
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