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On the cover: 1.McIC, a single-chip MPEG?2 video encoder.
This IC was designed in the period of 1994 to 1996 under the
project leadership of the author. To make the circuit run at the

required clock frequency, retiming techniques were applied
as described in this thesis.
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Preface

In the summer of 1989, I became employed by Philips Research with the ambition
to design state-of-the-art ICs. I had to wait for such work for five years and first
became a member of a team that researched methods for the design of ICs for
digital signal processing in video applications. The approach that this team set up
resulted in the design methodology Phideo. My task was to develop a method for
the design of the basic processing units in video ASICs.

The retiming algorithm, which had just been reported in the literature [Leiser-
son, Rose & Saxe, 1983], became the starting point of my work. The effect of the
algorithm can be viewed as a shift of registers throughout a network of functional
operations. The challenge was to make the retiming algorithm available in a prac-
tical form to IC designers. This involved writing software as well as improving the
retiming algorithm in order to make run times acceptable. The software implemen-
tation of the newly developed algorithm, called RetLab (an anagram of Albert), is
currently being utilized by a large IC-design community within Philips, even for
ICs in other applications than digital video systems. In the early nineties a retiming
tool called Optima, which is based on RetLab, was even marketed outside Philips,
albeit temporarily [Sondervan, 1993; Sondervan, 1994].

Ifound another challenge in developing algorithms for which the retiming tech-
nique is combined with resource sharing methods. A major part of this thesis is de-
voted to research on this subject. Unfortunately, it was much more difficult to make
these algorithms easily accessible to the IC design community. Nevertheless, many
valuable results were obtained, which give insight into algorithm development, es-
pecially in the application of simulated annealing. Moreover, its usefulness was
clearly demonstrated in the design of a research vehicle [Lippens, Van Meerber-
gen, Verhaegh, Grant & Van der Werf, 1994].

Atthe end of 1994, 1 stopped with this work and devoted myself to the design of
LMCcIC, an IC for real-time MPEG?2 encoding of digital video [Van der Werf, Briils,
Kleihorst, Waterlander, Verstraelen & Friedrich, 1997]. My involvement in design
methods, especially the method I had developed myself, continued after this shift.
Instead of being a developer, I became a user of my own design method. Although
many designers within the Philips IC-design community were already enthusiastic
users, it was very satisfactory that I could benefit from my own previous work as
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well.

The shift in work did leave me with an unsatisfied feeling however. Although
the success of the work was there, all the theory that had been built up during the
years could not be easily and consistently presented. Many students had helped
me with the research and had written reports in different styles. Furthermore, I had
presented papers at conferences and workshops, in each case covering only a small
part of the work. The task that was left was to convert a number of papers and to
transform material from students into a thesis. This task comprised more than just
stapling a number of papers together, which is reflected in the time it took me to
write this thesis.

That I actually have written this thesis, I owe to Emile Aarts, who continued to
encourage me to pursue a doctorate. I would like to thank him for that and also for
the many philosophical discussions that we had and which I enjoyed.

I also want to express my gratitude to the former students whose results were
undoubtedly crucial for the work presented here. 1 list their names here in alphabet-
ical order: Babette de Fluiter, Eugene Heijnen, Richard Lukkassen, Marcel Peck,
Christian Toma, and Arjen Vestjens.

Next I would like to thank Jef Van Meerbergen, Paul Lippens, and Wim Ver-
haegh, who were my fellow team members in the Phideo project. The discussions
we had were very stimulating and often turned into a brainstorm producing enough
ideas for a lifetime full of research. I am greatly indebted to Wim, who very care-
fully read drafts of this thesis.

I am very grateful to the people of Philips Electronic Design & Test, espe-
cially Rob Gerritsen, who has now left that organization. He was convinced of
the strength of retiming from the very beginning of my work and showed great
entrepreneurship in taking over the development of RetLab from me.

The work described in this thesis was carried out from 1989 through 1994 at
the Philips Research Laboratories as part of the Philips Research programme. The
research was supported by the European Commission in the ESPRIT 2260 project.
I'would like to thank the management of Philips Research, especially Engel Roza,
for giving me the opportunity to use the research for this thesis.

Finally, I give my special thanks to my loving wife Anke for her understanding
and support in numerous ways that I could never have done without.

Veghel, May 1998 Albert van der Werf.
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1

Introduction

In this thesis we are concerned with the design of area-efficient Processing Units
(PUs) that can execute one or more functions, specified as Signal Flow Graphs
(SFGs), in one or more clock cycles and at a high clock frequency. The func-
tions are part of a signal processing algorithm specifying the behaviour of a digital
electronic system. The PUs are applied in video signal processors as part of an
Integrated Circuit (IC) in silicon.

In this chapter we introduce the concepts of SFGs and PUs and we describe
a number of techniques for designing PUs. The organization of this introductory
chapter is as follows. SFGs and PUs are introduced in Section 1.1. Three basic
techniques to design PUs, namely multiplexing, timefolding, and retiming, are dis-
cussed in Section 1.2. Section 1.3 discusses the relation between SFGs and PUs,
and informally introduces the PU design problem. The solution strategy for the
PU design problem that is described in this thesis is presented in Section 1.4. The
context and related work of PU design is discussed in Section 1.5.

1.1 Signal flow graphs and processing units

A signal flow graph represents a function that consists of operations of which the
input and output terminals are connected by edges; see Figure 1.1a. Every oper-
ation in an SFG is executed repeatedly, for an indefinite period of time; see Fig-
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ure 1.1b. An output terminal produces a signal on an edge, which is consumed at
an input terminal. A signal may be used in a subsequent execution of the SFG. In
that case, the edge represents a number of succeeding signal values concurrently.
The weight on an edge refers to the number of values of previous iterations.

E. operation A1 with two input terminals and
a one output terminal

! . .
\ a signal which is used in the next iteration

@

Figure 1.1.  An example of a signal flow graph (@) with two input operations,
11 and 72, and one output operation O1. The operations Al and A2 represent
additions. An indefinite repetition of executions of the SFG is shown in (b).

We consider PUs that consist of operators, registers, and multiplexers con-
nected by point-to-point connections called wires; see Figure 1.2. A processing
unit can execute one or more functions, specified as SFGs, in one or more clock
cycles.

N

multiplexer

operator A DD with two input terminals
and one output terminal

Figure 1.2. An example of a processing unit. It has one input operator, I, one
output operator, O, and one adder, ADD. Furthermore, it has two multiplexers and
three registers.

In this thesis we are concerned with the synchronous processing of digital sig-
nals, where a clock signal synchronizes the flow of data. A clock signal is a se-
quence of clock cycles that are repeated at a certain frequency. The transfer of data
from one clock cycle to the next is performed by registers. At the end of a clock
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cycle, which is marked by a rising edge of the clock signal, data at the input of a
register is stored and available at its output during the next clock cycle.

The time it takes within a clock cycle for an operator to return a value at an out-
put terminal after a change of value at one of its input terminals is called the asyn-
chronous delay. A sequence of operators and multiplexers, connected by wires,
comprises a path. The length of a path represents the total asynchronous delay
of the operators and multiplexers on the path. The maximum clock frequency at
which a PU can operate is determined by the so-called critical path, which is the
longest path between any two subsequent registers and which must have a delay
smaller than the clock period. Within the delay of the critical path all the signals of
a PU will settle to a certain value. Asynchronous feedback loops, which are loops
that contain no registers, are not allowed.

We speak of a pipelined execution of functions when more than one execution
of a function is performed in parallel in the same clock cycle, but the executions
are in different stages. In that case it takes a number of clock cycles before the
result of a function’s execution is available at the output operators. The number of
clock cycles it takes to get a result is called the synchronous delay or the latency.

In a PU, data is routed from output terminals of operators to input terminals of
operators by a switching network containing registers and multiplexers. A multi-
plexer has two input terminals, one output terminal, and a select input. The select
input indicates from which input terminal the data must be routed to the output
terminal.

Here, we assume that a global controller is present outside a PU that generates
the select signals for the multiplexers. Furthermore, we assume that a clock signal
is present for the registers. The clock terminals of registers and the select terminals
of multiplexers are omitted in figures for the sake of clarity.

1.2 Multiplexing, timefolding, and retiming

Below we consider three basic techniques that are jointly used in the design of
processing units: multiplexing, timefolding, and retiming.

Multiplexing is a technique to construct a multi-functional PU that can perform
more than one function. The goal with multiplexing is to save on hardware costs by
reusing operators for the execution of more than one operation of different SFGs.
Depending on the function that is executed, the signals produced by operators
must be routed to certain input terminals of other operators. To this end, a switching
network between the operators is present that contains multiplexers. Although
a multi-functional PU requires less area for operators than two or more single-
functional PUs, it uses additional area for the switching network. Moreover, its



4 Introduction

multiplexers introduce additional asynchronous delay in signal paths and therefore
may decrease the maximum clock frequency at which a function can be executed.

The multiplexing technique is explained with the following example. Given
are the SFGs of a butterfly and a 5-tap filter, as shown in Figure 1.3. For more
detailed descriptions we refer to Rabiner & Gold [1975], Oppenheim & Schafer
[1975], and Roberts & Mullis [1987]. A PU that can perform either a butterfly or a
5-tap filter is shown in Figure 1.4.

(a) (]

Figure 1.3. Two functions, namely a butterfly () and a 5-tap filter (b), specified
as SFGs.

Figure 1.4. A PU that can either execute a butterfly or a 5-tap filter.

Timefolding is a technique to construct a multi-cycle PU that can execute a function
in more than one clock cycle. The goal with timefolding is to save on hardware
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costs by reusing operators for the execution of more than one operation of the same
SFG. In the case of timefolding, the executions of operations are spread over more
than one clock cycle.

Timefolding may delay operations for a number of clock cycles and conse-
quently signals may need to be delayed one or more clock cycles. To this end, the
switching network contains registers to store signals for one or more clock cycles.
Furthermore, it contains multiplexers to route signals to their destinations. A multi-
cycle PU requires less area for operators than a single-cycle PU, but additional areca
is used by the switching network. The multiplexers in the switching network may
increase the longest path, but the registers in it may decrease it; therefore the effect
on the maximum clock frequency at which the function can be executed is hard to
predict.

An example of a multi-cycle PU is shown in Figure 1.2. Every two clock cycles
it can execute a function according to the SFG shown in Figure 1.1a. The time at
which operations are executed is shown in Figure 1.5a. This can also be compactly
represented in the SFG by (modified) weights on its edges; see Figure 1.5b. The
multiplexer inputs that are selected are indicated in Figure 1.6.

Retiming is a technique to construct a PU that executes a function at a required
clock frequency. The technique is called retiming, because the position of registers
in a PU is determined by a change of the times at which operations are executed.
Since the placement of the registers determines the longest path between two reg-
isters in the PU, retiming affects the maximum clock frequency at which functions
can be executed. Retiming may result in a change in the production and consump-
tion times of output and input signals, respectively. Consequently, executions of
functions may become overlapping in time, resulting in a pipelined implementa-
tion. Examples of PUs that are designed using retiming are shown in Figure 1.7.

The three design techniques multiplexing, timefolding, and retiming can be com-
bined. A PU that can perform either a butterfly or a 5-tap filter every two clock
cycles is shown in Figure 1.8.

1.3 Informal statement of the PU design problem

The relationship between SFGs and a PU that can execute them can be defined in
two steps. Firstly the SFGs are mapped onto a new target SFG, and secondly this
SFG is implemented by a PU.

The first mapping, from one or more source SFGs to a target SFG, is defined
by three sets of variables. These are the number of operations allocated in the
target SFG, each of which corresponds to an operator in the PU, the operator to
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®
=
©

3

0 1 2 3 4 5 6 7 8 time (clock cycles)

(®)

Figure 1.5. (a) The time at which the operations of the SFG of Figure 1.1a are
executed. Note that the SFG is executed in a timefolded and pipelined way. ()
The SFG of Figure 1.1a with its weights modified according to the times at which
its operations are executed as shown in (a).
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PG PHb
7 0 i 7 0
-E“-. 0 —-c%o

(a) (b)

Figure 1.6. A multi-cycle PU that executes the SFG of Figure 1.1. The mul-
tiplexers indicate the input that is selected. The situation of (a) corresponds to
the clock cycles in which operations /2 and A2 are executed. The situation of (b)
corresponds to the clock cycles in which operations /1, A1, and O1 are executed.

Figure 1.7. PUs designed using the retiming technique for the butterfly (a) and the
5-tap filter (b), which are specified by the SFGs shown in Figure 1.3. We assumed
that on a single path one multiplication or two additions can be performed in one
clock cycle and that the delays of the input and output operators can be neglected.
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Figure 1.8. A PU that every two clock cycles can perform either a butterfly or a
5-tap filter, which are specified by the SFGs shown in Figure 1.3. We assume that
on a path one multiplication or two additions can be performed in one clock cycle
and that the delays of the input and output operators can be neglected.

which each operation is assigned, and the time at which it is executed. The latter is
indicated relative to an initial execution time and is called retiming. To design a PU
we have to determine these variables; therefore we call them decision variables.

The variables must satisfy the following design constraints. There must be suf-
ficient operators available to execute the operations. The time at which an operation
is executed must be such that no path is longer than the clock period. Furthermore,
two operations of one SFG must be executed at different clock cycles when they are
mapped onto the same operator. No asynchronous feedback loops may be present
in the PU designed.

The three sets of decision variables define a target SFG in which the edges
are determined by the assignment of operations to operators. Every edge in the
target SFG has a corresponding edge in one of the source SFGs. The weight of
the edge in the target SFG is determined by the execution times of the producing
and consuming operations and the original weight of the corresponding edge in
one of the SFGs. The effect of retiming is that delaying the consuming operation
increases the weight, while delaying the producing operation decreases it.

We take as an example the design of the PU that is shown in Figure 1.8, which
every two clock cycles can execute either a butterfly or a 5-tap filter, which are
specified by the SFGs shown in Figure 1.3. The allocation consists of two input
operators, two output operators, two multipliers, and three adders. Table 1.1 gives
the assignment. The retiming of the operations and its effect on the weights of
the edges in the source SFG is shown in Figure 1.9. The target SFG constructed
according to the allocation, assignment, and retiming is shown in Figure 1.10.

The second part of the mapping of SFGs onto a PU is the mapping of the
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Table 1.1. The assignment of operations to operators for the example of mapping
the SFGs of the butterfly and the 5-tap filter as shown in Figure 1.3 onto the PU
of Figure 1.8.

Operations
Butterfly 5-tap filter
— — =
m|e|e|=|S /88|32 (9922 |S|S)9 5||<|5]=|9 Q¥ |S|S|8)5
11 o e
2 R .
g 01 e |e .
= |02 oo
g Al o e o e
A2 o e
A3 o[ ale
M1 . 0 0 .
M2 0 . . .

Figure 1.9. The SFGs of the butterfly (a) and the 5-tap filter (b). The number in
an operation denotes its retiming with respect to the SFGs shown in Figure 1.3.
The weights on the edges are adjusted according to the retiming.

1 L

1043 02

Figure 1.10. A target SFG constructed in the design process for a multi-functional
multi-cycle PU that can execute either the butterfly or the 5-tap filter. The weights

correspond to the SFGs shown in Figure 1.9 and the assignment is according to
Table 1.1.
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target SFG onto the PU. There, the sets of decision variables are associated with
the register allocation, indicating for every terminal the number of registers that
are placed there, and the multiplexer allocation, indicating for every input terminal
the number of multiplexers placed there. To implement an edge, the total number
of registers allocated to the corresponding input and output terminals should be at
least the weight of the edge. Furthermore, the number of multiplexers allocated at
an input terminal should be equal to one less than the number of edges connected to
it with both different sources and with different weights. An example of a register
and multiplexer allocation is shown in Figure 1.11. Note that we limit ourselves
to the sharing of registers by edges in the target SFG that are incident to the same
output or input terminal.

Figure 1.11.  An example of a register and multiplexer allocation. At the output
terminal four registers are allocated. At the input terminal four registers and two
multiplexers are allocated. The connection indicated by a solid line between the
input and output terminals corresponds with an edge with a weight equal to four.

The second part of the mapping can be considered as a sophisticated cost eval-
uation, i.e., main decisions are taken in the first part, but their costs are determined
in the second part.

The objective of PU design

Our objective is to develop a method for designing a PU that occupies minimal
silicon area and runs at the required clock frequency, using a combination of mul-
tiplexing, timefolding, and retiming techniques. We use an estimate of the area
given by a weighted sum of the number of operators, multiplexers, registers, and
wires.

The effect of each of the techniques, and certainly that of a combination of
them, on the area of the PU and the clock frequency at which it can execute the
SFGs cannot well be predicted in general. Since the area is a minimization goal,
and the clock frequency is a constraint, the retiming technique is the most important
one to obtain at least a feasible PU.
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1.4 Towards a solution approach

In this section we discuss an approach to developing a solution method for the
efficient design of PUs of which the behaviour is specified by one or more SFGs.

First, a formal model is set up, which we use to formally define the processing
unit design problem. The model contains the decision variables and formally de-
fines SFGs, PUs, and their timing behaviour. The processing unit design problem
is formulated as a combinatorial optimization problem. Next, the complexity of the
processing unit design problem is analyzed to determine whether the problem can
be solved easily using (existing) algorithms with acceptable run times, or if it is,
formally spoken, difficult. The result of this analysis is that the problem is difficult
to solve; this result is essential to the work that is described further in this thesis.

The processing unit design problem is decomposed such that the determina-
tion of a retiming follows the determination of an operator assignment. The main
reason for this order is that we want to exploit regularity in the source SFGs, i.e.,
substructures of it may be identical. First we determine an operator assignment
such that the identical substructures become present in the target SFG. For exam-
ple, in the target SFG shown in Figure 1.10 the operators M1, M2, and A3 comprise
a substructure that is also present in the source SFGs shown in Figure 1.3. Because
this assignment is based on a minimal number of operators, asynchronous feedback
loops may be introduced. These loops will never carry data around since the data
routing will be according to one of the functions that can be executed, which is
free of asynchronous feedback loops. Therefore they are called false loops. Since
a PU may not contain asynchronous feedback loops, the false loops are removed in
the following step that allocates additional operators to which some operations are
reassigned. To ensure that the PU designed can run at the required clock frequency,
a timing analysis is performed resulting in a set of linear constraints on retiming.
Finally, a feasible retiming is determined such that corresponding operations in
identical substructures are, if possible, equally retimed.

Restrictions on the instances of the processing unit design problem lead to
the definition of three special cases of it, i.e., the multiplexing, timefolding, and
retiming problem. Each of the special cases emphasizes one of the subproblems
into which the PU design problem is decomposed. The complexity of each of the
subproblems is analyzed, also in special cases.

The identified subproblems can be handled using algorithms belonging to the
field of local search and network flow. Local search is applied for most of the
subproblems, but first in a straightforward way. If the time performance of the
local search algorithm is unacceptable for problem instances of a typical size, we
search for ways to improve the application of local search. Although local search
algorithms can be readily applied without the use of much detailed knowledge, we
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show that good solutions can only be obtained within acceptable run times by using
problem-specific information.

Network flow algorithms can be applied to solve the retiming problem. Further-
more, a shortest path algorithm is used for timing analysis, and a bipartite-graph
maximum-weighted matching algorithm is used to compute the register cost of a
PU. Even when a problem is mathematically spoken easy and can be solved by,
e.g., a network flow algorithm, the solution method deserves attention for its time
performance.

1.5 Context and related work

The work described in this thesis is in the field of Electronic Design Automation
(EDA). In the past decades, EDA has received increasing attention and more par-
ticipants. In 1980 the first International Conference on Circuits and Computers
(ICCC) [Rabbat, 1980] was held, which three years later was renamed the Inter-
national Conference on Computer-Aided Design. This was followed in 1982 with
the publication of the first IEEE (Institute of Electrical and Electronics Engineers)
Transactions on Computer-Aided Design (CAD) of Circuits and Systems [Rohrer,
1982]. A part of EDA concentrates on the translation of an abstract behavioral
specification to a register-transfer level implementation, which is called high-level
synthesis [McFarland, Parker & Camposano, 1990]. For an overview of problems
and their solution methods belonging to the field of high-level synthesis, we refer
the reader to McFarland, Parker & Camposano [1990], Borriello & Detjens [1988],
Martin & Knight [1993], and Stok [1994].

In the eighties, research on high-level synthesis was started at the Philips Re-
search Laboratories. The first result was a design method for audio signal process-
ing called Piramid [Woudsma, Beenker, Van Meerbergen & Niessen, 1990]. This
method was successfully applied to, e.g., the design of an ASIC for compact disc
players [De Loore, Crombez, Delaruelle, Sheridan, Woudsma, Niessen, Biesterbos,
Gubbels & Repko, 1992]. In the late eighties it became apparent that digital video
signal processing had become feasible for consumer products and, consequently,
that it was important for Philips. Therefore, new work was directed towards video
applications and resulted in the design method Phideo [Van Meerbergen, Lippens,
Verhaegh & Van der Werf, 1995]. For Piramid as well as for Phideo, process-
ing units are designed that can execute functions specified as subgraphs of the
total SFG specifying the function to be implemented. These subgraphs are treated
as single operations during the scheduling, allocation, and assignment phases of
Phideo and Piramid.

As a result of the scheduling of the subgraphs, they can be executed at non-
overlapping time intervals. Consequently, multiplexing techniques may be used
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to design processing units that can execute more than one SFG. As a result of
scheduling, subgraphs can be executed repetitively with a period greater than one
clock cycle. This is especially the case in Phideo, which is based on a model of
multidimensional periodic operations [Verhaegh, 1995]. Consequently, timefold-
ing techniques can be used to design processing units that can execute SFGs in
more than one clock cycle. An overview of the possible design techniques that can
be applied in certain situations is shown in Figure 1.12.

SFGs PU

SFG1

SFG2 $ i — m

(@)

SEG1 Tnnnnnnnnnnmnnumnnnnnnn., m,

®)
SFG1  nnnon —
. m tmm,

time

time (C)

Figure 1.12. The activities of the source SFGs determine the design techniques
that can be used. In (@) the activities of the source SFGs allow the application
of the multiplexing technique. The activity of the PU on which the SFGs can be
executed is shown as well, which results in well occupied hardware resources. In
(b) the activity of one source SFGs is such that the timefolding technique can be
applied. In (c) the activities of the source SFGs are such that both multiplexing
and timefolding techniques can be applied.

To make the processing units run at a desired clock frequency, we apply re-
timing techniques. As a result of retiming, a processing unit can be pipelined, i.e.,
consumption and production times of input and output signals, respectively, can
be changed with respect to the times specified by the corresponding SFG [Van der
Werf, McSweeney, Van Meerbergen, Lippens & Verhaegh, 1991]. These changes
can be accommodated by the scheduling and memory synthesis techniques of Pi-
ramid and Phideo.

The classical retiming technique was introduced by Leiserson, Rose & Saxe
[1983]. Saxe [1985] described this work in his thesis and a refined version of
the reported work appeared in 1991 [Leiserson & Saxe, 1991]. The first step in
the classical retiming technique is the derivation of a number of speed constraint
relations between pairs of operations. Together with causality constraints and a cost
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function they comprise a special case of an (integer) linear programming problem,
which can be solved in polynomial time using network-flow algorithms [Ford &
Fulkerson, 1962]. To derive the speed constraints in the first step an asynchronous-
timing analysis, determining the length of paths between two registers is performed
for all possible register allocations. The problem of speed constraint derivation can
be solved with shortest path algorithms, which are also part of the field of network
flows [Ford & Fulkerson, 1962].

When using the classical retiming technique for the design of processing units
that run at high throughput frequencies and in a pipelined fashion, the timing anal-
ysis step may take a very long time. This was observed by Miinzner & Hemme
[1991], who developed a more efficient heuristic, which may find sub-optimal so-
lutions. An important contribution of the work described in this thesis is a speed
constraint derivation algorithm that is fast and gives optimal solutions. This work
was first reported in [Van der Werf, Van Meerbergen, Aarts, Verhaegh & Lippens,
1994]. About half a year later, still in 1994, Shenoy & Rudell reported a similar,
but less efficient method for speed constraint derivation.

Retiming in the context of resource sharing can be viewed as scheduling.
Scheduling is an important area of interest in the field of combinatorial optimiza-
tion [Papadimitriou & Steiglitz, 1982]. Baker [1974] defines scheduling as the
problem of allocating scarce resources to activities in time. For an elaborate intro-
duction to the theory of scheduling we refer to Conway, Maxwell & Miller [1967],
Baker [1974], Coffman [1976], French [1982] and Pinedo [1995]. Scheduling for
processing unit design is non-preemptive, which means that the execution of an op-
eration cannot be interrupted. Several approaches have been presented to schedul-
ing in the context of IC design, such as list scheduling [McFarland, 1986; Haupt,
1989; Parker, Pizarro & Mlinar, 1986; Park & Parker, 1988; Verhaegh, 1995], inte-
ger linear programming based scheduling [Gebotys & Elmasry, 1990; Hwang, Lee
& Hsu, 1991], and approaches based on domain reduction, also called constraint
satisfaction techniques [Paulin & Knight, 1989; Timmer & Jess, 1993; Verhaegh,
Lippens, Aarts, Korst, Van Meerbergen & Van der Werf, 1995].

Scheduling and retiming both determine the time at which operations are exe-
cuted. Whereas retiming is considered to deliver a circuit that meet asynchronous
timing constraints, scheduling is used to meet both synchronous timing constraints
and hardware resource constraints. In this thesis a combination of both objectives
is considered, which is covered by the term retiming. Related work has been re-
ported in which the combination is often referred to as “operator chaining during
scheduling”; see, e.g., [Parker, Pizarro & Mlinar, 1986; Park & Parker, 1988; Park
& Kyung, 1993].

In this thesis, we present a decomposition of the processing unit design problem
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in which we determine a retiming after a number of operators are allocated and
the operations are assigned to them. In most other applications of scheduling and
operator assignment in the context of IC design the order is reversed; see, e.g.,
[Parker, Pizarro & Mlinar, 1986; Park & Parker, 1988; Park & Kurdahi, 1989; Park
& Kyung, 1993; McFarland, 1986; Haupt, 1989; Paulin & Knight, 1989; Timmer
& Jess, 1993].

The importance of an operator assignment has also been recognized by Note,
Catthoor & De Man [1989], Geurts, Catthoor & De Man [1993a}, and Geurts,
Catthoor & De Man [1993b], who discuss the design of processing units that can
perform more than one function for ICs designed with the Cathedral III method
[Note, Geurts, Catthoor & De Man, 1991]. Geurts, Catthoor & De Man [1993b]
avoid the existence of false loops by taking additional constraints into account in
a quadratic 0-1 programming model. Other work on operator assignment in which
the importance of false loops is considered is reported by Stok [1992].

Since many of the problems related to the design of digital ICs have a discrete
nature, they can be formulated as combinatorial optimization problems. This opens
the way to applying the elaborate theory of combinatorial optimization, as can be
found in, e.g., Papadimitriou & Steiglitz [1982], Schrijver [1986], and Nemhauser
& Wolsey [1988]. Furthermore, this allows us to study the computational com-
plexity [Garey & Johnson, 1979] of the design problems.

1.6 Organization of the thesis

The organization of this thesis in chapters and sections reflects the solution ap-
proach. Chapter 2 describes a formal model that we use to describe the processing
unit design problem. Chapter 3 discusses the complexity of the processing unit
design problem and its decomposition. Next we have Chapter 4, which is an in-
termediate chapter that summarizes the concepts of local search and network flow.
Chapter 5 discusses a solution method for the first subproblem, which is to de-
termine an operator assignment. Chapter 6 discusses the next subproblem, which
is to find an allocation of additional operators to which some operations are reas-
signed. Chapter 7 discusses the subproblem concerned with the timing analysis of
SFGs, which is to efficiently derive speed constraints. Chapter 8 discusses the final
subproblem, which is to determine a retiming. We end this thesis with Chapter 9,
which contains the conclusions of the presented work.
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Formal Model

In this chapter we first give the formal model of an SFG in Section 2.1, followed
by a discussion on its timing model in Section 2.2. In Section 2.3 the relation
between a number of source SFGs and the target SFG on which they are mapped
is discussed. This is followed by a discussion in Section 2.4 on the modelling of
false loops that may be introduced by the mapping. The implementation of an SFG
is called a PU and its cost is discussed in Section 2.5. In Section 2.6 a formal
problem definition of PU design is given. We conclude this chapter with defining
three special cases of PU design in Section 2.7.

2.1 Signal flow graphs

An SFG consists of operations that are interrelated in some way. Here, we define
the edges in an SFG not between the operations, as is done in most graph-based
specifications, but between operation terminals. Therefore, an SFG can be repre-
sented as a directed graph in which the vertices are the operation terminals, either
input or output, and the edges run from output terminals to input terminals. This
leads to the following definition.

Definition 2.1 (signal flow graph). A signal flow graph G is given by a three tuple
(V,T,E) in which

Vv is a set of operations, and

17
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T=0UICVXIN isa setof operation terminals, where
O is a set of output terminals,
1 is a set of input terminals,
and ON7 =@, and

ECOxI is a multi-set of signal edges
representing the signal flow,

where IN is the set of non-negative integers. g

Input operations of an SFG are modelled as operations without input terminals and
output operations are modelled as operations without output terminals.

Since we discuss the mapping of possibly more than one source SFG onto a
PU, different SFGs are identified by an index, G; = (V;, T}, E;), where i = 1,...,N.
The union of all these SFGs is indicated by G and is called the union SFG. The
union of all operations is indicated by V, i.e., V = U= .. yV;. Likewise, the unions
of all terminals and edges are defined.

The design of a processing unit is partitioned into two steps. In the first step
a number of source SFGs are mapped onto a target SFG and in the second step
the target SFG is mapped onto a PU. The relationship between a target SFG and a
PU is very direct. Consequently, we neglect the difference and also refer to a target
SFG by the words processing unit. For the PU we use an apostrophe in the notation
(G = (V',T',E")), as well as for the variables pertaining to a PU. Furthermore, we
call the operations of a PU operators.

To be able to formally define the relationship between SFGs and a PU, it is
necessary to define the set of operation types. From a structural perspective, every
operation type is characterized by its number of inputs and number of outputs.
Furthermore, the cost of an operation type is important.

Definition 2.2 (operation type). 7 denotes a set of operation types where

I:T—-NN returns the number of input terminals, and
O:T—N returns the number of output terminals, and
C:T—Q returns the cost of an operator of this type.

O

We consider operations and operators that can perform only one type of operation.
We define the following function, so that we can determine the type of an operation.

Definition 2.3 (type function). Given are an SFG G and a type set 7. The type
function | : V — T returns the type of an operation. ]

The number of terminals of each operation is determined by the corresponding
operation type. Given an SFG G and a type function ¢, the relationship between the
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operation set and the terminal set is given as
I={(ni)|veV and i=1,...,Z(¢(v))}
O={(wi)lveV and i=Z&(v))+1,...,Z(((v))+O£(v))}.

2.2 Timing model

We discuss the synchronous processing of digital signals, where a processor clock
synchronizes the flow of data. For synchronous circuitry, time is divided into an
asynchronous component and a synchronous one. Synchronous timing is expressed
in integer multiples of clock cycles, while asynchronous timing is expressed in real
units, e.g., nanoseconds. We first discuss the timing model of operations and signal
edges in Section 2.2.1. In Section 2.2.2 we introduce paths and discuss their timing
properties.

2.2.1 The timing model of operations and signal edges

The asynchronous timing model of an operation contains a delay for every pair
consisting of an input terminal and an output terminal, which is defined as follows.

Definition 2.4 (delay). Given is an SFG G. The delay is a function del : I X O —
Q1 U{~} that returns the delay between an input terminal and an output terminal.
The delay is only defined when there is a path from the input terminal to the output
terminal inside one operation and without registers. Otherwise the delay is unde-

fined, which is indicated by ~. Q" denotes the set of non-negative elements of Q.
O

To allow the timing model to be useful for sequential operations that take more
than one clock cycle to execute, e.g., pipelined multiplications, it is extended with
a number of functions. To this end, the timing model of an operation of an SFG
contains information about the delay from an input terminal to an internal register
and from an internal register to an output terminal. The former is called the data
available time and the latter is called the data ready time. They are defined as
follows.

Definition 2.5 (data available time). Given is an SFG G. The data available time
is a function dat : I — Q™" that returns the maximum delay of an internal path
from an input terminal to either an internal register or an output terminal of the
corresponding operation. |

Definition 2.6 (data ready time). Given is an SFG G. The data ready time is a
function drt : O — Q7 that returns the maximum delay of an internal path from
either an internal register or an input terminal of the corresponding operation to an
output terminal. a
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If an operation v has a completely asynchronous behaviour, then the following
holds for its input terminals (v,a) and its output terminals (v, b):

dat((v,a)) = o=(v,%§{eodel((v’ a),0),and
drt((v,b)) = max del(i,(v,b)).
i=(va)€l

An example of a timing model of an operation is given in Figure 2.1.

inputs a0 al a2 b0 bl b2 cin

outputs dat|{10 5 5 10 5 5 10

drt |del
sO 5 5 ~ ~ 5§ ~ ~ 5
sl 10 10 5 ~ 10 5 ~ 10
52 5 ~ ~ 5 ~ ~ 5 ~
cout 5 ~ ~ 5 ~ ~ 5 ~

Figure 2.1. An example of an operation (3-bit adder) and its timing model. The
adder is internally pipelined.

Below we assume that for an SFG G, a given clock period 7, and timing func-
tions drt,dat, and del, every operation in the SFG can be executed within one
clock period, i.e.,

drt(o) <t for each 0 € O,
dat(i) <t for each i € I, and, consequently,
del(i,o) <t for each (i,0) € I x O with del(i,0) #~.

A signal in an SFG may be delayed a number of clock cycles between its pro-
duction and consumption. To quantify this relation a weight on a signal edge,
defined as follows, is applied.

Definition 2.7 (weight). Given is an SFG G. The weight w : E — Z is defined as
the number of clock cycles that a signal on an edge is delayed. o

Here, we assume that both the data available times and data ready times of registers
are equal to zero and that multiplexers have delays equal to zero. The timing model
of operations is thus applicable for both sequential and combinational operations.

2.2.2 Paths in SFGs and their timing model

In this section we discuss some basic theory on paths in SFGs.
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Definition 2.8 (path). Given is an SFG G. A path p is an alternating sequence
of output and input terminals, starting with an output terminal and ending with
an input terminal, of the following form: p = (01,i2,02,-+,in—1,0n—1,1n), Where
(0K i(ks1)) € E foreachk=1,...,n— 1 and del(iy, o) #~ foreachk=2,...,n—1.
Furthermore, o # o0, and iy # i; for each k,/ = 1,...,n with k # [. Sometimes we
only need to know on what operation output the path begins and on what operation
input it ends. We then denote the path p by (o1 — i,). Pg denotes the set of all
pathsin G. ]

The definition of a path is such that it cannot be a cycle or contain one, because
it may visit an operation terminal only once. Moreover, all operations in a path
belong to one source SFG.

The notion of timing functions in the timing model and weights on signal edges
is extended to the domain of paths.

Definition 2.9 (path delay). Given are an SFG G and timing functions dat, drt,
and del. The path delay is a function D : Pg — QT that returns the delay of a path,
which is defined as follows. For each p = (01,i2,02,-.-3in—1,0n—1,1s) € Pg,D(p) =
drt(o1) + Yi) del(ix, 0r) + dat (iy,). O

Note that the delay of a path does not depend on the weights of the signal edges in
the path. Consequently, the delay of a path can be greater than the clock period at
which an SFG can be executed.

Definition 2.10 (path weight). Given are an SFG G and a timing function w.
The path weight is a function W : Pg — 7 that returns the weight of a path
P = (01,02,02, 01 in—1,0n~1,in) € Pg and is defined as W(p) = X7=1 w(og, ixt1).

O

2.3 Mapping SFGs onto a target SFG

The mapping of a union of source SFGs onto a PU is done in two steps. First
the source SFGs are mapped onto a target SFG, and then this target SFG is im-
plemented by a PU. The first step is discussed in this section, the second step in
one of the following sections, Section 2.5. First the folding factor is introduced in
Section 2.3.1. This is followed by a discussion in Sections 2.3.2 to 2.3.4 on the
three decision variables: allocation, assignment, and retiming.

2.3.1 Folding factor

Timefolding implies that the synchronous timing behaviour of a source SFG is
expressed using a processing clock that has more than one clock cycle for every
execution of the SFG. The number of clock cycles used for one execution is called
the folding factor and is defined as follows.
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Definition 2.11 (folding factor). Given are a source SFG G and a weight w. The
folding factor of G is defined by a positive integer f. Furthermore, the folding
factor defines a folded weight ws : E — Z as follows. For each e € E, wy(e) =
Jrw(e). O

Below we do not consider explicitly the folded weight; we assume that it is already
accounted for in the weight. The number of clock cycles that it takes to execute one
iteration of a source SFG is expressed in phases. The notion of phase is formally
defined in Section 2.3.4.

2.3.2 Allocation

The operator allocation determines the operator set V' and the terminal set 77 of a
PUG'.

Definition 2.12 (operator allocation). Given is a set of operation types 7. The
operator allocation is a function al : 7 — IN that returns for each operation type
the number of allocated operators. |

In order to execute each of a union of source SFGs G;, i = 1,...,N, by a PU
G’, it must have a sufficient number of operators, i.e., there is a lower bound on
[V'|. Since we consider operators that can perform only one type of operation, this
bound is determined by the bounds of each specific operation type. Therefore, the
sets V;, i = 1,..., N, are partitioned into subsets of the same operation type, i.e.,
Vi=Ujer Vij» where Vi ; = {v€ V;| £(v) = j}, i=1,...,N. A constraint on the
allocation following from the instances is as follows.

(1) al(j) > max=1,..n [“}‘—’I] foreach j€T.

2.3.3 Assignment

The assignment of the operations of a source SFGs to the operations of a target
SFG is defined as follows.

Definition 2.13 (operator assignment). Given are a union G of source SFGs G,
i=1,...,N, a set of operators V', a type function £, and folding factors fi- The
operator assignment is a function as : V — V' that returns for each operation in V
the operator in V' on which it is executed. u

An operator assignment must meet the constraints that each operation is assigned
to an operator of the same type and that the number of operations in the same
source SFG that are assigned to one operator cannot exceed the number of available
phases, i.e.,

@) £(v) = L(as(v)) foreachve V,
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(iii) |{v € Vias(v) =V} < f; for each v/ € V', and
foreachi=1,...,N.
The edges and their weights in the PU are defined by the operator assignment
as follows.
@iv) € = ((as(v),a),(as(u),b)) € E' and
w(e) = w(e) for each e = ((v, @), (4, b)) €EE.
Thus each edge in the source SFGs is mapped onto only one edge in the target SFG
and an edge in the target SFG has only one edge in one of the SFGs mapped onto
it.

2.3.4 Retiming
Changing the times at which operations are executed is defined as follows.

Definition 2.14 (retiming). Given are an SFG G and a weight w. The retiming
is a function r : V — Z that returns for each operation in V the number of clock
cycles the operation is delayed. Furthermore, retiming defines a retimed weight
w,: E— Z as follows. Foreach e= ((u,a), (v,b)) € E, w,(e) = w(e)+r(v) —r(u).

O

As a result of retiming, the synchronous and asynchronous timing behaviour of an
SFG are changed. We use the index r to identify the synchronous and asynchronous
delay of paths in a retimed SFG.

In addition to retiming we also need a concept of phase, which is defined as
follows.

Definition 2.15 (phase). Given are a source SFG G, a retiming r and folding factor
f. The phase is a function ph: V — 7. that returns the phase of an operation. It is
defined as follows. For each v € V, ph(v) = r(v) mod f. O

There are three reasons to retime operations, that each correspond with a type of
constraint on the retiming. The first reason is that two or more operations of the
same source SFG can be executed on one operator if they are executed in different
phases according to the following requirement.

(v) ph(u) # ph(v) for each u,v € V with
as(u) = as(v) and
u# v

Note that these constraints make Constraints (/i) redundant, which state that the
number of operations which can be assigned to one operator cannot exceed the
number of phases that are available. Initially all operations are executed in the
same phase. By changing the execution time of operations we can assign every
operation that is assigned to the same operator to a different phase.
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The second reason to retime operations is that the execution times of the oper-
ations determine the placements of registers in the PU. The minimum throughput
frequency at which consecutive executions of an SFG must be performed is speci-
fied by a clock period . It implies that a path between two registers in the retimed
PU must have an asynchronous delay less than the clock period. A path between
two registers is characterized by a path weight equal to zero, so we demand that

(i) D(p) <t for each p' € Pg with
w,(p') =0.
By changing the execution times of operations in SFGs, the weights on paths are
influenced and consequently the maximum achievable clock frequency can be con-
trolled. Whether a path is executable or not is discussed in the next section, Sec-
tion 2.4.

The third reason to retime operations is that the initial weights in the SFGs may
be negative. Retiming changes the weights on signal edges and must make them
all positive, i.e.,

(vii) wy()>0 foreach ¢ € E'.

Another reason to retime operations is that the register cost of a PU can be
minimized by doing it. The relationship between the retiming of operations and
the cost is explained in Section 2.5.

2.4 False paths and loops in PUs

One of the constraints on the PU designed is that it cannot contain asynchronous
feedback loops. These loops can be introduced by the mapping of source SFGs
onto a target SFG; see Figure 2.2. However, these loops will never carry data
around since the data routing will be according to one of the functions that can
be executed, which is free of asynchronous feedback loops. Therefore, an asyn-
chronous feedback loop in the target SFG is false. A false asynchronous feedback
loop causes problems for timing verification, since most timing verification tools
cannot handle PUs that contain false asynchronous feedback loops.

A path in a target SFG is false if not all its edges correspond to the same source
SFG or if the operations of the source SFG that are assigned to the operators of
the path are executed in different phases. A false path in a target SFG consists of a
sequence of two or more paths, connected by operators with a defined delay, each
of which corresponds to a path in one of the source SFGs. A false loop ina PUis a
false path with the starting output terminal and the ending input terminal belonging
to the same operator and a defined delay between these terminals. A false loop can
be identified by a sequence of two or more paths in one or more source SFGs. Such
a sequence is called a complex circuit.
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Figure 2.2. Two source SFGs, (a) and (b), and a PU, (c), that can execute one of
the SFGs at a time. The PU contains a false loop, which is highlighted. The loop
is false since one of the multiplexers in it is switched in such a way that the loop is
broken. In (d) the selected inputs of the multiplexers are indicated corresponding
with the execution of SFG (a). In (e) the selected inputs of the multiplexers are
indicated corresponding with the execution of SFG (b). The paths of the SFGs
that constitute a complex circuit are highlighted in (a) and (b).
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Definition 2.16 (complex circuit). Given are a union G of source SFGs G; =
(Vis T, E;), i =1,...,N, an operator allocation al, and an operator assignment as.
A complex circuit is a sequence of paths (po, p1,--s pu—1), With py = ((ug, ay) —
(Vi bi)) € Pg, k=0,...,m— 1, and m > 2, satisfying
as(vi) = as(u(x+1) mod m) k=0,...,m—1, and
del((as(vk)a bk)v as(u(k—H) mod m)a A(k+1) mod m)) o
k=0,...,m—1,and
u#tEv for each (v,a) € py, and (u,b) € p; with
k1=0,....m—1,k#1
We denote the set of all complex circuits in G by C,; . Furthermore, one of the paths
p of a complex circuit ¢ € C, is considered to be an element of the complex circuit,
which is denoted by p € c. m]

Although a complex circuit visits an operation at most once, corresponding opera-
tors may be visited more than once because different operations may be assigned
to the same operator. Note that a false loop may have more than one corresponding
complex circuit.

We demand that on each complex circuit at least one register be present, i.e.,

iii) ¥ ,e.Wr(p) > 1 for each ¢ € Cg.

2.5 Mapping a target SFG onto a PU

The second step of the mapping of a union of source SFGs onto a PU consists of
implementing the target SFG, which was designed in the first step, as a PU. In the
second step the number of registers and the number of multiplexers are determined.
The register allocation is defined as follows.

Definition 2.17 (register allocation). Given is an SFG G. The register allocation
is a function ra : T — IN that returns for each terminal in 7 the number of registers
allocated to the terminal. a

According to the architecture of a PU, registers on different edges may be shared at
operator inputs and operator outputs if edges have common terminals. The clocked
delay of a signal edge must be smaller than or equal to the number of registers
allocated to the terminals to which it is connected, i.c.,

(ix) ra(o) + ra(i) > w,(e) for each e = (0,i) € E.

An operator output can be connected to more than one operator input by a
tapped delay line without the need for additional hardware; see Figure 1.11. If out
of more than two sources must be selected at an operator input, a tree of two-input
multiplexers is placed at the input. The number of two-input multiplexers placed
at an operator input is determined by a multiplexer allocation.
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Definition 2.18 (multiplexer allocation). Given are an SFG G and a weight w.
The multiplexer allocation is a function ma : I — IN that returns for each operator
input in / the number of two-input multiplexers located at the operator input, which
is defined as follows. For each i € I, ma(i) = (|{(0,w;((0,i))) € O x IN|(0,i) €
E} —1)*, where xt = max{x,0}. 0

The number of multiplexers can be reduced if two or more edges have identical
sources and destinations and if they have the same weight. An operator assignment
determines the sources and destinations. Retiming may affect the weight on an
edge and, consequently, the multiplexer cost.

Having defined functions to indicate the number of operators, registers, and
multiplexers, we next discuss the way they are connected. All the elements of a
PU, i.e., the operators, registers, and multiplexers, are interconnected by point-to-
point connections, also called wires. The number of wires is equal to the number
of inputs of all the elements. Therefore we include the cost of wires by adding to
each element an extra cost per input.

If a signal on an edge must be delayed a number of clock cycles that is smaller
than the sum of the registers that are allocated to the output terminal and input ter-
minal to which the edge is connected, more than one possibility exists to configure
the multiplexers and registers. Since all the possible configurations have the same
cost, we do not discuss this any further; see Figure 2.3.

(a) ®)

Figure 2.3. Two configurations of a (part of a) PU, which have the same cost.
At the output terminal four registers are allocated. At the input terminal four
registers and two multiplexers are allocated. The connection indicated by a solid
line between the input and output terminals corresponds with a signal edge with a
weight equal to four.

Given an SFG G, a type set T, an operator allocation al, a register allocation
ra, and a multiplexer allocation ma, the cost of the SFG is

oY, ra(t) + B Y ma(i) + ;al(j)(f(j),
Jj€

€T i€l
where o €Q* denotes the cost of a register and § €Q™ the cost of a multiplexer.

The control signals to the multiplexers are defined by the mapping of source
SFGs onto a PU and are not discussed any further.
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2.6 Processing unit design problem
The central problem of this thesis is formulated as follows.

Definition 2.19 (processing unit design problem (PUDP)). Given are a union G
of source SFGs G; with folding factors f;, i=1,...,N, a type set T, a type function
¢, timing functions dat,drt,del, and w, a clock period T, the cost of a register o,
and the cost of a multiplexer B. The problem is to find a PU G’ constructed by an
operator allocation al, an operator assignment as, a retiming r, a register allocation
ra, and a multiplexer allocation ma, for which

(@) al(j) > maxl-:Lm,N[IV}—;A] foreach j € T, and
(@) £(v) =¥ as(v)) for each v € V, and
(i) |{veVias(v) =V} < £ for each v/ € V', and

foreachi=1,...,N, and
(iv) € =((as(v),a)(as(u),b)) € E' and

w(e) = w,(e) for each e = ((w, a), (u,b)) € E,
and
(v) ph(u) # ph(v) for each u, v € V; with
as(u) = as(v), and
u # v, and
foreachi=1,...,N, and
i) D(p') < for each p’ € Py with
W,.(p') =0, and
i) w,(e)>0 foreach ¢ € E!, and
iit) YpecWr(p) > 1 for each ¢ € Cg, and
(ix) ra(o') + ra(i') > w,(€) for each ¢ = (0/,7') € E', and

that minimizes

o Z m(t')+[52ma(i’)+ z al()C(})).

reT! fer JET

2.7 Special cases of PUDP

In the introduction of this thesis we informally introduced PUDP as a generaliza-
tion of the multiplexing, timefolding, and retiming problems. Here, we formally
define these problems as special cases of PUDP. A special case of PUDP is defined
by additional constraints that must hold for instances of PUDP,
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2.7.1 Multiplexing problem

The first special case of PUDP is called the multiplexing problem and it occurs
when the following restrictions on the instances hold. Each source SFG has a
folding factor of one, the required clock period is infinity and the weights are at
least zero, i.e.,

fi=1 foreachi=1,...,N, and
T=o0 and
w(e) >0 foreache € E.

As a consequence of the restrictions on the instances, some of the constraints
of PUDP become irrelevant. Since the folding factor is one, Constraints (v) are
implied by Constraints (ii7). Constraints (vi) are true for every instance that is
restricted as described above. Furthermore, the non-negative weights make Con-
straints (vii) true. We assume that no retiming has to be determined.

The multiplexing problem is formulated as follows.

Definition 2.20 (multiplexing problem (MP)). Given are a union G of source
SFGs G;, i=1,...,N, a type set T, a type function £, timing functions del and
w, the cost of a register o, and the cost of a multiplexer . The problem is to
find a PU G’ constructed by an operator allocation al, an operator assignment as, a
register allocation ra, and a multiplexer allocation ma, for which

(@) al(j) > max=1,.. n|V; | for each j€ T, and
@) £(v) =4£(as(v)) for each v € V, and
(i) {veVias(v) =V} <1 for each v € V', and

foreachi=1,...,N, and

w(d) =w(e for each e = ((v,a), (u,b)) € E,
and
iil) YpecW(p) >1 for each ¢ € Cg, and
(ix) ra(o')+ ra(i') > w(<) for each ¢ = (0/,1) € E', and

that minimizes

o z ra(') + B 2ma(i’)+ z al(j)C(})).

fer ier jeT

2.7.2 Timefolding problem

The second special case of PUDP is called the timefolding problem and involves
the following restrictions on the instances. There is only one source SFG and the
required clock period is infinity, i.e.,
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N=1,and
T=oo,

As a consequence of the restrictions on the instances, some of the constraints
of PUDP become irrelevant. Constraints (iif) are implied by Constraints (v). Con-
straints (vi) are true for any instance restricted as described above.

The timefolding problem is formulated as follows.

Definition 2.21 (timefolding problem (TP)). Given are a source SFG G, a type
set 7', a type function £, a folding factor £, timing function w, the cost of a register
o, and the cost of a multiplexer 3. The problem is to find a PU G’ constructed by an
operator allocation al, an operator assignment as, a retiming r, a register allocation
ra, and a multiplexer allocation ma, for which

@) al(j) > ['—‘;’—l'] for each j € T, and
(i) £(v) =£L(as(v)) for each v € V, and
(iv) € = ((as(v),a)(as(u),b)) € E' and
wr(€) = w,(e) for each e = ((v, @), (u,b)) € E,
and
(v) ph(u) # ph(v) for each u,v € V with
as(u) = as(v), and
u 7 v, and
i) w,() >0 for each ¢’ € E', and
iit) Y,e.Wr(p) > 1 for each ¢ € Cg, and
(ix) ra(0') + ra(i') > w,(¢') foreach ¢ = (o',/') € E, and

that minimizes

o Z ra(t) +B 2ma(i’)+ Z al(7)C(}).

fer’ fer JET

2.7.3 Retiming problem

The third special case of PUDP is called the retiming problem and it occurs when
the following restrictions on the instances hold. There is only one source SFG and
it has a folding factor equal to one, i.e.,

N=1,and
f=1
As a consequence of the restrictions on the instances, some of the constraints
of PUDP become irrelevant. Since the instances contain only one source SFG and

no timefolding is applied, no complex circuits are present. Consequently, Con-
straints (viii) become irrelevant. Since the folding factor is one, Constraints (v) are
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implied by Constraints (iii). Constraints (viii) are true for any instance restricted as
described above.

Another consequence of the restrictions on the instances is that trivial solutions
can be found for the operator allocation, operator assignment, and multiplexer al-
location. For each operation in the source SFG, an operator in the PU is allocated
to which it is assigned. These trivial solutions make Constraints (i), (ii), and (iii)
superfluous. Furthermore, since the target and source SFG are identical Constraint
(iv) can be omitted.

The retiming problem is formulated as follows.

Definition 2.22 (retiming problem). Given are a source SFG G, timing functions
dat,drt,del, and w, and a clock period T. Then the Retiming Problem (RP) is to
find a retiming r, and a register allocation ra, for which

i) D(p) <t for each p € Pg with
W,(p) =0, and

(vii) wy(e) >0 for each e € E, and

(ix) ra(o)+ ra(i) > w,(e) for each e = (0,i) € E, and

that minimizes

Y rafr).

teT
O

RP was first formulated by Leiserson, Rose & Saxe [1983], although in a slightly
different way. They did not model the register cost explicitly by a function like
ra; instead they artificially added operations and edges such that they could use
the sum of the edges’ weights as the cost. Furthermore, they only allowed register
sharing at operator outputs since they did not consider multi-functional or multi-
cycle PUs in which more than one edge can be incident to an input terminal.
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Complexity Analysis and Decomposition

In this chapter we discuss the computational complexity of the processing unit
design problem. We first show in Section 3.1 that PUDP is NP-hard and, conse-
quently, we must abandon the idea to develop an algorithm that solves all instances
of PUDP to optimality in polynomial time. We chose to use a domain decomposi-
tion method such that PUDP is replaced by a number of (sub)problems, which must
be solved in a particular order. The decomposition is discussed in Section 3.2 and
it is followed by a discussion on the complexity of PUDP’s subproblems and some
of their special cases in Section 3.3. An overview of the complexity of PUDP and
its subproblems is given in Section 3.4. Some of the problems that are presented in
this chapter and a discussion on their complexity have been reported earlier by De
Fluiter, Aarts, Korst, Verhaegh & Van der Werf [1996].

3.1 Complexity of the processing unit design problem

The processing unit design problem can be formulated as a combinatorial optimiza-
tion problem [Papadimitriou & Steiglitz, 1982]. We can make use of the theory of
NP-completeness [Garey & Johnson, 1979] to analyze the complexity of the prob-
lem. We consider two possibilities in the complexity analysis of a combinatorial
optimization problem. The first possibility is to reduce it to a known optimization
problem that can be solved in polynomial time. The second possibility is to re-

33
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duce a known NP-complete problem to the decision variant of the combinatorial
optimization problem at hand. The latter we apply here to prove that PUDP is in-
tractable. First we define the corresponding decision problem of PUDP, which is
derived from Definition 2.19 by replacing the optimization goal by a constraint.

Definition 3.1 (processing unit design problem - decision variant (PUDP-D)).

Given are a union G of source SFGs G; with folding factors f;, i=1,...,N, a type
set T, a type function £, timing functions dat, drt,del, and w, a clock period 7, the
cost of a register 0,, the cost of a multiplexer f, and a constant K €Q. The problem
is to find a PU G’ constructed by an operator allocation al, an operator assignment
as, aretiming r, a register allocation ra, and a multiplexer allocation ma, for which

@ al(j) > maxi=1,,,,,N|'l‘;c#2f|] for each j € T, and
(it) £(v) =£(as(v)) for each v € V, and
@) {veVias(v) =V} < f for each v/ € V', and

foreachi=1,...,N, and
) € = ((as(v),a),(as(u),b)) € E' and

wi(e) = w,(e) for each e = ((v, @), (u,b)) € E,
and
(v) ph(u) # ph(v) for each u,v € V; with
as(u) = as(v), and
u # v, and
foreachi=1,...,N, and
i) D(p) < ¢ for each p' € Pg with
W.(p') =0, and
(vii) w,() >0 for each ¢ € E', and
viii) YpecWr(p) 21 for each ¢ € Cg, and
(ix) ra(o")+ra(i') > w,(¢) for each ¢ = (o',1) € E', and
o Z ra(t') +B 2 ma(i') + 2 al(j))C(j) < K.
reT’ fer JET
0O

Next, we state that the problem is NP-complete and prove this.

Theorem 3.1. PUDP-D is NP-complete.

Proof. PUDP-D is in NP since it can be checked in polynomial time that a given
solution is feasible. Most of the constraints are checked in a trivial way, except
for Constraints (vi) and (viii). The number of paths and the number of complex
circuits can increase exponentially with the size of the problem. However, in order
to check whether the constraints related to them are satisfied, we do not need to
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know all paths and all complex circuits. We can check whether the delay of a path
between any pair of registers is shorter than the clock period by using a longest
path algorithm that runs in polynomial time. We can check whether there exists a
complex circuit with zero weight by applying a depth-first search for an operation
that is already labeled over edges with zero weight starting from every operation,
which runs in polynomial time. If we do not find a zero weight cycle we know that
the constraints related to complex circuits are satisfied. Finally, it can be checked
in polynomial time that the cost is at most K.

We give a reduction from the Directed Hamiltonian Circuit (DHC) problem,
which is NP-complete [Garey & Johnson, 1979], to PUDP-D. There the problem
is to find a circuit through a directed graph visiting all vertices exactly once. Let
G* = (V*,A*) be an instance of DHC, with [V*| = n and |A*| = m. Suppose m > n.
This is not a restriction, since otherwise G* cannot contain a Hamiltonian circuit.
From this, we construct two source SFGs G; and G, and we show that they can
be mapped onto a PU G’ with a cost that is at most K if and only if G* contains a
Hamiltonian circuit.

From the DHC instance we derive an instance of PUDP-D in the following
way; see Figure 3.1. We define 7 = {1,2}, with Z(1) = 0, O(1) = 1, Z(2) = 2,
and O(2) = 0. We construct G; with for each v € V*, an operation v with £(v) = 1,
and for each a € A*, an operation a with £(a) = 2. For each edge a = (u,v) € A*
we construct two edges in E1: ((u,1),(a,1)) and ((», 1), (a,2)).

We construct G, with V, consisting of two parts. The first part consists of n
operations of type 1, numbered ry,73,...,r,. The second part consists of n oper-
ations of type 2, numbered s1,52,...,5,. E, contains the edge ((r;, 1), (s;, 1)) for
each i = 1,...,n. Furthermore, E, contains ((r1, 1), (s,,2)) and ((rit1, 1), (s1,2))
for each i = 1,...,n— 1. G, is the translation of an arbitrary directed cycle on n
vertices.

The two source SFGs are the main part of the problem instance. Furthermore,
we define the following:

fi=1land fo =1,
C(1)=1andC(2) =1,
a=0and =1,

w(e) = 0foreach e € E,
del((v,a), (v,b)) = § for each ((va),(v,b)) €I O,
T=1, and
K =|V*+]A%].
The complete transformation can be done in polynomial time.
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(@)

Figure 3.1.  An example of a DHC graph (a) and the two source SFGs G; (b) and
G> (c) that are derived from it.
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We make the following remarks about the constructed instance of PUDP-D.
A PU that will cost (at most) |V*| +|A*| has no registers, no multiplexers, and
a minimal operator allocation, i.e., for each v € V*, an operator v of type 1 is
allocated, and for each a € A*, an operator a of type 2 is allocated. The solution has
a trivial retiming and register allocation, i.e., r(v) = 0 for each v € V and ra(f) = 0
for each r € T. Since an operator has only one output or two inputs, complex
circuits cannot exist. All the delays of paths in the PU are smaller than the clock
period. The operator assignment must be such that no multiplexers exist in the PU.

We now prove that G* contains a Hamiltonian circuit if and only if there exists
a feasible operator assignment that assigns the operations of G and G, to operators
of G’ such that the number of multiplexers needed is zero.

Suppose G* contains a Hamiltonian circuit (vy,...,v,). Then there are edges
@1y---,ay € A* such that for each i = 1,...,n—1, a; = (vi, vi+1), and a, = (v, v1).
Then we can assign the operations of SFG G, without introducing any multiplexers

as follows. For each i = 1,...,n, as(r;) = as(v;), as(s;) = as(a;).

Suppose as is a feasible operator assignment that does not introduce any
multiplexers. Number the vertices in V* = {vy,...,v,} and the edges in
A* = {ai,...,an}, such that as(r;) = as(v;) and as(s;) = as(a;) for each
i=1,...,n. Since no multiplexers are present and ((r;,1),(s;, 1)) € E, and
((ri+1, 1), (5:,2)) € E3 it follows that ((v;, 1), (ai, 1)) € E1 and ((vit1, 1), (@i 2)) €
E; for all i =1,...,n— 1. Furthermore, since no multiplexers are present and

((rny 1)5 (505 1)) € E and ((r1, 1), (50, 2)) € E; it follows that ((va, 1), (ar, 1)) € E1
and ((v1,1),(an,2)) € E;. Then (vy,...,v,) is a Hamiltonian circuit of G*, since
for each i = 1,...,n—1, ((v;,1),(a;, 1)) € Ey, and ((vit1,1),(a;,2)) € E;, so
(vi,vir1) € A*. Furthermore, ((v,, 1),(as, 1)) € Ey and ((v1, 1), (an,2)) € E1, so
(v, v1) € A%, 0

3.2 Decomposition of the processing unit design problem

Since it is difficult to find values for the decision variables in one step, we concen-
trate on a decomposition method that treats them one by one. The solution method
uses a decomposition strategy consisting of four main steps, namely operator allo-
cation, operator assignment, operator duplication, and retiming. In Section 3.2.1
we discuss the order in which the subproblems are solved. In Section 3.2.2 we
formally define the subproblems.

3.2.1 Subproblem order

The ordering of the subproblems is motivated as follows.



38 Complexity Analysis and Decomposition

Step 1: operator allocation

We start with determining an operator allocation since the other decision variables
can best be determined when an operator allocation is known. The determination
of an operator assignment has to follow the determination of an operator allocation
since operators must exist before operations are assigned to them. The determina-
tion of a retiming also has to follow, since in the case of timefolding we need to
know how many operators are allocated in order to know how many operations we
can execute in the same phase. Otherwise, we may have retimed many operations
in the same phase and, consequently, require many operators; this, in general, can-
not lead to an optimal solution, since we expect that an optimal PU contains more
operators than registers.

Step 2: operator assignment

Once an operator allocation is given, we determine an operator assignment before
a retiming. The main reason for this in the case of timefolding is that the structure
of a source SFG may contain regularity, i.e., a substructure of it may be equal to
another substructure of it; see Figure 3.2a, 3.2b, and 3.2¢. In that case, the oper-
ations of the substructures may be assigned to the operators in a PU such that the
same substructure is created in it. This operator assignment is then part of a prob-
lem instance in which a retiming must be determined. There, the assignment very
much restricts the way in which phases can be assigned to operations according to
Constraints (v). The same substructures may exhibit the same timing behaviour,
and if they do, the operations in them can be retimed such that Constraints (vi) and
(vii) are satisfied and such that on corresponding edges the same weight is present.
The latter results in a minimal number of multiplexers since at an input, all signals
available for selection must be delayed the same number of clock cycles. To sat-
isfy Constraints (v), all operations in a substructure can be easily retimed one more
clock cycle, if necessary, without changing the retimed weights on the edges in
the substructure. Consequently, the phase conflicts can be solved at no additional
multiplexer and register cost in the substructure of the PU.

In the case of multiplexing, another appearance of regularity is the existence
of common substructures in different source SFGs; see Figure 3.2d, 3.2e, and
3.2f. When corresponding operations in common substructures of different source
SFGs are assigned to the same operator, that substructure becomes present in the
PU. Equally retiming the corresponding operations results in the minimum number
of multiplexers and registers in the PU.

Step 3: operator duplication

Based on the first step, we use a minimal allocation of operators to determine an
operator assignment in the second step. However, after an initial operator assign-
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Figure 3.2. The two source SFGs of the butterfly (a), (d) and the 5-tap filter (b),
(e) and their PU implementations in the case of multiplexing (f) and in the case
of a combination of timefolding and multiplexing (f). A common substructure is
indicated by the grey boxes.
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ment has been determined, the result may not be satisfactory because the PU may
be too expensive and may contain complex circuits. The PU may be too expensive
because one or more multiplexers placed at the input(s) of an operator can be quite
expensive with respect to the cost of the operator itself. Although the goal of the
operator assignment step is to minimize the connectivity cost, it does not make
a trade-off with operator cost. Complex circuits may be inevitably created by an
operator assignment if a limited number of operators is allocated.

Within the decomposition strategy three methods fit to handle the problem of
complex circuits; see Figure 3.3. The first method reassigns operations to a mini-
mum number of operators. The second method allocates additional operators onto
which some operations are reassigned. The third method generates constraints for
the step following assignment, in which operations are retimed such that at least
one register is placed on each false loop. Only the second method is guaranteed
to be effective. Consequently, we introduce a step in our decomposition in which
an adjustment of the initial operator allocation and the initial operator assignment
is determined. We reassign operations to operators in such a way that two opera-
tions can only be (re)assigned to the same operator if they were initially assigned
to that operator. Furthermore, no complex circuits may be present and the cost is
minimized. We refer to this technique as operator duplication.

Step 4: retiming

The only decision variable that is left to be determined in this step is retiming. Sup-
pose that the order in which an operator assignment and a retiming are determined
is exchanged. Then, it becomes very difficult to determine an operator assignment
that complies with Constraints (v) and still has a low overall cost, since the cost
of the retiming is difficult to determine or even to estimate accurately when no
operator assignment is given.

3.2.2 Formal subproblem definitions

In this section the definitions of the subproblems into which PUDP is decomposed
are given.

Operator allocation problem

We exclude the contribution of registers and multiplexers to the cost since an op-
erator assignment and a retiming are unknown. Furthermore, we do not require
timing functions in the instances since no retiming needs to be determined. All
constraints except for Constraints (i) are related to an operator assignment or a re-
timing. These constraints can be ignored without imposing problems for following
steps in the decomposition. Then, the operator allocation problem is defined as
follows. '
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Figure 3.3. Two source SFGs (a), (b), and three PUs that can execute each of the
source SFGs, one at a time. The first PU (c) has a minimal number of allocated
operators and is not retimed, but contains a false loop. The second PU (d) has a
non-minimal number of allocated operators, but no false loops. The third PU (e)
is based on the same allocation and assignment as the PU of (¢), but is retimed to
prevent the existence of a false loop. Reassignment of operations cannot remove
the false loop from the PU of (c). Note that the PU of (d) is cheaper than the PU
of (¢) if a multiplexer costs more than operator F'1a.
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Definition 3.2 (operator allocation problem (OALP)). Given are a union G of
source SFGs G;, with folding factors f;, i = 1,...,N, a type set T, and a type
function £. The problem is to find an operator allocation al, for which

(@) al(j) > max—;. . n Ist_j| foreach j€ 7T, and
7 b} ﬁ
that minimizes

2. a()NC().

JET

Operator assignment problem

As a result of the first step we have a minimal number of operators of each type.
Therefore, Constraints (i) are irrelevant here. Retiming operations in a following
step may change the weights on edges in the SFGs and, if they do, the original
weights cannot be used to determine the number of multiplexers. Therefore, we
ignore the weight in the instances and we assume zero weights on all edges in
the SFGs. Furthermore, we do not require the asynchronous timing functions in
the instances since no retiming needs to be determined. Consequently, Constraints
(v), (vi), and (vii) are irrelevant for this subproblem. Constraints (viii) are taken
into account in the next step, and can therefore be omitted here. Furthermore,
because the weights are unknown, Constraints (ix) become irrelevant. We exclude
the contribution of registers and operators to the cost to be minimized. Because
we assume zero weights on the edges, the Constraints (iv) are reformulated as
Constraints (xif) in the following definition of the operator assignment problem.

Definition 3.3 (operator assignment problem (OASP)). Given are a union G of
source SFGs G;, with folding factors f;, i=1,...,N, a type set T, a type function
£, and a minimal operator allocation al. The problem is to find a PU G’ constructed
by an operator assignment as, and a multiplexer allocation ma, for which

@) £(v) = (as(v)) for each v € V, and
(@) [{veVias(v) =V} < f for each v € V', and
foreachi=1,...,N, and
(xii) ((as(v),a),(as(u),b)) € E' for each ((v,a), (u,b)) € E,
and

that minimizes

Y ma(i).

fer
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Operator duplication problem

Solutions of OALP and OASP determine the instances of the operator duplication
problem. We demand that at least the same number of operators must be allo-
cated of each operation type as in the initial allocation, thus satisfying Constraints
(i). Moreover, we demand that two operations can be assigned to the same op-
erator only when they are assigned to the same operator in the initial assignment
(Constraints (x) in Definition 3.2). The timing functions do not need to be part of
instances of the operator duplication problem, for the same reasons as is the case
with instances of the operator assignment problem. However, we need the delay of
operators since complex circuits can only pass through operations with a defined
delay. Because the weights are unknown, Constraints (viii) imply that no complex
circuits may exist, and, consequently, these constraints are reformulated as Con-
straints (xi) in Definition 3.4. We exclude the contribution of registers to the cost.
Then, the operator duplication problem is defined as follows.

Definition 3.4 (operator duplication problem (ODP)). Given are a union G of
source SFGs G;, i = 1,...,N, a type set T, a type function ¢, a delay del, the
cost of a multiplexer B, and an initial operator allocation al’ and an initial operator
assignment as’ defining a PU G'. The problem is to find a PU G* constructed by
an operator allocation a/*, an operator assignment as*, and a multiplexer allocation
ma*, for which

@) £(v) =£(as*(v)) for each v € V, and
(x) as*(v) # as*(u) for each u,v€V
with as'(v) # as’(u), and
(xi) Cg =9, and
(xii) ((as*(v),a),(as*(u),b)) € E* for each ((v,a),(u,b)) € E,
and

that minimizes

B Y ma*(i*)+ Y, al*(j)C())-

Fer jeT

Generalized retiming problem

Since the determination of a retiming follows the determination of the assignment,
we assume that an operator allocation and an operator assignment are given. Con-
straints (7), (ii), (iif), and (viii) are already satisfied and, therefore, not explicitly
taken into account here. Furthermore, the contribution of the operators is excluded
from the cost, because it is constant. Since the problem to determine a retiming is
more general than RP of Definition 2.22, which is a special case of PUDP, we call
it the generalized retiming problem and define it as follows.
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Definition 3.5 (generalized retiming problem (GRP)). Given are a union G of
source SFGs §;, with folding factors f;, i=1,...,N, a type set T, a type function
£, a clock period T, timing functions dat, drt,del, and w, the cost of a register o,
the cost of a multiplexer 3, an operator allocation al, and an operator assignment
as. The problem is to find a PU G’ constructed by a retiming r, a register allocation
ra, a multiplexer allocation ma, and the given al and as, for which

(iv) € = ((as(v),a), (as(u),b)) € E' and

wi(e) =w,(e) for each e = ((v, @), (u,b)) € E,
and
(v) ph(u) # ph(v) for each u, v € V; with
as(u) = as(v), and
u # v, and
foreachi=1,...,N, and
i) D(p') < for each p' € Pgr with
W.(p') =0, and
(i) wr(d)>0 foreach ¢ € E', and
(ix) ra(o') + ra(i') > w,(€) for each ¢’ = (0',1') € E', and
that minimizes
oY ra(t)+ B mafi).
teT iel O

We can further decompose this subproblem into two subproblems, being the tim-
ing analysis problem and the generalized synchronous retiming problem. The first
problem is to transform the constraints involving the asynchronous timing of an
SFG into a set of constraints only involving synchronous timing. The second prob-
lem is to determined a retiming based on the synchronous timing constraints.

Constraints on the retiming decision variables can be expressed in the same
form, i.e., the difference of two retimings of operations must be at most a certain
constant. With F we denote the set of constraints of this form. The constraint set
F can be represented in a graph. To this end, we extend the definition of an SFG
with a constraint set F' in the following way and call it an Extended SFG.

Definition 3.6 (extended signal flow graph). An Extended Signal Flow Graph
£§ is given by a four tuple (V,F,T,E) in which
V.,T,E) is an SFG, and
FCVxXxV is a multi-set of constraint edges
representing timing constraints.
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We define a weight on a constraint edge to quantify the constraint as follows.

Definition 3.7 (weight on constraint edges). Given is an ESFG £G. The weight
w: F — 7 is defined as follows. For each edge f = (u,v) € F, w(f) is the number
of clock cycles that v may be retimed earlier than u. Consequently the constraint is
w,(f) > 0. O

The Constraints (vi) and (vii) can be replaced by constraints on the edges in a set
F with w,(f) > 0 for each f € F in the following way.

Constraints (vii) state that a signal edge ¢ = ((u, @), (v,b)) € E imposes a time
order on the execution of the operations connected to it, i.e., the signal can only be
delayed a non-negative number of clock cycles, w,(e) > 0. Such a constraint can
be represented by an f = (u,v) € F with w(f) = w(e). We call constraints of this
type causality constraints.

Constraints (vi) and (iv) state that a path between two registers in a retimed
PU G must have a delay of less than the clock period. In other words, a path that
is longer than or equal to the clock period must contain at least one register. For
paths p = ((u,@),...,(» b)) that must have a constraint stating that W,(p) > 1, a
constraint edge f = (u,v) with a weight w(f) = W(p) — 1 can represent this. We
call constraints of this type speed constraints. An example of an ESFG with speed
constraints is shown in Figure 3.4.

Figure 3.4. An example of an extended signal flow graph. In this case, the
constraint edges shown (dashed) correspond to speed constraints only. We assume
that on a path at most one multiplication or two additions can be performed in one
clock cycle and that the delays of the input and output operators can be neglected.

In addition to retiming operations in the source SFGs, the retiming of operators
at the target level has to be considered, because the mapping of more than one
source SFG onto a target SFG can introduce many false paths. The start and end
operators of such a path do not necessarily correspond with operations of the same
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source SFG. Consequently, if such a path has a delay greater than the clock period,
no corresponding constraint can exist in any of the source ESFGs; see Figure 3.5a
and 3.5b.

That retiming of the target SFG is not sufficient can be explained as follows. A
loop in the target SFG can only correspond with a path in a source SFG, since no
complex circuits may be present. The number of registers on the loop cannot be
changed by retiming at the target level. However, a speed constraint at the source
level can introduce sufficient registers in the loop of the target SFG; see Figure 3.5¢
and 3.5d.

O D)
O—— DD

@

Figure 3.5. Two examples of speed constraint edges in source vs. target SFGs.
The source ESFGs of (a) are mapped onto the target ESFG of (b). The constraint
edge in the target ESFG of (b) corresponds to a false path. The source ESFG of (¢)
is mapped onto the target ESFG of (d) in a timefolded fashion with a folding factor
equal to two. The constraint edges in the source ESFG of (c) can be satisfied, since
the ESFG can be pipelined. However, the corresponding constraint edges in the
target ESFG cannot be satisfied, since they correspond to a cycle on which the
number of registers cannot be changed by retiming at the target level.

Using source and target level retiming, we can find a solution for an instance
of GRP in two steps that both involve instances of the timing analysis problem
and the synchronous generalized retiming problem. In the first step we generate
constraint edges based on a timing analysis at the source level and use them to find
a retiming of operations at the source level. The result of this step is a target SFG,
which is treated in the second step in a similar way as a source SFG in the first step.
During the first step only real paths are taken into account, whereas in the second
step additional constraint edges are generated corresponding to false paths.

Now, the first subproblem of GRP is the timing analysis problem and define it
as follows.
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Definition 3.8 (timing analysis problem (TAP)). Given are an SFG G, a type set
T, a type function £, a clock period 7, and timing functions dat,drt,del, and w.
The problem is to find a constraint set F', such that if there exists a retiming r with

(xiii) w(f) >0 for each f= (u,v) €EF,
then and only then
i) D(p) <t for each p € Pg with
W.(p) =0, and
(vii) w,(e) >0 foreach e € E.

O

The second subproblem of GRP is the synchronous generalized retiming problem
(SGRP).

Definition 3.9 (synchronous generalized retiming problem (SGRP)). Given
are a union £G of source ESFGs £G; with folding factors f;, i = 1,...,N, a type
set T, a type function ¢, a weight w, the cost of a register o, an operator allocation
al, and an operator assignment as. The problem is to find a PU G’ constructed by
a retiming r, a register allocation ra, a multiplexer allocation ma, and the given al
and as, for which

(iv) € = ((as(v),a),(as(u),b)) € E' and

wr(e) =w.(e) for each e = ((,a), (u, b)) € E,

and

(v) ph(u) # ph(v) for each u, v € V; with
as(u) = as(v), and
u # v, and
foreachi=1,...,N, and

(ix) ra(d')+ ra(i') > w,(e') for each ¢ = (o',i') € E, and

(xiii) w,(f) >0 for each f € F, and

that minimizes

oY, ra(t)+ B ma(i).

teT i€l

3.3 Complexity of subproblems

In this section we derive the complexity of PUDP’s subproblems and we give for
the special cases related to MP, TP, and RP, a proof of their complexity.
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3.3.1 Complexity of the operator allocation problem
Theorem 3.2. OALP can be solved in polynomial time.

Proof. An optimal solution to OALP can be computed by replacing the inequality
sign in the formulation of Constraints (i) by an equality sign, i.e.,

al(j) = maxi:l,...,N[}%q foreach j€T.
Clearly this satisfies the constraints and gives an optimal solution. g

3.3.2 Complexity of the operator assignment problem

Two special cases of OASP exist for which we would like to know their complexity.
One special case concerns instances of OASP with N > 1 and f; = 1 for each
i=1,...N, which can be considered as a subproblem of MP. We call this special
case OASP-MP and refer to its decision variant as OASP-MP-D. The other special
case concerns instances of OASP with N = 1 and f; > 1, which can be considered
as a subproblem of TP. We call this special case OASP-TP and refer to its decision
variant as OASP-TP-D.

Theorem 3.3. OASP-MP-D is NP-complete.
Proof. OASP-MP-D is in NP since it can be checked in polynomial time that a
solution is feasible and that the cost is at most K.

The proof that OASP-MP-D is NP-complete is based on a reduction from the
Directed Hamiltonian Circuit (DHC) problem, which is NP-complete [Garey &
Johnson, 1979], analogous to the proof of Theorem 3.1 that states that PUDP-D is
NP-complete. The main difference is that a minimal number of operators is given
here, whereas in the proof of Theorem 3.1 this was forced by the bound on the cost.
Therefore, to construct an instance of OASP-MP-D a minimal operator allocation
is chosen, i.e.,

al(j) = max=1,...n |Vl foreach j€T.

Furthermore, the cost bound K is chosen to be zero. O

Theorem 3.4. OASP-TP-D is NP-complete.
Proof. OASP-TP-D is in NP since it can be checked in polynomial time that a
solution is feasible and that the cost is at most K.

To prove that OASP as a subproblem of TP is NP-complete, we give a reduction
from a special case of Independent Set (IS). IS is the problem to find at least J
vertices of a graph G* = (V*, E*) that are not connected to each other by edges. IS
has been proven to be NP-complete, even for the special case with d(v*) < 3 for
each v* € V* and J < |V*|/2, where d(v*) denotes the degree of vertex v* [Garey,
Johnson & Stockmeyer, 1976].
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Let G* = (V*, E*), J be an instance of IS, with |V*| = n, J < n/2, and d(v*) < 3
for each v* € V*. We construct a source SFG G and a non-negative integer K, such
that there is an operator assignment with at most K multiplexers if and only if G*
contains an independent set of size J or more.

An instance of OASP-TP-D is constructed as follows. An operation type set is
given by 7 ={1}, O(1) = 1, and Z(1) = 3. G consists of two disjoint parts: G, and
Gy,. Ga is constructed as follows. For each v € V* we construct an operation v € V7,
with £(v) = 1. The set E, consists of the following edges. For each edge {u, v} € E*
we construct an edge ((u,4), (v,k)) € E, and an edge ((»4),(u,!)) € E,, where k
and [ are chosen in such a way that every input terminal has at most one incoming
edge. The number of inputs is sufficient for this, since d(v*) < 3 for each v* € V*,
which means that each operation v € V, has at most 3 incoming edges. An example
is shown in Figure 3.6.

Part G, of G is a kind of cycle of b= 2(n— J) + 3 operations vy,...,vp. Each
operation v;, j=1,...,b, has an edge to each input terminal of operation v, and
vp has an edge to each input terminal of operation vy, i.e.,

Vo={v;|j=1,...,b} and
Ey, = {((Vja4)> (V(j mod b)+17k)) l j=L...,band k= 1,2, 3}-
An example is shown in Figure 3.6.

Furthermore, we take f =2n—2J+2=2(n—J)+3—1=b—1. For the

number of operations we get |V| = n+ b. Therefore
VlI_ntb_ . ntl
o b=1 b—1

Since b >3 and n> 0, we get (n+1)/(b— 1) > 0. Furthermore, since J < n/2,

we getn—J > n/2, so
n+l  n+l n+1  n+l
b—1 2(n—N+27"2-n/2+2 n+2

This means that we can choose al(1) = |V'| = [|V|/f] = 2. We name the two
allocated operators in the target SFG G’ «| and u),. Finally, we take K = 3. The
above transformation can be done in polynomial time.

We can make the following observations about the constructed instance. The
cycle Gy, has length b, and thus not all operations of this cycle can be assigned to
the same operator. Furthermore, since b is odd, at least (b+ 1)/2 operations of
the cycle must be assigned to one operator and at most (b— 1)/2 operations must
be assigned to the other operator. Without loss of generality, we assume that at
least (b+ 1)/2 operations are assigned to u}. Since the number of operations of the

cycle assigned to i) is at least one more than the number of operations assigned to
iy, there must be two consecutive operations in the cycle that are both assigned to

<1
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@ (@

Figure 3.6. An example of an IS graph G* (a) and the source SFG G consisting of
two parts G, (b) and Gy, (c) that are derived from it. For this example n =5, J = 2,
and b = 9. (@) shows the target SFG and (e) the resulting PU.
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u;. This means that the number of edges in the resulting target SFG is at least 9,
and the number of multiplexers is at least 3.

We now prove that G* has an independent set of at least size J if and only if
there is an operator assignment, for which the number of multiplexers is at most
K=3.

Suppose G* contains an independent set of size J or more. Take a subset V
of this independent set of size J. Now construct an operator assignment in the
following way. Assign the J operations of V, corresponding to V to operator u) in
G' and all other n— J operations of V, to i}. This does not result in any edges from
iy to itself, since the vertices in V are not connected and thus the corresponding
operations in V, are not connected. Consequently, no multiplexers at the inputs of
iy contribute to the PU cost. Next, we can still assign

f—(n—=N)=n—-J+2=(b+1)/2
operations to operator | and

f—IJ=2n—-2]4+2—-J>2n—n—J+2=n—J+2>(b—1)/2
operations to operator u,. We assign (b+ 1)/2 operations of the cycle to ) and
(b—1)/2 operations of the cycle to i) in the following way.

_ uy if jmod2=1,

as(vj) = { i, if jmod2=0,
foreach j=1,...,b.

This results in a PU with exactly 3 multiplexers, since there are no edges from
uy to itself, but all other possible edges are present.

Now suppose that there is an operator assignment such that the number of
multiplexers in the resulting PU is at most 3. We have shown before that the number
of multiplexers is at least 3 and that at least (b+ 1)/2 operations of the cycle are
assigned to one operator, say u), and at most (b — 1)/2 operations of the cycle are
assigned to the other operator, say u,. This means that we can have at most b— 1 —
(b+1)/2 = n—J operations of V, assigned to u and thus at least J operations of
V, are assigned to . Since there are already 3 multiplexers at the inputs of i} as
a result of the cycle in Gy, there are no edges from i), to itself, so the operations of
V, that are assigned to u’2 cannot be interconnected. This means that the vertices in
V* corresponding to these operations are not interconnected and thus they form an
independent set of size at least J. O

Corollary 3.1. OASP-D is NP-complete.

Proof. OASP-D is in NP since it can be checked in polynomial time that a solution
is feasible and that the cost is at most K. Since special cases of OASP-D have been
proven to be NP-complete, OASP-D is NP-complete. o
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3.3.3 Complexity of the operator duplication problem

Theorem 3.5. ODP-D is NP-complete.

Progf. ODP-D is in NP since it can be checked in polynomial time that a solution
is feasible and that the cost is at most K. To check whether Constraints (xi) are
satisfied, we do not need to know all complex circuits in the instance. We can
check whether a complex circuit exists by applying a depth-first search over edges
starting from every operation, which runs in polynomial time. If we do not find
a complex circuit we know that Constraints (xi) are satisfied. Note that the only
cycle that can be present after operator duplication is not a complex circuit, but
corresponds to a cycle in one of the source SFGs. Furthermore, it can be easily
checked that the cost is at most K. Hence ODP-D is in NP.

Next we present a reduction from Graph Coloring (GC), which is NP-complete
[Garey & Johnson, 1979], to ODP-D. GC is the problem to assign at most L colors
to nodes in a graph such that adjacent nodes have different colors. Let G= (V,E), L
be an instance of GC with V = {v{,...,v,}. We construct an instance of ODP as
follows. The set of operation types is T = {0, 1,2,...,n}, with Z(0) = 0, O(0) = 1,
Z(i) =2, 0(i) =1, foreach i = 1,...,n, and C(i) = 1 for each i = 0,...,n. For
each v; € V, we construct a source SFG G; with V; = {v;y, ..., vi,} U{pi}, £(vij) = j
for each j=1,...,n and £(p;) = 0. The set of edges E; consists of two parts E;|
and E;;, where

Ej ={((vi,3), (v, D)} U {((p, 1), (vix, 1)) | {vir i} € EY,
Ep= {((Vika3)7 (Vi(k-f-l)?z)) | k=1,...,n— 1} U {((Vina 3)7 (V,'],Z))}-

Hence, part Ej; creates a cycle and is similar for each i. Figure 3.7 shows a graph
and the source SFGs that are constructed from it.

The PU G’ is constructed such that it contains one operator of type j named v'j
for each j=1,...,n, and one operator p’ of type 0. The operator assignment is
as follows. as'(p;) = p', as'(vij) = v} for each v;; € V; and for each i, j = 1,...,n.
Furthermore, we take all delays of operations equal to undefined, i.e., del(i, 0) =~
for each (i,0) € I x 0. Consequently, no complex circuits can exist. Furthermore,
we take B = nL+2 and K = nL+ 1. This implies that there can be no multiplexers
in G*, and at most nL+ 1 operators. The above transformation can be done in
polynomial time.

We can make the following remarks about the constructed instance of ODP-D.
It is of no use to duplicate operator p' since it does not have any input terminals.
If we duplicate one operator of type j, then we have to duplicate all the other
operators of type k= 1,...,n, k # j, in the same way, because otherwise the sets
Ej results in multiplexers in G*. Therefore, for two source SFGs G, and G,, where
s #, either each operation vy; of V is assigned to the same operator as operation v, j
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Figure 3.7. An example of a GC graph G (a) and the source SFGs G;, i = 1,...,5
((B), (¢), (@), (), () that are derived from it. (g) shows the initial target SFG G’
and (%) shows the initial PU. (i) shows the target SFG G* after operator duplication
and and (j) the PU after operator duplication.

53
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of V;, or each operation v; of V; is assigned to a different operator than operation
vij of V;. Hence G* always has one operator of type O and a multiple of n other
operators, such that the number of operators of each type j is equal, since the
number of multiplexers is zero. Furthermore, in G, two source SFGs G, and G,
introduce two multiplexers if {vy, v} € E. In that case, ((ps, 1), (v, 1)) € E; and
((vit»3), (vir, 1)) € E;. Since v, = as' (vys) = as'(v;) and p’' = as(p;), E' contains the
edges ((p',1),(v},1)) and ((v},3), (v}, 1)). Consequently, ma(v, 1) = 1. Likewise,
it follows that ma(v/,, 1) = 1if {vs,v;} € E.

We now prove that graph G can be colored with L colors if and only if we can
duplicate operators in the instance of ODP such that the cost is at most K.

Suppose G is colored with L colors by z: V = {1,2,...,L}. Then we can con-
struct an operator duplication as follows. Duplicate operator v’J into L operators,
named v;‘.l,vjz,...,vj-L, and assign operation v;; of V; to operator v?z(vi) for each
i,j=1,...,n. Then for each {v;,v;} € E, the operations of type i and j in G; and
G are assigned to different operators, so no multiplexers are present. Furthermore,
the number of operators used is at most nL.+ 1. Therefore the cost is at most K.

Suppose we have an operator assignment as* such that the cost is not more
than nL + 1. Then no multiplexers are present and the operators of each type are
duplicated into at most L operators. For each operator v, in G', we number the
operators in G* that originate from v/, from v} to V5, in such a way that for each
G;, there exists some k= 1,...,L, such that each operation v;; € V; is assigned to
operator vjfk, where i, j = 1,...,n. This is possible, since no multiplexers are used.
This also means that two operations of two source SFGs §; and G are not assigned
to the same operators if {v;,v;} € E. Hence we can color the vertices of G as
follows. For each source SFG G;, if operation v;; is assigned to operator v},, then
we color v; with color k. |

3.3.4 Complexity of the generalized retiming problem

Since GRP is decomposed into two subproblems we discuss the complexity of each
of these problems.

Complexity of the timing analysis problem

Theorem 3.6. TAP can be solved in polynomial time.

Proof. The number of Constraints (vi) is not necessarily polynomial in the size of
the instance, because the number of paths in an SFG G = (V, T, E) is not necessarily
bounded by a polynomial. However, the number of constraints in the constraint set
F can be bounded by a polynomial, since we do not need all paths. For each u,v €
V, we only need a path p between an output terminal of  and an input terminal
of v with the smallest weight and of these paths with smallest weight, we need the
one with the largest delay [Leiserson, Rose & Saxe, 1983]. If this delay is larger
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than or equal to ¢, then a constraint f = (u,v) is generated with w(f) = W(p) — 1.
These constraints can be generated in polynomial time by an all-pairs shortest-path
algorithm [Floyd, 1962; Warshall, 1962] as indicated by Leiserson, Rose & Saxe
[1983]. Furthermore, the causality constraints in F' that correspond to Constraints
(vii) can be trivially generated in polynomial time. Hence TAP is in P. O

Complexity of the synchronous generalized retiming problem

Three special cases of SGRP exist for which we like to know the complexity. The
first special case concerns instances of SGRP with N > 1 and f; = 1 for each i =
1,...,N. We call this special case SGRP-MP and refer to its decision variant as
SGRP-MP-D. The second special case concerns instances of SGRP with N = 1
and f; > 1, which can be considered as a subproblem of TP. We call this special
case SGRP-TP and refer to its decision variant as SGRP-TP-D. The third special
case concerns instances of SGRP with N = 1 and f; = 1, which can be considered
as a subproblem of RP. We call this special case SGRP-RP.

Theorem 3.7. SGRP-MP-D is NP-complete.
Proof. SGRP-MP-D is in NP since it can be checked in polynomial time that a
solution is feasible and that the cost is at most K.

We give a reduction from 3-satisfiability (3SAT), which is NP-complete, to
SGRP-MP-D [Garey & Johnson, 1979]. 3SAT is the problem of finding a truth
assignment f : U — {true, false} for a set of variables U that are used in a set of
clauses C containing three literals of different variables. Let an instance U,C of
3SAT be given, where U is a set of variables and C a set of clauses. Then we
construct an instance of SGRP-MP-D from this as follows. For each u € U, we
create an operation type 7, and an operation type 7, with Z(t,) = Z(tz) = O(t,) =
O(tz) = 2. Next, we construct one source ESFG £G,, for each u € U in the fol-
lowing way; see Figure 3.8. V, = {u,u}, with £(u) = t,, and £(7) = tz, E, =
{((3), (@,1)),((%3), (4, 1)) } and w(((1,3), (%, 1)) = 1, w(((%3), (4, 1))) =0.
Furthermore, the constraint sets of these source ESFGs contain only causality con-
straints. These source ESFGs correspond with a truth assignment. The number
of registers in each source ESFG cannot be changed since they are cycles. For
each source ESFG £G,,, the register can be placed either on ((u,3), (%, 1)) or on
((,3),(u,1)) by retiming. We let the first case correspond to a truth assignment
in which u is true and the second case correspond to a truth assignment in which u
is false, so the weight on the first edge represents the "value’ of u and the weight
on the second edge represents the *value’ of u. Next, we construct a source ESFG
EG. for each clause ¢ € C consisting of literals /;, /, and /3 in the following way.
V.= {l1,11, 11,13, 13,13}, with each operation of the corresponding type, and

Ec - {((lla 3)7 (Zla 1)) ) ((127 3)7 (727 1)) ) ((137 3)7 (737 1)) ’
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Figure 3.8. An example of a set of variables U = {a, b, c,d} and a set of clauses
C = {abc, bcd} and source ESFGs £G, (a), £G. (b), and EG 11, (c) that are con-
structed from them. In the figures, the constraint edges shown (dashed) correspond
to speed constraints only.
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((lla 4)1 (l27 2)) ’ ((12,4)1 (137 2)) }
All the weights of the edges are 0.

The source ESFGs contain paths with six operations. After retiming, a weight
of 1 on an edge from a literal to the complement of this literal will correspond to
a truth assignment of this literal. The constraint set is such that at least one of the
signal edges will have a retimed weight greater than zero, since we add a speed
constraint edge

(lloi3) S Fca
with weight —1. Furthermore, the constraint sets of these source ESFGs contain
causality constraints.
Next, we construct a source ESFG £G,;, for each pair of literals /1, /,, where
Iy #1b and [ # b, with V;,;, = {l;, b}, and each operation of the corresponding
type,
El]lz = { ((lh 4)7 (127 2)) ) ((ZZa 4)a (lla 2)) }’

and the weights all equal to 0. The constraint sets of these source ESFGs contain
only causality constraints. The weights on the edges in these source ESFGs can
never be changed by retiming, since they are cycles. Thus we now have constructed
three different sets of source ESFGs with a total of [U|+|C|+2|U|?>—2|U| ESFGs.

The operator allocation consists of one operator of each type, and the operator
assignment assigns each operation to the corresponding operator. Furthermore, we
choose the register cost o= 1, the multiplexer cost B = 1, and

K=4Ul*-s|U|.
The above transformation can be done in polynomial time.

We can make the following remarks about the instance of SGRP-MP-D con-
structed. The instance is constructed in such a way that to obtain a cost K, a
minimum number of registers |U| is present as well as a minimum number of mul-
tiplexers 4|U|? — 6]U]| is present. This number of registers is required for the im-
plementation of the retimed weights in the source ESFGs £G,,. Mapping all source
ESFGs £G,;, together on one PU will result in (2(|U| — 1) — 1) multiplexers at
each second input terminal of each operator corresponding to a literal. In order
not to exceed the cost K, retiming may not increase the number of multiplexers
by causing different weights on edges between equal input terminals and output
terminals in the target SFG. Consequently, the first, third, and fifth edge of each
of the paths in £G . must be joined with edges of the source ESFGs £G, that cor-
respond to the truth assignment in the resulting target SFG after retiming, so they
may only have weight zero or one after retiming, and they must correspond to the
truth assignment. The second and fourth edge of each of the paths in £G . must be
joined with edges of the source ESFGs £G,,, so these edges always have weight



58 Complexity Analysis and Decomposition

zero after retiming. To satisfy the speed constraints in the constraint set F,, one of
the signal edges of the path must obtain a retimed weight greater than zero. This
implies that the first, third or fifth edge of the path must have a retimed weight
greater than zero, which corresponds to satisfying the corresponding clause.

We now prove that there is a truth assignment for U that satisfies all clauses
in C if and only if there is a feasible retiming, a feasible register allocation, and a
feasible multiplexer allocation such that the cost is at most K.

Suppose there is a truth assignment that satisfies all clauses. Then we construct
a retiming as follows.

Foreach £G,

ru) = 0,

[0 if f(u) =true
(@) = {~1 if f(u) = false.

For each £Gy,y,,
r(lh) =r(k) =0.
For each £G .,
r(h) = 0,
@ = {5 i e
) = r(ly),

(i) = r(L)+1 iflyis true
o= r(b) if 1, is false,

I/'(l?,) = r(lz),
r(l3)+1 if I3 is true
{ r(l3) if I3 is false.

Then the weights on the edges are as follows. For each u € U, if f(u) = true,
then w,(((u, 3), (, 1))) = 1, otherwise w,(((%,3), (4,1))) = 1 in each source ESFG
in which these edges occur, and all other edges have a retimed weight equal to
zero. 2(|U|— 1) — 1 multiplexers are needed this way for each input 2, since all
edges between the same terminals have the same weight. A register allocation that
allocates to each output terminal the weight on the outgoing edges of that output
terminal is an optimal one. This is because no multiplexers are used at each input
1, so each output 3 in the target SFG has exactly one outgoing edge and each input
1 has exactly one incoming edge. The total number of registers is |U], so the total
cost is K. The timing constraints are satisfied, since each edge has non-negative
weight and the paths corresponding to the clauses must have weight at least one
since the clauses are satisfied.
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Suppose there is a feasible retiming r, a feasible register allocation ra, and
a feasible multiplexer assignment such that the cost is K. Then we can make a
truth assignment f as follows: for each u € U, if w,((1,3),(%, 1)) = 1 in £G,,
then f(u) = true, otherwise f(u) = false. At least one of the first, third, and fifth
edges of each source ESFG £G .. corresponding to a clause must have weight one,
and this can only happen if this edge is joined in the target SFG with an edge of
the corresponding source ESFG £G, that has weight one. This means that the
corresponding literal in the truth assignment is true. o

In practical cases, each input terminal in a source ESFG has one incoming edge and
each output terminal has at least one outgoing edge, which is not the case in the
constructed ESFGs in the proof. However, we can slightly modify the construction
by making a new operation with one input terminal for each output terminal that
does not have an outgoing edge and then creating an edge from the output terminal
of this operation to the input terminal of the new operation. For each input terminal
that does not have an incoming edge, we make a new operation that has one output
terminal and an edge from that output terminal to the input terminal. The number
of new operations constructed in this way is polynomial, since the total number of
terminals is. The new operations are each assigned to their own types of operators.
In this way, new multiplexers are introduced, but their number cannot be reduced
by retiming. The new edges do not influence the possible retimings or the minimal
number of registers, since we can always choose the weight on the new edges equal
to zero, by choosing the retiming of each new operation equal to the retiming of
the operation to which it is connected.

Theorem 3.8. SGRP-TP-D is NP-complete.
Proof. SGRP-TP-D is in NP since it can be checked in polynomial time that a
solution is feasible and that the cost is at most K.

We can use almost the same construction as in the proof that SGRP-MP-D is
NP-complete. In this proof the number of source ESFGs is one and the folding
factor is greater than one, whereas in the proof that SGRP-MP-D is NP-complete
the number of source ESFGs was greater than one and the folding factor equal to
one. Given an instance of 3SAT, the transformation is modified as follows. The
different source ESFGs are all taken together in one large source ESFG, called £G.
The folding factor f = 2|U|? — 2|U| + 4|C| + 2. The rest remains unchanged. We

allocate for each type of operation one operator, since there are at most 2|U| +
. Ul +|Cl+1
|C| + 1 operations of the same type, and {@T%ITZ] =1.
Suppose there is a truth assignment that satisfies all clauses. Then we construct
a retiming r, a register allocation and a multiplexer allocation such that the cost

is at most K, analogous to the construction in the proof that SGRP-MP—D is NP-
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complete. We then construct from this a retiming /' that also satisfies the phase
constraints, while the cost remains the same.

The retiming /' is constructed as follows. The operations in the parts of the
source ESFG formed by the £G s are not assigned to the same operator, so they
may have the same retiming. Since r satisfies the timing constraints, we have
0 < r(u) —r(u) <1 in each £G,, which means that we can take »/ (%) = 0 and
Y (u) = r(u) — r(u) for u,u € V, for each u € U.

In £Gy,,,, operations I and I, can never have a different retiming. We number
these £Gy,;,8 with the numbers 0, 1,...,2|U|?> — 2|U| — 1 and give the operations
of the ith £G,;, both retiming i+ 2 (i = 0,...,2|U|?— 3), so we do not use 0 or 1,
which have already been used. At this point we have used retimings 0, 1,...,2|U|? —
2U |+ 1.

Next we consider the £G s corresponding to the clauses. If we have a clause
{1, b, 1}, then 1 < r(I3) — r(1;) < 3, since 7 is a retiming that satisfies the timing
constraints and that has cost at most K. We number the clauses 0, 1,...,|C| — 1, and
give the first operation /; of the path corresponding to clause j retiming 7' (I;) =
2|U|*—2|U|+ 2+ 4/, and all other operations x in this path r/(x) = 7 (I;) + r(x) —
r(11). Then two operations from different clauses never have the same retiming and
the operations never have the same retiming as any other operation from another
part of the source ESFG. We now have used retimings 0, 1,..., 2|U|? — 2|U|+4|C| +
1, which means that operations sharing the same operator not only have different
retimings, but also different phases. Therefore we can conclude that in the above
way we have constructed a retiming that additionally satisfies the phase constraints.
The cost is not changed, since neither the retimed weight on each edge nor the
register allocation are changed.

Suppose a feasible retiming r, a feasible register allocation ra, and a feasible
multiplexer assignment exist such that the cost is K. Then we can make a truth
assignment f in the same way as in the proof that SGRP-TP-D is NP-complete,
which is as follows: for each u € U, if w,((u,3), (,1)) = 1 in £G,,, then f(u) =
true, otherwise f(u) = false. At least one of the first, third, and fifth edges of each
part of the source ESFG £G . corresponding to a clause must have weight one, and
this can only happen if this edge is joined in the target SFG with an edge of the
corresponding part of the source ESFG £G, that has weight one. This means that
the corresponding literal in the truth assignment is true. (W

Again we can modify the construction of the proof such that each input terminal in
the source ESFG has exactly one incoming edge and each output terminal has at
least one outgoing edge.

Corollary 3.2. SGRP-D is NP-complete.
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Proof. SGRP-D is in NP since it can be checked in polynomial time that a solution
is feasible and that the cost is at most K. Since the special cases of SGRP-D,
SGRP-MP-D and SGRP-TP-D, have been proven to be NP-complete, SGRP-D is
NP-complete. O

Theorem 3.9. GRP-D is NP-complete.

Proof. The proof is analogous to both the proof that SGRP-MP-D is NP-complete
and the proof that SGRP-TP-D is NP-complete, which are based on a reduction
from 3SAT. Here, we limit ourselves to giving the main difference in the proof,
which is the following. Instead of constructing a speed constraint for each £G,, we
choose

T=15
dat(i) = for each i € I, and
drt(o) =1 for each o € 0, and
del((v,1),(»3)) =1,
del((v 1),(n,4)) =1,
del((v,2),(1,3)) =1 for each v € V and,
del((u,a), (v, b)) =~ for each u,v €V,
with u # v, (u,a) € O, and
(v,b) €1, or

withu=v,a=2, and b =4.
The delay on the path from the output of the first operation to the input of the last

operation in an SFG G, is equal to 6. Since the clock period is equal to 5, at least
one of the signal edges must get a retimed weight greater than zero. a

Although SGRP is NP-complete, the third special case, SGRP-RP, in which an
instance of SGRP is restricted to one source ESFG that is not timefolded or mul-
tiplexed, can be solved in polynomial time. We call this problem the synchronous
retiming problem (SRP). SRP can be reformulated as the dual of the network flow
problem [Ford & Fulkerson, 1962], which can be solved in polynomial time. We
reformulate SRP in two steps. In the first step it is reduced into an integer linear
programming (ILP) problem [Papadimitriou & Steiglitz, 1982] and in the second
step it is reduced into the network flow problem.

By writing the feasibility constraints as inequalities and expanding the cost we
show that SGRP can be written as an ILP problem.

Theorem 3.10. Given are an ESFG £G, a weight w, an operator allocation al,
and an operator assignment as. Then the synchronous retiming problem (SRP) is
equivalent to the following ILP problem. Find a retiming r, and a register allocation
ra, for which
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w(f) >0 for each f € F, and

ra(o) + ra(i) > w,(e) for each e = (0,i) € E, and

ra(t) >0 foreach s € T, and

wi(f) = w(f) + r(v) — r(u) for each f = (u,v) € F, and

wr(e) = w(e) + r(v) — r(u) for each e = ((u,a), (b)) € E,
and

that maximizes

— Y raft).

t€T
Proof.  Straightforward substitution of the constraints yield the above linear
(in)equalities. Furthermore, the cost function is linear. O

We cast this ILP problem into the dual of the network flow problem such that we
can select an efficient solution method. In the above ILP problem formulation,
constraints are present as inequalities containing up to four variables. The dual
of the network flow problem has constraints in which a difference between two
variables is at most a constant. To cast the ILP formulation of SRP into the dual of
the network flow problem, we need the help of a substitution function.

Definition 3.10 (substitution function). Given are an SFG G, a retiming r, and a
register allocation ra. The substitution function n: T — 7 is defined as follows:
n(i) = r(v) — ra(i) for each i = (v,b) € I, and
n(0) = r(u) + ra(o) for each 0 = (u,a) € O.
O

Theorem 3.11. Given are an ESFG £G, a weight w, an operator allocation al,
and an operator assignment as. Then the synchronous retiming problem (SRP) is
equivalent to the following dual of the network flow problem. Find a retiming r
and a substitution function #, for which

r(u) — r(v) < w(¥) for each f = (u,v) € F, and
n(i) — n(o) < —w(e) for each e = (0,i) € E, and
Hu) —n(o) <0 for each 0 = (u,a) € O, and
(i) —r(v) <0 for each i = (,b) € I, and

that maximizes

2, rMIOU)) = Z(EW)] + Xon(i) — Y, n(o).

vev i€l 0€0
Proof. Substituting the register allocation in the ILP formulation of Theorem 3.10
by the given combination of the retiming and the substitution function yields this
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ILP formulation, which is identified as the dual of the network flow problem. The
inequalities are transformed by a simple substitution while the cost is transformed
as follows:

— 2 ra(t) = -— Zra(i) — z ra(o)

teT i€l 0€0
= = > [»-n@l- 3 I[nlo)—r(u)]
i=(wb)el o=(u,a)€0
= 2 rWMIOEW)) —Z(E)I+ Y n() — X nlo
vev i€l o€0

O

The network flow problem is defined on a graph, which has nodes corresponding
to the retiming of operations of V and the substitution function of terminals of T.
The edges in this graph correspond to the inequalities in the problem formulation.

3.4 Overview of the complexity of PUDP and its subproblems

In the introductory chapter, Chapter 1, we discussed the multiplexing, timefolding,
and retiming techniques and introduced a generalized technique, which combines
them. In the previous chapter, Chapter 2, we expressed the processing unit design
problem in a formal way. By restricting the instances of PUDP we derived three
special cases of PUDP, namely the multiplexing problem, the timefolding problem,
and the retiming problem, each of which is related to a design technique discussed
in Chapter 1.
Table 3.1. Overview of the complexity of PUDP and its subproblems. When a
trivial solution can be found to a problem it is indicated by T, when a problem
can be solved in polynomial time it is indicated by P and when a problem is NP-
complete it is indicated by NPC.

Special Cases Subproblems’ complexity
N fi complexity || OALP | OASP | ODP GRP
TAP | SGRP
>1]| 21 NPC T NPC | NPC P NPC
>1 11 NPC T NPC | NPC P NPC
1 >1 NPC T NPC | NPC P NPC
1 1 P T T T P P

In this chapter we decomposed PUDP into four subproblems, i.e., the operator
allocation problem (OALP), the operator assignment problem (OASP), the opera-
tor duplication problem (ODP) and the the generalized retiming problem (GRP),
of which the latter is subdivided into the timing analysis problem (TAP) and the
synchronous generalized retiming problem (SGRP). We considered special cases
of the subproblems in our complexity analysis. The special cases of the subprob-



64 Complexity Analysis and Decomposition

lems are related to the special cases of PUDP. However, to match the special cases
of PUDP with the design techniques as discussed in Section 1.2, the data in the
instances are more restricted than is the case with the special cases of the subprob-
lems of PUDP. An overview of the complexity of PUDP and its subproblems as
given in Table 3.1.



4

Basic Solution Methods

In the previous chapter we introduced a decomposition of PUDP. We next have
to design algorithms that can handle the corresponding subproblems. These al-
gorithms are based on two basic solution methods, i.e., local search and network
flow, which we describe in this chapter. In Section 4.1 we discuss local search
algorithms and in Section 4.2 we discuss network flow algorithms.

4.1 Local search

For NP-hard subproblems of PUDP the cost function can be computed quickly.
This is one of the main reasons to choose a class of generally applicable algo-
rithms that we know as local search algorithms. These algorithms can easily be
implemented, are flexible in use, and proved to be quite successful in many ap-
plications [Yannakakis, 1990; Aarts & Lenstra, 1997]. Local search algorithms
are based on a simple concept, namely the change in cost by a stepwise explo-
ration of a solution space. The use of a local search algorithm presupposes the
definition of a solution set S, a cost function f : S —Q, and a neighborhood struc-
ture N : 8 — P(8), which defines for each solution a set of solutions that can be
reached in one step of the algorithm, where P(S) denotes the set of all subsets
of §. Furthermore, a start solution must be given. Solutions and their neighbor-
hoods can be represented graphically by a neighborhood graph, which is defined

65
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as follows.

Definition 4.1 (neighborhood graph). A neighborhood graph is a directed graph
with a vertex set W given by the solution set S and an edge set E, defined by
E={(su,8) EWXW|s,€N(s,)}. O

A run of a local search algorithm can be regarded as a walk on a neighborhood
graph, repeatedly from a solution to one of its neighbors, which we refer to as
transitions. We consider a transition to consist out of two parts: the generation
of a solution and the evaluation of its acceptance. Every neighborhood of a given
solution can be generated with a not necessarily equal probability. After a solution
is generated from the neighborhood it is accepted depending on its cost and on
the type of transition mechanism. Various local search algorithms exist that differ
predominantly in the way they organize the walk on the neighborhood graph. The
strongly-connectedness of a neighborhood graph plays an important role for local
search algorithms, since it enables them to walk from any solution to every other
solution.

Here we discuss the iterative improvement and simulated annealing algorithms,
which only differ in their acceptance part. Over the years many other kind of
local search algorithms have been presented, among which tabu search and genetic
algorithms are probably the best known ones. For more details on these algorithms
we refer to Aarts & Lenstra [1997].

4.1.1 Iterative improvement

The ITERATIVE_IMPROVEMENT algorithm uses a simple transition mechanism. It
randomly generates a neighboring solution and steps to this solution if it leads to
an improvement in the cost or if the cost remains unchanged. The algorithm termi-
nates when no improvement in cost has been achieved after a number of passes. A
description of the ITERATIVE_IMPROVEMENT algorithm in a pseudo programming
language is shown in Figure 4.1.

4.1.2 Simulated annealing

The ITERATIVE_IMPROVEMENT algorithm stops in the first local minimum that is
found. This is a drawback, because this may not be the solution with the lowest
cost. In order to be able to escape from a local minimum, an algorithm must
accept cost deteriorating transitions. An algorithm that accepts deteriorations, to
a limited extent, is the SIMULATED _ANNEALING algorithm [Aarts & Korst, 1989;
Van Laarhoven & Aarts, 1987; Aarts & Lenstra, 1997].

A description of the SIMULATED_ANNEALING algorithm is shown in Fig-
ure 4.2. In the SIMULATED_ANNEALING algorithm, the temperature is modelled
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procedure ITERATIVE_IMPROVEMENT
in asolution set S,
a cost function f: 8§ —Q,
a neighborhood structure N : § — P(S);
outa solution s;;
begin INITIALIZE(Sgqr1);
Si=Sstart>
repeat
GENERATE(sj from N (s;));
if f(s;) < f(s;) then s;=s;
else skip;
until some stop criterion;
end;

Figure 4.1. The ITERATIVE_IMPROVEMENT algorithm.

by a control parameter c;. Generated solutions with a cost deterioration are ac-
cepted with a high probability for large values of ¢; and with low probability for
small values of c¢. The algorithm accepts a solution if it leads to an improvement
in the cost or if the cost remains unchanged.

A run of the SIMULATED_ANNEALING algorithm is controlled by a cooling
schedule that determines the values of a number of parameters in the algorithm,
such as the control parameter ¢, and the length L; [Aarts & Korst, 1989; Van
Laarhoven & Aarts, 1987]. The cooling schedule also accounts for the stop crite-
rion. We use the adaptive cooling schedule presented by Aarts, De Bont, Habers
& Van Laarhoven [1985]. This schedule sets the chain length L; equal to the size
of the neighbourhood for each value of k. In the beginning of the walk on a neigh-
bourhood graph, large deteriorations in the cost are accepted. As the walk pro-
ceeds, fewer deteriorations are accepted and they are of smaller size. In the end
only solutions are accepted that improve the cost. The algorithm stops if no im-
provement is obtained for a given number of subsequent iterations in k£ and gives
as a result the best visited solution.

It has been proved that the SIMULATED_ANNEALING algorithm finds an op-
timal solution if an infinitely large amount of run time were available [Aarts &
Korst, 1989; Van Laarhoven & Aarts, 1987]. In practice, one can only resort to
finite time implementations resulting in approximations of optimal solutions, as
shown in Figure 4.2.
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procedure SIMULATED _ANNEALING
in a solution set S,
a cost function f: S = Q,
a neighborhood structure N : § — P(S);
outa solution s;;
begin INITIALIZE(Sstart; €0y Lo);
k=0;
Si=Sstart;
repeat
for r=1to L;
begin GENERATE(s ; from N (s;));
if f(s;) < f(s;) or exp(f(s")%kf(”)) > random[0,1) then s;=s j;
else skip;
end;
k=k+1;
CALCULATE_LENGTH(Lyg);
CALCULATE_CONTROL(cy);
until some stop criterion;
end;

Figure 4.2. The SIMULATED_ANNEALING algorithm.

4.2 Network flow

Some of the subproblems of PUDP that can be solved in polynomial time are re-
duced to the network flow problem in Chapter 3. Many special cases of the network
flow problem exist among which the well known shortest path and maximum-flow
problem. In this section we give a condensed overview of network flow problems
and their solution methods. For a more elaborate overview we refer to an excellent
overview given by Ahuja, Magnanti & Orlin [1989]. In Section 4.2.1 we introduce
a formal description of a network and the network flow problem. Special cases of
this problem are treated in Section 4.2.2 to Section 4.2.4. In Section 4.2.5 we dis-
cuss the maximum-weight bipartite matching problem and show how it is mapped
onto the dual of the minimum-cost network flow problem.

4.2.1 Network flow problems
A network is defined as follows.
Definition 4.2 (network). A network is a directed graph G = (V, E) with the fol-
lowing labels.
c:E—- 1R the cost of one unit flow over an edge, and
u:E—=1R the flow capacity of an edge, and
b: V1R the flow supply to a node in the network.



4.2 Network flow 69

O

A node in a network with a positive supply is called a source of the network. A
node in a network with a negative supply, or demand, is called a sink of the network.
Furthermore, the number of nodes in V is denoted by n, and the number of edges
in E by m.

The (minimum-cost) network flow problem is formulated as follows.

Definition 4.3 (network flow problem (NFP)). Given are a network G = (V, E),
a cost function ¢, a capacity u, and a supply b. The problem is to find a flow
f(e) € R for each e € E, for which

Zu:e:(v,u)EEf(e) - Zu:e=(u,v)€E f(e) = b(V) foreach v €V, and
0< fle) L ule) for each e € E, and
that minimizes

2. c(e) f(e)-

e€E
O

From its definition it follows that the network flow problem is a special case of
the linear programming (LP) problem because linear expressions in the decision
variables are used to formulate the cost function and the constraints. It is charac-
teristic for LP problems that a dual problem can be formulated [Papadimitriou &
Steiglitz, 1982]. The dual variables for the network flow problem are defined as
the potentials of the nodes. A difference in potential allows the flow of mass from
one node to another. The dual network flow problem is formulated as follows.

Definition 4.4 (dual network flow problem (NFPD)). Given are a network G =
(V,E), a cost function c, a capacity function u, and a supply function b. The prob-
lem is to find potentials p(v) € IR for each v € V and slack variables d(e) € IR for
each e € E, for which
p(u) — p(v) —d(e) < c(e) for each e = (u,v) € E, and
d(e) >0 for each e € E, and
that maximizes

> b()p(v) = 3, u(e)d(e).

veV e€EE
O

The decision variables d(e) are absent for an uncapacitated network flow problem.
Furthermore, if a problem instance has only integer data, then a solution, if it exists,
is integer.
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Optimal flows correspond with optimal potentials if the following complemen-
tary slackness conditions are satisfied:

fle) > 0= p(u) — p(v) — d(e) = c(e)
d(e) > 0= f(e) = u(e).

These conditions can be transformed into the following conditions by using the
reduced cost, which is defined for each edge e = (u,v) € E as &(e) = c(e) — p(u) +
p(v), and by using the feasibility condition of the dual network flow problem,

ée) > 0= f(e) =0,
&(e) =0=0< f(e) < u(e),and
é(e) < 0= f(e) = u(e).

A primal-dual pair of solutions is optimal if the complementary slackness condi-
tions hold and both the primal and dual solutions are feasible.

Some network flow algorithms operate on a so-called residual network, which
is constructed from the normal network by adding for each edge with a flow greater
than zero a reversing edge and by removing the edge if the flow is maximum. The
capacity of the reversing edge is equal to the negative flow and the capacity of the
normal edge becomes the maximum minus the flow. Note that the normal edge
disappears when its flow is maximum.

Before discussing solution methods for the minimum-cost network flow prob-
lem we first discuss special cases of it and dedicated solution methods for these
cases.

4.2.2 Shortest path algorithms

If an instance of the network flow problem is such that b(s) = |V| — 1 for some node
s €V, b(v) = —1 for all other nodes v € V, and u(e) = |V| for each ¢ € E, then
the solution contains a shortest path from the start node s to all other nodes, with
the cost of an edge representing the distance between the two incident nodes. In
the solution to the minimum-cost network-flow problem, a flow of one unit is sent
over the shortest path from s to every other node. Although we can use solution
algorithms for the network flow problem, special algorithms are developed for the
shortest path problem.

Label-setting algorithms

The first class of algorithms we discuss is called label-setting algorithms. During
the execution of the algorithm, a label pertaining to a node is set that represents
the shortest distance from the start node to that node. This class of algorithms is
applicable for network flow problems having non-negative costs of edges. A well
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known and widely applicable example of a label-setting algorithm was introduced
by Dijkstra [1959]; see Figure 4.3.

During the execution of the DIJKSTRA’S algorithm the nodes are partitioned
into two sets: permanently labeled nodes and temporarily labeled nodes. The algo-
rithm starts with all nodes belonging to the temporarily labeled set and labels them
infinite, except for the start node which has a label equal to zero. At every step
of the algorithm a node with the smallest label from the temporarily labeled set is
selected and moved to the permanently labeled set. An adjacent node succeeding
the selected one gets its label updated if a shortest path to the adjacent node goes
along the selected one. Together with a label update, an index to the node is set
to the selected node, which is then preceding the node on the shortest path. The
algorithm ends when no temporarily labeled nodes are left.

procedure DIJKSTRA’S
in anetwork G = (V,E) with labels c,
astartnode s€ V;
outpotentials p(v) representing for each v € V the shortest distance
from the start node,
predecessors pred(v) indicating for each v € V the shortest path
back to the start node;
begin P = @;
T=V;
p(s) =0;
p(j) = oo foreach jE€ V\s;
pred(s) = 0;
while P £V
begin select i € T with p(i) = minjer p(j);
P=PU{i};
T=T\{i}
for each (i, j)) € E
if p(j) > p(i) + c((i, j)) then
begin p(j) = p(i) +c((i, j));
pred(j) = i;
end;
end;
end;

Figure 4.3. The DIJKSTRA’S algorithm.

The time spent by the algorithm can be split into two parts: the updating of
labels and the selection of nodes. In one iteration, the algorithm requires O(n) time
to select a best temporarily-labeled node by linearly traversing the nodes. This can
be improved to O(log(n)) when a more advanced algorithm is used, in which the
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temporarily-labeled nodes are kept sorted. The algorithm requires O(m) time for
updating temporary labels. Therefore the algorithm runs in total in O(nlog(n) + m)
time.

When the network is acyclic, the nodes can be ordered in topological order
in O(m) time. Compared with the DIJKSTRA’S algorithm, this algorithm has the
advantage that the node selection can be done much faster because the ordering
of the temporarily labeled nodes can now remain fixed during the execution of the
algorithm. Then, the algorithm requires O(n+ m) time.

Label-correcting algorithms

The second class of algorithms is called label-correcting algorithms. The concept
on which this class of algorithms is based was introduced by Bellman [1958] and
Ford & Fulkerson [1962]. Only at the end of the execution of the algorithm is the
label pertaining to each node set, representing the shortest distance from the start
node to that node. Although the labels are set during the algorithm, they can be
corrected several times. These algorithms can handle networks with negative costs.
However, if a network contains negative cycles, many nodes cannot be part of a
shortest path. Therefore, many label-correcting algorithms have built-in means to
detect the existence of negative cycles. An example is the modified label-correcting
algorithm, which we discuss here in more detail; see Figure 4.4.

The MODIFIED_LABEL_CORRECTING algorithm starts with all nodes labeled
infinite except for the start node, which is labeled zero. During the execution of
the algorithm a list is kept of the nodes for which the labels have been updated
but hose of adjacent nodes ahve not. At the start of the algorithm the list contains
the start node only. In each iteration of the algorithm a node is fetched and re-
moved from the list. All the adjacent nodes succeeding the fetched one get their
label updated if the shortest path goes along the fetched node. The updated nodes
are added to the list and treated in succeeding iterations of the algorithm. The
MODIFIED_LABEL_CORRECTING algorithm runs in O(nm) time.

To detect negative cycles, we also keep track of the number of times that each
node’s label is updated. If this number exceeds nm, then a negative weight cycle
must be present.

A problem related to the shortest path problem is the longest path problem. It
can easily be mapped onto the shortest path problem by negating the costs in the
network. Then it is very probable that the network contains edges with negative
costs and, consequently, a label-correcting algorithm is to be used.

4.2.3 Maximum-flow algorithms

The maximum-flow problem is to send the maximum possible flow in a network
containing edges with equal costs from a source node to a sink node. If an instance
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procedure MODIFIED_LABEL_CORRECTING
in anetwork G = (V, E) with labels c and
astartnode s € V;
outpotentials p(v) representing for each v € V the shortest distance
from the start node, and
predecessors pred(v) indicating for each v € V the shortest path
back to the start node;
begin p(s) = 0;
p(j) = oo for each j € V\ {s};
pred(s) = 0;
L={s};
while L £ @
begin get firsti € L;
L=L\{i}
for each (i, j) € E
if p(j) > p(i) + c((i, j)) then

begin
p(J) = p(d)+ (i 1));
pred(j) =i
L=LU{j};
end;
end;
end;

Figure 4.4. The MODIFIED_LABEL_CORRECTING algorithm without negative
weight cycle detection.
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of the network flow problem is such that an edge from the sink to the source is
present with an infinite capacity and a negative cost, then the solution maximizes
the flow through the edge and consequently through the network. Furthermore, the
nodes have a supply equal to zero.

We discuss the MAXIMUM_FLOW algorithm that operates on a residual net-
work [Ford & Fulkerson, 1962]; see Figure 4.5. A straightforward algorithm to
achieve maximum flow is to send flow along a directed path from the source to the
sink in the residual network. The flow is added to the flow that was already flowing
and in the case of a reversing edge the flow is decreased. As a consequence of the
change in flow, the residual network is then updated. The algorithm repeats the
augmentation until no path from the source to the sink can be found anymore.

For each flow augmentation we apply a so-called labeling algorithm, which
starts at the only labeled node, the source. It performs a search from a labeled
node to the sink node by searching for an adjacent unlabeled node to which it can
send more flow via an edge. If such an unlabeled node is found it is labeled and
the search is continued from that node. Otherwise the algorithm selects a labeled
node from which not yet all adjacent nodes were searched. In this way a tree of
labeled nodes is constructed. If the sink gets labeled, then the flow is increased, all
labels are erased and the search is started again at the source. If the sink cannot be
reached by the labeling process, then the maximum flow has been reached. During
the labeling process, the predecessor of each labeled node is stored such that we
can easily trace back the path from the sink to the source. The flow augmentation
is determined by the smallest capacity of edges on the path from the source to the
sink in the residual network.

At the end of the execution of the MAXIMUM_FLOW algorithm a minimum cut
set of edges is derived, which is a bottleneck for the flow from source to sink. All
the labeled nodes are in front of the minimum cut set and all the unlabeled ones
are behind it. Each edge from a labeled node to an unlabeled node has a maximum
flow, while each edge in the other direction has zero flow.

4.2.4 Minimum-cost flow algorithms

Here we discuss the network flow problem for uncapacitated networks only. In
this case the variable d(e) is excluded from the dual problem formulation. We
discuss the minimum-cost maximum-flow algorithm and a more general applicable
algorithm, the out-of-kilter algorithm [Ford & Fulkerson, 1962]. A reweighting al-
gorithm is discussed that transforms an arbitrary network into a network with non-
negative edge costs, because that is presupposed by the minimum-cost maximum-
flow algorithm [Edmonds & Karp, 1972].

We construct a new network from the network given in an instance of the net-
work flow problem by adding two additional nodes to the network to model the
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procedure MAXIMUM_FLOW

in a (residual) network G = (V, E) with labels c, u, and
a source and a sink node;

outflows f(e) for each ¢ € E;

begin f((i, j)) = 0 for each (i, j) € E;

repeat
pred(i) = 0 and unlabel i for each i € V;
L= {source},

while L # @ and sink is unlabeled
begin get firsti € L;
L=L\{i};
for each (i, /) € E
if j is unlabeled then
begin L= LU {j};
label j;
pred(j) =i
end;
end;
increase flow from source to sink on path indicated by pred labels;
update residual network;
until there exists no path from source to sink in residual network;
end;

Figure 4.5. The MAXIMUM_FLOW algorithm.
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supply and demand; see Figure 4.6. A source node is added to the network and
from this source node an edge is connected to each node with a positive supply.
The capacity of the edge is made equal to the specified supply and its cost is made
equal to zero. Furthermore, a sink node is added and from each node with a nega-
tive supply an edge is connected to the sink. The capacity of the edge is made equal
to the specified demand and its cost is made equal to zero. Nodes with zero supply
do not need to be connected to the sink or the source. Clearly, a feasible flow in
the original network corresponds with a maximum flow on the newly added edges.
Therefore the algorithm that achieves this is called the minimum-cost maximum-
flow algorithm. To force a maximum flow through the newly created network from
source to sink, the network is extended with a return edge from sink to source. In
this way the network becomes a closed circuit. The return edge is given an enor-
mous negative cost to make it act like a pump. As long as the flow through the
network is not maximal, the cost can be decreased by increasing the flow over the
return edge. When this is done, the flow through the subnetwork consisting of the
original edges and nodes will have minimal cost.

Minimum-cost maximum-flow algorithm

The MINIMUM_COST_MAXIMUM_FLOW algorithm solves the primal and dual net-
work flow problem simultaneously. As a start solution we make the potentials
equal to zero and the flow equal to zero. Furthermore, we restrict the cost on the
edges in the original network to be non-negative. In other words, the dual start
solution corresponding to the nodes in the original network must be feasible. Con-
sequently, all the complementary slackness conditions are satisfied except for the
one corresponding to the return edge. In order to satisfy its complementary slack-
ness conditions, the flow is increased and the potentials are updated in alternating
order.

The flow is increased such that complementary slackness conditions corre-
sponding to edges other than the return edge do not become violated. To this end,
flow may only increase or decrease on edges with é(e) = 0, which are called ad-
missable. We use the MAXIMUM_FLOW algorithm, modified for admissable edges,
to determine a maximum flow through these edges. Then, a minimum cut divides
the nodes into two sets: one set with labeled nodes and the other with unlabeled
nodes. Without violating the complementary slackness conditions of any edge ex-
cept for the return edge, we can increase the potential of the labeled nodes, includ-
ing the source, by one. Now edges in the minimum cut set that had &(e) = 1 get
&(e) = 0, and thus become admissable. In that case their flow may become positive
in a following step of the algorithm without violating the complementary slackness
condition of an edge.

The increase in flow and the update of potentials continues until only the source
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Figure 4.6. An example of an original network (a) and its extended version (b)
for the application of the MINIMUM_COST-MAXIMUM_FLOW algorithm. For each
edge in the network the capacity and the cost of an edge are shown and for the
nodes in the original network of (a) the supply is shown. The network corresponds
with an instance of SRP of which the SFG is shown in Figure 1.1a with one speed
constraint present. In (b) the names of the operations and terminals to which
respectively the retiming and register allocations belong are shown. Furthermore,
SI denotes the sink and SO denotes the source.
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node can be reached for an increase in flow. At this point an optimal solution of an
instance of the network flow problem has been found.

In every step of the algorithm we have a dual feasible solution available for
the nodes in the original network. The dual cost decreases with every update of
the potentials. The algorithm iteratively improves the dual solution and only visits
dual feasible solutions of the nodes in the original network.

Out-of-kilter algorithm

The MINIMUM_COST_MAXIMUM_FLOW algorithm is a special case of the
OUT_OF KILTER algorithm. This algorithm is more generally applicable since it
requires neither a feasible start solution nor an uncapacitated original network.
Furthermore, it does not distinghuish a sink or a source from other nodes. How-
ever, it maintains the mass balance by requiring that the amount of mass flowing
into a node added to its supply be equal to the amount of mass flowing out of the
node.

An edge is called out-of-kilter if its complementary slackness conditions are
violated. To repair these conditions, the out-of-kilter algorithm iteratively satisfies
the conditions for one edge in one step of the algorithm; see Figure 4.7. In one
step, the MINIMUM_COST_-MAXIMUM_FLOW algorithm is applied with the nodes
at both ends of the out-of-kilter edge acting as source and sink nodes. The flow
on the out-of-kilter edge must be either increased or decreased, depending on the
relation between flow and reduced cost on the edge. If the flow has to be decreased,
the originating node acts as the sink, otherwise it acts as the source.

procedure OUT_OF_KILTER
in anetwork G=(V, E) with labels ¢, u,
a source and a sink node;
outflows f(e) foreach e € E;
begin while there exists an e = (i, j) € E that is out-of-kilter
begin assign / and j as source and sink,
depending on relation between flow and reduced cost;
while e is out-of-kilter
begin
force maximum flow from source to sink on admissable edges;
increase potentials of labeled nodes such that
no edge in the cut set becomes out-of-kilter;
end;
end;
end;

Figure 4.7. The OUT_OF_KILTER algorithm.
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Ideally, the OUT_OF_KILTER algorithm can be applied to incrementally com-
pute solutions. When the cost of an edge is changed in a network, or when
an edge is added to a network of which the optimal solution was known, the
OUT_OF KILTER algorithm can be used to quickly compute the optimal solution
of the new network.

Reweighting
The potentials p(v) in an instance of the network flow problem express changes
with respect to an initial situation. For instance, were an optimal solution to be
offered to a network flow algorithm, than the decision variables could all be zero.
We use this property to apply the MINIMUM _COST-MAXIMUM_FLOW algorithm to
networks with negative edge costs. First we determine potentials for the nodes in a
network G such that

p(u) — p(v) < c(e) for each e = (u,v) € E.
The shortest path algorithm MODIFIED_LABEL_CORRECTING for networks with
negative distances (costs) can be used for this purpose. As a consequence, the
reduced network gets edges with positive reduced costs.

In the second step we use the resulting reduced network as input to the MINI-
MUM_COST_MAXIMUM_FLOW algorithm. To compute the final potential of a node,
we must add the potential computed in the second step to the potential computed
in the first step.

4.2.5 Maximum-weight bipartite matching problem

A matching of a bipartite graph is a subset of edges such that each node from
either set of nodes is incident to at most one edge of the matching. If a weight is
associated with each edge, a matching has a maximum weight if the sum of the
weights of the edges of the matching is maximal. The maximum-weight bipartite
matching problem is defined as follows [Kuhn, 1955].

Definition 4.5 (maximum-weight bipartite matching problem (MWBMP)).
Given are a bipartite graph G = (V1, V5, E) and a weight function ¢. The problem
is to find variables x(e) € IN for each e € E, for which

Zu:e:{u,v}eE x(e) <1 for each u € V;, and
Ye={upeex(e) <1 for each v € V;, and
x(e) >0 for each e € E, and

that maximizes

Y c(e)x(e).

e€EE
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Although MWBMP is also known as the assignment problem, we do not use this
latter name, to avoid confusion with the assignment problem defined in Chapter 3.

Special algorithms are available to solve instances of MWBMP in polynomial
time [Kuhn, 1955]. Here, we use the dual problem formulation to reduce it to the
network flow problem.

Definition 4.6 (dual maximum-weight bipartite matching problem).
(MWBMPD).
Given are a bipartite graph G = (V},V,, E) and a weight function c. The problem
is to find variables p(v) € Z for each v € V; UV, for which,
p(u) + p(v) > c(e) for each e = {u,v} € E, and
p(v) >0 for each v € V; UV;, and
that minimizes

Y p().

veViUV,
O

To reduce MWBMPD to NFPD we extend the graph with an offset node w and
introduce a substitution function 7 : Vi UV, U {w} that is defined as follows:

t(u) = t(w) — p(u) for each u € Vi, and
t(v) =t(w) + p(v) for each v € V.

Now we can reformulate the constraints of MWBMPD into
t(u) —t(v) < —c(e) for each e = (u,v) € E, and
t(u) —t(w) <0 for each u € V1, and
tw)—t(v) <0 for each v € V5.

Furthermore, we can reformulate the cost of MWBMPD into

2, 1) = 3 )+ (Vi = [Vale(w).

VEV, ueVy
After the above reformulation, MWBMPD has become equivalent to the dual of a
network flow problem. The set of nodes is V; UV, U {w}. The set of edges is E
extended with edges corresponding to the constraints involving the potential of the
offset node. The edges have become directed from the node in V; to the node in
V, to which it is incident. Consequently, the maximum-weight bipartite matching
problem can be solved in polynomial time. To solve one of its instances, we can
use, for example, the MINIMUM_COST_-MAXIMUM _FLOW algorithm.
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Operator Assignment

From Chapter 3 we recall that the operator assignment problem (OASP) can be
formulated as follows.

Definition 5.1 (operator assignment problem (OASP)). Given are a union G of
source SFGs G;, with folding factors f;, i=1,...,N, atype set T, a type function £,
and a minimal operator allocation al. The problem is to find a PU G, constructed
by an operator assignment as and a multiplexer allocation ma, for which

@) £(v) =t as(v)) for each v € V, and
@) [{ve Vias(v) =V} < f; for each v € V', and
foreachi=1,...,N, and
(xii) ((as(v),a),(as(u),b)) € E' for each ((v,a), (u,b)) € E,
and

that minimizes

Y, ma(i).

el
O
The NP-hardness of OASP, as stated by Theorem 3.4, and the large size of practical
instances force us to search for effective and efficient approximation algorithms.
Here we present an approach based on local search algorithms, namely the ITER-
ATIVE_IMPROVEMENT and SIMULATED_ANNEALING algorithms as discussed in
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Section 4.1. This approach has been reported before by Van der Werf, Peek, Aarts,
Van Meerbergen, Lippens & Verhaegh [1992].

The organization of this chapter is as follows. In Section 5.1 a straightforward
application of local search is discussed and some results are presented. In Sec-
tion 5.2, we show that the run times for large source SFGs are unacceptable when
the local search algorithms are applied in a straightforward fashion, and that the
performance can be substantially improved by reducing the neighborhood struc-
tures based on detailed knowledge of the connectivity in PUs.

5.1 Local search

5.1.1 Solution space, cost, and neighborhood structure

For OASP, the solution space S is defined as the set of all PUs obtained by two
functions, i.e., an operator assignment and a multiplexer allocation. However,
when an operator assignment is given, an optimal multiplexer allocation can be
found in a trivial way following directly from the definition of the multiplexer al-
location, Definition 2.18.

A neighborhood structure can be chosen according to a two-exchange mecha-
nism. Examples of the concept of exchanges can be found in [Kernighan & Lin,
1970; Aarts & Korst, 1989; Van Laarhoven & Aarts, 1987; Yannakakis, 1990]. The
two-exchange mechanism that we use is called swap and is defined as follows.

Definition 5.2 (swap-neighborhood structure). Given are a union G of source
SFGs §; with folding factors f;, i=1,...,N, a type set T, a type function £, and a
minimal operator allocation al. The swap-neighborhood structure ( swap) 18 given
as follows. The neighborhood N, swap(as) of an operator assignment as is the set
of all operator assignments as® for which there is an i = 1,...,N and one pair of
operations u,v € V; with £(u) = £(v), such that

® as®(u) = as(v) and as®(v) = as(u)  and
o as*(w) = as(w) foreach we V\ {u,v}.
|

This means that two operations of one source SFG may exchange their operator as-
signments, while for all the other operations the assignment remains the same. The
swap-neighborhood structure is defined such that Constraints (ii) remain satisfied.
If the start solution satisfies Constraints (iii), it remains satisfied when the above
two-exchanges are applied.

The definition of the swap-neighborhood structure implies that some solutions
in the neighborhood graph cannot be reached from all of the other solutions in the
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graph. This occurs when different source SFGs have different numbers of oper-
ations of the same type. In this situation, there can be an operator to which no
operation of a certain source SFG is assigned. Then a sequence of two-exchanges
cannot get an operation from that source SFG to be assigned to that operator. To
ensure strongly-connectedness of the neighborhood graph, we add the following
neighborhood, which is based on a one-exchange mechanism called switch.

Definition 5.3 (switch-neighborhood structure). Given are a union G of source
SFGs G; with folding factors f;, i=1,...,N, a type set T, a type function £, and
a minimal operator allocation al. The switch-neighborhood structure (Nwitch) 1S
given as follows. The neighborhood Ngyiteh(as) of an operator assignment as is the
set of all operator assignments as® for which there is an i = 1,...,N, an operation
v € V;, and an operator Vv € V' with £(v') = £(v) and |{u € Vi|as(u) =V'}| < f;, such
that

e as*(v) =V and
o as®(w) = as(w) for each w € V'\ {v}.
(|

Now we can combine the swap- and the switch-neighborhood structures into one
neighborhood structure N given by N (as) = Nwap(as) U Ngyich(as). This neigh-
borhood structure is strongly connected.

An example of two source SFGs and a corresponding PU on which they are
mapped is shown in Figure 5.1. The solution on the left in this example shows the
existence of a local minimum that is not a global minimum, since every possible
two-exchange for the left solution results in a solution with a larger cost. Note
that for this example one-exchanges are not applicable since the two source SFGs
have the same number of operations of each type. For example, a two-exchange
of operations al and a6 in G, in the solution on the left results in the PU that is
shown in Figure 5.1d. The cost has increased with 2 multiplexers in the PU. Since
the source SFGs are identical in this trivial example, a global optimal solution has
no multiplexers.

To start a walk in the neighborhood graph, a start solution has to be generated.
This solution can be computed by a straightforward assignment of operations to
operators of the same type such that it satisfies Constraints (ii) and (iii).

5.1.2 Implementation

We implemented the generation of a neighboring solution from the union of Nyap
and Ngywien in the following way. First, the sets of operations of each source
SFG are augmented with a number of dummy operations, such that every opera-
tor has the maximum number of operations of each source SFG assigned to it, i.e.,
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Figure 5.1. An example of two source SFGs, G (a) and G (b), and a PU, G’ (¢),
on which they are mapped. In (a) and (b) the source SFGs are shown twice, such
that operations in G; and G; are placed above the operator in the PU to which they
are assigned. For example, Al = as(al) = as(a6) in the solution on the left. A
two-exchange of operations a4 and a6 in G, results in the PU of (d).
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{as(v;) =V|v; € V;}| = f; for each v/ € V' and each i = 1,...,N. Like all oper-
ations, each dummy operation belongs to a certain operation type corresponding
to the operator to which it is assigned. Dummy operations have no connections
and consequently do not influence the cost of solutions. Second, we apply two-
exchanges only, where selected operations can be dummy operations. The genera-
tion of a neighboring solution starts with the random selection of an operation from
the union SFG. Next, another operation that is of the same type and belongs to the
same source SFG is randomly selected.

The computation of the cost function of a proposed solution is performed by
actually executing the two-exchange. If the new solution is rejected, the two-
exchange is performed again to return to the current solution.

In the implementation we deviate slightly from the model presented in Chap-
ter 2, by replacing edges with identical sources and destinations in the target SFG
by one single edge. Constraints (iv) are used to construct the set of edges E' in a
target SFG. Since a minimal operator allocation is given, each operator has at least
one operation assigned to it. Furthermore, we assume that each input terminal has
at least one edge incident to it, whereas an output terminal can be unconnected.
Consequently, there is a linear dependency between the number of two-input mul-
tiplexers and the number of edges in E', i.e.,

Y ma(i') = 3 ({d €0\ /) eEH-1)"

fer ier
= Y ({d€0|(d,i)eE}~-1)
el
= [E]-|r].

To compute the cost, we use the linear relation between the number of two-
input multiplexers and the number of edges in E’. We do not need to compute
the cost of every visited solution from scratch, since only the number of edges
connected to the involved operators may change. So, the difference in cost is given
by

{((«,a),(v/,b)) €E'| as' () = u’ oras'(v) = V}|—
{((u*,a),(v*,0)) € E* | as*(u) = u® or as®(v) ="},

where as® is a neighbour of as by exchanging the operator assignment of opera-
tions u and v, and E*® is the set of edges in the target SFG determined by as®. Using
consecutive cost differences, the cost can be efficiently computed in an incremental
way. Using the above we implemented two local search algorithms, namely SIMU-
LATED_ANNEALING and ITERATIVE_IMPROVEMENT. Note that these local search
algorithms require only the difference in cost.
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5.1.3 Experimental results

As an example we use instance IOASP1 of OASP, which is defined as follows.
Given are two source SFGs of a Discrete Cosine Transform (DCT) G and an
Inverse Discrete Cosine Transform (IDCT) G, [Rao & Yip, 1990]; see also Fig-
ure 5.2. The two functions are used in a digital VCR application in which ei-
ther the DCT is performed during recording or the IDCT is performed during play
back [Borgers, Heijnemans, De Niet & De With, 1988].

Both SFGs contain the following operations: 16 multiplications
(M1,...,M16), 32 additions/subtractions (Al,...,A32), 8 inputs (/1,...,18),
and 8 outputs (O1,...,08). The constant inputs of the multipliers are internally
connected. The addition and subtraction operations are considered to be of the
same type. The SFGs differ in connectivity between the operations, although
the number of edges is equal, i.e., |Ej| = |E,| = 88. Furthermore, the minimal
allocation of operators is given, consisting of 16 multipliers, 32 adders/subtracters,
8 inputs, and 8 outputs.

Table 5.1. Results of local search for the mapping of a DCT and an IDCT onto a
PU. Average values were obtained for 100 runs.

cost (multiplexers) average CPU ||
local search variant best | average | worst time (sec.)
SIMULATED_ANNEALING 43 46 52 159
ITERATIVEIMPROVEMENT 44 48 55 100

Results of the SIMULATED_ANNEALING and the ITERATIVE_IMPROVEMENT
algorithms for this example are listed in Table 5.1. Average values were obtained
for 100 runs to average out statistical fluctuations of both algorithms. The best
solution obtained requires 43 multiplexers. This is about half the number of multi-
plexers required in the case of the average of arbitrary feasible solutions, which is
84 multiplexers. From these results we conclude that local search gives good solu-
tions. Moreover, we see that the SIMULATED_ANNEALING algorithm has a slightly
better average performance than the ITERATIVE_IMPROVEMENT algorithm. The
run times of both algorithms for this example are within acceptable limits.

5.2 Large SFGs

In this section we discuss the application of local search with the straightforward
neighborhood structures as defined in Section 5.1 to map large source SFGs onto
a PU. First some experimental results are presented, from which we conclude that
too much run time is needed and that solutions are of low quality. We present an
analysis of the causes of these bad results, which led us to use a reduced neighbor-
hood structure.



5.2 Large SFGs

Figure 5.2. The source SFGs G| and G of a DCT (a) and an IDCT (b), respec-
tively. The weights of all signal edges are equal to zero.
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5.2.1 First experimental results

We consider the following instance [OASP2 of OASP. Given are two large, identi-
cal SFGs G5 of multiplications, that are 12x12 bit, modified Booth, and modelled
at the bit level [Booth & Booth, 1965]. The operations consist of full adders, ands,
and other logic gates. Also given is the minimal number of required operators.
This instance has been selected because we know the cost of an optimal solution,
namely that the target SFG has the same number of edges as each of the source
SFGs, i.e., |E'| = |E3| = 1526, and no multiplexers are allocated. We applied the
SIMULATED_ANNEALING algorithm, which ran for about three days (CPU time)
on a workstation and resulted in a solution with a cost of about 500 multiplexers.
The cost as a function of time, measured as the number of two-exchanges executed,
is shown in Figure 5.3 as curve (a).
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Figure 5.3. Cost as a function of time for the straightforward (a) and the re-
duced neighborhood structures (b) during a run of the SIMULATED _ANNEALING
algorithm for problem instance IOASP2.

We conclude that the run time of the program as well as the quality of the
solution are unacceptable for this large instance of OASP.

5.2.2 Analysis

We first analyze the acceptance ratio for a constant value of ¢, which is defined
as the number of accepted solutions divided by the number of generated solutions.
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The latter is equal to the chain length L;. For the experiment of Section 5.2.1,
which uses problem instance IOASP2, the acceptance ratio as a function of the
cost is shown in Figure 5.4 as curve (a).
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Figure 5.4. Acceptance ratio as a function of the cost for the straightfor-
ward (a) and the reduced neighborhood structures (b) during a run of SIMU-
LATED_ANNEALING algorithm for problem instance IOASP2.

For solutions with about 500 multiplexers, which is much larger than the opti-
mal number of zero, the acceptance ratio is about 0.002, which is very low. There-
fore only a few solutions are accepted and much run time is wasted by consecu-
tively executing two identical two-exchanges as a result of a rejected solution.

5.2.3 Neighborhood reductions

We reduce the neighborhoods N, swap and Niwiteh by excluding a number of transi-
tions of which we know in advance that they cannot result in a cost improvement.
A decrease of the number of edges can only be achieved by stepping to a neighbor-
ing solution that assigns yet another edge in E to an already existing edge in £’. In
case of a two-exchange, the number of edges can only decrease by one of the three
types of two-exchanges shown in Figure 5.5.

We reduce the neighborhoods to solutions that may lead to a cost improvement
by using knowledge about the edge configuration in the target SFG. To this end,
the three examples in Figure 5.5 are formalized and a reduced swap-neighborhood
structure is defined as follows.
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Figure 5.5. The three types, (a), (b), and (c), of two-exchanges of operations
u and v in a source SFG that may result in better solutions. At the left, the so-
lutions before the two-exchange, and at the right, the better solutions after the
two-exchange. Operations that are assigned to the same operator are aligned ver-
tically. Only relevant operations, signal edges, and terminals of the source SFGs
and PUs are shown.
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Definition 5.4 (reduced swap-neighborhood structure). Given are a union G of
source SFGs G; with folding factors f;, i=1,...,N, atype set T, a type function ¢,
and a minimal operator allocation al. The reduced swap-neighborhood structure
(Nreduced swap) 18 given as follows. The neighborhood Neduced swap(as) of an oper-
ator assignment as is the set of all operator assignments as® for which there is an
i=1,...,N and one pair of operations u,v € V; with £(u) = £(v), and
(a) there exist (w,b)el',ae O (u),
such that ((as(u),a),(w',b)) € E' and
((as(v),a),(W,b)) EE', or
!

)

)
(b) there exist (W, a) €0, beZ(l(u))),

)

)

such that ((W,a),(as(u),b)) € E' and
((W,a),(as(v),b)) € E', or
(c) there exist beI(l(u)),acO(v))
such that ((as(v),a), (as(u),b)) € E' and
((as(u), ), (as(v),b)) € E',
such that
e as*(u) = as(v) and as®*(v) = as(u)  and
o as*(w) = as(w) for each w € V\ {u, v}.

O

Note that the extra constraints (a), (b), and (c¢) for the operations of which the
assignment is exchanged correspond with the three types shown in Figure 5.5aq,
5.5b, and 5.5¢, respectively.

Similarly, we reduce the switch-neighborhood structure into a reduced one,
which is used together with the reduced swap-neighborhood structure.

Definition 5.5 (reduced switch-neighborhood structure). Given are a union G
of source SFGs G; with folding factors f;, i=1,...,N, a type set T, a type function
£, and a minimal operator allocation al. The reduced switch-neighborhood struc-
ture (Neduced switch) is given as follows. The neighborhood N equced switeh (@) of an
operator assignment as is the set of all operator assignments as® for which there is
ani=1,...,N, an operation v € V;, and an operator v € V' with £(v') = £(v) and
{u € Vilas(u) =V}l < fi, and

(a) there exist (w',b) €I',a€ OL(V)),
such that ((V,a),(w',b)) € E' and
((as(v),a),(w',b)) EE', or

(b) there exist (w',a) € O, beZ(£(V)),
such that ((w',a),(V,b)) € E' and
((w',a),(as(v),b)) € E', or



92 Operator Assignment

(c) there exist beZ(£(V)),aeZ(¢(v))
such that ((as(v),a),(V,b)) € E' or
((V,a),(as(v),b)) € E',
such that
o as*(v) =V and
o as®(w) = as(w) foreach we V\ {u,v}.

O

Now we can combine the reduced swap- and the reduced switch-neighborhood
structures into one reduced neighborhood structure Niegucea given by
Meduced(as) = -lvreduced swap(as) UN, reduced switch(as)- The reduced neighbor-
hood of a solution contains all solutions of the straightforward neighborhood that
have a cost improvement. Since additional edges connected to other operator
terminals may be created by the reduced one- or two-exchange, a reduced neigh-
borhood may still contain solutions with cost deteriorations. The sizes of reduced
neighborhoods are in general much smaller than the sizes of straightforward
neighborhoods. Therefore, it is expected and has been confirmed by experiments,
as shown in the next section, that both drawbacks of the straightforward defined
swap- and switch-neighborhood structures, namely large CPU times and low
acceptance ratios, are overcome by applying the reduced swap- and reduced
switch-neighborhood structures.

5.2.4 Experimental results

Two multiplications. We use instance IOASP2 of OASP, as given in Section
4.1, to show that the application of the reduced neighborhood structure is effec-
tive when using the SIMULATED_ANNEALING algorithm. The cost as a function
of time, which is measured in the number of executed two-exchanges, is shown
in Figure 5.3 for the straightforward neighborhood structure as curve (a), and for
the reduced neighborhood structure as curve (b). In this figure the dramatic im-
provement in run time by more than a factor of fifty and in the cost of the obtained
solution are clearly visible. The acceptance ratio as a function of the cost is shown
in Figure 5.4 as the curve (b). There is a remarkable improvement in the acceptance
ratio compared to the straightforward neighborhood. Nevertheless, the optimal so-
lution was not reached, since the run of the SIMULATED_ANNEALING algorithm
got stuck at a low temperature in a local minimum that was not the optimal so-
lution. The average size of the reduced neighborhoods was 6000, while for the
straightforward neighborhoods it was 135,000.

DCT and IDCT. Using the reduced neighborhood structures, we preformed
the same experiment as that of Section 5.1.3 again, using IOASP1, which is an
instance of OASP.



5.2 Large SFGs 93

Table 5.2. Results of local search for the mapping of a DCT and an IDCT onto a
PU, using the reduced neighborhood structure. Average values were obtained for
100 runs.

cost (multiplexers) average CPU
local search variant best | average | worst time (sec.)
SIMULATED_ANNEALING 43 46 52 71
ITERATIVE_IMPROVEMENT 43 51 82 53

The results are shown in Table 5.2. Compared to the results in Table 5.1, the
CPU time has decreased by a factor of two for this relatively small example. How-
ever, the decrease is less dramatic than it was for the merging of larger source SFGs
in the previous example. The average result for the ITERATIVE_IMPROVEMENT al-
gorithm has increased slightly and the worst number of multiplexers has increased
significantly from 55 to 82. The latter can be explained as follows. Many edges in
the neighborhood graph are removed by applying the reduced neighborhood struc-
ture. Many of these removed edges represent transitions without a change in cost.
Since an iterative improvement walk on this neighborhood graph now has fewer
possibilities to walk around without a change in cost, it can reach fewer solutions
and consequently the probability that it will be stuck in a bad local minimum has
increased. Since the results of the SIMULATED_ANNEALING algorithm in Table 5.1
and Table 5.2 are about equal, the advantage of the SIMULATED _ANNEALING algo-
rithm over the ITERATIVE_IMPROVEMENT algorithm is clearly demonstrated when
the reduced neighborhood structure is used.

FFT-butterfly and multiplication. As a third example, we use instance
IOASP3, which is given as follows. Given are SFGs of an FFT butterfly G4
(radix-2, decimation in frequency, 8 bits) [Oppenheim & Schafer, 1975; Rabiner
& Gold, 1975; Roberts & Mullis, 1987] and a multiplication G5 (18x18 bits, mod-
ified Booth) [Booth & Booth, 1965], and given is the minimal number of required
operators. We expanded both SFGs to the bit level. This resulted in source SFGs
with |E4| = 2213, and |E3| = 1891. The average cost of feasible solutions is 2550
multiplexers. Applying the SIMULATED_ANNEALING algorithm resulted in a PU
with 1228 multiplexers. This is an improvement of 51% with respect to the average
cost.
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Operator Duplication

From Chapter 3 we recall that the operator duplication problem (ODP) can be
formulated as follows.

Definition 6.1 (operator duplication problem (ODP)). Given are a union G of
source SFGs G;, i=1,...,N, atype set T, a type function £, a delay del, the cost of
a multiplexer [, an initial operator allocation al’ and an initial operator assignment
as' defining a PU G'. The problem is to find a PU G* constructed by an operator
allocation al*, an operator assignment as*, and a multiplexer allocation ma*, for
which

i) £(v) = as*(v)) for each v € V, and
(x) as*(v) # as*(u) for each u,v €V
with as'(v) # as'(u), and
(xi) Cg =0, and
(xii) ((as*(v),a),(as*(u),b)) € E* for each ((v,a), (u, b)) € E,
and

that minimizes

B Y, ma*(i*)+ Y, al*(j)C(J)-

e JET
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ODP is an NP-hard problem, as stated by Theorem 3.5, and consequently one may
not expect that an efficient algorithm can be constructed that solves practical in-
stances of ODP, which have a large size, to optimality. In this chapter we present
an approximation method based on the SIMULATED _ANNEALING algorithm as dis-
cussed in Section 4.1,

The organization of this chapter is as follows. Section 6.1 reformulates ODP.
In Section 6.2 the basic ingredients of a local search algorithm are discussed. In
Section 6.3 the implementation of the algorithm is discussed, in particular the part
in which complex circuits are to be found. In Section 6.4 we show experimental
results.

6.1 Reformulating the operator duplication problem

For each complex circuit we can identify operators that link two paths. If opera-
tions assigned to such an operator are reassigned to different operators by operator
duplication, the complex circuit disappears. This set of pairs of operations is called
the split set of a complex circuit.

Definition 6.2 (split set). Given are a union G of source SFGs G;, i = 1,...,N,
an initial operator assignment as’ and a set of complex circuits C;. The
split set is a function SP : Cg — P(V x V), defined as SP((((ug,a0) >
(;mb()))r--v((um—laam—l) = (Vm~17bm—1)))) ={(v, U(k+1) mod m) | k=0,...,m—
1}. O

We have to find an allocation and assignment such that one or more pairs of opera-

tions from the split set are reassigned to different operators. To compactly represent
this we use the notion of split number, which is defined as follows.

Definition 6.3 (split number). Given are a union G of source SFGs G;, i =
I,...,N, an initial operator assignment as’, a set of complex circuits C;, and an
operator reassignment as* satisfying
(xvi) as*(u) # as*(v) for each u,v € V with
as'(u) # as'(v).
The split number is a function sn : Cg — IN, which is defined as
sn(c) =| {(wu) € SP(c) | as*(u) # as*(v)} | for each ¢ € Cg.

O

Figure 6.1 shows two source SFGs with a complex circuit and the PU on which they

are mapped with a corresponding complex circuit. Using the split number, Con-
straints (xi) are replaced by Constraints (xiv) in the following definition of ODP.
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Figure 6.1. An example of two source SFGs (a) and the PU (b) on which they are
mapped. A false loop in the PU is present, which is highlighted. The correspond-
ing complex circuit in the SFGs is highlighted. The complex circuit’s split set is
indicated by shaded operations of which pairs are connected by dashed lines.

Definition 6.4 (operator duplication problem (ODP)). Given are a union G of
source SFGs G;,i=1,...,N, atype set T, a type function £, a delay del, the cost of
a multiplexer B, an operator allocation a/’ and an operator assignment as’ defining
a PUG'. The problem is to find a PU G* constructed by an operator reallocation
al*, an operator reassignment as*, and a multiplexer allocation ma*, for which

@) £(v) =£(as*(v)) for each ve€ V, and
x) as*(v) # as*(u) for each u,v €V
with as'(v) # as'(u), and
(xii) ((as*(v),a),(as*(u),b)) € E* for each ((v,a), (u,b)) €E,
and
(xiv) sn(c) > 1 for each ¢ € Cg, and

that minimizes

B Y ma*(i*)+ Y, al*(j)C())-

*er JET

6.2 Solution space, cost, and neighborhood structure

For ODP, we define the solution space S as the set of all possible PUs defined by
an operator reallocation, an operator reassignment, and a multiplexer allocation.
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However, when an operator allocation and an operator assignment are given, an
optimal multiplexer allocation can be found in a trivial way following directly from
the definition of the multiplexer allocation. Therefore we limit ourselves to the
decision variables al and as only. The solutions may result in complex circuits;
however, the search for an efficient solution is started at a solution that contains
no complex circuits. This solution can be easily found by fully duplicating all
operators, i.e., for each operation of a union SFG an operator of the same type
is allocated and the operation is reassigned it. A transition from one solution to
another is performed by reassigning one operation to an operator, which may be
newly allocated. We call this step a switch. If the operator to which the operation
was assigned is left unoccupied, the operator may be discarded and the allocation
can be decreased accordingly.

Definition 6.5 (switch-neighborhood structure). Given are a union G of source
SFGs G;, i=1,...,N, a type set T, a type function 4, a delay del, an initial op-
erator allocation 4/’ and an initial operator assignment as’ defining a PU G'. The
switch-neighborhood structure (Nswien) is given as follows. The neighborhood
Niswiien(al*, as*) of an operator allocation al* and an operator assignment as* is the
set of all operator allocations al® and operator assignments as® for which there is a
vEVandav €V, withv # as*(v) and £(v) = £(v), satisfying

as*(v) =V and
as®(u) = as* (u) for each u € V\ {v} and
as® (u) # as®(w) for each u,w € V

with as’ (u) # as'(w) and

al*(I(v)) = al*(I(v)) +1 if [{u€ V\{v}as*(v) =as*(w)}| =0, or
al*(I(v)) = al*(I(v)) — 1 if |[{u € V\ {v}|as*(v) = as*(u)}| = 0, and
al*(j) = al*(j) foreach je T\ {I(v)}.

(N

The switch-neighborhood structure implies that one can step from one solution to
another by duplicating, which increases the number of allocated operators, as well
as by merging, which decreases the number of allocated operators. We still refer to
the technique as operator duplication because every solution can be reached from
the initial solution without merging.

The SIMULATED_ANNEALING algorithm only requires that the difference in
cost be computed. The change in the operator allocation follows directly from a
generated switch. Moreover, we do not need to compute the multiplexer cost of
every visited solution from scratch, since only the number of edges connected to
the operators involved may change; see also Section 5.1.2.
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6.3 Implementation of local search

The SIMULATED_ANNEALING algorithm as shown in Figure 4.2 is modified into
the OPERATOR_DUPLICATION algorithm to handle the existence of complex cir-
cuits; see Figure 6.2. In a temperature step, only solutions are generated that do not
reintroduce complex circuits that have already been detected and removed. Other
complex circuits, however, may be introduced. Therefore, at the end of every tem-
perature step a detection of complex circuits is performed. If any are found they are
added to the set of detected complex circuits. Furthermore, a solution is created
that is free of complex circuits. Note that only complex circuits can be detected
that were also present in the initial solution, because operator duplication cannot
introduce new complex circuits. Furthermore, no complex circuits can be detected
in the start solution.

procedure OPERATOR DUPLICATION
in aunion G of source SFGs G;,i=1,...,N,
a delay del,
an initial operator allocation al’,
an initial operator assignment as’;
out operator allocation al*, operator assignment as™;
begin k£ = 0;
INITIALIZE(cq, Lg);
fully duplicate operators resulting in al* and as*;
C*=g;
repeat
for t=1to L;
begin generate (al®, as®) € Ngwien(al*, as*)
for which sn(c) > 0 for each c € C*;
compute delta_cost;

if delta_cost < 0 or exp( %__@ﬂ) > random[0,1) then
begin al* = al®;
as* = as*;
end;
else skip;
update split numbers sn(c) for each ¢ € C*;
end;
k=k+1;
COMPLEX_CIRCUIT_REMOVAL(G ,del,al* as* ,.C*);
CALCULATE_LENGTH(Ly);
CALCULATE_CONTROL(cy);
until stop criterion;
end;

Figure 6.2. The OPERATOR_DUPLICATION algorithm.

We efficiently verify as follows that no complex circuit that had already been



100 Operator Duplication

detected and removed is created again. At every operation we link a list of refer-
ences to complex circuits. A complex circuit is referenced if the operation belongs
to the split set of the complex circuit. The split number for each detected complex
circuit is stored. When a pair of the split set of a complex circuit is merged, then
its split number decrements by one, and when a pair is duplicated it increments by
one. Only solutions are generated that do not result in detected complex circuits
with a split number equal to zero. In this way, it is easily guaranteed that previously
detected complex circuits do not occur again, without it having been necessary to
perform a more time-consuming complex-circuit detection algorithm.

Given an operator reallocation and an operator reassignment, all complex cir-
cuits can only be found with an algorithm that traverses all paths. Such an algo-
rithm runs in exponential time and consequently is unacceptable, since our goal is
to construct an efficient approximation algorithm. We use the complex-circuit de-
tection algorithm called COMPLEX_CIRCUIT_DETECTION, which checks whether
complex circuits exist; see Figure 6.3. If complex circuits exist, the detection algo-
rithm returns a subset of the set of all complex circuits. Stok [1992] claims that if
we start an algorithm like COMPLEX_CIRCUIT_DETECTION from every operation
in a union of SFGs, it will find all complex circuits. It is easy to understand that
this cannot be true, since the total number of circuits may be exponential, and the
algorithm runs in polynomial time.

The algorithm COMPLEX_CIRCUIT_DETECTION continually forms a sequence
of paths from a starting operation. It recursively extends a sequence of paths
with an operation terminal in such a way that it may detect an operation that
is already contained by one of the paths in the sequence at that moment. In
that case a circuit is detected which is a complex circuit if it consists of two or
more paths that do not share operations. In order to limit the time complexity
of the algorithm, operations are visited only once. To this end, an operation is
labeled after it has been visited and is consequently never visited again during
the execution of COMPLEX_CIRCUIT_DETECTION. Without this labeling, COM-
PLEX_CIRCUIT_DETECTION would find all complex circuits.

Generating a solution that is free of complex circuits with this fast detection
algorithm is done in an incremental way; see Figures 6.4 and 6.5. Repeatedly,
the algorithm detects a number of complex circuits and duplicates sufficient oper-
ators such that the detected complex circuits are removed. The algorithm COM-
PLEX_CIRCUIT_REMOVAL ends when no complex circuits are detected anymore.
Note that duplicating an operator may increase the split number of more than one
complex circuit, even of a complex circuit that has not been detected. Since the
probability of this is very high, we favour this approach over one in which all com-
plex circuits are detected in one step. This is confirmed by an experiment given in
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procedure COMPLEX_CIRCUIT_DETECTION
in aunion G of source SFGs G;,i=1,...,N,
a delay del,
a feasible operator assignment as;
outC* C Cg, a subset of all complex circuits;

begin C* = @,
repeat take (v,a) € O with label(v) = false;
p=(a);

TRAVERSE_INPUTS(G ,as,p,(v, a),C* del);
until [abel(v) = true for each (v, a) € O;
end;
procedure TRAVERSE_INPUTS
in aunion G of source SFGs G;,i=1,...,N,
a delay del, a feasible operator assignment as,
a path p, an output terminal (v, a);
inout C* C Cg, a subset of all complex circuits;
begin for each ((v,a), (1, b)) € E with label(u) = false
begin if u # w for each (w,c) € p with (w,c) € O then
begin extend p with (u, b);
TRAVERSE_OUTPUTS(G as,p,(u, b),C* del);
remove (u, b) from p;
end;
else if del((w, b),(w,c)) #~ and
the detected circuit, from w to u, is a complex circuit then
construct complex circuit and add it to C*;
end;
label(u) = true;
end;
procedure TRAVERSE_OUTPUTS
in aunion G of source SFGs G;,i=1,...,N,
a delay del, a feasible operator assignment as,
a path p, an input terminal (u, b);
inout C* C Cg, a subset of all complex circuits;
begin for each (v,a) € O with as(v) = as(u) and del((u, b),(u,a)) 7~ and label(v) = false
begin if v 7 w for each (w,c) € p then
begin extend p with (v, a);
TRAVERSE_INPUTS(G as,p,(v, a),C* del);
remove (v, a) from p;
end;
else if the detected circuit, from w to v, is a complex circuit then
construct complex circuit and add it to C*;
end;
label(v) = true;
end;

Figure 6.3. The COMPLEX_CIRCUIT_-DETECTION algorithm.
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the next section.

procedure COMPLEX_CIRCUIT_REMOVAL
in aunion G of source SFGs G;, i= 1,...,N,
a delay del;
inout an operator allocation al*, operator assignment as*;
C' C (g, a subset of all complex circuits;
begin stop = false;
repeat COMPLEX_CIRCUIT_DETECTION(G ,del,as,C*);
c=cuc;
if C* = (@ then stop = true;
else repeat get ¢ € C* with sn(c) = 0;
get (v u) € SP(c);
as*(v) = ‘/empty;
al*(Iv)) = al' (1)) + 1;
update split numbers sn(c) for each c € C';
until sn(c) > 1 foreach c € C'
until stop;
end;

Figure 6.4. The COMPLEX_CIRCUIT_REMOVAL algorithm. The algorithm repeat-
edly allocates an additional operator vgmpty to which it assigns an operation of the
split set of a detected complex circuit with a split number equal to zero.

6.4 Experimental results

As an example we use instance IOASP1 of OASP as defined in Section 5.1.3,
concerning the mapping of a Discrete Cosine Transform (DCT) and an Inverse
Discrete Cosine Transform (IDCT) onto one PU; see Figure 5.2. We use the two
source SFGs to create three different instances of ODP, namely IODP1, IODP2,
and IODP3, which all have the same initial allocation, but different initial assign-
ments. The initial operator allocation is minimal, consisting of 16 multipliers, 32
adders/subtractors, 8 inputs, and 8 outputs. The cost of an adder equals 15, the cost
of a multiplier equals 45, the cost of an input equals 0, the cost of an output equals
0, and the cost of a multiplexer equals 7. The results are listed in Table 6.1.

From the results we can conclude the following. The total number of complex
circuits is large when the quality of the initial assignment is poor. In addition, the
amount of redundancy in the set of all constraints is high when the initial assign-
ment is bad. Moreover, it takes a large amount of time to find all complex circuits
that are present in the initial bad solution. The instances do not show an improve-
ment in cost compared to the initial solution since the operators are expensive with
respect to the cost of a multiplexer. Executing an additional run of the OPERA-
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Figure 6.5. An example of removing complex circuits, considering three parts of
a union SFG the operations of which are assigned to the same operator in a PU.
In the first step (a) a complex circuit is detected, which is highlighted. After this
complex circuit is removed another complex circuit is detected, which is shown in
(b). In the final step this complex circuit is removed too, and a PU without a false
loop is created, which is shown in (¢). Only pairs of split sets are indicated that
are still assigned to one operator.

Table 6.1. Results of the OPERATOR_DUPLICATION algorithm for mapping a
DCT function and an IDCT function onto one PU. Three different instances of
ODP are considered, namely IODP1, IODP2, and IODP3, which differ in the
quality of the initial assignment: bad, good, and excellent, respectively. The
start costs are, however, all equal to 2632. The column final” lists the results
after running the OPERATOR_DUPLICATION algorithm. The large column “to-
tal” lists the number of detected complex circuits and the CPU time that are ob-
tained by a method that first derives all constraints concerning complex circuits
and next finds an operator duplication satisfying them. The large column "incre-
mental” lists results obtained by a method that incrementally derives only those
constraints that were violated by a visited solution. The initial and greedy costs
are listed for comparison. The greedy costs were obtained by only applying the
COMPLEX_CIRCUIT_REMOVAL algorithm on the initial PU.

instance cost total incremental
initial | final | greedy || complex CPU time || complex | CPU time
circuits circuits
10DP1 1936 | 1946 1955 53703 | 4h36°11.4” 26 13.8”
10DP2 1768 | 1781 1791 603 33.3” 14 10.2”
10DP3 1624 | 1662 1741 42 7.8” 15 7.97
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TOR_DUPLICATION algorithm omitting the check for complex circuits resulted in
a PU with a cost equal to the initial one. We also notice that the difference between
a greedy solution and a more refined one is greater when the initial assignment is
better.

Next we consider an example of mapping two larger source SFGs, G5 and G,
as given in Section 5.2.4, onto one PU. We call this instance IODP4. Some charac-
teristics of the large SFGs are: |Va| = 959, |E3| = 1891, |V4| = 1163, |E4| = 2213.
The operators represent standard cells of different types with different costs. An
initial allocation and assignment result in a PU with a cost of 11,500. Applying
a run of the OPERATOR_DUPLICATION algorithm with the check for complex cir-
cuits results in a PU with a cost of 9,883. The cost as a function of time, expressed
as the number of temperature steps, is shown in Figure 6.6. The accumulated num-
ber of complex circuits detected during the run as a function of time is shown in
Figure 6.7. In the beginning of the run most complex circuits are detected. This is
a very good characteristic, because when a complex circuit is found at a low tem-
perature, the probability is small that a good solution is found in which the right
operation of its split set is reassigned.
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Figure 6.6. Cost of as a function of time for a run of the OPERA-
TOR_DUPLICATION algorithm on instance IODP4. Two points are shown for each
temperature step; one represents the cost before complex circuits have been re-
moved, and the other the cost after complex circuits have been removed.
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Figure 6.7. Accumulated number of detected complex circuits as a function of
time for the same run of the OPERATOR_DUPLICATION algorithm on instance
IODP4 as is used for Figure 6.6. Each point represents the number at the end

of a temperature step.
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Timing Analysis

From Chapter 3 we recall that the timing analysis problem (TAP) can be formulated
as follows.

Definition 7.1 (timing analysis problem (TAP)). Given are an SFG G, a type set
T, a type function £, a clock period T, and timing functions dat,drt,del, and w.
The problem is to find a constraint set F, such that if there exists a retiming r with

(xiid) w(f) >0 for each f = (u,v) € F,
then and only then
(i) D(p) <t for each p € Pg with
W,(p) =0, and
(vii) wy(e) >0 foreache € E.

O

TAP can be solved in polynomial time, as stated by Theorem 3.6. In this chapter,
algorithms are given to derive constraint edges f € F, each of which imposes a
bound on the difference of the retiming of two operations. The constraint set F
contains two types of constraints, namely causality constraints corresponding to
Constraints (vii) and speed constraints corresponding to Constraints (vi).

The derivation of causality constraints is straightforward; for every signal edge
e= ((u,a),(w,b)) € E a constraint edge f = (u,v) € F with w(f) = w(e) is gen-
erated. Because of the trivial nature of causality constraints they are not discussed

107
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any further; a constraint set F' is assumed to contain at least the required causality
constraints, and in figures portraying ESFGs they will not be shown.

The speed constraints can also be derived in a straightforward way. A con-
straint (vi) implies that a path that is longer than or equal to the clock period must
contain at least one register, i.e.

W,(p) >1 for each p € Pg with
D(p) 2.

Thus, for every path p = ((u,a) — (v,b)) € Pg with D(p) > 1, a constraint edge
f = (u,v) with w(f) = W(p) — 1 is generated. However, better algorithms for
constraint derivation can be found when redundancy of constraints has been taken
into account. This was reported for the first time by Van der Werf, Van Meerbergen,
Aarts, Verhaegh & Lippens [1994].

The organization of this chapter is as follows. In Section 7.1 we discuss basic
timing properties of paths in SFGs. Section 7.2 discusses redundancy properties
of timing constraints. Based on the properties presented, in Section 7.3 we present
three different constraint derivation algorithms. The performance of these algo-
rithms is discussed in Section 7.4.

7.1 Basic timing properties

The relation between delays and weights of paths in an SFG before and after re-
timing is expressed in the following property.

Property 7.1. Given are an SFG G, timing functions del, dat, drt, w, and a
retiming r. Then for each path p = ((u1,a1) = (un,a,)) € Pg it follows that
D,(p) = D(p) and W(p) = W(p) + r(un) — r(u1).

Proof. D,(p) = D(p) because del, dat, and drt do not change by retiming; see
Definitions 2.4, 2.5, and 2.6. Next,

n—1

W(p) = zwr((uk,ak)a(uk+1,ak+1))

=1
n—1

= 3 Wk a)s (a1, @te1)) + () — ()]
=1
n—1 n n—1

= > w((uear), (s 1, ax1)) + Y, rlug) — > r(w)
=1 k=2 k=1

= Y w((ugs ar), (1, 1)) + r(u) — r(ur)
=1

= W(p)+r(un) — r(u).
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Therefore, the number of registers on a path after retiming is given by the number
of registers present before retiming plus what is added at the end of the path minus
what is removed at the beginning of the path. The retimings of all the other, inter-
mediate operations on a path determine where the registers are placed on the path,
but do not influence the total number of registers on it.

Next we discuss subpaths and reconvergent paths, which are two structure
properties of SFGs that we need in order to discuss redundancy among timing
constraints.

Property 7.2. Given are an SFG G and functions w, del, dat, and drt. If
p2 = (01 ¥ i,) € Pg is a path consisting of two subpaths py = (01 — i;) € Pg
and p; = (o1 > i) € Pg, denoted by p = po+ p1, then W(pa) = W(po) + W(p1)
and D(p2) = D(po) — dat(ir) + del(iy, 0;) — drt(o1) + D(p1).

Proof. Applying the definition of the path weight, Definition 2.10, it follows
that

n—1

W(p) = > wlokint1)
=1
-1 n—1

= > wlowirr1)+ >, wlok ike1)
=1 =1
= W(po) +W(p1).
Applying the definition of the path delay, Definition 2.9, it follows that
n—1
D(py) = drt(o))+ Z del(iy, o) + dat(iy,)

=2
-1 n—1

= drt(o)) + Zdel(ik,ok) +del(ij,0;) + 2 del(ix, o) + dat(iy,)
=2 =1+1

= D(po) — dat(i;) + del(is, 01) — drt(o1) + D(p1)-

Property 7.3. Given are an ESFG £G, a weight w, and a retiming r with w,(f) >0
for each f € F. Then W,(p) > 0 for each p = (01 — iy,) € Pg.

Proof. Since for each e = ((w,a),(u,b)) € E there exists an f = (wu) € F
with w(f) = w(e), it follows that w,(e) > 0 for each ¢ € E. Since W,(p) =
S5 wi((0x, ixt1)) it follows that W,(p) > 0 for each p € Pg. O

Definition 7.2. Given is an SFG G. Two paths py = (0; = i;), p1 = (ox = i) € Pg
are reconvergent, which is denoted by py|| p1, if and only if 0; = ox and i; = j;. O

In words, two paths are reconvergent if they start at the same output terminal and
end at the same input terminal.
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Property 7.4. Given are an SFG G and a weight w. Then for every two paths
Po, p1 € Pg with po| py it follows that W,(po) — W,(p1) = W(po) — W (py).
Proof. Let po = ((u1,a1) = (un,a,)) and py = ((u1,a1) = (un,a,)). Then
Wi(po) =Wi(p1) = (W(po) + r(un) — r(u1)) — (W(p1) + r(u,) — r(uy))
= W(po) —W(p1).
O

7.2 Redundancy

When a constraint edge is generated for every path in an SFG that is longer than
the clock period, the set of constraint edges can be quite large. Fortunately, such
a set will contain much redundancy, i.e., many constraints can be left out without
any consequences for the retimed SFG. The redundancy is caused by the structure
of the SFG and the functions W, and D,. We distinguish the following types of re-
dundancy: subpath, reconvergent path, and reconvergent n-long path redundancy.

Theorem 7.1. Given are an ESFG £G, a weight w and a retiming r with w,.(f) > 0
for each f € F. Then for each py, p1, p» € Pg with p; = po+ p; and W,(p1) > 1
or W,(po) > 1 it follows that W,(p;) > 1.

Proof. Combining Property 7.2, which states that if

P2=po+pi
then

W (p2) = W,(p1) +Wi(po),
and Property 7.3, which states that for each p € Pg,
W.(p) 20,
the theorem follows. O

The theorem is illustrated by the example of Figure 7.1. Theorem 7.1 implies that
during the generation of speed constraints we can restrict ourselves to considering
paths that are longer than the clock period, but have no subpath longer than the
clock period, i.e., we only have to consider paths that are just longer than the clock
period.

If two reconvergent paths have different path weights in an SFG, then the path
with the largest weight contains at least one register after a feasible retiming, which
is stated by the following theorem.

Theorem 7.2. Given are an ESFG G, a weight w, a clock period T, and a retiming
r with w,(f) > 0 for each f € F. For every two paths py, p, € Pg with p;||p,, if

(@) W(p)) <W(py), or
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Figure 7.1. An example of an SFG with three constraint edges, indicated by the
dashed lines. The constraint edge from a to ¢ is redundant with respect to the one
from a to b and it is redundant with respect to the one from b to c.

() W(p1) =W(py) and D(p;) > 1
then it follows that W,(p,) > 1.
Proof. From Property 7.4 we have
Wr(pv) = W(pv) - W(pl) + Wr(pl)
In case (a) this gives
VVr(pv) > 1+ Wr(pl)
> 1,
since W,(p;) > 0 by Property 7.3.

In case (b) we have D(p;) > 7 and, consequently, a retiming r with w,(f) > 0
for each f € F that obeys W,(p;) > 1. Hence

Wr(pv) = 0+W.(p1)
> 1.

Figure 7.2. An example of an SFG with a redundant constraint edge. In the SFG,
there are two reconvergent paths from the output terminal of operation a to the
input terminal of operation c¢. Because the lower path has a weight smaller than

the weight of the upper path, the constraint edge, corresponding to the upper path,
is redundant.
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Theorem 7.2 is illustrated by the example of Figure 7.2. The theorem serves as
the basis for some of the work done by Leiserson, Rose & Saxe [1983], which is
further explained in Section 7.3.2. The theorem implies that one is only interested
in paths between two operations on which no registers are trapped by the structure,
i.e., the paths with the smallest weight. If one of these paths is longer than the
clock period, then a constraint edge between the two end operations of the paths
may be required. However, even such a constraint edge may be redundant with
respect to other speed constraint edges on reconvergent paths. To explain this we
consider paths that have a delay greater than a multiple of the clock period, called
n-long paths.

Lemma 7.1. Given are an ESFG G, timing functions w, del, dat, drt, a clock
period T, and a retiming r such that W,(p) > 1 for each p € Pg with D(p) > .
Then for each p € Pg with D(p) > nt, n € INT, it follows that W,(p) —n > 0.

Proof. For n =1 the proof is trivial. For n > 1 it is possible to partition p into
subpaths p;, withi=1,...,n, such that p= S, p; and D(p;) > 7 in the following
way. We divide p = (01, i2,02,...,i,) into two subpaths p; and p; with p= p;+ p;
and D(p;) > 1. Two subpath configurations are possible:

@ pi = (o1,---si-1,0-1,i1) and p; = (o1 = i) with D((01,--+,i-1)) < T.
Since D((Ol,. . ~7il—1)) = D(p,') — dat(il) — del(il_1,01__1) + dat(il_l) <7
and del(il_l,ol_l) < dat(il_l) it follows that D(pi) - dat(il) <7

() pi=(o1,i2) and p; = (03— iy).

Since D(p;) = drt(o1) + dat(iz) and drt(01) < 7 and dat (i) < 7 it follows
that D(p;) — dat(i;) < .

Thus in both cases D(p;) — dat(i;) < T. Furthermore, del(i;, 0;) < drt(o;). Starting
from Property 7.2, it follows that if D(pg) > nt, then ‘

D(p;) = D(po)— D(p:) + dat(i;) — del(iz, 01) + drt(o;)

2 D(po) — D(p:) + dar(iy)
> D(po)—7
> (n—1)1.

By using induction, the path p; can be split into n— 1 subpaths with a delay of at
least T each. For every subpath p;, with i = 1,...,n, it is required that W,(p;) > 1
such that, according to Property 7.2, W.(p) = W.(ZL 1 p) = XL Wo(p;) >n. O

This lemma derives a constraint on the retimed weight of a path from constraints
on the retimed weights of its subpaths. This constraint is called the corresponding
constraint of a path. The corresponding constraint of a path p € Pg can also be
formulated as W,(p) > [@J or W,(p) > @ — 1. Furthermore, corresponding
constraints may result in constraint edges in F in the following way. For each
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path p= ((u,a) — (» b)) € Pg with (n+ 1)1 > D(p) > nt there exists a constraint
edge f = (u,v) € F with w(f) = W(p) —n, where n € INT. Note that one can
presume # € IN, t.e., that n may be zero, but then many additional constraints arise
that are obviously redundant since, according to Property 7.3, W,(p) > 0 for each
p € Pg. Consequently, we do not consider the corresponding constraints of paths
that have a smaller delay than the clock period. Furthermore, paths with n > 2
have corresponding constraints that are redundant with respect to corresponding
constraints of their subpaths.

Theorem 7.2 can be generalized to n-long paths. A constraint to add at least &
registers to a path may be redundant if the path reconverges with a path on which
k or more registers must be added. However, we present here a slightly different
theorem that combines subpath redundancy and reconvergent path redundancy for
n-long paths. To this end we need the following definition.

Definition 7.3. Given are an SFG G, timing functions w, del, dat, drt, and a clock
period T. A relevant path p, € Pg is a path such that for each p, € Pg with p,||p,,
W(p) =) <wip) - 2P, -
Theorem 7.3. Given are an ESFG G, timing functions w, del, dat, drt, a clock
period T, and a retiming r such that W,(p) > 1 for each p € Pg with D(p) > T.
For each relevant path p, and each path p, € P; we have that p, has a redundant
corresponding constraint if

@ prllpy, or

(b) there exists a subpath p, € Pg of p, such that p,||p;.

Proof. In case (@) we have to prove that every reconvergent path p, has a

redundant corresponding constraint.

Wipy) = Wip)—W(p)+W(p)
S pr)_D(fr) D(py)

T
D
> —1+ ____(pv)

._I__

Since W,(p,) € Z it follows that
D

W) > | 22|

In case (b) we have to prove that every path p, that has a subpath p, reconverg-

ing with the relevant path p, has a redundant corresponding constraint. For brevity,

we discuss only one subpath configuration, p, = p; + p,, where p, € Pg. This con-

figuration implies that a path p, = p,+ p, also exists, where p, € Pg. Furthermore,
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d = D(py) — D(p:) = D(p,) — D(p;). Now we derive
Wr(Pv) (pe) + Wr(Pa)
(pt) - Wr(pr) + VVr(pu)

l
£ E

- W(pt) - W(pr) + Wr(pu)
> D(p:) _ D(p:) + [D(pr)+dJ
T T T
D D(p,) D(p,
. D) _D(p) , Dp)+d _
T T T
_ D(p)+d _1
T
- .
Since W,(p,) € Z. it follows that
D
W, (py) > “%J .
For other subpath configurations similar proofs exist. O

According to Theorem 7.3 the relevant path may be different from the one with
minimal weight of all reconvergent paths that was put forward by Leiserson, Rose
& Saxe [1983]. A corresponding constraint edge of a relevant path is shown in
Figure 7.3.

Figure 7.3. An example of an SFG with two constraint edges. In the SFG two
reconvergent paths exist from the output terminal of operation a to the input ter-
minal of operation c. The lower path has a smaller weight than the weight of the
upper path, but since on the upper path, which is the relevant path, more registers
must be placed than originally are present the corresponding constraint edge of
the lower path is redundant.
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Conclusion

The above presented theory can be summarized as follows. If a constraint is gen-
erated for every path that is longer than the clock period, the set of constraints
contains much redundancy. To obtain a set of constraints with less redundancy,
according to Theorem 7.1 we can restrict ourselves to paths that do not contain a
subpath longer than the clock period. If such a path is longer than the clock pe-
riod, then a constraint needs to be generated. Howeyver, if the path reconverges
with another path on which fewer registers are initially present, according to The-
orem 7.2 the constraint does not need to be generated. Furthermore, according to
Theorem 7.3 the constraint does not need to be generated, if the path reconverges
with another path on which retiming must add more registers, even when that path
initially contains more registers.

Discussion

The set of corresponding constraint edges of all relevant paths that are just longer
than the clock period can still contain redundancy. So far, redundancy has been
considered using properties of paths in an SFG, i.e., corresponding constraint edges
of paths can be redundant if paths have terminals in common, like a path and one
of its subpaths, or reconvergent paths. However, a constraint edge is defined on
a pair of operations that can have more than one input and one output terminal.
Consequently, corresponding constraint edges of paths that have no terminals but
do have operations in common may be redundant. We do not discuss this kind of
redundancy any further, but the theory presented can be easily adapted to it.

Even the causality constraints can contain redundancy with respect to speed
constraints. This is the case when a path p = ((4,a),(w, b)), consisting of one
output terminal (u,a) and one input terminal (v,b), has a delay greater than the
clock period, i.e.,

D(p) = dri((ua)+dar((1,5))

> T

Then the corresponding constraint is

F(V) - r(u) > W((”va)a (Va b)) —1= W((u7a)7 (v7b)) - 17
which makes the causality constraint

r(v) - }"(Lt) > W((ua a)a (V7 b))
redundant. Note that this is the case in Figure 7.1, although it is not mentioned
there.

A different argument for the removal of redundant constraint edges comes from
the network flow theory [Ahuja, Magnanti & Orlin, 1989]. In a solution of an
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instance of the uncapacitated minimum-cost flow problem there only exists non-
zero flow between two operations over shortest paths between them. Consequently,
a constraint edge between two operations can be removed if it is not on the only
shortest path between the two operations. Figure 7.4 shows some operations in
an SFG and the constraint edges between them. In this figure, the dashed lines
indicate constraint edges that are redundant.

Figure 7.4. An example of operations and constraint edges. Redundant constraint
edges are indicated by dashed lines.

7.3 Implementation of speed constraint derivation

For constraint derivation we make a trade-off between the number of derived con-
straints that must be stored and the run time of the derivation algorithm. The num-
ber of constraints also affects the run time of the algorithm to solve instances of
SGREP, but that topic is not considered here. Constraint derivation can be viewed
as a special form of path length analysis in which distances are defined in terms of
weights and delays. Since SFGs have a sparse structure, derivation is performed
starting from each output terminal of an operation in an SFG. The derivation start-
ing at each output terminal is partitioned into two steps. In the first step, input
terminals are labeled with delay labels (D) and weight labels (W) and in the second
step, these labels are used to generate constraint edges to be included in the set F of
an SFG G. A description of the CONSTRAINT_DERIVATION algorithm is shown in
Figure 7.5. The result of the first step is that input terminals are labeled with delays
and weights, which represent for each input terminal the delay and weight of a cer-
tain path from the starting output terminal to it. To which of the reconvergent paths
the labels belong depends on the type of redundancy that is taken into account.
Before discussing three different labeling methods, we first discuss constraint gen-
eration, because some of its characteristics are important for the discussion of the
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first step.

7.3.1 Constraint generation

The constraint generation is implemented as a depth first search for input ter-
minals labeled with a delay greater than the clock period, as follows. At ev-
ery input terminal the labels are used to select a path from the set of recon-
vergent paths from the starting output terminal to that input terminal, for which
a corresponding constraint edge may be generated. More specifically, during
the generation of constraint edges, paths are followed by only traversing from
an input terminal of an operation i; = (u,a) € I via an output terminal of the
same operation 0, = (u,b) € O, with del(i1,01) #~, to an input terminal of an-
other operation i, € 1, with e = (01,i2) € E, if W(iy) = W(i;) + w((01,42)) and
D(ip) — dat(ip) = D(i1) — dat(i1) + del(i1, 01). If an input terminal is labeled with
a delay greater than the clock period, then a path with that delay runs between the
starting output terminal and the input terminal. Consequently, a constraint edge
must be generated from the operation to which the output terminal belongs to the
operation to which the input terminal belongs. The weight of the constraint edge
becomes equal to the weight label. According to Theorem 7.1 each path that has a
subpath with a delay greater than the clock period has a redundant corresponding
constraint edge such that the depth of the search can be limited to paths with a de-
lay just greater than the clock period. The CONSTRAINT_GENERATION algorithm
is shown in Figure 7.6.

procedure CONSTRAINT _DERIVATION
in an SFGG,
timing functions w, del, dat, drt,
a clock period 7;
outa constraint set F’;
begin F = &;
generate causality constraints into set F;
for each 0= (u,a) € 0
begin INPUT_LABELING(0,G ,w.del dat,drt, 1,W,D),
CONSTRAINT_GENERATION(0,G ,w.del dat drt,7,F,W ,D);
end;
end;

Figure 7.5. The CONSTRAINT_DERIVATION algorithm.

7.3.2 Delay and weight labeling

The task of the labeling step is to label an input terminal with a delay and a weight
that represent the delay and weight of a certain path from the starting output termi-
nal to the input terminal. We discuss three different labeling methods, which differ
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procedure CONSTRAINT_GENERATION
in an SFG G,
timing functions w, del, dat, drt,
a clock period 7,
labels W and D,
an output terminal o;
inout a constraint set F;
beginZ = @
foreachi= (v,b) €1:(0,i) €E
if D(i) > 1 then
begin generate constraint edge f = (u,v) with w(f) = W(i) - I;
F=FU{fk
end;
else Z=ZU{i};
whileZ £ @
begin get iy € Z;
I=I\{iak
for each iy = (v, b) € I for which there exists an 0] € O with
e=(o0y,ip) € E and
del(iy,01) #~ and
W(iz) = W(i1) + w(e) and
D(iz) — dat(iz) = D(i) — dat(iy) + del(iy,01)
if D(i3) > 7 then
begin generate a constraint edge f = (u,v) with w(f) = W(ip) —1;
F=FU{f}
end;
else Z=TU{i};
end;
end;

Figure 7.6. The CONSTRAINT_-GENERATION algorithm.
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in how they select one of the reconvergent paths to which the labels belong. We
first discuss the relevant-path labeling method that derives as few constraint edges
as possible. Secondly, the classical labeling method is presented based on the work
by Leiserson, Rose & Saxe [1983]. The third method is the clock-period-limited
labeling method, which takes the clock period into account during derivation. Of
all the methods, this method produces the most redundant constraint edges.

Relevant-path labeling In order to generate as few constraint edges as possible,
each input terminal is labeled with the delay and weight of a relevant path to it
according to Definition 7.3. According to Theorem 7.3, corresponding constraints
of reconvergent paths are redundant. The delay and weight of relevant paths start-
ing from one output terminal to all the input terminals can be derived by a shortest
path algorithm. The distances from the output terminal to input terminals are de-
termined as follows. Traversing a signal edge e increases the distance with w(e),
while traversing through an operation, from an input terminal i to an output termi-
nal o, decreases the distance by @. The data ready time of the output terminal
and the data available time of the input terminal must be added at respectively
the beginning of a path and the end of a path. Because of the negative distances, a
straightforward application of an efficient shortest path algorithm like DIJKSTRA’S,
as discussed in Section 4.2.2, is impossible here.

To explain the above labeling method, we use an example SFG as shown in
Figure 7.7. The labels resulting from a path length analysis starting from the output
terminal of operation a and the constraint edges generated for that starting output
terminal are shown in the figure. Note that the delay label of an input terminal does
include the data available time of the input terminal and the data ready time of the
starting output terminal. The labels define the paths that the constraint generation
will follow. In the figure, the signal edges and the operation delay edges of these
paths are indicated by bold lines.

Classical labeling In this section a method is presented that primarily builds on
the work by Leiserson, Rose & Saxe [1983] by using Theorem 7.2. Of all recon-
vergent paths, either the path with the smallest weight or, if there is more than one
of these paths, the one of these with the greatest delay is considered the shortest.
Like the previously discussed method, the labeling method must label each input
terminal for every output terminal. In other words, an all-pairs shortest-path algo-
rithm [Floyd, 1962; Warshall, 1962] is required. Compared to the previous method,
many more constraint edges may be generated since n-long path redundancy is not
taken into account.

Figure 7.8 shows the labels and generated constraint edges that correspond
to the classical labeling method. Compared to the relevant-path labeling method,
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clock period 1 =2.0

Figure 7.7. An example of an SFG with labels corresponding to a timing anal-
ysis starting at the output terminal of operation a. The first two labels, W and
D, are produced by the relevant-path labeling method, while the third, W — % is
added here to identify the shortest paths. Constraint generation follows the paths
indicated by bold lines to which the labels correspond. One constraint edge is
generated from a to b, which is indicated by the dashed arrow.

clock period © =2.0

Figure 7.8. An example of an SFG with labels corresponding to a timing analysis
starting at the output terminal of operation a. The labels are produced by the
classical labeling method. Constraint generation follows paths indicated by bold
lines to which the labels correspond. Two constraint edges are generated, which
are indicated by the dashed lines, of which the constraint from a to 4 is redundant.
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one additional constraint edge is generated; cf. Figure 7.7. This constraint edge
corresponds to the path from the output terminal of operation a via operation ¢ to
an input terminal of operation d. This path is different from the relevant path from
the output terminal of operation a via operation b and c¢ to the same input terminal
of d.

Clock-period-limited labeling A disadvantage of both methods presented above
is that an instance of an all-pairs shortest path problem must be solved. When the
delay of the longest path in an SFG is (considerably) greater than the clock period,
it is very likely that not all input terminal labels are used, because during constraint
generation the search depth is limited by the clock period. We present a new la-
beling algorithm that is based on subpath redundancy as stated by Theorem 7.1.
The algorithm avoids unnecessary labeling by taking the clock period into account
such that the number of visited input terminals during labeling is reduced. The al-
gorithm labels only input terminals that have a delay smaller or just greater than the
clock period. Although this labeling method is more run-time efficient, it may gen-
erate more redundant constraint edges than do the previously presented methods.
This can be explained as follows. Not all paths incident with an input terminal are
known, only those that have a delay smaller or just greater than the clock period. If
for one of the known paths a corresponding constraint edge is generated, it is pos-
sible that this constraint edge is redundant with respect to one of the corresponding
constraint edges of the unknown paths to the input terminal. Therefore, redundant
constraint edges may be generated if we only search for paths that are just longer
than the clock period. Since the search depth of the CONSTRAINT_GENERATION
algorithm is limited by the clock period, unlabeled input terminals are not visited
in that step. Figure 7.9 shows the labels and generated constraint edges that cor-
respond to the clock-period-limited labeling method. Compared to the previous
two labeling methods, additional constraint edges are generated; cf. Figures 7.7
and 7.8.

7.3.3 Efficient labeling

The run-time efficiency of both the classical labeling algorithm as well
as the clock-period-limited labeling algorithm can be improved by using
more efficient path analysis algorithms.  Here, we discuss the efficient
CLOCK_PERIOD_LIMITED_LABELING algorithm; see Figure 7.10. It can easily
be generalized to a classical labeling algorithm. Both labeling methods compare
labels in two steps, first the weight label and then the delay label. The weight la-
bels are based on the signal edge weights, which in many cases are restricted to
positive values. This implies that the unretimed SFG already must have a causal
behaviour, i.e., for each e € E,w(e) > 0. Consequently, an efficient algorithm like
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clock period £ =2.0

Figure 7.9. An example of an SFG with labels corresponding to a timing analysis
starting at the output terminal of operation a. The labels are produced by the clock-
period-limited labeling method. Note that one input terminal is left unlabeled.
Constraint generation follows paths indicated by bold lines to which the labels
correspond. Three constraint edges are generated and are indicated by the dashed
line; two of them are redundant.

DIJKSTRA’S, as discussed in Section 4.2.2, can be used to label the input terminals
with weight labels. Only an input terminal is labeled that has a shortest path to it
with a delay smaller or just greater than the clock period. Therefore, when an input
terminal is labeled with the weight of a shortest path to it, it is also labeled with
the delay of that shortest path. If an input terminal is labeled with a delay greater
than the clock period, the analysis can be stopped from that input terminal. Note
that at this stage, the delay label of an input terminal does not necessarily represent
the delay of the minimum-weight path to it that has the largest delay. It represents
only one of the delays of the minimum-weight paths to it.

The delay labels that will be used by constraint generation have to be deter-
mined in the second step. As a result of the first step, all paths from the starting
output terminal with a minimum weight and a delay smaller or just greater than the
clock period are known. From a set of reconvergent paths with minimum weight,
the one with the largest delay must determine the delay label of the input terminal
at which the reconvergent paths end. The delay labeling only needs to be per-
formed on a part of an SFG, as can be seen as follows. The delay labeling part
of the algorithm only has to walk on minimum-weight paths in an SFG. Since we
assume that no negative-weight feedback loops are present in an SFG, the opera-
tions on the minimum-weight paths can be sorted in topological order. Moreover,
only those operations that have input terminals that are labeled with weights, i.c.,
input terminals that have a finite weight label, have to be sorted. For topological
sorting, only those edges need to be considered that lie on a minimum-weight path.
Therefore the delay labeling can be done efficiently by a longest path algorithm on
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a topologically ordered set of a reduced number of operations traversing a reduced
number of edges.

Shenoy & Rudell [1994] also apply clock-period-limited labeling. They recog-
nize the use of the DIJKSTRA’S algorithm for the weight labeling, but for the delay
labeling they make no use of the a-cyclic nature of the graph consisting of nodes
with equal weight labels. Instead of topological sorting followed by labeling, they
use the less efficient MODIFIED_LABEL_CORRECTING algorithm, as discussed in
Section 4.2.2.

The CLOCK_PERIOD_LIMITED_LABELING algorithm can be generalized to a
classical labeling algorithm by assuming an infinite value for the clock period.
Then, the real clock period value can be accounted for during constraint generation.

7.4 Experimental results

We implemented the efficient variants of the classical labeling and clock-period-
limited labeling methods and used them for generating some results. Although
we do not have an implementation of the relevant-path labeling method, we can
bound the number of constraint edges it would generate in the following way.
First, we use the CLOCK_PERIOD_LIMITED_LABELING algorithm followed by the
CONSTRAINT_GENERATION algorithm to determine a set of constraint edges. Sec-
ondly, we remove all constraint edges from the set that do not lie on a shortest
path between two operations, where a path consists of constraint edges and its
length is the total weight of the edges. The resulting number of constraint edges
is an upper bound on the number of constraint edges that a relevant-path labeling
method would have derived. The three methods are applied to two SFGs: G; and
Table 7.1.  Characteristics of two SFGs and the results of applying three
constraint derivation methods to them. The CPU time of the relevant-path
derivation run corresponds to a bound computation, which consists of the

CLOCK_PERIOD_LIMITED_LABELING followed by a shortest path algorithm to re-
move redundant constraints.

G1 G,

V| 7512 13002
clock period (ns.) 21 24
longest path delay (ns.) 159 150

|F| CPU time |F| CPU time
relevant-path (upper bound) 73,260 45°40” 186,303 | 2h11°49”
classical 302,818 34’417 800,784 | 1h45°19”
clock-period-limited 302,994 2’307 803,188 5°05”
V| x |V] 56,430,144 169,052,004

G». Table 7.1 shows the results. From the ratios between the clock period and the
delay of a longest path in an SFG it can be concluded that both retimed SFGs must
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Timing Analysis

procedure CLOCK_PERIOD _LIMITED LABELING
in an SFGG,
timing functions w, del, dat, drt,
a clock period 7,
an output terminal o;
outlabels W and D;
begin for each i € /
begin D(i) = 0.0;
W (i) = oo}
end;
I=0;
for each i € I withe = (0,i) € E
begin D(i) = drt(0) + dat(i);
W (i) = w(e);
if D(i) < 1 then Z =T U{i};
end;
while Z £ @&
begin get i1 € Z with W(i3) > W(i;) for each i3 € Z;
1= I\ {i1};
for each iy € I for which there exists an 01 € O with
e= (Ol,ig) € E and del(il,ol) #N)
if W(iz) > W(i1) +w(e) or
(W(ip) =W(iy) + w(e) and

D(ip) < D(i1) — dat(iy) + del(iy, 01) + dat(i)) then
begin D(ip) = D(iy) — dat(iy) + del(iy, 01) + dat(ig);
if D(ip) < tand W(iy) = o thenZ =ZU{i»};
W (i) = W(iy) +w(e);
end;
end;
topologically sort labeled input terminals into list Z;
while L # @
begin get first i} € L;
L=L\{ii};
for each i) € I for which there exists an 01 € O with
e= (01,i2) € F and
del(il,()l) #N and
W(iz) = W(i1) +w(e))
if D(i) < D(i1) — dat(iy) + del(iy, 01) + dat(i>) then
D(ip) = D(iy) — dar(iy) + del(iy, 01) + dat(in);
end;

end;

Figure 7.10. The CLOCK_PERIOD_LIMITED LABELING algorithm.
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be pipelined. The CPU times are obtained on a 124 MIPS workstation. The size
of a matrix representation of the shortest paths between all pairs of operations as
originally proposed by Leiserson, Rose & Saxe [1983] is also given in the table.

From the results we conclude that for the two SFGs, clock-period-limited la-
beling is about 20 times faster than classical labeling at the cost of a marginal
number of additional redundant constraints. Furthermore, relevant-path labeling
will derive more than 4 times fewer constraints than clock-period-limited labeling
and classical labeling. Representing constraints between all pairs of operations
requires almost 1000 times more memory space.
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Retiming

From Chapter 3 we recall that the synchronous generalized retiming problem
(SGRP) can be formulated as follows.

Definition 8.1 (synchronous generalized retiming problem (SGRP)). Given
are a union £G of source ESFGs £G; with folding factors f;, i = 1,...,N, a type
set T, a type function £, a weight w, the cost of a register o, an operator allocation
al, and an operator assignment as. The problem is to find a PU G’ constructed by
a retiming r, a register allocation ra, a multiplexer allocation ma, and the given al
and as, for which

(iv) € = ((as(v),a),(as(u),b)) € E" and

w(€) =w,(e) for each e = ((v,a), (u,b)) € E,

and

(v) ph(u) # ph(v) for each u, v € V; with
as(u) = as(v), and
u # v, and
foreachi=1,...,N, and

(ix) ra(d')+ ra(i') > w,(€) for each ¢ = (0',7) € E', and

(xiii)y w(f) >0 for each f € F, and

127
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that minimizes

oY, ra(t) + B Y, ma(i).

teT i€l
O

Because SGRP is NP-hard, it is believed that no polynomial time algorithm can
be constructed that solves to optimality practical instances of SGRP, which have a
large size. This implies that we need to search for effective and efficient approx-
imation algorithms. On the other hand, we know that SRP, which is the special
case of SGRP for retiming one unfolded source ESFG, can be reduced to the dual
of the network flow problem and, consequently, it can be solved in polynomial
time by, e.g., the MINIMUM_COST_MAXIMUM_FLOW algorithm. This motivates us
to search for applications of this kind of algorithms to find an approximation in
reasonable time. In this chapter we present an approximation method using the
SIMULATED_ANNEALING algorithm based on network-flow algorithms. The use
of the SIMULATED_ANNEALING algorithm to find approximations for a special
case of SGRP, with f; = 1 foreach i=1,... N, has been reported before by Van der
Werf, Aarts, Heijnen, Van Meerbergen, Verhacgh & Lippens [1993].

The use of the SIMULATED_ANNEALING algorithm presupposes the definition
of a solution set, a cost function, and a neighborhood structure, which are discussed
in Section 8.1, 8.2, and 8.3, respectively. Section 8.4 discusses the use of the SIM-
ULATED_ANNEALING algorithm based on network-flow algorithms. In Section 8.5
we show experimental results.

8.1 Solution space

For SGRP, we define the solution space S as the set of all possible PUs constructed
by a feasible retiming, i.e., a retiming that satisfies the timing constraints (xiif)
and the phase constraints (v). Although the register allocation and the multiplexer
allocation have to be determined as well, this is considered a part of the cost eval-
uation as is discussed in Section 8.2. There it is shown that, given a retiming, an
optimal multiplexer allocation and an optimal register allocation can be found in
polynomial time.

Straightforward scheduling or retiming algorithms can be used to determine a
start solution. However, in practice, applying the SIMULATED _ANNEALING algo-
rithm starting at far from optimal solutions yields bad results. Therefore, we make
use of network-flow algorithms to determine a start solution, taking the cost of the
PU into account. This is done in a way similar to that for SRP, which can be solved
in polynomial time using network-flow algorithms. In our approach instances of
the network flow problem are identified for retiming at the source level and for
retiming at the target level.
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A start solution is generated in two steps. In the first step the timing constraints
are satisfied. In the second step the phase constraints are satisfied, while main-
taining the timing constraints. Although the solution space is defined such that the
multiplexer allocation and register allocation are determined in the cost evaluation
step, they are taken into account for the determination of a start solution.

8.1.1 Timing constraint satisfaction

A retiming that satisfies the timing constraints is determined by a combination of
retiming at the source level and retiming at the target level as is discussed in more
detail at the end of this section. To this end, we alternate between retiming a source
ESFG and retiming the target ESFG. This enables us to take the result of previously
retimed source ESFGs into account for the retiming of a next source ESFG.

Source level retiming

The first problem that we identify and map onto the network flow problem concerns
the retiming of one of the source ESFGs that are mapped onto a target ESFG. In
this case we disregard Constraints (v), so the resulting retiming may cause phase
conflicts. The register sharing between edges of different source ESFGs is taken
into account since we assume that other source ESFGs may determine the register
allocation in the target ESFG. Since these registers are already required in the target
ESFG, they come for free for the source ESFG under consideration, and determine
a lower bound for the register allocation of corresponding terminals in that source
ESFG as follows.

ra(t) > ra.(t) foreacht € T,

where an ESFG £G and a register allocation bound ra., which is determined by
other source ESFGs, are given.

The multiplexer cost is difficult to express explicitly in the network flow prob-
lem; therefore we introduce a cost term which is based on the multiplicity of an
edge, which is defined as follows.

Definition 8.2 (multiplicity). Given are a union £G of source ESFGs £G;, i =
1,...,N, an operator allocation al, and an operator assignment as. The multiplicity
is a function 0 : E — IN, which is defined as follows.
8(e) = |{e= ((mya), (x,b)) € E|as(w) = as(u) and as(x) = as(v)}| — 1
for each e = (u,a), (v, b)) EE.

Now we can express the cost to be minimized in the network flow problem as

Z ra(t) + Z 0(e)(r(v) — r(u)).

teT e=((u,a),(nb))EE
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The first cost term is the total number of registers in the PU. The second cost term
is the sum of the changes in the weights of the source ESFG’s signal edges, each
of which multiplied by its degree of multiplicity. Minimizing the second term of
the cost function reduces the retimed weights of the edges, especially of those with
higher multiplicity. As a side effect, in practice, it is more likely that edges with
equal weights will be obtained, thus saving some multiplexers. Note that when
only one source ESFG is present, the multiplicity of the edges is equal to zero. As
a result, only the first term of the cost expression is present, which is identical to
the cost expression of SRP.

The problem of retiming one source ESFG when a register allocation bound
and multiplicities are given and of using the substitution function 7 as defined in
Definition 3.10, is defined as follows.

Definition 8.3 (synchronous retiming one ESFG problem (SREP)). Given are
an ESFG £G, a weight w, a register allocation ra., and multiplicities 6. The prob-
lem is equivalent to the following dual of the minimum cost flow problem. Find a
retiming r and a substitution function n, for which

r(u) — r(v) < w(f) for each f = (u,v) € F, and

n(i) — n(o) < —w(e) for each e = (0,i) € E, and

r(u) — n(o0) < —rac(o) for each 0 = (u,a) € O, and
n(i) — r(v) < —rac(i) for each i = (v,b) € I, and

that maximizes

2 r(MIOEW) =ZEW)]+ X (i) = Y, nlo)+

vev icl 0€0
6(e) (r(u) — r(v)).
e=((u,a),(wb))€E
O

The expression of the cost function is based on the substitution function »n and
retiming r instead of on the register allocation ra. It results from a reformulation
that is analogous to the one used in the proof of Theorem 3.11.

Target level retiming

The second problem that we identify and map onto the network flow problem is
the retiming of the operators of the target ESFG, which is equivalent to SRP. In
Chapter 3 we showed that SRP can be mapped onto a network flow problem. There,
it was assumed that the constraint set F resulted from a timing analysis of the SFG.
Here, we derive the constraint set for the target ESFG £G’ from the constraint set of
the union ESFG £G of source ESFGs, by creating an edge f' = (as(u),as(v)) € F'
with w( ') = w(f) for each (u,v) € F, where as is the operator assignment used
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to construct the target ESFG. In this way the speed constraints only correspond
to real paths. In order to determine a retiming of the target ESFG such that each
path, whether false or real, between two registers must have an asynchronous delay
less than the clock period, a timing analysis of the target ESFG must follow after a
solution has been found of SGRP. This was discussed in more detail in Chapter 3
on page 45.

It is characteristic for retiming at the target level that the multiplexer cost re-
mains the same. A disadvantage of target level retiming is that it can leave registers
redundant; see Figure 8.1. This is due to the possible presence of reconvergent
paths at the target level that do not correspond to real paths in the source ESFGs.
If the reconvergence of paths is caused by the operator assignment, source level re-
timing can change the retimed weights of the paths independently from each other,
whereas target level retiming equally changes the retimed weights of the paths.

@ ®)

Figure 8.1. An example of source and target level retiming with two source
ESFGs that are mapped on a target ESFG. In (a) the initial source ESFGs as well
as the PU are shown. In (b) the source and target ESFG are shown after retiming
at the source level. In (c¢) the result is shown after retiming the target ESFG of
(a). The cost after retiming at the target level is greater than the cost after retiming
at the source level, since two registers are trapped” by each pair of reconvergent
paths.
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Combining source and target level retiming

We determine a retiming that satisfies the timing constraints by sequentially re-
timing the source ESFGs, one at a time; see Figure 8.2. To this end, we alternate
between retiming a source ESFG, by solving an instance of SREP, and the tar-
get ESFG, by solving and instance of SRP. The source ESFGs are handled in a
round-Robin fashion. We continue with solving instances of SREP and SRP un-
til no improvement in cost is achieved. The register allocation that results from a
target level retiming is used as the register allocation in the subsequent instance
of SREP to retime the next source ESFG. Iteratively retiming the operations of a
source ESFG results in retimed weights as follows:

wi(e) = wle) + 2 (r;(v) — rj(w) + 251 (rj(as(vi) — rj(as(u)))

for each e = (u,v) € E,

where r;(u) is the retiming of an operation u € V; in iteration j, R is the number of
times an instance of SREP corresponding to £G;, with i = 1,..., N, is solved and
P is the number of times an instance of SRP is solved.

procedure TIMING_CONSTRAINT_SATISFACTION
in aunion £G of N source ESFGs £G;,
a weight function w,
a target ESFG £G’ defined by an operator allocation al, and
an operator assignment as;
outa retiming r of operations of the union and target ESFGs;
begin new_cost = oo}
repeat old_cost = new_cost;
fori=1toN
begin solve instance of SREP to obtain a retiming r for source ESFG £G;;
solve instance of SRP to obtain a retiming r for target ESFG £G';
end;
determine new_cost;
until old_cost < new_cost;
end;

Figure 8.2. The TIMING_CONSTRAINT_SATISFACTION algorithm.

The iterative nature of solving instances of SREP and SRP makes the applica-
tion of the OUT_OF_KILTER algorithm of Figure 4.7 suitable. Using this algorithm,
a solution is not computed from scratch in every iteration; only the changes in the
instances with respect to a previous computation of a solution are taken into ac-
count. The changes for the instances of SREP are in the register allocation, which
may have been altered by a target level retiming. The weights of the edges are also
affected by a target level retiming, but this can be considered as a reweighting, as
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discussed in Section 4.2.4. The changes for the instances of SRP are in the weights
of the constraint and signal edges with respect to the original weights wy, i.€.,

w(e') =wo(e)+r(v)—r(u)  foreach ¢ = ((as(u),a),(as(v),b)) €EE,

w(f) = wor(f) +r(v) —r(u)  foreach f' = (as(u),as(v)) € F.
The application of the OUT_OF_KILTER algorithm requires that during a run of the
TIMING_CONSTRAINT_SATISFACTION algorithm the primal and dual solutions be
stored for instances of the network flow problems SREP for every source ESFG
and for an instance of SRP for the target ESFG.

After iteratively retiming using the OUT_OF_KILTER algorithm, the retimed

weights of the signal edges of the source ESFGs are determined as follows:

wr(e) = wor(e) + r(v) — r(u) + r(as(v)) — r(as(u)))

for each e = (u,v) €EE.

Note that here we have only one retiming of an operation at each level, whereas
if every instance of SREP and SRP were computed from scratch the retiming of
every iteration would have to be accumulated.

8.1.2 Phase constraint satisfaction

Starting from a solution that satisfies the timing constraints (vi), we next retime
each operation to an execution time at which it does not cause a phase conflict,
in the following way. We confine the possible retiming of an operation to a set
called freedom. The freedom of an operation can be informally defined as the range
in which the operation can be retimed without violating the timing constraints.
We extend the freedom of an operation if the freedom contains only retimings
that cause phase conflicts. To extend the freedom, we make use of network-flow
algorithms for retiming at the source level and retiming at the target level, while
taking the cost of the PU into account. This is done in a way similar to that in the
previous section, but here we create additional constraint edges, in order to extend
the freedom of an operation. The retiming at the source and target levels by means
of network-flow algorithms is performed in such a way that phase constraints that
are satisfied are not violated again. First we discuss the application of network-flow
algorithms. Next we discuss the freedom extension and the phase conflict removal.

Applying network-flow algorithms

For retiming at the source level, we restrict the source level retiming to multiples of
£, the folding factor of the source ESFG £G at hand. This restriction implies that
phase conflicts that are satisfied are not violated again. This retiming is indicated
by a subscript f. Consequently, the following equalities hold:

w(e) = w(e) + f(re(u) — re(v))  for each e= ((u,a),(v,b)) € E, and
w,(g) = w(g) + f(re(u) — re(v)) ~ foreach g = (u,v)) EF.
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A problem that can be mapped onto the network flow problem is to retime a
source ESFG in the same way as described in Section 8.1.1, but with the restriction
that only multiples of the folding factor can be retimed. To this end, we introduce a
substitution function ny, which is defined for each terminal, in a way similar of that
for the reduction of SRP to a network flow problem as discussed in Section 3.3.4.
The relation between a register allocation ra, a retiming (of multiples) r¢ and the
substitution function ¢ is the following:

fre(@) = fre(v) — ra(i) for each i = (v,b) € I, and

fns(o) = fre(u) + ra(o) for each 0 = (u,a) € O.
The problem is defined similarly to SREP, although the cost function is a factor f
smaller.

Definition 8.4 (synchronous multiple retiming one ESFG problem (SMREP)).
Given are an ESFG £G, a weight w, a folding factor f, a register allocation ra,
and multiplicities 8. The problem is equivalent to the following dual of the
minimum cost flow problem. Find a retiming r¢ and a substitution function rg, for
which

re(u) — re(v) < [Tg] for each g = (u,v) € F, and
ne(i) — ne(0) < f we ] for each e = (0,i) € E, and
re(u) — ni(o) < [ ] for each 0 = (u,a) € O, and
ne(Q) — re(v) < - )] for each i = (v,b) € I, and

that maximizes

2 (MIOEE) —=Z(EWN]+ X a()) — X, ne(o)+

veV i€l 0€0
6(e) (re(v) — re(u)).
e:((“7a)1(vab))EE
O

Multiple retiming one source ESFG was identified before by Potkonjak & Rabaey
[1989] as a transformation to be used in combination with other scheduling tech-
niques.

The second application of network-flow algorithms in the context of phase con-
straint satisfaction is to solve an instance of SRP for a target ESFG, as discussed in
Section 8.1.1. It changes the phase of operations, but phase constraints that have
been satisfied, do not become violated again.
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Freedom

To determine a retiming that satisfies the phase constraints, a retiming of an oper-
ation at either level is not allowed to violate a timing constraint. This is ensured
by confining the possible retiming of an operation to a set called freedom, which is
defined as follows.

Definition 8.5 (freedom). Given are an ESFG £G and a weight w. The free-
dom is a set fr, such that fr(u) = {riow(u),..., hign(u)}, where rioy(u) =
- minf=(v,u)€F W(f) and rhigh(u) = minf:(u,v)EF W(f) O

Note that when u is an input operation, riow(#) = —eo, and when it is an output
operation, rhjgn (1) = oo.

To determine a retiming that satisfies the phase constraints, we may need to
retime an operation such that its execution is assigned to a given phase. If the re-
quired retiming is not inside the operation’s freedom, then we extend the freedom.

Freedom extension for an operation can be done by introducing some ex-
tra constraint edges into the ESFG that embodies it. The extra constraints are
placed between every predecessor and every successor of the operation of which
the freedom must be extended. Suppose that we extend the freedom of an op-
eration u from {riow(u), .., rhign(u)} to the new range {rjg,, (1), .., Mg ()}, with
Thigh (#) = Fow (#) = R+ Frign(4) = riow(u). Then the extra constraint edge f = (g, s)
between a preceding operation ¢ of operation u and one of its successors s must
get a weight w(f) = —h. After the extended freedom has been used, the extra
constraint edges become superfluous.

Figure 8.3 presents in a pseudo programming language the algorithm that
moves an operation from a phase with conflicts to a free phase. The algorithm
picks out of the operations that cause phase conflicts the one with the highest pri-
ority. The priority of an operation is the sum of the multiplicities of all signal edges
that are incident to the operation. With this definition, it follows that an operation
has a higher priority if its retiming is expected to affect to a larger extent the multi-
plexer cost. Freedom extension for the retiming of an operation is continued until
a free phase for the operation has been found.

The iterative nature of solving instances of SMREP and SRP during a run of
PHASE_CONFLICT_REMOVAL makes the application of the OUT_OF_KILTER algo-
rithm suitable. For SMREP the change in an instance with respect to a previous
computation of a solution is in the register allocation and in the retimed weights
of edges, which may be altered by a target level retiming and by the retiming that
removes a phase conflict. Furthermore, the weights are adjusted with respect to
the original weights w,, because of the retiming of operations to a non-occupied
phase, i.e.,
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procedure PHASE_CONFLICT _REMOVAL
in aunion £G of N source ESFGs £G;,
folding factors f;,
a weight function w,
a target ESFG £G' defined by an operator allocation al, and
an operator assignment as;
outa retiming 7y of operations of a source ESFG £G; and
a retiming r of operations of the target ESFG;
begin while a phase conflict exists
begin select operation u that causes a phase conflict and which has a maximum priority ;
while « cannot be retimed to a free phase
begin add extra constraint edges to extend freedom;
solve instance of SMREP to obtain
a retiming ry for source ESFG £G; with u € V;;
solve instance of SRP to obtain
a retiming r for target ESFG £G';
end;
retime « to a free phase;
remove extra constraint edges used to extend freedom,;
end;
end;

’

Figure 8.3. The PHASE_CONFLICT_REMOVAL algorithm.
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w(e) = wor(e) + r(v) — H(u) + r(as(v)) — r(as(u))
for each e = ((u,a),(1, b)) € E, and
w(f) = wor(f) + r(v) — r(u) + r(as(v)) — r(as(u))
for each f = (u,v) € F.
For SRP the change is in the weights of the constraint and signal edges correspond-
ing to each of the source ESFGs £G;, withi=1,...,N, i.e.,
w(e) = wor(€) + r(v) — r(u) + fi(re(v) — re(u))
for each ¢ = ((as(u),a), (as(v),b)) € E',
w(f) = worlf') +r(v) — r() + fi(re(v) — re(w))
for each f' = (as(u),as(v)) € F',
where u,v € V;. The influence of the target level retiming cannot in this case be
considered as a reweighting, as it was discussed in Section 4.2.4. Retiming an
operation of an ESGF £G; can only be done in multiples of f;, and these may only
become possible when target level retiming increases the retimed weight of an edge
to at least a next multiple of f;.

The application of the OUT_OF_KILTER algorithm requires that the primal and
dual solutions be stored for instances of the network flow problems SMREP for
every source ESFG and for an instance of SRP for the target ESFG. By applying
the OUT_OF_KILTER algorithm, a new retiming can be efficiently computed at the
source and target levels such that the extra constraints are satisfied and, conse-
quently, give the operation the required freedom.

After iteratively retiming, using the OUT_OF_KILTER algorithm, the retimed
weights of the signal edges of each of the source ESFGs £G;, withi=1,...,N, are
determined as follows:

wi(e) = wor(€) +r(v) — r(u) + fi(re(v) — reu)) + r(as(v)) — r(as(u)))
for each e = (u,v) € E;.
Note that the retimed weight must be used to determine the freedom when the
source and target ESFG have been retimed. Furthermore, the weight of an extra
constraint edge f = (g, s) € F; must be adjusted for an already existing retiming as
follows:

w(f) = —h+r(q) — r(s) + fi(re(q) — re(s)) + r(as(q)) — r(as(s)),
where the contribution of all three kinds of retiming, i.e., retiming and multiple
retiming at the source level and retiming at the target level, are taken into account
and the extra freedom is 4.

8.2 Cost

The cost of a solution is determined by a register allocation and a multiplexer
allocation. In case we have solved an instance of SRP to determine a retiming of
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the operations in the target ESFG, the register allocation follows directly from the
resulting solution. However, it is also possible to compute efficiently the register
cost without retiming the operations of the target ESFG. From SRP the problem
of finding a minimal register allocation given the retiming of operations can be
derived in a straightforward fashion, which results in the following problem.

Definition 8.6 (register allocation problem (RAP)). Given are an SFG G and a
weight w. The problem is to find a register allocation ra, for which

ra(i) + ra(o) > w(e) for each e = (0,i) € E, and
ra(t) >0 foreacht € T, and

that minimizes

Y ra(t).

teT
O

RAP is equivalent to the dual of the maximum-weight bipartite matching problem
(MWBMPD) of Definition 4.6. Consequently, it can be reduced to NFPD and,
as discussed in Section 4.2.5, it can be solved in polynomial time by, e.g., the
MINIMUM_COST_-MAXIMUM FLOW algorithm. Moreover, when slightly different
instances of RAP have to be solved repeatedly, the OUT_OF_KILTER algorithm can
be applied in order to compute the solutions more efficiently, in an incremental
way.

Note that the instance of RAP that corresponds to an ESFG does not necessarily
contain a connected graph G. Therefore, it may be partitioned into a number of
instances of RAP, each of which contains a connected graph, corresponding with a
component of G.

The multiplexer cost can be computed by inspecting the input terminals of the
operators, according to Definition 2.18. In conclusion, the cost can be computed in
polynomial time.

8.3 Neighborhood structure

The neighborhood structure is defined in such a way that a cost improvement can
be achieved and the timing and phase constraints are maintained. The local search
algorithm may step from one solution to a neighbor with two types of moves. The
first one is done by retiming a single operation with a retiming within its freedom
and to an unoccupied phase. The second type of move consists of retiming two
operations from the same source ESFG that are assigned to the same operator,
such that they switch their phases. The retiming values of the two operations must
be inside their freedom. The neighborhood structure is formally defined as follows.
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Definition 8.7 (retiming neighborhood structure). Given are a union £G of
source ESFGs £G; with folding factors f;, i = 1,...,N, a weight w, a retiming
r, and an operator assignment as. The retiming neighborhood structure (N, retiming )
is given as follows. The neighborhood Nigiming(r) of a retiming r is the set of all
retimings r*, implying phases ph® and freedoms fr®,

(1) for which there is an operation v € V; withi = 1,..., N, satisfying

r*(v) € fr(v) and
ph*(w) # ph*(v) for each w € V;\ {v}.
*(w)=0 foreach w € V\ {v}, or

(ii) for which there is one pair of operations u,v € V; with u # v, as(u) = as(v),
and i=1,...,N, satisfying

r*(u) € fr(u) and r*(u) € fr*(u) and
r*(v) € fr(v) and r*(v) € fr*(v) and
ph*(u) = ph(v) and
ph*(v) = ph(u) and
r*(w)=0 foreach w € V\ {u, v}.

O

A straightforward generation of a solution from a neighborhood is to randomly
select one or two operations from one of the source ESFGs and randomly select
a retiming that meets the constraints of the neighborhood. When applying such a
generation, a careful examination of the results shows that many steps are made
that do not change the cost. The cause of this is that the change in the cost is
affected mainly by retiming operations incident to an edge of which the (retimed)
weight determines a register allocation; see Figure 8.4. This motivates us to search
for ways to increase the probability that a neighbor is selected that improves the
cost. In Chapter 5 it was discussed how the experience obtained with applying the
SIMULATED_ANNEALING algorithm for the operator assignment problem led to a
reduced neighborhood structure. There it was possible to exclude neighbors that
cannot lead to a cost improvement. Here we do not exclude neighbors, but we bias
the generation of neighbors that are more likely to have a better cost. Therefore,
the generation of a neighboring solution is done such that operations are favoured
that are incident to an edge of which the (retimed) weight determines a register
allocation. To this end, we partition the set of signal edges of the source ESFGs
into three disjoint sets in the following way.

Definition 8.8 (edge partition). Given are a union £G of source ESFGs £G;, i =
1,...,N, aregister allocation ra, and an assignment as. The sets of critical edges,
non-critical, and zero-weight edges are given as follows:
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(@ ®) (©)

Figure 8.4. An example of two source ESFGs and the PU on which they are
mapped. The initial situation is shown in (a). After retiming operation A2 of the
bottom source ESFG one clock cycle earlier, the PU of (b) results. This PU has
the same register cost as the PU of (), since the weights of the edges connected to
operation A2 of the bottom source ESFG do not determine the register allocation.
After retiming operation /1 of the top source ESFG in () one clock cycle later, the
PU of (c) results. This PU has a lower register cost than the PU of (a), since the
weight of the edge connected to operation /1 determines the register allocation.
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E.={e= ((u,a),(wb)) € E|w(e) = ra((as(u),a)) + ra((as(v), b)) # 0},
En. = {e=((u,a),(,b)) € E|0< w(e) < ra((as(u),a))+ ra((as(v),b))},
E,w = {e € E|w(e) = 0}.

O

The generation of a neighboring solution is now performed in a number of steps.
In the first step one of the edge sets E.. or £y is randomly selected. In the next step
an edge is randomly selected from this set. After an edge is selected, an operation
is chosen at random from one of its ends. The algorithm searches a free target
phase that is reachable within the freedom of the operation. If this fails, then the
algorithm tries to find another operation that is assigned to the same operator and
to retime both the operations such that they switch phases. These retimings must
lay within their freedoms. If this is not possible, then the algorithm returns without
performing any retiming.

There are two reasons not to restrict the neighborhood to operations connected
to a critical edge, but still to generate solutions by retiming operations connected
to non-critical edges. The first reason is that the multiplexer allocation can only be
changed by retiming operations if it affects the weights of edges running between
the same input and output terminals. If the weights are different, retiming an op-
eration connected to one of the edges may make the weights equal, resulting in a
reduction of the number of multiplexers; see Figure 8.5. The criticalness of such
an edge is of no influence here.

(@ ®

Figure 8.5. An example of three source ESFGs that are mapped on a PU before
retiming the middle source ESFG (a) and after retiming the middle source ESFG
(b). Changing the weight of the non-critical edge of the middle source ESFG by
retiming affects the multiplexer cost of the PU.

The second reason to consider non-critical edges is that, given a retiming, dif-
ferent register allocations may exist with the same cost, but resulting in a different
partition of the edges in critical, non-critical, and zero weight edges. An exam-
ple of two register allocations resulting in different sets E., Eyc, and E,y is given
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in Figure 8.6. If an edge is non-critical, a reduction of its weight does not influ-
ence the register allocation. However, if another register allocation for the same
retiming would make the edge critical, then its weight must be reduced in order to
decrease the register cost. Therefore, the selection of non-critical edges increases
the probability that the register cost is reduced.

(@) ® (©

Figure 8.6. An example of three source ESFGs (a) that can be mapped on two
PUs (b) and (c) with the same cost but different register allocations. The PU of
(b) has a register allocation such that the edge of the middle source ESFG of (a)
is critical, whereas the PU of (c) has a register allocation such that the edge of the
middle source ESFG is not critical.

We do not have to start a generation at a zero weight edge, since no registers
are allocated to implement its (retimed) weight. Maybe its retiming can save a
multiplexer, but then another edge between the same input and output terminals is
certainly critical or non-critical. Such an edge may be a starting point for the gen-
eration of a neighboring solution and its weight may be decreased. Consequently,
the possibility that a multiplexer is saved is not affected by not starting a generation
at the set of zero weight edges.

8.4 Simulated annealing

Now that we have given the solution space, the generation of a start solution,
the cost computation, and the neighborhood structure we can apply the SIM-
ULATED_ANNEALING algorithm to approximate an optimal solution for SGRP.
The SIMULATED_ANNEALING algorithm as shown in Figure 4.2 is modified into
the RETIMING algorithm, which uses network-flow algorithms; see Figure 8.7.
Throughout a run of the RETIMING algorithm, a retiming solution consists of three
components: retiming and multiple retiming at the source level, and retiming at
the target level. The multiple retiming at the source level and the retiming at the
target level are results from network-flow algorithms. Since they are determined in
an iterative way, the OUT_OF_KILTER algorithm is ideally applied. The weights of
edges in the input for the runs of the OUT_OF_KILTER algorithm are determined in
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the same way as for PHASE_CONFLICT_REMOVAL, as discussed in Section 8.1.2.
Moreover, the OUT_OF_KILTER algorithm can be applied for all instances of SRP
within TIMING_CONSTRAINT_SATISFACTION, PHASE_CONFLICT_REMOVAL, and
RETIMING. The instances of SMREP within PHASE_CONFLICT_REMOVAL and
RETIMING can also be solved with the OUT_OF_KILTER algorithm.

procedure RETIMING
in aunion £G of N source ESFGs £G;,
folding factors f;,
a weight fanction w,
a target ESFG £G' defined by an operator allocation af, and
an operator assignment as;
outa retiming r of operations of the union and target ESFGs;
begin k = 0;
INITIALIZE(cg, Lo);
TIMING_CONSTRAINT_SATISFACTION(EG, w, G’ , as, r);
PHASE_CONFLICT_REMOVAL(EG, f,w,EG', as, Fhiseeer Pfys T
repeat
for =1 to L
begin
generate 7* € Nietiming (7):
solve instances of RAP to obtain register allocation ra;
compute multiplexer allocation;
compute delta_cost;
if delta_cost < 0 or exp( —a’%ckwost ) > random([0,1) then r=r*
else skip
end;
fori=1toN
begin
solve instance of SMREP to obtain a retiming 7, for source ESFG £G;
solve instance of SRP to obtain a retiming r for target ESFG £G';
end;
k=k+1;
CALCULATE_LENGTH(Ly);
CALCULATE_CONTROL(cy);
until stop criterion;
end;

Figure 8.7. The RETIMING algorithm.

To compute the register cost, the register allocation can be computed by solv-
ing instances of RAP. The operation assignment determines a partition of the graph
such that each part is a connected graph. An instance of RAP corresponds to each
part, which can be solved incrementally by the OUT_OF_KILTER algorithm. To
compute the cost of a generated solution, only those instances of RAP have to be



144 Retiming

solved of which the weight of an edge has been affected. At the end of a tempera-
ture step all weights can be affected and, consequenlty, all instances of RAP have
to be solved. Note that when more than one optimal solution exists, the register
allocation computed in this way may differ from the one following from a solution
to the instances of SRP.

The multiplexer cost can be computed incrementally during one temperature
step of the RETIMING algorithm. For a generated solution, the multiplexers are
only changed at input terminals that are incident to edges that are connected to
the retimed operations. Only when finding a solution to SMREP at the end of a
temperature step, a complete new computation of the multiplexer cost is performed,
since then all operations may have obtained a different retiming.

The generation of a neighboring solution requires an overview of the sets E,
and Ep.. These sets can also be maintained in an iterative way, since only edges
can change that are part of updated clusters of edges, each corresponding with an
instance of RAP.

To apply the OUT_OF_KILTER for the various instances of SMREP, SREP, SRP,
and RAP, the primal and dual solutions of the corresponding instances of the net-
work flow problem have to be stored throughout a run of the RETIMING algorithm.

8.5 Experimental results

As an example we use ISGRP1, which contains the same SFGs as used in instance
IOASP1 of OASP as defined in Section 5.1.3, concerning the mapping of a Discrete
Cosine Transform (DCT) and an Inverse Discrete Cosine Transform (IDCT) onto
one PU; see Figure 5.2. The two ESFGs are mapped onto one PU, each with a
folding factor of two. From the solutions of two previous steps, solving an instance
of OASP and solving an instance of ODP, it follows that the cost of the allocated
operators is 780 and the cost of multiplexers will be at least 322. The latter gives us
a lower bound of 322 area units. The clock period is such that no speed constraint
edges are present. If the two ESFGs are mapped without timefolding onto separate
PUs, then the cost, which consist of merely operators, is 1200 area units for each
PU. So, in that case the total total cost is 2400 area units, which can be considered
as an upper bound.

Results of the RETIMING algorithm for this example are listed in Table 8.1. Ex-
periments were performed using a fast cooling schedule starting at a low tempera-
ture as well as a slow cooling schedule starting at a high temperature. The former
schedule more or less results in an iterative improvement because the probability
that cost deteriorations are accepted is very low. Average values were obtained for
50 runs to average out statistical fluctuations of both algorithms. After the removal
of phase conflicts, the start solution has a cost of 839. The best solution has a cost



8.5 Experimental results 145

of 687, which is an improvement of 18%. If we subtract the lower bound from
these cost, the improvement is 29%. From the results listed in Table 8.1 we con-
clude that the RETIMING algorithm gives good solutions. Moreover, we see that
the acceptance of cost deteriorations, as is the case with a slow cooling schedule
starting at a high temperature, is important to give good solutions.

Table 8.1. Results of the RETIMING algorithm concerning the mapping of a DCT

and an IDCT with each a folding factor of two, onto a PU. Average values were
obtained for 50 runs.

cost cost — lower bound
(area units) (area units)
cooling settings || best | average | worst || best | average | worst
slow cooling 687 731 800 365 409 478
fast cooling 767 813 839 445 491 517
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Conclusions

We considered the design of area-efficient Processing Units (PUs) that can exe-
cute one or more functions, specified as Signal Flow Graphs (SFGs), in one or
more clock cycles and at a high clock frequency. An approach to designing PUs
is presented that uses a combination of multiplexing, timefolding, and retiming
techniques. Although the effect of each of the techniques, and certainly that of a
combination of them, on the area of the PU and the clock frequency at which it can
execute the SFGs cannot be well predicted in general, an efficient solution method
is presented that leads to near-optimal solutions.

In Chapter 2 processing unit design is formally presented as a combinatorial
optimization problem that is called the processing unit design problem (PUDP).
The formalization is supported by models of SFGs, PUs, and their timing be-
haviour. Furthermore, the relationship between SFGs and a PU on which they
can be executed is modelled in two parts. First the SFGs are related to a target SFG
by an assignment of operations in the source SFG to operations that are allocated
in the target SFG. The execution of an operation of a source SFG is retimed relative
to its initial execution time, which determines the number of clock cycles a signal
must be delayed. The allocation, assignment, and retiming of operations are the
main decision quantities in the processing unit design problem. In the second part
the target SFG is implemented by a PU through an allocation of registers and mul-
tiplexers for the communication between the allocated operators. This allocation

147
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can be considered as a sophisticated cost evaluation.

In Chapter 3 we proved that PUDP is NP-hard. To approach the problem,
we decomposed PUDP into the subproblems OALP, OASP, ODP, and GRP, of
which the latter is again subdivided into TAP and SGRP. These subproblems are
informally defined as follows. OALP is the problem of finding an allocation of
operations in the target SFG such that the cost of operators is minimal. OASP is the
problem of finding an assignment of operations in the source SFGs to operations in
the target SFG such that the cost of multiplexers is minimal. ODP is the problem
of finding a refined assignment and allocation based on an initial allocation and
assignment, while taking into account constraints concerning the absence of false
loops in the PU. The optimization goal of ODP is a minimum weighted cost of
multiplexers and operators. GRP is the problem of finding a retiming of operations,
such that two operations of one source SFG are executed in different phases if they
are executed on the same operator, and such that the PU can operate at the required
clock frequency. TAP translates the constraints expressed using the asynchronous
timing behaviour into constraints concerning the synchronous timing behaviour
involving the retiming of two operations in an SFG. SGRP is the problem to find
a retiming of operations, such that two operations of one source SFG are executed
in different phases if they are executed on the same operator, and such that the
synchronous timing constraints are satisfied. The optimization goal of SGRP is a
minimum weighted cost of multiplexers and registers.

OASP, ODP, GRP and SGRP are NP-hard, even for special cases where either
no multiplexing or no timefolding is involved. TAP and OALP can be solved in
polynomial time; the latter in a trivial way. TAP can be solved using a combination
of longest and shortest paths algorithms, which are a special kind of network flow
algorithms. Furthermore, SGRP has an interesting special case, SRP, concerning
the retiming of a single source SFG that is mapped on its own on a target SFG.
This special case can be solved in polynomial time, since it can be reduced to the
network flow problem.

In Chapter 4 we describe basic solution methods that we apply to PUDP. We
discussed two classes of algorithms: local search algorithms and network flow
algorithms.

Chapter 5 presents an approximation algorithm for OASP. It finds a near-
optimal operator assignment using simulated annealing or iterative improvement.
For the mapping of relatively small source SFGs onto a PU, both local search al-
gorithms give good results within acceptable run times by using straightforward
neighborhood structures based on one- and two-exchanges. We introduced re-
duced neighborhood structures to handle large problem instances that are based
on knowledge of the connectivity of PUs and careful examination of experimental
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results. These demonstrate the advantage of simulated annealing over iterative im-
provement when using the reduced neighborhoods. Then, the probability of getting
stuck in a local minimum is larger than when using the straightforward neighbor-
hoods.

Chapter 6 presents an approximation algorithm for ODP. The method is based
on a combination of simulated annealing and an algorithm that derives constraints
that prevent the occurrence of false loops in a PU. These constraints are derived in
an incremental way because the way constraints are defined makes many of them
redundant such that derivation of all constraints takes too much run time. Although
not all constraints are known at the beginning of a simulated annealing run, this
does not affect the quality of the solution. Since most complex circuits are detected
at high temperatures steps with high acceptance ratios, simulated annealing can still
balance the cost of operators and multiplexers very well.

In Chapter 7, solution methods for TAP are presented. We presented two al-
ternatives in addition to a classical constraint derivation algorithm following the
theory of Leiserson, Rose & Saxe [1983]. Both algorithms are based on the re-
dundancy of constraints. One algorithm derives fewer redundant constraints than
the other and consequently is more memory efficient, while the other allows more
redundancy but is more run-time efficient. The advantages of the new algorithms
over the classical one become more pronounced when the clock period is small
compared to the largest path delay in the SFG. We show that for instances where
the clock period is substantially smaller than the longest path in the SFG, the new
timing analysis for retiming is substantially faster than existing methods.

In Chapter 8 an approximation algorithm for SGRP is presented. The method is
based on simulated annealing in combination with network flow algorithms. Fea-
sible start solutions are obtained using network flow algorithms. Also the cost of
neighboring solutions is calculated by network flow algorithms. Since subsequent
instances of network flow problems must be solved that differ only slightly, the
efficient out-of-kilter algorithm is applied. Straightforward generation of solutions
from a neighborhood results in simulated annealing runs in which many steps are
made that do not change the cost. To make the algorithm more greedy, we in-
creased the probability of generating a neighboring solution that leads to a cost
improvement. In this case, we did not apply a reduced neighborhood structure,
since it is very hard to determine accurately cost improving neighbors.

We could have considered a different implementation of simulated annealing
in which a neighboring solution is generated and unconditionally accepted based
on an accurate overview of all neighboring solutions and their costs [Greene &
Supowit, 1986]. This is considered more complex, since it requires much compu-
tational effort to maintain such an overview for large neighborhoods. Furthermore,
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the neighborhood reduction for OASP and the biased generation for SGRP make
the application of simulated annealing very practical, such that there was no need
to search for different local search algorithms. The run times of simulated an-
nealing of the experiments described in this thesis are typical for the way we used
simulated annealing. However, simulated annealing is flexible in the sense that a
designer of processing units can make a trade-off between run times and quality
of results. Either better quality or faster run times can be achieved. Furthermore,
simulated annealing is complementary to heuristic constructive algorithms. These
algorithms can be used to generate start solutions in a first step, which simulated
annealing may improve in a second step.

Since the optimization goal of processing unit design is minimum area,
whereas the clock frequency is a constraint, the retiming technique is considered
the most important one since it yields at least a feasible PU. On the other hand, the
retiming step is the only step that can fail if a feasible solution cannot be found. In
many cases, an area reduction that can be achieved by resource sharing may not be
significant. In such situations, an IC designer may want to reduce the multiplexing
and/or the folding factor in order to find trade-offs between operator cost on the
one hand, and register and multiplexer cost on the other hand.
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Summary

The work described in this thesis concerns the design of area-efficient processing
units that can execute one or more functions in one or more clock cycles at a high
clock frequency. The functions are part of a signal-processing algorithm specify-
ing the behaviour of a digital electronic system. The processing units find their
application in video signal processors as part of an integrated circuit in silicon.

A formal model has been set up which is used to formally define the process-
ing unit design problem. Functions to be executed are modelled as signal flow
graphs consisting of operations that communicate via signals. A processing unit is
modelled as operators connected by a network of multiplexers and registers. Us-
ing this model, the processing unit design problem is formulated as a combinatorial
optimization problem, where the implementation cost of the processing unit is min-
imized. An analysis of the complexity of the processing unit design problem shows
that the problem is NP-hard. Consequently, the problem is decomposed such that
each of its subproblems is mainly involved with one of the three main decision
variables: allocation of operators, assignment of operations onto operators, and re-
timing (changing the time at which an execution takes place) of operations. The
complexity of each of the subproblems is analyzed, also for some special cases.

Near-optimal solutions of the subproblems can be found using algorithms be-
longing to the field of local search and network flow. Although the local search
algorithm simulated annealing can be readily applied without the use of much
detailed knowledge, we show that good solutions can only be obtained within
acceptable run times by using problem specific information. The minimum-cost
maximum-flow algorithm can be applied to determine a retiming. Furthermore, a
shortest path algorithm is used for timing analysis, and a maximum-weight bipar-
tite matching algorithm is used to compute the register cost of a processing unit.
Even when a subproblem of the processing unit design problem is mathematically
spoken easy and can be solved by, e.g., a network-flow algorithm, the solution
method is given attention for its time performance.

The algorithms described in this thesis are implemented in software. Results
from experiments are included in the thesis. Part of the solution method has been
successfully made into a product, a computer-aided design tool, for use by design-
ers of integrated circuits within Philips.
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Samenvatting

Het werk beschreven in dit proefschrift betreft het ontwerpen van oppervlakte-
efficiente verwerkingseenheden die in één of meer klokslagen één of meer functies
kunnen uitvoeren op een hoge klokfrekwentie. De functies maken deel uit van een
signaalbewerkingsalgoritme dat een digitaal electronisch systeem specificeerd. De
verwerkingseenheden worden toegepast in videosignaalbewerkers als onderdelen
van schakelingen die geintegreerd worden in silicium.

Een formeel model is opgezet dat is gebruikt om het verwerkingseenheidont-
werpprobleem te definieren. De functies die moeten worden uitgevoerd zijn gemo-
delleerd als signaalstroomdiagrammen bestaande uit operaties die met elkaar com-
municeren via signalen. Een verwerkingseenheid is gemodelleerd als operatoren
die met elkaar worden verbonden door een netwerk van multiplexers en registers.
Gebruik makend van het model drukken we het verwerkingseenheidontwerppro-
bleem uit als een combinatorisch optimaliseringsprobleem, waarbij de implemen-
tatiekosten van een verwerkingseenheid geminimaliseerd dienen te worden. Nadat
we d.m.v. een complexitieitsanalyse hebben aangetoond dat dit probleem NP-lastig
is, verdelen we het in deelproblemen zodanig dat een deelprobleem voornamelijk
betrekking heeft op één van de drie klassen van beslissingsvariabelen: de allocatie
van operatoren, de toewijzing van operaties aan operatoren, en de verandering van
de tijd waarop een operatie wordt uitgevoerd. De complexiteit van de deelproble-
men is geanalyseerd, ook voor speciale gevallen van deze.

Bij benadering optimale oplossingen van instanties van de deelproblemen kun-
nen worden gevonden door gebruik te maken van algoritmen uit het gebied van
,local search” en ,,network flow”. Ofschoon we het local search algoritme ,,si-
mulated annealing” direct kunnen toepassen zonder gebruik te maken van gede-
tailleerde kennis, tonen we aan dat goede oplossingen alleen binnen aanvaardbare
rekentijden kunnen worden verkregen door gebruik te maken van probleemspeci-
fieke informatie. Het ,,minimum-cost maximum-flow” algoritme kan worden toe-
gepast om veranderingen in de tijd waarop operaties worden uitgevoerd te vinden.
Bovendien wordt een ,,shortest path” algoritme gebruikt voor een tijdsanalyse en
een ,,maximum-weight bipartite matching” algoritme om de registerkosten van een
verwerkingseenheid te berekenen. Zelfs als een deelprobleem van het verwerkings-
eenheidontwerpprobleem wiskundig eenvoudig is en bijvoorbeeld kan worden op-
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gelost met een algoritme uit het gebied van ,,network flow”, wordt aandacht besteed
aan de rekentijd van het algoritme.

De beschreven algoritmen zijn geimplementeerd in software. Resultaten van
experimenten staan in dit proefschrift vermeld. Een gedeelte van de methode is
succesvol ingezet als een ontwerpgereedschap voor gebruik door ontwerpers van
geintegreerde schakelingen binnen Philips.
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Stellingen

behorende bij het proefschrift

Processing Unit Design

van

Albert van der Werf



Retiming is hetzelfde als scheduling.
II

De synchrone lengte W en de asynchrone lengte D van een pad in een digitaal circuit
kunnen worden gecombineerd tot één lengte % — W, waarbij T de periode van het
kloksignaal is.

[Dit proefschrift, hoofdstuk 7]

I

Algoritmen voor lastige problemen die gebaseerd zijn op iteratief verbeteren kunnen
eenvoudig worden aangepast tot simulated annealing wat de kans op betere resultaten
verhoogt.

v

Het oranje licht van verkeerslichten kan dermate verwarrend zijn met straatverlichting
dat het vervangen zou moeten worden door een andere kleur.

A\
Als mensen het sprekenderwijs over een probleem hebben betreft het meestal een
instantie.

VI

In het verplichte deel van het curriculum van de universitaire opleiding electrotechniek
moet meer discrete wiskunde.

vl
Alle optimalisatie algoritmen vallen in de klasse local search.
VIII

De kwaliteit van gereedschap wordt verhoogd als de maker van het gereedschap het
ook zelf gebruikt.

IX

Wijzigingen in rentetarieven zouden relatief i.p.v. absoluut moeten worden uitgedrukt
om een beter inzicht te geven in hun effect op de aandelenbeurs en de huizenmarkt.
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