

The application of genetic algorithms to high-level synthesis

Citation for published version (APA):
Heijligers, M. J. M. (1996). The application of genetic algorithms to high-level synthesis. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR465366

DOI:
10.6100/IR465366

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR465366
https://doi.org/10.6100/IR465366
https://research.tue.nl/en/publications/eb20a475-0c3e-4503-b7f3-b0d743342410

The Application of Genetic Algorithms to
High-Level Synthesis

The Application of Genetic Algorithms to
High-Level Synthesis

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College van
Dekanen in het openbaar te verdedigen op woensdag
23 oktober 1996 om 16.00 uur

door

Marcus Josephus Maria Heijligers

geboren te Eindhoven

 in a
onic,
 per-

rcus
ven,

com-

s.
Dit proefschrift is goedgekeurd door de promotoren:

prof.Dr.-Ing. J.A.G. Jess
prof.dr.ir. W.M.G. van Bokhoven

en door de copromotor:

dr.ir. J.T.J. van Eijndhoven

© Copyright 1996 M.J.M. Heijligers

All rights reserved. No part of this publication may be reproduced, stored
retrieval system, or transmitted, in any form or by any means, electr
mechanical, photocopying, recording, or otherwise, without the prior written
mission from the copyright owner.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Heijligers, Marcus Josephus Maria

The application of genetic algorithms to high-level synthesis / by Ma
Josephus Maria Heijligers. - Eindhoven : Technische Universiteit Eindho
1996. - X, 144 p.
Proefschrift. - ISBN 90-386-0190-5
NUGI 832, 851
Trefw.: grote geïntegreerde schakelingen; CAD / digitale systemen ; CAD /
binatorische optimalisering.
Subject headings: VLSI / high level synthesis / scheduling / genetic algorithm

with
 in a
-level
igital
ssi-

hesis
tional
ware

ation
nthe-
, capa-
 the

re for-
uced,
nthesis
thesis
 which

, with-
nge,

 Extra
ival of
lower
hich

n suc-
rding
nts can

ctive
ation of
 cycle
ven a
olution
uling
mples
Abstract

The increasing complexity of Very Large-Scale Integrated (VLSI) circuits together
the economical pressure to issue new VLSI circuit designs very quickly, results
progressive requirement to design circuits on higher levels of abstraction. High
synthesis offers the circuit designer the possibility to automatically generate a d
network from a functional high-level description of a circuit, combined with the po
bility to use constraints and objectives. The key problems within high-level synt
are scheduling (determining the cycle step in which particular tasks of the func
description start their execution) and allocation (determining the amount of hard
units required to implement the functional specification). Scheduling and alloc
belong to the class of problems which are hard to solve for practical high-level sy
sis problems. Therefore, efficient scheduling and allocation strategies are needed
ble of producing good quality solutions with respect to the objectives, satisfying
constraints, and generated within reasonable time.

Before discussing new methodologies, the scheduling and allocation problems a
mally introduced. On behalf of this, high-level synthesis related objects are introd
and an object-oriented implementation of these objects is presented. The way sy
related data is stored within these objects, allows a flexible way of handling syn
constraints and objectives, and hence doesn’t restrict the order and the way in
solutions are generated.

Next, it is shown how infeasible solutions can be excluded from the search space
out excluding all optimal solutions. This results in the notion of the schedule ra
describing for each operation the interval of cycles in which it can be scheduled.
attention is paid to the throughput rate, specifying the distance between the arr
successive input data. If the functional description contains cyclic structures, a
bound on the throughput rate results. A new efficient algorithm will be presented, w
given an arbitrary functional description, determines the minimal distance betwee
cessive arrival of input data. Furthermore, it will be shown how constraints rega
time and hardware can be integrated in a unified model, and how these constrai
be exchanged using accurate estimation techniques.

Then, various ways to construct schedules will be investigated. A new constru
scheduling method is presented, which determines a schedule by using a permut
tasks to determine the order in which tasks are scheduled, in combination with a
step selection strategy, scheduling operations in their first free cycle step. Gi
resource allocation, it is proven that there exists at least one optimal schedule s
(in other words a schedule with minimal completion time), obtained by sched
tasks using a topologically sorted strategy. Statistical results applied to some exa

II

tions
lution
ed-
sented

ch for
arch-

is of
plied
cod-
s use
tech-

 addi-
 time

ompari-
des an
uling
show that the ratio of optimal solutions with respect to the total number of solu
using such a strategy is quite large, increasing the probability that an optimal so
will be found. Finally, it will be shown that the construction of (loop) pipelined sch
ules is a more difficult problem, and a new strategy based on permutations is pre
to construct these kind of schedules.

Additionally, this thesis describes how genetic algorithms can be used to sear
good quality solutions with respect to the scheduling and allocation problem, by se
ing for a permutation resulting in a good quality solution. A theoretical analys
genetic algorithms will be given, indicating how genetic algorithms should be ap
to obtain efficient convergence, supported by empirical results. Different kind of en
ings are presented, resulting in a new efficient strategy in which genetic algorithm
a permutation encoding of a schedule, combined with topological construction
niques. Finally, the genetic approach is extended with the possibility to allocate
tional resources, to compensate lower bound resource allocations, which for a
constrained scheduling problem might have been estimated too low.

Using these methods, optimal results have been found for all cases tested, and c
sons with other heuristic search methods show that the genetic approach provi
efficient way to generate good quality solutions to the high-level synthesis sched
and allocation problem.

ruk om
ehoefte
nthese
eau-

hierbij
en de

j taken
en kan
plan-
raktijk
rte tijd
welke

edefi-
teerde
lemen-

ties en
aarop

 opslag

t zoek-
e slui-
dere
. Extra
interval
hrijving
troom
 mini-
. Ver-
ot tijd
 behulp
ijn.

reëerd
bij een
een in
 inter-
Samenvatting

De toenemende complexiteit van de hedendaagse chips en de economische d
snel met nieuwe ontwerpen te komen, zorgen ervoor dat er een toenemende b
bestaat om op een hoger niveau van abstractie te ontwerpen. Hoog-niveau sy
biedt de chip ontwerper de mogelijkheid om vanuit een functionele beschrijving g
tomatiseerd een digitaal netwerk te genereren, met daarbij de mogelijkheid om
allerlei restricties en doelstellingen mee te geven. De centrale problematiek binn
hoog-niveau synthese bestaat uit het tijdsplanning en allocatie probleem, waarbi
uit de functionele beschrijving toegewezen worden aan hardware welke deze tak
uitvoeren, plus de tijdmomenten waarop deze hardware zo’n taak uitvoert. Tijds
ning en allocatie probleem behoren tot een klasse van problemen die in de p
moeilijk oplosbaar zijn, en daarom moet naar methodes gezocht worden die in ko
goede kwaliteit oplossingen met betrekking tot de doelstellingen genereren, en
voldoen aan de restricties die aan het ontwerp opgelegd zijn.

Alvorens over methodieken te praten, wordt het tijdsplanning probleem formeel g
nieerd. Hiervoor worden eerst de aan de tijdsplanning en allocatie gerela
hoog-niveau synthese objecten geïntroduceerd, en een object georiënteerde imp
tatie van deze objecten gepresenteerd. Het doel hiervan is flexibel met restric
doelstellingen om te kunnen gaan, zodat de volgorde waarin en de manier w
oplossingen gegenereerd worden, niet beperkt wordt door de representatie en
van deze synthese objecten.

Ten tweede is onderzocht hoe een groot deel van niet geldige oplossingen van he
proces uitgesloten kunnen worden, zonder daarbij alle optimale oplossingen uit t
ten. Dit leidt tot de introductie van het begrip tijdsplanning interval, welke voor ie
operatie een interval van tijdstippen aangeeft waarin deze geplaatst mag worden
aandacht wordt besteed aan de doorstroom snelheid, welke de grootte van het
tussen de aan de chip aangeboden data weergeeft. Indien de functionele besc
cyclische structuren bevat, dan impliceert dit een ondergrens voor deze doors
snelheid. Er wordt een nieuw efficiënt computer programma besproken welke de
male doorstroom snelheid voor een willekeurige functionele beschrijving bepaalt
volgens wordt aangetoond dat verschillende soorten restricties met betrekking t
en hardware in een enkel model geïntegreerd kunnen worden, en hoe deze met
van nauwkeurige schattingen op eenvoudige manier naar elkaar toe te vertalen z

Dan wordt gekeken op wat voor een verschillende manieren tijdsplanningen gec
kunnen worden. Een nieuwe constructieve methode wordt gepresenteerd, waar
permutatie van taken bepaalt in welke volgorde taken geplaatst worden, hetg
combinatie met een selectie mechanisme bepaalt waar taken in hun tijdsplanning

IV

imaal
topolo-
te een
aatste
eelden
l aantal
timale
splan-
 met

lossing
reren.

epast
anier
lossing.
dicatie
ossing
teund.
ciënte
 code-
tische

ceren,
 alloca-

 geval-
nt aan
ren van
val geplaatst zullen worden. Bij een gegeven restrictie met betrekking tot de max
te gebruiken hoeveelheid hardware wordt bewezen dat indien men taken op een
gische gesorteerde manier in hun vroegst mogelijke tijdstip plaatst, er tenmins
permutatie bestaat die leidt tot een optimale oplossing met betrekking tot het l
tijdstip van de tijdsplanning. Statistische analyse aan de hand van enkele voorb
toont aan dat de verhouding van optimale oplossingen ten opzichte van het totaa
oplossingen in zo’n geval groot is, hetgeen de kans op het vinden van een op
oplossing vergroot. Tot slot wordt aangetoond dat het genereren van pipelined tijd
ningen en loop pipelined tijdsplanningen voor cyclische functionele beschrijvingen
behulp van de voorgaande methode een moeilijker probleem is, en wordt een op
aangedragen om ook dit soort tijdsplanningen met behulp van permutaties te gene

Vervolgens beschrijft het proefschrift hoe genetische computer programma’s toeg
kunnen worden om de tijdsplanning en allocatie problematiek op een efficiënte m
op te lossen, door te zoeken naar een permutatie die resulteert in een goede op
Een theoretische analyse van genetische computer programma’s geeft een in
over hoe een genetisch computer programma zo efficiënt mogelijk naar een opl
van goede kwaliteit convergeert, hetgeen met empirische resultaten wordt ges
Verschillende soorten coderingen zijn onderzocht, resulterend in een nieuwe effi
tijdsplanning strategie waarbij genetische computer programma’s een permutatie
ring van een tijdsplanning combineren met een topologische sortering. De gene
zoekmethode is tot slot uitgebreid met de mogelijkheid om extra hardware te allo
om zodoende te lage hardware schattingen te compenseren met een additionele
tie van hardware.

Vele voorbeelden van tijdsplanningen tonen aan dat de methodiek in alle geteste
len optimale oplossingen genereert. Een vergelijking met andere heuristieken too
dat de genetische zoekmethode een efficiënte manier oplevert voor het genere
oplossingen voor het hoog-niveau synthese tijdsplanning en allocatie probleem.

utoma-
y of
.

this
 work
 Mes-
of) the

in
 in a

rmed
ressed
pact

ction
pport

esis,
ave a
ent.

ring
Preface

This Ph.D. thesis is a result of research that has been performed at the Design A
tion Section at the faculty of Electrical Engineering of the Eindhoven Universit
Technology in the Netherlands, under the supervision of prof.Dr.-Ing. J.A.G. Jess

First of all, I’d like to thank prof. Jess for giving me the opportunity to perform
research in his group. He gave me many valuable comments with respect to my
and the first drafts of this thesis. I also want to thank the reading committee, Bart
man, Luiz dos Santos, and Sabih Gerez for their valuable comments on (parts
first drafts of my thesis.

Secondly, I would like to thank Harm Arts, Ric Hilderink, Wim Philipsen and Adw
Timmer for the cooperation in the field of high-level synthesis, which has resulted
successful implementation of the NEAT system.

Thirdly, I would like to thank all M.Sc. students and trainee students who perfo
valuable tasks related to the research presented in this thesis. I’m especially imp
by the work performed by Bart Mesman and Luc Cluitmans, which had a great im
on the research presented in this thesis.

Furthermore, I would like to thank all other members of the Design Automation Se
for their contributions to all kinds of discussions on various topics, and their su
with respect to the computer system and related software.

I also want to thank Leon Stok for introducing me to the field of high-level synth
and Jef van Meerbergen from Philips Research to give me the opportunity to h
look at the use of high-level synthesis methodologies within an industrial environm

Last but not least, I want to thank Christine and my family for all their support du
my research.

VI

. . . i

. . iii

 . . v

 . 1

 . . . 2
 . . . 3
. . . . 4
 6
 6

. 9

. . . .9
. . .11
. . .12
 . . . 13
. . .13
. . .14
. . . 1
 . . . 19
 . . . 19

21

 . . . 21
. . . 21
 23
 . . . 23
. . .23
. . . .27
 . . .28
Contents

Abstract .

Samenvatting .

Preface .

1. High-Level Synthesis .
1.1. Introduction .1
1.2. High-level synthesis problem definition .
1.3. High-level synthesis problem partitioning .
1.4. High-level synthesis design flow impression .
1.5. High-level synthesis scheduling .
1.6. Area of this thesis .

2. High-Level Synthesis Components .
2.1. Introduction .9
2.2. Domains .9

2.2.1. Behavioural domain .
2.2.2. Control domain .
2.2.3. Structural domain .

2.3. Domain relations .
2.3.1. Intra-domain relations .
2.3.2. Inter-domain relations .

2.4. NEAT . 6
2.5. Related work .
2.6. Conclusions .

3. High-Level Synthesis Scheduling .
3.1. Introduction .
3.2. Scheduling and allocation definitions .
3.3. Constraint sets and performance measures .
3.4. High-level synthesis scheduling constraints and goals

3.4.1. Data-flow graphs and execution order .
3.4.2. Dependence and distance graphs .
3.4.3. Data-flow graphs, arrays and dependence analysis

VIII

. . .33
 . . .36
. . . . 37
 . . . 37

 39

 . . . 39
 . . . 40
. . . . 43
. . .44
 . .44
 . .46
 . . .47
. .48
 . . . 51
. . . . 54
. . . . 55
 . . . 57

 59

 . . . 59
. . . 59
. . . 60
 . . . 61
 63
 . . . 63
 . . . 64
 . . .65
. . .66
 . . .68
 . . .69
. . . 69
 . . .72
. . .73
 . . .74
 . . .79
 . . . 79
. . . 82
. . . 88
. . .88
 . .88
 .88
. . .90
3.4.4. Time .
3.4.5. Resources .

3.5. Schedule problems .
3.6. Conclusions .

4. Schedule Constraints .
4.1. Introduction .
4.2. Distance matrix .
4.3. Process invocation constraints .

4.3.1. Basic blocks .
4.3.2. Multiple process invocations .
4.3.3. Loop folding and retiming .
4.3.4. Distance relations .
4.3.5. An algorithm to determine the minimal invocation distance

4.4. Time constraints .
4.5. Resource constraints .
4.6. The relation between time and resource constraints
4.7. Conclusions .

5. Constructive Scheduling .
5.1. Introduction .
5.2. High-level synthesis scheduling complexity .
5.3. Optimality .
5.4. Construction of schedules .
5.5. Search space versus candidate solutions .
5.6. Permutation scheduling .
5.7. Strict permutation scheduling .

5.7.1. Precedence constraint satisfaction .
5.7.2. Time constraint satisfaction .
5.7.3. Resource constraint satisfaction .
5.7.4. Time and resource constraint satisfaction .

5.8. Topological permutation scheduling .
5.8.1. Precedence constraint satisfaction .
5.8.2. Time constraint satisfaction .
5.8.3. Resource constraint satisfaction .
5.8.4. Time and resource constraint satisfaction .

5.9. Permutation statistics .
5.10. Permutation scheduling and pipelining .
5.11. Permutation scheduling and cyclic data-flow graphs

5.11.1. Single iteration model .
5.11.2. Multiple iteration model .
5.11.3. Loop Winding, Loop Folding, Retiming .
5.11.4. Cyclic scheduling .

IX

 . . . 91

93

 . . . 93
. . . 93
 . . 98
 . . 100
 . . 101
 . . 108
. .108
 . .109
. .109
. .112
. .113
. .115
. .117
 . . 117
. . . 123
. . 124
. . . 127
 . . 128

29

 . . 129
 . . 130
. .130
 .131

133

143
5.12. Conclusions .

6. Genetic Algorithms and Scheduling .
6.1. Introduction .
6.2. Introduction to genetic algorithms .
6.3. Genetic Algorithms and combinatorial optimization .
6.4. Recombination and disruption .
6.5. Evolution statistics .
6.6. Scheduling encodings .

6.6.1. Classic bit-vector encoding .
6.6.2. Cycle assignment encoding .
6.6.3. Absolute displacement encoding .
6.6.4. Relative displacement encoding .
6.6.5. Permutation encoding .
6.6.6. Permutation encoding and list scheduling techniques
6.6.7. Permutation encoding and topological scheduling techniques

6.7. Supplementary resource allocation .
6.8. Extensions .
6.9. Scheduling cyclic data-flow graphs .
6.10. Exhaustive search .
6.11. Conclusions .

7. Conclusions and future work . 1
7.1. Conclusions .
7.2. Future work .

7.2.1. Conditionals .
7.2.2. Module execution interval analysis .

Literature .

Biography .

X

es a
one of
tance.
ance,
essors
fficult
t high
e the

esign

cuits,
ts with
ioural
ioural
) and
e lan-
uage,
e

it can
raction

 struc-
ults in
uilding
 them.
and is

nslated

rators.
an be
d map
ration
Chapter

1 High-Level Synthesis

1.1 Introduction
The increasing complexity of Very Large Scale Integration (VLSI) Circuits caus
substantial increase of the design time of chips. Because the time-to-market is
the key factors to make a chip profitable, a short design time is of great impor
This must coincide with the generation of efficient designs in terms of perform
design costs, and manufacturing yield. For large applications, such as RISC proc
and MPEG-2 compression algorithms, the impact of small design decisions is di
to grasp for a human designer. It is therefore important that he can design a
abstraction levels. Computer-aided design (CAD) tools can be used to provid
designer with efficient design methodologies, which show the impact of his d
decisions very quickly.

A rough sketch of the process of automatically synthesizing digital integrated cir
also called a silicon compiler, can be found in Figure 1.1. The whole process star
a specification of an integrated circuit, which has to be captured in a behav
description language suitable for handling by computer programs. The behav
description consists of high-level operations (such as addition and multiplication
high-level control structures (such as branches, loops and procedure calls). Th
guage in which such a description is given, is called a hardware description lang
of which VHDL [IEEE88], Verilog [Thom91], Hardware C [DeMi88], and Silag
[Hilf85] are examples. A behavioural description can be written by a designer, but
also be generated by design-automation tools operating at higher levels of abst
(for example system-level abstraction or hardware-software co-design).

High-level synthesis, also called architectural synthesis, is a process which adds
tural information to a functional description at the same abstraction level. This res
a so-called data-path and a controller description. The data-path consists of b
blocks such as functional units, memory, and an interconnection structure among
The controller describes how the flow of data inside the data-path is managed,
described in terms of states and state transitions. The controller description is tra
into an implementation at the abstraction level of gates by using logic synthesis.

Building blocks inside a data-path are created by using so-called module gene
There are several possibilities to generate modules. The desired functionality c
described by boolean functions, and logic synthesis can be used to optimize an
the equations on a gate library, called behavioural generation. Structural gene

2 H

IGH

-L

EVEL

 S

YNTHESIS

ener-
ch as
.

 of the
h is a

ath. A
ay the
enta-
nsists

nits),
ercon-
es, and
ct is
uses knowledge of a possibly efficient structural implementation, and therefore g
ates such a structure directly. Finally, if a layout of a module is very regular (su
RAMs, ROMs, and register files), the layout description can be generated directly

The final synthesis step, called layout synthesis, creates a geometrical description
layout using placement and routing techniques. The result is a layout mask, whic
description of the IC at the physical abstraction level.

1.2 High-level synthesis problem definition
High-level synthesis translates a behavioural description of a chip into a data-p
behavioural description specifies the functions the chip has to perform and the w
chip interacts with its environment. The structural description describes an implem
tion of the functions, and consists of a data-path and a controller. A data-path co
of functional units (such as for instance adders, multipliers, ALUs, and logic u
memory to store data (such as RAMs, ROMs, registers, and register files), and int
nect to transport data between functional units and memory (such as buses, wir
multiplexers). The collective noun for functional units, memory, and interconne
resources.

Figure 1.1 Silicon Compiler Overview.

High-Level Synthesis

Logic Synthesis Module Generation

Layout Generation

architecture BEHAVIOUR of FILTER is
process
 variable a, b,c;
begin
 wait until start event and start='1';
 a := in_port1 * (5 + in_port2);
 ...

Behavioural description

Controller description Data Path

Gate Network Module
Descriptions

Layout Description

H

IGH

-L

EVEL

 S

YNTHESIS

3

nd is
ecifies
y how
nsition
oduced

s, the
ssible
Con-
t rate,
s to be
ense of
pplica-

mance
l is to
tech-

lve.
blems
ce of
ust be
can be
 to be
e opti-
 only
hich

pic of

lems
The controller describes how the flow of data in the data-path is managed, a
described in terms of states and state transitions. Each state of the controller sp
the assignment of functional units to operations, of data to registers, and the wa
multiplexers should direct their data. Furthermore, given some state, a state tra
function defines the subsequent state, which may or may not depend on data pr
inside the data-path.

Given a behavioural description, together with a set of constraints and goal
high-level synthesis problem is to find the best architectural solution. Some po
goals are minimal area, minimal power consumption, or maximum throughput.
straints are often defined in terms of execution order, completion time, throughpu
and area. The constraints and goals depend on the kind of application which need
synthesized. In the case of micro-processors, speed is the main goal at the exp
area and power consumption. Furthermore specialized techniques, such as the a
tion of cache memory and branch prediction, can be used to improve the perfor
In case of DSP algorithms, throughput will be the main constraint, and the goa
find an implementation with a small area or power consumption. Optimization
niques can be used to search for high quality designs in all these cases.

Almost all optimization problems associated with chip design are difficult to so
Most of these problems are member of the class of so-called NP-hard pro
[Gare79], and no polynomial-time algorithms are known that solve each instan
these problems to optimality. For a synthesis system to be efficient, trade-offs m
made to obtain acceptable solutions in an acceptable amount of time. Heuristics
used, which usually are fast, but will return solutions which are not guaranteed
optimal. On the other hand enumeration algorithms can be used which always giv
mal solutions, but generally need exponential run-time, and hence can handle
problem instances with small input data size. The development of algorithms w
obtain acceptable solutions in an acceptable amount of time, is an important to
research in high-level synthesis, and will be the main topic of this thesis.

1.3 High-level synthesis problem partitioning
When generating a data-path from a behavioural description, four kinds of prob
associated with resources must be solved:

• Selection What kind of resources are used in the data-path?

• Allocation How many resources are needed in the data-path?

• Scheduling When will operations from the functional description be
executed?

• Binding To which resources will operations, values, and value transfers
be assigned?

4 H

IGH

-L

EVEL

 S

YNTHESIS

here-
f these

of a

 can
resent
These four problems are interrelated, but are difficult to solve simultaneously. T
fore, high-level synthesis strategies solve each problem or a small combination o
problems separately.

1.4 High-level synthesis design flow impression
In this section a simplified overview will be given concerning the translation
description of a digital filter into a synchronous (clocked) data-path.

In Figure 1.2 a behavioural description of a 5th order wave digital filter [DeWi85]
be found, specified by a so called data-flow graph. In a data-flow graph nodes rep

Figure 1.2 Data-flow graph of a 5th order wave digital filter.

in

out

T

T

T

T

T

T

T

N2

N23

N24

N22

N3/N44

N10
N21

N5/N46

N32

N33 N34

N35N4/N45

N11
N19

N18

N20

N17

N16

N6/N47
N12N15N30

N14
N25N31

N26

N27

N28N36 N13

N7/N48

N37

N40

N38 N39

N8/N49

N29

N41

N43 N42
N9/N50

N51

H

IGH

-L

EVEL

 S

YNTHESIS

5

le on all
 subse-
licitly

ns may
tarting

hich
umed to
sumed
igure
 This
unt of

func-
 gener-
operations, and edges represent the transfer of data values. If values are availab
incoming edges of a node, the node will execute by consuming these values, and
quently generates an output value on all outgoing edges. A data-flow graph exp
shows the order of execution of operations, and hence also shows which operatio
be executed simultaneously. This makes data-flow graphs very suitable as a s
point for high-level synthesis scheduling and allocation.

In Figure 1.3, a schedule of the 5th order wave digital filter can be found, in w
operations have been assigned to cycle steps. In this schedule an addition is ass
require 1 cycle step for execution on an adder module, and a multiplication is as
to require 2 cycle steps for execution on a multiplier module. In the schedule of F
1.3, at most 3 multiplications and 3 additions are scheduled simultaneously.
induces a functional unit allocation of at least 3 multipliers and 3 adders. The amo
cycle steps needed is 17.

After selection, allocation, and binding (based on the schedule of Figure 1.3) of
tional units, memory, and interconnect, a data-path as given in Figure 1.4 can be

Figure 1.3 Schedule of 5th order wave digital filter.

N10

N11

N12

N14

N15

N16

N17

N18

N19

N21N20

N22

N23

N32

N33

N34 N24

N35

N30

N25

N13

N26

N31

N27

N28

N29

N41

N36

N37

N38

N43

N39

N40

Cycle step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

Time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

17

N42

6 H

IGH

-L

EVEL

 S

YNTHESIS

rs and

cation,
hedul-
 steps)
ctical
ce con-

rom a
edule
or opti-
-level
e and

e goal
s, it
s.
ated. It consists of 3 adders and 3 multipliers, connected to a bunch of registe
multiplexers to store and select data respectively.

1.5 High-level synthesis scheduling
Because the result of a schedule induces a completion time and a resource allo
scheduling is considered to be the central task of high-level synthesis. During sc
ing, functional units, storage, and interconnect must be allocated over time (cycle
to perform a set of operations (specified by a behavioural description). In most pra
cases high-level synthesis scheduling is subject to constraints, such as preceden
straints (derived from a behavioural description), resource constraints (derived f
network structure), and time constraints (completion time, data arrival rate). A sch
is called a feasible schedule if it satisfies its constraints. Performance measures
mality criteria are used to distinguish good schedules from bad schedules. High
synthesis performance measures, such as (a combination of) overall execution tim
resource requirements [McFa90], can be used to serve as optimality criteria. Th
of a scheduling algorithm would be to find an optimal schedule, in other word
should return the best feasible schedule with respect to the performance measure

Figure 1.4 Data-path of 5th order wave digital filter.

+ + +

× ××

H

IGH

-L

EVEL

 S

YNTHESIS

7

, origi-

 of dig-
 prob-

 these
pre-

esis. It
 inter-
t pre-

mally

ill be
ave an
e inte-
which
urther-
nimal
 how

ng in a
1.6 Area of this thesis
This thesis addresses the high-level synthesis scheduling and allocation problem
nating from the translation of DSP algorithms into synchronous clocked circuits.

Chapter 2 introduces the components needed to describe the high-level synthesis
ital circuits, with an emphasis on the components needed to define the scheduling
lems presented in Chapter 3. Secondly, an object oriented implementation of
components, called NEAT (New Eindhoven Architectural synthesis Toolbox), is
sented, which serves as a software platform for all algorithms presented in this th
provides the tool designer an environment in which he can develop a collection of
acting tools, for which the order and the way in which these tools are applied is no
determined (see Figure 1.5).

In Chapter 3 two scheduling problems, the key problems of this thesis, are for
introduced.

Chapter 4 discusses the influence of constraints on the scheduling problem. It w
shown how precedence constraints, time constraints, and resource constraints h
influence on the schedule range of operations, and how these constraints can b
grated into a single scheduling model. Some efficient algorithms are presented
determine and update the scheduling range of operations during scheduling. F
more, a new algorithm will be presented to determine the lower bound on the mi
throughput rate of a data-flow graph containing loop structures. Finally, it is shown
constraints and goals can be exchanged using lower-bound estimations, resulti
re-definition of the original scheduling problem.

selection

S
yn

th
es

is
 T

oo
lb

oxscheduling

allocation

binding

control generation

verification

import

export

transformation

parser

writer

partial synthesis
data

Figure 1.5 Synthesis Toolbox

8 H

IGH

-L

EVEL

 S

YNTHESIS

of con-
which
rther-
a top-
igher
arch
an be

good
s pro-
ustive
ds and
ome
hen
strate-
l when
nd the
d. If a
other
eptable
ith the
 based
mory

o mini-

ork.
Chapter 5 presents several ways to construct schedules under different sets
straints. The central theme of this chapter is about permutations of operations,
provide a mechanism to classify the way schedulers construct their solution. Fu
more, in Chapter 5 a topological method of scheduling is defined. It is shown that
ological construction of schedules increases the probability that feasible and h
quality solutions are created, without excluding all optimal solution from the se
space. Finally it is shown how the construction of (loop) pipelined schedules c
performed.

Chapter 6 focuses on the application of genetic algorithms, with the aim to find
quality results to the scheduling problem. The main idea is to improve the result
duced by existing scheduling heuristics, and to shorten the execution time of exha
search methods, and hence to fill the gap between exhaustive search metho
‘plain’ heuristics. First of all, a theoretical framework is presented to obtain s
insight how to efficiently apply genetic algorithms to combinatorial optimization. T
genetic algorithms are applied to search for permutations, using the scheduling
gies presented in Chapter 5. Results show that genetic search is only successfu
there is a good relation between the genetic encoding of the scheduling problem a
way solutions are constructed with respect to the constraints and goals impose
topologically schedule strategy is applied, comparison of the results with many
heuristic approaches show that the genetic approach finds better results in acc
computation times. Furthermore, the genetic scheduling strategy is extended w
possibility to allocate extra resources to be able to deal with a synthesis strategy
on lower-bound resource estimations. Finally, the scheduler is extended with me
allocation costs to show that, to a certain extent, the genetic search is capable t
mize more general cost functions.

Chapter 7, finally, presents conclusions together with a discussion about future w

esis of
ter 3.

level
ediate

terface.
ind-

e plat-

 their
ow to
ms of

ainly
r, con-

 there-
tion

ed by
as an
synthe-
y to a
-flow

uch as
e

Chapter

2 High-Level Synthesis Components

2.1 Introduction
This chapter introduces the components needed to describe the high-level synth
digital circuits, with an emphasis on the scheduling problems presented in Chap
To solve the whole high-level synthesis problem, a collection of interacting high-
synthesis tools is needed. Each tool retrieves, manipulates, and stores interm
results, which should be made accessible by using a so called synthesis data in
An object oriented implementation of such a data interface, called NEAT (New E
hoven Architectural synthesis Toolbox), is presented, which serves as a softwar
form for all the algorithms presented in this thesis.

2.2 Domains
High-level synthesis generates structural information (in terms of modules and
interconnections, also called a data-path) and control information (describing h
control the data-path), derived from a behavioural description (described in ter
operations and special constructs). During the high-level synthesis process, m
three domains of data representations can be distinguished, which are behaviou
trol, and structure. Each domain provides a different view of the design, and are
fore also called design views. In the following subsections, additional informa
about the different domains of data and their representations will be given.

2.2.1 Behavioural domain

The input description, which specifies the behaviour of a design, can be defin
using ASCIS data-flow graphs [Eijn92]. The ASCIS data-flow graph is intended
intermediate form between user oriented interfaces (languages, schematics) and
sis or verification tools. The advantage of applying synthesis or verification directl
data-flow graph is that it resolves the different nature of input languages. Data
graphs can be automatically obtained from hardware description languages s
VHDL [IEEE88], Verilog [Thom91], Hardware C [DeMi88], or Silage [Hilf85] by th
use of data-flow analysis techniques.

Definition 2.1 (Data flow graph). A data-flow graph is a tuple (V , E), in which V is a
set of nodes (representing operations), and E is a set of directed edges V × V
(representing flow of data).

10 H

IGH

-L

EVEL

 S

YNTHESIS

 C

OMPONENTS

m. In
nstance
 arrays,
remov-
aining
ehav-

es, is

91],
la-
 is

structs,
e been
ple of
with a
 nodes
An
ut. An
 on the
e data
s data
s out-
e, and

f spe-
what
nthe-
l-flow
cks or
edul-

. There
e tim-
nthesis
 struc-

cord-
The execution of a data-flow graph follows the concept of a token-flow mechanis
this mechanism a data value instance is defined to be a token. This data value i
can be a single scalar, but can also consist of more complex data-types, such as
records, or user-defined data-types. The execution of an operation is defined as
ing tokens from the input edges of that operation, and producing new tokens cont
the result of the calculation of the operation on all output edges. The semantic b
iour of a node, which determines the translation of input values to output valu
defined by a so called operation type.

Definition 2.2 (Operation Type τ). Let V be a set of data-flow nodes, v ∈ V, OpType be
a given set of operation types. Operation type τ: V → OpType is a function, with τ(v)
the operation type of operation v.

A comprehensive classification of different operation types can be found in [Eijn
such as arithmetic operations (+, -, ×, /), boolean operations (and, or, not), and re
tional operations (<, >, ≠). The interface of a data-flow graph to the outside world
defined by means of input and output nodes. To support special language con
such as loops and conditionals, nodes with a special execution mechanism hav
defined, which originate from demand graphs as described in [Veen85]. An exam
a data-flow graph containing a loop structure is given in Figure 2.1, accompanied
textual description characterizing its semantic behaviour. The loop structure uses
with operation type entry and exit to describe the controlling mechanism of the loop.
entry node has two (or more) data inputs, one control input, and one data outp
entry node accepts a token at one of its data inputs (the choice of which depends
value of the control input), and copies this token to its output. An exit node has on
input, one control input, and two (or more) data outputs. It accepts a token at it
input, and depending on the value of its control input copies this token to one of it
puts. Entry and exit nodes provide a mechanism for a token to enter, to rotat
finally to leave the loop structure.

The data-flow graph in Figure 2.1 shows that control-flow is described by means o
cial data-flow nodes. The integration of data-flow and control-flow in one model is
makes data-flow graphs differ from most other input formats used in high-level sy
sis systems (see [Walk92] for an overview). By separation of data-flow and contro
in other formats, code inside these special constructs is moved to basic blo
straight line code, which may impose undesirable restrictions with respect to sch
ing and allocation algorithms.

The transfer of tokens inside a data-flow graph is represented by directed edges
is no notion of variables or assignment in a data-flow graph, as they might impos
ing and mapping restrictions, and therefore reduce the search space before sy
starts. The execution order of nodes inside a data-flow graph is constrained by the
ture of the data-flow graph, inducing a partial order, denoted by a. This partial order
explicitly models the concurrency of the behaviour; if two nodes are not related ac

HIGH-LEVEL SYNTHESIS COMPONENTS 11

es),
 anal-

iour.

e edges
 where

] and
e goal
ynthe-

solu-
.

y the
 state

ng the
lled
ing to partial order a (in other words there is no flow of data between these two nod
then they can be executed in parallel. Depending on the accuracy of the data-flow
ysis, a data-flow graph represents a maximal parallel representation of the behav

To enforce a specific order to the execution of a set of nodes, so called sequenc
can be used, denoted by grey-coloured edges. See for instance Figure 2.1,
sequence edges are used to activate operations of type constant.

Behaviour preserving transformations, such as tree height reduction [Hout94
retiming [Fran94], can be applied to change the structure of a data-flow graph. Th
of these transformations is to restrict or widen the search space structure of the s
sis process.

In principle data-flow graphs impose no limitations onto a particular architectural
tion. Therefore, they are highly suitable as a starting point for high-level synthesis

2.2.2 Control domain
The control domain is used to describe the result of scheduling, inducing the wa
data-path is controlled. The control domain can be described by a (set of) finite
machine(s).

Formally, a finite state machine can be described by a quintuple (I , O , S , δ , λ), in
which I is the input alphabet (or set of inputs from the data-path), O is the output alpha-
bet (or set of outputs to the data-path), S is the set of states, δ: I × S → S is the state
transition function, and λ: S → O is the output function [Hill81]. The definition of this
so called Moore automaton can be extended to a Mealy automaton by extendi
output function λ: I × S → O. A finite state machine can be described by a so ca
control graph.

for i := 0 to 9 do
 x := x + 1;
endfor;

Figure 2.1 Data-flow graph containing a loop structure.

++
9

<=

0
in

+

1

out

entry entry

exit exit

12 HIGH-LEVEL SYNTHESIS COMPONENTS

t

tate

viour

h spe-
ontrol,

control
hich can

and
and

viour
ster).
Definition 2.3 (Control graph). A control graph is a quadruple (S , E , I , O), in which S
is a set of nodes (representing states), and E is a set of directed edges S × S
(representing state transitions). Each state transition e ∈ E is labelled with a set of inpu
symbols from 2I, in which 2I denotes the power-set of I. In case of a Mealy machine
each edge e ∈ E is labelled with o ∈ O, whereas in case of a Moore machine each s
s ∈ S is labelled with o ∈ O.

Similar to the definition of operation types for data-flow nodes, the semantic beha
of control nodes is defined by a so called control type.

Definition 2.4 (Controller Type τ). Let S be a set of control nodes, s ∈ S, and ConType
be a set of control types. Control type τ: S → ConType is a function, with τ(s) the
control type of control node s.

In [Hild93] a model is suggested which is based on control graphs, extended wit
cial type of nodes (such as join and split), to be able to describe some flows of c
such as for instance parallel executing loops, in a more compact way.

During scheduling, operations of a data-flow graph are assigned to states of a
graph. The schedules discussed in this thesis assign operations to cycle steps, w
be represented by a control graph consisting of a chain of states.

2.2.3 Structural domain

The structural domain is described by a set of network graphs.

Definition 2.5 (Network Graph). A network graph is a tuple (M , E), where M is the set
of nodes (representing modules such as functional units, memory, multiplexers), E
is the set of undirected edges M × M (representing interconnections such as buses
wires).

Similar to the definition of operation types for data-flow nodes, the semantic beha
of network nodes is defined by a so called module type (such as multiplier or regi

Definition 2.6 (Module Type τ). Let M be a set of network nodes, m ∈ M, and
ModType be a set of module types. Module type τ: M → ModType is a function, with
τ(m) the module type of module m.

Inside a network graph (M , E), a controller c is modelled as a node c ∈ M. Let MC ⊆ M
be the set of controllers in (M , E), in other words MC = {m ∈ M | τ(m) = ‘control’}. A
data-path consists of the sub-graph (MD , ED), where MD = M \ MC and ED = MD ×
MD. Let EC be the set of edges E \ ED, in other words the edges between MC and
data-path modules MD. These edges transport input symbols I and output symbols O,
used to exchange control vectors between modules of the data-path MD and MC.

HIGH-LEVEL SYNTHESIS COMPONENTS 13

erated.
corpo-
f rela-
tions,

finition
n be
types is
by a set
twork

ibed by
hesis

ecified

es, a
ta-flow
other
esign

s sup-

 oper-
ns are
men-
 inter-
ch as
 mod-
other
an be
ossible
can be
rface,
se this
version
2.3 Domain relations
During high-level synthesis, relations between different synthesis objects are gen
These relations have to be passed from one tool to another, so they should be in
rated in the synthesis interface and data exchange format. Two important kinds o
tions can be distinguished, called intra-domain relations and inter-domain rela
which will be presented in the following two subsections.

2.3.1 Intra-domain relations

The semantic behaviour of nodes is described by types, as has been shown in De
2.2, Definition 2.4, and Definition 2.6. The semantic behaviour of a type ca
described by a graph in the same domain. This means that the set of operation
represented by a set of data-flow graphs, the set of control types is represented
of control-flow graphs, and the set of module types is represented by a set of ne
graphs. Hence, the semantics of an operation, state, or module can be descr
referring to a data-flow, control-flow, or network graph respectively. When a synt
object is created, it always inherits the semantics of the graph it refers to.

Depending on the abstraction level, graphs describing a particular type can be sp
in different ways:

• If the abstraction level of the graph is at the level of high-level synthesis primitiv
graph can be described by a collection of nodes and edges. An example is a da
graph of a filter section which is used as a data-flow node (or operation) in an
data-flow graph describing a DSP algorithm. The mechanism to break down a d
into smaller parts allows hierarchical designs and partitioning, and hence offer
port for bottom-up and top-down synthesis methods.

• If the abstraction level of the type is such that it cannot be described in terms of
ations, states, or modules of the same abstraction level, other kind of descriptio
used. In case of primitive operations such as additions and multiplication, docu
tation such as [Eijn91] can be used to describe the semantic behaviour and its
face (inputs and outputs) in more detail. In case of primitive module types, su
adders, multipliers, memory, logic gates, and others, computer programs called
ule generators [Thee93, Arts91] can be used to specify their contents on
abstraction levels. An advantage of using module generators is that they c
parameterized (speed, size, power), which avoids the need to store each p
implementation of each module type separately. In all these cases, a type
described by a graph consisting of input and output nodes, defining its inte
together with a reference to documentation or to computer programs. Becau
mechanism uses the same interface as for hierarchical designs, no special con
tools or functionality is needed to retrieve library information.

14 HIGH-LEVEL SYNTHESIS COMPONENTS

raph
 Finite
 turn

ctively
cribed

an be
 links

evious

nd
 these
ation,

graph
eration

,
d

In Figure 2.2, an example of an intra-domain relation can be found. A data-flow g
called calc is used as a node in a data-flow graph representing the behaviour of a
Impulse Response (FIR) filter. The addition, multiplication, and delay nodes on its
are described by an addition graph, multiplication graph, and delay graph respe
(not drawn). Input and output are so-called primitive types, and can only be des
in terms of each other, and therefore must be treated as special cases.

2.3.2 Inter-domain relations

Links are used to describe relations among objects of different domains. Links c
specified partially to represent intermediate synthesis results. Mainly two kinds of
can be distinguished, graph links and node links.

Definition 2.7 (Graph Link). Let n be the number of domains. Let G0 , G1 , ... , Gn-1 be
a set of graphs from n different domains. A graph link is an n-tuple from G0 × G1 × ... ×
Gn-1.

If the synthesis interface is restricted to the three domains mentioned in the pr
section, a graph link can be described by a triple DFG × CTG × NWG, in which DFG
represents the set of data-flow graphs, CTG represents the set of control graphs, a
NWG represents the set of network graphs. A graph link relates graphs between
three different domains. Links between graphs can represent synthesis inform
such as ‘this network graph is an implementation of this data-flow graph’. Hence,
links can also be used to represent synthesis library information, such as an op
type which can be implemented on particular module types.

Definition 2.8 (Operation Type Mapping µ). Let OpType be a set of operation types
ModType be a set of module types, and t ∈ OpType. Let L be a set of graphlinks, an
X ∈ ConType. Operation Type Mapping µ: OpType → 2ModType is a function, with µ(t)
the set of module types that can execute operation type t, given by µ(t) =
{ nwg ∈ ModType | (t , X , nwg) ∈ L}.

in

out+

×

in

calc

outcalccalccalc T T

in

in

FIR filter

Figure 2.2 Intra-domain relation example.

HIGH-LEVEL SYNTHESIS COMPONENTS 15

 links

 repre-
(sched-
aphs,
mber

hich

 which
decide
e con-
ed for
 useful

graph
rated

ks and
To be able to describe the fine-grain information between different domains, node
are defined.

Definition 2.9 (Node link). Let n be the number of domains. Let V0 , V1 , ... , Vn-1 be
sets of nodes from graphs in n different domains. A node link is an n-tuple from
2V0 × 2V1 × ... × 2Vn-1.

A node link relates nodes between different domains. Links between nodes can
sent synthesis information such as ‘this data-flow node is related to these states
ule information)’. Because node links denote the fine-grain relations among gr
they can only occur within the context of graph links, relating nodes which are me
of graphs, which on its turn are member of the graph links.

In Figure 2.3 an example of inter-domain relations can be found. A nodelink w
relates data-flow node v1 from dfg, states s1, s2 from ctg, and module m1 from nwg is
depicted by dashed lines.

Inside links the kind and status of the relation that it represents can be defined,
makes it easy for tools to decide whether particular links should be used, and to
how particular links should be used. Links can for instance be used to describ
straints such as ‘this operation should be assigned to this module’, without the ne
conversion tools or special access functions. Links can be tagged, which can be
when information needs to be exchanged between different synthesis tools.

By using links, complex and detailed synthesis information is separated from the
descriptions themselves. Nevertheless, synthesis information is still gently incorpo
into the data interface. Different designs can be constructed by creating graph lin

in inin

×

out

dfg

input

state

state

output

out

reg

ALU

mux mux

reg reg reg

inin

ctg nwg

v1

s1

m1

in

state

s2

Figure 2.3 Graphical example of inter-domain relation.

×

16 HIGH-LEVEL SYNTHESIS COMPONENTS

 param-

s an
 (but is
ith the

aintain-
efined
ipulate
 among
. Also,

 com-
bstract
rd inter-

cted

ph con-
nally, a

fic data
ould be
ant
, and
com-
 tech-
pecific
AT

ritance

ts), the
pecific
fferent
es and
node links using the same graph descriptions. Links can also be used to describe
eterized libraries in a compact way.

2.4 NEAT
The New Eindhoven Architectural synthesis Toolbox [Heij94], also called NEAT, i
implementation of the components discussed in the previous sections. It supports
not restricted to) three design views as discussed in Section 2.2, together w
domain relations as discussed in Section 2.3.

A standard interface to synthesis data, used by each synthesis tool, makes the m
ability of these tools much easier. Therefore, a standard interface has been d
[Arts92] and implemented. The standard synthesis interface can be used to man
synthesis objects, such as adding or deleting synthesis objects, create relations
synthesis objects, add design specific information to synthesis objects, and so on
functionality such as storing and retrieving intermediate synthesis data to disk,
mand line parsing, consistency checking, obtaining synthesis status, providing a
data types (lists, sets, arrays, strings), and more has been included in the standa
face to save the tool developer unnecessary work.

The relations between objects of NEAT are drawn in Figure 2.4, in which a dire
edge (x , y) denotes a set relation (i.e. x contains or consists of a set y). The main object
is a database. A database contains a set of graphs and a set of graphlinks. A gra
tains a set of nodes and a set of edges. A node contains a set of ports, and fi
graphlink, contains a set of nodelinks.

Each synthesis tool produces specific kind of results, and hence needs a speci
interface to store these results inside the existing synthesis objects. This data sh
hidden from other tools to prevent visibility of irrelevant data, visibility of irrelev
manipulation functions, unnecessary re-compilation of the synthesis interface
unnecessary re-compilation of tools which rely on this interface. This can be ac
plished by extending the synthesis interface using object oriented programming
niques. Inheritance can be used to extend existing synthesis objects with s
information without any restrictions, and without interfering with the common NE
synthesis interface.

For a class of synthesis objects (graphs, nodes, edges, and ports), default inhe
relations exist, which are modelled in Figure 2.5. By changing the string object in this
figure by one of the common synthesis objects (graphs, nodes, edges, and por
inheritance structure for such an object can be obtained. The choice for this s
inheritance structure has been inspired by the fact that synthesis objects from di
domains share common data (for example a graph in general consists of nod

HIGH-LEVEL SYNTHESIS COMPONENTS 17

hedule

in Fig-
are not
ave to
 feel as

lly by
ing an
tools

been
ment.
edges), but also differ in many aspects (a data-flow node may contain specific sc
information, which is not applicable for control and network nodes).

Tool specific data and functionality can be added by using inheritance, as shown
ure 2.6. The standard synthesis interface remains unaltered, hence other tools
disturbed with tool specific data, and the standard synthesis interface does not h
be re-compiled. The new interface that has been obtained, has the same look and
the standard interface.

Synthesis tool frameworks using the NEAT interface are generated automatica
means of templates. A tool programmer adds his functionality to these tools us
object oriented programming style. This prevents the programmer from building
and programming environments from scratch.

NEAT is implemented using the C++ programming language [Elli90], which has
chosen because of its object-oriented facilities and its overall use in CAD develop

database

graph

node

edge

graphlink nodelink

port

Figure 2.4 Graphical overview of standard synthesis object relations.

object

dfobject ctobject nwobject

Figure 2.5 Inheritance structure of NEAT.

object

dfobject ctobject nwobject

tooldfobject toolctobject toolnwobject

Figure 2.6 Tool-specific inheritance.

18 HIGH-LEVEL SYNTHESIS COMPONENTS

etween
n plain
ructure
mple

 goes
rface.
, can
ndard
turb
sions.

ation
visual-
o ana-

orded
ation

cts of
ation

ent or
tech-
ce into
s tags

 rela-
To be able to store intermediate synthesis results which have to be exchanged b
tools or research platforms, an exchange format has been developed based o
ASCII files. The syntax of these files consists of a balanced nested parenthesis st
(such as LISP), which only requires simple LL-(1) parsing techniques (see Exa
2.1).

The intermediate data format can be extended by defining new keywords, which
hand-in-hand with the object-oriented extensions of the standard synthesis inte
Tools which are not interested in the information attached to a particular keyword
skip this information by just counting parentheses, which is taken care of by sta
parsing functions. This implies that new extensions to the format will never dis
existing tools which don't understand the underlying semantics of these new exten
Hence the format is both upward and downward compatible.

The ESCAPE environment [Fleu93] can be been used to display synthesis inform
(see Figure 2.7). Separate windows display different domains, and links can be
ized by clicking on nodes. The graphical interface gives designers the capability t
lyse and manipulate (intermediate) synthesis results [Hild94].

Example 2.1 Partial example of textual format
(dfg-view
 (graph example
 (node N0
 (type input)
 (varname in2)
 (out-edges E1))
 (node N2
 (type output)
 (in-edges E3))

 (edge E1
 (type data)
 (width 8)
 (varname in2)
 (destination N14 (port N-1))
 (origin N0 (port out)))

))

2.5 Related work
In [Black88], an alternative notion of links is presented. Synthesis results are rec
as tags inside graph descriptions, and special programs (Coral) extract this inform
and translate them into links. Hence the links only depict relations among obje
different domains, and do not contain any synthesis information. Synthesis inform
is stored in tool-specific data structures, and no support is given for developm
integration of new synthesis tools. In [Lann91] and [Rund93], object-oriented
niques are used in a similar way as NEAT, to extend a common synthesis interfa
a tool specific interface. However, these systems store synthesis information a
inside graph definitions, instead of using links. This may restrict the complexity of

HIGH-LEVEL SYNTHESIS COMPONENTS 19

escribe
 uses
tools
is very
s only
inter-

ASCII
thesis

system
ffort,
 syn-
 com-
mented
sign
 the
tions that can be described. Complex inheritance mechanisms are used to d
libraries, and special techniques are needed to retrieve library information. NEAT
links to describe comprehensive libraries very efficiently. No special conversion
or access functions are needed to support these libraries. The NEAT interface
closely related to the mathematical structure of synthesis objects. Inheritance i
used to make the system extendible, without losing the original structure of the
face.

To our knowledge no high-level synthesis system supports the use of extendible
data to store synthesis data, or the incorporation of links inside the common syn
interface to represent synthesis results.

2.6 Conclusions
In this chapter a synthesis toolbox system called NEAT has been presented. This
provides a flexible way of developing synthesis tools with minimal programming e
by providing developers with a common functional interface containing common
thesis functionality, standard object manipulation functions, search functions, and
mon data structures. Some synthesis strategies have been successfully imple
using NEAT. The overall experience with NEAT is that it highly improves the de
and maintainability of high-level synthesis tools. It has contributed significantly to
ease of incorporating new research ideas in existing synthesis trajectories.

Figure 2.7 ESCAPE shows control, behaviour, and structure design views

20 HIGH-LEVEL SYNTHESIS COMPONENTS

hesis
prob-
-level

s cir-
f the
e exe-
mount

a

pes

-

elay.

t

ration

,

Chapter

3 High-Level Synthesis Scheduling

3.1 Introduction
In this chapter the key problems of this thesis, a collection of high-level synt
scheduling problems, are formally defined. Before introducing these scheduling
lems, scheduling constraints and goals which are of specific interest for the high
synthesis scheduling problem will be presented.

3.2 Scheduling and allocation definitions
This thesis is about the generation of synchronous digital circuits, in other word
cuitry which is synchronized by a central clock. This introduces the notion o
so-called cycle step, which is equal to the duration of one period of the clock. Th
cution of an operation type on a particular module type can be measured in the a
of cycle steps, denoted as the execution delay.

Definition 3.1 (Execution delay d). Let ModType be the set of module types, OpType
be the set of operation types, l ∈ ModType, t ∈ OpType, µ be an operation type
mapping, and l ∈ µ(t). Execution delay d: OpType × ModType → R is a function, with
d(t , l) the number of cycle steps an operation type t needs when it is executed on
module having module type l.

When an operation type t ∈ OpType can be executed upon several module ty
l ∈ µ(t), various execution delays d(t , l) may be associated with an operation v ∈ V, for
which τ(v) = t. In this thesis, for reasons of simplicity, the operation type mappingτ is
restricted in such a way that each operation v will be associated with exactly one mod
ule type l, and hence each operation can be associated with a unique execution d

Definition 3.2 (Operation mapping ξ). Let G = (V , E) be a data-flow graph, v ∈ V, and
ModType be a set of module types. Operation mapping ξ: V → ModType is a function
with ξ(v) the module type upon which operation v will be implemented. Notice tha
ξ(v) ∈ µ(τ(v)).

When the operation mapping is known beforehand, the execution delay of an ope
is given by d(τ(v) , ξ(v)), for which the following short hand notation is used:

Definition 3.3 (Operation execution delay δ). Let G = (V , E) be a data-flow graph
v ∈ V, τ(v) be the operation type of v, and ξ(v) be the operation mapping of v. Operation

22 HIGH-LEVEL SYNTHESIS SCHEDULING

f

timize

d

alloca-

s

d

es
execution delay δ: V → R is a function, with δ(v) the operation execution delay o
operation v, given by δ(v) = d(τ(v) , ξ(v)).

Modules inside a data-path will occupy a certain amount of area. To be able to op
the module area of the data-path, the cost of a module type is defined as follows:

Definition 3.4 (Module type cost cost). Let ModType be a set of network graphs, an
l ∈ ModType. The module type cost cost: ModType → R is a function, with cost(l) the
area of module type l.

A schedule of an operation can be defined as follows.

Definition 3.5 (Schedule ϕ). Let G = (V , E) be a data-flow graph, and v ∈ V. The
schedule ϕ: V → N is a function, with ϕ(v) the cycle step where operation v starts its
execution. The schedule of each operation v induces an interval [ϕ(v) , ϕ(v) + δ(v)],
often written as [begin(v) , end(v)], which represents the range of cycles in which v is
executing.

A schedule ϕ induces a schedule length (also called makespan) and a resource
tion.

Definition 3.6 (Schedule length M). Let (V , E) be a data-flow graph, S be a set of
schedules, and ϕ ∈ S. The completion time Cmax: S → N is a function, with
Cmax(ϕ) = MAXv ∈ V | τ(v) = ‘output’ end(v). The start time Cmin : S → N is a function,
with Cmin(ϕ) = MINv ∈ V | τ(v) = ‘input’ begin(v). The interval [Cmin(ϕ) , Cmax(ϕ)] is
called the schedule range of schedule ϕ. The schedule length M: S → N is a function
with M(ϕ) given by M(ϕ) = Cmax(ϕ) - Cmin(ϕ). In the remainder of this thesis it i
assumed, without loss of generality, that Cmin(ϕ) = 0, in other words Cmax(ϕ) = M(ϕ).

Definition 3.7 (Resource Allocation RA). Let G = (V , E) be a scheduled data-flow
graph, S be a set of schedules, and ϕ ∈ S. Let C(ϕ) = [Cmin(ϕ) , Cmax(ϕ)] be the
schedule range of schedule ϕ, and c ∈ C. Let ModType be the set of module types, an
l ∈ ModType. Distribution function DF: S × ModType × C → R is a function, given by
DF(ϕ , l , c) = |{v ∈ V | ξ(v) = l ∧ c ∈ [ϕ(v) , ϕ(v) + δ(v)]}|, which denotes how
resources are used over time. The resource allocation RA(ϕ , l) for each l ∈ ModType is
given by RA(ϕ , l) = MAX c ∈ C(ϕ) DF(ϕ , l , c), which denotes the number of resourc
of type l, needed to implement schedule ϕ.

Definition 3.8 (Resource Allocation Costs RA). Let S a set of schedules and ϕ ∈ S. The
resource allocation costs RA: S → R is a function, given by RA(ϕ) =
∑ l ∈ ModType cost(l) . RA(ϕ , l).

HIGH-LEVEL SYNTHESIS SCHEDULING 23

ect to
signer.
em.

n
 a

nding
 good
mance
nly
 the
utput

 as pos-
e allo-
cling
n bet-
bo92],
ment
an be
action

n-
 con-
ts, and
 some
3.3 Constraint sets and performance measures
The task of a high-level synthesis system is to find an optimal solution with resp
the performance measures, while satisfying the constraints specified by a de
Most high-level synthesis (sub-)problems can be defined as an optimization probl

Definition 3.9 (Combinatorial optimization problem). A combinatorial optimizatio
problem is a collection of instances (F , c). An instance of an optimization problem is
pair (F , c), where F is a set of candidate solutions and c: F → R is a cost function. The
problem is to find an f ∈ F, for which ∀ y ∈ F c(f) ≤ c(y) in case of a minimization
problem, and ∀ y ∈ F c(f) ≥ c(y) in case of a maximization problem.

In practice, high-level synthesis tasks like selection, allocation, scheduling, and bi
are performed with certain goals and constraints in mind. To be able to distinguish
solutions from bad solutions, the goals can be described by the use of perfor
measures, resulting in a cost function c. Performance measures which are commo
found in high-level synthesis publications, are global completion time (optimize
number of cycle steps between consumption of input data and production of o
data), throughput rate (find a schedule such that input data can be offered as fast
sible), and resource allocation (find a schedule which induces a minimal resourc
cation). Properties such as mutual exclusion [Camp91], chaining, multi-cy
[Stok91], and time shapes [Werf91,Eijn91] can be used to find schedules with eve
ter performance measures. Other performance measures like testability [Ge
power consumption [Chan92], interconnect allocation [Rim92, Rama92], place
and routing [Weng91,Pang91], system clock optimization [Park85], and more c
found in several publications, but are very hard to quantify accurately at the abstr
level used for high-level synthesis.

The set of candidate solutions F consists of solutions which don’t violate the co
straints imposed on the problem (also called feasible solutions). In this thesis
straints like precedence constraints, time constraints, throughput rate constrain
resource constraints will be discussed in more detail in Section 3.4. In Section 3.5
typical high-level synthesis scheduling problems will be formally defined.

3.4 High-level synthesis scheduling constraints and goals

3.4.1 Data-flow graphs and execution order
Section 2.2.1 told that the execution order of nodes inside a data-flow graph (V , E) is
constrained by the structure of the data-flow graph, inducing a partial order a on the
execution of the nodes.

The partial order a induced by the structure of an acyclic data-flow graph (V , E) is
rather straightforward to determine. Let u,v ∈ V and (u , v) ∈ E. Edge (u , v) denotes
transfer of data from operation u to v, in other words data produced by operation u is

24 HIGH-LEVEL SYNTHESIS SCHEDULING

r-

r each
pera-

pect to
uations

 edge
-

ed, to

asible
a-flow

ata. In
tion)
e for
losure

 con-
hould
consumed by operation v. This implies that operation v can start its execution after ope
ation u has produced data for v. The number of cycle steps operation u requires to pro-
duce data for operation v is described by the intra-iteration distance.

Definition 3.10 (Intra-iteration distance δ). Let (V , E) be a data-flow graph, u,v ∈ V,
and (u , v) ∈ E. The intra-iteration distance δ(u , v) ∈ R between u and v is defined as
the number of cycle steps u needs to translate its input data into input data for v. In case
(u , v) ∉ E, δ(u , v) = -∞, and in case u = v, δ(u , v) = 0.

Hence the cycle step in which u produces data for v is given by ϕ(u) + δ(u , v). In gen-
eral the intra-iteration distance δ(u , v) for each outgoing edge (u , v) of operation u to
operation v ∈ V, equals the operation execution delay δ(u) of operation u. Nevertheless,
the situation in which an operation generates tokens at different cycle steps fo
output edge, resulting in different values for the intra-iteration distance between o
tions, can also be modelled (also called time-shapes).

For each edge (u , v) ∈ E, the following relation can be derived:

ϕ(u) + δ(u , v) ≤ ϕ(v)

Such a relation is called a distance relation, and describes a constraint with res
the relative distance between the schedule of operations. Because in practical sit
δ(u , v) ≥ 0 (hence for each edge (u , v) ∈ E, ϕ(u) ≤ ϕ(v)), the edges in a data-flow
graph impose restrictions on the order of execution of operations. For each
(u , v) ∈ E such an execution order constraint is denoted by u a v, also called a depend
ence relation. The relation a is irreflexive (in other words u � u), anti-symmetric (in
other words u a v ⇒ v � u) and transitive (in other words u a v ∧ v a w ⇒ u a w).
Hence an acyclic data-flow graph (V , E) induces a structure (V , a), which can be
obtained by taking the transitive closure of E, denoted by E*. Structure (V , a) imposes
a strict partial order among the execution order of operations of V, and constraints the
schedule of the data-flow graph. In Chapter 4 some algorithms will be present
determine the distance between each arbitrary pair of operations from V. These dis-
tances will be used by scheduling algorithms to guarantee the construction of fe
schedules with respect to the constraints induced by the structure of the dat
graph.

In case a data-flow graph contains loop structures, it establishes a cyclic flow of d
that case a strict partial order (which is irreflexive and anti-symmetric by defini
cannot be derived directly from the structure of such a data-flow graph. Tak
instance the example shown in Figure 3.1. In this data-flow graph a transitive c
E* of edges would result in (v1 , v1) ∈ E* and (v2 , v2) ∈ E*.

In data-flow graphs, data-flow and control-flow are integrated into one model. The
trolling part takes care that the loop is executed the correct number of times. It s

HIGH-LEVEL SYNTHESIS SCHEDULING 25

ion for
e loop

ions.
g the
 loop
t pro-
 able to
n at

ssible
be noticed however that a data-flow graph loop structure is a shorthand descript
successive executions of the operations inside this loop structure. In Figure 3.2, th
structure is explicitly unfolded, resulting in an acyclic data-flow graph.

Unfolding a loop is not an efficient way to derive the execution order of operat
First of all, the number of operations increases with each unfolding, increasin
input size of the problem for synthesis. Secondly, the regularity induced by the
structure is not explicitly visible any more, and greedy synthesis methods migh
duce irregular data-paths, hence special analysis techniques are needed to be
construct efficient data-paths. Finally, the number of unfoldings might be unknow
compile time (for example in the case of while loops), hence in general it is not po
to eliminate the circular structure of the loop by using unfolding.

in

+

1

out

in

+

out

c d

v1

v2

v3

v4

v5

v6

++

<=

inn

0

for i := 0 to n do
 c := c + 1;
 d := d + c;
endfor;

Figure 3.1 Data-flow graph loop example.

Figure 3.2 Partially unfolded loop.

++ <=

0

in

1

+

+

1

+

1 ++

++

<=
control

control

<=

control

+

+

+

inc d inn

26 HIGH-LEVEL SYNTHESIS SCHEDULING

t sepa-
 for

lution

igure
 with

 of

i-

u-
ution

ations

ncies
-itera-
ns and
ay to

uling,
l ‘T’)

 to the
Another method is to consider the loop body as a basic block, and synthesize i
rately. This limitation eliminates the possibility of loop pipelining (see Section 3.4.4
more information about pipelining), and therefore unacceptably restricts the so
space of synthesis.

In Figure 3.3 the order of execution of operations of the data-flow graph given in F
3.1, is drawn in terms of the production and consumption of old and new values
respect to the current loop iteration. An old value of c is translated to a new value of c
(by execution of addition v1), which together with an old value of d is used to calculate
a new value of d (by execution of addition v2). Control is used to repeat the execution
this behaviour a specified number of times.

The moment of execution of operation v1 in the current iteration is restricted by prev
ous executions of v1. The execution order of operation v2 in the current iteration is
restricted by previous executions of v2, and the execution of operation v1 in the current
iteration. This means that new c-values and d-values can only be generated consec
tively with respect to their previously generated values. This imposes an exec
order constraint with respect to consecutive executions of the addition oper
among different iterations of the loop structure.

In Figure 3.3, two different kind of dependencies can be distinguished. Depende
referring to data produced and consumed in the current iteration are called intra
tion dependencies. Dependencies referring to data produced in previous iteratio
consumed in the current iteration are called inter-iteration dependencies. One w
make execution order constraints with respect to loop constructs explicit for sched
is by the use of so-called delay-nodes [Eijn91]. A delay node (denoted with symbo
has one input and one output. Any token arriving on the input is copied unaltered

Figure 3.3 Control-flow and data-flow execution order.

+ +

control

'd' variable'c' variable

old

new

old

v1 v2

HIGH-LEVEL SYNTHESIS SCHEDULING 27

e) ini-

y
t
g
 nodes
,

rocess.
scribed
cuted
cation

ess exe-
ation.
 graph

nents,
er of
at can

to the

d

f

output. The special property of a delay node is the fact that it contains one (or mor
tial token(s), which hold initial values used for the first iteration(s) of the loop.

3.4.2 Dependence and distance graphs

In Figure 3.4, the data-flow graph (V , E) of Figure 3.1 is modelled by using dela
nodes. The resulting graph is called a dependence graph (T , F), where T denotes the se
of operations, consisting of operations from V, excluding the nodes combinin
data-flow and control-flow, such as entry and exit nodes, and extended with delay
to explicitly model data dependencies between loop iteration. F is the set of edges
which model dependencies between the operations of T.

A dependence graph can be interpreted as a self-executing entity, also called a p
Just like with data-flow graphs, the execution mechanism of a process can be de
by a token-flow model. During the execution of a process, each operation is exe
exactly once. The mechanism to start the execution of a process is called the invo
of a process. A process can be repeatedly invocated, leading to successive proc
cutions. A process iteration refers to the execution of a particular process invoc
Details about processes and how to obtain a dependence graph from a data-flow
can be found in [Kost95].

The dependence graph of Figure 3.4 contains two strongly-connected compo
called cycles (not to be confused with the definition of a cycle step!). The numb
delay nodes inside a cycle describes the maximum number of pipeline stages th
be distributed among this cycle to obtain more efficient schedules. This leads
notion of the so-called inter-iteration distance.

Definition 3.11 (Inter-iteration distance λ). Let (T , F) be a dependence graph, an
(u , v) ∈ F. The inter-iteration distance λ(u , v) ∈ N between u and v is defined as the
number of loop iterations between the production of data by u and the consumption o
that data by v.

Figure 3.4 Execution order constraints of the example of Figure 3.1.

+++1T + T T

controldata

v1 v2

28 HIGH-LEVEL SYNTHESIS SCHEDULING

lic-

 (also
voca-

f

can be

 con-
bound
 sched-
 hence
nduced
 in a
 a new

 values
 nodes
ts, an

h array
an
In a dependence graph (T , F) the boundary between loop iterations is denoted exp
itly by delay nodes. Let u,v ∈ T, (u , v) ∈ F, and τ(u) = ‘delay’, then λ(u , v) is equal to
the number of initial tokens inside u. In other cases λ(u , v) = 0.

Let ϕn(u) denote the time that u ∈ T starts its execution in the nth iteration of a loop. For
each (u , v) ∈ F it can be derived that:

ϕn(v) ≥ ϕn - λ(u , v)(u) + δ(u , v) (3.1)

Let dii ∈ N represent the distance between two successive process invocations
called data introduction interval). When the distance between every two process in
tions is constant, equation (3.1) can be rewritten into:

ϕn(v) ≥ ϕn(u) - λ(u , v) · dii + δ(u , v) (3.2)

A short-hand notation ϕ(v) can be used for ϕn(v), which abstracts from the notion o
iteration. In that case equation (3.2) can be rewritten as:

ϕ(v) ≥ ϕ(u) - λ(u , v) · dii + δ(u , v) (3.3)

Relations as in equation (3.3) are called distance relations. Distance relations
visualized by labelling each edge (u , v) of a dependence graph (T , F) by a tuple
(δ(u , v) , λ(u , v)). A labelled dependence graph is also called a distance graph.

In Chapter 4 it will be shown that cycles in a dependence graph will impose time
straints with respect to the operations inside these cycles, resulting in a lower
and upper bound on the range of cycle steps in which these operations can be
uled. Algorithms will be presented to determine and update these bounds, and
guarantee the construction of feasible schedules with respect to the constraints i
by the structure of the data-flow graph. Furthermore it will be shown that cycles
dependence graph impose a lower bound value of the invocation distance, and
algorithm will be presented to derive this lower bound efficiently.

3.4.3 Data-flow graphs, arrays and dependence analysis

In data-flow graphs the contents of an array is modelled by a single token. Scalar
are written to and retrieved from the array by using so-called update and retrieve
respectively, which provide a way to index the array. A retrieve node has two inpu
array input which accepts a token holding an array a, and an index input i to address the
array. It has two outputs, one array output which passes the token associated wit
a unaltered, and a scalar output which return a[i]. An update node has three inputs,
array input which accepts a token holding an array a, an index input i to address the

HIGH-LEVEL SYNTHESIS SCHEDULING 29

with

among
 such a
es are
severe
ples.

 3.5.

 opera-
e array.
ints is
r con-
r con-
re it is
 exist
array, and a scalar input d. It has one array output which returns a token associated
array a, for which a[i] is equal to value d.

The order in which an array is accessed is modelled by a sequence of edges
update and retrieve nodes, which induces a linear order on the array accesses in
way that no array assignment and retrieval conflicts arise. In case loop structur
used in combination with arrays, the linear sequence of edges may impose
restrictions with respect to loop pipelining, as will be shown by the following exam

An example of a loop structure in combination with an array is shown in Figure
Because the values of a[i] are independent for different values of i, and hence new
a-values can be generated independently from the generation of other a-values, there
are no execution order constraints between successive executions of the addition
tion, despite the structure of the data-flow graph edges caused by sequencing th
A direct relationship between the structure of data-flow edges and order constra
not explicitly obvious. Dependence analysis is needed to extract the exact orde
straints from the data-flow graph structure [Bane93,Zima90]. The execution orde
straints, obtained from such an analysis, are shown in Figure 3.6. From this figu
obvious that among the loop-body operations, no execution order restrictions

++
9

<=

0
in

out

upd

ret

a

+

1

for i := 0 to 9 do
 a[i] := a[i] + 1;
endfor;

Figure 3.5 Loop with array, corresponding data-flow graph.

30 HIGH-LEVEL SYNTHESIS SCHEDULING

f index

tions
hown

re 3.7
pend-
the exe-
e used
ations.

o the
tion
 previ-

 loop
re 3.1
 in the
vide
resses
wards
 depend-
regarding previous loop executions. The control part must generate a sequence o
values, and it must terminate the loop.

An example of a loop structure in which dependencies among different loop itera
exist, is shown in Figure 3.7. The algorithmic behaviour of this loop structure is s
in Figure 3.7.

Just like in the previous example shown in Figure 3.5, the array sequence in Figu
introduces order restrictions which are unnecessary for scheduling. Additional de
ence analysis is needed to investigate the index-space structure, which leads to
cution order constraints as visualized in Figure 3.9. In this figure, delay nodes ar
to provide a reference to scalar values of the array produced in previous loop iter

The translation of the array index calculations from the original data-flow graph t
control part of Figure 3.9 isn’t very efficient. In Figure 3.10 a more efficient calcula
of index expressions can be found, using delay nodes to make values produced in
ous iterations accessible in current iterations.

With respect to control it is a mistake to assume that the controlling part of the
should always be executed synchronous to the loop body. In the example of Figu
and Figure 3.2 it can be observed that the controlling part of the loop (represented
program by variable i) is used to manage the number of loop iterations, and to pro
indexing for arrays (which in a data-path should be translated into memory add
management). Despite the data-flow edges from the controlling part of the loop to
the entry and exit nodes, and despite some addressing aspects, there are no data

Figure 3.6 Execution order constraints of the example of Figure 3.5.

+

controldata

++ T

for i := 2 to 9 do
 a[i] := b[i - 1] + c[i - 2];
 b[i] := a[i] + 1;
 c[i] := a[i] * b[i];
endfor;

Figure 3.7 Algorithmic behaviour of data-flow graph in Figure 3.7

HIGH-LEVEL SYNTHESIS SCHEDULING 31

e loop
ted in
ed, or
re the
encies whatsoever between the controlling part and the values calculated inside th
body, which has been made explicitly visible in Figure 3.2. Schedules can be crea
which loop bodies start their execution before a control value has been determin
the other way around, in which successive control values are determined befo

++
9

<=

2
in

+

1

out

upd

×

in

upd

+

ret

in

upd

ret ret

outout

ret

1

-

2

-

a b c

Figure 3.8 Loop construction containing array accesses.

32 HIGH-LEVEL SYNTHESIS SCHEDULING

n see
plies

can be
op body

enta-
e the
icated

nce for
 state

spe-
loop body has finished its execution. In the data-flow graph of Figure 3.5 one ca
that a data value obtained by the controlling part is used to index an array. This im
that the control value should be calculated before the corresponding loop body
executed. Nonetheless successive control values can be calculated before the lo
has finished its execution.

Another discussion with respect to the control part of the loop is about the implem
tion. It can be synthesized just like the loop-body, and be integrated insid
data-path. It can also be separated from the data-flow part of the loop, and ded
implementations can be created by using special techniques, such as for insta
address generation [Lipp91,Vanh93]. Control-flow can also be modelled as a finite
machine, which in combination with logic synthesis or in combination with other
cial techniques can lead to dedicated gate-level implementations.

Figure 3.9 Execution order constraints of the example of Figure 3.7.

++

+

T

controldata

+

×

T

T
a[i]

b[i]

b[i-1]

c[i]

c[i-1]

c[i-2]

T

'i +1'

-

-

1

2

'i'

'i-1'

'i-2'

Figure 3.10 Calculation of index value with delay nodes.

++

+

T

T

controldata

+

×

T

T
a[i]

b[i]

b[i-1]

c[i]

c[i-1]

c[i-2]

TT
'i'

'i +1'

'i - 1' 'i - 2'

HIGH-LEVEL SYNTHESIS SCHEDULING 33

able to
f time
th, and
f data

 respect
igure
sing

t with
 used,

ions in
 each

mple

pera-
enden-
of the
 (ILP)
y, and

tions is
As control can be synthesized by other synthesis tools, a scheduler must be cap
abstract from control. This can be achieved by taking into account the amount o
needed to generate control values, which on its turn are needed in the data-pa
model this execution time on the edges which represent retrieve and update o
from arrays. An example obtained from Figure 3.10 is shown in Figure 3.11.

So far, delay nodes have been used to describe order execution constraints with
to a single loop iteration. An example of such a loop structure can be found in F
3.12, in which a simplified data-flow graph is shown (for simplicity array acces
hasn’t been drawn explicitly).

In case of nested loops, the invocation distance of operations can be differen
respect to each loop. Nested loop structures, in which more than one iterator is
result in multi-dimensional index spaces. Let the period pi ∈ N of a loop, using iterator
i be the number of cycle steps such a loop execution takes. Because operat
multi-dimensional loops can be repeated with different periods with respect to
loop, a delay node needs to be annotated with a period vector p to be able to describe
the multi-dimensional characteristic of the execution order constraints. In the exa
of Figure 3.12 the execution of f depends on two iterators i and j, and hence the period
vector is given by (pi , pj). The distance between two successive executions of an o
tion is not necessarily constant. In [Verh92b] a stream model to describe data dep
cies between operations based on period vectors is introduced. Determination
execution order of two operations is modelled as an Integer Linear Programming
Problem. In general, such a problem can become rather difficult to solve efficientl
in [Verh95] some special cases are described in detail.

In this thesis it is assumed that the distance between successive operation execu
constant over all loop indices.

Figure 3.11 Abstraction of control.

+

T

data

+

×

T

T
a[i]

b[i]

b[i-1]

c[i]

c[i-1]

c[i-2]

34 HIGH-LEVEL SYNTHESIS SCHEDULING

de-off
e main
iques
d on
. This
sched-

traint
l

e con-
e

3.4.4 Time
When synthesizing digital circuits, a designer wants to be able to make a tra
between the speed and the area of a circuit. This situation characterizes one of th
differences between high-level synthesis and ordinary software compilation techn
[Aho86], the importance of the notion of time. Throughput rate constraints impose
for instance DSP applications are crucial, and must be satisfied in any case
imposes severe requirements with respect to the quality of solutions produced by
uling algorithms concerning time.

A common constraint in high-level synthesis is the so-called global time cons
Tmax ∈ N (also called cycle step budget). Let (V , E) be a data-flow graph. A globa
time constraint Tmax for a schedule ϕ implies Cmax(ϕ) ≤ Tmax, in other words the com-
pletion time Cmax(ϕ) induced by schedule ϕ should not exceed time constraint Tmax.

Besides a global time constraint, a local time constraint can be used. A local tim
straint tc(u , v) between two arbitrary operations u,v ∈ V denotes the maximal distanc
between these two operations, in other words ϕ(v) ≤ ϕ(u) + tc(u , v).

in

++
4

<=

f

++
4

<=

1

out

1

for i := 1 to 4 do
 for j := 1 to 4 do
 a[i,j] := f(a[i,j-1],a[i-1,j]);

Figure 3.12 Example of multi-dimensional loop.

HIGH-LEVEL SYNTHESIS SCHEDULING 35

l time
ow a
ge of

nted to
satisfy-

can be

h data
-called

ut

r as an
lining.
 with
differ-
in Fig-

imal
In Chapter 4 it will be shown that a cycle in a dependence graph will impose loca
constraints with respect to operations inside this cycle. It will also be shown h
combination of time constraints and dependence constraints influence the ran
cycle steps in which operations can be scheduled. Some algorithms will be prese
determine and update these ranges, to be able to efficiently produce schedules
ing their time constraints.

Time can also be used as a quantity to be optimized. A schedule objective, which
found very often in high-level synthesis, is the completion time Cmax(ϕ) (see Definition
3.6) induced by schedule ϕ.

In some cases it is important to generate an implementation of a data-path in whic
can be offered successively at a particular rate. This leads to the notion of the so
throughput rate.

Definition 3.12 (Throughput rate dii). Let (V , E) be a data-flow graph. The throughp
rate (also called data introduction interval) dii(ϕ) ∈ N of a schedule ϕ is defined as the
distance between two consecutive invocations (often denoted by dii).

Just like with time constraints, the throughput rate can be used as a constraint o
objective. The throughput rate of a schedule can be improved by the use of pipe
In this situation operations from current iterations are scheduled concurrently
operations from preceding and/or successive loop iterations. An example of the
ence of throughput rate of a pipelined and non-pipelined schedule can be found
ure 3.14, which shows two different schedules for the example of Figure 3.7.

To be able to construct loop pipelined schedules, it is important to know the min
and maximal distance between two operations. The result produced by the i th multipli-

Figure 3.13 Unfolded loop of the example given in Figure 3.12.

f f f f

f f f f

f f f f

f f f f

1

2

3

4

1 2 3 4

36 HIGH-LEVEL SYNTHESIS SCHEDULING

 and
which

urces,
omical

und on
n the
ltane-
tion
thods
after
dling
cation of the example Figure 3.11 is needed in iteration i + 2 by the addition operation
to generate a[i+2]. Depending on the execution rate of the loop, this imposes lower
upper bounds on the range of cycle steps available for scheduling operations,
will be discussed in more detail in Chapter 4.

3.4.5 Resources
Just like time, another important aspect in high-level synthesis are hardware reso
because each square millimetre saving in terms of chip area can lead to econ
advantages.

A resource constraint imposes an upper bound on the resource allocation. Let (V , E) be
a data-flow graph, and RC(l) be an upper bound for module type l ∈ ModType. A
resource constrained schedule ϕ implies that ∀ l ∈ ModType RA(ϕ , l) ≤ RC(l).

The most obvious resource bounds used in high-level synthesis is an upper bo
the number of functional units (also called modules). This imposes a restriction o
number of operations of a particular operation type that can be scheduled simu
ously. Only very little is known of schedulers which can cope with memory alloca
constraints and interconnect allocation constraints during scheduling. Most me
reported try to optimize memory allocation or interconnect allocation during or
scheduling. In Chapter 4 a short overview of algorithms being capable of han
resource constraints will be given.

A minimal resource allocation RA(ϕ) (see Definition 3.8) induced by schedule ϕ can
also be used as an objective for scheduling.

+ +

×

+ + + +

a[2] b[2] c[2] a[3] b[3] c[3] a[4] b[4] c[4]

+ +

a[2] b[2] c[2]

+ +

a[3]
b[3]

c[3]

+ +

a[4]
b[4]

c[4]

+ +

a[5]
b[5]

c[5]

+ +

a[6]
b[6]

c[6]

× ×

× × × × ×

(a)

(b)

Figure 3.14 Non-pipelined (a) and pipelined (b) schedule.

HIGH-LEVEL SYNTHESIS SCHEDULING 37

lems:

raph

 con-

e. In
 con-
chedul-

ts have
pter is
 and

in the
3.5 Schedule problems
The key problems discussed in this thesis consist of two kinds of scheduling prob

Definition 3.13 (Time constrained scheduling). Given are data-flow graph (V , E) and a
time constraint Tmax. Find a schedule ϕ such that Cmax(ϕ) ≤ Tmax, inducing a minimal
resource allocation RA(ϕ).

Definition 3.14 (Resource constrained scheduling). Given are a data-flow g
(V , E), and for each l ∈ ModType a resource constraint RC(l). Find a schedule ϕ such
that ∀ l ∈ ModType RA(ϕ , l) ≤ RC(l), inducing a minimal completion time Cmax(ϕ).

In Chapter 4 and Chapter 5 it will be shown that time constraints and resource
straints are tightly related.

Another category of interesting scheduling problems deal with throughput rat
Chapter 4 it will be shown that throughput constraints are a special case of time
straints, and therefore can be considered as a special case of time constrained s
ing problems.

3.6 Conclusions
In this chapter dependence constraints, time constraints, and resource constrain
been discussed, playing a leading role in high-level synthesis scheduling. The cha
concluded with a formal introduction of two scheduling problems, time constrained
resource constrained scheduling, which will be the key problems discussed
remainder of this thesis.

38 HIGH-LEVEL SYNTHESIS SCHEDULING

traints,
e con-
ch as

ecause
of cycle
aints,
e
hapter.

n of a
s of a
d-

ep

easible
cking
cient
llowing
should
lutions
ould be

asible
asible
chedule
eat all
Chapter

4 Schedule Constraints

4.1 Introduction
In practical cases the high-level synthesis scheduling problem is subject to cons
such as precedence constraints (derived from an algorithmic behaviour), resourc
straints (derived from a network structure), and all kinds of time constraints (su
completion time and data arrival rate).

During the construction of a schedule, operations are assigned to cycle steps. B
of constraints, operations cannot be assigned to arbitrary cycle steps. The range
steps available for operations to start their execution without violating any constr
is called the feasible schedule range of operation u. Several methods to determin
bounds on the feasible schedule ranges of operations will be presented in this c
These methods differ in accuracy and efficiency.

The feasible schedule range of operations can change during the constructio
schedule. If for instance, due to the schedule of a particular operation, all unit
resource type become occupied in cycle step c, the feasible schedule range of unsche
uled operations needing this resource type for execution cannot include cycle stc in
their schedule range any more.

Schedulers which allow operations to be assigned to cycle steps outside their f
schedule range, may result in inefficient scheduling methods which need backtra
or repair algorithms to come up with a feasible schedule. To obtain more effi
scheduling methods, one can restrict the search space of a scheduler by only a
operations to be scheduled within their feasible range. These feasible ranges
restrict the search space as good as possible without excluding all optimal so
from the search space. The algorithms to determine feasible schedule ranges sh
very efficient, to obtain overall efficient scheduling methods.

This chapter presents the influence of different kinds of constraints on the fe
schedule range. It gives an overview of existing methods which determine fe
schedule ranges, and presents some new algorithms to determine the feasible s
range accurately and efficiently. Furthermore it presents a unified approach to tr
these constraints in a single model.

40 SCHEDULE CONSTRAINTS

e

-

ini-

cle

tep
dule
asible
4.2 Distance matrix
Let (T , F) be a dependence graph derived from a data-flow graph (V , E), and let
u,v ∈ T, such that u a v. The time where v can start its execution depends on the timu
ends its execution, given by:

end(u) ≤ begin(v)

Let distance(u , v) denote the minimal distance between u and v, then:

ϕ(u) + distance(u , v) ≤ ϕ(v)

Let dii be a shorthand notation for dii(ϕ). The minimal distance distance(u , v) between
each pair of operations u,v ∈ T, with (u , v) ∈ F, is given by δ(u , v) - λ(u , v) · dii. The
question is how the distance between two arbitrary operations from T can be deter-
mined.

A path p inside (T , F) is a sequence of operations t1 , t2 , ... , tr, such that (ti , ti+1) ∈ F
for each i = 1 , 2 , ... , r - 1. For each relation (ti , ti+1) we have a corresponding dis
tance relation:

ϕ(ti+ 1) ≥ ϕ(ti) - λ(ti , ti+1) · dii + δ(ti , ti+ 1)

Adding all distance relations of path p results in:

ϕ(tr) ≥ ϕ(t1) - (λ(t1 , t2) + ... + λ(tr-1 , tr)) · dii + δ(t1 , t2) + ... + δ(tr-1 , tr) (4.1)

which by summation of all lambdas and deltas gives:

ϕ(tr) ≥ ϕ(t1) - λ’(t1 , tr) · dii + δ’ (t1 , tr) (4.2)

which can be rewritten as:

ϕ(tr) ≥ ϕ(t1) + distance(t1 , tr) (4.3)

From equation (4.3) it can be derived that the time operation t1 starts its execution
restricts the time operation tr may start its execution, in other words, it defines a m
mal distance distance(t1 , tr) between the schedule time of operations t1 and tr. If during
scheduling operation t1 becomes scheduled in cycle step ϕ(t1), the minimal distance
distance(t1 , tr) denotes that operation tr can only be scheduled inside or later than cy
step ϕ(t1) + distance(t1 , tr). On the other hand, if operation tr becomes scheduled in
cycle step ϕ(tr), operation t1 can be scheduled inside or earlier than cycle s
ϕ(tr) - distance(t1 , tr). Hence the distance relations clearly restrict the feasible sche
range of operations with respect to the schedule of other operations. To derive fe

SCHEDULE CONSTRAINTS 41

opera-

opera-

. By

en the
ta-

 per-
t path,

ese val-
e long-

a sin-
Bell-

en
e dis-

ad to a

s dur-
hich

on the
hedul-

ies, a
and

t the
schedule ranges during scheduling efficiently, the distance information between
tions will be needed at any time.

In [Heem90] two algorithms are discussed to determine the distance between
tions. In both cases the schedule time ϕ(tr) of a reference operation tr ∈ T is fixed, which
by definition equals 0. The first method is based on Fourier-Motzkin elimination
recursive elimination of variables in the set of distance inequalities, an O(|T|3) algo-
rithm can be derived to determine feasible schedule ranges of operations. Wh
schedule time of another operation ti ∈ T is fixed, the schedule ranges need re-compu
tion. In a worst case situation a complete Fourier-Motzkin elimination must be
formed again. The second method is based on calculation of the all-pairs longes
which can be calculated by the Floyd-Warshall algorithm (complexity O(|T|3)) or John-
son’s algorithm (complexity O(|T| · |F| + |T|2 · log|T|)) (for more details, see
[Corm90]). Because ϕ(tr) equals 0, the distance between tr and ti is exactly the length of
the longest path. If there is no path, the distance equals -∞. When an operation ti is
scheduled, an edge (tr , ti) with distance [ϕ(ti) , 0], and an edge (ti , tr) with distance
[-ϕ(ti) , 0] are added, or, when these edges exist, the distances are updated to th
ues. The update of the feasible schedule ranges is performed by re-computing th
est paths by re-applying the Floyd-Warshall algorithm or the Johnson algorithm.

In [Heem92] a third method is derived from the second method, which applies
gle-source longest path algorithm instead of an all-pairs longest path. The
man-Ford algorithm, with a complexity of O(|T| · |F|), is used twice to derive the
distance from a reference operation tr to all other operations and vice versa. Wh
scheduling an operation, the Bellman-Ford algorithm is used again to update th
tances between operations. When scheduling operations one by one, this will le
worst case complexity of at least O(|T|2 · |F|). The complexity will increase signifi-
cantly for scheduling methods which use many tentative movements of operation
ing scheduling. One such example is force directed scheduling [Paul89], in w
O(|T|2 · Tc) tentative movements are performed during scheduling, with Tc ∈ N being
the overall time constraint.

In [Goos89] an iterative approach is suggested to calculate distances. It relies
way a schedule is constructed, which is a list scheduling algorithm that assures sc
ing operations in a topological order. In case of an intra-iteration dependency (u , v),
scheduling an operation u will impose a lower bound on the schedule time ϕ(v) of oper-
ation v, which is called a computable bound. In case of inter-iteration dependenc
lower bound on ϕ(v) cannot be computed explicitly using this topological method,
therefore backtracking is introduced. A weight function ω, which depends on dii, is
used as follows:

ϕ(v) ≥ ϕ(u) + ω(dii)

The value of ϕ(v) in a current list scheduling stage is calculated by using the ϕ(u) value
obtained by the previous list scheduling stage. From experiments it follows tha

42 SCHEDULE CONSTRAINTS

w-
l
iven
 con-

pera-

y. Let

s,
d-War-

is-
of the

xity of

istance
x,
found
cation
choice of the initial value of ϕ(u) is not important, and is set to 0. The method is ho
ever reported to be highly dependent on the value chosen for dii. Besides, a theoretica
foundation why this method works correctly is missing. Finally, no results are g
about the typical amount of iterations needed to make this backtracking algorithm
verge.

As presented in [Heem90,Lam89], the minimal distance between two arbitrary o
tions ti,tj ∈ T can be obtained by calculating the longest path distance from ti to tj, using
the distance between successive operations as path weights in the following wa
T = { t0 , t1 , ... , tn} be a set of operations. Let D(k)(i , j), with 0 ≤ k ≤ n, be the longest
path from operation ti to tj, consisting of operations {t0 , t1 , ... , tk}. A recursive defini-
tion of D(k)(i , j) is given by:

(4.4)

To determine the longest path distance distance(ti , tj) between each pair of operation
several all-pairs longest path algorithms can be used [Corm90], such as the Floy
shall algorithm (O(|T|3)) or the Johnson algorithm (O(|T|2 · log|T| + |T| · |F|)). The
resulting matrix D(|T|-1) is called a distance matrix, and for each ti,tj ∈ T,
distance(ti , tj) = D(|T|-1)(i , j). In [Lam89] symbolic expressions are used in the d
tance matrix to be able to recalculate the longest paths very quickly if the value
data introduction interval dii is changed.

When an operation u ∈ T is scheduled, a lower bound (asap) and upper bound (alap) of
the feasible schedule range of any unscheduled operation v ∈ T can be recalculated by
using the following assignments:

asap(v) := MAX(asap(v) , ϕ(u) + distance(u , v)) (4.5)

alap(v) := MIN(alap(v) , ϕ(u) + δ(u) - distance(v , u)) (4.6)

In contrast to the method presented in [Heem90,Heem92], the worst case comple
updating the feasible schedule ranges using equations (4.5) and (4.6) is O(|T|).

Take for instance the dependence graph of Figure 3.11. The corresponding d
graph (limited to operations v1, v2, and v3), the corresponding initial distance matri
and a distance matrix after applying an all-pairs longest-path calculation can be
in Figure 4.1. It is assumed that an addition requires 1 cycle step, and a multipli
requires 2 cycle steps to complete execution.

Let dii = 3 cycle steps. In that case the distance matrix D(2) equals:

D
k()

i j,()
δ ti t j,() λ ti t j,() dii⋅– if k = 0

MAX D
k 1–()

i j,() D
k 1–()

i k,() D
k 1–()

k j,()+,() if k ≥ 1

=

SCHEDULE CONSTRAINTS 43

e

ongest
tance

ty of
before,

iter-
 delay

evious

cessive
Suppose operation v2 is scheduled in cycle step 2, in other words ϕ(v2) = 2. The feasi-
ble schedule range of operation v1 according to equations (4.5) and (4.6) becomes:

ϕ(v1) ≥ ϕ(v2) + distance(v2 , v1) = 2 - 2 = 0

ϕ(v1) ≤ ϕ(v2) - distance(v1 , v2) = 2 - 1 = 1

Hence the feasible schedule range where v1 can start its execution is [0 , 1]. Using th
same method results in schedule range [3 , 5] for operation v3.

In case a dependence graph doesn’t contain any cycles, a simplified all-pairs l
path algorithm for DAGs [Mesm95] can be used to calculate and update the dis
information between operations. The algorithm has a worst case complexi
O(|T| · |F|). Updating schedule ranges is done in the same manner as described
and has a worst case complexity of O(|T|).

4.3 Process invocation constraints
Let t1 , t2 , ... , tr be a path in a dependence graph (T , F). If a path t1 , t2 , ... , tr is
extended with edge (tr , t1), it becomes a so-called cycle. Operations in the current
ation of a cycle use data generated in previous iterations of the cycle (denoted by
nodes). Therefore the process can only start a new iteration if this data from pr
iterations has been produced. This restriction introduces a lower bound diimin on the
distance between successive process invocations dii(ϕ) for each possible schedule ϕ. In
this section several methods to determine the lower bound distance between suc

D
0()

0 1 1

1 dii– 0 1

2 2 dii⋅– ∞– 0

=

D
2()

0 1 2

1 dii– 0 1

2 2 dii⋅– 3 2 dii⋅– 0

=

Figure 4.1 Distance graph and distance matrix.

+

+

×

v1

v2

v3

(2,2)

(1,0)

(1,0) (1,1)

(1,0)

D
2()

0 1 2

2– 0 1

4– 3– 0

=

44 SCHEDULE CONSTRAINTS

ns will

-
 nodes
ription
e proc-

rocess
 input
ethod
oncur-
 dis-

1 cycle

rocess
g mul-
d. In
ra-
s by

process invocations and their impact on the feasible schedule range of operatio
be discussed.

4.3.1 Basic blocks

One way to determine a lower bound value for dii is to consider the execution of a sin
gle process iteration. To obtain a description of a single process iteration, delay
can be replaced by a pair of input-output nodes. This results in an acyclic desc
called a basic block (see Figure 4.2, which represents one single execution of th
ess given in Figure 3.11).

When considering a basic block, the minimal distance between successive p
invocations equals the critical path (which is the longest possible distance from an
node to an output node) of the basic block. The single process invocation m
ignores the fact that operations belonging to different iterations can be executed c
rently, and in general will result in a poor quality lower bound on the invocation
tance.

Using the basic block method, the minimal process invocation distance diimin of the
example in Figure 4.2 equals 4 cycle steps (assuming that an addition requires
step, and a multiplication requires 2 cycle steps).

4.3.2 Multiple process invocations

When only one single iteration is considered during the determination of diimin, it is
assumed that pipeline stages are emptied at the iteration boundaries of the p
(denoted by the place of the delay nodes in the dependence graph). By considerin
tiple process invocations, hidden concurrency within processes will be unravelle
other words, operations of iteration i+ 1 can be scheduled before all operations of ite
tion i have finished execution (also known as loop pipelining). Unfolding a proces
factor k results in a dependence graph, which holds k iterations of the original process.

+

x

+ i

i ii

o

o

o

v1

v2

v3

Figure 4.2 Basic block.

SCHEDULE CONSTRAINTS 45

ed, the
re 4.3),

iti-

cations

gram
lay ele-
ays be
rma-
mmon

. A big
factor
s the
neral

tic (for
to the
 proc-
If, in case of the example of Figure 3.11, three process invocations are consider
critical path length of these 3 process invocations equals 8 cycle steps (see Figu
which distributed among 3 process iterations leads to an average lower bound of8 / 3
= 3 cycle steps. If k process iterations, k > 1, are considered, the operations of the cr
cal path of Figure 3.11 will be distributed among the following cycle budget:

Hence, using this method the minimal distance between successive process invo
will always lead to 3 cycle steps.

In [Parh91] the concept of perfect-rate programs is introduced. A perfect rate pro
is a program in which each cycle in a dependence graph contains at most one de
ment. It is claimed that perfect rate programs have the property that they can alw
scheduled with optimal throughput rate, requiring no retiming or unfolding transfo
tions. Perfect rate programs can be obtained by unfolding a process the least co
multiple of delay elements of each cycle in the corresponding dependence graph
disadvantage of the unfolding method presented in [Parh91] is that the unfolding
may grow exponentially in the number of loops. Hence unfolding also complicate
scheduling problem significantly, because the complexity of scheduling in ge
grows exponentially with the number of operations to be scheduled.

One advantage mentioned in [Parh91] is that the schedules obtained are fully sta
each iteration each operation is bound to the same resource) with respect
unfolded process, but in fact many results are cyclo-static with respect to a single

+

x

+ v1

v2

v3

+

x

+ v1

v2

v3

+

x

+ v1

v2

v3

Figure 4.3 Multiple process invocations.

2 2 k⋅+
k

------------------- 2 2
k
---+ 3= =

46 SCHEDULE CONSTRAINTS

 differ-
duling
e used,
 per-
iodic
an be
e proc-
tance
dules

sis and
can be
m a
quires
with a

rocess
lled
xecu-
 of the
 in the
r of
ess iteration (characterised by a resource displacement for the same operation in
ent iterations [Schw85]). Whether schedules are fully static depends on the sche
technique. If for instance greedy scheduling techniques such as list scheduling ar
there is no guarantee that fully-static schedules will result. In Figure 4.4(a) a
fect-rate program from [Parh91] can be found. In Figure 4.4(b) a fully static per
schedule using 2 functional units with an invocation distance of 3 cycle steps c
found. The schedule shows how two successive schedules of a single perfect-rat
ess must be combined to result in a fully-static schedule with a minimal dis
between process invocations. The way in which fully static and overlapped sche
for a perfect-rate process must be constructed, requires some additional analy
scheduling technique. In Figure 4.4(c) a greedy schedule for the same example
found, which is cyclo-static. In Figure 4.4(d) a fully-static schedule resulting fro
greedy scheduler can be found. Hence the multiple process invocation method re
some extra analysis and scheduling techniques to obtain fully static schedules
tight bound on the minimal distance between process invocations [Wang95].

4.3.3 Loop folding and retiming

Another way to determine a lower bound on the distance between successive p
invocations can be found in [Goos89], in which a control-flow transformation ca
loop folding is presented. Loop folding introduces partial overlaps between the e
tion of successive process invocations in such a way that the critical path length
process is shortened. This is achieved by transforming the index expressions
algorithmic behavioural description. Take for instance the algorithmic behaviou

T

T

T A

BC

D E

(a)

D1 C1 A1

B1 E1

D2 C2 A2

B2 E2

(b)

D1 C1 A1 B1 E1

D2 C2 A2 B2 E2

(c)

P1

P2

P1

P2

D1 C1 A1 B1 E1 D2 C2 A2 B2 E2

(d)

P1

Figure 4.4 Perfect-rate program example.

SCHEDULE CONSTRAINTS 47

 Fig-
ration
al path

s91].
oved to
of the
.

 delay
hence
r more
tions
esult
 cycle
 steps

ons can
ycle
Figure 4.5, which is a re-write of the algorithmic behaviour which can be found in
ure 3.7. As opposed to the original algorithm in Figure 3.11, there are no intra-ite
dependencies between (1) and (3), and between (2) and (3), and hence the critic
of the process is decreased from 4 to 2 cycle steps.

There are many similarities between the concept of loop folding and retiming [Lei
Comparing Figure 3.11 and Figure 4.5 shows that the delay nodes have been m
other places, but the functional behaviour is equivalent. When a single iteration
retimed process is considered, a critical path delay of 2 cycle steps can be found

The disadvantage of retiming (and hence also of loop folding) is that it may place
nodes in such a way that it might exclude all optimal schedule solutions, and
reduces the design space of a scheduler inadequately (see Section 5.11 fo
details). The second problem of retiming is that it can't handle multi-cycle opera
properly (see Figure 4.6). No matter how the delay nodes are shifted, it will still r
in a critical path delay of 4 cycle steps, assuming that a multiplication requires 2
steps. A cyclo-static overlapped schedule results in a minimal distance of 3 cycle
between two process invocations.

4.3.4 Distance relations

The lower bound constraint on the distance between successive process invocati
be derived directly from the distance relations in the following way. For each c
t1 , t2 , ... , tr the corresponding distance relations are:

ϕ(t2) ≥ ϕ(t1) + δ(t1 , t2) + λ(t1 , t2) · dii

ϕ(t3) ≥ ϕ(t2) + δ(t2 , t3) + λ(t2 , t3) · dii

...

ϕ(t1) ≥ ϕ(tr) + δ(tr , t1) + λ(tr , t1) · dii

+

x
T

+

T

T

i

T

v1

v2

v3

 a[B] := b[B-1] + c[C-2];
 b[B] := a[B] + input[B];
 for i := B to E - 1 do { B < E }
 a[i+1] := b[i] + c[i-1]; (1)
 b[i+1] := a[i+1] + input[i+1]; (2)
 c[i] := a[i] * b[i]; (3)
 endfor;
 c[E] := a[E] * b[E];

Figure 4.5 Process after retiming.

48 SCHEDULE CONSTRAINTS

tance

 taking

-
tions

s can
 dis-
 intro-

al of
tions as
 each

 deter-

-
tal

Adding all the distance relations of this cycle results in the following equation.

(λ(t1 , t2) + λ(t2 , t3) + ... + λ(tr , t1)) · dii ≥ δ(t1 , t2) +δ(t2 , t3) + ... + δ(tr , t1)

From this equation a lower bound constraint on the process invocations dis
dii(c) ∈ N for cycle c ∈ (T , F) can be derived:

(4.7)

The lower bound constraint on the process invocations distance is determined by
the maximum value found for the minimum value of dii of each cycle:

(4.8)

For Figure 3.11 this method would lead to diimin = 2. In the next section a new algo
rithm will be described, which efficiently calculates the minimal process invoca
distance using distance relations.

4.3.5 An algorithm to determine the minimal invocation distance
From Section 4.3 we know that the minimal data introduction interval of a proces
be found by dividing the total intra-iteration distances by the total inter-iteration
tances for each cycle in the process (see equation (4.7)). The overall minimal data
duction interval can be found by calculating the minimal data introduction interv
each cycle in a process separately, and take the maximum value of these calcula
the minimal process invocations distance for the whole process. Enumerating
cycle of a process can be very complicated [Tarj73]. Therefore, a new method for
mining the process invocations distance has been developed.

Let c = t1 , t2 , ... , tr , t1 be a cycle. The current execution of c uses data which is pro
duced in previous executions of c, denoted by inter-iteration dependencies. The to
inter-iteration distance Λ(c) = λ(t1 , t2) + λ(t2 , t3) + ... + λ(tr , t1) of cycle c multiplied
with dii denotes the number of cycle steps data may use to traverse through cyclec. The

x T

multiplier 1
multiplier 2

0 1 2 3cycle

v3

v1

v2

x

Tx

v1 v2

v3 v1 v2
v3

4 5 6

Figure 4.6 Cyclo-static schedule, which cannot be generated by retiming.

dii c()
δ t1 t2,() δ t2 t3,() … δ tr t1,()+ + +

λ t1 t2,() λ t2 t3,() … λ tr t1,()+ + +
---≥

diimin MAX c T∈ dii c()=

SCHEDULE CONSTRAINTS 49

 which

c-
result-
e

to

he
total intra-iteration distance ∆(c) = δ(t1 , t2) + δ(t2 , t3) + ... + δ(tr , t1) of cycle c
denotes the total amount of cycle steps needed by all operations to process data
traverse the cycle. The slack of cycle c is defined as:

slack(c) = (λ(t1 , t2) + λ(t2 , t3) + ... + λ(tr , t1)) · dii -

 (δ(t1 , t2) +δ(t2 , t3) + ... + δ(tr , t1)) (4.9)

For each cycle c, we have slack(c) ≥ 0, because if slack(c) < 0 data will be consumed
which hasn’t been produced yet. If slack(c) = 0, then data produced in a previous pro
ess execution is immediately consumed. Hence according to equation (4.7), the
ing dii is the smallest dii possible for cycle c. Hence, the minimal invocation distanc
diimin is defined as the value of dii with:

1. ∀ c ∈ (T , a) slack(c) ≥ 0, and

2. ∃ c ∈ (T , a) slack(c) = 0

Hence, searching for a cycle c with the least amount of slack will provide a way
determine diimin. Adding all distance relations of cycle c results in the so-called cycle
weight cw(c) of cycle c.

cw(c) = δ(t1 , t2) + δ(t2 , t3) + ... + δ(tr , t1) -

 (λ(t1 , t2) + λ(t2 , t3) + ... + λ(tr , t1)) · dii (4.10)

or, in short hand notation,

cw(c) = ∆(c) - Λ(c) · dii (4.11)

From (4.9) and (4.10) follows that slack(c) = -cw(c).

In each cycle of a dependence graph (T , F), delay nodes are used to describe t
inter-iteration boundaries of the corresponding process. Let td be a delay node in cycle
c. Adding the distance relations from delay node td to the same delay node td will return
the cycle weight cw(c) of c. Let tp be the predecessor of delay node td. In that case:

cw(c)

= {def. cw(c)}

δ(td , t1) +δ(t1 , t2) + ... + δ(tp , td) - (λ(td , t1) + λ(t1 , t2) + ... + λ(tp , td)) · dii

= {def. distance}

50 SCHEDULE CONSTRAINTS

s

ach
ation

 dis-

ess, the

in an
sen

to
olic
er

hm
distance(td , tp) + δ(tp , td) - λ(tp , td) · dii (4.12)

The problem is how to calculate the value for distance(td , tp). If dii ≤ diimin, then
∃ c ∈ (T , a) slack(c) ≤ 0, hence ∃ c ∈ (T , a) cw(c) ≥ 0, and an all-pairs longest-path doe
not exist. Let diitemp be defined as the summation of all delays δ(t) of all operations
t ∈ T of the dependence graph (T , F) plus one:

In that case:

∀ c ∈ (T , a) diitemp > δ(td , t1) +δ(t1 , t2) + ... + δ(tp , td), hence

∀ c ∈ (T , a) slack(c) > 0, hence

∀ c ∈ (T , a) cw(c) < 0

Thus by taking dii = dii temp, a feasible distance matrix can be calculated, and for e
cycle the cycle weight can be determined in constant time by calculating equ
(4.12) for each delay node of the graph.

Because ∀ c ∈ (T , a) diitemp > δ(td , t1) +δ(t1 , t2) +... + δ(tp , td), or
∀ c ∈ (T , a) diitemp > ∆(c), using equation (4.11) we can derive:

1. ∀ c ∈ (T , a) cw(c) div diitemp = -Λ(c), and

2. ∀ c ∈ (T , a) cw(c) mod diitemp = ∆(c)

Let D be the set of delay nodes. Let pred(t) be the predecessor of delay node t. Using
equation (4.7) and (4.8) we can calculate diimin by the Algorithm 4.1.

The complexity of the algorithm is determined by the complexity of calculating the
tance matrix, which in case of the Johnson algorithm is O(|T|2 · log|T| + |T| · |F|).
Because in practical cases the number of input edges for each operation is 2 or l
complexity will be O(|T|2 · log|T|).

In [Lam89,Goos89] list scheduling is applied to a basic block of a process to obta
upper bound diisingle on the distance between two iterations. A lower bound is cho
equal to 0. Within the range specified by [0 , diisingle], a binary search method is used
search for the lowest dii in which a schedule is possible. In case of [Lam89], a symb
distance matrix is used in such a way that updating the distance matrix for anothdii
can be done within O(|T|2) instead of re-applying the all-pairs longest-path algorit
each time. Hence the worst case complexity is O(|T| · |F| + |T|2 · log|T| + |T|2 · log(diis-

ingle)).

dii temp δ t() 1+
t T∈
∑=

SCHEDULE CONSTRAINTS 51

atrix
lay

i-

 to all

f

 the
e

f the
com-
f the

is are
Algorithm 4.1 (Calculate diimin).
dii = 0; diimin = 0;
forall t ∈ T
 dii = dii + delay(t);
 diimin = MAX(delay(t),diimin);
endfor;
D = APLP(dii,(T,F)); // all-pairs longest-path
forall t ∈ DelayNodes
 cw = distance(t,pred(t)) + δ(pred(t),t) - λ(pred(t),t) * dii;
 lambda = cw div dii;
 delta = cw mod dii;
 diimin = MAX(diimin,delta / lambda);
endfor;

In [Gere92] an O(|D|4 + |D| · |F|) algorithm is presented, with D the set of delay nodes
of a dependence graph. The method is based on construction of a longest path mL
with size |D| × |D|, in which L(i , j) denotes the length of the longest path from de
element di to delay element dj. Let Lk be a |D| × |D| matrix, in which Lk(i , j) denotes the
longest path distance between delay element di and delay element dj which passes
through exactly k -1 delay elements. Matrix L is obtained by longest-path matrix mult
plication [Corm90] using the following recursive rule:

Lk+1 = L1 · Lk

Matrix L1 can be obtained by calculation of the longest path from each delay node
other delay nodes. The time complexity to compute L1 is O(|D| · |F|) [Heem90]. Calcu-
lation of L|D| requires |D| matrix multiplications, which results in a complexity o
O(|D|4). Hence the total complexity of this algorithm is O(|D|4 + |D| · |a|).

Let the pairwise distances between delay nodes be represented by a graph G(D , ED).
Application of the cycle-mean algorithm from [Karp78] gives the lower bound of
distance between process invocations in O(|D| · |ED|), which has the lowest worst-cas
complexity of all methods known [Ito94].

Though the complexity of Algorithm 4.1 is in general higher than the complexity o
methods presented in [Heem92] and [Karp78], the application of Algorithm 4.1 in
bination with the (obligatory) calculation of a distance matrix for other values o
process invocation distance is very efficient in practice.

4.4 Time constraints
The second type of constraints which play an important role in high-level synthes
time constraints. A time constraint tc(u , v) between two operations u,v ∈ T denotes the
maximal distance between the start cycle step of operation u and operation v, in other
words

52 SCHEDULE CONSTRAINTS

istance

rn
. Let
e

sitive

 con-
con-
ta. For

y input
tly by
ϕ(v) ≤ ϕ(u) + tc(u , v)

or

ϕ(u) ≥ ϕ(v) - tc(u , v) (4.13)

Equation (4.13) has a similar form as equation (3.3), and can be depicted in a d
graph in a similar way by adding an edge (v , u) with a tuple (-tc(u , v) , 0) (see Figure
4.7).

A time constraint may introduce a cycle ctc in a dependence graph, which on its tu
introduces some limitations with respect to the values of the time constraint
distance(u ,v) be the longest path distance from u to v. Just like in Section 4.3.5, a cycl
weight can be defined as:

cw(ctc) = distance(u , v) - tc(u , v) (4.14)

An all-pairs longest-distance algorithm only produces feasible results if no po
weight cycle exists. This means that tc(u , v) ≥ distance(u , v), in other words, a time
constraint between u and v cannot constrain in such a way that v starts its execution and
consumes data before u has finished its execution and produced this data.

The most common time constraint found in high-level synthesis is the global time
straint Tmax ∈ N (also called schedule length, makespan or latency). A global time
straint denotes how many cycles it takes to process all input data into output da
each input operation i ∈ T and output operation o ∈ T, the following relation is true:

ϕ(o) ≤ ϕ(i) + Tmax

This relation results in a distance graph in which an edge is added between ever
and output operation. A global time constraint can be represented more efficien
slightly modifying a distance graph. Two dummy operations s and t, respectively called
source and sink, are added to T. For each input operation i ∈ T, an edge (s , i) is added,
labelled with a tuple (0 , 0). For each output operation o ∈ T, an edge (o , t) is added,

u

v

(-tc(u , v) , 0) (δ(u , v) , λ(u , v))

Figure 4.7 Time constraint in distance graph.

SCHEDULE CONSTRAINTS 53

be

ne
ained.

 equa-

uled
worst

9.
also labelled with a tuple (0 , 0). Finally, an edge (t , s) is added with a tuple (-Tmax , 0)
(see also Figure 4.8).

Care must be taken not to introduce positive weight cycles, hence distance(s , t) - Tmax
≥ 0, or Tmax ≥ distance(s , t). This implies that the global time constraint should
equal to or larger than the critical path from s to t inside the dependence graph.

One of the advantages of adding an edge (t , s) to a dependence graph is that o
strongly connected component consisting of all operations in the process is obt
By selecting operation s as a reference operation (in other words ϕ(s) = 0), the feasible
schedule ranges of operations obtained by an all-pairs longest-path algorithm and
tions (4.5) and (4.6) are always relative to the inputs of the process.

When an operation u ∈ T is scheduled, the feasible schedule range of any unsched
operation v ∈ T can be recalculated using equations (4.5) and (4.6), which has a
case complexity of O(|T|).

A partially defined schedule is a schedule ϕ in which for some operations u ∈ T the
schedule ϕ(u) has been determined. Suppose that the start cycle step of operationu ∈ T
has been pre-determined, in other words ϕ(u) = cu. In that case ϕ(u) - ϕ(s) = cu, which
can be modelled by the following inequalities:

ϕ(u) - ϕ(s) ≤ cu, hence ϕ(s) ≥ ϕ(u) - cu

and

ϕ(u) - ϕ(s) ≥ cu, hence ϕ(u) ≥ ϕ(s) + cu

These relations can be modelled in a distance graph as can be found in Figure 4.

+

x

+ iv1

v2

v3

o

s

t

(2,2)
(1,1)

(1,0)

(2,0)

(-Tmax , 0)(1,0)

(1,0)

(0,0)

(0,0)

Figure 4.8

Distance graph with time constraint.

54 SCHEDULE CONSTRAINTS

asible
 long-

use of
int or
s and
usly

can be
l syn-

). This
 sched-
 as list
on the

con-
called
dence
to the
d for

eduling
arts of
ion is
more
arch

on or
loca-
 the
ini-

2] to

Checking whether time constraints or pre-scheduled operations result into infe
schedule ranges of operations, can be done by checking whether an all-pairs
est-path algorithm results in a distance matrix

D

 for which

∃

i

∈

[0 , |

T

| - 1]

 D

(

i , i

)

≠

0
[Corm90]. To see if a single time constraint or pre-scheduled operation is the ca
infeasibility, an all-pairs longest-path can be performed without this time constra
pre-scheduled operation. In case a combination of conflicting time constraint
pre-scheduled operations cause infeasibility, it is very difficult to find unambiguo
which constraint(s) is (are) causing the trouble.

4.5 Resource constraints

A resource constraint imposes an upper bound on the resource allocation that
used during scheduling. The most obvious resource constraint used in high-leve
thesis is an upper bound on the number of functional units (also called modules
restricts the number of operations, requiring the same operation type, that can be
uled simultaneously. In the field of high-level synthesis, scheduling methods such
scheduling [Thom90] have been used quite successfully to deal with constraints
number of functional units.

Only very little is known of schedulers which can cope with memory allocation
straints and interconnect allocation constraints during scheduling. One method,
cut-reduction, is presented in [Depu93]. Cut-reduction adds edges to a depen
graph to lower the number of possible simultaneously data transfers, but due
application of branch and bound algorithms the run-time efficiency becomes ba
large examples. To be able to handle large size instances, a hierarchical sch
method called clustering is introduced. Clustering is a method which schedules p
a process hierarchically, in order to obtain a new smaller process. Cut-reduct
applied to this smaller process, which compared to the original problem is
run-time efficient. This basic-block like scheduling method might reduce the se
space in such a way that it may exclude the optimal solution.

Most other methods used in high-level synthesis try to optimize memory allocati
interconnect allocation during or after scheduling. Methods optimizing memory al
tion during scheduling can be found in [Paul89] or [Verh91], which try to balance
use of registers over time by using forces. In [Hwan91] the sum of lifetimes is m
mized during ILP scheduling. Finally, heuristic techniques are used in [Romp9
schedule production and consumption of values as close as possible.

s

u

(-cu , 0) (cu , 0)

Figure 4.9 Modelling pre-scheduled operations.

SCHEDULE C

ONSTRAINTS

55

 many
 few
any
le, and
ork

ints is
ccurate
odule
ccurate
alled

tended
ses the

func-
elaxa-
t each

gener-
acity
dule
arded,
ber of
sed. If
imple-
d effi-
ed in

inter-
 such a
ution

ng

e

ges
 deter-

Similar observations can be made for interconnect allocation. Whereas there are
articles reporting interconnect optimization (see for instance [Weng91]), only a
methods deal with constraints directly (for example [Woer94], [Hart92]). Also, m
methods only use the number of multiplexers and buses resulting from a schedu
don’t deal with layout specific information (placement and routing). Some initial w
on this topic can be found in [Timm95b], [Jaco95], [Jang93], and [Weng91].

4.6 The relation between time and resource constraints
In [Timm93] the close relationship between resource constraints and time constra
explained. The essence is that for a time constrained scheduling problem an a
lower bound resource allocation can be found efficiently, by a technique called m
selection. On the other hand, for a resource constrained scheduling problem an a
lower bound estimation for the completion time can be found by a technique c
module execution interval analysis. In both cases the initial constraints can be ex
such that both a time constraint and a resource constraint result. Hence in both ca
original scheduling problem is transformed into a feasibility scheduling problem.

The approach in [Timm93a] tries to find an accurate lower bound estimation of
tional area by investigating the structure of a data-flow graph. It is based upon a r
tion of the dependence constraints, in other words, the method guarantees tha
operation can be scheduled within its initial schedule range. This is achieved by
ating MILP constraints, which try to enforce the selection of sufficient module cap
to perform all operations within their initial schedule range. The effect of the sche
of an operation upon the feasible schedule range of other operations is disreg
hence the resulting constraints might not lead to a feasible schedule. The num
integer variables in the method depends on the size of the module type library u
only simple libraries are used (in other words, each operation type can only be
mented by a single module type), the module selection problem can be solve
ciently using a polynomial time algorithm based on the methodology present
[Timm93].

To find a lower bound on the global completion time, the initial feasible schedule
vals of operations can be reduced under the influence of resource constraints in
way that it doesn't limit the solution space [Timm93b]. The method, called exec
interval analysis, globally works as follows.

Let m ∈ L be a module type. Let TL(m) be a list of operations sorted by increasi
asap-value, for which for each operation t ∈ T, we have t ∈ TL(m) ⇔ ξ(t) = m. Let
TL(m , i) be the ith operation from TL(m). Let K(m) be the number of modules of typ
m ∈ L given by the resource constraint. The module schedule range MEI is the range in
which some module of type m must execute some operation. Module schedule ran
can be calculated using Algorithm 4.2. The end of each module range can be
mined in a similar way.

56 SCHEDULE CONSTRAINTS

te

e
s

g com-
can be
ace.
ns inci-

 mod-
atching
t, and
 must

od pre-
 intro-
e time

 can
trategies

 con-
cation
source
le, by
ds the
p with
atisfy
o so,
Algorithm 4.2 (Module Execution Intervals for module type m).
for i = 1 to K(m) do
 start(MEI(i)) = asap(TL(m,i));
endfor;
for i = K(m) + 1 to |TL(m)| do
 start(MEI(i)) = MAX{asap(TL(m,i)) ,
 start(MEI(i - K(m))) + d(TL(m,i),m)}
endfor;

In the next phase, a bipartite graph G(m) is constructed. The vertices of the biparti
graph consist of the operations from TL and the set R(m) = {MEI(i) | 1 ≤ i ≤ |TL(m)|}.
There is an edge (a , b), a ∈ TL and b ∈ R(m), if and only if the feasible schedule rang
of a has an overlap with the module schedule range b, and which is at least as large a
the corresponding execution delay. For each feasible schedule, a correspondin
plete matching exists. Edges which can never be part of a complete matching,
deleted from G(m) without excluding any feasible schedule from the search sp
Deletion of edges can be used to tighten the feasible schedule range of operatio
dent to these edges.

During determination of the module ranges, the number of cycle steps in which a
ule can start its execution can be a negative number. In this case a complete m
does not exist, and no feasible schedule is possible within the time constrain
hence the estimation on the lower bound completion time or resource allocation
be increased.

The total complexity of module execution interval analysis is O(|T|2 + |T| · |L|). The
number of bipartite graphs equals O(|L|).

In case a resource constraint is imposed together with a time constraint, the meth
sented in [Timm93b] can be used to determine whether the constraint set might
duce an infeasible schedule. In that case either the resource constraint or th
constraint needs to be adjusted.

By using estimation techniques, the constraints of the original scheduling problem
be used as a performance measure and vice versa. Some possible scheduling s
are given by the scheduling template in Figure 4.10.

A time constrained scheduling problem can for instance be solved by a time
strained scheduling method directly (which may use a lower bound resource allo
estimation to tighten the schedule constraints). It can also be solved by using a re
constrained scheduler which tries to minimize the completion time of a schedu
use of a lower bound resource allocation estimation. If the completion time excee
original time constraints, supplementary resources need to be allocated to come u
a feasible schedule. Finally, a feasibility scheduler can be applied which tries to s
both the time constraint and resource constraint directly. If the method fails to d

SCHEDULE CONSTRAINTS 57

dule. A

chedule
 graph,
rations.
 a dis-
 used
and to
oduc-
 ranges
supplementary resources need to be allocated to come up with a feasible sche
similar strategy can be applied for resource constrained scheduling problems.

4.7 Conclusions
In this chapter several methods have been presented to determine the feasible s
range of operations. The central idea is to use distance relations from a distance
to determine the feasible schedule range of operations with respect to other ope
Time constraints can be incorporated very easily by adding distance relations to
tance graph obtained from a data-flow graph. All-pairs longest-path algorithms are
to construct a distance matrix from a distance graph, which is used to determine
update feasible schedule ranges of operations very efficiently. Finally, a short intr
tion shows how resource constraints can be used to tighten the feasible schedule
of operations, by using module execution interval analysis.

Figure 4.10 Scheduling template.

Data-flow graph + time constraint

Resource allocation
estimation

Data-flow graph + time constraint + resource constraint

Data-flow graph + resource constraint

Cycle budget
estimation

Resource constrained
scheduling

Time constrained
scheduling

Feasible constrained
scheduling

Constraints met?
Allocate supplementary

resource allocation
and/or cycle budget

yes

no

Data-flow graph + resource
allocation + completion time

58 SCHEDULE CONSTRAINTS

deter-
lding,

ocess
oided.

 con-
range of
ues

 differ-
gy to

will be
The use of all-pairs longest-path algorithms results in a new efficient algorithm to
mine the minimal process invocation distance. In contrast to methods such as fo
unfolding, and retiming, this new method doesn’t need to transform the original pr
description. Besides, the loss of the optimum solution from the search space is av

All of this has resulted in a uniform model, in which dependence relations, time
straints, and resource constraints are used to decrease the size of the schedule
operations, without excluding any optimal solution. Additionally, estimation techniq
result in a schedule scheme in which constraints can be exchanged, resulting in
ent scheduling strategies. In the following two chapters a new scheduling strate
deal with both resource constrained and time constrained scheduling problems
presented.

raints.
e

ation
anner.
sed on

can be

syn-
ns |

ords
ovides
-hard
solve

-hard

 be a
-hard
ssify
endent,
ssors
any

tive,
inside
rocess
ode is
-many
Chapter

5 Constructive Scheduling

5.1 Introduction
There are many different ways to solve a scheduling problem under given const
In this chapter a classification of scheduling methods will be presented, to gain som
insight in the applicability of certain scheduling algorithms in particular situations.

A new constructive scheduling algorithm will be presented, which given a permut
of operations, will construct a resource constrained schedule in a topological m
This new algorithm will serve as a scheduling engine for a search procedure ba
genetic algorithms, presented in the next chapter.

This chapter concludes with a discussion about how permutations of operations
used to solve (loop) pipelined scheduling problems.

5.2 High-level synthesis scheduling complexity
Let (F , c) be an instance of a combinatorial optimization problem. Most real-life
thesis problems will have instances with a very large number of candidate solutioF|,
hence listing all candidate solutions and calculating the value of cost function c for each
solution, will in general lead to inefficient use of computer resources (in other w
memory and CPU-time). The mathematical background presented in [Gare79] pr
us a way to classify optimization problems. This has resulted in the notion of NP
problems, for which no polynomial time algorithms have been found so-far to
each instance to optimality (and are believed not to exist). In general, solving a NP
problem requires an exponential amount of CPU-time.

A straightforward classification of high-level synthesis scheduling problems would
classification that tells whether a scheduling problem belongs to the class of NP
problems. Typical classifications such as in [Blaz94,Lens85,Coff76,Gonz77] cla
scheduling problems based on properties such as dependence relations (indep
tree, forest, DAG, graph), number of processors (single, parallel), kind of proce
(identical, uniform, unrelated), processing modes (one-by-one, one-to-m
[Timm93a], flow-shop, open-shop, job-shop), execution mode (pre-emp
non-preemptive), and more. Most of these issues don’t play a leading role
high-level synthesis, because the behavioural description in general leads to a p
which is a graph, the number of processors is larger than one, the processing m
one-to-one (i.e. an operation can be implemented on one module type) or one-to

60 CONSTRUCTIVE SCHEDULING

 mode

s and
l time
ource
int is

ched-
d (see
ined
ts are
n of
sifi-
c ver-
ual to
 effi-
s an
 mini-
ong-
cyclic

kes

 poly-
blem
lem
d on
ative

will be
re con-
timal-

other
rform-
zation
timal
e-offs
(i.e. an operation can be implemented in various module types), and the execution
is non-preemptive.

In [McFa90] a classification of scheduling problems based upon time-constraint
resource-constraints is made. In a time constrained scheduling problem a globa
constraint is imposed, and the aim is to find a schedule inducing a minimal res
allocation. In a resource constrained scheduling problem a resource constra
imposed, and the aim is to minimize the global completion time induced by the s
ule. These high-level synthesis scheduling problems are proven to be NP-har
[Verh91] for time constrained scheduling, and [Heem90] for resource constra
scheduling). As shown in Section 4.6, time constraints and resource constrain
tightly inter-related. It is therefore questionable whether a “general” classificatio
high-level scheduling problems should be based on such criteria. A more useful clas
cation for high-level synthesis problems would be a classification based on cycli
sus acyclic data-flow graphs. Take for instance register allocation, which is eq
finding a minimal colouring of an interval graph [Golu80], and can be solved very
ciently for the acyclic case by the left edge algorithm [Kurd87]. This become
NP-hard problem in case the process becomes cyclic, which is equal to finding a
mal colouring of an cyclic arc graph [Golu80]. Another example is the all-pairs l
est-path problem. In the previous chapter an all-pairs longest-path algorithm for
graphs has been presented, which has a worst-case complexity of O(|T| · |F| +
|T|2 · log|T|), whereas in [Mesm95] an algorithm is presented which only ta
O(|T| · |F|) for acyclic graphs.

Only a very small set of problems found in high-level synthesis are proven to be
nomially solvable problems. Some examples are the ASAP/ALAP scheduling pro
[DeWi85], the interval graph colouring problem [Kurd87], and the retiming prob
[Leis91]. A classification of typical high-level synthesis scheduling problems base
complexity issues doesn’t provide any useful insights. In this chapter an altern
classification based on constructive scheduling methods will be presented, which is
based on the way a schedule is constructed from a permutation of operations. It
shown that for some classes of schedulers, certain decisions might impose seve
straints to operations during scheduling, implying equally severe effects on the op
ity or feasibility of the solution.

5.3 Optimality
In theory the goal of a scheduling algorithm is to find an optimal schedule, in
words it should return the best feasible schedule possible with respect to the pe
ance measures. As one of the main objectives of using algorithms to solve optimi
problems is to solve them efficiently, an algorithm which always returns an op
solution for an NP-hard problem is regarded as inefficient. Therefore some trad
between CPU-time and the accuracy of the solution must be considered.

CONSTRUCTIVE SCHEDULING 61

uling

o the
d in
ds to
 an
puter

s that
, and

 the
nt of

aran-
ristic
duling
ling
 solu-

 from
te solu-
ases
xima-

sched-
s can
edule
f the
ched-

n exist-
ched-
ta90],
], and
A straightforward classification would be to classify high-level synthesis sched
algorithms based on the accuracy of the solution found:

1. Exact algorithms. These kind of algorithms always find the optimal solution t
scheduling problem imposed. Examples of such algorithms can be foun
[Hwan91,Gebo92,Lee89]. The main disadvantage of applying these metho
real-world scheduling problems is that they might end up in performing
exhaustive search, which results in the use of excessive amounts of com
resources (CPU-time or memory). The current status of these algorithms i
they can only be applied successfully to instances with a small input size
their use in practical situations is questionable.

2. Approximation algorithms. These kind of algorithms find a solution, for which
difference in cost with respect to the cost of an optimal solution is independe
the input size of the problem.

3. Heuristics. These kind of algorithms always find a solution. There are no gu
tees given about the quality of the solution generated. Many kinds of heu
high-level synthesis schedulers have been reported, such as list sche
[Girc84], force directed scheduling [Paul89], and critical path schedu
[Park86]. The main advantage is that, in general, these algorithms generate
tions relatively fast compared to approximation or exact algorithms.

In the previous chapter some methods, which derive supplementary constraints
existing scheduling constraints, have been presented to reduce the set of candida
tions of the scheduling problem without excluding an optimal solution. This incre
the possibility that heuristics find a good quality solution, or the chance that appro
tion algorithms and exact algorithms need less computer resources.

5.4 Construction of schedules
A classification based on the way schedules are created, is the following:

1. Constructive. The first class of schedulers, called constructive schedulers,
ule operations one by one. The different constructive scheduling technique
be distinguished by the order in which and the cycle step where they sch
operations. The intermediate solutions produced during the construction o
schedule consist of partially specified schedules. More about constructive s
uling can be found from Section 5.6 to Section 5.11.

2. Iterating. The second class of schedulers, called iterating schedulers, take a
ing schedule as their input, and try to improve the schedule by altering the s
ule. Examples of these type of schedulers are percolation scheduling [Po
move-scheduling methods based on annealing such as in [Nest90,Deva89

62 CONSTRUCTIVE SCHEDULING

 con-

reedy

 looks
e that
ell

blem
em
lu-
tions,
d the

re for
itical

n
rhood
’ to

ling
h use
s

solu-
ave
l

ques,
uce as
sched-
enu-
on of
om-
ome
ee89,
89].
merat-
multiple-exchange pair selection as in [Park91]. The intermediate solutions
sist of fully specified schedules.

The search method, which is used to find a schedule, can be roughly divided in g
search techniques, local search techniques, and enumeration techniques.

1. Greedy search techniques. Greedy algorithms always make a choice that
best at a specific moment. It makes such a locally optimal choice in the hop
this choice will lead to a globally optimal solution. Greedy algorithms work w
for some problems, such as for instance for the ASAP/ALAP scheduling pro
[DeWi85], the colouring of interval graphs [Kurd87], and the retiming probl
[Leis91], for which greedy algorithms exist which always return optimal so
tions. In the case greedy algorithms are not guaranteed to return optimal solu
this is because a trade-off between the quality of the solution obtained an
amount CPU-time required to generate a solution is made. Examples a
instance list scheduling [Girc84], force directed scheduling [Paul89], and cr
path scheduling [Park86].

2. Local search techniques. Let (F , c) be an instance of a combinatorial optimizatio
problem. Local search is based on the existence of a so-called neighbou
space N: F→ 2F, with N(t) a set of solutions, which in some sense are ‘close
t ∈ F. Element j ∈ N(t) is called a neighbour of t. Let c(t) be the cost of t. A local
minimum s with respect to the neighbourhood space N(t) is defined as s ∈ N(t)
with ∀ x ∈ N(t) c(s) ≤ c(x) (see [Papa82] for more details). Examples of schedu
techniques based on local search can be found in [Nest90,Deva89] (whic
simulated annealing), and [Park91] (which uses the k-change neighbourhood a
defined in [Lin73]).

3. Enumeration techniques. Enumerative algorithms enumerate all feasible
tions, and return the best solution found. Most real-life problems will h
instances with a very large number of feasible solutions |F|, hence enumerating al
feasible solutions and evaluating the cost function c for each feasible solution will
lead to inefficient use of computer resources. Explicit enumeration techni
such as branch and bound or dynamic programming, can be used to red
drastically as possible the set of solutions that need to be enumerated. For
uling examples see for instance [Park86a], [Davio79], and [Fabe94]. Implicit
meration techniques solve a set of equations, derived from an IP-formulati
the problem, by application of algorithms such as the simplex algorithm (in c
bination with a branch and bound algorithm to obtain integer solutions). S
examples of enumerative scheduling techniques are IP scheduling [L
Hwan91,Gebo92], and non-linear programming gradient methods [Shin
CPU-time remains one of the biggest concerns based on methods using enu
ing techniques.

CONSTRUCTIVE SCHEDULING 63

n pre-
nd time

e
ased on
ase the

edul-
uling

pace
 the

chedul-
tep

s are
 main

tech-
 acy-
uling

 Sec-
ill be
hs is

sulting
e cycle

r-

fied by
5.5 Search space versus candidate solutions
A scheduling problem is an instance of a combinatorial optimization problem (F , c),
with F the set of candidate solutions (feasible schedules), and c the cost function. In
Section 3.5 some common high-level synthesis scheduling problems have bee
sented, such as time constrained scheduling, resource constrained scheduling, a
and resource constrained scheduling.

Let Fopt ⊆ F be the set of optimal solutions from F. In Chapter 4 some algorithms hav
been presented which decrease the feasible schedule range of operations, b
precedence, time, throughput, and resource constraints. These algorithms decre
size of the set of candidate solutions F in such a way that no optimal solution from Fopt
is excluded, resulting in a new set of candidate solutions F’ with |F’opt| / |F’| ≥ |Fopt| /
 |F|.

In the remaining sections of this chapter, attention will be paid to constructive sch
ing techniques. The main goal is to gain insight in the applicability of these sched
techniques in combination with certain scheduling constraints.

The task of a constructive scheduling algorithm, denoted by schedule, is to generate a
feasible solution f ∈ F. The domain of a scheduling algorithm is called the search s
S, hence schedule: S → F. Constructive scheduling techniques are characterized by
fact that they schedule operations one by one. Hence, in case of a constructive s
ing algorithm, an element s ∈ S should determine the order in which and the cycle s
where operations are scheduled.

The remaining sections of this chapter will focus on the order in which operation
scheduled, which leads to a classification of constructive scheduling methods.The
goal of this classification is to gain insight in the applicability of these scheduling
niques in combination with particular scheduling constraints. In case of scheduling
clic graphs, the classification will show a clear advantage for a particular sched
technique, called constructive topological scheduling, which will be presented in
tion 5.6. In Section 5.10 the consequence for creating pipelined schedules w
shown. In Section 5.11 it will be shown that constructing schedules for cyclic grap
a more complex problem than constructing schedules for acyclic graphs.

5.6 Permutation scheduling
Constructive schedulers assign operations to cycle steps one by one. The re
schedule depends on (1) the order in which operations are scheduled, and (2) th
steps where operations are scheduled.

The order in which operations of a data-flow graph (V , E) are scheduled can be dete
mined by a permutation Π consisting of the operations of V. When the order in which
operations are scheduled by a scheduling algorithm is equal to the order speci

64 CONSTRUCTIVE SCHEDULING

uling
ched-
d by

ched-

 which
 other

ately it
edule

-
oblem.
icular
thods,
 con-

l scope,
ase of
l lead

by a
rmuta-

 force
e Sec-
ide the
. In

 sched-
h list
is char-
ill

s, and
ched-

he way
ns are

uta-
the permutation, the scheduling algorithm is called a strict permutation sched
algorithm (see Section 5.7 for more details). If the order in which operations are s
uled is determined by the permutation in combination with the partial order induce
the data-flow graph, the scheduling algorithm is called a topological permutation s
uling algorithm (see Section 5.8 for more details).1

The cycle step selection procedure determines for each operation a cycle step in
it is scheduled. The cycle step selection procedure is driven by the permutation, in
words, it accepts operations in a particular order, and for each operation separ
determines the cycle step in which it should be scheduled. The quality of a sch
depends on the way the cycle step selection procedure responds to Π. This means that
there should be a close relation between the order, given by Π, and the selection strat
egy, depending on the constraints and goals imposed on the scheduling pr
Schedule specific information can be used to predict in which cycle steps part
operations should be scheduled. When dealing with constructive scheduling me
schedule decisions can be derived from partial schedule information, schedule
straints, and schedule goals. This implies that the selection procedure has a loca
and hence the effects of a particular selection strategy are difficult to foresee. In c
NP-hard scheduling problems, no selection strategy is known which in general wil
to global optimal solutions.

The determination of the order of operations in a permutation is performed
so-called permutation generator. In some cases the order of operations of the pe
tion depends on partial schedule information, which for instance is the case with
directed scheduling (see Section 5.7.2) or module execution interval analysis (se
tion 5.7.4). In such a case the generation of the permutation can be integrated ins
scheduling construction algorithm to obtain a more efficient scheduling algorithm
other cases the order of operations inside the permutation is specified before the
ule is constructed (such as for instance the priority list used in combination wit
scheduling - see Section 5.8.3). In both cases the order of scheduling operations
acterized by a permutation Π. In the remaining sections of this chapter an overview w
be given of how the order of scheduling affects the schedule range of operation
how the order of scheduling may restrict the possibility that a sequence of local s
ule decisions may result in a feasible or optimal schedule.

5.7 Strict permutation scheduling
Constructive schedulers assign operations to cycle steps one by one. Obviously t
a constructive schedule is generated depends on the order in which operatio
scheduled. This order of operations can be represented by a permutation Π of opera-
tions.

1. Permutation scheduling as defined in this thesis should not be confused with perm
tion scheduling as defined for flow-shop scheduling [Pine95].

CONSTRUCTIVE SCHEDULING 65

ed
r

 5.1.

o-
-

ieved so
le step
ns are
.5) and
ct the
 during
, the

hown

is that
le using
ll be

, opera-
t
hich an
rations
-value).
opera-
enon

d-
y

 sched-
duling a
 sched-
In this section the relation between permutation Π and the schedule that is generat
from Π will be investigated. In strict permutation scheduling Π specifies the exact orde
in which operations are scheduled. Let Π(i) denote the ith operation in permutation Π. A
general method to generate strict permutation schedules can be found in Algorithm

Algorithm 5.1 (Permutation scheduling template).
for i = 0 to |Π|-1 do
 v = Π(i); // select operation in order of Π
 ϕ(v) = Select(Tmin,Tmax); // select cycle step
endfor;

For each operation v, selected according to the order specified by Π, the procedure
Select determines the cycle step in which v is scheduled. The selection strategy of pr
cedure Select may depend on the properties of operation v, characterized by the sched
ule constraints, the schedule goals imposed, and the partial schedule results ach
far. To obtain feasible schedules, the selection procedure can only select a cyc
from the schedule range of operations, as described in Chapter 4. If operatio
scheduled outside this range of cycles, infeasible schedules result. Equations (4
(4.6) imply that the order in which operations have been scheduled may affe
schedule range of unscheduled operations, and may introduce new constraints
scheduling, as will be explained in the remaining part of this section. Therefore
range of cycles in which an operation can be scheduled will always be explicitly s
inside the argument list of procedure Select.

The search space of Algorithm 5.1 is composed of Π × Tmax, in which Tmax is an upper
bound on the schedule range of operations. The main problem of Algorithm 5.1
the design space contains many infeasible solutions, and searching for a schedu
Algorithm 5.1 could result in the evaluation of many infeasible solutions, which wi
the main topic of this section.

5.7.1 Precedence constraint satisfaction

When precedence constraints are imposed (which, of course, is always the case)
tions should be scheduled according to the order specified by Π, but in such a way tha
precedence constraints are always satisfied. This means that the cycle step in w
operation v can start its schedule, is bounded by the schedule of predecessor ope
(denoted by the asap-value) and successor operations (denoted by the alap
Hence, scheduling a particular operation may impose (time) constraints on other
tions, and may force these operations to be scheduled implicitly. This phenom
invalidates the position of these operations in Π, in other words, operations are sche
uled before they are considered for scheduling according to the order specified bΠ.

To guarantee that the schedule ranges of operations are feasible at any time, the
ule ranges of unscheduled operations need to be updated each time after sche
particular operation (see also Section 4.2). In that case, operations can always be
uled in their schedule range, as shown in Algorithm 5.2.

66 CONSTRUCTIVE SCHEDULING

ized. If
edure
value
rithm.
 sched-
s.

ding to
 opera-
r speci-
tween
ss-

loca-
lts in
hod is
 effi-

itional
This is
 with
 5.2 is

 con-

h an
st like
rations

essary
ld be a
o

Algorithm 5.2 (Precedence constrained permutation scheduling).
for i = 0 to |Π|-1 do
 v = Π(i); // select operation
 ϕ(v) = Select[asap(v),alap(v)]; // select cycle step from feasible range
 update schedule ranges;
endfor;

The selection strategy mainly depends on the performance measures to be optim
for instance the completion time of the schedule must be optimized, the proc
Select will always return the earliest cycle step possible, which equals the asap-
of operations. In that case Algorithm 5.2 results in an ordinary asap-schedule algo
In high-level synthesis strategies, asap-scheduling is often used to determine the
ule ranges of operations, serving as an initialisation for other scheduling algorithm

If the resource allocation of a schedule must be optimized, the procedure Select should
avoid the allocation of unnecessary resources. Operations are scheduled accor
the order induced by the permutation, but as has been explained before, other
tions may become scheduled before they are considered according to the orde
fied in the permutation. In general this means that there should be a relation be
the permutation Π and the Select procedure for such an algorithm to become succe
ful. It is however very difficult to foresee the global effect on the final resource al
tion of scheduling a particular operation locally (i.e. whether a local decision resu
a global optimal solution). In Section 5.8 a different precedence constrained met
presented, which will be able to generate a minimal resource allocation more
ciently.

5.7.2 Time constraint satisfaction

If both precedence constraints and (global) time constraints are imposed, add
upper bounds can be introduced, denoted by the alap-value of an operation.
identical to the situation in which operations obtain an upper-bound constraint
precedence constrained scheduling as discussed before, and hence Algorithm
applicable in this case too.

Optimizing the completion time is just as trivial as in the case of precedence
strained scheduling, and also results in an asap-scheduler.

A more useful application of time constrained scheduling is in combination wit
attempt to minimize the resource allocation induced by the resulting schedule. Ju
with precedence constrained scheduling, care must be taken not to schedule ope
in such a way that they fix the schedule of other operations, inducing an unnec
allocation of resources. Again it can be concluded that this means that there shou
relation between permutation Π and the Select procedure for such an algorithm t
become successful.

CONSTRUCTIVE SCHEDULING 67

uling
 both
n the
d on a
. First,
-come
fluous
the

tep
 is that
reas-
articu-
, and
added,
 doesn’t
ur-

spect
orce-
e utili-
of the
lity an
ly dis-
 the
ncur-
pera-

ns, and
ected
each
ssign-
ution
force.
A well-known high-level synthesis scheduling method, called critical path sched
[Park86], is a method which has a greedy selection strategy with respect to
resources and time. The validation given for critical path scheduling is based o
assumption that operations on the critical path have less freedom to be allocate
certain hardware module, and should therefore be considered for scheduling first
functional units are allocated and bound to operations on the critical path in a first
first-serve way. If possible, hardware is re-used to prevent allocation of super
hardware. Then, off-critical path operations v are assigned to hardware, based on
mobility m(v) = alap(v) - asap(v) - δ(v) of operation v. The off-critical path operation v
with the smallest mobility m(v) is chosen for scheduling in the first feasible cycle s
where it can be scheduled without resource conflicts. The idea behind this choice
deferring the operation with the smallest mobility, has the largest probability of inc
ing the length of the critical path. If there is not enough hardware to schedule a p
lar operation, it is scheduled in the first cycle step from its schedule range
additional resources are allocated. If necessary, additional cycle steps are
depending on the constraints, and the procedure is repeated again. The method
explicitly specifies a permutation Π before scheduling, but derives the permutation d
ing scheduling.

A method called force-directed scheduling, which has a more global scope with re
to selecting a cycle step to schedule an operation, is reported in [Paul89]. F
directed scheduling tries to balance the operations in such a way that the resourc
zation is distributed equally over the available cycle steps. A statistical measure
resource utilization of partial schedules is obtained by assuming that the probabi
operation is scheduled somewhere inside its feasible schedule range, is uniform
tributed inside its interval. A probabilistic distribution function can be defined as
summation of these probabilities, and gives statistical information about the co
rency of a particular module type of a partial schedule. Scheduling a particular o
tion in a cycle step may have an impact on the schedule range of other operatio
hence may change the value of the probabilistic distribution functions. Force dir
scheduling tries to equalize the value of the probabilistic distribution function for
cycle step. This is achieved by investigating the effect of attempted cycle step a
ments of operations in their feasible schedule range on the probabilistic distrib
function, which together with the module area induced, results in the so-called
The force directed scheduling algorithm is given in Algorithm 5.3.

68 CONSTRUCTIVE SCHEDULING

d cycle

d

prove
difi-

n to a
by one
me a
tion.
ded for
nts, is
 situ-
92] a

orces,
-
rame

ented,
which

ber of
. This

an be
ermu-
Algorithm 5.3 (Force Directed Scheduling).
i = 0;
calculate Schedule Ranges;
calculate Distribution Functions;
while (unscheduled operations) do
 Calculate Forces;
 v, t = Select Operation and Cycle Step with Lowest Force;
 // t ∈ [asap(v),alap(v)]
 Π(i++) = v; // Dynamic determination of permutation
 ϕ(v) = t; // Cycle step with Lowest Force;
 update Schedule Ranges;
 update Distribution Functions;
endwhile;

In force-directed scheduling, statistical measures are used to derive the order an
step in which operations are scheduled. While a permutation Π hasn’t been specified
explicitly, it can be derived in a straightforward way. The algorithm has an O(|T|3 · Tc

2)
complexity, in which |T| denotes the number of operations to be scheduled, anTc
denotes the number of cycle steps available for scheduling.

In [Verh91] some improvements on force directed scheduling are presented to im
the effectiveness of the method, without affecting its time complexity. The first mo
cation is called gradual time-frame reduction. Instead of assigning an operatio
cycle step immediately, the feasible schedule range of an operation is reduced
cycle step. The underlying idea is that the probabilistic distribution functions beco
better estimate of the final distribution functions of the resulting resource alloca
The improved method is not a permutation scheduler, as operations may be regar
scheduling more than once. Another improvement, called global spring consta
used to emphasize the effect of changing the probabilistic distribution functions in
ations where they are near the maximum distribution values found so far. In [Verh
complexity reduction is presented, based on a more efficient way of calculating f
reducing the complexity from O(|T|3 · Tc

2) to O(|T|2 · Tc
2). It is based on an incremen

tal calculation of the change in distribution functions, based on gradual time-f
reduction.

In Chapter 6 a new time constrained permutation scheduling method will be pres
which tries to minimize the resource allocation induced by the schedule, and in
the search for a permutation Π is controlled by the use of genetic algorithms.

5.7.3 Resource constraint satisfaction
If both precedence constraints and resource constraints are imposed, the num
operations in each cycle step, requiring the same resource type, is restricted
restriction can be fulfilled by an additional procedure, called selectCycles (see Algo-
rithm 5.4). If inside the feasible schedule range of an operation no cycle steps c
found in which a resource is free, no feasible schedule can be constructed from p
tation Π.

CONSTRUCTIVE SCHEDULING 69

le of an
 range
 by a

ints.

source
sched-
uation
 sched-
sibility

 effi-
tion
m is

ion

 MEIs,
is used
 tree
 the
I with

evious
caused
Just like the other permutation scheduling methods discussed before, the schedu
operation during the execution of Algorithm 5.4 can cause the feasible schedule
of other operations to become restricted. Hence the method is not only driven
resource constraint, but also by time constraints, induced by precedence constra

In Section 5.8 a proof will be given that there exists at least one permutation Π, for
which Algorithm 5.4 returns the optimal solution.

Algorithm 5.4 (Resource constrained permutation scheduling).
for i = 0 to |Π|-1 do
 v = Π(i); // select operation
 C = selectCycles(v,asap(v),alap(v)); // determine cycle steps in which
 // resources able to implement
 // v are free
 if (C == ∅) then return(“infeasible schedule”);
 ϕ(v) = Select(C); // select cycle step from C
 update schedule ranges;
 update resource usage;
endfor;

5.7.4 Time and resource constraint satisfaction
Schedulers which try to schedule operations satisfying precedence, time, and re
constraints are called feasibility schedulers. Because of the time constraint, the
ule of operations is upper bounded by an alap-value. This is identical to the sit
where operations obtain an upper-bound constraint during resource constrained
uling as discussed before, and hence Algorithm 5.4 can also be used for fea
scheduling.

A method which can cope with both resource constraints and time constraints
ciently, is reported in [Timm95]. It is based on a bipartite graph matching formula
called MEI analysis, already mentioned in Section 4.6. The scheduling proble
translated into finding a permutation Π of operations in such a way that each operat
is adjacent to at most one MEI in the bipartite graph. A permutation Π which represents
a feasible schedule implies a bijection between operation schedule ranges and
and consequently defines a complete matching. A branch-and-bound approach
to find a correct permutation Π. It uses a greedy strategy to obtain a sparse search
by first investigating operations adjacent to the module execution interval with
smallest number of operations adjacent. If there are no such MEIs, then the ME
the smallest end cycle step is selected.

5.8 Topological permutation scheduling
The main disadvantage of strict permutation scheduling as presented in the pr
section, is that scheduling a particular operation may constrain other operations,
by the dominance of the order specified by the permutation. Let Π be a permutation of

70 CONSTRUCTIVE SCHEDULING

y

 paths,
er. The
lations

esn’t

ermu-
uling
 the
rmuta-

-
d
een

ithm

r
uated at

the operations of V. Let v ∈ V be an operation which is currently scheduled. Let Π-1(v)
denote the position of v in Π. Let v aΠ u ⇔ Π-1(v) < Π-1(u). Let SUC(v , Π) be the set
of successor operations of v in Π, given by SUC(v , Π) = {u ∈ V | v aΠ u}. If schedul-
ing operation v implies that operation u ∈ SUC(v , Π) will be scheduled in such a wa
that it induces a non-optimal or infeasible schedule, then the coordinate of Π pointing
to u will lose its influence on the schedule of u.

One way to prevent constraining the schedule range of operations of complete
caused by scheduling an operation, is to schedule in a topologically sorted mann
topological order is specified by the partial order induced by the dependence re
inside an acyclic process. A permutation Π can be used to obtain a total order aC from
a partial order, as specified by the following equation:

u aC v ⇔ ((u a v) ∨ (¬ (v a u) ∧ (u aΠ v)) (5.1)

Hence Π only enforces a schedule order if the partial order of the process itself do
make any requirement about the execution order of operations.

The class of topological permutation schedulers is a subset of the class of strict p
tation schedulers. At the end of this section it will be proven that restricting sched
to topological permutation scheduling doesn’t exclude the optimal solution from
search space, hence there exists at least one permutation for which topological pe
tion scheduling returns an optimal solution.

Algorithm 5.5 (Topological permutation scheduling template).
repeat
 for i = 0 to |Π|-1 do
 v = Π(i); // select operation
 if (unscheduled(v) ∧ scheduledpreds(v)) // in a topological way
 ϕ(v) = Select[Tmin,Tmax]; // select cycle step
 endif;
 endfor;
until all operations scheduled;

An easy way to construct aC, given a and Π, is shown by Algorithm 5.5. The opera
tions of V are visited in order of the permutation Π, to search for the first unschedule
operation v ∈ V (unscheduled (v)) for which each predecessor operation has b
scheduled (scheduledpreds(v)).

Let |Π| denote the length of the permutation. The worst case complexity of Algor
5.5 is determined by the complexity of procedure Select and by the complexity of
searching for an unscheduled operation in permutation Π for which each predecesso
operation has been scheduled. In the worst case the unscheduled operation is sit
the end of the permutation, resulting in a worst case complexity of O(|Π|2). This result
has to be extended with the worst case complexity of procedure Select. In case of strict
permutation scheduling algorithm the search for an operation to be scheduled isO(1),

CONSTRUCTIVE SCHEDULING 71

se of a

ng
-
 a field

t 2

r
n
serv-
.
a-

as a
ed

ty of
m-

ula-
thms
7, in
hence the total worst case complexity of Algorithm 5.1 is O(|Π|) extended with the
worst case complexity of procedure Select.

A more efficient search for unscheduled operations can be obtained by making u
heap data structure [Corm90]. Each operation contains a field called key, indicating its
position in Π. The value of the key can be computed by one linear scan amoΠ
(∀ i ∈ [0 , |Π| - 1] key(Π(i)) := i), yielding a O(|Π|) algorithm. While visiting each opera
tion, the number of initially unscheduled predecessor operations can be stored in
called indegree. Visiting each predecessor operation in a process (T , F) has a worst
case complexity O(|T| + |F|). In practical cases each operation will have at mos
incoming edges, thus this complexity can be reduced to O(|T|), which in case |Π| = |T|
equals O(|Π|). When an operation u ∈ T is scheduled, indegree(v) is decreased by 1 fo
each successor operation v ∈ T, with u a v. If indegree(v) becomes 0 for an operatio
v ∈ T, operation v is stored inside a heap. Adding an element to a heap, while pre
ing the heap property, has a complexity O(log n), in which n is the size of the heap
During the execution of Algorithm 5.5, at most |Π| operations have to be stored simult
neously inside the heap, hence the worst case complexity of building a heap isO(log
|Π|). Extracting an element with minimal (or maximal) key from the heap also h
worst case complexity of O(log |Π|). Searching for such an element must be perform
exactly |Π| times during the run of Algorithm 5.5, hence the worst case complexi
Algorithm 5.5 is O(|Π| · log |Π|), which has to be extended with the worst case co
plexity of procedure Select. See Algorithm 5.6 for the complete algorithm.

Algorithm 5.6 (Using a heap structure).
// Initialize heap structure
HEAP = Ø; // Empty heap at start
for i = 0 to |Π|-1 do
 key(Π(i)) = i;
 indegree(Π(i)) = |pred(Π(i))|; // number of direct predecessors
 if (indegree(Π(i)) == 0) then
 add(Π(i),HEAP);
 endif;
endfor;
// Start topological scheduling
for i = 0 to |Π| - 1 do
 v = ExtractMIN(HEAP); // select operation
 ϕ(v) = Select[0,Tmax]; // select cycle step
 // update HEAP structure
 for all u ∈ suc(v) do // for each direct successor,
 if (indegree(u)-- == 0) then // if all predecessors have
 add(u,HEAP); // been scheduled, add to HEAP
 endif;
 endfor;
endfor;

For the sake of simplicity, the functionality in Algorithm 5.6 regarding the manip
tion of the heap structure will not be explicitly mentioned in successive algori
about topological scheduling. This results in the template given by Algorithm 5.

72 CONSTRUCTIVE SCHEDULING

led

e fea-
duling
ffect

ict per-
 prec-
rained

ranges

a worst
dges
com-
g

which a function call GetFirstFree is used to denote the extraction of the unschedu
operation from the heap with the smallest key value.

Algorithm 5.7 (Simplified topological permutation scheduling).
for i = 0 to |Π|-1 do
 v = GetFirstFree(Π); // select operation
 ϕ(v) = Select[Tmin,Tmax]; // select cycle step
endfor;

5.8.1 Precedence constraint satisfaction
By scheduling operations within their feasible schedule range, and by updating th
sible schedule range of unscheduled operations, topological permutation sche
will always satisfy the precedence constraints. Topological scheduling will never a
the upper bound of the schedule range of operations, hence in comparison to str
mutation scheduling, it will never produce infeasible schedules with respect to the
edence constraints. See Algorithm 5.8 for a description of precedence const
topological permutation scheduling.

Algorithm 5.8 (Precedence constrained topological scheduling).
for i = 0 to |Π|-1 do
 v = GetFirstFree(Π); // select operation
 ϕ(v) = Select[asap(v),∞]; // select from feasible range
 update schedule ranges; // only influences asap value
endfor;

Because the scheduling technique is topological, no explicit update of schedule
is needed. The lower bound asap(v) of an operation v can be determined by:

asap(v) = MAX u ∈ T | u a v (ϕ(u) + δ(u , v))

The asap value needs to be determined only once for each operation, leading to
case complexity of O(|F|), which in case each operation has at most 2 input e
equals O(|T|), with |T| the number of operations to be scheduled. Hence the total
plexity of the algorithm is O(|T| . log |T|), to be extended with the complexity resultin
from the Select procedure. The result is given in Algorithm 5.9, in which Tmin denotes
the time the first operation starts its execution.

Algorithm 5.9 (Precedence constrained topological permutation scheduling 2).
for i = 0 to |Π|-1 do
 v = GetFirstFree(Π); // select operation
 temp_asap = Tmin; // start time of schedule
 for all u ∈ pred(v) do
 temp_asap = MAX(temp_asap,ϕ(u) + δ(u,v));
 endfor;
 asap(v) = temp_asap;
 ϕ(v) = Select[asap(v),∞]; // select from feasible range
endfor;

CONSTRUCTIVE SCHEDULING 73

, will
ling.

 oper-
g in an

ed for
di-
g the

onding
hich

to be
s, and

esults

o Algo-
rations,

f their
ill also
e situ-
sible
 of the
sched-
-
hedule
For sake of simplicity, the derivation of the asap values, as shown in Algorithm 5.9
not be explicitly mentioned in successive algorithms about topological schedu
Instead, to obtain the asap-value asap(v) of an operation v ∈ T, the function getAsap(v)
will be used as an abbreviation, resulting in Algorithm 5.10.

Algorithm 5.10 (Precedence constrained topological permutation scheduling 3).
for i = 0 to |Π|-1 do
 v = GetFirstFree(Π); // select operation
 ϕ(v) = Select[getAsap(v),∞]; // select from feasible range
endfor;

When the completion time of the schedule must be optimized, the schedule of an
ation can be assigned to the first cycle step of its feasible schedule range, resultin
asap-scheduling algorithm.

When the resource allocation must be optimized, only one resource will be allocat
each module type. The procedure Select should defer operations such that no ad
tional resources need to be allocated. This can be achieved by administratin
resource usage of the schedule so-far, and defer operations until the corresp
resource is free. This is an important advantage with respect to Algorithm 5.2, w
because of its non-topological way of scheduling may obstruct operations
deferred, and might therefore introduce the allocation of supplementary resource
hence may miss out on the optimal solution. The topological way of scheduling r
into an efficient algorithm which will always return the optimal solution.

5.8.2 Time constraint satisfaction

When besides precedence constraints time constraints are imposed, in contrast t
rithm 5.8, upper bounds are needed to reflect the feasible schedule range of ope
denoted by their alap-value.

Algorithm 5.11 (Time constrained topological permutation scheduling).
for i = 0 to |Π|-1 do
 v = GetFirstFree(Π); // select operation
 ϕ(v) = Select[getAsap(v),alap(v)]; // select from feasible range
endfor;

If during topological scheduling operations are scheduled somewhere at the end o
feasible schedule range, the feasible schedule range of successor operations w
decrease. In case of optimizing the resource allocation this might lead to the sam
ation as with non-topological based permutation scheduling, in which the fea
schedule range of operations can be decreased such that the optimum drops
search space. This implies that parts of the permutation become insignificant for
uling. Therefore it is important that the Select procedure in Algorithm 5.11 tries to pre
vent to schedule operations unnecessary in the later region of their feasible sc
range.

74 CONSTRUCTIVE SCHEDULING

date the
n.

ber of
esource

re
e
n

 fea-
a cycle
ts can
ed by
s find-

 the
thod,
hed
lgo-

eces-
Because the alap value doesn’t change during scheduling, there is no need to up
schedule range of operations due to the schedule assignment of a single operatio

5.8.3 Resource constraint satisfaction

If both precedence constraints and resource constraints are imposed, the num
operations which, are scheduled in the same cycle step and require the same r
type, is restricted. This means that for an operation v ∈ T a cycle step c ≥ asap(v) must
be chosen, with a free resource of type ξ(v). This choice is performed by a procedu
which is called satisfyResConstr in Algorithm 5.12. For each module typ
l ∈ ModType, with ∃ v ∈ T ξ(v) = l, an array implementation of a doubly linked list ca
be used to be able to access the cycle steps c ≥ asap(v) in which modules are free to
implement operation v ∈ T.

The main difference between Algorithm 5.12 and Algorithm 5.4 is the fact that the
sible schedule range of operations will never be bounded from above, and hence
step in which an operation can be scheduled without introducing resource conflic
always be found. Hence in contrast to Algorithm 5.4, the schedules construct
Algorithm 5.12 are always feasible, and the search effort can be oriented toward
ing a good quality solution instead of finding a feasible solution.

Algorithm 5.12 (Resource constrained topological permutation scheduling).
for i = 0 to |Π|-1 do
 v = GetFirstFree(Π); // select operation
 ϕ(v) = satisfyResConstr(v,getAsap(v),∞); // determine cycle step
 update resource usage;
endfor;

The most useful application for this kind of scheduling algorithms, is to optimize
completion time of the resulting schedule. An example of such a scheduling me
which is very common in high-level synthesis, is list scheduling, originally publis
by [Hu61]. The name list scheduling originates from the fact that in the original a
rithm a list of operations is used to keep track of all operations for which all pred
sor operations have been scheduled.

Algorithm 5.13 list_schedule: Π → ϕ
cycle = 0;
repeat
 // Visit operations in order of permutation
 for i = 0 to |Π|-1 do
 v = Π(i);
 // Check whether v can be scheduled in the current cycle step
 if (unscheduled(v) ∧ scheduledpreds(v) ∧ ResourceFree(v, cycle))
 ϕ(v) = cycle;
 endfor;
 cycle++; // proceed schedule in successive cycle step
until all operations are scheduled;

CONSTRUCTIVE SCHEDULING 75

d. An
eduled
he cur-
r spec-

wed to
rations

uling
ed to
ber of
 other

a per-

ed for
bility,
], sev-
prior-
tions

ry pri-
tion
ncerns
 of the
opera-
tleneck
 utili-
cycle

first
m of
time,
re not
to be
rs of an
to suc-
rement

eration

 time
than
a
 main
rs is

de, the
In Algorithm 5.13 a template for the general list scheduling algorithm can be foun
operation is allowed to be scheduled in the current cycle step if it has no unsch
predecessors, and a resource is available for the execution of this operation in t
rent cycle step. Consecutively, cycle steps are selected, and according to the orde
ified by the permutation, unscheduled operations are searched for, which are allo
be scheduled in the current cycle step. This procedure is repeated until all ope
have been scheduled.

The quality of list scheduling depends on the permutation (in case of list sched
also called a priority function) used. In [Girc84] the urgency of an operation is us
define a permutation. The urgency of an operation is defined as the minimum num
cycle steps required between the operation and any enclosing timing constraint (in
words the alap-value of the operation). In [Pang87] the mobility is used to define
mutation. The mobility m(v) of an operation v is defined as m(v) = alap(v) - asap(v) -
δ(v). Operations with zero mobility are situated on the critical path, and are select
scheduling first. To be able to distinguish between operations with the same mo
the operation with the highest number of successors is chosen first. In [Thom90
eral priority functions are used. Operations which are not affected by the primary
ity function are passed to the secondary priority function, and on its turn opera
which are not affected by the secondary priority function are passed to the tertia
ority function. The first priority function determines whether delaying an opera
causes it to be scheduled behind its alap value. The second priority function co
resource constraints. By assigning operations of a critical path first, a better idea
resource utilization can be achieved. Also the total number of successors of an
tion can serve as a priority measure, which detects operations that can be a bot
when they are deferred. The third priority function tries to maximize the resource
zation by checking which operations become ready for scheduling in the next
step.

In [Heij91] an overview of several list scheduling algorithms is published. The
scheduler uses the global freedom as a priority function. Initially, the global freedo
an operation equals the mobility of that operation. If an operation is deferred in
the global mobility will be decreased by one. The idea is that operations which a
situated on the critical path, and are deferred many times, will gain more priority
scheduled. The second scheduler is based upon the number of direct successo
operation. The idea is that operations with many successors, which are deferred
cessive cycle steps, cause all their successors to be deferred too, and might inc
the completion time of the schedule. The third scheduler, uses the alap of an op
as a priority function. The fourth scheduler uses the distance Tmax - asap(v) of operation
v as a priority function. The idea is that operations which are situated far from the
constraint Tmax can be moved more easily without increasing the completion time
operations which are close to the time constraint Tmax. The fifth scheduler uses
weighted priority function, in which the alap value of an operation is used as the
priority function. If the alap of two operations is equal, the number of successo
used to distinguish between these operations, and if still no difference can be ma

76 CONSTRUCTIVE SCHEDULING

f the

n. In
ted.
ticular
 local
t all
tios are
empted
will be

solu-
ires 2
xecute
 com-
sed.
76] it

f oper-
t in the
distance is used as priority function. The results in [Heij91] show that the quality o
solution heavily depends on the priority function used, but in a non-obvious way.

In [Potk89] and [Paul89] global measures are offered to define a priority functio
[Potk89], both a local priority function and a global priority function are presen
They are both defined as the ratio of the available resource allocation of a par
resource type divided by the required resource allocation of the same type. The
priority only looks at this ratio in the current cycle step. The global priority looks a
unscheduled operations. Operations are scheduled in such a way that these ra
kept as large as possible. In [Paul89], forces are used to see the effect of an att
schedule in the current cycle step. The operation which results in the best force
selected and scheduled.

An important disadvantage of list scheduling is that it may miss out the optimal
tion regardless which priority function is used. Suppose that a multiplication requ
cycle steps to execute on a multiplier, and an addition requires 1 cycle step to e
on an adder. The list schedule of the process shown in Figure 5.1(a) will lead to a
pletion time of 6 cycle steps (Figure 5.1(b)), independent of the priority function u
The optimal schedule is shown in Figure 5.1(c), and takes 5 cycle steps. In [Grah
is shown that an increment in the number of resources, a reduction of the delay o
ations or weakening the precedence constraints also may lead to an incremen
completion time of a solution produced by a list scheduler.

(a) (b) (c)

Figure 5.1 Partial data-flow graph, list schedule, and optimal schedule.

+

×

+

+

+

+

+

+

+

+

×

×

×

×

×

CONSTRUCTIVE SCHEDULING 77

l syn-
ermu-

e occu-

n

Algorithm 5.14 construct_schedule: Π → ϕ
cost = 0;
for i= 0 to |Π|-1 do
 v = GetFirstFree(Π); // select operation
 ϕ(v) = firstFreeResource(v,getAsap(v),∞); // determine first cycle step
 // in which resource is free
 update resource usage;
endfor;

A new alternative way of performing resource constrained scheduling in high-leve
thesis is by using Algorithm 5.14. The algorithm schedules each operation from p
tation Π by repeatedly searching for the first unscheduled operation v ∈ T from Π for
which each predecessor has been scheduled. The selected operation v is attempted to be
scheduled in the earliest cycle step from its feasible range. When all resources ar
pied at this cycle step, the function firstFreeResource(v,getAsap(v),∞) searches for
the first cycle step c ≥ asap(v) in which a resource is available to implement v. After an
operation v is scheduled, the resource requirements due to scheduling v are adminis-
trated. The cost Cmax(ϕ) of schedule ϕ is defined by the last cycle step in which a
operation ends its execution.

A proof will be given that there exists at least one permutation Π for which the topolog-
ically sorted schedule constructor results in an optimal schedule.

Let ϕ-1(t) denote the set of operations that are scheduled in cycle step t. The following
algorithm constructs a permutation out of a schedule:

Algorithm 5.15 construct_permutation: ϕ → Π
i = 0;
for t = tbegin to tend do
 foreach v ∈ ϕ-1(t) do
 Π(i++) = v;
 endfor;
endfor;

Theorem 5.1: There exists a permutation Π for which construct_schedule(Π) returns
an optimal schedule.

proof: Let ϕopt be an optimal (and hence feasible) schedule. Let Π be given by:

Π = construct_permutation(ϕopt)

Then according to algorithm construct_permutation, Π can be written as:

Π

= {def. construct_permutation}

78 CONSTRUCTIVE SCHEDULING

rce
Π(0) ⊕ Π(1) ⊕ ... ⊕ Π(|Π| - 1)

= {def. construct_permutation}

In which ⊕ denotes the concatenation symbol. The concatenation P = S ⊕ T of two sets
S and T is defined as a concatenation of a sequence containing all elements of S in an
arbitrary order plus a sequence containing all elements of T in an arbitrary order.

For all u,v ∈ , i ∈ [tbegin , tend], there are no precedence constraints or resou
conflicts, because otherwise ϕopt would be an infeasible schedule.

Let ϕ = construct_schedule(Π). We first prove by induction that:

hence,

First, let . From the definition of ϕopt we know that there are no
resource or precedence conflicts between any operations of Π, and hence
construct_schedule will schedule all operations of Π in cycle step tbegin. Thus:

Let the induction hypothesis be true for t ∈ [tbegin , tbegin + n]. Thus,

Π

=

ϕ-1(tbegin) ⊕ ϕ-1(tbegin + 1) ... ϕ-1(tbegin + n)

and hence ∀ v ∈ Π ϕ(v) ≤ tbegin + n.

Let Π’ = ϕ-1(tbegin) ⊕ ϕ-1(tbegin + 1) ⊕ ... ⊕ ϕ-1(tbegin + n + 1) = Π ⊕ Π’’.

Because in the original schedule ϕopt all operations from (tbegin + n + 1) could be
scheduled without constraint violation in cycle step tbegin + n + 1, and from the induc-

ϕopt
1– tbegin() ϕopt

1– tbegin 1+() ... ϕopt
1– tend()⊕ ⊕ ⊕

ϕopt
1–

i()

ϕ v() t≤
v ϕopt

1– t()∈
∀

t tbegin tend,[]∈
∀

ϕ v() ϕopt≤v T∈ v()∀

Π ϕ opt
1–

tbegin()=

ϕ v()
v ϕopt

1– tbegin()∈
∀ tbegin=() ϕ v()

v ϕopt
1– tbegin()∈

∀ tbegin≤()⇒

ϕopt
1–

CONSTRUCTIVE SCHEDULING 79

er
n

t

s in a
ubset
 per-

 set of
ide the
source

f other
 should

 Algo-
 Sec-

 steps
sched-
s been

utations
hedule.
tion hypothesis we know that no operations from Π are scheduled in cycle steps larg
than tbegin + n, the operations from Π’’ can be scheduled without constraint violatio
inside cycle step tbegin + n + 1 or smaller. Hence ∀ v ∈ Π ⊕ Π’’ ϕ(v) ≤ tbegin + n + 1,
which proves the induction hypothesis.

So if Π = construct_permutation(ϕopt), and ϕ = construct_schedule(Π), then
Cmax(ϕ) ≤ Cmax(ϕopt). Because ϕopt is an optimal solution, we know tha
Cmax(ϕ) ñ Cmax(ϕopt), which ends the proof.

Observe that the solution space of list scheduling, in which the order of operation
permutation Π is restricted to non-decreasing asap values of its operations, is a s
of the solution space of Algorithm 5.14. The complexity to build a schedule from a
mutation by Algorithm 5.14 is O(|Π| · log|Π|).

5.8.4 Time and resource constraint satisfaction

Time constraints and resource constraints impose a restriction with respect to the
operations that can be scheduled simultaneously in the same cycle step. If ins
feasible schedule range of an operation no cycle steps can be found in which a re
is free, no feasible schedule can be found for permutation Π.

Care must be taken not to schedule operations such that they fix the schedule o
operations in such a way that infeasible schedules results. This means that there
be a close interaction between the permutation Π and the Select procedure for such an
algorithm to become successful.

Algorithm 5.16 (Feasible constrained topological permutation scheduling).
for i = 0 to |Π|-1 do
 v = GetFirstFree(Π); // select operation
 ϕ(v) = satisfyResConstr(v,getAsap(v),alap(v)); // determine cycle step
 if (ϕ(v) == ∅) then return(“infeasible schedule”);
 update resource usage;
endfor;

To determine the (earliest) cycle step in which an operation must be scheduled,
rithm 5.16 can be extended with the MEI method presented in [Timm93] (see also
tion 4.6). The MEI analysis may prevent operations from being scheduled in cycle
for which there doesn’t exist a corresponding matching (and hence no feasible
ule) in the bipartite matching graph. The success of applying such a strategy ha
shown in [Timm95].

5.9 Permutation statistics
In the preceding sections some algorithms have been presented which use perm
to generate a schedule. A permutation can be considered as an encoding of a sc

80 CONSTRUCTIVE SCHEDULING

g
set of
ubset
loca-

ect
ilistic
eduling
n is

ace

tor to
ns

 can be
hedule
n Table
search
not be
d.
step in
logical
Consider a time constrained scheduling problem, consisting of a data-flow graphDFG
(precedence constraints) and a time constraint Tmax, and aiming at a schedule inducin
a minimal resource allocation. With respect to this combination of constraints, a
feasible schedules F can be created (also called solution space), containing a s
Fopt ⊆ F consisting of solutions which are optimal with respect to the resource al
tion induced (also called optimal solution space).

The expression |Fopt | / |F| denotes the relative amount of optimal solutions with resp
to the total size of the solution space. This ratio is of importance when probab
search methods such as genetic algorithms (see Chapter 6) are applied to the sch
problem. The higher this ratio, the higher the probability that an optimal solutio
encountered.

For the schedule constructors presented in this chapter, the size of the search spS is
determined by the number of possible orders of a permutation Π in combination with
the possible cycle step assignment of the Select procedure. The set Sopt consists of all
optimal schedule solutions obtained after applying a particular schedule construc
particular permutations. The ratio |Sopt| / |S| denotes the relative amount of permutatio
resulting in an optimal schedule solution. For a relation between S and F, see Figure
5.2.

In Table 5.1 some results for the size of F, Fopt, S, and Sopt for some specific scheduling
problems can be found. Because counting the total number of feasible schedules
a quite cumbersome task for large schedule examples, only relative small sc
examples shown in Figure 5.3 have been used to obtain the results presented i
5.1. The schedule constructor used to obtain the results in column ‘permutation
space size’ is based on Algorithm 5.4, with the exception that if an operation can
scheduled inside its feasible range (hence C = Ø), the resource allocation is increase
Each operation is selected to be scheduled inside the earliest possible cycle
which a resource is free to execute the operation. The results of the column ‘topo
permutation search space size’ have been obtained by Algorithm 5.14.

Figure 5.2 Search space S versus solution space F.

S

Sopt

F

Fopt

CONSTRUCTIVE SCHEDULING 81

umber
e top-
bilistic
ologi-
apter
 pre-
From all examples in Table 5.1, it can be concluded that the ratio between the n
of optimal solutions and the total number of feasible solutions is the largest in cas
ological permutation scheduling techniques are used. It is expected that proba
search methods such as genetic algorithms will be more efficient when using top
cal permutation scheduling techniques. This observation will be confirmed in Ch
6, where some empirical results obtained for larger scheduling examples will be
sented.

Table 5.1 Permutation statics of examples of Figure 5.3.

Example

solution space size
permutation search space

size
topological permutation

search space size

|F|
ratio

|S|
ratio

|S|
ratio

|Fopt| |Sopt| |Sopt|

1 1 100% 6 100% 6 100%

1 6 6

2 5 40% 6 33% 6 100%

2 2 6

Figure 5.3 Some relative small schedule examples.

+

×

+

+

×
+

×

+

+

×
+ +

+

a b

c

+ +

+

a b

c

a

b

c

d

e
a

b

c

d

e

Example 1 Example 2 Example 3 Example 4

2 cycles
2 adders

3 cycles
1 adder

5 cycles
1 adder
1 multiplier

6 cycles
1 adder
1 multiplier

Example 5

4 cycles
1 adder

+a +b +c +d

+a

×c × d

+b

×e × f

+g +h

Example 6

6 cycles
1 adder
1 multiplier (1 cycle)

82 CONSTRUCTIVE SCHEDULING

ions

hed-
ution of

ive

ple
can

f

line

f

ection
, while
5.10 Permutation scheduling and pipelining
During the pipelined execution of a data-flow graph G = (V , E), a new execution of G
is started before G has finished its previous execution(s). This implies that operat
involved with data related to different executions of G are executing in parallel.

Data-flow graph G can be partitioned in so called pipeline stages. In a pipelined sc
ule, operations assigned to the same pipeline stage are concerned with the exec
data from the same invocation. Let a (non-pipelined) schedule of G be given by ϕ,
which assigns a cycle step to each operation v ∈ V. Let the distance between success
executions (called invocation distance) of G be given by data introduction interval dii.
In that case the pipelined cycle step assignment of G is given by ϕdii(v), defined by
ϕdii(v) = ϕ(v) mod dii. The pipeline stage assignment σ(v) of operation v ∈ V is defined
by σ(v) = ϕ(v) div dii. The schedule of such an operation is given by a tu
(ϕdii(v) , σ(v)). A simplified example of a pipelined execution of a data-flow graph
be found in Figure 5.4.

Assume that for each operation v ∈ V, δ(v) = 1. To explicitly model the concurrency o
the pipelined execution of operations in a data-flow graph G = (V , E), it can be thought
to be folded among the pipelined cycle step budget {0, 1, ... , dii - 1} as shown in Fig-
ure 5.4, resulting in a pipelined data-flow graph Gdii = (V , Edii). The operations of G
can be partitioned into n subsets, with V = V0 ∪ V1 ∪ ... ∪ Vn-1, and
i ∈ {0, 1, ... , n - 1}, in which Vi represents the set of operations situated in pipe
stage i (in other words ∀ v ∈ Vi σ(v) = i). The partitioning of G is accomplished by cut-
ting each edge (u , v), with σ(v) - σ(u) = k, k times. The set Edii ⊂ E consists of edges o
G, excluding the edges (u , v) with u ∈ Vi, v ∈ Vj, and 0 ≤ i < j < n.

The concept of pipeline stages is similar to the concept of inter-iteration (see S
3.4). The first pipeline stage processes data from the current process invocation

3 4 25% 120 50% 120 50%

1 60 60

4 25 40% 120 100% 120 100%

10 120 120

5 2350 1.7% 40320 5.9% 40320 100%

40 2384 40320

6 256 9.4% 24 100% 24 100%

24 24 24

Example

solution space size
permutation search space

size
topological permutation

search space size

|F|
ratio

|S|
ratio

|S|
ratio

|Fopt| |Sopt| |Sopt|

CONSTRUCTIVE SCHEDULING 83

n. Just
y the
f

an be
elined
ph, a

 com-

ith a
cycle
ermu-

ded)
 is
 pipe-
successive pipeline stages are processing data from previous process invocatio
like the case with loop structures, pipeline boundaries can be explicitly modelled b
use of delay nodes. If σ(v) - σ(u) = k, edge (u , v) should be replaced by a sequence ok
delay nodes connected by a sequence of edges.

One of the main questions in this section is whether permutation scheduling c
used to construct (optimal) pipelined schedules. For this section we assume a pip
resource constrained scheduling problem (in other words given a data-flow gra
resource constraint, and a data introduction interval, find a schedule with minimal
pletion time).

Assume that a data introduction interval of 3 cycle steps is given, together w
resource constraint of 1 adder (requiring 1 cycle step), 1 multiplier (requiring 2
steps), and the data-flow graph as given in Figure 5.5(a). In case of topological p
tation scheduling (as in Algorithm 5.14), operation v1 and v2 will always be scheduled
before operation v3. This causes the adder to be occupied inside the first two (fol
cycle steps, and hence operation v3 will have to be scheduled in cycle step 5 (which
equal to folded cycle step 2, see Figure 5.5(b)). In Figure 5.5(c) an example of a

Figure 5.4 Simplified pipelined schedule example.

cut

G

stage 0 stage 1
0

dii

Gdii

(a) (b) (c)

Figure 5.5 Pipelined schedule example.

+

×

+

+

+

×
+

+

v1 v2

v3

v4

v1

v2

v3

v4

stage 0 stage 1

+

×

+

+

v1

v2

v3v4

stage 0 stage 1

0

1

2

cycle
step

84 CONSTRUCTIVE SCHEDULING

 a
al per-
orig-
are on
il of a

, and
tions in

ace.

can be
 from
 with-

l of 3
, and 2
etion

n
fore
ge 2,
duc-

ible
e 1,
tion
).

s given

rliest
poses

utions
ase of
c-
sible
d
ow

use it
r cycle
duled
lined schedule is shown, in which operation v3 is scheduled in cycle step 4, inducing
shorter length schedule. This schedule can never be obtained by using topologic
mutation scheduling for the data-flow graph of Figure 5.5(a) directly. The problem
inates from the fact that topological scheduling assumes that operations which
head of a path are scheduled earlier in time than operations which are in the ta
path, and therefore will never lead to resource conflicts. If pipelining is applied
hence resource usage is folded, this situation is no longer true. Because opera
pipeline stage x, x ∈ N, are always scheduled before operations in pipeline stage x + 1,
all optimal schedules for a particular example can be excluded from the search sp

Another question is whether an optimal pipelined resource constrained schedule
constructed by using a non-topological permutation scheduling technique derived
Algorithm 5.14 (in other words, operations are scheduled in their asap value, but
out violating resource constraints).

A counter example is given in Figure 5.6, assuming a data introduction interva
cycle steps, together with a resource constraint of 1 adder (requiring 1 cycle step)
multipliers (requiring 1 cycle step). The optimal schedule with the smallest compl
time is given in Figure 5.6(b). In this schedule, operation v6 is scheduled one folded
cycle step earlier than operation v4. This implies that operation v6 should be scheduled
before operation v4. Let’s assume that operation v1, v2, and v3 have been scheduled i
pipeline stage 1. If operation v6 is scheduled in its earliest possible cycle step, be
operation v4 is scheduled, it will be assigned to the last cycle step of pipeline sta
forcing operation v4 to be scheduled inside the first cycle step of pipeline stage 2, in
ing an infeasible resource allocation of 2 adders. If operation v5 is scheduled before
operation v4, it will be scheduled in cycle step 1 of stage 1, resulting in an infeas
schedule because operation v4 is forced to be scheduled inside cycle step 0 of stag
inducing a resource allocation of 2 adders. To obtain a feasible schedule, operav4
should be scheduled before operation v6, resulting in the schedule of Figure 5.6(c
Hence there exists no permutation in combination with a cycle step assignment a
in Algorithm 5.14, leading to an optimal schedule.

The problem originates from the fact that scheduling an operation inside its ea
possible cycle step can move this operation towards a pipeline stage in which it im
time constraints towards other operations such that non-optimal or infeasible sol
are created because the resource utilization is folded. The conclusion is that in c
pipelined resource constrained scheduling, the Select procedure as presented in Se
tion 5.6 should not only consider scheduling operations within their earliest pos
cycle step. The general question is what kind of Select procedure is needed, an
whether a complicated Select strategy must be applied to all operations of a data-fl
graph.

It will now be shown that the proof as given on page 77 is not applicable, beca
makes use of the fact that some operations can be safely scheduled in earlie
steps, which in a folded cycle step range might imply that an operation is sche

CONSTRUCTIVE SCHEDULING 85

t that

is not

imal

ation

rmu-
-

ce the
t
in
‘later’. Let ϕopt be an optimal pipelined schedule of data-flow graph G = (V , E). Let
Π = construct_permutation(ϕopt), and let ϕ = construct_schedule(Π) (see Algo-
rithm 5.14 and Algorithm 5.15). The proof on page 77 makes use of the fac
construct_schedule constructs a schedule ϕ with ∀ v ∈ V ϕ(v) ≤ ϕopt(v). Applying
construct_permutation to the optimal schedule ϕopt as shown in Figure 5.6(b) would
induce a permutation Π = v1 v2 v3 v4 v5 v6. Scheduling Π using Algorithm 5.14 results
in the schedule as given in Figure 5.6(c). In this schedule ϕ(v6) > ϕopt(v6), and hence ϕ
is a non-optimal schedule, which on its turn shows that the proof of page 77
applicable.

If a permutation Πdii based on folded cycle steps is constructed, still a non-opt
schedule results. Let Πdii = construct_permutation(ϕopt mod dii), and let ϕ =
construct_schedule(Πdii). The example of Figure 5.6 shows that Πdii =
v1 v5 v2 v6 v3 v4, which results in an infeasible schedule inducing a resource alloc
of 2 adders because construct_schedule(Π) will schedule operation v1 in cycle step 0
and operation v5 in cycle step 4, and hence will schedule operation v4 in cycle step 3.

From Figure 5.7 it can be concluded that if instead of G, scheduling is applied to the
pipelined graph Gdii, then according to the proof given on page 77 there exists a pe
tation Πdii consisting of operations from V for which Algorithm 5.14 results in an opti
mal schedule. Thus if G is cut at the right places, and scheduling is applied to Gdii, then
there exists a permutation of operations which results in an optimal schedule. Hen
problem to be solved is given data introduction interval dii, find the places where to cu
G to obtain a pipelined data-flow graph Gdii, for which a permutation exists, resulting
an optimal schedule. In other words, determine the pipeline stage assignment σ(v) for
all operations v ∈ V.

(a) (b) (c)

Figure 5.6 Pipelined schedule example (2).

+
v1

stage 0

0

1

2

cycle
step

+ v1

× v2

× v3

+ v4

× v5

+ v6

× v2

× v3 + v4

× v5

+ v6

stage 1 stage 2

+
v1

stage 0

× v2

× v3

+ v4

× v5 + v6

stage 1 stage 2

86 CONSTRUCTIVE SCHEDULING

nge

e
ipeline
tions is

he

n
by

t of

f no

,
e

r, with-

.

Suppose V is partitioned in (at most) n pipeline stages. Assume that the schedule ra
of an operation v ∈ V is given by [asap(v) , alap(v)]. A feasible schedule of operation v
requires that ϕ(v) ∈ [asap(v) , alap(v)]. Assigning v to pipeline stage σ(v) = k, with
0 ≤ k ≤ n, and ∀ c ∈ [k · dii , (k + 1) · dii] c ∉ [asap(v) , alap(v)], can never lead to a feasibl
schedule, and hence should be avoided. Furthermore, if the placement of p
stages between an operation and all its successor (or predecessor) opera
restricted to one stage, an optimal schedule can still be created. Let σ(v) = k, with
0 ≤ k ≤ n, such that ∃ c ∈ [k · dii , (k + 1) · dii] c ∈ [asap(v) , alap(v)]. Let v ∈ V, and
∀ u ∈ V | (u , v) ∈ E σ(v) - σ(u) ≥ 2. Let ϕopt be an optimal schedule. No difference of t
cost of ϕopt(v) can be detected when the pipeline stage assignment σ(v) of operation v is
lowered in such a way that ∃ u ∈ V | (u , v) ∈ E σ(v) - σ(u) = 1. Hence, an upper bound o
the pipeline stage of operation v which contains an optimal schedule is given
σ(v) ≤ MAX u ∈ V | (u , v) ∈ E σ(u) + 1.

In Algorithm 5.17 a permutation Π of operations is used to determine an assignmen
pipeline stages to all operations of a data-flow graph. Let selectStage be a procedure
which selects for each v ∈ V the smallest k(v) ∈ N, with 0 ≤ k(v) ≤ n, and k(v) · dii ∈
[asap(v) , alap(v)] (in other words the interval can be cut by a pipeline boundary). I
such k exists, then k(v) = 0.

Algorithm 5.17 (Pipeline stage assignment).
for i = 0 to |Π|-1 do
 v = Π(i);
 k = SelectStage(asap(v),alap(v),dii);
 if (k ≠ 0) then
 asap(v) = k * dii;
 update Schedule Ranges;
 endif;
endfor;

By using Algorithm 5.17, each possible pipeline assignment of G can be constructed
with the limitation that σ(v) ≤ MAX u ∈ V | (u , v) ∈ E σ(u) + 1 (because procedur
selectStage selects the smallest k with k · dii ∈ [asap(v) , alap(v)]).

The pipeline stage assignment can be performed in a topologically sorted manne
out imposing restrictions to number of pipelined data-flow graphs. Let Gdii represent an

Figure 5.7 Pipelined data-flow graph derived from data-flow graph of Figure 5.6

+ v1

× v2

× v3

+ v4 × v5

+ v6

CONSTRUCTIVE SCHEDULING 87

e rela-

a-
d at
r-

 in

-
d to a

pt of
a-flow
hedule
 given
ction
ions.
is
 try to

ithm
tion of
that
elined
r both
ch a
a strat-
tested,

ot be
ation
t of 1
arbitrary pipelined data-flow graph, with ∀ v ∈ V σ(v) ≤ MAX u ∈ V | (u , v) ∈ E σ(u) + 1.
Let permutation Π be such that:

1. the first operations of Π consist of the operations of Gdii with in-degree 0 (in other
words without predecessor operations).

2. Let these operations be sorted topologically with respect to the precedenc
tions of data-flow graph G.

In that case Algorithm 5.17 will cut G in a topological manner. First the input oper
tions v ∈ V with asap(v) = 0 are visited, because by rule (1) and (2) they are locate
the head of the permutation. Because k = 0 for these operations, no action will be pe
formed. Then the operations v ∈ V, with σ(v) = 1, and which have no predecessors
Gdii, are visited. For these operations, k = 1, and the update Schedule Ranges will
update the schedule range of successor (predecessor) operations u ∈ V in such a way
that σ(u) ≥ 1 (σ(u) < 1). This procedure is repeated for increasing values of k, no opera-
tion v ∈ V will be found with k · dii ∈ [asap(v) , alap(v)], and hence the algorithm ter
minates with no further action, because all operations have implicitly been assigne
pipeline stage.

The idea of finding a good cut inside a data-flow graph is similar to the conce
retiming (see Section 4.3.3 and Section 5.11). When retiming is applied to a dat
graph, it can assign pipeline stages in such a way that it excludes the optimal sc
from the solution space. An example of such a case (containing loop structures) is
in Figure 5.9, in which two different retimings are given for the same data introdu
interval dii, but for which the optimal schedule induces different resource allocat
Retiming G in such a way that the resulting graph Gdii contains the optimal schedule
proven to be an NP-hard problem [Potk91]. In [Potk91] heuristics are used which
balance the resource allocation over the cycle steps available.

The retiming algorithms described in Algorithm 5.17 can be combined with Algor
5.14 to find a pipelined schedule by using permutations. One can use a combina
two permutations (one for retiming, one for scheduling), for which it is known
there exists a combination of these two permutations leading to an optimal pip
schedule. A simplified method can be constructed which uses one permutation fo
algorithms. No proof or counter example is known concerning the optimality of su
strategy. Nevertheless empirical results presented in Chapter 6 show that such
egy, in combination with a genetic search, produces optimal results in all cases
which validates the use of such a strategy.

So far, it has been assumed that for each operation v ∈ V the execution delay δ(v) = 1.
In case multi-cycled operations are allowed, an arbitrary cut of a graph cann
described by a retiming. An example is shown in Figure 5.8, in which the multiplic
operation is distributed among two pipeline stages. It also causes an incremen

88 CONSTRUCTIVE SCHEDULING

e

step
igure

citly
peline
 opera-

always
e with
nvoca-

struc-
ling to
nd dis-

s has
are dis-
ncur-
riction
duling
cycle step of the lower bound of operation v4 in pipeline stage 1, which has to b
accounted for when scheduling is applied to such a data-flow graph.

An operation v, for which the operation execution delay δ(v) equals c cycle steps, can
be cut at c - 1 places. One can think of extending the permutation with cycle
assignments for multi-cycled operations to account for situations as depicted in F
5.8. In the results shown in Chapter 6 multi-cycled operations aren’t expli
accounted for during the assignment of pipeline stages (in other words the pi
boundary is always assigned as close as possible to the asap-value of such an
tion).

5.11 Permutation scheduling and cyclic data-flow graphs
Because a cycle contains at least one delay node, cyclic data-flow graphs are
related to the concept of pipelining. There are different approaches how to cop
the concept of delay nodes, which closely relate to the methods with respect to i
tion distance constraints mentioned in Section 4.3.

In general, most schedule methods reported in the literature dealing with cyclic
tures transform these cyclic structures into acyclic structures, and apply schedu
these acyclic structures. In the next sections a short overview of the advantages a
advantages of each method will be discussed.

5.11.1 Single iteration model
A single iteration of a cyclic structure can be obtained by splitting delay nodes, a
been shown in Section 4.3.1 on page 44. Because inter-iteration dependencies
carded completely, the acyclic structure doesn’t hold any information about the co
rency among different iterations. Depending on the schedule constraints this rest
might induce non-optimal or even infeasible schedules, regardless of the sche
method that is used.

Figure 5.8 Pipelining and multi-cycling.

×

×

+

+

v1

v1

stage 0

v2

×
v3

+ v4

v2

v3

+ v4

stage 1

+

+

CONSTRUCTIVE SCHEDULING 89

ncies
folded

ining.
pera-
 espe-

ltiple
es are
 accom-
trans-

raph

raph.
uction
ations
results
nt the
f loop
f pipe-
earch

cuits.
aries
n-Ford

 place
duler in
ich is

which
tance

erator).
5.11.2 Multiple iteration model

Unfolding a graph n times exposes the inter-iteration concurrency between n iterations
(see also Section 4.3.2, page 44). During loop unfolding inter-iteration depende
are transformed into intra-iteration dependencies, and hence scheduling the un
graph using constructive scheduling techniques implicitly makes use of loop pipel
The main problem of multiple iteration models is the increment in the number of o
tions to be scheduled. Unfolding may also lead to an increment in controller size,
cially with nested loops.

5.11.3 Loop Winding, Loop Folding, Retiming

By reorganisation of the location of pipeline stages, both single iteration and mu
iteration methods might yield more successful results. Pipeline stage boundari
represented by delay nodes, and hence reorganization of pipeline stages can be
plished by transforming the graph. Changing the location of pipeline stages by
forming a graph is called loop winding, loop folding or retiming.

There are mainly two methods of loop winding. One method transforms the g
before scheduling. The other method transforms the graph during scheduling.

Loop winding before scheduling
In [Girc87] the first step consists of unwinding all cycle structures in a data flow g
The acyclic graph that is obtained by this step is partitioned using the data introd
interval and wound in parallel. This achieves a functional pipeline, because oper
from several iterations of the loop may be executed in parallel (depending on the
of the winding). Disadvantages of the method are that unwinding may increme
input size of the problem considerably, or isn’t possible because the number o
executions is data dependent. Secondly, the winding process fixes the location o
line stages, which may exclude the optimal loop-pipelined schedule from the s
space.

In [Leis91] retiming is used to change the position of pipeline stages in logical cir
In [Fran94] the main idea of retiming to change the location of pipeline bound
inside ASCIS data-flow graphs has been implemented. It is based on the Bellma
all-pairs longest-path algorithm, resulting in an O(|V|3 · log|V|) algorithm, with |V| the
number of operations inside a data-flow graph.

The main disadvantage of graph transformations before scheduling is that it may
delay nodes at the wrong places, such that it reduces the design space of a sche
such a way that it might exclude the optimal throughput-constrained schedule (wh
the schedule with the lowest resource allocation). In Figure 5.9 two examples in
this problem becomes obvious can be found. In both examples the minimal dis
between process invocations is 3 cycle steps (assuming unity delay for each op

90 CONSTRUCTIVE SCHEDULING

n opti-

nces
loited
blem
 try to
s, such
 path
annot

ce of a

 the
s are

fficient

uling
 move-
d also
In the second example one multiplier and one adder less are needed to obtain a
mal schedule, assuming 4 cycle steps are available for scheduling.

In [Potk91] an algorithm is presented to apply retiming in such a way that it bala
the resource utilization (the ratio of the number of cycle steps a resource is exp
over the total number of available cycle steps). Because solving this retiming pro
optimally has been proven to be an NP-hard problem, heuristics are used, which
balance the resource allocation over the available cycle steps. Heuristic measure
as the mobility of an operation, the probability of resource sharing, and critical
length are used as an object function for retiming. Nevertheless, the method c
guarantee that it may exclude the optimal schedule solution from the search spa
scheduler.

Loop winding during scheduling
In [Goos89,Hwan91a,Lee92,Chao93,Wang93], loop winding is integrated into
scheduling procedure itself. Depending on partial schedule results, operation
moved to previous or successive pipeline stages in such a way that a more e
resource utilization or a smaller data introduction interval become possible.

Despite the fact that these transformation algorithms in combination with sched
might lead to better results, the main disadvantage of these methods is that the
ment of operations to other pipeline stages is performed using heuristics, an

+ x

+

v1

v2

x

+

v4

v3

+

x

T

T

x

v5 v6

v7v8

+ x

+

v1

v2

x

+

v4

v3

+

x
T

x

v5 v6

v7v8

T

T

T

multiplier 1

multiplier 2

0 1 2 3 cycle

Optimal schedule in 4 cycle steps

adder 1

multiplier 1

0 1 2 3 cycle

v3
v4

v1
v2

v7

v8
v1

v6
v3 v4

v5v7
v2

Optimal schedule in 4 cycle steps

adder 2 v5 v8

Figure 5.9 Different retimings and their optimal schedules.

adder 1 v6

CONSTRUCTIVE SCHEDULING 91

d, these
tion is

rithms
 permu-
nd the
duled.
e loop

tly, it
ing that
sist of
 search
 in Sec-

lso be
eline

strategy
d at the
ations
esults
proach
rategy.

thods
 some
 many
be ori-

which
olution
ps and
dule
depends on the kind of scheduler used. This means that because of their gree
methods may reduce the search space in such a way that the optimal solu
excluded from the search space.

5.11.4 Cyclic scheduling

Based on the calculation of the schedule ranges of operations, constructive algo
as reported in Section 5.6 and 5.8 can be used to produce pipelined schedules. A
tation of operation determines the order in which operations are scheduled, a
Select procedure determines the cycle step in which these operations are sche
The precedence constraints, time constraints, and throughput constraints of th
structure are accounted for by updating the schedule ranges of operations.

When topological scheduling techniques are applied to cyclic structures direc
searches for operations for which all predecessors have been scheduled. Assum
delay nodes contain initial tokens, the initial set of unscheduled operations con
the set of successor operations of each delay node and the input nodes. The
space of scheduling in such a case is equal to the single iteration model reported
tion 5.11.1, severely restricting the search space for scheduling.

The method presented in Section 5.10 for creating pipelined schedules can a
applied to cyclic loop structures. A permutation is used to determine both the pip
stage assignment and the schedule of operations of the data-flow graph. Such a
allows operations besides successor operations of delay nodes to be schedule
top of pipeline stages, but according to Algorithm 5.17 is restricted to those oper
for which deferring to successive pipeline stages is sensible. Although optimal r
are not guaranteed, empirical results presented in Section 6.9 show that the ap
produces optimal solutions in all cases tested, which validates the use of such a st

5.12 Conclusions
In this chapter a classification of constructive high-level synthesis scheduling me
is presented, based on permutations of operations. This classification shows
advantages of constructing a schedule in a topologically sorted way, because in
cases it prevents the creation of infeasible solutions, and the search effort can
ented towards finding good quality solutions instead of finding feasible solutions.

A topological schedule constructor, assigning operations to the first cycle step in
no resource conflicts arise, has been proven to contain the optimal schedule s
inside its search space. By application of special data structures, such as hea
array implementations of doubly linked lists, the complexity to construct a sche
from a permutation in a topological manner equals O(|Π| · log|Π|), where |Π| denotes
the length of the permutation.

92 CONSTRUCTIVE SCHEDULING

ules or
orate

optimal
or good
rform

te a per-
ned as
tion.
, often
thod,
better
Furthermore it has been shown that the constructive creation of pipelined sched
cyclic schedules is a more complicated task to perform. A new strategy to incorp
retiming into the scheduling process has been presented. Despite the fact that
results are not proven to be part of the search space, it provides a way to search f
quality schedules in a more global way when compared to strategies which pe
retiming before scheduling is started.

The methods presented in this chapter can be considered as an engine to transla
mutation of operations into a schedule. The search for an optimal schedule is defi
finding a permutation for which the scheduling method will return an optimal solu
Simple heuristic strategies, some of which have been presented in this chapter
fail to find good quality solutions. In the next chapter a probabilistic search me
called genetic algorithms, will be used to search for permutations, resulting in
quality schedules.

edules
mpha-
 ques-
dules

rovide
t they
or an
duling

tatisti-
 a new
panied
ith the
inally,

d on
bed
n
ity of

 space,

of
Chapter

6 Genetic Algorithms and Scheduling

6.1 Introduction
In the previous chapter various algorithms have been examined to construct sch
from permutations. A classification of constructive schedulers has been made, e
sizing the feasibility and greed of the algorithms constructing the schedule. The
tion about how to find permutations which result in optimal or near-optimal sche
hasn’t been explored yet, and will be the main topic of this chapter.

In general, exhaustive search takes too much computation time and heuristics p
poor quality results. The choice for genetic algorithms is based on the fact tha
have been successfully applied to many combinatorial optimization problems (f
overview see [Mich92]), and are assumed worth considering for solving the sche
problem.

This chapter first presents a short introduction about genetic algorithms. Then a s
cal analysis about the convergence of genetic algorithms is presented. After that,
encoding of the resource constrained scheduling problem is presented, accom
with some benchmark results. Subsequently the genetic algorithm is extended w
possibility to allocate extra resources, resulting in a time constrained scheduler. F
results are presented with respect to scheduling cyclic data-flow graphs.

6.2 Introduction to genetic algorithms
Genetic algorithms [Holl75] are probabilistic search algorithms which are inspire
the principle of “survival of the fittest”, derived from the theory of evolution descri
by Charles Darwin in The Origin of Species. Genetic algorithms maintain a collectio
of potential solutions, which evolve according to a measure reflecting the qual
solutions.

The evolution process of a genetic algorithm works on an encoding of the search
represented by a chromosome.

Definition 6.1 (Chromosome χ). Let A be an alphabet (in other words a set
symbols). A chromosome χ is a string of symbols from alphabet A. The number of
symbols of χ is called the length of χ, denoted by |χ|. The set Al, with l ∈ N, consists of
all possible chromosomes χ with |χ| = l. χ(i) denotes the i th symbol, with 0 ≤ i < l of
chromosome χ.

94 GENETIC ALGORITHMS AND SCHEDULING

 of

gs, in
ro-
 of a

 chro-

“less
o each

et

fitness
ative
l be

mes,

omes

tions,
Definition 6.2 (Encoding Enc, decoding Dec). Let (F, c) be a search problem. Let Al be
a set of chromosomes. The onto1 function Dec: Al → F is called a decoding. The
function Enc: F → Al is called an encoding. The encoding Enc(f) of an element f ∈ F is
defined as an element of {χ ∈ Al | Dec(χ) = f}. Hence, for each element f ∈ F, one or
more encodings χ ∈ Al exist. If for all f ∈ F the set of possible encodings consists
exactly one element, the encoding is called one-to-one.

Classical genetic algorithms as described in [Holl75] use bit-strings as encodin
other words alphabet A = {0 , 1}. In other publications alternative encodings are p
posed, consisting of arbitrary symbols (for example natural numbers, or nodes
graph). Also the length of the chromosomes might not be a constant. In [Koza92],
mosome representations are even extended to graph structures.

To make the process of evolution possible, a distinction between “more fit” and
fit” chromosomes is needed. This is accomplished by assigning a fitness value t
chromosome, which is associated to the cost c(f) of a candidate solution f ∈ F of a com-
binatorial optimization problem (F , c).

Definition 6.3 (Fitness s, scaling function Σ). Let (F , c) be an instance of a
combinatorial optimization problem. Let Al be a set of chromosomes, and l
Dec: Al → F be an onto function. The fitness s: Al → R is a function, with s(χ) the
fitness (or score) of chromosome χ ∈ Al. Fitness s is related to cost function c by use of
a scaling function Σ: R → R, given by s(χ) = Σ(c(Dec(χ))).

In many cases the scaling function equals the identity function, and hence the
value equals the cost of the original combinatorial optimization problem. Altern
scaling functions and their effect on the evolution of genetic algorithms wil
explained in Section 6.4.

During the run of a genetic algorithm, it keeps track of a collection of chromoso
called a population.

Definition 6.4 (Population P, population size |P|, individuals). A population P is a bag
(also called collection), the elements of which are taken from the set of chromos
Al. The elements of P are called individuals. The size of the population P, denoted by |P|
is called the population size of P.

In a genetic algorithm the initial population P0 is created by randomly selecting |P0|
individuals from the set of chromosomes Al. A genetic algorithm iteratively tries to
improve the average fitness of a population by the construction of new popula
using selection and recombination mechanisms.

1. each element of F is the image under Dec of some element of Al

GENETIC ALGORITHMS AND SCHEDULING 95

cepts
osomes

ular

opular
hanges
es two
reate
ny loss
 There

l

,
ent,
ee also
Recombination of individuals is performed by so-called operators. An operator ac
a set of chromosomes (sometimes called parents), and constructs new chrom
(called offsprings or children) by copying information from the parents.

Definition 6.5 (Operator O). An operator O is a mapping O: (Al)m → (Al)n, with
n,m ∈ N. It accepts m chromosomes (also called parents), and, using a partic
mechanism, generates n chromosomes (called children or offsprings).

Many different operators for genetic algorithms have been published. The most p
operators are called crossover and mutation. Mutation takes one chromosome, c
its contents, and returns the modified chromosome as a result. Crossover tak
chromosomes χ1,χ2 ∈ Al, exchanges information between these chromosomes to c
new chromosomes, and returns one or two chromosomes as a result. Without a
of generality this thesis assumes that only one offspring is created by crossover.
are many different types of crossover operators, some of which are the following:

• Single point crossover. A crossover-point k ∈ N is randomly chosen in the interva
[0 , l - 2], and the offspring is defined as (see also Figure 6.1):

• n-point crossover. Instead of 1 cross-over point, n ∈ N crossover points are chosen
with n ≤ l. A child is constructed by copying symbols, starting from the first par
and changing to the other parent each time a crossover point is encountered (s
Figure 6.2).

χ i() χ1 i() if i 0 k,[]∈

χ2 i() if i k 1 l 1–,+[]∈

=

Figure 6.1 Example of single point crossover.

s0 s1 s2 s3 s4 s5 s6 s7
t0 t1 t2 t3 t4 t5 t6 t7

χ

χ

offspring s0 s1 s2 t3 t4 t5 t6 t7

crossover point

1

2

Figure 6.2 Example of 2-point crossover.

s0 s1 s2 s3 s4 s5 s6 s7
t0 t1 t2 t3 t4 t5 t6 t7

offspring s0 s1 s2 t3 t4 t5

crossover point

s6 s7

χ

χ

1

2

crossover point

96 GENETIC ALGORITHMS AND SCHEDULING

ength

n
ed
quals

 aver-
. The
f a pop-

lec-

,

• Uniform crossover. For each position a bitmask string (a string with the same l
as the parents, consisting of ‘0’s and ‘1’s) determines whether a symbol of χ1 or χ2 is
copied to the same position of the offspring χ. If the value of the bitmask at positio
i equals 1, then χ(i) = χ1(i), else χ(i) = χ2(i). The values of the bitmask are generat
randomly. The probability that the value of the bitmask at a particular position e
1 is given by the so-called bit-mask probability, denoted by pUC (see also Figure
6.3).

In Section 6.4 more details about operators will be presented.

The selection of parents from a population is performed such that better (above
age) individuals have a higher probability to be selected than other individuals
selection process is a stochastic process, based on the fitness of the individuals o
ulation.

Definition 6.6 (Selection probability sel). Let P be a population, and let χ ∈ P. The
selection probability is a function sel: P → [0 , 1] ⊂ R, with sel(χ) the probability that
individual χ is chosen from the population as a parent for a particular operator.

A well-known way of performing selection is by using so-called roulette wheel se
tion (also called proportionate selection), in which for a chromosome χ the selection
probability sel is defined as follows:

(6.1)

A template for a genetic algorithm can be found in Algorithm 6.1.

Definition 6.7 (Generation). The population at the i th iteration of a genetic algorithm
denoted by Pi, is called the i th generation of population P.

Figure 6.3 Example of uniform crossover.

s0 s1 s2 s3 s4 s5 s6 s7
t0 t1 t2 t3 t4 t5 t6 t7

offspring s0 s1 t3 t5 s6 s7

1 1 0 0 1 0 1 1bitmask

s4t2

χ

χ

1

2

sel χ() s χ()

s x()
x P∈
∑
---------------------=

GENETIC ALGORITHMS AND SCHEDULING 97

a-

f
bols

,

Algorithm 6.1 (Genetic Algorithm Template).
i = 0; // generation count
Pi = ‘bag of random individuals’; // initialize population
while !(‘stop criterion is met’) do
 i = i + 1;
 while (|Pi| < |Pi-1|) do
 Operator = Select(Operators); // Select an operator
 Parents = Select(Pi-1,Operator); // Select sufficient

// individuals for operator
 Children = Apply(Operator,Parents); // Create new individuals
 Pi = Pi ∪ Children; // Add to current population
 endwhile;
endwhile;
return best solution found; // Return result

Definition 6.8 (Average score of population). Let Pi denote the i th generation of a
genetic algorithm, and let s be a fitness function. The average score of population s(Pi)
is defined by:

In [Holl75] a theorem called the schema theorem is presented to give a possible expl
nation about how a genetic algorithm works.

Definition 6.9 (Schema, defining length d, order o). Let A be an alphabet consisting o
symbols, excluding don’t care symbol ‘*’. A schema is a string consisting of sym
from the alphabet A ∪ {*}. Let H ∈ (A ∪ {*}) l. Let d: (A ∪ {*}) l → N be the defining
length of a schema, with d(H) = j - i, with i = MIN(k ∈ [0 , l - l] | H(k) ∈ A), i.e the first
symbol element of alphabet A in H, and j = MAX(k ∈ [0 , l - l] | H(k) ∈ A), i.e. the last
symbol element of alphabet A in H. Let o: (A ∪ {*}) l → N be the order of a schema
with o(H) = #(k ∈ [0 , l - l] | H(k) ∈ A), in other words the number of symbols in H
element of alphabet A.

Definition 6.10 (Contain). Let A be an alphabet, with ‘*’ ∉ A. A chromosome χ ∈ Al,
with l ∈ N, is said to contain schema H ∈ (A ∪ {*}) l, denoted by χ ∈ H, if and only if:

∀ i ∈ [0 , 1 , ... , l - 1] (χ(i) = H(i) ∨ H(i) = ‘*’)

in other words χ can be obtained from H by substituting symbols from A for the don’t
care ‘*’ in H. Each chromosome of length l contains 2l schemas.

Definition 6.11 (Average score of schema). Let H ∈ (A ∪ {*}) l be a schema. The
average fitness of the individuals in a population P containing schema H is defined as:

s Pi() 1
Pi
-------- s χ()

χ Pi∈
∑⋅=

98 GENETIC ALGORITHMS AND SCHEDULING

,

r dis-

 fol-

entially
iduals
d in

 bet-
d be
earch.
g good

prob-
ertain
use of
bout
ob-
ld be
 like,
port
ithm,
lation
 some
efined

ed as
lgo-
Let χ be a chromosome which contains a schema H. If χ is selected for recombination
the resulting offspring might or might not contain schema H. If a schema is destroyed
during recombination, it is said to be disrupted. The probability that an operato
rupts a schema is denoted by pdis.

Let N(H , Pi) denote the number of individuals χ ∈ Pi, containing schema H. Let
E[N(H, Pi)] denote the expected number of individuals containing schema H in popula-
tion Pi. Assuming that individuals are selected proportionally to their fitness, the
lowing relation can be derived, called the schema theory [Gold89]:

(6.2)

Equation (6.2) shows that short low order, above average schema receive expon
increasing trials in subsequent generations. A genetic algorithm builds new indiv
by juxtaposition of building blocks. The building block hypothesis, as presente
[Gold89], claims that juxtaposition of building blocks results in the construction of
ter individuals. It is concluded that a combinatorial optimization problem shoul
encoded in such a way that the building blocks are not misleading to the genetic s
In such a case genetic algorithms are assumed to have a good chance of findin
quality solutions.

Despite the successful application of genetic algorithms to many optimization
lems, the underlying theory presented in [Holl75,Gold89] doesn’t guarantee a c
degree of performance. This can considered to be the main drawback of the
genetic algorithms. Because of the lack of an underlying theory, little is known a
how to efficiently apply genetic algorithms to solve combinatorial optimization pr
lems (for example how should operators look like, which selection scheme shou
applied, what kind of encoding should be used, how should the stop criterion look
and how many individuals should a population consist of). Most publications re
rather arbitrary choices with respect to the implementation of a genetic algor
mainly guided by some empirical results achieved. In Section 6.4 an analytical re
between the statistics of two subsequent populations will be presented, providing
knowledge about how to apply a genetic algorithm to the scheduling problems d
in Chapter 3 as efficient as possible.

6.3 Genetic Algorithms and combinatorial optimization
In the context of combinatorial optimization, genetic algorithms can be consider
probabilistic search algorithms, which try to find an optimal solution. Genetic a

s H P,() 1
χ P∈ χ H∈{ }

--- s χ()
χ P∈ χ H∈∧

∑⋅=

E N H Pi 1+,()[] E N H Pi,()[]
s H Pi,()

s Pi()
-------------------- 1 pdis–()⋅ ⋅=

GENETIC ALGORITHMS AND SCHEDULING 99

d to a
urpose
 other
neigh-

2] can

ists, it
n. The

at the
ge of
 on a
ence
re not
lect and

r it did
 and
y ineffi-
es too
atso-

uilding
rgence,
ation

enetic
quent
 algo-
 6.2
echa-
 and
rithms are abstracted from problem specific details, and therefore are not limite
restricted set of problems, and hence fall into the class of so-called general p
search algorithms. They closely follow the concept of local search strategies, in
words, they search for successive improvements by examination of so-called
bourhood solutions [Papa82] (see page 62 for more details).

In Algorithm 6.2 a general local search algorithm template as presented in [Papa8
be found. It starts with a (randomly generated) initial solution iinitial ∈ F, and searches
for a better solution in a so-called neighbourhood structure. If such a solution ex
replaces the current solution and the algorithm is repeated using the new solutio
algorithm terminates if no improvements can be obtained.

Algorithm 6.2 (Local search algorithm).
i = iinitial;

while (∃ j ∈ N(i) c(j) < c(i)) do

 j = Select(N(i)); // Select a solution j ∈ N(i)
 if (c(j) < c(i)) then

 i = j;

od;

A disadvantage of the local search algorithm as presented in Algorithm 6.2 is th
quality of the solution obtained usually depends on the initial solution. An advanta
genetic algorithms is that they are less sensitive to the initial solution, by working
population of solutions instead of on single solutions. Another important differ
between Algorithm 6.2 and genetic algorithms is that subsequent populations a
created based on cost improvements, but stochastic mechanisms are used to se
construct new solutions.

There is no easy mechanism known for a genetic algorithm to determine whethe
find a local or global optimum. If a genetic algorithm is stuck in a local optimum
continues processing, the usage of time and resources can considered to be ver
cient. From this perspective it should be avoided that a genetic algorithm converg
quickly, and might get trapped in a local optimum. If there is no convergence wh
ever, the underlying mechanisms of a genetic algorithm as suggested in the b
block hypothesis are missing. Hence there should be a proper balance of conve
which can be viewed from the perspective of the so-called exploration-exploit
trade-off.

If the correlation of the scores between two subsequent populations is low, the g
algorithm is called explorative. If the correlation of the scores between two subse
populations is high, the genetic algorithm is called exploitative. A random search
rithm is highly explorative, while the local search algorithm as given in Algorithm
can be highly exploitative, depending on the neighbourhood structure. The key m
nisms to control exploration and exploitation in a genetic algorithm are selection
recombination, as will be explained in more detail in Section 6.4.

100 GENETIC ALGORITHMS AND SCHEDULING

lora-
tive
more).
e, and
ina-
ults
r the

ey have
over,

gher.
fining
ngth.
block
 sche-
l have
ith the

n the
itional

 single

ver
ce

is

se the
. The
ponen-
Many empirical results have been published about how to control the exp
tion-exploitation trade-off in genetic algorithms (for example by use of alterna
selection strategies, operators, cost scaling, parameter tuning, and many
Because of the lack of theoretical analysis, these results are difficult to generaliz
therefore it is difficult to predict how to apply genetic algorithms to particular comb
torial optimization problems efficiently. In the following sections, theoretical res
will be presented which give an indication about how to use genetic algorithms fo
scheduling problem.

6.4 Recombination and disruption
A closer look to the crossover mechanisms as presented on page 95 show that th
a different effect with respect to the disruption of schemas. With single point cross
the probability of disruption increases if the defining length of schemas is hi
Hence, in a genetic algorithm using single point crossover, schemas with a low de
length have higher probability of survival than schemas with a higher defining le
This property of such a crossover strategy is called positional bias. The building
hypothesis doesn’t consider the effects of positional bias on the defining length of
mas. A genetic algorithm based on crossover techniques with positional bias, wil
a bad convergence if schemas with high defining lengths represent solutions w
highest fitness.

The probability of disruption caused by uniform crossover does not depend o
defining length of a schema, and hence eliminates encoding effects leading to pos
bias. Furthermore, the disruptiveness of uniform crossover can be controlled by a
parameter pUC (see also page 96), which leaves the question how to determine pUC for
a particular situation.

Let the order o(H) of schema H be equal to k, denoted by Hk. Let s(Hk , Pi) = a . Ei [s],
in which a ∈ R, with Ei [s] denotes the expected average score of population Pi (see
also equation (6.4)). In [Mesm95] it is derived that for uniform crosso

, with pUC the bit-mask probability for uniform crossover, hen
equation (6.2) can be rewritten as:

(6.3)

From this equation it can be concluded that the probability of survival of Hk decreases
exponentially with the order k of schema Hk. For a schema Hk to survive, the average
fitness of Hk must increase exponentially in k. This shows that uniform crossover
very disruptive, the amount of disruptiveness depending on probability pUC.

In genetic algorithms, disruption of schemas is associated with exploration becau
correlation between the cost of parents and offspring is considered to be low
schema theorem from [Holl75] guarantees that above average schemas grow ex

1 pdis–() pUC
k=

E N Hk Pi 1+,()[] E N Hk Pi,()[] a pUC
k⋅ ⋅=

GENETIC ALGORITHMS AND SCHEDULING 101

ocess.
to pre-
sults in

hence
enon

ing to

val-

stribu-
tially in subsequent populations when they are not disrupted in the crossover pr
This result has lead researchers to use exploitative genetic algorithms, in order
serve schemas, and enhance the convergence. Nevertheless experimental re
[Sysw89] show that uniform crossover outperforms single point crossover, and
exploration seems more desirable. The following section will analyse the phenom
in more detail.

6.5 Evolution statistics
To obtain an idea about the convergence of a genetic algorithm, it is interest
derive a statistical relation between the average score of successive populationsPi and
Pi+1, with i ∈ N. For this purpose the distribution (or relative frequency) of fitness
ues in a population is considered in more detail in this section.

Definition 6.12 (Distribution f). Let Pi be a population, let Si be a range of scores in Pi,
given by tuple (MINc ∈ Pi s(χ) , MAXc ∈ Pi s(χ)). The distribution fi: S → R is given by:
fi(s) = { χ ∈ Pi | s(χ) = s} / Pi

Some characteristics of a distribution can be summarized by the moment of a di
tion. The mth order moment of distribution fi(s) is defined as:

, also written as

The first order moment, also known as the mean or expectation, is given by:

(6.4)

The relation between the expected score and the average score of population Pi is given
by:

Ei[s]

= {def. (6.4)}

= {def. distribution}

Ei s
m[] f i s() s

m⋅
s Si∈
∑= Ei s

m[] f i s() s
m⋅

s
∑=

Ei s[] f i s() s⋅
s
∑=

f i s() s⋅
s Si∈
∑

{ χ Pi s χ() s}=∈
Pi

--- s⋅
s Si∈
∑

102 GENETIC ALGORITHMS AND SCHEDULING

ied
t

ring
= {calculus}

= {summation over all individuals separately}

Hence the expected value Ei[s] equals the average score s(Pi) of population Pi.

Let pi(s(χ) = s) (shorthand notation pi(s)) be the probability that an offspring χ in popu-
lation Pi is created with fitness s(χ) = s. The distribution fi(s) of the fitness values s in
population Pi is then given by:

(6.5)

Let’s assume that all members of Pi+ 1 are offsprings created by using crossover appl
on parents x , y, which are selected from Pi. Let p(x , y) represent the probability tha
individuals x and y are selected from population Pi for crossover, and let
p(s(cross(x , y)) = s | x,y) represent the probability that crossover generates an offsp
χ = cross(x , y) with fitness s(χ) = s. Then:

(6.6)

According to [Mesm95] the first order moment of population Pi+ 1 is then given by:

Ei+ 1 [s]

= {equation (6.6) and (6.5)}

= {calculus}

1
Pi
-------- { χ Pi s χ() s}=∈ s⋅

s Si∈
∑⋅

1
Pi
-------- s χ()

χ Pi∈
∑⋅

f i s() pi s() if s s χ()= χ Pi∈∧

0 else

=

pi 1+ s() p x y,() p s cross x y,()() s x y,=()⋅
x y, Pi∈
∑=

p x y,() p s cross x y,()() s x y,=() s⋅ ⋅
x y, Pi∈
∑

s
∑

GENETIC ALGORITHMS AND SCHEDULING 103

pring

lied
ll cho-

 doesn’t
n aver-
ption,
= {express explicitly in summation over all chromosomes}

= {summation over s}

(6.7)

Assume that proportionate selection is used, in other words

Let . Then (6.7) can be rewritten as:

(6.8)

In the following step of this analysis, it is assumed that the fitness of each offs
generated equals the average fitness of the parents used (in other words s(c) = 1/2 · (s(x)
+ s(y))). Although this assumption will not be true for a specific pair of parents app
to a specific crossing, the assumption only needs to be valid on the average of a
sen parents. Hence, in contrast to the general belief, it is assumed that crossover
improve the fitness of parents by exchange of schemas. It is only assumed that, o
age, crossover doesn’t produce below average individuals. By using this assum
(6.8) can be rewritten as:

p x y,() p s cross x y,()() s x y,=() s⋅
s
∑⋅

x y, Pi∈
∑

p x y,()
x y, Pi∈
∑ p cross x y,() c x y,=() s⋅

c A
l

s c()∈ s=

∑
s
∑⋅

p x y,()
x y, Pi∈
∑ p cross x y,() c x y,=() s⋅

c A
l∈

∑ c()⋅

p x() s x()

s c()
c P∈
∑
---------------------=

Si s c()
c Pi∈
∑=

1

Si
2

----- s x() s y()⋅
x y, Pi∈
∑ p cross x y,() c x y,=() s⋅

c A
l∈

∑ c()⋅ ⋅

1

2 S⋅ i
2

------------- s x() s y() s x() s y()+()⋅ ⋅
x y, Pi∈
∑ p cross x y,() c x y,=()

c A
l∈

∑⋅ ⋅

104 GENETIC ALGORITHMS AND SCHEDULING
= { }

= {symmetry}

= {calculus}

= {def. Si}

= {def. Si}

= {def. 2nd order moment, |Pi | and proportionate selection}

= {def. Ei [s
2] = Ei

2[s] + vari [s]}

p cross x y,() c x y,=()
c A

l∈
∑ 1=

1

2 S⋅ i
2

------------- s
2

x() s y()⋅ s x() s
2

y()⋅+
x y, Pi∈
∑⋅

1

Si
2

----- s
2

x() s y()⋅
x Pi∈
∑⋅

1

Si
2

----- s
2

x() s y()
y Pi∈
∑⋅

x Pi∈
∑⋅

1
Si
---- s

2
x()

x Pi∈
∑⋅

1
Ei s[] Pi⋅
------------------------- s

2
x()

x Pi∈
∑⋅

Ei s
2[]

Ei s[]

GENETIC ALGORITHMS AND SCHEDULING 105

erage

s pub-

-

o con-

earch

er

This
 con-

ss-
ariance
to the
Hence the progress in fitness between two succeeding populations Pi and Pi+1 is pro-
portional to the variance in the population and inversely proportional to the av
score, described by the following expression:

(6.9)

From this relation, some conclusions can be drawn (endorsed by empirical result
lished about genetic algorithms):

• Because the expected average score Ei [s] increases for increasing generations i, the
factor vari[s] / Ei[s] will decrease for increasing i. This behaviour will lead to popu
lations of which the score will become more homogeneous, which reduces vari [s],
again leading to a decreasing factor vari[s] / Ei[s] for increasing i. This means that
for increasing generations the increase in expected score will decline, leading t
vergence.

• The increment of the expected score of population Pi+ 1 is inversely proportional to
the average score Ei [s] of population Pi. If Ei [s] is very high with respect to vari [s],
then the increment in score is expected to be rather poor.

A possible way to obtain low average scores, without messing up with the s
towards better solutions, is to apply cost scaling (see also Definition 6.3). Let (F , c)
be an instance of a combinatorial optimization problem. Let χ be an element of the
encoding of F. Let Σ(χ) be a scaling function, given by the identity function, in oth
words s(χ) = c(Dec(χ)), and let Ei [s] be the average score of population Pi, using Σ
as scaling function for s. Let cmin = MINf ∈ F (c(f)) be the minimal cost of an
instance of a combinatorial optimization problem (F , c). Let Σ’(χ) = Σ(χ) - β, with
0 < β < cmin (hence if c(f) > 0 for all f ∈ F, then Σ’(Enc(f)) > 0), and let Ei’[s] be the
average score of population Pi, using Σ’ as scaling function for s’. In that case
Ei’[s] = Ei [s] - β and vari’[s] = vari [s], and hence vari’[s] / Ei’[s] is larger than
vari [s] / Ei [s], resulting in a larger expected score for the next generation.
agrees with empirical studies done on the effect of cost scaling to improve the
vergence behaviour of genetic algorithms.

• The increment of the expected score of population Pi+ 1 is proportional to the vari-
ance vari [s] in the current population Pi. The variance depends on the kind of cro
over mechanism used, because proportionate selection tends to diminish the v
of successive populations, which results in a bad long-term effect with respect

Ei s[]
vari s[]
Ei s[]

-----------------+

Ei 1+ s[] Ei s[]–
vari s[]
Ei s[]

-----------------=

106 GENETIC ALGORITHMS AND SCHEDULING

ximizes
e.

 vari-
ptimal
s, this
d by a
d and
t uni-

unt of

he

sis on
one
er fit-
romo-
 low

block
 the

pu-
ds to

ur. It
cter-
order
blems
 prob-
uld be

ssive

on and
ection
rocess
e vari-
ration)
ll one

ted to

ched-
mple
average score. Hence a crossover operator should be designed such that it ma
the variance of the next generation instead of just maximizing the average scor

A high variance in score doesn’t necessarily imply the need for large stochastic
ations in search (i.e. a search which closely approaches randomness). If o
solutions are characterized by a schema consisting of low order building block
imposes the need for much disruptiveness. If optimal solutions are characterize
schema consisting of high order building blocks, these can only be obtaine
maintained in a population when disruption is not too severe. It is assumed tha
form crossover is the most disruptive crossover mechanism known. The amo
disruptiveness can be controlled by a single bitmask parameter pUC as has been
shown in Section 6.4. The question is how pUC should be adapted with respect to t
statistics of the population.

In [Mesm95] the linear all one problem is used to derive some statistical analy
how to adapt pUC with respect to the statistics of the population.The linear all
problem is a problem in which a chromosome containing many ‘ones’ has high
ness than chromosomes containing less ‘ones’. The optimal solution is the ch
some consisting of only ‘ones’. The linear all one problem is characterized by
order schema consisting of strings containing all ones, and the building
hypothesis is clearly applicable to this problem. It is proven that for this problem
optimum bitmask parameter pUC equals 0.5, and hence it is independent of the po
lation statistics. From this result it can be concluded that uniform crossover lea
exactly the correct amount of variation if it is set to its most disruptive behavio
is likely that this conclusion holds in general for all problems which are chara
ized by low order schema. Problems which are not characterized by low
schema have a higher risk to get trapped in local optima. For these kinds of pro
it is expected that even more exploration is needed, in other words for these
lems the amount of disruption that can be achieved by uniform crossover sho
set to its maximum value, hence pUC = 0.5.

• If the population size is very small, the variance among individuals in succe
populations will be small too.

From these observations it can be concluded that the trade-off between explorati
exploitation mainly depends on the kind crossover mechanism used. The sel
mechanism of the genetic algorithm (exploitation) can be considered as the p
which increases the average score, but will lead to a decrease of the value of th
ance. The selection pressure should be balanced with disruptive crossover (explo
to achieve an acceptable amount of variance. Analysis performed on the linear a
problem shows that uniform crossover using maximum disruptiveness is expec
give best performance.

Table 6.1 lists the results for the application of a genetic algorithm to a particular s
uling problem (topological scheduling using the fast discrete cosine transform exa

GENETIC ALGORITHMS AND SCHEDULING 107

 using
wn in

value,
 the
nt seed
 num-

tain a
l solu-
) and
(100/

prings.
rate an
ingle

rations
 found
s that

aster.
netic

 new
p the
tween
erators
ion of
etter
needed
ee the
when
lumn
n and
ulation
olumn
 Com-
all for
reated
 ‘x’
 table

 small-
s with
with a time constraint of 14 cycle steps; for details see Sections 6.6.7 and 6.7),
different rates of recombination and different population sizes. The results sho
this table are typical for numerous of examples that have been tested.

A random generator used by a genetic algorithm can be initialized by a seed
shown in the first column of the table. A random generator which is initialized by
same seed value will produce the same sequence of random numbers. For differe
values a random generator will in general produce different sequences of random
bers. Hence for each different seed-value, the initial population will in general con
different set of individuals. The number of generations needed to reach an optima
tion is shown in the following five columns, given the population size (100 and 50
the amount of offsprings created by different operators. In the second column
100UC) the results are given in case uniform crossover is used to create all offs
In the last row the (ceiling of the) average number of generations needed to gene
optimal solution is given. The third column (100/100SP) shows the results when s
point crossover is used to generate all offsprings. The maximum number of gene
equals 100, and the table shows that, using this bound, the optimal solution is not
in many cases. Comparison of single point crossover and uniform crossover show
a genetic algorithm using uniform crossover produces optimal solutions much f
The fourth column (100/classical) shows the results when using a ‘classical’ ge
algorithm, in which operators like copy (just copy the selected individual to the
population without changing its contents), mutate (select two positions, and swa
corresponding elements), invert (select two position, and mirror the elements be
these two positions), and uniform crossover are used. The rate at which these op
are applied is determined empirically, and has resulted in a stochastic distribut
copy/mutate/invert/cross given by 50%/4%/6%/40%. Although the results are b
than those of single point crossover, on average twice as many generations are
as compared to a strategy in which uniform crossover creates all its offsprings (s
second table column labelled 100/100UC). Almost similar results are obtained
using a 50%/50% distribution for copy and uniform crossover (see the table co
labelled 100/50UC), making the use of specialized operators such as mutatio
inversion debatable. The sixth column shows the results obtained when the pop
size is decreased from 100 to 50 (see the fifth column labelled 50/50UC). The c
shows that in some cases the optimal solution isn’t found within 100 generations.
paring column 6 to column 2 and 5 shows that a population size of 50 is too sm
this problem. The last column shows the results obtained when individuals are c
randomly. After the creation of 10.000 ‘individuals’ the algorithm is terminated. An
in the table denotes that no optimal result has been found, while an ‘o’ in the
means that an optimal result has been found.

The average number of generations needed to generate an optimal solution is the
est in case uniform crossover is used to generate all offsprings, and comparison
other strategies show that this strategy is very fruitful indeed.

108 GENETIC ALGORITHMS AND SCHEDULING

e time

dule is
ings,

 used to

 kind
ems.
This leaves us with the problem how to encode a search problem, in specific th
constrained scheduling problem.

6.6 Scheduling encodings
In this section the relation between an encoding of a schedule and the way a sche
constructed will be investigated. The section starts with very straightforward encod
some disadvantages of these encodings are pointed out, and suggestions are
overcome these disadvantages resulting in new and better encodings.

6.6.1 Classic bit-vector encoding
In classical genetic algorithms the encoding alphabet A = {0 , 1}. In that case, chromo-
somes consist of bit vectors. Although such an encoding may work fine for some
of problems, they may introduce efficiency problems for other kind of search probl

Table 6.1 Number of generations needed to find an optimal solution.

seed value

population size / cross rate

100/100UC 100/100SP 100/classical 100/50UC 50/50UC
random
search

1 10 42 8 3 12 x

2 2 7 14 18 12 x

3 14 > 100 23 11 11 x

4 10 > 100 14 27 >100 x

5 6 19 27 18 5 x

6 11 > 100 13 18 13 x

7 5 7 11 20 7 x

8 8 10 12 14 28 x

9 10 10 18 20 5 o

10 7 > 100 12 4 17 x

100 7 > 100 22 22 5 x

123 6 > 100 13 33 24 o

145 4 > 100 5 9 > 100 x

167 15 > 100 20 24 5 x

190 11 14 19 23 > 100 x

200 7 9 14 8 1 x

1001 4 > 100 29 9 55 x

1300 13 > 100 21 25 18 x

2344 6 > 100 7 17 11 x

5689 8 > 100 19 15 11 x

9453 11 > 100 17 5 14 x

‘average’ 8 > 67 16 17 > 26 -

GENETIC ALGORITHMS AND SCHEDULING 109

 steps.

hed-

ast
lgo-
stric-

of the
qual-
sched-
in this
ilar
k of a
rithm

asible
.

e fol-

n
straints
ith
les is

ased

rticular
ements

aints. A
ritical
pecial
r each
An encoding of a schedule must describe how operations are assigned to cycle
Let V = {v0 , v1 , ... , vn-1} be the set of operations to be scheduled, and let T =
{0 , 1 , ... , Tmax - 1} be the range of cycle steps available for operations to be sc
uled.

To encode operations from V, at least log2 n digits are needed. This means that at le
2 log2 n - n strings represent infeasible operations. While running the genetic a
rithm, the construction of these infeasible strings needs to be avoided, implying re
tions with respect to the construction of offsprings, and hence on the initialization
population and on the operators involved. It is difficult to predict the effects on the
ity of the search under these kind of restrictions. Furthermore, an encoding of a
ule contains each operation exactly once, and extra care is needed to mainta
property for offsprings created by application of operators to individuals. A sim
analysis can be given for the encoding of the range of cycle steps. One can thin
genetic algorithm in which infeasible encodings are accepted, but a genetic algo
spending large amounts of computation time generating and evaluating infe
encodings can hardly considered to be efficient, and should therefore be avoided

A feasible encoding can be achieved by using the elements from V and T directly. This
still leaves many encodings to be possible, some of which will be discussed in th
lowing subsections.

6.6.2 Cycle assignment encoding
Another straightforward encoding is a sequence τ consisting of n elements from T, in
which τ(i) denotes the schedule time ϕ(vi) for each vi ∈ T. The disadvantage of such a
encoding is that it includes infeasible schedules with respect to precedence con
(u a v and ϕ(u) + distance(u , v) > ϕ(v)). The encoding shows similar problems as w
the binary encoding, in other words, preventing encodings of infeasible schedu
difficult to achieve during the run of the genetic algorithm. A genetic algorithm b
on such an encoding would result in an inefficient search strategy.

6.6.3 Absolute displacement encoding
In [Wehn91] an encoding is presented which assigns to each operation v ∈ V an abso-
lute displacement da(v) ∈ N. The schedule ϕ(v) of operation v is determined by:

ϕ(v) = asap(v) + da(v)

The asap and alap values of other operations are updated after scheduling a pa
operation. The advantage of encoding a schedule in terms of absolute displac
instead of encoding a schedule directly in terms of elements of T is the fact that each
encoding represents a feasible schedule with respect to the precedence constr
closer look at this encoding shows that the displacement of operations in the c
path has a large impact on the completion time of the schedule. In [Wehn91] s
routines are presented to construct an initial population exhibiting schedules. Fo

110 GENETIC ALGORITHMS AND SCHEDULING

lace-

 been
erved

ts, in
ed in
es not
en the
xperi-
 to the
evalu-
lores
letion
cause

ed and
.2 and
adders
ation
at no
mple,
d the
].
path p in the data-flow graph, a particular amount of cycles, called the global disp
ment ∆a ∈ N, are distributed among the operations of p in the following way:

An improvement of the quality of the results is reported, however no attention has
paid to adapt operators such that distribution of the global displacement is pres
during the run of the genetic algorithm. This is confirmed by our own experimen
which a time constrained method derived from the method originally present
[Wehn91] has been tested (see [Jaco94] for details). Originally, the method do
address the problem of meeting constraints, but searches for a trade-off betwe
resource allocation and the completion time. In the time constrained method, e
ments show that only a few offsprings represent feasible schedules with respect
time constraint. Hence the genetic algorithm spends a lot of time in creating and
ating infeasible solutions, and hence in the original algorithm of [Wehn91] exp
significantly more schedules with a large completion time than with a short comp
time. The use of penalty functions to favour feasible solutions is questionable, be
the search might be trapped in local optima. The method has been implement
tested, and some results for different time constraints can be found in Table 6
Table 6.3 In these tables the resource allocation is specified by the number of
and multipliers, assuming that a multiplier requires 2 cycle steps for a multiplic
and an adder requires 1 cycle step for an addition. An ‘X’ in the tables means th
feasible schedule with respect to the time constraint could be found. The first exa
shown in Figure 6.4, is the fast discrete cosine transform taken from [Mall90], an
second example shown in Figure 6.5, is the wave digital filter taken from [DeWi85

d v()
v p∈
∑ ∆a≤

I III I I II

O OO

+

O

+

O

X

-

O

X

+

O

X

-

X

O

X

+

X

-

X

+

X

X

-

X

-

X

X

X

-

X

-

X

+

X

-

+

-

-

-

-

-

+

+

+

+ ++

Figure 6.4 Fast Discrete Cosine Transform Filter Example.

GENETIC ALGORITHMS AND SCHEDULING 111

 fails to
From these tables it is clear that the method based on absolute displacements
find feasible solutions in many cases.

Table 6.2 Encoding results for Wave Digital Filter.

Time
constraint

Optimal
Absolute

displacement
Relative

displacement

cycles # mult # add # mult # add # mult # add

17 3 3 3 3 3 3

18 2 2 3 3 2 3

19 2 2 2 3 2 3

20 2 2 2 2 2 2

21 1 2 X X 2 2

22 1 2 X X 1 2

23 1 2 X X 2 2

24 1 2 X X 1 2

25 1 2 X X 1 2

26 1 2 X X 1 2

27 1 2 X X 1 2

28 1 1 X X 1 1

II I I II I I

O O O

+

O

X

O

+

+

O

+

X

O

+

+

+

+

O

X

+

+

X

-

X

X

+

+

+

+

+

+

+

X

+

X

+

+

+

+

+

+

+

Figure 6.5 Wave Digital Filter Example.

112 GENETIC ALGORITHMS AND SCHEDULING

ce con-
ive
e
e

6.6.4 Relative displacement encoding

One way to prevent the creation of infeasible schedules with respect to preceden
straints and time constraints (specified by Tmax) is to use an encoding based on relat
displacements. In this encoding, to each operation v ∈ V a relative displacement valu
dr(v) ∈ [0 , 1] is assigned, which contains at least Tmax finite numbers. Operations ar
selected in a particular (fixed) order, and the schedule ϕ(v) of operation v is determined
by:

ϕ(v) = asap(v) + dr(v) . (alap(v) - asap(v) - δ(v))

Table 6.3 Encoding results for Fast Cosine Transform Filter.

Time
constraint

Optimal
Absolute

displacement
Relative

displacement

cycles # mult # add # mult # add # mult # add

8 8 4 8 4 8 5

9 8 4 9 4 8 4

10 5 4 X X 5 4

11 4 3 5 6 5 4

12 4 3 X X 4 4

13 4 2 X X 4 4

14 3 2 X X 4 3

15 3 2 X X 3 4

16 3 2 X X 3 3

17 3 2 X X 3 4

18 2 2 X X 3 3

19 2 2 X X 3 3

20 2 2 X X 3 2

21 2 2 X X 3 3

22 2 2 X X 3 2

23 2 2 X X 3 2

24 2 2 X X 2 3

25 2 2 X X 2 2

26 2 1 X X 2 3

27 2 1 X X 3 2

28 2 1 X X 2 3

29 2 1 X X 2 3

30 2 1 X X 2 3

31 2 1 X X 2 2

32 2 1 X X 2 2

33 2 1 X X 2 2

34 1 1 X X 2 2

GENETIC ALGORITHMS AND SCHEDULING 113

ion (see
s and

cement
 cases
oper-

tantial

blem
oesn’t
e large
chedul-
 hard

, sup-
tive dis-
ration,
pecific
f the
t the

result

 con-
esource
 allo-

t local
a solu-
efini-

e fact
n Sec-

timal
ements
permuta-
If the asap and alap values of operations are updated after scheduling an operat
equation (4.5) and (4.6)), feasibility with respect to both precedence constraint
time constraints is guaranteed while constructing the schedule.

In Table 6.2 and Table 6.3 some schedule results based on the relative displa
encoding can be found. The results are rather disappointing, because in many
non-optimal solutions are found. An extension of the encoding, in which the order
ations are scheduled is exchanged (encoded by a permutation Π of operations), has
been incorporated into the schedule encoding. This hasn’t resulted in any subs
change in the quality of the solutions generated.

A possible explanation for the failure of the algorithm is the lack of so-called pro
specific knowledge during decoding chromosomes. The method for example d
prevents 2 additions being scheduled simultaneously, even if both operations hav
schedule ranges. Strategies to increase the performance of the schedule, by res
ing operations after decoding, might incidentally produce better solutions, but it is
to predict whether the optimal solution can be reached at all with such a strategy.

6.6.5 Permutation encoding

To characterize the problem of the relative displacement encoding more clearly
pose that a part of a data-flow graph has been scheduled. Suppose that the rela
placement decoding decides to place an operation in parallel to another ope
increasing the resource allocation induced by the new partial schedule. At this s
moment it is unknown whether the partial schedule, inducing an increment o
resource allocation, is part of an optimal solution. To get more information abou
optimal solution, the final resource allocation ought to be known, but this is the
searched for!

This brings us back to Section 4.6, in which the close relationship between time
straints and resource constraints has been presented. If for a time constrained (r
constrained) scheduling problem a lower bound estimate of the minimal resource
cation (completion time) is known, this lower bound can be used to decide abou
schedule choices. Another important aspect of such a lower bound is that when
tion has been found meeting this bound, the solution is an optimal solution by d
tion, hence it provides the genetic algorithm with a very accurate stop criterion.

The decision whether operations should be deferred in time, depends on th
whether resources are available in a particular cycle step. From the proof given i
tion 5.8 it is known that an operation v ∈ V can be assigned to the first cycle stepc
≥ asap(v) where an appropriate resource is available, without excluding the op
solution from the search space. Hence the use of an encoding using displac
seems to be unnecessary in this case. Rather, a schedule can be encoded by a
tion Π of operations from V (see Algorithm 5.14).

114 GENETIC ALGORITHMS AND SCHEDULING

ns. In
n. In
sk, it
n to the

d in an
pring

satisfy
rithm
 which
edure,
mber of
s can
 found,
d.

r the
ions, a
ation
sis lies

ge of
anisms
Operators should be able to construct new permutations from existing permutatio
[Star91] an overview of crossover operators dealing with permutations is give
[Sysw91] an uniform crossover operator for permutations is given. Using a bitma
selects several positions in one parent, and copies the operations at these positio
same position of the offspring. Operations that haven’t been copied yet are copie
order-preserving way from the other parent, filling the empty positions of the offs
(see Figure 6.6 for an example).

Algorithm 5.4 on page 69 can be used to decode a permutation which tries to
both time constraints and resource constraints. Given a permutation, this algo
might be aborted, because no resource is available in the range of cycle steps in
an operation can possibly be scheduled. Instead of aborting the scheduling proc
one can try to schedule as many operations as possible, and keep track of the nu
unscheduled operations (Algorithm 6.3). The number of unscheduled operation
serve as a cost function. If a schedule with no unscheduled operations has been
an optimal solution has been found, and the scheduling procedure can be stoppe

Algorithm 6.3 (Feasible constrained permutation scheduling).
u = |Π|; // # unscheduled operations
for i = 0 to |Π| - 1 do
 v = Π(i); // select operation
 C = selectCycles(v,asap(v),alap(v)); // determine cycle steps in which
 // resource for v are free
 if (C <> ∅) then ϕ(v) = MIN(C); // select cycle step from C
 u = u - 1;
 update schedule ranges;
 update resource usage;
 endif;
endfor;

One point of concern is whether the encoding provides enough information fo
genetic search. When an operation is scheduled such that it fixes other operat
large part of the permutation is not investigated. This means that the order inform
of these operations is of no value to the schedule produced so-far, and the empha
on the first elements of the permutation. It is difficult to see how the exchan
non-investigated parts of the permutation can lead to successful crossover mech
with a high variance in fitness for the succeeding population.

Figure 6.6 Uniform crossover for permutations

v0 v1 v2 v3 v4 v5 v6 v7
v7 v6 v5 v4 v3 v2 v1 v0

offspring v0 v1 v3 v2 v6 v7

1 1 0 0 1 0 1 1bitmask

v4v5

χ

χ

1

2

GENETIC ALGORITHMS AND SCHEDULING 115

ht be
easible
reased.
hedul-

ibed in
n com-
int the
y the

 per-
 the
gorithm
ults
echa-
Another point of concern is the fact that the lower bound resource allocation mig
estimated wrongly (in other words, too few resources are available, and hence a f
schedule does not exist). In that case the resource allocation needs to be inc
More details about how to increase the lower bound resource allocation during sc
ing can be found in Section 6.7.

6.6.6 Permutation encoding and list scheduling techniques
To avoid the creation of infeasible schedules, list scheduling techniques as descr
Section 5.8 can be used. The resource allocation is performed less greedy whe
pared to the method in the previous section, and when relaxing the time constra
genetic algorithm is given the opportunity to explore the information contained b
whole permutation.

A possible way of performing constructive scheduling topologically is by using the
mutation as a priority list for a list scheduler [Heij95a]. The completion time of
schedule can be used to determine the fitness of a chromosome. The genetic al
will search for a priority function, which in combination with the list scheduler res
in the smallest completion time. The results of an implementation based on this m
nism can be found in Table 6.4 and Table 6.5.

Table 6.4 Encoding results for Wave Digital Filter.

Resource
constraint

Optimal Genetic List
Ordinary

List
Topological

mult # add cycles cycles cycles cycles

3 3 17 17 17 17

2 2 18 18 19 18

1 2 21 21 21 21

1 1 28 28 28 28

Table 6.5 Encoding results for Fast Discrete Cosine Transform.

Resource
constraint

Optimal Genetic List
Ordinary

List
Topological

mult # add cycles cycles cycles cycles

8 4 8 8 8 8

5 4 10 10 10 10

4 3 11 11 13 11

4 2 13 13 15 13

3 2 14 14 17 14

2 2 18 18 21 18

2 1 26 26 27 26

1 1 34 34 40 34

116 GENETIC ALGORITHMS AND SCHEDULING

esults.
func-
he run
s using

opera-
 using
coding
 clear
e wheel
 rate.
tics,
tions.
e pop-

 a few

ion 6.8
d in
ique
dders

dders
ection.
In all cases the genetic algorithm based on a list scheduler finds the optimal r
Comparison with an ordinary list scheduler, using the critical path as a priority
tion, shows that the genetic search improves the quality of the results obtained. T
times of the scheduler are between 0.1 and 20 seconds for each entry of the table
an HP9000/735 computer.

In [Ahma95,Dhod95] permutations are encoded by assigning integer numbers to
tions. Operations can be converted into a permutation by sorting the operations
the integer numbers as sorting key. It is claimed in these articles that such an en
is closer towards the principles of classical genetic algorithms, but there is no
explanation about the advantages of such an encoding. The methods use roulett
selection in combination with single-point crossover, and mutation at a very low
The first population is initialized with solutions created by some well-known heuris
and individuals are derived from these solutions by applying special kind of muta
It is unclear how these methodologies affect the variance and average score of th
ulation, and whether the selection pressure leads to locally optimal results. Only
results are published, which are given in Table 6.6 and Table 6.7.

Comparisons show that the completion time and the register allocation (see Sect
for details about register allocation) resulting from the methods presente
[Ahma95,Dhod95] are significantly larger than the genetic list scheduling techn
presented in this section when using 3 multiplier (requiring 2 cycle steps) and 2 a
(requiring 1 cycle step). A more tight resource constraint of 2 multipliers and 2 a
leads to similar results for the genetic list scheduling approach presented in this s

Table 6.6 Comparison Wave Digital Filter.

Resource constraint Optimal [Dhod95]
Ordinary

List
Genetic List

mult # add
pipelined

mult.
cycles cycles cycles cycles

3 3 - 17 17 17 17

2 2 - 18 19 19 18

1 2 - 21 21 21 21

- 3 2 17 17 17 17

- 3 1 18 18 19 18

- 2 1 19 19 19 19

Table 6.7 Comparison Fast Discrete Cosine Transform.

Resource
constraint

[Dhod95] Genetic List Ordinary List

mult # add cycles registers cycles registers cycles registers

3 2 18 13 14 10 17 12

2 2 - - 18 13 21 11

GENETIC ALGORITHMS AND SCHEDULING 117

hed-

lated
 and
e pre-
using
ound).

s

s been
 inde-
uctive

.4 and
tion of
d Table
ptimal
r each

nd for
a com-
straint
ard-
anger

 that a
euris-
duling
pera-
 extra

ossible.
pe to
f partial
llocation
vantage
nd the

ethod
The results of [Dhod95] hardly improve the results obtained by an ordinary list sc
uler.

In [Ahma95b] list scheduling is used in combination with a strategy called simu
evolution [Koza92]. Within simulated evolution, mutation is the dominant operator,
the goal is to introduce variations in the solution. The encoding is similar to the on
sented in [Ahma95]. It is not clear from the article what the advantages are of
simulated evolution instead of genetic algorithms (no such comparisons can be f
Furthermore, no high-level synthesis benchmark results have been reported.

6.6.7 Permutation encoding and topological scheduling technique

Despite the good performance, the disadvantage of list scheduling is that it ha
proven that there exist examples for which it misses out on the optimal solution,
pendent of the permutation used (see also Figure 5.1). In Algorithm 5.14 a constr
scheduler has been presented, for which at least one permutation Π exists, resulting in
an optimal solution [Heij95b]. Compared to the methods presented in Section 6.6
6.6.5, it gradually constructs schedules, and hence prevents the greedy alloca
resources. The results achieved using this encoding can be found in Table 6.4 an
6.5. In all cases the genetic algorithm based on a topological scheduler finds the o
results. The running times of the scheduler are between 0.1 and 10 seconds fo
entry of the tables using an HP9000/735 computer.

6.7 Supplementary resource allocation
In some cases, lower bound resource allocation estimation finds a lower bou
which no feasible schedule exists, in other words the resource allocation induces
pletion time for which each resource constrained schedule exceeds the time con
specified initially. Consequently, the method must allow the allocation of extra h
ware. When exact methods like IP scheduling [Hwan91,Gebo92] are used, the d
exists that they will perform an exhaustive search, because they cannot detect
combination of constraints is infeasible, and hence large run times might result. H
tic iterative methods allocate supplementary resources depending on the sche
results achieved. In [Kuma91] a list scheduling strategy is proposed, in which o
tions are detected which cannot be scheduled within their schedule range, and
resources are allocated immediately to make the schedule of these operations p
In [Heij91] a similar strategy is followed, but the decisions about the resource ty
be increased are based on statistics obtained by complete schedules instead o
schedules, and the whole schedule process is restarted using a new resource a
to balance the resource usage more equally over the whole schedule. The disad
of iterative schemes is that they heavily depend on the initial resource allocation a
scheduling method.

The supplementary resource allocation can also be integrated in the scheduling m
as follows. Let ModType be a set of module types. Let RAmin(l) ∈ N represent a lower

118 GENETIC ALGORITHMS AND SCHEDULING

ched-

m
 used
tal
 type

duces a
cycle

cute on
e allo-

ut

ds

 if
bound resource allocation of module type l ∈ ModType. Let RAmax(l) represent an esti-
mated upper bound resource allocation of a module type l ∈ ModType.

The supplementary resource allocation RAsup(l) ∈ [0 , RAmax(l) - RAmin(l)] of module
type l ∈ ModType denotes the number of supplementary resources admitted for s
uling, in other words, the resource constraint for each module type l ∈ ModType equals
RAmin(l) + RAsup(l).

A lower bound resource allocation RAmin can be estimated using the method fro
[Timm93] as presented in Section 4.6. In [Potk89] an asap-scheduling algorithm is
to determine RAmax. Although this method will result in an upper bound for the to
resource allocation cost, it will not result in a correct upper bound for each module
separately. In Figure 6.7, an example can be found, in which an asap schedule in
resource allocation of two multipliers and one adder (an addition requires one
step to execute on an adder, and a multiplication requires two cycle steps to exe
a multiplier), whereas the optimal schedule within 6 cycle steps induces a resourc
cations of two adders and one multiplier.

The upper bound resource allocation RAmax can be modelled as a min-flow max-c
problem on a so called comparability graph [Golu80]. An undirected graph (V , E) is a
comparability graph if there exists an orientation of (V , E), specified by a directed
graph (V , F), satisfying:

1. F ∩ F-1 = Ø

2. F ∪ F-1 = E

3. (u , v) ∈ F ∧ (v , w) ∈ F ⇒ (u , w) ∈ F

In which F-1 denotes the reversal of F, given by F-1 = {(v , u) | (u , v) ∈ F}.

Let (X , a) be a partially ordered set. Let (X , F) be a graph for which
∀ u,v ∈ X | u a v (u , v) ∈ F, and let (X , E) be a graph for which X = V, and for each
∀ u,v ∈ X | u a v {u , v} ∈ E (in which {u , v} denotes an undirected edge between u and
v). Because (X , a) is a partial order, (X , F) is an orientation of (X , E), and hence
(X , E) is a comparability graph. Let EA = {{ u , v} | A ⊆ X ∧ u,v ∈ A ∧ {u , v} ∈ E}. A
clique is a subset A ⊆ X such that (A , EA) induces a complete subgraph (in other wor
∀ a,b ∈ A {a , b} ∈ EA). A clique cover is a partition of A in A1 , A2 , ... , Ak such that for
each i ∈ {1 , 2 , ... , k}, Ai is a clique. A stable set is a subset A ⊆ X of which no two
vertices are adjacent (in other words ∀ a,b ∈ A {a , b} ∉ E). A maximum stable set is a
stable set of maximum cardinality.

Let (Y , a) be a partially ordered set. Y is called a chain (or linearly ordered subset)
each distinct pair a,b ∈ Y is comparable, in other words, either a a b or b a a. Y is

GENETIC ALGORITHMS AND SCHEDULING 119

ion

0] for
-
-

This
 a

ths
duce
n be
called an anti-chain if each distinct pair a,b ∈ Y are incomparable, in other words a � b
and b � a. Let (X , a) be a partially ordered set. There exists a partit
X = C1 ∪ C2 ∪ ... ∪ Cn, in which Ci, with i ∈ {1 , 2 , ... , n}, is a chain, and n is called
the width of (X , a), which is equal to the smallest clique cover of (X , E) (see [Trot92]
for a proof). Because a comparability graph G is a perfect graph (see [Golu8
details), the size of the smallest possible clique cover k(G) equals the number of verti
ces in a maximum stable set α(G) of G. In [Golu77] an algorithm is given to find a max
imum stable set, by transforming (X , F) into a network flow problem as follows:

1. Add two vertices s and t to X.

2. Add for each input node i ∈ X an edge (s , i) to F, and for each output node o ∈ X
an edge (o , t) to F.

3. Split each node x ∈ X into two nodes x0 and x1, and add an edge (x0 , x1) to F with
a low capacity flow of 1.

4. In the resulting network graph, initialize a compatible integer values flow.
can be achieved by for each edge e in the network graph, increasing the flow on
path from s to t containing edge e.

5. A minimum flow from s to t can be found by searching for reducible paths (pa
for which the flow on each edge is larger than the low capacity flow), and re
the flow on that path. If no reducible paths can be found, the algorithm ca
stopped. The resulting flow from s tot t will equal the cardinality of the maximum
stable set of (X , F) [Golu77].

Figure 6.7 Example of partial data-flow graph for upper bound determination.

+

×

+

+

×

+

+

120 GENETIC ALGORITHMS AND SCHEDULING

y

 on its

ph is

ener-
lations

orpo-

ding

et

 and
m the

. The
e esti-
rming

d esti-
ntary

ther a

entary
e per-
The data-flow edges EDFG of an acyclic data-flow graph (VDFG , EDFG) induce a strict
partial order on VDFG. Let (VDFG , E) be the comparability graph induced b
(VDFG , a). The minimum number of paths that partition VDFG equals the maximum
number of resources needed to implement the operations in those paths, which
turn is given by the number of vertices in a maximum stable set of (VDFG , E). To be
able to obtain an upper bound resource allocation for each module type l ∈ ModType
separately, the lower bound capacity flow in the corresponding network flow gra
set to 1 only for those operations v ∈ V, with the operation type mapping ξ(v) = l, and is
set to 0 for all the other operations. An alternative method presented in [Boer94] g
ates a reduced network flow graph, consisting of operations and precedence re
restricted to a particular module type.

An extension to the min-flow max-cut method presented above consists of the inc
ration of time constraint information. Let v1 and v2 be two operations in a data-flow
graph DFG, and let v1 and v2 be elements of a maximum stable set of the correspon
comparability graph GDFG, induced by the partial order of the DFG (in other words,
there is no flow of data between v1 and v2, and they can be executed concurrently). L
alap(v1) and alap(v2) be the upper bound of the schedule range of operations v1 and v2,
caused by a time constraint Tmax. If alap(v1) < asap(v2) or alap(v2) < asap(v1), then
operation v1 and v2 can never be executed concurrently in a feasible schedule,
hence should not contribute to an upper bound resource allocation extracted fro
topology of the data-flow graph. By adding an edge (v1 , v2) in case alap(v1) < asap(v2)
or an edge (v2 , v1) in case alap(v2) < asap(v1) to data-flow graph DFG, the comparabil-
ity graph GDFG induced by the new partial order will contain an edge {v1 , v2}, and
hence v1 and v2 can never be member of the maximum stable set simultaneously
addition of edges implies that for small time constraints the upper bound resourc
mations will be more accurate than with large time constraints. Some results confi
this behaviour can be found in Table 6.8.

The resource allocation available for scheduling is determined by the lower boun
mation RAmin, extended with a supplementary resource allocation. The suppleme
resource allocation is encoded as follows. For each l ∈ ModType, RAmax(l) - RAmin(l)
positions are allocated in a string. A binary value at such a position denotes whe
supplementary resource is available (1) or not available (0) for scheduling.

The permutation encoding used in Section 6.6.7 is extended by the supplem
resource allocation string. Uniform crossover is performed separately on both th

Table 6.8 Upper bound resource allocations.

Example DFG Tmax # mult # add # sub

Wave Digital Filter 17 4 5 1

34 4 5 1

Fast Discrete Cosine Transform 8 14 5 5

16 14 6 7

GENETIC ALGORITHMS AND SCHEDULING 121

vidual
ion. A
ched-

e

sine

uch as
at the
 times
mutation and the supplementary resource allocation string. The fitness of an indi
is determined by a combination of the completion time and the resource allocat
small penalty on the completion time is used to favour individuals representing s
ules that are within their original time constraint. Let Tmax be the original time con-
straint, let RAmax represent the cost of the maximal resource allocation, let Cmax(ϕ)
represent the completion time of the schedule ϕ, and let RA(ϕ) represent the resourc
allocation used for scheduling. The scale function Σ is given by:

Σ = Φ · (Cmax(ϕ) - (Tmax - 1)) + RA(ϕ)

with Φ ≥ RAmax. Some results obtained for the wave digital filter and the fast co
transform filter are given in Table 6.9 and Table 6.10 (Φ = 2 · RAmax).

Comparison with the results obtained by state of the art heuristic schedulers, s
improved force directed scheduling (denoted by ifds) [Verh91,Beso94] shows th
genetic topological strategy finds better results in many cases. Some execution

Table 6.9 Results for Wave Digital Filter.

Time
constraint

Optimal Topological ifds

cycles # mult # add # mult # add # mult # add

17 3 3 3 3 3 3

18 2 2 2 2 2 3

19 - 20 2 2 2 2 2 2

21 - 27 1 2 1 2 1 2

28 1 1 1 1 1 1

Table 6.10 Results for Fast Cosine Transform Filter.

Time
constraint

Optimal Topological ifds

cycles # mult # add # mult # add # mult # add

8 - 9 8 4 8 4 8 4

10 5 4 5 4 5 4

11 4 3 4 3 4 4

12 4 3 4 3 4 3

13 4 2 4 2 4 3

14 - 17 3 2 3 2 3 3

18 2 2 2 2 3 2

19 - 25 2 2 2 2 2 2

26 - 31 2 1 2 1 2 2

32 2 1 2 1 2 1

33 2 1 2 1 2 2

34 1 1 1 1 2 1

122 GENETIC ALGORITHMS AND SCHEDULING

ecially
 on a

shown.
 Wave
re 30

tructed
lded’
ample
hed-
es are
reported in Table 6.11 show that the genetic scheduling approach is faster, esp
for large time constraints (both methods are implemented using the NEAT system
HP9000/735).

In Table 6.12 and Table 6.13 the schedule results of some larger examples are
The example used to produce the results in Table 6.12, is a four times unfolded
Digital Filter (152 operations). In all cases, optimal results are found. Run times a
seconds or less for each example tested.

The example used to obtain the results of Table 6.13 is an artificial example cons
from the fast discrete cosine transform filter shown in Figure 6.4. It has been ‘unfo
four times, and this unfolded graph has been duplicated twice to generate an ex
which contains a lot of concurrency and symmetry, making it rather difficult to sc
ule. It contains 582 operations. In all cases, optimal results are found. Run-tim
120 seconds or less for each example tested.

Table 6.11 Run times in seconds for Fast Discrete Cosine Transform Filter.

Time constraint genetic ifds

10 1.30 17.7

20 1.30 101.5

30 1.34 203.0

40 1.40 327.6

Table 6.12 Results for unfolded Wave Digital Filter.

Time
constraint

Topological

cycles # mult # add

65 - 68 3 3

69 - 80 2 2

81 - 111 2 1

112 1 1

Table 6.13 Results for unfolded Fast Cosine Transform Filter.

Time
constraint

Topological

cycles # mult # add

36 24 12

37 24 8

38 15 8

39 14 8

40 13 8

44 12 7

47 11 7

GENETIC ALGORITHMS AND SCHEDULING 123

ction
prove
ved
ever-

of the
st of a
gister

-edge
eeds
ts can
quals
ich have
 used in
 reg-

parable
regis-

d in a
sed by

eneral
6.8 Extensions
By using lower bound estimations in combination with a special schedule constru
mechanism, specific knowledge is incorporated into the genetic algorithm to im
its efficiency. By using problem specific information, genetic algorithms are mo
away from their general characteristics towards the class of tailored algorithms. N
theless, there is still the possibility to optimize other parameters by making use
general characteristics of the genetic algorithm. One example is to extend the co
schedule with the cost of the register allocation induced by the schedule. The re
allocation induced by a schedule can be determined efficiently by using the left
algorithm from [Kurd87]. Assuming that each input value of the data-flow graph n
to be stored immediately at the first cycle step, the total area including register cos
be found in Table 6.14. In this table it is assumed that the area of a multiplier e
100, the area of an adder equals 10, and the area of a register also equals 10, wh
been chosen close to the ratio of module areas produced by module generators
the NEAT system [Thee93]. The results show that the genetic algorithm including
ister allocation costs finds schedules requiring less registers. The results are com
with the results achieved with improved force directed scheduling extended with
ter costs, as described in [Paul89].

It should be noted that by extending a cost function, register costs are optimize
general way. This means that no strategies tailored to optimize register costs are u
this method. Therefore it is expected that for memory intensive applications this g

49 11 6

51 10 6

56 9 6

59 9 5

63 8 5

72 7 5

74 7 4

83 6 4

98 5 3

122 4 3

147 4 2

162 3 2

242 2 2

294 2 1

482 1 1

Table 6.13 Results for unfolded Fast Cosine Transform Filter.

Time
constraint

Topological

cycles # mult # add

124 GENETIC ALGORITHMS AND SCHEDULING

, and

 find-
. They
ons to
inting
se gen-

 cyclic
netic
quality
approach will not provide an efficient way to optimize the overall register costs
methods tailored to this problem will be needed as discussed in Section 4.5.

In [Dhod95,Wehn91] the scheduling and allocation problem is defined in terms of
ing a trade-off between speed (completion time) and area (resource allocation)
use a general approach by application of a weighted cost functions to find soluti
the resource allocation problem and completion time simultaneously. Disappo
results presented in Table 6.6, Table 6.7, Table 6.2, and Table 6.3 show that the
eral approaches fail to find good results.

6.9 Scheduling cyclic data-flow graphs
The method presented in Section 5.11 can be used to create schedules for
data-flow graphs from permutations. Just like with scheduling acyclic graphs, ge
search strategy can be applied to search for a permutation which leads to good
solutions.

Table 6.14 Scheduling results for Fast Discrete Cosine Transform Filter.

Time constraint
genetic

without reg.
cost

genetic with
reg. cost

ifds with
reg. cost

8 960 960 940

13 540 520 530

18 350 340 420

23 340 320 440

28 340 320 330

33 340 320 320

Table 6.15 Schedule results of Cyclic Wave Digital Filter.

Resource constraint
Throughput
constraint

Section 5.11 [Radi96]

mult # add
pipelined

mult.
Latency Latency

3 3 - 16 14 18

2 3 - 16 17 18

2 2 - 17 15 19

1 2 - 19 21 21

1 1 - 28 28 -

- 3 2 16 14 18

- 2 2 17 15 19

- 3 1 16 17 18

- 2 1 17 17 19

- 1 1 28 28 -

GENETIC ALGORITHMS AND SCHEDULING 125

.15).
-based
s are
Section
aving a
and a

yclic
n Table
duling

89b].
The first example tested is the cyclic wave digital filter of Figure 1.2 (see Table 6
The results are compared to the results reported in [Radi96], which use a OBDD
representation for scheduling. Although it is claimed in [Radi96] that their result
the best and optimal results published so-far, the genetic approach presented in
5.11 finds better results in all cases tested. An example of an optimal schedule h
completion time of 14 cycle steps, using a throughput rate of 16 cycle steps
resource constraint of 3 multiplier and 3 adders, is shown in Figure 6.9.

In case retiming is used in combination with scheduling techniques for ac
data-flow graphs as presented in Section 6.6.7 [Fran94], the results presented i
6.16 have been found. In all cases the genetic strategy in which retiming and sche
are integrated into one method finds better solutions.

The second example is the fifth order PCM voiceband-filter example from [Goos
The results are given in Table 6.17.

Table 6.16 Schedule results of Cyclic Wave Digital Filter (2).

Resource
constraint

Section 5.11 [Fran94]

mult # add Throughput Latency Throughput Latency

3 4 16 14 16 16

3 3 16 14 - -

2 3 16 17 17 17

2 2 17 15 18 18

1 2 19 21 20 20

1 1 28 28 28 28

Table 6.17 Schedule results of fifth order PCM voiceband-filter.

Resource
constraint

Throughput Latency

mult # add cycles cycles

5 3 4 6

4 3 5 6

4 2 6 6

3 2 7 6

Figure 6.8 Fifth order PCM voiceband-filter.

×

+

T ×

× T ×

+ + +

×

+

T ×

× T ×

+ + +

× T ×

+ + outin

126 GENETIC ALGORITHMS AND SCHEDULING

ich is
 the
, and
roduc-
d in
a-flow
earch
The last example is from [Chao93], and is called 2-cascaded biquad filter, wh
derived from the fifth-order PCM voice-band filter (see Figure 6.8) by excluding
last first order section. The algorithm in [Chao93] starts with a given schedule
moves operations to different pipeline stages, in order to obtain a smaller data int
tion interval. No extra analysis to minimize the completion time are reporte
[Chao93], in other words the completion time equals the shortest path in the dat
graph, given by the data introduction interval. The latency found by the genetic s

2 2 10 6

2 1 10 9

1 1 20 11

Table 6.17 Schedule results of fifth order PCM voiceband-filter.

Resource
constraint

Throughput Latency

mult # add cycles cycles

Figure 6.9 Schedule of cyclic wave digital filter.

+

+

cycle

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N10in

N11

+ N12

+ N14

+ N35 + N39

+ N40

+ N13

×
N25

×
N15

+ N26 + N16

+ N27 + N30 + N17

+ N31

×
N28

×
N18

+ N29 + N19

+ N41 + N20 + N21

+ N36 + N32
×

N42

×
N22

out + N37
×

N33

+ N43 + N23

×
N38

+ N24 + N34

GENETIC ALGORITHMS AND SCHEDULING 127

und in

 in an

 of
 it

ed-
Opera-
duled
tation
cution
h have

 proof
eration
ucing
imme-
ions can
rmuta-

rmuta-
using the method reported in 5.11 are therefore equal or better than the results fo
[Chao93].

6.10 Exhaustive search
The topological scheduling technique has also been incorporated and tested
exhaustive search, using branch and bound techniques.

Let Π be a permutation. A new permutation Π' can be obtained by changing the order
the elements in permutation Π. Some pairs of elements can be identified for which
makes no sense to exchange their order in a permutation. Operations vi ∈ V which have
data-flow in common with an operation vj ∈ V (in other words for which
vi a vj ∨ vj a vi), will never be scheduled concurrently. When using topological sch
uling techniques, exchange of these operations will lead to the same schedule.
tions which don't have overlapping execution intervals can never be sche
concurrently in a feasible schedule. Although changing the order of a permu
might lead to a change in the order of operations which do have overlapping exe
intervals, the process of exchange can be restricted to those operations whic
cycle steps in common in their schedule ranges.

Let l ∈ ModType. Let u ∈ V be an operation with operation mapping ξ(u) = l, which has
overlapping execution intervals with n - 1 other operations v ∈ V with ξ(v) = l. If n is
smaller than the number of resources available for scheduling, according to the
on page 77, these operations never have to be deferred in time. If such an op
becomes available for scheduling, it can be scheduled immediately without introd
any resource conflicts. Assuming that these operations will always be scheduled
diately after all their predecessors have been scheduled (and hence these operat
never block the schedule of successor operations because of their position in a pe
tions), the exchange of order of these operations with any other operation in a pe
tion is useless.

Table 6.18 Schedule results of fifth order PCM voiceband-filter.

Resource constraint Section 5.11 [Chao93]

mult # add
pipel
mult

Throughput Latency Throughput Latency

4 2 - 4 4 4 4

3 2 - 6 4 6 6

2 2 - 8 4 - -

2 1 - 8 7 8 8

1 1 - 16 7 16 16

- 2 2 4 4 4 4

- 2 1 8 6 8 8

- 1 1 8 7 8 8

128 GENETIC ALGORITHMS AND SCHEDULING

to be
int and
bserva-
ed, the
d after

c algo-

genetic
 algo-
ration
l off-

tion of
ach to
c point
tten-
tation
 (by
 pre-
lso by

ntary
le for

ombi-
hods.
und in
All of these observations result in a reduction of the number of permutations
investigated in an exhaustive search (depending on the size of the time constra
the resource constraint given or derived). An exhaustive search based on these o
tions has been implemented and tested. Despite the reduction techniques us
resulting execution times were outrageous, and many runs had to be cancelle
days of running times for almost each example tried out.

6.11 Conclusions
In this chapter constructive scheduling methods have been combined with geneti
rithms to search for a suitable order to schedule operations of a data-flow graph.

First, a statistical analysis about the fitness values of successive populations of
algorithms has been performed, to gain some insight in how to obtain a genetic
rithm with maximum progress. The results have been observed in terms of explo
versus exploitation, and the effects of applying uniform crossover to create al
springs have been discussed and tested with positive results.

It has been shown that applying a genetic search strategy without the incorpora
specific knowledge regarding scheduling, gives poor results. For a genetic appro
be successful, the problem should be approached from the problem characteristi
of view, and not only from a genetic algorithm point of view. In this section much a
tion has been paid to avoid the creation of infeasible solutions (by using a permu
encoding instead of bit-strings), to avoid the creation of non-optimal solutions
using lower bound estimations, and by building schedules in a topological way to
vent the greedy allocation of resources), and by deriving accurate stop criteria (a
making use of lower bound estimations).

The method is extended with an encoding capable of allocating suppleme
resources during scheduling. This makes the scheduling method very suitab
high-level synthesis strategies based on lower bound estimation techniques.

Experiments and comparisons show high quality results and fast run-times, the c
nation of which outperforms results produced by other heuristic scheduling met
Although optimal results are not guaranteed by the method, optimal results are fo
all cases tested.

lem is
guided
r good

some
lloca-
lation
an be
ults

duling
 detail.
vent the
f bit-

vidual
revent
y con-
tions).
e solu-

mecha-
utation
bined
ndence
 small-
solu-
an the
tion
c algo-
Chapter

7 Conclusions and future work

7.1 Conclusions
In this thesis a solution approach to the high-level scheduling and allocation prob
presented. Solutions are constructed using topological scheduling techniques,
by a permutation of operations, and genetic algorithms are used to search fo
quality solutions with acceptable run time.

The principles of genetic algorithms have been analysed statistically, providing
new insights in how to efficiently apply genetic algorithms to the scheduling and a
tion problem. From the analysis it can be concluded that the variance of a popu
should be kept as high as possible to obtain efficient convergence, which c
achieved by generating all offsprings using uniform crossover. Some empirical res
have been presented to support these observations.

Furthermore, the relation between the encoding of the high-level synthesis sche
problem and the search principles of genetic algorithms has been analysed in
The conclusions from these investigations can be summarized as the need to pre
creation of infeasible encodings (by using permutations of operations instead o
strings), the need to prevent the creation of infeasible solutions (decoding an indi
always results in a solution satisfying the schedule constraints), and the need to p
the creation of non-optimal solutions as much as possible (by preventing a greed
struction of a schedule, and by using lower bound resource allocation estima
Without these extra additions, the genetic search fails to come up with acceptabl
tions.

These observations have resulted in permutations of operations to be the key
nism for constructing schedules. It is proven that there exists at least one perm
for which the construction of schedules in a topologically ordered manner, com
with an as early as possible cycle step selection strategy (satisfying both depe
and resource constraints), results in an optimal schedule (in other words with the
est completion time). Another important observation is that the ratio of optimal
tions versus the total number of solutions in the resulting search space is larger th
ratio resulting from other constructive scheduling algorithms or from the solu
space. This increases the chance that probabilistic search methods like geneti
rithms find an optimal solution more quickly.

130 CONCLUSIONS AND FUTURE WORK

m is
sed to
duling
 con-
ethod
with a
esults

ptable

 diffi-
edule
 per-
lting in
 in all

 main-
uring
st-path
alcu-
s.

vides
trate-
er and

nflicts
extra
ently to
nd/or

Graph
 one

across
The topological permutation scheduling method used in the genetic algorith
resource constrained. Lower bound resource allocation estimations can be u
translate time constrained scheduling problems into resource constrained sche
problems. To be able to find feasible schedules with respect to the original time
straint, a possibility to allocate additional resources should be integrated. A new m
is presented in which additional resource allocation are encoded in combination
permutation, and genetic search is applied to search for good quality solutions. R
and comparisons show that optimal solutions have been found with acce
run-times in all cases that have been tested.

Furthermore it is shown that constructive scheduling of loop structures is a more
cult task than scheduling acyclic structures. A topological permutation based sch
constructor is presented, in which loop pipelining or retiming is integrated in the
mutation encoding. Genetic algorithms are used to search for permutations resu
good quality solutions, and results show that optimal solutions have been found
cases that have been tested.

Efficient algorithms are presented to update the schedule range of operations, to
tain feasibility with respect to throughput rate and time constraints at any time d
the construction of a schedule. These algorithms are based on all-pairs longe
algorithms and a distance matrix. Also, a new efficient algorithm is presented to c
late the minimal throughput rate given a data-flow graph containing loop structure

Finally, an object-oriented synthesis system called NEAT is presented, which pro
a software platform for interacting high-level synthesis tools. Various synthesis s
gies have been implemented using NEAT, without having to bother about the ord
way in which tools are applied.

7.2 Future work

7.2.1 Conditionals

One point of concern is the scheduling of conditional structures. Resource co
induced by parallelism is not directly visible from the structure of the graph, and
analysis is needed to investigate whether operations can be scheduled concurr
obtain efficient schedules without inducing superfluous resource allocations a
completion times.

Operations enclosed by basic blocks have limited resource sharing capabilities.
transformations known as code motion (in which operations are transferred from
basic block to another) are often used to exploit resource sharing capabilities
basic blocks (see [Rim95] for an overview).

CONCLUSIONS AND FUTURE WORK 131

endent
ethods
ltane-

 single
efore
sen for
). By
asic
 basic
 con-

en that
de the
riteria
chedule
blem
lting in
thod to
esulting
 results

e exe-
tegy

ions is
iven
t some
Code motion, state assignment, and scheduling of basic blocks are interdep
tasks, and de-coupling these tasks and solving them separately by heuristic m
may lead to non-optimal results. A way is needed to solve these problems simu
ously in such a way that the optimal solution is still part of the search space.

In [Sant96] the scheduling problem and code motion problem are stated as one
problem. The main idea is to bind operations to the basic block in which or b
which they have to be scheduled, depending on the control-selection strategy cho
the data-path (for example pre-execution, control selection or data selection
extending the topological constructive scheduler of Algorithm 5.14 with this b
block information, it can be decided whether operations can be moved to other
blocks during scheduling, which establishes a close interaction between resource
straints imposed, schedule results obtained so-far, and code motions. It is prov
using this method, the set of possible code motions is such that it doesn’t exclu
optimal solution from the search space with respect to a class of optimization c
based on the execution lengths of paths. This proof is based on the fact that a s
is constructed in a topological way, and just like in Chapter 5 the scheduling pro
can be stated as a search problem in terms of a permutation. Code motions resu
worse solutions are prevented, hence a pruning technique is embedded in the me
reduce the size of the search space. A genetic search strategy is applied to the r
search problem, and the results obtained are comparable or better than other
published in literature.

7.2.2 Module execution interval analysis
To increase the quality of the results of topological scheduling even more, modul
cution interval analysis can be integrated. In [Timm95] it is shown that this stra
proves to be very successful. Nevertheless, the way a permutation of operat
searched for is not topologically oriented, and only an intuitive explanation is g
how to guide the search with particular heuristics. More research is needed to ge
unambiguous statistics about different search strategies and their efficiency.

132 CONCLUSIONS AND FUTURE WORK

-
l

-

,

al
Literature

[Ahma95] I. Ahmad, M.K. Dhodhi, C.Y.R. Chen, Integrated scheduling, alloca
tion and module selection for design-space exploration in high-leve
synthesis, IEE Proc. Comput. Digit. Tech., vol. 142, no. 1, January
1995.

[Ahma95b] I. Ahmad, M.K. Dhodhi and K.A. Saleh, An Evolution-Based Tech-
nique for Local Microcode Compaction, Proceedings of the IFIP Inter-
national Conference on Very Large Scale Integration, pp. 729-734,
1995.

[Aho86] A.V. Aho, R. Sethi and J.D. Ullman, Compilers, principles, techniques
and tools, Addison Wesley, 1986.

[Arts91] H.M.A.M. Arts, J.T.J. van Eijndhoven and L. Stok, Flexible
Block-Multiplier Generation, Digest of Technical Papers of the IEEE
International Conference on Computer-Aided Design, pp. 106-109,
1991.

[Arts92] H.M.A.M. Arts, M.J.M. Heijligers, H.A. Hilderink, W.J.M. Philipsen
and A.H. Timmer, The Neat Reference Manual, Software Manual,
Eindhoven University of Technology, 1992.

[Bane93] U. Banerjee, Loop transformations for restructuring compilers: the
foundations, Kluwer Academic, 1993.

[Beso94] P.W.P.M. van Besouw, Improved Force Directed Scheduling, Training
Report, Eindhoven University of Technology, 1994.

[Black88] R.L. Blackburn, D.E. Thomas and P.M. Koenig, CORAL II: Linking
Behavior and Structure in an IC Design System, Proceedings of the
25th ACM/IEEE Design Automation Conference, pp. 529-535, 1988.

[Blaz94] J. Blazewicz, K.H. Ecker, G. Schmidt, J. Weglarz, Scheduling in Com-
puter and Manufacturing Systems, Second Revised Edition, Springer
Verlag, Berlin, 1994.

[Boer94] J. de Boer, Bepaling bovengrens hoeveelheid functionele modules
gebaseerd op minimum flow, Training Report (Dutch), Eindhoven Uni
versity of Technology, 1994.

[Camp91] R. Camposano, Path-Based Scheduling for Synthesis, IEEE Transac-
tions on Computer-Aided Design, vol. 10, no. 1, pp. 85-93, January
1991.

[Chan92] A.P. Chandrakasan, M. Potkonjak, J. Rabaey and R.W. Brodersen
HYPER-LP: A System for Power Minimization Using Architectural
Transformations, Digest of Technical Papers of the IEEE Internation
Conference on Computer-Aided Design, pp. 300-303, 1992.

134

g

,

l

l

in

SI

h

s

and-
C)

4.
[Chao93] L.F. Chao and A. LaPaugh, Rotation Scheduling: A Loop Pipelinin
Algorithm, Proceedings of the 30th ACM/IEEE Design Automation
Conference, pp. 566-572, 1993.

[Coff76] E.F. Coffman Jr, Computer and Job Shop Scheduling Theory, John
Wiley & Sons, New York, 1976.

[Corm90] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to algo-
rithms, The MIT Press, McGraw-Hill, 1990.

[Davio79] M. Davio and A. Thayse, Algorithms for Minimal-Length Schedules
Philips Journal of Research, no. 34, pp. 26-47, 1979.

[DeMi88] G. De Micheli and D.C. Ku, HERCULES - A System for High-Leve
Synthesis, Proceedings of the 25th ACM/IEEE Design Automation
Conference, pp. 483-488, 1988.

[Depu93] F. Depuydt, Register optimization and scheduling for real-time digita
signal processing architectures, Ph.D. thesis, Katholieke Universiteit
Leuven, 1993.

[Deva89] S. Devadas and A.R. Newton, Algorithms for Hardware Allocation
Data Path Synthesis, IEEE Transactions on Computer-Aided Design,
vol. 8, no. 7, July 1989.

[DeWi85] P. DeWilde, E. Deprettere and R. Nouta, Parallel and Pipelined VL
Implementation of Signal Processing Algorithms, in: VLSI and Modern
Signal Processing, ed. S.Y. Kung, H.J. Whitehouse and T. Kailath,
Prentice-Hall, Englewood Cliffs, pp.258-264, 1985.

[Dhod95] M.K. Dhodhi, F.H. Hielscher, R.H. Storer and J. Bhasker, “Datapat
Synthesis Using a Problem-Space Genetic Algorithm”, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and System,
vol. 14, no. 8, August 1995.

[Eijn91] J.T.J. van Eijndhoven, G.G. de Jong and L. Stok, The ASCIS Data Flow
Graph: Semantics and Textual Format, EUT Report 91-E-251, Eind-
hoven University of Technology, 1991.

[Eijn92] J.T.J van Eijndhoven and L. Stok, A Data Flow Graph Exchange St
ard, Proc. of the European Conference on Design Automation (EDA,
pp. 193-199, 1992.

[Elli90] M.A. Ellis and B. Stroustrup, The annotated C++ reference manual,
Addison-Wesley, 1990.

[Fabe94] H. Faber, Branch-and-Bound Scheduling using Execution Interval
Analysis, Master’s thesis, Eindhoven University of Technology, 199

[Fleu93] H. Fleurkens, Interactive Systems Design in ESCAPE, Proceedings of
the IEEE International Workshop on Rapid System Prototyping, pp.
108-113, 1993.

[Fran94] F. Fransen, Retiming voor Dataflow Grafen, Training Report, Eind-
hoven University of Technology, October, 1994.

135

o-

s
-

ir-

 reg-

s,

ns,

-

[Garey79] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company, San
Francisco, 1979.

[Gebo92] C.H. Gebotys and M.I. Elmasry, Optimal VLSI architectural synthesis:
area, performance and testability, Kluwer Academic Publisher, 1992.

[Gere92] S.H. Gerez, S.M. Heemstra de Groot and O.E. Herrmann, A polyn
mial-time algorithm for computation of the iteration-period bound in
recursive data-flow graphs, IEEE Transactions on Circuits and System
I: Fundamental Theory and Applications, vol. 39, no. 1, pp. 49-52, Jan
uary 1992.

[Girc84] E.F. Girczyc and J.P. Knight, An ADA to Standard Cell Hardware
Compiler Based on Graph Grammars and Scheduling, Proceedings of
the IEEE International Conference on Computer Design (ICCD), pp.
726-731, 1984.

[Girc87] E.F. Girczyc, Loop Winding - A Data Flow Approach to Functional
Pipelining, Proceedings of the IEEE International Symposium on C
cuits and Systems, pp. 382-385, 1987.

[Gold89] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

[Golu77] M.C. Golumbic, The complexity of comparability graph recognition
and coloring, Computing 18, pp. 199-208, 1977.

[Golu80] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Aca-
demic Press, 1980.

[Gonz77] M.J. Gonzalez Jr., Deterministic Processor Scheduling, Computing
Surveys, vol. 9, no. 3, September 1977.

[Goos89] G. Goossens, J. Vandewalle and H. De Man, Loop optimization in
ister-transfer scheduling for DSP-systems, Proceedings of the 26th
ACM/IEEE Design Automation Conference, pp. 826-831, 1989.

[Goos89b] G. Goossens, Optimisation techniques for automated synthesis of
application-specific signal-processing architectures, Ph.D. Thesis,
Katholieke Universiteit Leuven, 1989.

[Grah76] R.L. Graham, Bounds on the performance of scheduling algorithm
in: Computer and Job Shop Scheduling Theory, ed. J.L. Bruno, E.F.
Coffman Jr. and R.L. Graham et. al., pp. 165-227, John Wiley & So
1976.

[Hart92] R. Hartmann, Combined Scheduling and Data Routing for Program
mable ASIC Systems, Proceedings of the European Conference on
Design Automation, pp. 486-490, 1992.

[Heem90] S.M. Heemstra de Groot, Scheduling Techniques for Iterative
Data-flow Graphs, Ph.D. thesis, University of Twente, 1990.

[Heem92] S.M. Heemstra de Groot, S.H. Gerez and O.E. Herrmann,
Range-chart-guided iterative data-flow-graph scheduling, IEEE Trans-

136

a-

yn-

g
po-

r,

e-
al

-

4.

dul-

lin-

e
,
actions on Circuits and Systems, I: Fundamental theory and applic
tions, vol. 39, no. 5, pp. 351-364, May 1992.

[Heij91] M.J.M. Heijligers, Time Constrained Scheduling for High Level Syn-
thesis, Master’s Thesis, Eindhoven University of Technology, May,
1991.

[Heij94] M.J.M. Heijligers, H.A. Hilderink, A.H. Timmer and J.A.G. Jess,
NEAT: an Object Oriented High-Level Synthesis Interface, Proceed-
ings of the IEEE International Symposium on Circuits and Systems, pp
1.233-1.236, 1994.

[Heij95a] M.J.M. Heijligers, L.J.M. Cluitmans and J.A.G. Jess, High-Level S
thesis Scheduling and Allocation using Genetic Algorithms, Proceed-
ings of the Asia and South Pacific Design Automation Conference, pp.
61-66, 1995.

[Heij95b] M.J.M. Heijligers and J.A.G. Jess, High-Level Synthesis Schedulin
and Allocation using Genetic Algorithms based on Constructive To
logical Scheduling Techniques, Proceedings of the International Con-
ference on Evolutionary Computation, pp. 56-61, 1995.

[Hild93] H.A. Hilderink and J.A.G. Jess, ROM-based Multi Thread Controlle
IFIP Workshop on Logic and Architecture Synthesis, pp. 231-241,
1993.

[Hild94] H.A. Hilderink, NESCIO: An Interactive High Level Synthesis Fram
work, Proceedings of the Workshop on Circuits, Systems and Sign
Processing, pp. 119-123, 1994.

[Hilf85] P.N. Hilfinger, A High-Level Language and Silicon Compiler for Dig
ital Signal Processing, Proceedings of the IEEE Custom Integrated
Circuits Conference, pp. 213-216, 1985.

[Hill81] F.J. Hill and G.R. Peterson, Introduction to Switching Theory & Logi-
cal Design, Third Edition, John Wiley & Sons, 1981.

[Holl75] J.H. Holland, Adaption in Natural and Artificial Systems, MIT Press,
1975.

[Hout94] J.G.M. van Houtert, Tree Height Reduction in High-Level Synthesis,
Thesis of Practical Work, Eindhoven University of Technology, 199

[Hu61] T.C. Hu, Parallel Sequencing and Assembly Line Problems, Opera-
tions Research, no. 9, pp. 841-848, 1961.

[Hwan91] C.T. Hwang, J.H. Lee and Y.C. Hsu, A formal approach to the sche
ing problem in high-level synthesis, IEEE Transaction on Compu-
ter-Aided Design, vol. 10, no. 4, pp. 464-475, April 1991.

[Hwan91a] C.T. Hwang, Y.C. Hsu and Y.L. Lin, Scheduling for Functional Pipe
ing and Loop Winding, Proceedings of the 28th ACM/IEEE Design
Automation Conference, pp. 764-769, 1991.

[IEEE88] IEEE standard 1076-1987, IEEE Standard VHDL Language Referenc
Manual, New York: Institute of Electrical and Electronics Engineers
1988.

137

te

s

ed-

a-
r-

, An
is

g

u-

nd

, in:

 &
[Ito94] K. Ito and K.K. Parhi, Determining the iteration bounds of single-ra
and multi-rate data-flow graphs, IEEE Asia-Pacific Conference on Cir-
cuits and Systems, pp. 163-168, 1994.

[Jaco94] E.T.A.F. Jacobs, Using Genetic Algorithms for Time Constrained
Scheduling, Training Report, Eindhoven University of Technology,
1994.

[Jaco95] E.T.A.F. Jacobs, High-Level Synthesis Interconnect Minimization,
Master Thesis, Eindhoven University of Technology, 1995.

[Jang93] H.J. Jang and B.M. Pangrle, GB: A New Grid-Based Binding
Approach for High-Level Synthesis, Proceedings of the 6th Interna-
tional Conference on VLSI Design, pp. 180-185, 1993.

[Karp78] R.M. Karp, A characterization of the minimum cycle mean in a
digraph, Discrete Mathematics, 23, pp. 309-311, 1978.

[Kost95] R. Koster, A loop representation for scheduling, Training Report, Eind-
hoven University of Technology, 1995.

[Koza92] J.R. Koza, Genetic Programming; on the Programming of Computer
by Means of Natural Selection, MIT Press, 1992.

[Kuma91] A. Kumar, A. Kumar and M. Balakrishnan, A Novel Integrated Sch
uling and Allocation Algorithm for Data Path Synthesis, International
Symposium on VLSI Design, pp. 212-218, 1991.

[Kurd87] F.J. Kurdahi and A.C. Parker, REAL: A Program for REgister ALloc
tion, Proceedings of the 24th ACM/IEEE Design Automation Confe
ence, pp. 210-215, 1987.

[Lam89] M.S. Lam, A Systolic Array Optimizing Compiler, Kluwer Academic
Publishers, 1989.

[Lann91] D. Lanneer, G. Goossens, F. Catthoor, M. Pauwels and H. De Man
Object-Oriented Framework Supporting the full High-Level Synthes
Trajectory, in: D. Borrione and R. Waxman (ed.), Computer Hardware
Description Languages and their Applications, Elsevier Science Pub-
lisher B.V., pp. 301-320, 1991.

[Lee89] J.H. Lee, Y.C. Hsu and Y.L. Lin, A New Integer Linear Programmin
Formulation for the Scheduling Problem in Data Path Synthesis, Digest
of Technical Papers of the IEEE International Conference on Comp
ter-Aided Design, pp. 20-23, 1989.

[Lee92] T.F. Lee, A.C.H. Wu, Y.L. Lin, A New Algorithm for Pipelining Loop
Execution, Proceedings of the Synthesis And SImulation Meeting a
International Interchange (SASIMI), pp. 198-207, 1992.

[Leis91] C.E. Leiserson and J.B. Saxe, Retiming Synchronous Circuitry, Algo-
rithmica, no. 6, pp. 5-35, 1991.

[Lens85] J.K. Lenstra and A.H.G. Rinnooy Kan, Sequencing and Scheduling
Combinatorial optimization: annotated bibliographies, ed. M.
O'hEigeartaigh, J.K. Lenstra and A.H.G. Rinnooy Kan, John-Wiley
Sons, Chisester, 1985.

138

egh
li-
r-

a-
ion

lli-
-

ng

n

e-
r-
[Lin73] S. Lin and B.W. Kernighan, An effective heuristic algorithm for the
travelling salesman problem, Operations Research, vol. 21, pp.
498-516, 1973.

[Lipp91] P.E.R. Lippens, J.L. van Meerbergen, A. van der Werf, W.F.J. Verha
and B.T. McSweeney, Memory Synthesis for High Speed DSP App
cations, Proceedings of the IEEE Custom Integrated Circuits Confe
ence, pp. 11.7.1-11.7.4, 1991.

[Mall90] D.J. Mallon and P.B. Denyer, A New Approach To Pipeline Optimis
tion, Proceedings of the European Conference on Design Automat,
pp. 83-88, 1990.

[McFa90] M.C. McFarland, A.C. Parker and R. Camposano, The High-Level
Synthesis of Digital Systems, Proceedings of the IEEE, 78(2), pp.
301-318, February 1990.

[Mesm95] B. Mesman, Genetic Algorithms for Scheduling Purposes, Master The-
sis, Eindhoven University of Technology, 1995.

[Mich92] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, Springer-Verlag, 1992.

[Nest90] J.A. Nestor and G. Krishnamoorthy, SALSA: A New Approach to
Scheduling with Timing Constraints, Digest of Technical Papers of the
IEEE International Conference on Computer-Aided Design, pp.
262-265, 1990.

[Pang87] B.M. Pangrle and D.D. Gajski, Slicer: A State Synthesizer for Inte
gent Silicon Compilation, Proceedings of the IEEE International Con
ference on Computer Design (ICCD), pp. 42-45, 1987.

[Pang91] B.M. Pangrle, F.D. Brewer, D.A. Lobo and A. Seawright, Relevant
issues in high-level connectivity synthesis, Proceedings of the 28th
ACM/IEEE Design Automation Conference, pp. 607-610, 1991.

[Papa82] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Prentice Hall, Englewood Cliffs, 1982.

[Parh91] K.K. Parhi and D.G. Messerschmitt, Static Rate-Optimal Scheduli
of Iterative Data-Flow Programs via Optimum Unfolding, IEEE Trans-
actions on Computers, vol. 40, no. 2, February 1991.

[Park85] N. Park and A.C. Parker, Synthesis of Optimal Clocking Schemes,Pro-
ceedings of the 22nd ACM/IEEE Design Automation Conference, pp.
489-495, 1985.

[Park86] A.C. Parker, J.T. Pizarro and M. Mlinar, MAHA: A program for data
path synthesis, Proceedings of the 23th ACM/IEEE Design Automatio
Conference, pp. 461-466, 1986.

[Park86a] N. Park and A.C. Parker, SEHWA: A Program for Synthesis of Pip
lines, Proceedings of the 23th ACM/IEEE Design Automation Confe
ence, pp. 454-460, 1986.

139

uto-
n

hav-

Syn-
fer-

g
al

unc-
for

in

s

ng,
LSI

d
l

jnd-

is

dul-
[Park91] I.C. Park and C.M. Kyung, Fast and Near Optimal Scheduling in A
matic Data Path Synthesis, Proceedings of the 28th ACM/IEEE Desig
Automation Conference, pp. 680-685, 1991.

[Paul89] P.G. Paulin and J.P. Knight, Force-Directed Scheduling for the Be
ioral Synthesis of ASIC’s, IEEE Transaction on Computer-Aided
Design, vol. 8, no. 6, pp. 661-679, June 1989.

[Pine95] M. Pinedo, Scheduling Theory, Algorithms, and Systems, Prentice Hall,
1995.

[Pota90] R. Potasman, J. Lis, A. Nicolau and D. Gajski, Percolation Based
thesis, Proceedings of the 27th ACM/IEEE Design Automation Con
ence, pp. 444-449, 1990.

[Potk89] M. Potkonjak and J. Rabaey, A scheduling and resource allocation
algorithm for hierarchical signal flow graphs, Proceedings of the 26th
ACM/IEEE Design Automation Conference, pp. 7-12, 1989.

[Potk91] M. Potkonjak and J. Rabaey, Optimizing Resource Utilization usin
Transformations, Digest of Technical Papers of the IEEE Internation
Conference on Computer-Aided Design, pp. 88-91, 1991.

[Radi96] I. Radivojevic and F. Brewer, A New Symbolic Technique for Con-
trol-Dependent Scheduling, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, no. 1, January
1996.

[Rama92] C. Ramachandran and F.J. Kurdahi, Combined Topological and F
tionality Based Delay Estimation Using a Layout-Driven Approach
High Level Applications, Proceedings of the European Design Auto-
mation Conference, pp. 72-78, 1992.

[Rim92] M. Rim, R. Jain and R. De Leone, Optimal Allocation and Binding
High-Level Synthesis, Proceedings of the 29th ACM/IEEE Design
Automation Conference, pp. 120-123, 1992.

[Rim95] M. Rim, Y. Fann and R. Jain, “Global Scheduling with Code-Motion
for High-Level Synthesis Applications”, IEEE Transactions on VLSI
Systems, vol. 3, no. 3, pp. 379-392, September 1995.

[Romp92] K. Van Rompaey, I. Bolsens and H. De Man, Just in time scheduli
Proc. of the IEEE International Conference on Computer Design: V
in Computers and Processors, pp. 295-300, October 1992.

[Rund93] E.A. Rundensteiner, Design Tool Integration Using Object-Oriente
Database Views, Digest of Technical Papers of the IEEE Internationa
Conference on Computer-Aided Design, pp. 104-107, 1993.

[Sant96] L.C.V. dos Santos, M.J.M. Heijligers, C.A.J. van Eijk, J.T.J. van Ei
hoven and J.A.G. Jess, A constructive Method for Exploiting Code
Motions, To appear in: International Symposium on System Synthes,
1996.

[Schw85] D.A Schwartz and T.P. Barnwell, Cyclo-static Multiprocessor Sche
ing on the Optimal Realization on Shift-Invariant Flow Graphs, IEEE

140

sing

que

ey,

s

rchi-

and

l

on
st

on-

he-
International Conference on Acoustics, Speech and Signal Proces,
pp. 1384-1387, 1985.

[Shin89] H. Shin and N.S. Woo, A Cost Function Based Optimization Techni
for Scheduling in Data Path Synthesis, Proceedings of the IEEE Inter-
national Conference on Computer Design: VLSI in Computers and
Processors (ICCD), pp. 424-427, 1989.

[Star91] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley and C. Withl
A comparison of Genetic Sequencing Operators, Proceedings of the
4th International Conference on Genetic Algorithms, pp. 69-76, 1991.

[Stok91] L. Stok, Architectural Synthesis and Optimization of Digital System,
Ph.D. thesis, Eindhoven University of Technology, 1991.

[Sysw89] G. Syswerda, Uniform crossover in genetic algorithms, Proceedings of
the 3rd International Conference on Genetic Algorithms, pp. 2-9, 1989.

[Tarj73] R. Tarjan, Enumeration of the Elementary Circuits of a Directed
Graph, SIAM J. Computing, pp. 211-216, June, 1971.

[Thee93] J.F.M. Theeuwen, Module generators and their integration in an a
tectural synthesis system, IFIP Workshop on Logic and Architecture
Synthesis, pp. 401-410, December 1993.

[Thom90] D.E. Thomas, E.D. Lagnese, R.A. Walker, J.A. Nestor, J.V. Rajan
R.L. Blackburn, Algorithmic and Register-Transfer Level Synthesis:
The System Architect's Workbench, Kluwer Academic Publisher, 1990.

[Thom91] D. Thomas and P. Moorby, The Verilog Hardware Description Lan-
guage, Kluwer Academic Publishers, Boston, 1991.

[Timm93] A.H. Timmer, M.J.M.Heijligers and J.A.G. Jess, Fast System-Leve
Area-Delay Curve Prediction, Proceedings of the APCHDLSA, pp.
198-207, 1993.

[Timm93a] A.H. Timmer, M.J.M. Heijligers, L. Stok and J.A.G. Jess, Module
Selection and Scheduling using Unrestricted Libraries, Proceedings of
the EDAC/EuroASIC Conference, pp. 547-551, 1993.

[Timm93b] A.H. Timmer and J.A.G. Jess, Execution Interval Analysis under
Resource Constraints, Digest of the technical papers of the ICCAD, pp.
454-459, 1993.

[Timm95] A.H. Timmer and J.A.G. Jess, Exact Scheduling Strategies based
Bipartite Graph Matching, Proceedings of the European Design & Te
Conference, pp. 42-47, 1995.

[Timm95b] A.H. Timmer, M.T.J. Strik, J.L. van Meerbergen and J.A.G. Jess, C
flict Modelling and Instruction Scheduling in Code Generation for
In-House DSP Cores, Proceedings of the 32nd ACM/IEEE Design
Automation Conference, 1995.

[Trot92] W.T. Trotter, Combinatorics and partially ordered sets: dimension t
ory, Johns Hopkins University Press, London, 1992.

141

an,

n

an

s-

s

ur-

with
on

ion

d W.

her,
[Vanh93] J. Vanhoof, K. Van Rompaey, I. Bolsen, G. Goossens and H. De M
High-Level Synthesis for Real-Time Digital Signal Processing, Kluwer
Academic Publisher, 1993.

[Veen85] A.H. Veen, The Misconstrued Semicolon, Ph.D. Thesis, Eindhoven
University of Technology, 1985.

[Verh91] W.F.J. Verhaegh, E.H.L. Aarts, J.H.M. Korst and P.E.R. Lippens,
Improved Force-Directed Scheduling. In: Proceedings of the European
Design Automation Conference (EDAC), pp. 430-435, 1991.

[Verh92] W.F.J. Verhaegh, P.E.R. Lippens, E.H.L. Aarts, J.H.M. Korst, A. va
der Werf and J.L. Van Meerbergen, Efficiency Improvements for
Force-Directed Scheduling, Digest of Technical Papers of the IEEE
International Conference on Computer-Aided Design, pp. 286-291,
1992.

[Verh92b] W.F.J. Verhaegh, P.E.R. Lippens, E.H.L. Aarts, J.H.M. Korst, J.L. v
Meerbergen and A. van der Werf, Modelling Periodicity by PHIDEO
Streams, Proceedings of the Sixth International Workshop on
High-Level Synthesis, pp. 256-266, 1992.

[Verh95] W.F.J. Verhaegh, Multidimensional Periodic Scheduling, Ph.D. Thesis,
Philips Electronics N.V., 1995.

[Walk92] R.A. Walker and R. Camposano, A Survey of High-Level Synthesis Sy
tems, Kluwer Academic Publisher, 1992.

[Wang93] C.Y. Wang and K.K. Parhi, Loop List Scheduler for DSP Algorithm
Under Resource Constraints, Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 1662-1665, 1993.

[Wang95] C.Y. Wang and K.K. Parhi, High-Level DSP Synthesis Using Conc
rent Transformations, Scheduling and Allocation, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 14,
no. 3, March 1995.

[Weng91] J.P. Weng and A.C. Parker, 3D Scheduling: High-Level Synthesis
Floorplanning, Proceedings of the 28th ACM/IEEE Design Automati
Conference, pp. 668-673, 1991.

[Wehn91] N. Wehn, M. Glesner and M. Held, A Novel Scheduling and Allocat
Approach for Datapath Synthesis based on Genetic Paradigms, IFIP
Working Conference on Logic and Architecture Synthesis, pp. 47-56,
1991.

[Werf91] A. van der Werf, B. McSweeney, J. van Meerbergen, P. Lippens an
Verhaegh, Hierarchical Retiming Including Pipelining, in: VLSI 91, ed.
A. Halaas and P.B. Denyer, pp. 451-460, Elseviers Science Publis
1991.

[Woer94] H. van Woerkom, Interconnect Constraints tijdens het Schedulen, The-
sis of Practical Work, Eindhoven University of Technology, 1994.

[Zima90] H. Zima and B. Chapman, Supercompilers for Parallel and Vector
Computers, ACM Press, 1990.

142

n der
 Uni-

ntitled
arted
esign

 Uni-

rato-
Biography

Marc Heijligers was born on May 25th, 1967 in Eindhoven, the Netherlands.

In Eindhoven he received his diplomas HAVO in 1984 and VWO in 1986 at the va
Putt Lyceum. Subsequently, he studied Information Technology at the Eindhoven
versity of Technology, where he graduated in May 1991 on a Master Thesis e
“Time Constrained Scheduling for High-Level Synthesis”. In June 1991 he st
working on a doctorate under the supervision of prof.Dr.-Ing. J.A.G. Jess at the D
Automation Section of the Department of Electrical Engineering of the Eindhoven
versity of Technology.

Since April 1996, Marc Heijligers has been working at the Philips Research Labo
ries in Eindhoven, the Netherlands.

144

n een
n. [Dit

lingen
en en
en het
’n for-

tuigen
, loopt

 bepa-
eerde
inder
 C++

del-
elijke
chap-
alge-

ressie

dig op

rker op
pings-
Stellingen

behorende bij het proefschrift van Marc Heijligers

1. Het in een topologische volgorde construeren van een schedule va
data-flow reduceert de kans op de generatie van niet geldige oplossinge
proefschrift]

2. Een formaat of standaard ten behoeve van synthese van digitale schake
moet op zijn minst de synthese problematiek duidelijk kunnen representer
kunnen anticiperen op bepaalde voor de hand liggende oplossingen. Indi
daaraan niet voldoet, dan zullen synthese tools gebruik makende van zo
maat in zijn algemeenheid geen goede oplossingen kunnen creëren.

3. Omdat menig artikel over genetische algoritmen de lezer probeert te over
met behulp van argumenten gebaseerd op analogieën uit de evolutieleer
deze wetenschap groot gevaar zijn geloofwaardigheid te verliezen.

4. Aangezien de eigenschappen van een object zich door meer dingen laten
len dan alleen het type van het object, zou het predikaat ‘type-georiënt
programmeertaal’ in plaats van ‘object-georiënteerde programmeertaal’ m
valse verwachtingen opwekken omtrent de toepasbaarheid van de in
object-georiënteerde geboden mogelijkheden.

5. Het idee van christelijke politieke partijen om de evolutieleer uit het mid
baar onderwijs te schrappen, en het impliciet prefereren van een mog
interpretatie van een bijbelse tekst boven de tot nu toe verkregen wetens
pelijke resultaten, veronderstelt dat men onwetendheid verkiest boven
mene ontwikkeling, een gedachte die een obstakel vormt voor de prog
van de wetenschap in het algemeen.

6. Een startend minister zou net zoals een AIO om dezelfde redenen evenre
zijn salaris gekort moeten worden.

7. Het bekritiseren van de eufonische eigenschappen van een buizenverste
basis van meet-technische gegevens zoals harmonische vervorming, dem
faktor en bandbreedte, getuigt van wetenschappelijke bekrompenheid.

n het
eveel-

denkt
werk.

n op

inatie
r defi-

dver-
riaal
ans op

t van
8. Het aanpassen van de regeling van verkeerslichten ter stimulatie va
gebruik van het openbaar vervoer heeft een negatieve invloed op de ho
heid uitgestoten uitlaatgassen.

9. Een authentieke uitvoering van een muziekstuk is een farce als men be
dat menig componist beschouwd wordt als een slecht vertolker van eigen

10. Het is onjuist om het begrip persvrijheid te vertalen in het recht hebbe
informatie.

11. Het verbieden van het kopen van produkten uit het buitenland in comb
met het afdwingen van een verkoop adviesprijs aan de detailhandel is pe
nitie een prijsafspraak, en dus bij de wet verboden.

12. Het gevaar van statistiek voor de volksgezondheid blijkt uit de recente a
tenties van de fabrikant Philip Morris, waarin deze met selectief cijfermate
aan probeert te tonen dat het drinken van een glas water een grotere k
kanker zou geven dan het passief meeroken van tabakswaar.

13. Een ster in het vermenigvuldigen, daar zou een wiskundige geen pun
mogen maken!

14. Over smaak valt juist wel degelijk te twisten.

	Abstract
	Samenvatting
	Preface
	Contents
	1 High-Level Synthesis
	1.1 Introduction
	1.2 High-level synthesis problem definition
	1.3 High-level synthesis problem partitioning
	1.4 High-level synthesis design flow impression
	1.5 High-level synthesis scheduling
	1.6 Area of this thesis

	2 High-Level Synthesis Components
	2.1 Introduction
	2.2 Domains
	2.2.1 Behavioural domain
	2.2.2 Control domain
	2.2.3 Structural domain

	2.3 Domain relations
	2.3.1 Intra-domain relations
	2.3.2 Inter-domain relations

	2.4 NEAT
	2.5 Related work
	2.6 Conclusions

	3 High-Level Synthesis Scheduling
	3.1 Introduction
	3.2 Scheduling and allocation definitions
	3.3 Constraint sets and performance measures
	3.4 High-level synthesis scheduling constraints and goals
	3.4.1 Data-flow graphs and execution order
	3.4.2 Dependence and distance graphs
	3.4.3 Data-flow graphs, arrays and dependence analysis
	3.4.4 Time
	3.4.5 Resources

	3.5 Schedule problems
	3.6 Conclusions

	4 Schedule Constraints
	4.1 Introduction
	4.2 Distance matrix
	4.3 Process invocation constraints
	4.3.1 Basic blocks
	4.3.2 Multiple process invocations
	4.3.3 Loop folding and retiming
	4.3.4 Distance relations
	4.3.5 An algorithm to determine the minimal invocation distance

	4.4 Time constraints
	4.5 Resource constraints
	4.6 The relation between time and resource constraints
	4.7 Conclusions

	5 Constructive Scheduling
	5.1 Introduction
	5.2 High-level synthesis scheduling complexity
	5.3 Optimality
	5.4 Construction of schedules
	5.5 Search space versus candidate solutions
	5.6 Permutation scheduling
	5.7 Strict permutation scheduling
	5.7.1 Precedence constraint satisfaction
	5.7.2 Time constraint satisfaction
	5.7.3 Resource constraint satisfaction
	5.7.4 Time and resource constraint satisfaction

	5.8 Topological permutation scheduling
	5.8.1 Precedence constraint satisfaction
	5.8.2 Time constraint satisfaction
	5.8.3 Resource constraint satisfaction
	5.8.4 Time and resource constraint satisfaction

	5.9 Permutation statistics
	5.10 Permutation scheduling and pipelining
	5.11 Permutation scheduling and cyclic data-flow graphs
	5.11.1 Single iteration model
	5.11.2 Multiple iteration model
	5.11.3 Loop Winding, Loop Folding, Retiming
	5.11.4 Cyclic scheduling

	5.12 Conclusions

	6 Genetic Algorithms and Scheduling
	6.1 Introduction
	6.2 Introduction to genetic algorithms
	6.3 Genetic Algorithms and combinatorial optimization
	6.4 Recombination and disruption
	6.5 Evolution statistics
	6.6 Scheduling encodings
	6.6.1 Classic bit-vector encoding
	6.6.2 Cycle assignment encoding
	6.6.3 Absolute displacement encoding
	6.6.4 Relative displacement encoding
	6.6.5 Permutation encoding
	6.6.6 Permutation encoding and list scheduling techniques
	6.6.7 Permutation encoding and topological scheduling techniques

	6.7 Supplementary resource allocation
	6.8 Extensions
	6.9 Scheduling cyclic data-flow graphs
	6.10 Exhaustive search
	6.11 Conclusions

	7 Conclusions and future work
	7.1 Conclusions
	7.2 Future work
	7.2.1 Conditionals
	7.2.2 Module execution interval analysis

	Literature
	Biography

