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Abstract

The increasing complexity of Very Large-Scale Integrated (VLSI) circuits together with
the economical pressure to issue new VLSI circuit designs very quickly, results in a
progressive requirement to design circuits on higher levels of abstraction. High-level
synthesis offers the circuit designer the possibility to automatically generate a digital
network from a functional high-level description of a circuit, combined with the possi-
bility to use constraints and objectives. The key problems within high-level synthesis
are scheduling (determining the cycle step in which particular tasks of the functional
description start their execution) and allocation (determining the amount of hardware
units required to implement the functional specification). Scheduling and allocation
belong to the class of problems which are hard to solve for practical high-level synthe-
sis problems. Therefore, efficient scheduling and allocation strategies are needed, capa-
ble of producing good quality solutions with respect to the objectives, satisfying the
constraints, and generated within reasonable time.

Before discussing new methodologies, the scheduling and allocation problems are for-
mally introduced. On behalf of this, high-level synthesis related objects are introduced,
and an object-oriented implementation of these objects is presented. The way synthesis
related data is stored within these objects, allows a flexible way of handling synthesis
constraints and objectives, and hence doesn't restrict the order and the way in which
solutions are generated.

Next, it is shown how infeasible solutions can be excluded from the search space, with-
out excluding all optimal solutions. This results in the notion of the schedule range,
describing for each operation the interval of cycles in which it can be scheduled. Extra
attention is paid to the throughput rate, specifying the distance between the arrival of
successive input data. If the functional description contains cyclic structures, a lower
bound on the throughput rate results. A new efficient algorithm will be presented, which
given an arbitrary functional description, determines the minimal distance between suc-
cessive arrival of input data. Furthermore, it will be shown how constraints regarding
time and hardware can be integrated in a unified model, and how these constraints can
be exchanged using accurate estimation techniques.

Then, various ways to construct schedules will be investigated. A new constructive
scheduling method is presented, which determines a schedule by using a permutation of
tasks to determine the order in which tasks are scheduled, in combination with a cycle
step selection strategy, scheduling operations in their first free cycle step. Given a
resource allocation, it is proven that there exists at least one optimal schedule solution
(in other words a schedule with minimal completion time), obtained by scheduling
tasks using a topologically sorted strategy. Statistical results applied to some examples



show that the ratio of optimal solutions with respect to the total number of solutions
using such a strategy is quite large, increasing the probability that an optimal solution
will be found. Finally, it will be shown that the construction of (loop) pipelined sched-
ules is a more difficult problem, and a new strategy based on permutations is presented
to construct these kind of schedules.

Additionally, this thesis describes how genetic algorithms can be used to search for
good quality solutions with respect to the scheduling and allocation problem, by search-
ing for a permutation resulting in a good quality solution. A theoretical analysis of
genetic algorithms will be given, indicating how genetic algorithms should be applied
to obtain efficient convergence, supported by empirical results. Different kind of encod-
ings are presented, resulting in a new efficient strategy in which genetic algorithms use
a permutation encoding of a schedule, combined with topological construction tech-
niques. Finally, the genetic approach is extended with the possibility to allocate addi-
tional resources, to compensate lower bound resource allocations, which for a time
constrained scheduling problem might have been estimated too low.

Using these methods, optimal results have been found for all cases tested, and compari-
sons with other heuristic search methods show that the genetic approach provides an
efficient way to generate good quality solutions to the high-level synthesis scheduling
and allocation problem.



Samenvatting

De toenemende complexiteit van de hedendaagse chips en de economische druk om
snel met nieuwe ontwerpen te komen, zorgen ervoor dat er een toenemende behoefte
bestaat om op een hoger niveau van abstractie te ontwerpen. Hoog-niveau synthese
biedt de chip ontwerper de mogelijkheid om vanuit een functionele beschrijving geau-
tomatiseerd een digitaal netwerk te genereren, met daarbij de mogelijkheid om hierbij
allerlei restricties en doelstellingen mee te geven. De centrale problematiek binnen de
hoog-niveau synthese bestaat uit het tijdsplanning en allocatie probleem, waarbij taken
uit de functionele beschrijving toegewezen worden aan hardware welke deze taken kan
uitvoeren, plus de tijdmomenten waarop deze hardware zo’n taak uitvoert. Tijdsplan-
ning en allocatie probleem behoren tot een klasse van problemen die in de praktijk
moeilijk oplosbaar zijn, en daarom moet naar methodes gezocht worden die in korte tijd
goede kwaliteit oplossingen met betrekking tot de doelstellingen genereren, en welke
voldoen aan de restricties die aan het ontwerp opgelegd zijn.

Alvorens over methodieken te praten, wordt het tijdsplanning probleem formeel gedefi-
nieerd. Hiervoor worden eerst de aan de tijdsplanning en allocatie gerelateerde
hoog-niveau synthese objecten geintroduceerd, en een object georiénteerde implemen-
tatie van deze objecten gepresenteerd. Het doel hiervan is flexibel met restricties en
doelstellingen om te kunnen gaan, zodat de volgorde waarin en de manier waarop
oplossingen gegenereerd worden, niet beperkt wordt door de representatie en opslag
van deze synthese objecten.

Ten tweede is onderzocht hoe een groot deel van niet geldige oplossingen van het zoek-
proces uitgesloten kunnen worden, zonder daarbij alle optimale oplossingen uit te slui-
ten. Dit leidt tot de introductie van het begrip tijdsplanning interval, welke voor iedere
operatie een interval van tijdstippen aangeeft waarin deze geplaatst mag worden. Extra
aandacht wordt besteed aan de doorstroom snelheid, welke de grootte van het interval
tussen de aan de chip aangeboden data weergeeft. Indien de functionele beschrijving
cyclische structuren bevat, dan impliceert dit een ondergrens voor deze doorstroom
snelheid. Er wordt een nieuw efficiént computer programma besproken welke de mini-
male doorstroom snelheid voor een willekeurige functionele beschrijving bepaalt. Ver-
volgens wordt aangetoond dat verschillende soorten restricties met betrekking tot tijd
en hardware in een enkel model geintegreerd kunnen worden, en hoe deze met behulp
van nauwkeurige schattingen op eenvoudige manier naar elkaar toe te vertalen zijn.

Dan wordt gekeken op wat voor een verschillende manieren tijdsplanningen gecreéerd
kunnen worden. Een nieuwe constructieve methode wordt gepresenteerd, waarbij een
permutatie van taken bepaalt in welke volgorde taken geplaatst worden, hetgeen in
combinatie met een selectie mechanisme bepaalt waar taken in hun tijdsplanning inter-
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val geplaatst zullen worden. Bij een gegeven restrictie met betrekking tot de maximaal

te gebruiken hoeveelheid hardware wordt bewezen dat indien men taken op een topolo-
gische gesorteerde manier in hun vroegst mogelijke tijdstip plaatst, er tenminste een
permutatie bestaat die leidt tot een optimale oplossing met betrekking tot het laatste
tijdstip van de tijdsplanning. Statistische analyse aan de hand van enkele voorbeelden
toont aan dat de verhouding van optimale oplossingen ten opzichte van het totaal aantal
oplossingen in zo’n geval groot is, hetgeen de kans op het vinden van een optimale
oplossing vergroot. Tot slot wordt aangetoond dat het genereren van pipelined tijdsplan-
ningen en loop pipelined tijdsplanningen voor cyclische functionele beschrijvingen met

behulp van de voorgaande methode een moeilijker probleem is, en wordt een oplossing
aangedragen om ook dit soort tijdsplanningen met behulp van permutaties te genereren.

Vervolgens beschrijft het proefschrift hoe genetische computer programma’s toegepast
kunnen worden om de tijdsplanning en allocatie problematiek op een efficiénte manier
op te lossen, door te zoeken naar een permutatie die resulteert in een goede oplossing.
Een theoretische analyse van genetische computer programma’s geeft een indicatie
over hoe een genetisch computer programma zo efficiént mogelijk naar een oplossing
van goede kwaliteit convergeert, hetgeen met empirische resultaten wordt gesteund.
Verschillende soorten coderingen zijn onderzocht, resulterend in een nieuwe efficiénte
tijdsplanning strategie waarbij genetische computer programma’s een permutatie code-
ring van een tijdsplanning combineren met een topologische sortering. De genetische
zoekmethode is tot slot uitgebreid met de mogelijkheid om extra hardware te alloceren,
om zodoende te lage hardware schattingen te compenseren met een additionele alloca-
tie van hardware.

Vele voorbeelden van tijdsplanningen tonen aan dat de methodiek in alle geteste geval-
len optimale oplossingen genereert. Een vergelijking met andere heuristieken toont aan
dat de genetische zoekmethode een efficiénte manier oplevert voor het genereren van
oplossingen voor het hoog-niveau synthese tijdsplanning en allocatie probleem.
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Chapter
1 High-Level Synthesis

1.1 Introduction

The increasing complexity of Very Large Scale Integration (VLSI) Circuits causes a
substantial increase of the design time of chips. Because the time-to-market is one of
the key factors to make a chip profitable, a short design time is of great importance.
This must coincide with the generation of efficient designs in terms of performance,
design costs, and manufacturing yield. For large applications, such as RISC processors
and MPEG-2 compression algorithms, the impact of small design decisions is difficult
to grasp for a human designer. It is therefore important that he can design at high
abstraction levels. Computer-aided design (CAD) tools can be used to provide the
designer with efficient design methodologies, which show the impact of his design
decisions very quickly.

A rough sketch of the process of automatically synthesizing digital integrated circuits,
also called a silicon compiler, can be found in Figure 1.1. The whole process starts with
a specification of an integrated circuit, which has to be captured in a behavioural
description language suitable for handling by computer programs. The behavioural
description consists of high-level operations (such as addition and multiplication) and
high-level control structures (such as branches, loops and procedure calls). The lan-
guage in which such a description is given, is called a hardware description language,
of which VHDL [IEEES88], Verilog [Thom91], Hardware C [DeMi88], and Silage
[Hilf85] are examples. A behavioural description can be written by a designer, but it can
also be generated by design-automation tools operating at higher levels of abstraction
(for example system-level abstraction or hardware-software co-design).

High-level synthesis, also called architectural synthesis, is a process which adds struc-
tural information to a functional description at the same abstraction level. This results in
a so-called data-path and a controller description. The data-path consists of building
blocks such as functional units, memory, and an interconnection structure among them.
The controller describes how the flow of data inside the data-path is managed, and is
described in terms of states and state transitions. The controller description is translated
into an implementation at the abstraction level of gates by using logic synthesis.

Building blocks inside a data-path are created by using so-called module generators.
There are several possibilities to generate modules. The desired functionality can be
described by boolean functions, and logic synthesis can be used to optimize and map
the equations on a gate library, called behavioural generation. Structural generation
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Behavioural description

architecture BEHAVIOUR of FILTER is
process
variable a, b,c;
begin
wait until start event and start="1";
a:=in_portl * (5 + in_port2);

High-Level Synthesis
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Logic Synthesis Module Generation

Gate Network Module
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| 1 | 1

Layout Description L
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Figure 1.1 Silicon Compiler Overview.

uses knowledge of a possibly efficient structural implementation, and therefore gener-
ates such a structure directly. Finally, if a layout of a module is very regular (such as
RAMs, ROMs, and register files), the layout description can be generated directly.

The final synthesis step, called layout synthesis, creates a geometrical description of the
layout using placement and routing techniques. The result is a layout mask, which is a
description of the IC at the physical abstraction level.

1.2 High-level synthesis problem definition

High-level synthesis translates a behavioural description of a chip into a data-path. A
behavioural description specifies the functions the chip has to perform and the way the
chip interacts with its environment. The structural description describes an implementa-
tion of the functions, and consists of a data-path and a controller. A data-path consists
of functional units (such as for instance adders, multipliers, ALUs, and logic units),
memory to store data (such as RAMs, ROMs, registers, and register files), and intercon-
nect to transport data between functional units and memory (such as buses, wires, and
multiplexers). The collective noun for functional units, memory, and interconnect is
resources.
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The controller describes how the flow of data in the data-path is managed, and is
described in terms of states and state transitions. Each state of the controller specifies
the assignment of functional units to operations, of data to registers, and the way how
multiplexers should direct their data. Furthermore, given some state, a state transition
function defines the subsequent state, which may or may not depend on data produced
inside the data-path.

Given a behavioural description, together with a set of constraints and goals, the
high-level synthesis problem is to find the best architectural solution. Some possible
goals are minimal area, minimal power consumption, or maximum throughput. Con-
straints are often defined in terms of execution order, completion time, throughput rate,
and area. The constraints and goals depend on the kind of application which needs to be
synthesized. In the case of micro-processors, speed is the main goal at the expense of
area and power consumption. Furthermore specialized techniques, such as the applica-
tion of cache memory and branch prediction, can be used to improve the performance
In case of DSP algorithms, throughput will be the main constraint, and the goal is to
find an implementation with a small area or power consumption. Optimization tech-
niques can be used to search for high quality designs in all these cases.

Almost all optimization problems associated with chip design are difficult to solve.
Most of these problems are member of the class of so-called NP-hard problems
[Gare79], and no polynomial-time algorithms are known that solve each instance of
these problems to optimality. For a synthesis system to be efficient, trade-offs must be
made to obtain acceptable solutions in an acceptable amount of time. Heuristics can be
used, which usually are fast, but will return solutions which are not guaranteed to be
optimal. On the other hand enumeration algorithms can be used which always give opti-
mal solutions, but generally need exponential run-time, and hence can handle only
problem instances with small input data size. The development of algorithms which
obtain acceptable solutions in an acceptable amount of time, is an important topic of
research in high-level synthesis, and will be the main topic of this thesis.

1.3 High-level synthesis problem partitioning

When generating a data-path from a behavioural description, four kinds of problems
associated with resources must be solved:

Selection What kind of resources are used in the data-path?

Allocation How many resources are needed in the data-path?

Scheduling When will operations from the functional description be
executed?

Binding To which resources will operations, values, and value transfers
be assigned?



4 HIGH-LEVEL SYNTHESIS

@

zZ
N
w

N22

N3/N44

N10

;®T
it

Z
N
=

=z
" @

N32

(P
N33
N19 N1 @ N34 N5/N46
M

N4/N45  N35

i

7

@

-

~X)

N20 4
1

ﬁg

6

"

N12

N6/N47

1R
@—@:
z

—®5 =z
@] Tm
@ = (T

||

N7/N48  N40
N29

41

T

Y

@ N51

Figure 1.2 Data-flow graph of a 5th order wave digital filter.

These four problems are interrelated, but are difficult to solve simultaneously. There-
fore, high-level synthesis strategies solve each problem or a small combination of these
problems separately.

1.4 High-level synthesis design flow impression

In this section a simplified overview will be given concerning the translation of a
description of a digital filter into a synchronous (clocked) data-path.

In Figure 1.2 a behavioural description of a 5th order wave digital filter [DeWi85] can
be found, specified by a so called data-flow graph. In a data-flow graph nodes represent
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Figure 1.3 Schedule of 5th order wave digital filter.

operations, and edges represent the transfer of data values. If values are available on all
incoming edges of a node, the node will execute by consuming these values, and subse-
guently generates an output value on all outgoing edges. A data-flow graph explicitly
shows the order of execution of operations, and hence also shows which operations may
be executed simultaneously. This makes data-flow graphs very suitable as a starting
point for high-level synthesis scheduling and allocation.

In Figure 1.3, a schedule of the 5th order wave digital filter can be found, in which
operations have been assigned to cycle steps. In this schedule an addition is assumed to
require 1 cycle step for execution on an adder module, and a multiplication is assumed
to require 2 cycle steps for execution on a multiplier module. In the schedule of Figure
1.3, at most 3 multiplications and 3 additions are scheduled simultaneously. This
induces a functional unit allocation of at least 3 multipliers and 3 adders. The amount of
cycle steps needed is 17.

After selection, allocation, and binding (based on the schedule of Figure 1.3) of func-
tional units, memory, and interconnect, a data-path as given in Figure 1.4 can be gener-
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Figure 1.4 Data-path of 5th order wave digital filter.

ated. It consists of 3 adders and 3 multipliers, connected to a bunch of registers and
multiplexers to store and select data respectively.

1.5 High-level synthesis scheduling

Because the result of a schedule induces a completion time and a resource allocation,
scheduling is considered to be the central task of high-level synthesis. During schedul-
ing, functional units, storage, and interconnect must be allocated over time (cycle steps)
to perform a set of operations (specified by a behavioural description). In most practical
cases high-level synthesis scheduling is subject to constraints, such as precedence con-
straints (derived from a behavioural description), resource constraints (derived from a
network structure), and time constraints (completion time, data arrival rate). A schedule
is called a feasible schedule if it satisfies its constraints. Performance measures or opti-
mality criteria are used to distinguish good schedules from bad schedules. High-level
synthesis performance measures, such as (a combination of) overall execution time and
resource requirements [McFa90], can be used to serve as optimality criteria. The goal
of a scheduling algorithm would be to find an optimal schedule, in other words, it
should return the best feasible schedule with respect to the performance measures.
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Figure 1.5 Synthesis Toolbox

1.6 Area of this thesis

This thesis addresses the high-level synthesis scheduling and allocation problem, origi-
nating from the translation of DSP algorithms into synchronous clocked circuits.

Chapter 2 introduces the components needed to describe the high-level synthesis of dig-
ital circuits, with an emphasis on the components needed to define the scheduling prob-
lems presented in Chapter 3. Secondly, an object oriented implementation of these
components, called NEAT (New Eindhoven Architectural synthesis Toolbox), is pre-
sented, which serves as a software platform for all algorithms presented in this thesis. It
provides the tool designer an environment in which he can develop a collection of inter-
acting tools, for which the order and the way in which these tools are applied is not pre-
determined (see Figure 1.5).

In Chapter 3 two scheduling problems, the key problems of this thesis, are formally
introduced.

Chapter 4 discusses the influence of constraints on the scheduling problem. It will be
shown how precedence constraints, time constraints, and resource constraints have an
influence on the schedule range of operations, and how these constraints can be inte-
grated into a single scheduling model. Some efficient algorithms are presented which
determine and update the scheduling range of operations during scheduling. Further-
more, a new algorithm will be presented to determine the lower bound on the minimal
throughput rate of a data-flow graph containing loop structures. Finally, it is shown how
constraints and goals can be exchanged using lower-bound estimations, resulting in a
re-definition of the original scheduling problem.
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Chapter 5 presents several ways to construct schedules under different sets of con-
straints. The central theme of this chapter is about permutations of operations, which
provide a mechanism to classify the way schedulers construct their solution. Further-
more, in Chapter 5 a topological method of scheduling is defined. It is shown that a top-
ological construction of schedules increases the probability that feasible and higher
quality solutions are created, without excluding all optimal solution from the search
space. Finally it is shown how the construction of (loop) pipelined schedules can be
performed.

Chapter 6 focuses on the application of genetic algorithms, with the aim to find good
quality results to the scheduling problem. The main idea is to improve the results pro-
duced by existing scheduling heuristics, and to shorten the execution time of exhaustive
search methods, and hence to fill the gap between exhaustive search methods and
‘plain’ heuristics. First of all, a theoretical framework is presented to obtain some
insight how to efficiently apply genetic algorithms to combinatorial optimization. Then
genetic algorithms are applied to search for permutations, using the scheduling strate-
gies presented in Chapter 5. Results show that genetic search is only successful when
there is a good relation between the genetic encoding of the scheduling problem and the
way solutions are constructed with respect to the constraints and goals imposed. If a
topologically schedule strategy is applied, comparison of the results with many other
heuristic approaches show that the genetic approach finds better results in acceptable
computation times. Furthermore, the genetic scheduling strategy is extended with the
possibility to allocate extra resources to be able to deal with a synthesis strategy based
on lower-bound resource estimations. Finally, the scheduler is extended with memory
allocation costs to show that, to a certain extent, the genetic search is capable to mini-
mize more general cost functions.

Chapter 7, finally, presents conclusions together with a discussion about future work.



Chapter
2 High-Level Synthesis Components

2.1 Introduction

This chapter introduces the components needed to describe the high-level synthesis of
digital circuits, with an emphasis on the scheduling problems presented in Chapter 3.
To solve the whole high-level synthesis problem, a collection of interacting high-level
synthesis tools is needed. Each tool retrieves, manipulates, and stores intermediate
results, which should be made accessible by using a so called synthesis data interface.
An object oriented implementation of such a data interface, called NEAT (New Eind-
hoven Architectural synthesis Toolbox), is presented, which serves as a software plat-
form for all the algorithms presented in this thesis.

2.2 Domains

High-level synthesis generates structural information (in terms of modules and their
interconnections, also called a data-path) and control information (describing how to
control the data-path), derived from a behavioural description (described in terms of
operations and special constructs). During the high-level synthesis process, mainly
three domains of data representations can be distinguished, which are behaviour, con-
trol, and structure. Each domain provides a different view of the design, and are there-
fore also called design views. In the following subsections, additional information
about the different domains of data and their representations will be given.

2.2.1 Behavioural domain

The input description, which specifies the behaviour of a design, can be defined by
using ASCIS data-flow graphs [Eijn92]. The ASCIS data-flow graph is intended as an
intermediate form between user oriented interfaces (languages, schematics) and synthe-
sis or verification tools. The advantage of applying synthesis or verification directly to a
data-flow graph is that it resolves the different nature of input languages. Data-flow
graphs can be automatically obtained from hardware description languages such as
VHDL [IEEE88], Verilog [Thom91], Hardware C [DeMi88], or Silage [Hilf85] by the

use of data-flow analysis techniques.

Definition 2.1 (Data flow graph). A data-flow graph is a tuple, €), in whichV is a
set of nodes (representing operations), &d a set of directed edgds x V
(representing flow of data).
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The execution of a data-flow graph follows the concept of a token-flow mechanism. In
this mechanism a data value instance is defined to be a token. This data value instance
can be a single scalar, but can also consist of more complex data-types, such as arrays,
records, or user-defined data-types. The execution of an operation is defined as remov-
ing tokens from the input edges of that operation, and producing new tokens containing
the result of the calculation of the operation on all output edges. The semantic behav-
iour of a node, which determines the translation of input values to output values, is
defined by a so called operation type.

Definition 2.2 (Operation Typé). LetV be a set of data-flow nodesl] V, OpTypebe
a given set of operation types. Operation typ€ — OpTypeis a function, witht(v)
the operation type of operation

A comprehensive classification of different operation types can be found in [Eijn91],
such as arithmetic operations (+x%;,/), boolean operations (and, or, not), and rela-
tional operations (<, >%). The interface of a data-flow graph to the outside world is
defined by means of input and output nodes. To support special language constructs,
such as loops and conditionals, nodes with a special execution mechanism have been
defined, which originate from demand graphs as described in [Veen85]. An example of
a data-flow graph containing a loop structure is given in Figure 2.1, accompanied with a
textual description characterizing its semantic behaviour. The loop structure uses nodes
with operation typentryandexitto describe the controlling mechanism of the loop. An
entry node has two (or more) data inputs, one control input, and one data output. An
entry node accepts a token at one of its data inputs (the choice of which depends on the
value of the control input), and copies this token to its output. An exit node has one data
input, one control input, and two (or more) data outputs. It accepts a token at its data
input, and depending on the value of its control input copies this token to one of its out-
puts. Entry and exit nodes provide a mechanism for a token to enter, to rotate, and
finally to leave the loop structure.

The data-flow graph in Figure 2.1 shows that control-flow is described by means of spe-
cial data-flow nodes. The integration of data-flow and control-flow in one model is what

makes data-flow graphs differ from most other input formats used in high-level synthe-

sis systems (see [Walk92] for an overview). By separation of data-flow and control-flow

in other formats, code inside these special constructs is moved to basic blocks or
straight line code, which may impose undesirable restrictions with respect to schedul-
ing and allocation algorithms.

The transfer of tokens inside a data-flow graph is represented by directed edges. There
is no notion of variables or assignment in a data-flow graph, as they might impose tim-
ing and mapping restrictions, and therefore reduce the search space before synthesis
starts. The execution order of nodes inside a data-flow graph is constrained by the struc-
ture of the data-flow graph, inducing a partial order, denoted.Bhis partial order
explicitly models the concurrency of the behaviour; if two nodes are not related accord-
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Figure 2.1 Data-flow graph containing a loop structure.

ing to partial orde (in other words there is no flow of data between these two nodes),
then they can be executed in parallel. Depending on the accuracy of the data-flow anal-
ysis, a data-flow graph represents a maximal parallel representation of the behaviour.

To enforce a specific order to the execution of a set of nodes, so called sequence edges
can be used, denoted by grey-coloured edges. See for instance Figure 2.1, where
seguence edges are used to activate operations of type constant.

Behaviour preserving transformations, such as tree height reduction [Hout94] and
retiming [Fran94], can be applied to change the structure of a data-flow graph. The goal
of these transformations is to restrict or widen the search space structure of the synthe-
Sis process.

In principle data-flow graphs impose no limitations onto a particular architectural solu-
tion. Therefore, they are highly suitable as a starting point for high-level synthesis.

2.2.2 Control domain

The control domain is used to describe the result of scheduling, inducing the way the
data-path is controlled. The control domain can be described by a (set of) finite state
machine(s).

Formally, a finite state machine can be described by a quintup,(S, o, A), in

which| is the input alphabet (or set of inputs from the data-p@tts) the output alpha-

bet (or set of outputs to the data-pafh)s the set of state$; | xS - Sis the state
transition function, and: S - O is the output function [Hill81]. The definition of this

so called Moore automaton can be extended to a Mealy automaton by extending the
output functionA: | xS - O. A finite state machine can be described by a so called
control graph.
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Definition 2.3 (Control graph). A control graph is a quadru@e , I, O, in whichS

is a set of nodes (representing states), Bn a set of directed edges x S
(representing state transitions). Each state trangtiog is labelled with a set of input
symbols from 5 in which 2 denotes the power-set bfln case of a Mealy machine
each edge [J E is labelled witho [1 O, whereas in case of a Moore machine each state
s Sis labelled witho [0 O.

Similar to the definition of operation types for data-flow nodes, the semantic behaviour
of control nodes is defined by a so called control type.

Definition 2.4 (Controller Typer). LetSbe a set of control nodes[] S andConType
be a set of control types. Control typeS — ConTypeis a function, witht(s) the
control type of control node

In [Hild93] a model is suggested which is based on control graphs, extended with spe-
cial type of nodes (such as join and split), to be able to describe some flows of control,
such as for instance parallel executing loops, in a more compact way.

During scheduling, operations of a data-flow graph are assigned to states of a control
graph. The schedules discussed in this thesis assign operations to cycle steps, which can
be represented by a control graph consisting of a chain of states.

2.2.3 Structural domain

The structural domain is described by a set of network graphs.

Definition 2.5 (Network Graph). A network graph is a tupM (E), whereM is the set

of nodes (representing modules such as functional units, memory, multiplexers), and
is the set of undirected edgelsx M (representing interconnections such as buses and
wires).

Similar to the definition of operation types for data-flow nodes, the semantic behaviour
of network nodes is defined by a so called module type (such as multiplier or register).

Definition 2.6 (Module TypeT). Let M be a set of network nodes)lJ M, and
ModTypebe a set of module types. Module typé/ — ModTypeis a function, with
T(m) the module type of modute.

Inside a network graptM, E), a controllercis modelled as a node] M. LetM:- O M
be the set of controllers iM(, E), in other wordMc = {m U M | t(m) = ‘control’}. A
data-path consists of the sub-graphy(, Ep), whereMp =M\ Mg and Ep = Mp X
Mp. Let Ec be the set of edgds\ Ep, in other words the edges betweddga and
data-path modulelly. These edges transport input symbdoésd output symbol®,
used to exchange control vectors between modules of the datspatidM.
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2.3 Domain relations

During high-level synthesis, relations between different synthesis objects are generated.
These relations have to be passed from one tool to another, so they should be incorpo-
rated in the synthesis interface and data exchange format. Two important kinds of rela-
tions can be distinguished, called intra-domain relations and inter-domain relations,
which will be presented in the following two subsections.

2.3.1 Intra-domain relations

The semantic behaviour of nodes is described by types, as has been shown in Definition
2.2, Definition 2.4, and Definition 2.6. The semantic behaviour of a type can be
described by a graph in the same domain. This means that the set of operation types is
represented by a set of data-flow graphs, the set of control types is represented by a set
of control-flow graphs, and the set of module types is represented by a set of network
graphs. Hence, the semantics of an operation, state, or module can be described by
referring to a data-flow, control-flow, or network graph respectively. When a synthesis
object is created, it always inherits the semantics of the graph it refers to.

Depending on the abstraction level, graphs describing a particular type can be specified
in different ways:

« If the abstraction level of the graph is at the level of high-level synthesis primitives, a
graph can be described by a collection of nodes and edges. An example is a data-flow
graph of a filter section which is used as a data-flow node (or operation) in another
data-flow graph describing a DSP algorithm. The mechanism to break down a design
into smaller parts allows hierarchical designs and partitioning, and hence offers sup-
port for bottom-up and top-down synthesis methods.

« If the abstraction level of the type is such that it cannot be described in terms of oper-
ations, states, or modules of the same abstraction level, other kind of descriptions are
used. In case of primitive operations such as additions and multiplication, documen-
tation such as [Eijn91] can be used to describe the semantic behaviour and its inter-
face (inputs and outputs) in more detail. In case of primitive module types, such as
adders, multipliers, memory, logic gates, and others, computer programs called mod-
ule generators [Thee93, Arts91] can be used to specify their contents on other
abstraction levels. An advantage of using module generators is that they can be
parameterized (speed, size, power), which avoids the need to store each possible
implementation of each module type separately. In all these cases, a type can be
described by a graph consisting of input and output nodes, defining its interface,
together with a reference to documentation or to computer programs. Because this
mechanism uses the same interface as for hierarchical designs, no special conversion
tools or functionality is needed to retrieve library information.



14 HIGH-LEVEL SYNTHESIS COMPONENTS
calc FIR filter
® ®
O g T )—Gald—(T )= ald—(ou)
DR OL TR

Figure 2.2 Intra-domain relation example.

In Figure 2.2, an example of an intra-domain relation can be found. A data-flow graph
calledcalcis used as a node in a data-flow graph representing the behaviour of a Finite
Impulse Response (FIR) filter. The addition, multiplication, and delay nodes on its turn
are described by an addition graph, multiplication graph, and delay graph respectively
(not drawn). Input and output are so-called primitive types, and can only be described
in terms of each other, and therefore must be treated as special cases.

2.3.2 Inter-domain relations

Links are used to describe relations among objects of different domains. Links can be
specified partially to represent intermediate synthesis results. Mainly two kinds of links
can be distinguished, graph links and node links.

Definition 2.7 (Graph Link). Leth be the number of domains. L@} , G, , ... ,G.1 be
a set of graphs fromdifferent domains. A graph link is an n-tuple fr@gx G, x ... x
Gp-1-

If the synthesis interface is restricted to the three domains mentioned in the previous
section, a graph link can be described by a tiji#& x CTGx NWG in whichDFG
represents the set of data-flow grapb$G represents the set of control graphs, and
NWGrepresents the set of network graphs. A graph link relates graphs between these
three different domains. Links between graphs can represent synthesis information,
such as ‘this network graph is an implementation of this data-flow graph’. Hence, graph
links can also be used to represent synthesis library information, such as an operation
type which can be implemented on particular module types.

Definition 2.8 (Operation Type Mapping). Let OpTypebe a set of operation types,
ModTypebe a set of module types, and OpType LetL be a set of graphlinks, and
X 0 ConType Operation Type Mapping: OpType— 2M0dT¥Peis 3 function, withu(t)
the set of module types that can execute operation typgiven by p(t) =
{nwg [ ModTyp¢| (t, X, nwg) [IL}.
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Figure 2.3 Graphical example of inter-domain relation.

To be able to describe the fine-grain information between different domains, node links
are defined.

Definition 2.9 (Node link). Letn be the number of domains. \é§,V;, ... ,V,1 be

sets of nodes from graphs mdifferent domains. A node link is an n-tuple from
2Vox Vix | x 2V,

A node link relates nodes between different domains. Links between nodes can repre-
sent synthesis information such as ‘this data-flow node is related to these states (sched-
ule information)’. Because node links denote the fine-grain relations among graphs,
they can only occur within the context of graph links, relating nodes which are member
of graphs, which on its turn are member of the graph links.

In Figure 2.3 an example of inter-domain relations can be found. A nodelink which
relates data-flow nodg from dfg, statess;, s, from ctg, and modulan; from nwgis
depicted by dashed lines.

Inside links the kind and status of the relation that it represents can be defined, which
makes it easy for tools to decide whether particular links should be used, and to decide
how particular links should be used. Links can for instance be used to describe con-
straints such as ‘this operation should be assigned to this module’, without the need for
conversion tools or special access functions. Links can be tagged, which can be useful
when information needs to be exchanged between different synthesis tools.

By using links, complex and detailed synthesis information is separated from the graph
descriptions themselves. Nevertheless, synthesis information is still gently incorporated
into the data interface. Different designs can be constructed by creating graph links and
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node links using the same graph descriptions. Links can also be used to describe param-
eterized libraries in a compact way.

2.4 NEAT

The New Eindhoven Architectural synthesis Toolbox [Heij94], also called NEAT, is an
implementation of the components discussed in the previous sections. It supports (but is
not restricted to) three design views as discussed in Section 2.2, together with the
domain relations as discussed in Section 2.3.

A standard interface to synthesis data, used by each synthesis tool, makes the maintain-
ability of these tools much easier. Therefore, a standard interface has been defined
[Arts92] and implemented. The standard synthesis interface can be used to manipulate
synthesis objects, such as adding or deleting synthesis objects, create relations among
synthesis objects, add design specific information to synthesis objects, and so on. Also,
functionality such as storing and retrieving intermediate synthesis data to disk, com-
mand line parsing, consistency checking, obtaining synthesis status, providing abstract
data types (lists, sets, arrays, strings), and more has been included in the standard inter-
face to save the tool developer unnecessary work.

The relations between objects of NEAT are drawn in Figure 2.4, in which a directed
edge X, y) denotes a set relation (ixecontains or consists of a 3¢t The main object

is a database. A database contains a set of graphs and a set of graphlinks. A graph con-
tains a set of nodes and a set of edges. A node contains a set of ports, and finally, a
graphlink, contains a set of nodelinks.

Each synthesis tool produces specific kind of results, and hence needs a specific data
interface to store these results inside the existing synthesis objects. This data should be
hidden from other tools to prevent visibility of irrelevant data, visibility of irrelevant
manipulation functions, unnecessary re-compilation of the synthesis interface, and
unnecessary re-compilation of tools which rely on this interface. This can be accom-
plished by extending the synthesis interface using object oriented programming tech-
niques. Inheritance can be used to extend existing synthesis objects with specific
information without any restrictions, and without interfering with the common NEAT
synthesis interface.

For a class of synthesis objects (graphs, nodes, edges, and ports), default inheritance
relations exist, which are modelled in Figure 2.5. By changing the sipjegtin this

figure by one of the common synthesis objects (graphs, nodes, edges, and ports), the
inheritance structure for such an object can be obtained. The choice for this specific
inheritance structure has been inspired by the fact that synthesis objects from different
domains share common data (for example a graph in general consists of nodes and
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Figure 2.5 Inheritance structure of NEAT.
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Figure 2.6 Tool-specific inheritance.

edges), but also differ in many aspects (a data-flow node may contain specific schedule
information, which is not applicable for control and network nodes).

Tool specific data and functionality can be added by using inheritance, as shown in Fig-
ure 2.6. The standard synthesis interface remains unaltered, hence other tools are not
disturbed with tool specific data, and the standard synthesis interface does not have to
be re-compiled. The new interface that has been obtained, has the same look and feel as
the standard interface.

Synthesis tool frameworks using the NEAT interface are generated automatically by
means of templates. A tool programmer adds his functionality to these tools using an
object oriented programming style. This prevents the programmer from building tools
and programming environments from scratch.

NEAT is implemented using the C++ programming language [EIli90], which has been
chosen because of its object-oriented facilities and its overall use in CAD development.

node —m» port
graph
database<
edge

graphlink ——p nodelink
Figure 2.4 Graphical overview of standard synthesis object relations.
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To be able to store intermediate synthesis results which have to be exchanged between
tools or research platforms, an exchange format has been developed based on plain
ASCII files. The syntax of these files consists of a balanced nested parenthesis structure
(such as LISP), which only requires simple LL-(1) parsing techniques (see Example
2.1).

The intermediate data format can be extended by defining new keywords, which goes
hand-in-hand with the object-oriented extensions of the standard synthesis interface.
Tools which are not interested in the information attached to a particular keyword, can
skip this information by just counting parentheses, which is taken care of by standard
parsing functions. This implies that new extensions to the format will never disturb
existing tools which don't understand the underlying semantics of these new extensions.
Hence the format is both upward and downward compatible.

The ESCAPE environment [Fleu93] can be been used to display synthesis information
(see Figure 2.7). Separate windows display different domains, and links can be visual-
ized by clicking on nodes. The graphical interface gives designers the capability to ana-
lyse and manipulate (intermediate) synthesis results [Hild94].

Example 2.1 Partial example of textual format

(dfg-view
(graph example

(node NO
(type input)
(varname in2)
(out-edges E1))

(node N2
(type output)
(in-edges E3))

(edge E1
(type data)
(width 8)
(varname in2)

(destination N14 (port N-1))
(origin NO (port out)))

))

2.5 Related work

In [Black88], an alternative notion of links is presented. Synthesis results are recorded
as tags inside graph descriptions, and special programs (Coral) extract this information
and translate them into links. Hence the links only depict relations among objects of
different domains, and do not contain any synthesis information. Synthesis information
is stored in tool-specific data structures, and no support is given for development or
integration of new synthesis tools. In [Lann91] and [Rund93], object-oriented tech-
niques are used in a similar way as NEAT, to extend a common synthesis interface into
a tool specific interface. However, these systems store synthesis information as tags
inside graph definitions, instead of using links. This may restrict the complexity of rela-
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Figure 2.7 ESCAPE shows control, behaviour, and structure design views

tions that can be described. Complex inheritance mechanisms are used to describe
libraries, and special techniques are needed to retrieve library information. NEAT uses
links to describe comprehensive libraries very efficiently. No special conversion tools
or access functions are needed to support these libraries. The NEAT interface is very
closely related to the mathematical structure of synthesis objects. Inheritance is only
used to make the system extendible, without losing the original structure of the inter-
face.

To our knowledge no high-level synthesis system supports the use of extendible ASCII
data to store synthesis data, or the incorporation of links inside the common synthesis
interface to represent synthesis results.

2.6 Conclusions

In this chapter a synthesis toolbox system called NEAT has been presented. This system
provides a flexible way of developing synthesis tools with minimal programming effort,

by providing developers with a common functional interface containing common syn-
thesis functionality, standard object manipulation functions, search functions, and com-
mon data structures. Some synthesis strategies have been successfully implemented
using NEAT. The overall experience with NEAT is that it highly improves the design
and maintainability of high-level synthesis tools. It has contributed significantly to the
ease of incorporating new research ideas in existing synthesis trajectories.
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Chapter
3 High-Level Synthesis Scheduling

3.1 Introduction

In this chapter the key problems of this thesis, a collection of high-level synthesis
scheduling problems, are formally defined. Before introducing these scheduling prob-
lems, scheduling constraints and goals which are of specific interest for the high-level
synthesis scheduling problem will be presented.

3.2 Scheduling and allocation definitions

This thesis is about the generation of synchronous digital circuits, in other words cir-
cuitry which is synchronized by a central clock. This introduces the notion of the
so-called cycle step, which is equal to the duration of one period of the clock. The exe-
cution of an operation type on a particular module type can be measured in the amount
of cycle steps, denoted as the execution delay.

Definition 3.1 (Execution delayl). Let ModTypebe the set of module typeSpType
be the set of operation typels[] ModType t 0 OpType u be an operation type
mapping, and [ u(t). Execution delag: OpTypex ModType— R is a function, with
d(t, ) the number of cycle steps an operation typeeds when it is executed on a
module having module tyge

When an operation typel OpTypecan be executed upon several module types
| O u(t), various execution delaykt , I) may be associated with an operatidn V, for
which t(v) =t. In this thesis, for reasons of simplicity, the operation type mappmg
restricted in such a way that each operationll be associated with exactly one mod-
ule typel, and hence each operation can be associated with a unique execution delay.

Definition 3.2 (Operation mapping). LetG = (V, E) be a data-flow graph,[] V, and
ModTypebe a set of module types. Operation mapging -~ ModTypeis a function
with §(v) the module type upon which operatiewill be implemented. Notice that

¢(v) U u(t(v)).

When the operation mapping is known beforehand, the execution delay of an operation
is given byd(t(v) , &(v)), for which the following short hand notation is used:

Definition 3.3 (Operation execution delay). Let G = (V , B be a data-flow graph,
v OV, 1(v) be the operation type gfand¢(v) be the operation mapping wfOperation
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execution delay: V - R is a function, withd(v) the operation execution delay of
operationv, given byd(v) = d(t(v), &(Vv)).

Modules inside a data-path will occupy a certain amount of area. To be able to optimize
the module area of the data-path, the cost of a module type is defined as follows:

Definition 3.4 (Module type costos). Let ModTypebe a set of network graphs, and
| 0 ModType The module type cosbst ModType— R is a function, withcost(l) the
area of module typle

A schedule of an operation can be defined as follows.

Definition 3.5 (Scheduled). Let G =(V, E) be a data-flow graph, andV. The
schedulep: V - N is a function, withp(v) the cycle step where operatiarstarts its
execution. The schedule of each operatianduces an intervalp[v) , ¢(v) + &(V)],

often written asljeginv) , endv)], which represents the range of cycles in which
executing.

A schedulep induces a schedule length (also called makespan) and a resource alloca-
tion.

Definition 3.6 (Schedule lengtiM). Let (V, E) be a data-flow graptg§ be a set of
schedules, andh 0 S The completion timeC,x S - N is a function, with
Cmad®) = MAX, 0 v |1(v) = ‘outpur €NAV). The start timeCp,j,: S — N is a function,
with Ciin(9) = MINy v |t(v) = sinpur P€GINY). The interval [Crin(¢) , Crad$)] is
called the schedule range of schedpl&he schedule lengthl: S - N is a function
with M(¢) given by M(¢) = C2(P) - Gin(®). In the remainder of this thesis it is
assumed, without loss of generality, t8g§,($) = 0, in other word€,,5,(¢) = M(¢).

Definition 3.7 (Resource AllocatiorRA). Let G = (V, E) be a scheduled data-flow
graph, S be a set of schedules, apd] S Let C(¢) = [Crin(d) , Cha{P®)] be the
schedule range of scheddieandc [ C. Let ModTypebe the set of module types, and
| O ModType Distribution functionDF: Sx ModTypex C - R is a function, given by
DF(@,l,09= [{vOV|&V)=I10OcUO[d(V),d(v) +O(V)]}, which denotes how
resources are used over time. The resource allod@#a@in, ) for eachl 0 ModTypeis
given byRA® , I) = MAX ¢ ¢9) DF(9 , |, ©), which denotes the number of resources
of typel, needed to implement schedgle

Definition 3.8 (Resource Allocation CoskA). LetSa set of schedules apd] S The
resource allocation costRA S - R is a function, given byRA) =

2 | 0 ModTypeCOStl) . RA® , I).
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3.3 Constraint sets and performance measures

The task of a high-level synthesis system is to find an optimal solution with respect to
the performance measures, while satisfying the constraints specified by a designer.
Most high-level synthesis (sub-)problems can be defined as an optimization problem.

Definition 3.9 (Combinatorial optimization problem). A combinatorial optimization
problem is a collection of instancds ,(c). An instance of an optimization problem is a
pair (F , 0, whereF is a set of candidate solutions an@ — R is a cost function. The
problem is to find arf O F, for which Uy o g c(f) < c(y) in case of a minimization
problem, andly ¢ c(f) 2 c(y) in case of a maximization problem.

In practice, high-level synthesis tasks like selection, allocation, scheduling, and binding
are performed with certain goals and constraints in mind. To be able to distinguish good
solutions from bad solutions, the goals can be described by the use of performance
measures, resulting in a cost functorPerformance measures which are commonly
found in high-level synthesis publications, are global completion time (optimize the
number of cycle steps between consumption of input data and production of output
data), throughput rate (find a schedule such that input data can be offered as fast as pos-
sible), and resource allocation (find a schedule which induces a minimal resource allo-
cation). Properties such as mutual exclusion [Camp9l], chaining, multi-cycling
[Stok91], and time shapes [Werf91,Eijn91] can be used to find schedules with even bet-
ter performance measures. Other performance measures like testability [Gebo92],
power consumption [Chan92], interconnect allocation [Rim92, Rama92], placement
and routing [Weng91,Pang91], system clock optimization [Park85], and more can be
found in several publications, but are very hard to quantify accurately at the abstraction
level used for high-level synthesis.

The set of candidate solutiois consists of solutions which don’t violate the con-
straints imposed on the problem (also called feasible solutions). In this thesis con-
straints like precedence constraints, time constraints, throughput rate constraints, and
resource constraints will be discussed in more detail in Section 3.4. In Section 3.5 some
typical high-level synthesis scheduling problems will be formally defined.

3.4 High-level synthesis scheduling constraints and goals

3.4.1 Data-flow graphs and execution order

Section 2.2.1 told that the execution order of nodes inside a data-flow Yraghi¢
constrained by the structure of the data-flow graph, inducing a partial-<orderthe
execution of the nodes.

The partial ordex induced by the structure of an acyclic data-flow graphg) is
rather straightforward to determine. Lev 0V and (1,v) O E. Edge (1, V) denotes
transfer of data from operatianto v, in other words data produced by operatios
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consumed by operationThis implies that operationcan start its execution after oper-
ationu has produced data far The number of cycle steps operatiorequires to pro-
duce data for operationis described by the intra-iteration distance.

Definition 3.10 (Intra-iteration distancé). Let (V, E) be a data-flow graph,v OV,
and (1, v) OE. The intra-iteration distanau , v) [J R betweernu andv is defined as
the number of cycle stepsneeds to translate its input data into input data flor case
(u,v)OE, &(u,V)=-0, and in case =V, d(u, Vv) = 0.

Hence the cycle step in whichproduces data faris given by$(u) +d(u, v). In gen-

eral the intra-iteration distan@gu , v) for each outgoing edge (V) of operatioru to
operationv 1V, equals the operation execution ded@y) of operatioru. Nevertheless,

the situation in which an operation generates tokens at different cycle steps for each
output edge, resulting in different values for the intra-iteration distance between opera-
tions, can also be modelled (also called time-shapes).

For each edgeu(, v) O E, the following relation can be derived:

¢(u) +6(u, V) < (V)

Such a relation is called a distance relation, and describes a constraint with respect to
the relative distance between the schedule of operations. Because in practical situations
o(u,Vv) =0 (hence for each edge ,v) O E, ¢(u) <d(v)), the edges in a data-flow
graph impose restrictions on the order of execution of operations. For each edge
(u,v) O E such an execution order constraint is denoted iy, also called a depend-

ence relation. The relation is irreflexive (in other words « u), anti-symmetric (in

other wordsu < v [0 v « u) and transitive (in other words<vOv<w[ u<w).

Hence an acyclic data-flow grap¥ (E) induces a structureV(, <), which can be
obtained by taking the transitive closureepfdenoted bye*. Structure ¥, <) imposes

a strict partial order among the execution order of operatioWsawfd constraints the
schedule of the data-flow graph. In Chapter 4 some algorithms will be presented, to
determine the distance between each arbitrary pair of operation¥.fiidmse dis-
tances will be used by scheduling algorithms to guarantee the construction of feasible
schedules with respect to the constraints induced by the structure of the data-flow
graph.

In case a data-flow graph contains loop structures, it establishes a cyclic flow of data. In
that case a strict partial order (which is irreflexive and anti-symmetric by definition)
cannot be derived directly from the structure of such a data-flow graph. Take for
instance the example shown in Figure 3.1. In this data-flow graph a transitive closure
E* of edges would result inv{ , v¢) O E* and {, , vo) 0 E*.

In data-flow graphs, data-flow and control-flow are integrated into one model. The con-
trolling part takes care that the loop is executed the correct number of times. It should
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Figure 3.1 Data-flow graph loop example.

be noticed however that a data-flow graph loop structure is a shorthand description for
successive executions of the operations inside this loop structure. In Figure 3.2, the loop
structure is explicitly unfolded, resulting in an acyclic data-flow graph.

Unfolding a loop is not an efficient way to derive the execution order of operations.
First of all, the number of operations increases with each unfolding, increasing the
input size of the problem for synthesis. Secondly, the regularity induced by the loop
structure is not explicitly visible any more, and greedy synthesis methods might pro-
duce irregular data-paths, hence special analysis techniques are needed to be able to
construct efficient data-paths. Finally, the number of unfoldings might be unknown at
compile time (for example in the case of while loops), hence in general it is not possible
to eliminate the circular structure of the loop by using unfolding.

control

control

@ control

Figure 3.2 Partially unfolded loop.
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control
new
old old
'c' variable 'd' variable

Figure 3.3 Control-flow and data-flow execution order.

Another method is to consider the loop body as a basic block, and synthesize it sepa-
rately. This limitation eliminates the possibility of loop pipelining (see Section 3.4.4 for
more information about pipelining), and therefore unacceptably restricts the solution
space of synthesis.

In Figure 3.3 the order of execution of operations of the data-flow graph given in Figure
3.1, is drawn in terms of the production and consumption of old and new values with
respect to the current loop iteration. An old value o translated to a new value ©f

(by execution of additiom;), which together with an old value dis used to calculate

a new value ofl (by execution of additiom,). Control is used to repeat the execution of
this behaviour a specified number of times.

The moment of execution of operationin the current iteration is restricted by previ-
ous executions o¥;. The execution order of operatien in the current iteration is
restricted by previous executionswgf and the execution of operatigpin the current
iteration. This means that newvalues andi-values can only be generated consecu-
tively with respect to their previously generated values. This imposes an execution
order constraint with respect to consecutive executions of the addition operations
among different iterations of the loop structure.

In Figure 3.3, two different kind of dependencies can be distinguished. Dependencies
referring to data produced and consumed in the current iteration are called intra-itera-
tion dependencies. Dependencies referring to data produced in previous iterations and
consumed in the current iteration are called inter-iteration dependencies. One way to
make execution order constraints with respect to loop constructs explicit for scheduling,
is by the use of so-called delay-nodes [Eijn91]. A delay node (denoted with symbol ‘T’)
has one input and one output. Any token arriving on the input is copied unaltered to the
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data control

1.
7T j

Figure 3.4 Execution order constraints of the example of Figure 3.1.

output. The special property of a delay node is the fact that it contains one (or more) ini-
tial token(s), which hold initial values used for the first iteration(s) of the loop.

3.4.2 Dependence and distance graphs

In Figure 3.4, the data-flow grapl (E) of Figure 3.1 is modelled by using delay
nodes. The resulting graph is called a dependence grapt),(whereT denotes the set

of operations, consisting of operations frovh excluding the nodes combining
data-flow and control-flow, such as entry and exit nodes, and extended with delay nodes
to explicitly model data dependencies between loop iterafias.the set of edges,
which model dependencies between the operatiohs of

A dependence graph can be interpreted as a self-executing entity, also called a process.
Just like with data-flow graphs, the execution mechanism of a process can be described
by a token-flow model. During the execution of a process, each operation is executed
exactly once. The mechanism to start the execution of a process is called the invocation
of a process. A process can be repeatedly invocated, leading to successive process exe-
cutions. A process iteration refers to the execution of a particular process invocation.
Details about processes and how to obtain a dependence graph from a data-flow graph
can be found in [Kost95].

The dependence graph of Figure 3.4 contains two strongly-connected components,
called cycles (not to be confused with the definition of a cycle step!). The number of
delay nodes inside a cycle describes the maximum number of pipeline stages that can
be distributed among this cycle to obtain more efficient schedules. This leads to the
notion of the so-called inter-iteration distance.

Definition 3.11 (Inter-iteration distanc@). Let (T, F) be a dependence graph, and
(u,v) OF. The inter-iteration distandgu, v) [0 N betweenu andv is defined as the
number of loop iterations between the production of datadoyd the consumption of
that data by.
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In a dependence graph (F) the boundary between loop iterations is denoted explic-
itly by delay nodes. Lat,vOT, (u, V) OF, andt(u) = ‘delay’, thenA(u, v) is equal to
the number of initial tokens inside In other cases(u,v) = 0.

Let ¢,(u) denote the time that[] T starts its execution in thd iteration of a loop. For
each @, v) O F it can be derived that:

On(V) 2 Pp A, ylu) +0(u, v (3.1)

Let dii O N represent the distance between two successive process invocations (also
called data introduction interval). When the distance between every two process invoca-
tions is constant, equation (3.1) can be rewritten into:

0(V) = d(U) - AU, V) - dii +8(u, V) (3.2)

A short-hand notatiog(v) can be used fap,(v), which abstracts from the notion of
iteration. In that case equation (3.2) can be rewritten as:

O(V) = d(U) - Mu, V) - dii +5(u , V) (3.3)

Relations as in equation (3.3) are called distance relations. Distance relations can be
visualized by labelling each edga,(v) of a dependence graph (F) by a tuple
(O(u,v),A(u, V). A labelled dependence graph is also called a distance graph.

In Chapter 4 it will be shown that cycles in a dependence graph will impose time con-
straints with respect to the operations inside these cycles, resulting in a lower bound
and upper bound on the range of cycle steps in which these operations can be sched-
uled. Algorithms will be presented to determine and update these bounds, and hence
guarantee the construction of feasible schedules with respect to the constraints induced
by the structure of the data-flow graph. Furthermore it will be shown that cycles in a
dependence graph impose a lower bound value of the invocation distance, and a new
algorithm will be presented to derive this lower bound efficiently.

3.4.3 Data-flow graphs, arrays and dependence analysis

In data-flow graphs the contents of an array is modelled by a single token. Scalar values
are written to and retrieved from the array by using so-called update and retrieve nodes
respectively, which provide a way to index the array. A retrieve node has two inputs, an
array input which accepts a token holding an aarand an index inputto address the

array. It has two outputs, one array output which passes the token associated with array
a unaltered, and a scalar output which re@ih An update node has three inputs, an
array input which accepts a token holding an aaagn index input to address the
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for i := 0 to 9 do
ali] := a[i] + 1;
endfor;

Y
S

Figure 3.5 Loop with array, corresponding data-flow graph.

array, and a scalar inpdt It has one array output which returns a token associated with
arraya, for whicha(i] is equal to valuel.

The order in which an array is accessed is modelled by a sequence of edges among
update and retrieve nodes, which induces a linear order on the array accesses in such a
way that no array assignment and retrieval conflicts arise. In case loop structures are
used in combination with arrays, the linear sequence of edges may impose severe
restrictions with respect to loop pipelining, as will be shown by the following examples.

An example of a loop structure in combination with an array is shown in Figure 3.5.
Because the values @fi] are independent for different valuesipfand hence new
a-values can be generated independently from the generation ofaetakres, there

are no execution order constraints between successive executions of the addition opera-
tion, despite the structure of the data-flow graph edges caused by sequencing the array.
A direct relationship between the structure of data-flow edges and order constraints is
not explicitly obvious. Dependence analysis is needed to extract the exact order con-
straints from the data-flow graph structure [Bane93,Zima90]. The execution order con-
straints, obtained from such an analysis, are shown in Figure 3.6. From this figure it is
obvious that among the loop-body operations, no execution order restrictions exist



30 HIGH-LEVEL SYNTHESIS SCHEDULING

data control

@

Figure 3.6 Execution order constraints of the example of Figure 3.5.

regarding previous loop executions. The control part must generate a sequence of index
values, and it must terminate the loop.

An example of a loop structure in which dependencies among different loop iterations
exist, is shown in Figure 3.7. The algorithmic behaviour of this loop structure is shown
in Figure 3.7.

Just like in the previous example shown in Figure 3.5, the array sequence in Figure 3.7
introduces order restrictions which are unnecessary for scheduling. Additional depend-
ence analysis is heeded to investigate the index-space structure, which leads to the exe-
cution order constraints as visualized in Figure 3.9. In this figure, delay nodes are used
to provide a reference to scalar values of the array produced in previous loop iterations.

The translation of the array index calculations from the original data-flow graph to the
control part of Figure 3.9 isn't very efficient. In Figure 3.10 a more efficient calculation

of index expressions can be found, using delay nodes to make values produced in previ-
ous iterations accessible in current iterations.

With respect to control it is a mistake to assume that the controlling part of the loop
should always be executed synchronous to the loop body. In the example of Figure 3.1
and Figure 3.2 it can be observed that the controlling part of the loop (represented in the
program by variabl@) is used to manage the number of loop iterations, and to provide
indexing for arrays (which in a data-path should be translated into memory addresses
management). Despite the data-flow edges from the controlling part of the loop towards
the entry and exit nodes, and despite some addressing aspects, there are no data depend-

for i := 2 to 9 do
alil := b[i - 1] + c[i - 2];
b[i] := al[il + 1;
cl[il := alil * b[il;

endfor;

Figure 3.7 Algorithmic behaviour of data-flow graph in Figure 3.7
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Figure 3.8 Loop construction containing array accesses.

encies whatsoever between the controlling part and the values calculated inside the loop
body, which has been made explicitly visible in Figure 3.2. Schedules can be created in
which loop bodies start their execution before a control value has been determined, or
the other way around, in which successive control values are determined before the
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control

P41

Figure 3.9 Execution order constraints of the example of Figure 3.7.

loop body has finished its execution. In the data-flow graph of Figure 3.5 one can see
that a data value obtained by the controlling part is used to index an array. This implies
that the control value should be calculated before the corresponding loop body can be
executed. Nonetheless successive control values can be calculated before the loop body
has finished its execution.

Another discussion with respect to the control part of the loop is about the implementa-
tion. It can be synthesized just like the loop-body, and be integrated inside the
data-path. It can also be separated from the data-flow part of the loop, and dedicated
implementations can be created by using special techniques, such as for instance for
address generation [Lipp91,Vanh93]. Control-flow can also be modelled as a finite state
machine, which in combination with logic synthesis or in combination with other spe-
cial techniques can lead to dedicated gate-level implementations.

data control

cli-2] b[i-1]

afi]
\ i i -1 -2

bIi]

clil

Figure 3.10 Calculation of index value with delay nodes.
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c[i-2]

Figure 3.11 Abstraction of control.

As control can be synthesized by other synthesis tools, a scheduler must be capable to
abstract from control. This can be achieved by taking into account the amount of time
needed to generate control values, which on its turn are needed in the data-path, and
model this execution time on the edges which represent retrieve and update of data
from arrays. An example obtained from Figure 3.10 is shown in Figure 3.11.

So far, delay nodes have been used to describe order execution constraints with respect
to a single loop iteration. An example of such a loop structure can be found in Figure
3.12, in which a simplified data-flow graph is shown (for simplicity array accessing
hasn’'t been drawn explicitly).

In case of nested loops, the invocation distance of operations can be different with
respect to each loop. Nested loop structures, in which more than one iterator is used,
result in multi-dimensional index spaces. Let the pegpjadN of a loop, using iterator

I be the number of cycle steps such a loop execution takes. Because operations in
multi-dimensional loops can be repeated with different periods with respect to each
loop, a delay node needs to be annotated with a period yetdre able to describe

the multi-dimensional characteristic of the execution order constraints. In the example
of Figure 3.12 the execution btlepends on two iterator&ndj, and hence the period
vector is given by , pj). The distance between two successive executions of an opera-
tion is not necessarily constant. In [Verh92b] a stream model to describe data dependen-
cies between operations based on period vectors is introduced. Determination of the
execution order of two operations is modelled as an Integer Linear Programming (ILP)
Problem. In general, such a problem can become rather difficult to solve efficiently, and
in [Verh95] some special cases are described in detail.

In this thesis it is assumed that the distance between successive operation executions is
constant over all loop indices.
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for i :=1 to 4 do
for j := 1 to 4 do
ali,jl := f(ali,j-1]1,ali-1,31);

Figure 3.12 Example of multi-dimensional loop.

3.4.4 Time

When synthesizing digital circuits, a designer wants to be able to make a trade-off
between the speed and the area of a circuit. This situation characterizes one of the main
differences between high-level synthesis and ordinary software compilation techniques
[Aho86], the importance of the notion of time. Throughput rate constraints imposed on
for instance DSP applications are crucial, and must be satisfied in any case. This
imposes severe requirements with respect to the quality of solutions produced by sched-
uling algorithms concerning time.

A common constraint in high-level synthesis is the so-called global time constraint
Tmaxd N (also called cycle step budget). L&t,E) be a data-flow graph. A global
time constraint 5 for a schedul@ impliesC,;,2($) < Tihax IN Other words the com-
pletion timeC,,,5(9) induced by schedulie should not exceed time constralijf,y

Besides a global time constraint, a local time constraint can be used. A local time con-
straintt.(u , v) between two arbitrary operation [J V denotes the maximal distance
between these two operations, in other wapr@$ < ¢(u) + t(u, v).
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Figure 3.13 Unfolded loop of the example given in Figure 3.12.

In Chapter 4 it will be shown that a cycle in a dependence graph will impose local time
constraints with respect to operations inside this cycle. It will also be shown how a
combination of time constraints and dependence constraints influence the range of
cycle steps in which operations can be scheduled. Some algorithms will be presented to
determine and update these ranges, to be able to efficiently produce schedules satisfy-
ing their time constraints.

Time can also be used as a quantity to be optimized. A schedule objective, which can be
found very often in high-level synthesis, is the completion @pg(¢) (see Definition
3.6) induced by schedude

In some cases it is important to generate an implementation of a data-path in which data
can be offered successively at a particular rate. This leads to the notion of the so-called
throughput rate.

Definition 3.12 (Throughput ratelii). Let (V, E) be a data-flow graph. The throughput
rate (also called data introduction intenill¢) O N of a schedule is defined as the
distance between two consecutive invocations (often denoteid) by

Just like with time constraints, the throughput rate can be used as a constraint or as an
objective. The throughput rate of a schedule can be improved by the use of pipelining.
In this situation operations from current iterations are scheduled concurrently with
operations from preceding and/or successive loop iterations. An example of the differ-
ence of throughput rate of a pipelined and non-pipelined schedule can be found in Fig-
ure 3.14, which shows two different schedules for the example of Figure 3.7.

To be able to construct loop pipelined schedules, it is important to know the minimal
and maximal distance between two operations. The result producediHyrthetipli-
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a[2] b[2] c[2] a[3] b[3] c[3] a[4] b[4] c[4]
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(a)
b[3] b[4] b[5] b[6]
al2]  b[2] a[3]  cl2] a[4]  c[3] as]  cl4] a[6]  c[5] of6]
+ + + + + + + + + +
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(b)
Figure 3.14 Non-pipelined (a) and pipelined (b) schedule.

cation of the example Figure 3.11 is needed in iteratio@ by the addition operation

to generat@[i+2]. Depending on the execution rate of the loop, this imposes lower and
upper bounds on the range of cycle steps available for scheduling operations, which
will be discussed in more detail in Chapter 4.

3.4.5 Resources

Just like time, another important aspect in high-level synthesis are hardware resources,
because each square millimetre saving in terms of chip area can lead to economical
advantages.

A resource constraint imposes an upper bound on the resource allocatidh, Exbé
a data-flow graph, anBQ(l) be an upper bound for module typel ModType A
resource constrained schedglemplies that o yogTypeRAD , 1) < RA).

The most obvious resource bounds used in high-level synthesis is an upper bound on
the number of functional units (also called modules). This imposes a restriction on the
number of operations of a particular operation type that can be scheduled simultane-
ously. Only very little is known of schedulers which can cope with memory allocation
constraints and interconnect allocation constraints during scheduling. Most methods
reported try to optimize memory allocation or interconnect allocation during or after
scheduling. In Chapter 4 a short overview of algorithms being capable of handling
resource constraints will be given.

A minimal resource allocatioRA(¢) (see Definition 3.8) induced by schedglean
also be used as an objective for scheduling.
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3.5 Schedule problems

The key problems discussed in this thesis consist of two kinds of scheduling problems:

Definition 3.13 (Time constrained scheduling). Given are data-flow greplif and a
time constraintl ;. Find a schedul$ such thatC,5(¢) < Tax inducing a minimal
resource allocation RA].

Definition 3.14 (Resource constrained scheduling). Given are a data-flow graph
(V, E), and for each O ModTypea resource constrai®((l). Find a schedul$ such

thatl) o moaTypeRA® , ) < R), inducing a minimal completion tin@y,,,(9).

In Chapter 4 and Chapter 5 it will be shown that time constraints and resource con-
straints are tightly related.

Another category of interesting scheduling problems deal with throughput rate. In
Chapter 4 it will be shown that throughput constraints are a special case of time con-
straints, and therefore can be considered as a special case of time constrained schedul-
ing problems.

3.6 Conclusions

In this chapter dependence constraints, time constraints, and resource constraints have
been discussed, playing a leading role in high-level synthesis scheduling. The chapter is
concluded with a formal introduction of two scheduling problems, time constrained and
resource constrained scheduling, which will be the key problems discussed in the
remainder of this thesis.
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Chapter
4 Schedule Constraints

4.1 Introduction

In practical cases the high-level synthesis scheduling problem is subject to constraints,
such as precedence constraints (derived from an algorithmic behaviour), resource con-
straints (derived from a network structure), and all kinds of time constraints (such as
completion time and data arrival rate).

During the construction of a schedule, operations are assigned to cycle steps. Because
of constraints, operations cannot be assigned to arbitrary cycle steps. The range of cycle
steps available for operations to start their execution without violating any constraints,
is called the feasible schedule range of operatioBeveral methods to determine
bounds on the feasible schedule ranges of operations will be presented in this chapter.
These methods differ in accuracy and efficiency.

The feasible schedule range of operations can change during the construction of a
schedule. If for instance, due to the schedule of a particular operation, all units of a
resource type become occupied in cycle stepe feasible schedule range of unsched-
uled operations needing this resource type for execution cannot include cydenstep
their schedule range any more.

Schedulers which allow operations to be assigned to cycle steps outside their feasible
schedule range, may result in inefficient scheduling methods which need backtracking
or repair algorithms to come up with a feasible schedule. To obtain more efficient
scheduling methods, one can restrict the search space of a scheduler by only allowing
operations to be scheduled within their feasible range. These feasible ranges should
restrict the search space as good as possible without excluding all optimal solutions
from the search space. The algorithms to determine feasible schedule ranges should be
very efficient, to obtain overall efficient scheduling methods.

This chapter presents the influence of different kinds of constraints on the feasible
schedule range. It gives an overview of existing methods which determine feasible
schedule ranges, and presents some new algorithms to determine the feasible schedule
range accurately and efficiently. Furthermore it presents a unified approach to treat all
these constraints in a single model.
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4.2 Distance matrix

Let (T,F) be a dependence graph derived from a data-flow gNpk)( and let
u,vO T, such thatl < v. The time wher& can start its execution depends on the time
ends its execution, given by:

endu) < begin(v)
Let distancéu , v) denote the minimal distance betweesndyv, then:
¢(u) + distancdu , v) < ¢(v)

Let dii be a shorthand notation fdii(¢). The minimal distancdistancéu , v) between
each pair of operationsv [J T, with (u,v) OF, is given byd(u, Vv) - A(u, V) -dii. The

question is how the distance between two arbitrary operationsTroam be deter-
mined.

A pathpinside T, F) is a sequence of operatidpRs t, , ..., f, such thatt(, t.;) OF
for eachi= 1, 2, ..,r-1. For each relatiort;( ;) we have a corresponding dis-
tance relation:

O(tir 1) 2 O() - AL, Gvg) - dil +0(t; , Gy p)
Adding all distance relations of pgtiresults in:

dt) = d(t) - A(ty o) + ... +A(t.q,t)) - dii +0(t, tp) + ... + O(t.q ,t;) 4.1)
which by summation of all lambdas and deltas gives:

ot) = d(t) -N(ty , t) - dii + & (1, t,) (4.2)
which can be rewritten as:

o(t;) = ¢(ty) + distancét, , t,) (4.3)

From equation (4.3) it can be derived that the time operéfistarts its execution
restricts the time operatidpmay start its execution, in other words, it defines a mini-
mal distancelistancét, , t,) between the schedule time of operatigrendt,. If during
scheduling operatioty becomes scheduled in cycle stgf,), the minimal distance
distancét, , t) denotes that operatigncan only be scheduled inside or later than cycle
stepd(ty) + distancét, , t.). On the other hand, if operatidnbecomes scheduled in
cycle stepd(t,), operationt; can be scheduled inside or earlier than cycle step
¢(t,) - distancét, , t.). Hence the distance relations clearly restrict the feasible schedule
range of operations with respect to the schedule of other operations. To derive feasible
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schedule ranges during scheduling efficiently, the distance information between opera-
tions will be needed at any time.

In [Heem90] two algorithms are discussed to determine the distance between opera-
tions. In both cases the schedule tipg) of a reference operatianT is fixed, which

by definition equals 0. The first method is based on Fourier-Motzkin elimination. By
recursive elimination of variables in the set of distance inequalitie@,(lm?) algo-

rithm can be derived to determine feasible schedule ranges of operations. When the
schedule time of another operatipl T is fixed, the schedule ranges need re-computa-
tion. In a worst case situation a complete Fourier-Motzkin elimination must be per-
formed again. The second method is based on calculation of the all-pairs longest path,
which can be calculated by the Floyd-Warshall algorithm (complé)(ltl;43)) or John-

son’s algorithm (complexityO(|T| - [F|+ [T|?-log[T|)) (for more details, see
[Corm90]). Becausé(t,) equals 0, the distance betweeandt; is exactly the length of

the longest path. If there is no path, the distance egwald/hen an operatiofy is
scheduled, an edgé¢ (t) with distance ¢(t) , 0], and an edget;(, t) with distance

[-¢(t;) , O] are added, or, when these edges exist, the distances are updated to these val-
ues. The update of the feasible schedule ranges is performed by re-computing the long-
est paths by re-applying the Floyd-Warshall algorithm or the Johnson algorithm.

In [Heem92] a third method is derived from the second method, which applies a sin-
gle-source longest path algorithm instead of an all-pairs longest path. The Bell-
man-Ford algorithm, with a complexity @(|T| - |F|), is used twice to derive the
distance from a reference operatiprto all other operations and vice versa. When
scheduling an operation, the Bellman-Ford algorithm is used again to update the dis-
tances between operations. When scheduling operations one by one, this will lead to a
worst case complexity of at lea®(|T|? - |F|). The complexity will increase signifi-
cantly for scheduling methods which use many tentative movements of operations dur-
ing scheduling. One such example is force directed scheduling [Paul89], in which
O(|T|2 - To) tentative movements are performed during scheduling, with N being

the overall time constraint.

In [Goos89] an iterative approach is suggested to calculate distances. It relies on the
way a schedule is constructed, which is a list scheduling algorithm that assures schedul-
ing operations in a topological order. In case of an intra-iteration dependengy (
scheduling an operatianwill impose a lower bound on the schedule tin(e® of oper-

ationv, which is called a computable bound. In case of inter-iteration dependencies, a
lower bound onp(v) cannot be computed explicitly using this topological method, and
therefore backtracking is introduced. A weight functtonwhich depends odii, is

used as follows:

¢ (V) 2 ¢(u) + w(dii)

The value ofp(v) in a current list scheduling stage is calculated by usingj(thevalue
obtained by the previous list scheduling stage. From experiments it follows that the
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choice of the initial value ap(u) is not important, and is set to 0. The method is how-
ever reported to be highly dependent on the value chosen.fBesides, a theoretical
foundation why this method works correctly is missing. Finally, no results are given
about the typical amount of iterations needed to make this backtracking algorithm con-
verge.

As presented in [Heem90,Lam89], the minimal distance between two arbitrary opera-
tionst;,t; L T can be obtained by calculating the longest path distance;ftofy) using

the distance between successive operations as path weights in the following way. Let
T={ty,t, .., t} be a set of operations. LBXX(i , j), with 0< k< n, be the longest

path from operatiof) totj, consisting of operationdd, t;, ..., {}. A recursive defini-

tion OfD(k)(I J) is given by

D(k)(i,j) Dé(tl, ]) A(t;, J) Cdii ifk=0 4.4)
%MAX(D(k Y, i), D% Vi, k) + D Yk, j)) itk 2 1

To determine the longest path distadestance; , t) between each pair of operations,
several all-pairs longest path algorithms can be used [Corm90], such as the Floyd-War-
shall algorithm ©(|T|3)) or the Johnson aIgorithn«D(lT|2 log[T| + [T| - Fl)). The
resulting matrix DUTD) s called a distance matrix, and for eaqtt aT,
distancét; , §) = DTG | j). In [Lam89] symbolic expressions are used in the dis-
tance matrix to be able to recalculate the longest paths very quickly if the value of the
data introduction intervalii is changed.

When an operation O T is scheduled, a lower bouras@p and upper boundalap) of
the feasible schedule range of any unscheduled opevatiohcan be recalculated by
using the following assignments:

asafv) := MAX(asafv) , ¢(u) + distancdu , \)) (4.5)
alap(v) := MIN(alap(v) , ¢(u) + &(u) - distancév , U) (4.6)

In contrast to the method presented in [Heem90,Heem92], the worst case complexity of
updating the feasible schedule ranges using equations (4.5) and @G{|6) Js

Take for instance the dependence graph of Figure 3.11. The corresponding distance
graph (limited to operationg, v,, andvs), the corresponding initial distance matrix,

and a distance matrix after applying an all-pairs longest-path calculation can be found

in Figure 4.1. It is assumed that an addition requires 1 cycle step, and a multiplication

requires 2 cycle steps to complete execution.

Let dii = 3 cycle steps. In that case the distance mBikequals:
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Figure 4.1 Distance graph and distance matrix.
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Suppose operation, is scheduled in cycle step 2, in other wap@s,) = 2. The feasi-
ble schedule range of operatnaccording to equations (4.5) and (4.6) becomes:

d(vy) = d(v,) + distancev, , \) = 2-2= 0

d(vy) < d(vy) - distancév, , ) =2-1=1

Hence the feasible schedule range wiwgrean start its execution is [0 , 1]. Using the
same method results in schedule range [3, 5] for openation

In case a dependence graph doesn’t contain any cycles, a simplified all-pairs longest
path algorithm for DAGs [Mesm95] can be used to calculate and update the distance
information between operations. The algorithm has a worst case complexity of
O(|T] - F]). Updating schedule ranges is done in the same manner as described before,
and has a worst case complexityaffT|).

4.3 Process invocation constraints

Lett;, &, ..., t be a path in a dependence graphK). If a patht; , t,, ..., f is
extended with edge,(, t;), it becomes a so-called cycle. Operations in the current iter-
ation of a cycle use data generated in previous iterations of the cycle (denoted by delay
nodes). Therefore the process can only start a new iteration if this data from previous
iterations has been produced. This restriction introduces a lower bopfdon the
distance between successive process invocadiq@d for each possible scheduieln

this section several methods to determine the lower bound distance between successive
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Figure 4.2 Basic block.

process invocations and their impact on the feasible schedule range of operations will
be discussed.

4.3.1 Basic blocks

One way to determine a lower bound valuedioiis to consider the execution of a sin-

gle process iteration. To obtain a description of a single process iteration, delay nodes
can be replaced by a pair of input-output nodes. This results in an acyclic description
called a basic block (see Figure 4.2, which represents one single execution of the proc-
ess given in Figure 3.11).

When considering a basic block, the minimal distance between successive process
invocations equals the critical path (which is the longest possible distance from an input
node to an output node) of the basic block. The single process invocation method
ignores the fact that operations belonging to different iterations can be executed concur-
rently, and in general will result in a poor quality lower bound on the invocation dis-
tance.

Using the basic block method, the minimal process invocation disthingg of the
example in Figure 4.2 equals 4 cycle steps (assuming that an addition requires 1 cycle
step, and a multiplication requires 2 cycle steps).

4.3.2 Multiple process invocations

When only one single iteration is considered during the determinatidin.,ff, it is
assumed that pipeline stages are emptied at the iteration boundaries of the process
(denoted by the place of the delay nodes in the dependence graph). By considering mul-
tiple process invocations, hidden concurrency within processes will be unravelled. In
other words, operations of iterationl can be scheduled before all operations of itera-

tion i have finished execution (also known as loop pipelining). Unfolding a process by
factork results in a dependence graph, which hkldsrations of the original process.
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Figure 4.3 Multiple process invocations.

If, in case of the example of Figure 3.11, three process invocations are considered, the
critical path length of these 3 process invocations equals 8 cycle steps (see Figure 4.3),
which distributed among 3 process iterations leads to an average lower boB i@ of

= 3 cycle steps. K process iterationg, > 1, are considered, the operations of the criti-

cal path of Figure 3.11 will be distributed among the following cycle budget:

F+|<2Dﬂ = {2+ﬂ = 3

Hence, using this method the minimal distance between successive process invocations
will always lead to 3 cycle steps.

In [Parh91] the concept of perfect-rate programs is introduced. A perfect rate program
is a program in which each cycle in a dependence graph contains at most one delay ele-
ment. It is claimed that perfect rate programs have the property that they can always be
scheduled with optimal throughput rate, requiring no retiming or unfolding transforma-
tions. Perfect rate programs can be obtained by unfolding a process the least common
multiple of delay elements of each cycle in the corresponding dependence graph. A big
disadvantage of the unfolding method presented in [Parh91] is that the unfolding factor
may grow exponentially in the number of loops. Hence unfolding also complicates the
scheduling problem significantly, because the complexity of scheduling in general
grows exponentially with the number of operations to be scheduled.

One advantage mentioned in [Parh91] is that the schedules obtained are fully static (for
each iteration each operation is bound to the same resource) with respect to the
unfolded process, but in fact many results are cyclo-static with respect to a single proc-
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Figure 4.4 Perfect-rate program example.

ess iteration (characterised by a resource displacement for the same operation in differ-
ent iterations [Schw85]). Whether schedules are fully static depends on the scheduling
technique. If for instance greedy scheduling techniques such as list scheduling are used,
there is no guarantee that fully-static schedules will result. In Figure 4.4(a) a per-
fect-rate program from [Parh91] can be found. In Figure 4.4(b) a fully static periodic
schedule using 2 functional units with an invocation distance of 3 cycle steps can be
found. The schedule shows how two successive schedules of a single perfect-rate proc-
ess must be combined to result in a fully-static schedule with a minimal distance
between process invocations. The way in which fully static and overlapped schedules
for a perfect-rate process must be constructed, requires some additional analysis and
scheduling technique. In Figure 4.4(c) a greedy schedule for the same example can be
found, which is cyclo-static. In Figure 4.4(d) a fully-static schedule resulting from a
greedy scheduler can be found. Hence the multiple process invocation method requires
some extra analysis and scheduling techniques to obtain fully static schedules with a
tight bound on the minimal distance between process invocations [Wang95].

4.3.3 Loop folding and retiming

Another way to determine a lower bound on the distance between successive process
invocations can be found in [Goos89], in which a control-flow transformation called
loop folding is presented. Loop folding introduces partial overlaps between the execu-
tion of successive process invocations in such a way that the critical path length of the
process is shortened. This is achieved by transforming the index expressions in the
algorithmic behavioural description. Take for instance the algorithmic behaviour of
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a[B] := b[B-1]1 + c[C-2];

b[B] := a[B] + input[B];

for i := B to E - 1 do { B<E}}
ali+1] := b[i] + c[i-1]; (1)
b[i+1] := al[i+1] + input[i+1]; (2)
c[i] :=ali]l * b[i]; (3)

endfor;

c[ET := a[E]l * b[EI;

Figure 4.5 Process after retiming.

Figure 4.5, which is a re-write of the algorithmic behaviour which can be found in Fig-
ure 3.7. As opposed to the original algorithm in Figure 3.11, there are no intra-iteration
dependencies between (1) and (3), and between (2) and (3), and hence the critical path
of the process is decreased from 4 to 2 cycle steps.

There are many similarities between the concept of loop folding and retiming [Leis91].
Comparing Figure 3.11 and Figure 4.5 shows that the delay nodes have been moved to
other places, but the functional behaviour is equivalent. When a single iteration of the
retimed process is considered, a critical path delay of 2 cycle steps can be found.

The disadvantage of retiming (and hence also of loop folding) is that it may place delay
nodes in such a way that it might exclude all optimal schedule solutions, and hence
reduces the design space of a scheduler inadequately (see Section 5.11 for more
details). The second problem of retiming is that it can't handle multi-cycle operations
properly (see Figure 4.6). No matter how the delay nodes are shifted, it will still result
in a critical path delay of 4 cycle steps, assuming that a multiplication requires 2 cycle
steps. A cyclo-static overlapped schedule results in a minimal distance of 3 cycle steps
between two process invocations.

4.3.4 Distance relations

The lower bound constraint on the distance between successive process invocations can
be derived directly from the distance relations in the following way. For each cycle
t,, t, ..., t the corresponding distance relations are:

b(t) 2 d(ty) + d(t1, tp) + A(ty, tp) - dii

b(ta) 2 d(tp) + 3(t , ) + Aty , ta) - dii

B(t) 2 0(t) + 3t ) + Aty t) - di
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Figure 4.6 Cyclo-static schedule, which cannot be generated by retiming.
Adding all the distance relations of this cycle results in the following equation.
Aty ) + Mg, ) + . +A(, 1) - dii 2 3(ty L ) +3(tp, tg) + ... + 8, 1)

From this equation a lower bound constraint on the process invocations distance
dii(c) O N for cyclec O (T, F) can be derived:

B(ty, t,) +3(ty tg) + ... +3(t,, 1))
Mty t) + A(ty tg) + .. +A(L, 1)

dii(c) = (4.7)

The lower bound constraint on the process invocations distance is determined by taking
the maximum value found for the minimum valualpfof each cycle:

dii .. = MAX g dii(c) (4.8)

For Figure 3.11 this method would leaddig,;, = 2. In the next section a new algo-
rithm will be described, which efficiently calculates the minimal process invocations
distance using distance relations.

4.3.5 An algorithm to determine the minimal invocation distance

From Section 4.3 we know that the minimal data introduction interval of a process can
be found by dividing the total intra-iteration distances by the total inter-iteration dis-
tances for each cycle in the process (see equation (4.7)). The overall minimal data intro-
duction interval can be found by calculating the minimal data introduction interval of
each cycle in a process separately, and take the maximum value of these calculations as
the minimal process invocations distance for the whole process. Enumerating each
cycle of a process can be very complicated [Tarj73]. Therefore, a new method for deter-
mining the process invocations distance has been developed.

Letc=1t;,t, ..., t, 4 beacycle. The current executioncaises data which is pro-
duced in previous executions gfdenoted by inter-iteration dependencies. The total
inter-iteration distancA(c) = A(t;, t) + A(ty, t3) + ... + A(t; , t)) of cyclec multiplied
with dii denotes the number of cycle steps data may use to traverse through Thiele
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total intra-iteration distancé(c) = o(t; , t) + &(t,, t3) + ... + &(t, , t;) of cyclec
denotes the total amount of cycle steps needed by all operations to process data which
traverse the cycle. The slack of cycls defined as:

slacc) = (A(ty, t) + Ay, ta) + ... + AL, , ) - dii -
B(ty , t) +8(ty, ta) + ... + 8(t, , ty)) (4.9)

For each cycle, we haveslackc) = 0, because ilackc) < 0 data will be consumed
which hasn’t been produced yetslackc) = 0, then data produced in a previous proc-

ess execution is immediately consumed. Hence according to equation (4.7), the result-
ing dii is the smallestlii possible for cycle. Hence, the minimal invocation distance
diiin, is defined as the value dif with:

1. Ueo(r, <) slacKe) 20, and
2.lko(r,< slacke) =0

Hence, searching for a cyotewith the least amount of slack will provide a way to
determinedii,i,. Adding all distance relations of cyateresults in the so-called cycle
weightcw(c) of cyclec.

OWC) = 8(ty, t) + Bty t) + ... + &(t, , ty) -
Kty t) + Ao, ta) + ... + AL, , ty) - dii (4.10)

or, in short hand notation,
cw(c) = A(c) - A(c) - di (4.11)
From (4.9) and (4.10) follows thakackc) = -cw(c).

In each cycle of a dependence graph ), delay nodes are used to describe the
inter-iteration boundaries of the corresponding procesdylbet a delay node in cycle
c. Adding the distance relations from delay nggi® the same delay notlewill return

the cycle weighew(c) of c. Lett, be the predecessor of delay nggen that case:

cw(c)
= {def. cw(c)}
Atg , ) +O(ty , ) + ... +0(ty, tg) - (A(ty, tp) + Alty, ) + ... + A(ty, ty)) - dii

= {def. distancé
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distancéty , tp) + 5(tp 1) -)\(tp , 1g) - dii (4.12)

The problem is how to calculate the value fiistancéty , t). If dii < diiy,, then
ko, <) slackKc) <0, hencel (v <y ew(c) =2 O, and an all-pairs longest-path does
not exist. Letdiiiempbe defined as the summation of all deléfty of all operations

t O T of the dependence graph (F) plus one:

i g ;5(0 +1
t

In that case:

Oo o1 1, <) diitemp™ 8tg, ) +3(ty , &) + ... + 8ty , ), hence

Ueo(r, <) slackce) > 0, hence

Ueo,<)eWMc) <0

Thus by takingdii = diitey, a feasible distance matrix can be calculated, and for each
cycle the cycle weight can be determined in constant time by calculating equation
(4.12) for each delay node of the graph.

Becausél (1, <) diiemp™> O(ty, ) +0(t1 , b) +... + d(ty , ty), or
Ueo(r, <) diilemp™> A(C), using equation (4.11) we can derive:

1. Ueo (T, <) eW(©) div diigmp= -A(c), and

2. Ueo(r, <) eW(C) moddiiiemp= A(C)

Let D be the set of delay nodes. lpFedt) be the predecessor of delay nodesing
equation (4.7) and (4.8) we can calculditg,, by the Algorithm 4.1.

The complexity of the algorithm is determined by the complexity of calculating the dis-
tance matrix, which in case of the Johnson algorithr®(|%|2 - log[T| + [T| - F)).
Because in practical cases the number of input edges for each operation is 2 or less, the
complexity will beO(|T|2 -log([T]).

In [Lam89,G00s89] list scheduling is applied to a basic block of a process to obtain an
upper boundliisingie ON the distance between two iterations. A lower bound is chosen
equal to 0. Within the range specified by, fflisingd, @ binary search method is used to
search for the loweslii in which a schedule is possible. In case of [Lam89], a symbolic
distance matrix is used in such a way that updating the distance matrix for ahiother
can be done Withil®(|T|2) instead of re-applying the all-pairs longest-path algorithm
each time. Hence the worst case complexi®(§| - F| + [T|2 - log[l| + [T|? - log(iis.

ingle))-
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Algorithm 4.1 (Calculatediiyy)-

dii = 0; diimin = 0;
forall t OT
dii = dii + delay(t);
diimin = MAX(delay(t),diimin);
endfor;
D = APLP(dii,(T,F)); // all-pairs longest-path
forall t O DelayNodes
cw = distance(t,pred(t)) + d(pred(t),t) - A(pred(t),t) * dii;
lTambda = cw div dii;
delta = cw mod dii;
diimin = MAX(diimin,ldelta / TambdaD;
endfor;

In [Gere92] arO(|D|* + ID| - F|) algorithm is presented, with the set of delay nodes

of a dependence graph. The method is based on construction of a longest path matrix
with size P| x D], in whichL(i, j) denotes the length of the longest path from delay
element; to delay elemerd;. LetLX be ap| x |D| matrix, in WhiCH_k(i , ]) denotes the
longest path distance between delay elenderstind delay elemerd; which passes
through exacthk -1 delay elements. Matrix is obtained by longest-path matrix multi-
plication [Corm90] using the following recursive rule:

Lk+l — Ll . Lk

Matrix L* can be obtained by calculation of the longest path from each delay node to all
other delay nodes. The time complexity to comudtes O(|D| - F|) [Heem90]. Calcu-
lation of LIP! requires [P| matrix multiplications, which results in a complexity of
O(ID[*). Hence the total complexity of this algorithnQgD[* + D| - K|).

Let the pairwise distances between delay nodes be represented by &(@afty,).
Application of the cycle-mean algorithm from [Karp78] gives the lower bound of the
distance between process invocation®fD| - Epl|), which has the lowest worst-case
complexity of all methods known [I1t094].

Though the complexity of Algorithm 4.1 is in general higher than the complexity of the
methods presented in [Heem92] and [Karp78], the application of Algorithm 4.1 in com-
bination with the (obligatory) calculation of a distance matrix for other values of the
process invocation distance is very efficient in practice.

4.4 Time constraints

The second type of constraints which play an important role in high-level synthesis are
time constraints. A time constraig{u , \) between two operationsv T denotes the
maximal distance between the start cycle step of operatzd operatiow, in other

words
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Figure 4.7 Time constraint in distance graph.

¢(v) <o) + te(u, Y

or
G(U) 2 ¢(V) - t(u, Y (4.13)

Equation (4.13) has a similar form as equation (3.3), and can be depicted in a distance
graph in a similar way by adding an edge () with a tuple {.(u, V) , 0) (see Figure
4.7).

A time constraint may introduce a cydg in a dependence graph, which on its turn
introduces some limitations with respect to the values of the time constraint. Let
distancéu ,v) be the longest path distance frarto v. Just like in Section 4.3.5, a cycle
weight can be defined as:

CW(Cy) = distancéu , \) - t.(u, V) (4.14)

An all-pairs longest-distance algorithm only produces feasible results if no positive
weight cycle exists. This means thgu , \) = distancéu , V), in other words, a time
constraint betweeun andv cannot constrain in such a way thatarts its execution and
consumes data befowenas finished its execution and produced this data.

The most common time constraint found in high-level synthesis is the global time con-
straintT,ox N (also called schedule length, makespan or latency). A global time con-
straint denotes how many cycles it takes to process all input data into output data. For
each input operation] T and output operatiom[] T, the following relation is true:

¢(0) < ¢(i) + Tmax

This relation results in a distance graph in which an edge is added between every input
and output operation. A global time constraint can be represented more efficiently by
slightly modifying a distance graph. Two dummy operat®asdt, respectively called
source and sink, are addedTltd-or each input operatiori] T, an edgeq, i) is added,
labelled with a tuple (Q0). For each output operatia] T, an edged , 1) is added,
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Figure 4.8 Distance graph with time constraint.

also labelled with a tuple (@). Finally, an edget ( 9 is added with a tuple Tyax, 0)
(see also Figure 4.8).

Care must be taken not to introduce positive weight cycles, lsteacds , ) - T4
> 0, or Tyax2 distancés , ). This implies that the global time constraint should be
equal to or larger than the critical path freto t inside the dependence graph.

One of the advantages of adding an edgeq to a dependence graph is that one
strongly connected component consisting of all operations in the process is obtained.
By selecting operatiosas a reference operation (in other wap(l® = 0), the feasible
schedule ranges of operations obtained by an all-pairs longest-path algorithm and equa-
tions (4.5) and (4.6) are always relative to the inputs of the process.

When an operation [ T is scheduled, the feasible schedule range of any unscheduled
operationv [ T can be recalculated using equations (4.5) and (4.6), which has a worst
case complexity oD(|T|).

A partially defined schedule is a scheddilén which for some operations] T the
schedulep(u) has been determined. Suppose that the start cycle step of opefafion
has been pre-determined, in other wapdly = c,. In that cas&(u) - ¢(s) = c,, which
can be modelled by the following inequalities:

¢(u) - 6(s) = ¢, hencep(s) 2 §(u) - ¢,

and

¢(u) - 6(S) 2 &, hencep(u) 2 ¢(s) + ¢

These relations can be modelled in a distance graph as can be found in Figure 4.9.
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Figure 4.9 Modelling pre-scheduled operations.

Checking whether time constraints or pre-scheduled operations result into infeasible
schedule ranges of operations, can be done by checking whether an all-pairs long-
est-path algorithm results in a distance mabixor which [j 5o - 1;D(i, 1) #0
[Corm90]. To see if a single time constraint or pre-scheduled operation is the cause of
infeasibility, an all-pairs longest-path can be performed without this time constraint or
pre-scheduled operation. In case a combination of conflicting time constraints and
pre-scheduled operations cause infeasibility, it is very difficult to find unambiguously
which constraint(s) is (are) causing the trouble.

4.5 Resource constraints

A resource constraint imposes an upper bound on the resource allocation that can be
used during scheduling. The most obvious resource constraint used in high-level syn-

thesis is an upper bound on the number of functional units (also called modules). This

restricts the number of operations, requiring the same operation type, that can be sched-
uled simultaneously. In the field of high-level synthesis, scheduling methods such as list

scheduling [Thom90] have been used quite successfully to deal with constraints on the

number of functional units.

Only very little is known of schedulers which can cope with memory allocation con-
straints and interconnect allocation constraints during scheduling. One method, called
cut-reduction, is presented in [Depu93]. Cut-reduction adds edges to a dependence
graph to lower the number of possible simultaneously data transfers, but due to the
application of branch and bound algorithms the run-time efficiency becomes bad for
large examples. To be able to handle large size instances, a hierarchical scheduling
method called clustering is introduced. Clustering is a method which schedules parts of
a process hierarchically, in order to obtain a new smaller process. Cut-reduction is
applied to this smaller process, which compared to the original problem is more
run-time efficient. This basic-block like scheduling method might reduce the search
space in such a way that it may exclude the optimal solution.

Most other methods used in high-level synthesis try to optimize memory allocation or
interconnect allocation during or after scheduling. Methods optimizing memory alloca-
tion during scheduling can be found in [Paul89] or [Verh91], which try to balance the
use of registers over time by using forces. In [Hwan91] the sum of lifetimes is mini-
mized during ILP scheduling. Finally, heuristic techniques are used in [Romp92] to
schedule production and consumption of values as close as possible.
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Similar observations can be made for interconnect allocation. Whereas there are many
articles reporting interconnect optimization (see for instance [Weng91]), only a few
methods deal with constraints directly (for example [Woer94], [Hart92]). Also, many
methods only use the number of multiplexers and buses resulting from a schedule, and
don’t deal with layout specific information (placement and routing). Some initial work
on this topic can be found in [Timm95b], [Jaco95], [Jang93], and [Weng91].

4.6 The relation between time and resource constraints

In [Timm93] the close relationship between resource constraints and time constraints is
explained. The essence is that for a time constrained scheduling problem an accurate
lower bound resource allocation can be found efficiently, by a technique called module
selection. On the other hand, for a resource constrained scheduling problem an accurate
lower bound estimation for the completion time can be found by a technique called
module execution interval analysis. In both cases the initial constraints can be extended
such that both a time constraint and a resource constraint result. Hence in both cases the
original scheduling problem is transformed into a feasibility scheduling problem.

The approach in [Timm93a] tries to find an accurate lower bound estimation of func-
tional area by investigating the structure of a data-flow graph. It is based upon a relaxa-
tion of the dependence constraints, in other words, the method guarantees that each
operation can be scheduled within its initial schedule range. This is achieved by gener-
ating MILP constraints, which try to enforce the selection of sufficient module capacity
to perform all operations within their initial schedule range. The effect of the schedule
of an operation upon the feasible schedule range of other operations is disregarded,
hence the resulting constraints might not lead to a feasible schedule. The number of
integer variables in the method depends on the size of the module type library used. If
only simple libraries are used (in other words, each operation type can only be imple-
mented by a single module type), the module selection problem can be solved effi-
ciently using a polynomial time algorithm based on the methodology presented in
[Timm93].

To find a lower bound on the global completion time, the initial feasible schedule inter-
vals of operations can be reduced under the influence of resource constraints in such a
way that it doesn't limit the solution space [Timm93b]. The method, called execution
interval analysis, globally works as follows.

Let mUL be a module type. Lef (m) be a list of operations sorted by increasing
asap-value, for which for each operatiod T, we havet O T (m) < §(t) = m. Let

T .(m, i) be theith operation from T(m). Let K(m) be the number of modules of type

m [ L given by the resource constraint. The module schedule KMiBges the range in

which some module of typ® must execute some operation. Module schedule ranges
can be calculated using Algorithm 4.2. The end of each module range can be deter-
mined in a similar way.
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Algorithm 4.2 (Module Execution Intervals for module typ#.

for i = 1 to K(m) do
start(MEI(i)) = asap(T (m,i));
endfor;
for i = K(m) + 1 to [T (m)| do
start(MEI(i)) = MAX{Casap(T (m,i))0O,
start(MEI(i - K(m))) + d(T (m,i),m)}
endfor;

In the next phase, a bipartite gra@tm) is constructed. The vertices of the bipartite
graph consist of the operations frdin and the seR(m) = {MEI(i) | 1<i< [T (m)]}.

There is an edgea(, b, a0 T, andb O R(m), if and only if the feasible schedule range

of a has an overlap with the module schedule rdm@ed which is at least as large as

the corresponding execution delay. For each feasible schedule, a corresponding com-
plete matching exists. Edges which can never be part of a complete matching, can be
deleted fromG(m) without excluding any feasible schedule from the search space.
Deletion of edges can be used to tighten the feasible schedule range of operations inci-
dent to these edges.

During determination of the module ranges, the number of cycle steps in which a mod-
ule can start its execution can be a negative number. In this case a complete matching
does not exist, and no feasible schedule is possible within the time constraint, and
hence the estimation on the lower bound completion time or resource allocation must
be increased.

The total complexity of module execution interval analysi®(@|? + [T| - L|). The
number of bipartite graphs equ@gL|).

In case a resource constraint is imposed together with a time constraint, the method pre-
sented in [Timm93b] can be used to determine whether the constraint set might intro-
duce an infeasible schedule. In that case either the resource constraint or the time
constraint needs to be adjusted.

By using estimation techniques, the constraints of the original scheduling problem can
be used as a performance measure and vice versa. Some possible scheduling strategies
are given by the scheduling template in Figure 4.10.

A time constrained scheduling problem can for instance be solved by a time con-
strained scheduling method directly (which may use a lower bound resource allocation
estimation to tighten the schedule constraints). It can also be solved by using a resource
constrained scheduler which tries to minimize the completion time of a schedule, by
use of a lower bound resource allocation estimation. If the completion time exceeds the
original time constraints, supplementary resources need to be allocated to come up with
a feasible schedule. Finally, a feasibility scheduler can be applied which tries to satisfy
both the time constraint and resource constraint directly. If the method fails to do so,
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similar strategy can be applied for resource constrained scheduling problems.

4.7 Conclusions

In this chapter several methods have been presented to determine the feasible schedule
range of operations. The central idea is to use distance relations from a distance graph,
to determine the feasible schedule range of operations with respect to other operations.
Time constraints can be incorporated very easily by adding distance relations to a dis-
tance graph obtained from a data-flow graph. All-pairs longest-path algorithms are used
to construct a distance matrix from a distance graph, which is used to determine and to
update feasible schedule ranges of operations very efficiently. Finally, a short introduc-
tion shows how resource constraints can be used to tighten the feasible schedule ranges

of operations, by using module execution interval analysis.
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The use of all-pairs longest-path algorithms results in a new efficient algorithm to deter-
mine the minimal process invocation distance. In contrast to methods such as folding,
unfolding, and retiming, this new method doesn’t need to transform the original process
description. Besides, the loss of the optimum solution from the search space is avoided.

All of this has resulted in a uniform model, in which dependence relations, time con-
straints, and resource constraints are used to decrease the size of the schedule range of
operations, without excluding any optimal solution. Additionally, estimation techniques
result in a schedule scheme in which constraints can be exchanged, resulting in differ-
ent scheduling strategies. In the following two chapters a new scheduling strategy to
deal with both resource constrained and time constrained scheduling problems will be
presented.



Chapter
5 Constructive Scheduling

5.1 Introduction

There are many different ways to solve a scheduling problem under given constraints.
In this chapter a classification of schedulmgthodswill be presented, to gain some
insight in the applicability of certain scheduling algorithms in particular situations.

A new constructive scheduling algorithm will be presented, which given a permutation
of operations, will construct a resource constrained schedule in a topological manner.
This new algorithm will serve as a scheduling engine for a search procedure based on
genetic algorithms, presented in the next chapter.

This chapter concludes with a discussion about how permutations of operations can be
used to solve (loop) pipelined scheduling problems.

5.2 High-level synthesis scheduling complexity

Let (F,c) be an instance of a combinatorial optimization problem. Most real-life syn-
thesis problems will have instances with a very large number of candidate sokjtions |
hence listing all candidate solutions and calculating the value of cost funébioeach
solution, will in general lead to inefficient use of computer resources (in other words
memory and CPU-time). The mathematical background presented in [Gare79] provides
us a way to classify optimization problems. This has resulted in the notion of NP-hard
problems, for which no polynomial time algorithms have been found so-far to solve
each instance to optimality (and are believed not to exist). In general, solving a NP-hard
problem requires an exponential amount of CPU-time.

A straightforward classification of high-level synthesis scheduling problems would be a
classification that tells whether a scheduling problem belongs to the class of NP-hard
problems. Typical classifications such as in [Blaz94,Lens85,Coff76,Gonz77] classify
scheduling problems based on properties such as dependence relations (independent,
tree, forest, DAG, graph), number of processors (single, parallel), kind of processors
(identical, uniform, unrelated), processing modes (one-by-one, one-to-many
[Timm93a], flow-shop, open-shop, job-shop), execution mode (pre-emptive,
non-preemptive), and more. Most of these issues don't play a leading role inside
high-level synthesis, because the behavioural description in general leads to a process
which is a graph, the number of processors is larger than one, the processing mode is
one-to-one (i.e. an operation can be implemented on one module type) or one-to-many
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(i.e. an operation can be implemented in various module types), and the execution mode
IS non-preemptive.

In [McFa90] a classification of scheduling problems based upon time-constraints and
resource-constraints is made. In a time constrained scheduling problem a global time
constraint is imposed, and the aim is to find a schedule inducing a minimal resource
allocation. In a resource constrained scheduling problem a resource constraint is
imposed, and the aim is to minimize the global completion time induced by the sched-
ule. These high-level synthesis scheduling problems are proven to be NP-hard (see
[Verh91] for time constrained scheduling, and [Heem90] for resource constrained
scheduling). As shown in Section 4.6, time constraints and resource constraints are
tightly inter-related. It is therefore questionable whether a “general” classification of
high-level scheduling problenstiould be based on such criteria. A more useful classifi-
cation for high-level synthesis problems would be a classification based on cyclic ver-
sus acyclic data-flow graphs. Take for instance register allocation, which is equal to
finding a minimal colouring of an interval graph [Golu80], and can be solved very effi-
ciently for the acyclic case by the left edge algorithm [Kurd87]. This becomes an
NP-hard problem in case the process becomes cyclic, which is equal to finding a mini-
mal colouring of an cyclic arc graph [Golu80]. Another example is the all-pairs long-
est-path problem. In the previous chapter an all-pairs longest-path algorithm for cyclic
graphs has been presented, which has a worst-case complex@{|Tof- F| +
[T|? - logr|), whereas in [Mesm95] an algorithm is presented which only takes
O(|T] - F|) for acyclic graphs.

Only a very small set of problems found in high-level synthesis are proven to be poly-
nomially solvable problems. Some examples are the ASAP/ALAP scheduling problem
[DeWi85], the interval graph colouring problem [Kurd87], and the retiming problem
[Leis91]. A classification of typical high-level synthesis scheduling problems based on
complexity issues doesn’t provide any useful insights. In this chapter an alternative
classification based on constructive schedutmgthodswill be presented, which is
based on the way a schedule is constructed from a permutation of operations. It will be
shown that for some classes of schedulers, certain decisions might impose severe con-
straints to operations during scheduling, implying equally severe effects on the optimal-
ity or feasibility of the solution.

5.3 Optimality

In theory the goal of a scheduling algorithm is to find an optimal schedule, in other
words it should return the best feasible schedule possible with respect to the perform-
ance measures. As one of the main objectives of using algorithms to solve optimization
problems is to solve them efficiently, an algorithm which always returns an optimal
solution for an NP-hard problem is regarded as inefficient. Therefore some trade-offs
between CPU-time and the accuracy of the solution must be considered.
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A straightforward classification would be to classify high-level synthesis scheduling
algorithms based on the accuracy of the solution found:

1. Exact algorithms. These kind of algorithms always find the optimal solution to the
scheduling problem imposed. Examples of such algorithms can be found in
[Hwan91,Geb092,Lee89]. The main disadvantage of applying these methods to
real-world scheduling problems is that they might end up in performing an
exhaustive search, which results in the use of excessive amounts of computer
resources (CPU-time or memory). The current status of these algorithms is that
they can only be applied successfully to instances with a small input size, and
their use in practical situations is questionable.

2. Approximation algorithms. These kind of algorithms find a solution, for which the
difference in cost with respect to the cost of an optimal solution is independent of
the input size of the problem.

3. Heuristics. These kind of algorithms always find a solution. There are no guaran-
tees given about the quality of the solution generated. Many kinds of heuristic
high-level synthesis schedulers have been reported, such as list scheduling
[Girc84], force directed scheduling [Paul89], and critical path scheduling
[Park86]. The main advantage is that, in general, these algorithms generate solu-
tions relatively fast compared to approximation or exact algorithms.

In the previous chapter some methods, which derive supplementary constraints from
existing scheduling constraints, have been presented to reduce the set of candidate solu-
tions of the scheduling problem without excluding an optimal solution. This increases
the possibility that heuristics find a good quality solution, or the chance that approxima-
tion algorithms and exact algorithms need less computer resources.

5.4 Construction of schedules
A classification based on the way schedules are created, is the following:

1. Constructive. The first class of schedulers, called constructive schedulers, sched-
ule operations one by one. The different constructive scheduling techniques can
be distinguished by the order in which and the cycle step where they schedule
operations. The intermediate solutions produced during the construction of the
schedule consist of partially specified schedules. More about constructive sched-
uling can be found from Section 5.6 to Section 5.11.

2. Iterating. The second class of schedulers, called iterating schedulers, take an exist-
ing schedule as their input, and try to improve the schedule by altering the sched-
ule. Examples of these type of schedulers are percolation scheduling [Pota90],
move-scheduling methods based on annealing such as in [Nest90,Deva89], and
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multiple-exchange pair selection as in [Park91]. The intermediate solutions con-
sist of fully specified schedules.

The search method, which is used to find a schedule, can be roughly divided in greedy
search techniques, local search techniques, and enumeration techniques.

1. Greedy search techniques. Greedy algorithms always make a choice that looks
best at a specific moment. It makes such a locally optimal choice in the hope that
this choice will lead to a globally optimal solution. Greedy algorithms work well
for some problems, such as for instance for the ASAP/ALAP scheduling problem
[DeWi85], the colouring of interval graphs [Kurd87], and the retiming problem
[Leis91], for which greedy algorithms exist which always return optimal solu-
tions. In the case greedy algorithms are not guaranteed to return optimal solutions,
this is because a trade-off between the quality of the solution obtained and the
amount CPU-time required to generate a solution is made. Examples are for
instance list scheduling [Girc84], force directed scheduling [Paul89], and critical
path scheduling [Park86].

2. Local search techniques. LEt,(c) be an instance of a combinatorial optimization
problem. Local search is based on the existence of a so-called neighbourhood
spaceN: F - 2F, with N(t) a set of solutions, which in some sense are ‘close’ to
t O F. Element O N(t) is called a neighbour of Let c(t) be the cost of. A local
minimum s with respect to the neighbourhood spakp is defined as [ N(t)
with Uy o Ny €(S) < c(x) (see [Papa82] for more details). Examples of scheduling
techniques based on local search can be found in [Nest90,Deva89] (which use
simulated annealing), and [Park91] (which usesktohange neighbourhood as
defined in [Lin73]).

3. Enumeration techniques. Enumerative algorithms enumerate all feasible solu-
tions, and return the best solution found. Most real-life problems will have
instances with a very large number of feasible solutllnsi¢nce enumerating all
feasible solutions and evaluating the cost funatifor each feasible solution will
lead to inefficient use of computer resources. Explicit enumeration techniques,
such as branch and bound or dynamic programming, can be used to reduce as
drastically as possible the set of solutions that need to be enumerated. For sched-
uling examples see for instance [Park86a], [Davio79], and [Fabe94]. Implicit enu-
meration techniques solve a set of equations, derived from an IP-formulation of
the problem, by application of algorithms such as the simplex algorithm (in com-
bination with a branch and bound algorithm to obtain integer solutions). Some
examples of enumerative scheduling techniques are IP scheduling [Lee89,
Hwan91,Geb092], and non-linear programming gradient methods [Shin89].
CPU-time remains one of the biggest concerns based on methods using enumerat-
ing techniques.
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5.5 Search space versus candidate solutions

A scheduling problem is an instance of a combinatorial optimization proiew),(

with F the set of candidate solutions (feasible schedules)¢ &éimel cost function. In
Section 3.5 some common high-level synthesis scheduling problems have been pre-
sented, such as time constrained scheduling, resource constrained scheduling, and time
and resource constrained scheduling.

Let Fopt U F be the set of optimal solutions frdmin Chapter 4 some algorithms have

been presented which decrease the feasible schedule range of operations, based on
precedence, time, throughput, and resource constraints. These algorithms decrease the
size of the set of candidate solutidhs such a way that no optimal solution fréig,,

is excluded, resulting in a new set of candidate solutomsth |F' oo / F'| 2 [Fopel /

IF].

In the remaining sections of this chapter, attention will be paid to constructive schedul-
ing techniques. The main goal is to gain insight in the applicability of these scheduling
techniques in combination with certain scheduling constraints.

The task of a constructive scheduling algorithm, denotedtfidule, is to generate a
feasible solutiori [ F. The domain of a scheduling algorithm is called the search space

S henceschedule: S - F. Constructive scheduling techniques are characterized by the
fact that they schedule operations one by one. Hence, in case of a constructive schedul-
ing algorithm, an elemest] S should determine the order in which and the cycle step
where operations are scheduled.

The remaining sections of this chapter will focus on the order in which operations are
scheduled, which leads to a classification of constructive scheduling methods.The main
goal of this classification is to gain insight in the applicability of these scheduling tech-
niques in combination with particular scheduling constraints. In case of scheduling acy-
clic graphs, the classification will show a clear advantage for a particular scheduling
technique, called constructive topological scheduling, which will be presented in Sec-
tion 5.6. In Section 5.10 the consequence for creating pipelined schedules will be
shown. In Section 5.11 it will be shown that constructing schedules for cyclic graphs is
a more complex problem than constructing schedules for acyclic graphs.

5.6 Permutation scheduling

Constructive schedulers assign operations to cycle steps one by one. The resulting
schedule depends on (1) the order in which operations are scheduled, and (2) the cycle
steps where operations are scheduled.

The order in which operations of a data-flow grayph E) are scheduled can be deter-
mined by a permutatioll consisting of the operations éfWhen the order in which
operations are scheduled by a scheduling algorithm is equal to the order specified by
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the permutation, the scheduling algorithm is called a strict permutation scheduling
algorithm (see Section 5.7 for more details). If the order in which operations are sched-
uled is determined by the permutation in combination with the partial order induced by
the data-flow graph, the scheduling algorithm is called a topological permutation sched-
uling algorithm (see Section 5.8 for more detdils).

The cycle step selection procedure determines for each operation a cycle step in which
it is scheduled. The cycle step selection procedure is driven by the permutation, in other
words, it accepts operations in a particular order, and for each operation separately it
determines the cycle step in which it should be scheduled. The quality of a schedule
depends on the way the cycle step selection procedure respdhdshs means that

there should be a close relation between the order, giveh agpd the selection strat-

egy, depending on the constraints and goals imposed on the scheduling problem.
Schedule specific information can be used to predict in which cycle steps particular
operations should be scheduled. When dealing with constructive scheduling methods,
schedule decisions can be derived from partial schedule information, schedule con-
straints, and schedule goals. This implies that the selection procedure has a local scope,
and hence the effects of a particular selection strategy are difficult to foresee. In case of
NP-hard scheduling problems, no selection strategy is known which in general will lead
to global optimal solutions.

The determination of the order of operations in a permutation is performed by a
so-called permutation generator. In some cases the order of operations of the permuta-
tion depends on partial schedule information, which for instance is the case with force
directed scheduling (see Section 5.7.2) or module execution interval analysis (see Sec-
tion 5.7.4). In such a case the generation of the permutation can be integrated inside the
scheduling construction algorithm to obtain a more efficient scheduling algorithm. In
other cases the order of operations inside the permutation is specified before the sched-
ule is constructed (such as for instance the priority list used in combination with list
scheduling - see Section 5.8.3). In both cases the order of scheduling operations is char-
acterized by a permutatidh In the remaining sections of this chapter an overview will

be given of how the order of scheduling affects the schedule range of operations, and
how the order of scheduling may restrict the possibility that a sequence of local sched-
ule decisions may result in a feasible or optimal schedule.

5.7 Strict permutation scheduling

Constructive schedulers assign operations to cycle steps one by one. Obviously the way
a constructive schedule is generated depends on the order in which operations are
scheduled. This order of operations can be represented by a permiltaticypera-

tions.

1. Permutation scheduling as defined in this thesis should not be confused with permuta-
tion scheduling as defined for flow-shop scheduling [Pine95].
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In this section the relation between permutafiband the schedule that is generated
from N will be investigated. In strict permutation schedulihgpecifies the exact order

in which operations are scheduled. Oét) denote thet" operation in permutatiaf. A
general method to generate strict permutation schedules can be found in Algorithm 5.1.

Algorithm 5.1 (Permutation scheduling template).

for i = 0 to |M|-1 do
v =TM(i); // select operation in order of NN
d(v) = Select(Tyin, Tnax): // select cycle step

endfor;

For each operatiom, selected according to the order specified hythe procedure

Select determines the cycle step in whicks scheduled. The selection strategy of pro-
cedureselect may depend on the properties of operatijacharacterized by the sched-

ule constraints, the schedule goals imposed, and the partial schedule results achieved so
far. To obtain feasible schedules, the selection procedure can only select a cycle step
from the schedule range of operations, as described in Chapter 4. If operations are
scheduled outside this range of cycles, infeasible schedules result. Equations (4.5) and
(4.6) imply that the order in which operations have been scheduled may affect the
schedule range of unscheduled operations, and may introduce new constraints during
scheduling, as will be explained in the remaining part of this section. Therefore, the
range of cycles in which an operation can be scheduled will always be explicitly shown
inside the argument list of procedukg ect.

The search space of Algorithm 5.1 is composdd 8fT 55 iN WhichT,54iS an upper

bound on the schedule range of operations. The main problem of Algorithm 5.1 is that
the design space contains many infeasible solutions, and searching for a schedule using
Algorithm 5.1 could result in the evaluation of many infeasible solutions, which will be
the main topic of this section.

5.7.1 Precedence constraint satisfaction

When precedence constraints are imposed (which, of course, is always the case), opera-
tions should be scheduled according to the order specifield byt in such a way that
precedence constraints are always satisfied. This means that the cycle step in which an
operationv can start its schedule, is bounded by the schedule of predecessor operations
(denoted by the asap-value) and successor operations (denoted by the alap-value).
Hence, scheduling a particular operation may impose (time) constraints on other opera-
tions, and may force these operations to be scheduled implicitly. This phenomenon
invalidates the position of these operation§ljnn other words, operations are sched-

uled before they are considered for scheduling according to the order speciiied by

To guarantee that the schedule ranges of operations are feasible at any time, the sched-
ule ranges of unscheduled operations need to be updated each time after scheduling a
particular operation (see also Section 4.2). In that case, operations can always be sched-
uled in their schedule range, as shown in Algorithm 5.2.
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Algorithm 5.2 (Precedence constrained permutation scheduling).

for i = 0 to |M|-1 do
v =T(i); // select operation
d(v) = Select[asap(v),alap(v)]; // select cycle step from feasible range
update schedule ranges;

endfor;

The selection strategy mainly depends on the performance measures to be optimized. If
for instance the completion time of the schedule must be optimized, the procedure
Select Will always return the earliest cycle step possible, which equals the asap-value
of operations. In that case Algorithm 5.2 results in an ordinary asap-schedule algorithm.
In high-level synthesis strategies, asap-scheduling is often used to determine the sched-
ule ranges of operations, serving as an initialisation for other scheduling algorithms.

If the resource allocation of a schedule must be optimized, the prosederte should

avoid the allocation of unnecessary resources. Operations are scheduled according to
the order induced by the permutation, but as has been explained before, other opera-
tions may become scheduled before they are considered according to the order speci-
fied in the permutation. In general this means that there should be a relation between
the permutatioril and theselect procedure for such an algorithm to become success-
ful. It is however very difficult to foresee the global effect on the final resource alloca-
tion of scheduling a particular operation locally (i.e. whether a local decision results in

a global optimal solution). In Section 5.8 a different precedence constrained method is
presented, which will be able to generate a minimal resource allocation more effi-
ciently.

5.7.2 Time constraint satisfaction

If both precedence constraints and (global) time constraints are imposed, additional
upper bounds can be introduced, denoted by the alap-value of an operation. This is
identical to the situation in which operations obtain an upper-bound constraint with
precedence constrained scheduling as discussed before, and hence Algorithm 5.2 is
applicable in this case too.

Optimizing the completion time is just as trivial as in the case of precedence con-
strained scheduling, and also results in an asap-scheduler.

A more useful application of time constrained scheduling is in combination with an
attempt to minimize the resource allocation induced by the resulting schedule. Just like
with precedence constrained scheduling, care must be taken not to schedule operations
in such a way that they fix the schedule of other operations, inducing an unnecessary
allocation of resources. Again it can be concluded that this means that there should be a
relation between permutatidin and theselect procedure for such an algorithm to
become successful.
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A well-known high-level synthesis scheduling method, called critical path scheduling
[Park86], is a method which has a greedy selection strategy with respect to both
resources and time. The validation given for critical path scheduling is based on the
assumption that operations on the critical path have less freedom to be allocated on a
certain hardware module, and should therefore be considered for scheduling first. First,
functional units are allocated and bound to operations on the critical path in a first-come
first-serve way. If possible, hardware is re-used to prevent allocation of superfluous
hardware. Then, off-critical path operationsre assigned to hardware, based on the
mobility m(v) = alap(v) - asagVv) - &(v) of operatiorv. The off-critical path operation

with the smallest mobilityn(v) is chosen for scheduling in the first feasible cycle step
where it can be scheduled without resource conflicts. The idea behind this choice is that
deferring the operation with the smallest mobility, has the largest probability of increas-
ing the length of the critical path. If there is not enough hardware to schedule a particu-
lar operation, it is scheduled in the first cycle step from its schedule range, and
additional resources are allocated. If necessary, additional cycle steps are added,
depending on the constraints, and the procedure is repeated again. The method doesn'’t
explicitly specifies a permutatidh before scheduling, but derives the permutation dur-

ing scheduling.

A method called force-directed scheduling, which has a more global scope with respect
to selecting a cycle step to schedule an operation, is reported in [Paul89]. Force-
directed scheduling tries to balance the operations in such a way that the resource utili-
zation is distributed equally over the available cycle steps. A statistical measure of the
resource utilization of partial schedules is obtained by assuming that the probability an
operation is scheduled somewhere inside its feasible schedule range, is uniformly dis-
tributed inside its interval. A probabilistic distribution function can be defined as the
summation of these probabilities, and gives statistical information about the concur-
rency of a particular module type of a partial schedule. Scheduling a particular opera-
tion in a cycle step may have an impact on the schedule range of other operations, and
hence may change the value of the probabilistic distribution functions. Force directed
scheduling tries to equalize the value of the probabilistic distribution function for each
cycle step. This is achieved by investigating the effect of attempted cycle step assign-
ments of operations in their feasible schedule range on the probabilistic distribution
function, which together with the module area induced, results in the so-called force.
The force directed scheduling algorithm is given in Algorithm 5.3.
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Algorithm 5.3 (Force Directed Scheduling).

i=20;

calculate Schedule Ranges;

calculate Distribution Functions;

while (unscheduled operations) do
Calculate Forces;
v, t = Select Operation and Cycle Step with Lowest Force;

// t [ [asap(v),alap(v)]

MGi++) = v; // Dynamic determination of permutation
d(v) = t; // Cycle step with Lowest Force;
update Schedule Ranges;
update Distribution Functions;

endwhile;

In force-directed scheduling, statistical measures are used to derive the order and cycle
step in which operations are scheduled. While a permutgtibasn’t been specified
explicitly, it can be derived in a straightforward way. The algorithm hﬁﬁﬂ? -TCZ)
complexity, in which T| denotes the number of operations to be scheduledTand
denotes the number of cycle steps available for scheduling.

In [Verh91] some improvements on force directed scheduling are presented to improve
the effectiveness of the method, without affecting its time complexity. The first modifi-
cation is called gradual time-frame reduction. Instead of assigning an operation to a
cycle step immediately, the feasible schedule range of an operation is reduced by one
cycle step. The underlying idea is that the probabilistic distribution functions become a
better estimate of the final distribution functions of the resulting resource allocation.
The improved method is not a permutation scheduler, as operations may be regarded for
scheduling more than once. Another improvement, called global spring constants, is
used to emphasize the effect of changing the probabilistic distribution functions in situ-
ations where they are near the maximum distribution values found so far. In [Verh92] a
complexity reduction is presented, based on a more efficient way of calculating forces,
reducing the complexity fror®(|T|® - T.2) to O(|T|? - Td). It is based on an incremen-

tal calculation of the change in distribution functions, based on gradual time-frame
reduction.

In Chapter 6 a new time constrained permutation scheduling method will be presented,
which tries to minimize the resource allocation induced by the schedule, and in which
the search for a permutatidéhis controlled by the use of genetic algorithms.

5.7.3 Resource constraint satisfaction

If both precedence constraints and resource constraints are imposed, the number of
operations in each cycle step, requiring the same resource type, is restricted. This
restriction can be fulfilled by an additional procedure, calledctCycles (see Algo-

rithm 5.4). If inside the feasible schedule range of an operation no cycle steps can be
found in which a resource is free, no feasible schedule can be constructed from permu-
tationl.
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Just like the other permutation scheduling methods discussed before, the schedule of an
operation during the execution of Algorithm 5.4 can cause the feasible schedule range
of other operations to become restricted. Hence the method is not only driven by a
resource constraint, but also by time constraints, induced by precedence constraints.

In Section 5.8 a proof will be given that there exists at least one permuiation
which Algorithm 5.4 returns the optimal solution.

Algorithm 5.4 (Resource constrained permutation scheduling).

for i = 0 to |M|-1 do
v =T(i); // select operation
C = selectCycles(v,asap(v),alap(v)); // determine cycle steps in which
// resources able to implement
// v are free
if (C == 0) then return(“infeasible schedule”);
d(v) = Select(C); // select cycle step from C

update schedule ranges;
update resource usage;
endfor;

5.7.4 Time and resource constraint satisfaction

Schedulers which try to schedule operations satisfying precedence, time, and resource
constraints are called feasibility schedulers. Because of the time constraint, the sched-
ule of operations is upper bounded by an alap-value. This is identical to the situation
where operations obtain an upper-bound constraint during resource constrained sched-
uling as discussed before, and hence Algorithm 5.4 can also be used for feasibility
scheduling.

A method which can cope with both resource constraints and time constraints effi-
ciently, is reported in [Timm95]. It is based on a bipartite graph matching formulation
called MEI analysis, already mentioned in Section 4.6. The scheduling problem is
translated into finding a permutatibhof operations in such a way that each operation

is adjacent to at most one MEI in the bipartite graph. A permutatwhich represents

a feasible schedule implies a bijection between operation schedule ranges and MEls,
and consequently defines a complete matching. A branch-and-bound approach is used
to find a correct permutatidn. It uses a greedy strategy to obtain a sparse search tree
by first investigating operations adjacent to the module execution interval with the
smallest number of operations adjacent. If there are no such MEIs, then the MEI with
the smallest end cycle step is selected.

5.8 Topological permutation scheduling

The main disadvantage of strict permutation scheduling as presented in the previous
section, is that scheduling a particular operation may constrain other operations, caused
by the dominance of the order specified by the permutation] lbet a permutation of
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the operations of. Letv IV be an operation which is currently scheduled.l‘lL‘é(v)
denote the position ofin M. Letv <p u = M(v) <M(u). Let SUCY , M) be the set
of successor operationswfn I, given by SUG(, M) = {u UV |v <p u}. If schedul-
ing operationv implies that operation [1 SUC{ , M) will be scheduled in such a way
that it induces a non-optimal or infeasible schedule, then the coordinatpmnting
to u will lose its influence on the scheduleuwf

One way to prevent constraining the schedule range of operations of complete paths,
caused by scheduling an operation, is to schedule in a topologically sorted manner. The
topological order is specified by the partial order induced by the dependence relations
inside an acyclic process. A permutatidrtan be used to obtain a total oregf from

a partial order, as specified by the following equation:

U<cVe (U<VOENV<uuOU<pV) (5.1)

Hencell only enforces a schedule order if the partial order of the process itself doesn’t
make any requirement about the execution order of operations.

The class of topological permutation schedulers is a subset of the class of strict permu-
tation schedulers. At the end of this section it will be proven that restricting scheduling
to topological permutation scheduling doesn’t exclude the optimal solution from the
search space, hence there exists at least one permutation for which topological permuta-
tion scheduling returns an optimal solution.

Algorithm 5.5 (Topological permutation scheduling template).

repeat
for i = 0 to |M|-1 do
v =T1(i); // select operation
if (unscheduled(v) Oscheduledpreds(v)) // in a topological way
d(v) = SelectlTyin, Tnaxd: // select cycle step
endif;
endfor;

until all operations scheduled;

An easy way to construetc, given< andTll, is shown by Algorithm 5.5. The opera-
tions ofV are visited in order of the permutatibin to search for the first unscheduled
operationv 1V (unscheduled (v)) for which each predecessor operation has been
scheduledycheduledpreds(v)).

Let M| denote the length of the permutation. The worst case complexity of Algorithm
5.5 is determined by the complexity of procedskgect and by the complexity of
searching for an unscheduled operation in permutétidar which each predecessor
operation has been scheduled. In the worst case the unscheduled operation is situated at
the end of the permutation, resulting in a worst case complex@ﬂmfz). This result

has to be extended with the worst case complexity of proceéwse:. In case of strict
permutation scheduling algorithm the search for an operation to be schedd{&gl is
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hence the total worst case complexity of Algorithm 5.0([f1|) extended with the
worst case complexity of procedu@ ect.

A more efficient search for unscheduled operations can be obtained by making use of a
heap data structure [Corm90]. Each operation contains a field kajjeddicating its
position inl. The value of the key can be computed by one linear scan among
(Uioo, pp- g kexri() :=1), yielding aO(|r[) algorithm. While visiting each opera-

tion, the number of initially unscheduled predecessor operations can be stored in a field
calledindegree Visiting each predecessor operation in a procés$) has a worst

case complexityO(|T| + FJ). In practical cases each operation will have at most 2
incoming edges, thus this complexity can be reduc&{|id), which in casdl| = [T|
equalsO(|r]). When an operatiom[] T is scheduledndegredv) is decreased by 1 for

each successor operationl T, with u < v. If indegre€v) becomes 0 for an operation

v O T, operatiorv is stored inside a heap. Adding an element to a heap, while preserv-
ing the heap property, has a complexitffog n), in whichn is the size of the heap.
During the execution of Algorithm 5.5, at mdst pperations have to be stored simulta-
neously inside the heap, hence the worst case complexity of building a l@#gmgis

[1]). Extracting an element with minimal (or maximal) key from the heap also has a
worst case complexity @(log ['1]). Searching for such an element must be performed
exactly 1] times during the run of Algorithm 5.5, hence the worst case complexity of
Algorithm 5.5 isO(|M] - log MN]), which has to be extended with the worst case com-
plexity of procedurseilect. See Algorithm 5.6 for the complete algorithm.

Algorithm 5.6 (Using a heap structure).
// Initialize heap structure

HEAP = 0; // Empty heap at start
for i =0 to |M|-1 do
key(M(i)) = 1i;
indegree(N(i)) = |pred(N(i))|; // number of direct predecessors
if (indegree(M(i)) == 0) then
add(M(i),HEAP);
endif;
endfor;
// Start topological scheduling
for i =0 to || - 1 do
v = ExtractMIN(HEAP); // select operation
d(v) = Select[0,Tpaxls // select cycle step
// update HEAP structure
for all u O suc(v) do // for each direct successor,
if (indegree(u)-- == 0) then // if all predecessors have
add(u,HEAP); // been scheduled, add to HEAP
endif;
endfor;
endfor;

For the sake of simplicity, the functionality in Algorithm 5.6 regarding the manipula-
tion of the heap structure will not be explicitly mentioned in successive algorithms
about topological scheduling. This results in the template given by Algorithm 5.7, in
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which a function calketFirstFree IS used to denote the extraction of the unscheduled
operation from the heap with the smallest key value.

Algorithm 5.7 (Simplified topological permutation scheduling).
for i =0 to |M|-1 do

v = GetFirstFree(N); // select operation
d(v) = SelectlThin, Tmaxd: // select cycle step
endfor;

5.8.1 Precedence constraint satisfaction

By scheduling operations within their feasible schedule range, and by updating the fea-
sible schedule range of unscheduled operations, topological permutation scheduling
will always satisfy the precedence constraints. Topological scheduling will never affect
the upper bound of the schedule range of operations, hence in comparison to strict per-
mutation scheduling, it will never produce infeasible schedules with respect to the prec-
edence constraints. See Algorithm 5.8 for a description of precedence constrained
topological permutation scheduling.

Algorithm 5.8 (Precedence constrained topological scheduling).
for i = 0 to |M|-1 do

v = GetFirstFree(Nn); // select operation

d(v) = Select[asap(v),w]; // select from feasible range

update schedule ranges; // only influences asap value
endfor;

Because the scheduling technique is topological, no explicit update of schedule ranges
is needed. The lower bouadapv) of an operatiow can be determined by:

asafv) = MAX ;o ju<v (9U) +3(u, v))

The asap value needs to be determined only once for each operation, leading to a worst
case complexity ofO(|F|), which in case each operation has at most 2 input edges
equalsO(|T]), with [T| the number of operations to be scheduled. Hence the total com-
plexity of the algorithm i©(|T| . log T|), to be extended with the complexity resulting

from theselect procedure. The result is given in Algorithm 5.9, in whigh, denotes

the time the first operation starts its execution.

Algorithm 5.9 (Precedence constrained topological permutation scheduling 2).
for i =0 to |M|-1 do
v = GetFirstFree(Nn); // select operation
temp_asap = Tpins // start time of schedule
for all u O pred(v) do
temp_asap = MAX(temp_asap,®(u) + Ou,v));

endfor;
asap(v) = temp_asap;
¢(v) = Select[asap(v),w]; // select from feasible range

endfor;
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For sake of simplicity, the derivation of the asap values, as shown in Algorithm 5.9, will
not be explicitly mentioned in successive algorithms about topological scheduling.
Instead, to obtain the asap-vahsagv) of an operation [ T, the functiongetAsap(v)

will be used as an abbreviation, resulting in Algorithm 5.10.

Algorithm 5.10 (Precedence constrained topological permutation scheduling 3).
for i = 0 to |M|-1 do

v = GetFirstFree(n); // select operation
d(v) = Select[getAsap(v),w]; // select from feasible range
endfor;

When the completion time of the schedule must be optimized, the schedule of an oper-
ation can be assigned to the first cycle step of its feasible schedule range, resulting in an
asap-scheduling algorithm.

When the resource allocation must be optimized, only one resource will be allocated for
each module type. The procedurg ect should defer operations such that no addi-
tional resources need to be allocated. This can be achieved by administrating the
resource usage of the schedule so-far, and defer operations until the corresponding
resource is free. This is an important advantage with respect to Algorithm 5.2, which
because of its non-topological way of scheduling may obstruct operations to be
deferred, and might therefore introduce the allocation of supplementary resources, and
hence may miss out on the optimal solution. The topological way of scheduling results
into an efficient algorithm which will always return the optimal solution.

5.8.2 Time constraint satisfaction

When besides precedence constraints time constraints are imposed, in contrast to Algo-
rithm 5.8, upper bounds are needed to reflect the feasible schedule range of operations,
denoted by their alap-value.

Algorithm 5.11 (Time constrained topological permutation scheduling).
for i =0 to |M|-1 do

v = GetFirstFree(Nn); // select operation
d(v) = Select[getAsap(v),alap(v)]; // select from feasible range
endfor;

If during topological scheduling operations are scheduled somewhere at the end of their
feasible schedule range, the feasible schedule range of successor operations will also
decrease. In case of optimizing the resource allocation this might lead to the same situ-
ation as with non-topological based permutation scheduling, in which the feasible
schedule range of operations can be decreased such that the optimum drops of the
search space. This implies that parts of the permutation become insignificant for sched-
uling. Therefore it is important that thelect procedure in Algorithm 5.11 tries to pre-

vent to schedule operations unnecessary in the later region of their feasible schedule
range.
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Because the alap value doesn’t change during scheduling, there is no need to update the
schedule range of operations due to the schedule assignment of a single operation.

5.8.3 Resource constraint satisfaction

If both precedence constraints and resource constraints are imposed, the number of
operations which, are scheduled in the same cycle step and require the same resource
type, is restricted. This means that for an operatidl a cycle steg > asag{v) must

be chosen, with a free resource of ty@®. This choice is performed by a procedure
which is called satisfyResConstr in Algorithm 5.12. For each module type

| O ModType with [, ;1 &(v) =1, an array implementation of a doubly linked list can

be used to be able to access the cycle stemsagv) in which modules are free to
implement operation I T.

The main difference between Algorithm 5.12 and Algorithm 5.4 is the fact that the fea-
sible schedule range of operations will never be bounded from above, and hence a cycle
step in which an operation can be scheduled without introducing resource conflicts can
always be found. Hence in contrast to Algorithm 5.4, the schedules constructed by
Algorithm 5.12 are always feasible, and the search effort can be oriented towards find-
ing a good quality solution instead of finding a feasible solution.

Algorithm 5.12 (Resource constrained topological permutation scheduling).
for i = 0 to |M|-1 do

v = GetFirstFree(n); // select operation
d(v) = satisfyResConstr(v,getAsap(v),»); // determine cycle step
update resource usage;

endfor;

The most useful application for this kind of scheduling algorithms, is to optimize the
completion time of the resulting schedule. An example of such a scheduling method,
which is very common in high-level synthesis, is list scheduling, originally published
by [Hu61]. The name list scheduling originates from the fact that in the original algo-
rithm a list of operations is used to keep track of all operations for which all predeces-
sor operations have been scheduled.

Algorithm 5.13 1ist_schedule: 1 - ¢

cycle = 0;
repeat
// Visit operations in order of permutation
for i =0 to |M|-1 do
v = N(i);

// Check whether v can be scheduled in the current cycle step
if (unscheduled(v) Oscheduledpreds(v) O ResourceFree(v, cycle))
d(v) = cycle;
endfor;
cycle++; // proceed schedule in successive cycle step
until all operations are scheduled;
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In Algorithm 5.13 a template for the general list scheduling algorithm can be found. An
operation is allowed to be scheduled in the current cycle step if it has no unscheduled
predecessors, and a resource is available for the execution of this operation in the cur-
rent cycle step. Consecutively, cycle steps are selected, and according to the order spec-
ified by the permutation, unscheduled operations are searched for, which are allowed to
be scheduled in the current cycle step. This procedure is repeated until all operations
have been scheduled.

The quality of list scheduling depends on the permutation (in case of list scheduling
also called a priority function) used. In [Girc84] the urgency of an operation is used to
define a permutation. The urgency of an operation is defined as the minimum number of
cycle steps required between the operation and any enclosing timing constraint (in other
words the alap-value of the operation). In [Pang87] the mobility is used to define a per-
mutation. The mobilityn(v) of an operatiorv is defined asn(v) = alap(v) - asafv) -

o(Vv). Operations with zero mobility are situated on the critical path, and are selected for
scheduling first. To be able to distinguish between operations with the same mobility,
the operation with the highest number of successors is chosen first. In [Thom90], sev-
eral priority functions are used. Operations which are not affected by the primary prior-
ity function are passed to the secondary priority function, and on its turn operations
which are not affected by the secondary priority function are passed to the tertiary pri-
ority function. The first priority function determines whether delaying an operation
causes it to be scheduled behind its alap value. The second priority function concerns
resource constraints. By assigning operations of a critical path first, a better idea of the
resource utilization can be achieved. Also the total number of successors of an opera-
tion can serve as a priority measure, which detects operations that can be a bottleneck
when they are deferred. The third priority function tries to maximize the resource utili-
zation by checking which operations become ready for scheduling in the next cycle
step.

In [Heij91] an overview of several list scheduling algorithms is published. The first
scheduler uses the global freedom as a priority function. Initially, the global freedom of
an operation equals the mobility of that operation. If an operation is deferred in time,
the global mobility will be decreased by one. The idea is that operations which are not
situated on the critical path, and are deferred many times, will gain more priority to be
scheduled. The second scheduler is based upon the number of direct successors of an
operation. The idea is that operations with many successors, which are deferred to suc-
cessive cycle steps, cause all their successors to be deferred too, and might increment
the completion time of the schedule. The third scheduler, uses the alap of an operation
as a priority function. The fourth scheduler uses the distBpge asafv) of operation

v as a priority function. The idea is that operations which are situated far from the time
constraintl,,5, can be moved more easily without increasing the completion time than
operations which are close to the time constrajp, The fifth scheduler uses a
weighted priority function, in which the alap value of an operation is used as the main
priority function. If the alap of two operations is equal, the number of successors is
used to distinguish between these operations, and if still no difference can be made, the
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Figure 5.1 Partial data-flow graph, list schedule, and optimal schedule.

distance is used as priority function. The results in [Heij91] show that the quality of the
solution heavily depends on the priority function used, but in a non-obvious way.

In [Potk89] and [Paul89] global measures are offered to define a priority function. In
[Potk89], both a local priority function and a global priority function are presented.
They are both defined as the ratio of the available resource allocation of a particular
resource type divided by the required resource allocation of the same type. The local
priority only looks at this ratio in the current cycle step. The global priority looks at all
unscheduled operations. Operations are scheduled in such a way that these ratios are
kept as large as possible. In [Paul89], forces are used to see the effect of an attempted
schedule in the current cycle step. The operation which results in the best force will be
selected and scheduled.

An important disadvantage of list scheduling is that it may miss out the optimal solu-
tion regardless which priority function is used. Suppose that a multiplication requires 2
cycle steps to execute on a multiplier, and an addition requires 1 cycle step to execute
on an adder. The list schedule of the process shown in Figure 5.1(a) will lead to a com-
pletion time of 6 cycle steps (Figure 5.1(b)), independent of the priority function used.
The optimal schedule is shown in Figure 5.1(c), and takes 5 cycle steps. In [Grah76] it
is shown that an increment in the number of resources, a reduction of the delay of oper-
ations or weakening the precedence constraints also may lead to an increment in the
completion time of a solution produced by a list scheduler.
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Algorithm 5.14 construct_schedule: 1 - ¢

cost = 0;
for i= 0 to |M|-1 do
v = GetFirstFree(N); // select operation
d(v) = firstFreeResource(v,getAsap(v),w); // determine first cycle step

// in which resource is free
update resource usage;
endfor;

A new alternative way of performing resource constrained scheduling in high-level syn-
thesis is by using Algorithm 5.14. The algorithm schedules each operation from permu-
tation 1 by repeatedly searching for the first unscheduled openatiom from I for

which each predecessor has been scheduled. The selected opeasadibempted to be
scheduled in the earliest cycle step from its feasible range. When all resources are occu-
pied at this cycle step, the functiéfnrstFreeResource(v,getAsap(v),») searches for

the first cycle step = asafv) in which a resource is available to implemerfter an
operationv is scheduled, the resource requirements due to schedudiregadminis-

trated. The cosC,5(¢) of schedulep is defined by the last cycle step in which an
operation ends its execution.

A proof will be given that there exists at least one permutéatitor which the topolog-
ically sorted schedule constructor results in an optimal schedule.

Let d1(t) denote the set of operations that are scheduled in cycle Ftep following
algorithm constructs a permutation out of a schedule:

Algorithm 5.15 construct_permutation: ¢ — I
i=20;
for t = tphegin t0 teng do
foreach v O ¢71(t) do
Nei++) = v;
endfor;
endfor;

Theorem 5.1 There exists a permutatiéhfor whichconstruct_schedule(IT) returns
an optimal schedule.

proof: Let ¢q,; be an optimal (and hence feasible) schedulelLee given by:
M =construct_permutation($qpy)
Then according to algorith@bnstruct_permutation, 1 can be written as:

M

={def.construct_permutation}
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no)yon@o...ongmj-1)
= {def construct_permutation}

¢6%t(tbegin) O ¢c_)p1)t(tbegin+ 1)j Ll ¢c_)p1)t(tend)

In which [0 denotes the concatenation symbol. The concaterto® ] T of two sets
SandT is defined as a concatenation of a sequence containing all elem8nisasf
arbitrary order plus a sequence containing all elemeritsnoén arbitrary order.

For allu,vl ¢;§)t(i) , 1 O [tpegin» tend. there are no precedence constraints or resource
conflicts, because otherwigg,; would be an infeasible schedule.

Letd =construct_schedule(lT). We first prove by induction that:

0 o(v) <t

N 1
tQ [tbegirr tend] vl q)opt(t)

hence,

Oy 19 (V) € Gop(V)

. -1 —
First, let M = ¢Opt(tbegin). From.the definition aype wWe knoyv that there are no
resource or precedence conflicts between any operation$l,ofand hence
construct_schedule will schedule all operations &f in cycle stefiyggin Thus:

(D ¢(V) = 1:begin) O (D (I)(V) S 1:begin)

-1 -1
v ¢opt(tbegin) v q)opt(tbegin)

Let the induction hypothesis be true fa [tyegin, thegin+ N]- Thus,

M

¢-l(tbegir) N q)-l(tbegin"' 1) ---¢-1(tbegin+ n)
and henceél, . ¢(V) < tpegin* N.
Letll"= ¢_1(tbegir‘) O ¢_l(tbegin+ nHo..0 ¢_1(tbegin+ n+1)=nogn".

Because in the original scheddlgy all operations frombgiljt thegint N + 1) could be
scheduled without constraint violation in cycle siggi,+ n + 1, and from the induc-
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tion hypothesis we know that no operations fidrare scheduled in cycle steps larger
thantyegin + N, the operations frorfl” can be scheduled without constraint violation
inside cycle stefyegin + N + 1 or smaller. Hencély mq o ¢(V) S thegin + N + 1,
which proves the induction hypothesis.

So if M = construct_permutation(@opy), and ¢ = construct_schedule(l), then
Cmad9) < CmalPopy. Because ¢q, is an optimal solution, we know that
Cmax®) % Cral$opy, Which ends the proof.

Observe that the solution space of list scheduling, in which the order of operations in a
permutation is restricted to non-decreasing asap values of its operations, is a subset
of the solution space of Algorithm 5.14. The complexity to build a schedule from a per-
mutation by Algorithm 5.14 i®(|r1| - log[]).

5.8.4 Time and resource constraint satisfaction

Time constraints and resource constraints impose a restriction with respect to the set of
operations that can be scheduled simultaneously in the same cycle step. If inside the
feasible schedule range of an operation no cycle steps can be found in which a resource
is free, no feasible schedule can be found for permutgation

Care must be taken not to schedule operations such that they fix the schedule of other
operations in such a way that infeasible schedules results. This means that there should
be a close interaction between the permutdiiand theselect procedure for such an
algorithm to become successful.

Algorithm 5.16 (Feasible constrained topological permutation scheduling).
for i =0 to |M|-1 do

v = GetFirstFree(n); // select operation
d(v) = satisfyResConstr(v,getAsap(v),alap(v)); // determine cycle step
if (¢(v) == 0O) then return(“infeasible schedule”);
update resource usage;

endfor;

To determine the (earliest) cycle step in which an operation must be scheduled, Algo-
rithm 5.16 can be extended with the MEI method presented in [Timm93] (see also Sec-
tion 4.6). The MEI analysis may prevent operations from being scheduled in cycle steps
for which there doesn’t exist a corresponding matching (and hence no feasible sched-
ule) in the bipartite matching graph. The success of applying such a strategy has been
shown in [Timm95].

5.9 Permutation statistics

In the preceding sections some algorithms have been presented which use permutations
to generate a schedule. A permutation can be considered as an encoding of a schedule.
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T

Figure 5.2 Search space S versus solution space F.

Consider a time constrained scheduling problem, consisting of a data-flowDdF&ph
(precedence constraints) and a time constiigigy, and aiming at a schedule inducing

a minimal resource allocation. With respect to this combination of constraints, a set of
feasible schedules can be created (also called solution space), containing a subset
Fopt U F consisting of solutions which are optimal with respect to the resource alloca-
tion induced (also called optimal solution space).

The expressiorkjyy | / F| denotes the relative amount of optimal solutions with respect

to the total size of the solution space. This ratio is of importance when probabilistic
search methods such as genetic algorithms (see Chapter 6) are applied to the scheduling
problem. The higher this ratio, the higher the probability that an optimal solution is
encountered.

For the schedule constructors presented in this chapter, the size of the searhsspace
determined by the number of possible orders of a permutdtioncombination with

the possible cycle step assignment ofsilect procedure. The s& consists of all
optimal schedule solutions obtained after applying a particular schedule constructor to
particular permutations. The rati 4 / [ denotes the relative amount of permutations
resulting in an optimal schedule solution. For a relation betwWesm F, see Figure

5.2.

In Table 5.1 some results for the sizé=pF,,;, S andS,; for some specific scheduling
problems can be found. Because counting the total number of feasible schedules can be
a quite cumbersome task for large schedule examples, only relative small schedule
examples shown in Figure 5.3 have been used to obtain the results presented in Table
5.1. The schedule constructor used to obtain the results in column ‘permutation search
space size’ is based on Algorithm 5.4, with the exception that if an operation cannot be
scheduled inside its feasible range (he@Geed), the resource allocation is increased.
Each operation is selected to be scheduled inside the earliest possible cycle step in
which a resource is free to execute the operation. The results of the column ‘topological
permutation search space size’ have been obtained by Algorithm 5.14.
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Figure 5.3 Some relative small schedule examples.

From all examples in Table 5.1, it can be concluded that the ratio between the number
of optimal solutions and the total number of feasible solutions is the largest in case top-
ological permutation scheduling techniques are used. It is expected that probabilistic
search methods such as genetic algorithms will be more efficient when using topologi-
cal permutation scheduling techniques. This observation will be confirmed in Chapter
6, where some empirical results obtained for larger scheduling examples will be pre-
sented.

Table 5.1 Permutation statics of examples of Figure 5.3.

solution space size permutation search space| topological permutation
P size search space size
Example
P Fi S S
ratio ratio ratio
IFopd Sopd Sopd
1 1 100% 6 100% 6 100%
1 6 6
2 5 40% 6 33% 6 100%
2 2 6
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. . permutation search space| topological permutation
solution space size . .
size search space size
Example
P Fi S §
ratio ratio ratio
IFopd Sopd Sopd
4 25% 120 50% 120 50%
1 60 60
25 40% 120 100% 120 100%
10 120 120
2350 1.7% 40320 5.9% 40320 100%
40 2384 40320
256 9.4% 24 100% 24 100%
24 24 24

5.10 Permutation scheduling and pipelining

During the pipelined execution of a data-flow gr&ph (V , E), a new execution db
is started befor& has finished its previous execution(s). This implies that operations
involved with data related to different execution&adre executing in parallel.

Data-flow graphG can be partitioned in so called pipeline stages. In a pipelined sched-
ule, operations assigned to the same pipeline stage are concerned with the execution of
data from the same invocation. Let a (non-pipelined) schedulzbaf given byd,

which assigns a cycle step to each operatiarV. Let the distance between successive
executions (called invocation distance)@®be given by data introduction intendil.

In that case the pipelined cycle step assignmei@ ©f given byg¢;i(v), defined by

dgii(Vv) = ¢(v) moddii. The pipeline stage assignmei(t) of operatiorv LV is defined

by o(v) =¢(v) div dii. The schedule of such an operation is given by a tuple
(dgii(v) , o(v)). A simplified example of a pipelined execution of a data-flow graph can

be found in Figure 5.4.

Assume that for each operatienl V, §(v) = 1. To explicitly model the concurrency of
the pipelined execution of operations in a data-flow g@aph(V , E), it can be thought

to be folded among the pipelined cycle step budget {0, Mii.- 1} as shown in Fig-
ure 5.4, resulting in a pipelined data-flow gra@d = (V , Egii). The operations ob

can be partitioned inton subsets, with V=VyOV,0..0V,. and

1 0{0, 1, ... ,n-1}, in whichV; represents the set of operations situated in pipeline
stagei (in other wordd],, 7\, o(v) =1). The partitioning ofG is accomplished by cut-
ting each edgeu(, v), with o(v) - o(u) =k, ktimes. The seEy;; U E consists of edges of

G, excluding the edgesi (V) withu 'V, vV}, and 0 i <j <n.

The concept of pipeline stages is similar to the concept of inter-iteration (see Section
3.4). The first pipeline stage processes data from the current process invocation, while
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Figure 5.5 Pipelined schedule example.

successive pipeline stages are processing data from previous process invocation. Just
like the case with loop structures, pipeline boundaries can be explicitly modelled by the
use of delay nodes. @f(v) - o(u) =k, edge @, v) should be replaced by a sequenck of

delay nodes connected by a sequence of edges.

One of the main questions in this section is whether permutation scheduling can be
used to construct (optimal) pipelined schedules. For this section we assume a pipelined
resource constrained scheduling problem (in other words given a data-flow graph, a
resource constraint, and a data introduction interval, find a schedule with minimal com-
pletion time).

Assume that a data introduction interval of 3 cycle steps is given, together with a
resource constraint of 1 adder (requiring 1 cycle step), 1 multiplier (requiring 2 cycle
steps), and the data-flow graph as given in Figure 5.5(a). In case of topological permu-
tation scheduling (as in Algorithm 5.14), operatigrandv, will always be scheduled
before operatiowvs. This causes the adder to be occupied inside the first two (folded)
cycle steps, and hence operatgrwill have to be scheduled in cycle step 5 (which is
equal to folded cycle step 2, see Figure 5.5(b)). In Figure 5.5(c) an example of a pipe-
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lined schedule is shown, in which operatigns scheduled in cycle step 4, inducing a
shorter length schedule. This schedule can never be obtained by using topological per-
mutation scheduling for the data-flow graph of Figure 5.5(a) directly. The problem orig-
inates from the fact that topological scheduling assumes that operations which are on
head of a path are scheduled earlier in time than operations which are in the tail of a
path, and therefore will never lead to resource conflicts. If pipelining is applied, and
hence resource usage is folded, this situation is no longer true. Because operations in
pipeline stage, x I N, are always scheduled before operations in pipeline stade

all optimal schedules for a particular example can be excluded from the search space.

Another question is whether an optimal pipelined resource constrained schedule can be
constructed by using a non-topological permutation scheduling technique derived from
Algorithm 5.14 (in other words, operations are scheduled in their asap value, but with-
out violating resource constraints).

A counter example is given in Figure 5.6, assuming a data introduction interval of 3
cycle steps, together with a resource constraint of 1 adder (requiring 1 cycle step), and 2
multipliers (requiring 1 cycle step). The optimal schedule with the smallest completion
time is given in Figure 5.6(b). In this schedule, operatipis scheduled one folded

cycle step earlier than operatigp This implies that operatiory should be scheduled
before operation,. Let's assume that operatiop v,, andvs have been scheduled in
pipeline stage 1. If operatior is scheduled in its earliest possible cycle step, before
operationv, is scheduled, it will be assigned to the last cycle step of pipeline stage 2,
forcing operatiorv, to be scheduled inside the first cycle step of pipeline stage 2, induc-
ing an infeasible resource allocation of 2 adders. If operatos scheduled before
operationv,, it will be scheduled in cycle step 1 of stage 1, resulting in an infeasible
schedule because operatignis forced to be scheduled inside cycle step O of stage 1,
inducing a resource allocation of 2 adders. To obtain a feasible schedule, opgration
should be scheduled before operatignresulting in the schedule of Figure 5.6(c).
Hence there exists no permutation in combination with a cycle step assignment as given
in Algorithm 5.14, leading to an optimal schedule.

The problem originates from the fact that scheduling an operation inside its earliest
possible cycle step can move this operation towards a pipeline stage in which it imposes
time constraints towards other operations such that non-optimal or infeasible solutions
are created because the resource utilization is folded. The conclusion is that in case of
pipelined resource constrained scheduling,Séiect procedure as presented in Sec-

tion 5.6 should not only consider scheduling operations within their earliest possible
cycle step. The general question is what kinds@fect procedure is needed, and
whether a complicategklect strategy must be applied to all operations of a data-flow
graph.

It will now be shown that the proof as given on page 77 is not applicable, because it
makes use of the fact that some operations can be safely scheduled in earlier cycle
steps, which in a folded cycle step range might imply that an operation is scheduled
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Figure 5.6 Pipelined schedule example (2).

‘later’. Let ¢ be an optimal pipelined schedule of data-flow gr&ph(V, E). Let

M= construct_permutation(§gpy, and lety =construct_schedule(l) (see Algo-

rithm 5.14 and Algorithm 5.15). The proof on page 77 makes use of the fact that
construct_schedule constructs a schedul@ with U,y $(V) < dopdV). Applying
construct_permutation to the optimal schedulg,; as shown in Figure 5.6(b) would
induce a permutatioll = vy v, V3 V4 V5 Vg. Scheduling1 using Algorithm 5.14 results

in the schedule as given in Figure 5.6(c). In this schefelulg > ¢opi(ve), and hence

is a non-optimal schedule, which on its turn shows that the proof of page 77 is not
applicable.

If a permutationly; based on folded cycle steps is constructed, still a non-optimal
schedule results. Letly; = construct_permutation(¢ops moddii), and let ¢ =
construct_schedule(Mgji). The example of Figure 5.6 shows thaéty; =

V1 Vg Vo Vg V3 Vg, Which results in an infeasible schedule inducing a resource allocation
of 2 adders becausenstruct_schedule(lT) will schedule operatiow, in cycle step O

and operations in cycle step 4, and hence will schedule operatidn cycle step 3.

From Figure 5.7 it can be concluded that if instea®,0écheduling is applied to the
pipelined graplGg;;, then according to the proof given on page 77 there exists a permu-
tationly; consisting of operations fromifor which Algorithm 5.14 results in an opti-

mal schedule. Thus @ is cut at the right places, and scheduling is appli€s}tothen

there exists a permutation of operations which results in an optimal schedule. Hence the
problem to be solved is given data introduction intethiaffind the places where to cut

G to obtain a pipelined data-flow gra@l;;, for which a permutation exists, resulting in

an optimal schedule. In other words, determine the pipeline stage assigriméat

all operations [1 V.
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Figure 5.7 Pipelined data-flow graph derived from data-flow graph of Figure 5.6.

Supposeé/ is partitioned in (at most) pipeline stages. Assume that the schedule range
of an operatiowv 1V is given by safv) , alap(v)]. A feasible schedule of operation
requires thath(v) O [asadV) , alap(v)]. Assigningv to pipeline stages(v) =k, with

O<ks< n,andle k. dii, + 1) -dii] € U [asafv) , alap(v)], can never lead to a feasible
schedule, and hence should be avoided. Furthermore, if the placement of pipeline
stages between an operation and all its successor (or predecessor) operations is
restricted to one stage, an optimal schedule can still be created(Vv.etk, with

O<ks< n, such thatlyqk.gii, k+1)-q¢i] LU [asafv),alap(v)]. Let vOV, and
Huovw,vyoeo(V)-o(u) 2 2. Lety, be an optimal schedule. No difference of the
cost of (V) can be detected when the pipeline stage assigra(igraf operatiorv is
lowered in such a way tha}, v | u,v) oe 0(v) - o(u) = 1. Hence, an upper bound on

the pipeline stage of operationwhich contains an optimal schedule is given by
o(v) s MAXypv|u,vyoeo) + 1.

In Algorithm 5.17 a permutatioli of operations is used to determine an assignment of
pipeline stages to all operations of a data-flow graphsdlekttStage be a procedure
which selects for each ]V the smallesk(v) O N, with 0< k(v) < n, andk(v) - dii [
[asafv) , alap(Vv)] (in other words the interval can be cut by a pipeline boundary). If no
suchk exists, therk(v) = 0.

Algorithm 5.17 (Pipeline stage assignment).
for i =0 to |[1]-1 do

v =T0);

k = SelectStage(asap(v),alap(v),dii);

if (k # 0) then

asap(v) = k * dii;
update Schedule Ranges;
endif;
endfor;

By using Algorithm 5.17, each possible pipeline assignmef cén be constructed,
with the limitation thato(v) < MAX,gv|u,yoeo() + 1 (because procedure
selectStage selects the smallektwith k - dii O [asaf{v) , alap(V)]).

The pipeline stage assignment can be performed in a topologically sorted manner, with-
out imposing restrictions to number of pipelined data-flow graph$Gketepresent an
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arbitrary pipelined data-flow graph, witf, oy o(v) < MAX qv|@u,voeo(u) + 1.
Let permutatiorf] be such that:

1. the first operations &1 consist of the operations Gf;;; with in-degree 0 (in other
words without predecessor operations).

2. Let these operations be sorted topologically with respect to the precedence rela-
tions of data-flow grapt.

In that case Algorithm 5.17 will c® in a topological manner. First the input opera-
tionsv OV with asaf{v) = 0 are visited, because by rule (1) and (2) they are located at
the head of the permutation. BecakseO for these operations, no action will be per-
formed. Then the operationd]V, with o(v) = 1, and which have no predecessors in
Ggji, are visited. For these operatiokss 1, and theipdate Schedule Ranges will

update the schedule range of successor (predecessor) oparafivhis such a way
thato(u) = 1 (o(u) < 1). This procedure is repeated for increasing valuksnaf opera-

tion v OV will be found withk - dii O [asagV) , alap(v)], and hence the algorithm ter-
minates with no further action, because all operations have implicitly been assigned to a
pipeline stage.

The idea of finding a good cut inside a data-flow graph is similar to the concept of
retiming (see Section 4.3.3 and Section 5.11). When retiming is applied to a data-flow
graph, it can assign pipeline stages in such a way that it excludes the optimal schedule
from the solution space. An example of such a case (containing loop structures) is given
in Figure 5.9, in which two different retimings are given for the same data introduction
interval dii, but for which the optimal schedule induces different resource allocations.
RetimingG in such a way that the resulting gra@f); contains the optimal schedule is
proven to be an NP-hard problem [Potk91]. In [Potk91] heuristics are used which try to
balance the resource allocation over the cycle steps available.

The retiming algorithms described in Algorithm 5.17 can be combined with Algorithm
5.14 to find a pipelined schedule by using permutations. One can use a combination of
two permutations (one for retiming, one for scheduling), for which it is known that
there exists a combination of these two permutations leading to an optimal pipelined
schedule. A simplified method can be constructed which uses one permutation for both
algorithms. No proof or counter example is known concerning the optimality of such a
strategy. Nevertheless empirical results presented in Chapter 6 show that such a strat-
egy, in combination with a genetic search, produces optimal results in all cases tested,
which validates the use of such a strategy.

So far, it has been assumed that for each openafio¥ the execution dela§(v) = 1.

In case multi-cycled operations are allowed, an arbitrary cut of a graph cannot be
described by a retiming. An example is shown in Figure 5.8, in which the multiplication
operation is distributed among two pipeline stages. It also causes an increment of 1
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Figure 5.8 Pipelining and multi-cycling.

cycle step of the lower bound of operatinin pipeline stage 1, which has to be
accounted for when scheduling is applied to such a data-flow graph.

An operationv, for which the operation execution deksy) equalsc cycle steps, can

be cut atc- 1 places. One can think of extending the permutation with cycle step
assignments for multi-cycled operations to account for situations as depicted in Figure
5.8. In the results shown in Chapter 6 multi-cycled operations aren’t explicitly
accounted for during the assignment of pipeline stages (in other words the pipeline
boundary is always assigned as close as possible to the asap-value of such an opera-
tion).

5.11 Permutation scheduling and cyclic data-flow graphs

Because a cycle contains at least one delay node, cyclic data-flow graphs are always
related to the concept of pipelining. There are different approaches how to cope with
the concept of delay nodes, which closely relate to the methods with respect to invoca-
tion distance constraints mentioned in Section 4.3.

In general, most schedule methods reported in the literature dealing with cyclic struc-
tures transform these cyclic structures into acyclic structures, and apply scheduling to
these acyclic structures. In the next sections a short overview of the advantages and dis-
advantages of each method will be discussed.

5.11.1 Single iteration model

A single iteration of a cyclic structure can be obtained by splitting delay nodes, as has
been shown in Section 4.3.1 on page 44. Because inter-iteration dependencies are dis-
carded completely, the acyclic structure doesn’t hold any information about the concur-
rency among different iterations. Depending on the schedule constraints this restriction
might induce non-optimal or even infeasible schedules, regardless of the scheduling
method that is used.
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5.11.2 Multiple iteration model

Unfolding a grapm times exposes the inter-iteration concurrency betweatarations

(see also Section 4.3.2, page 44). During loop unfolding inter-iteration dependencies
are transformed into intra-iteration dependencies, and hence scheduling the unfolded
graph using constructive scheduling techniques implicitly makes use of loop pipelining.
The main problem of multiple iteration models is the increment in the number of opera-
tions to be scheduled. Unfolding may also lead to an increment in controller size, espe-
cially with nested loops.

5.11.3 Loop Winding, Loop Folding, Retiming

By reorganisation of the location of pipeline stages, both single iteration and multiple
iteration methods might yield more successful results. Pipeline stage boundaries are
represented by delay nodes, and hence reorganization of pipeline stages can be accom-
plished by transforming the graph. Changing the location of pipeline stages by trans-
forming a graph is called loop winding, loop folding or retiming.

There are mainly two methods of loop winding. One method transforms the graph
before scheduling. The other method transforms the graph during scheduling.

Loop winding before scheduling

In [Girc87] the first step consists of unwinding all cycle structures in a data flow graph.
The acyclic graph that is obtained by this step is partitioned using the data introduction
interval and wound in parallel. This achieves a functional pipeline, because operations
from several iterations of the loop may be executed in parallel (depending on the results
of the winding). Disadvantages of the method are that unwinding may increment the
input size of the problem considerably, or isn't possible because the number of loop
executions is data dependent. Secondly, the winding process fixes the location of pipe-
line stages, which may exclude the optimal loop-pipelined schedule from the search
space.

In [Leis91] retiming is used to change the position of pipeline stages in logical circuits.
In [Fran94] the main idea of retiming to change the location of pipeline boundaries
inside ASCIS data-flow graphs has been implemented. It is based on the Bellman-Ford
all-pairs longest-path algorithm, resulting in @{V[® - log)|) algorithm, with V| the
number of operations inside a data-flow graph.

The main disadvantage of graph transformations before scheduling is that it may place
delay nodes at the wrong places, such that it reduces the design space of a scheduler in
such a way that it might exclude the optimal throughput-constrained schedule (which is
the schedule with the lowest resource allocation). In Figure 5.9 two examples in which
this problem becomes obvious can be found. In both examples the minimal distance
between process invocations is 3 cycle steps (assuming unity delay for each operator).
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Figure 5.9 Different retimings and their optimal schedules.

In the second example one multiplier and one adder less are needed to obtain an opti-
mal schedule, assuming 4 cycle steps are available for scheduling.

In [Potk91] an algorithm is presented to apply retiming in such a way that it balances
the resource utilization (the ratio of the number of cycle steps a resource is exploited
over the total number of available cycle steps). Because solving this retiming problem
optimally has been proven to be an NP-hard problem, heuristics are used, which try to
balance the resource allocation over the available cycle steps. Heuristic measures, such
as the mobility of an operation, the probability of resource sharing, and critical path
length are used as an object function for retiming. Nevertheless, the method cannot
guarantee that it may exclude the optimal schedule solution from the search space of a
scheduler.

Loop winding during scheduling

In [Goos89,Hwan9la,Lee92,Chao93,Wang93], loop winding is integrated into the
scheduling procedure itself. Depending on partial schedule results, operations are
moved to previous or successive pipeline stages in such a way that a more efficient
resource utilization or a smaller data introduction interval become possible.

Despite the fact that these transformation algorithms in combination with scheduling
might lead to better results, the main disadvantage of these methods is that the move-
ment of operations to other pipeline stages is performed using heuristics, and also
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depends on the kind of scheduler used. This means that because of their greed, these
methods may reduce the search space in such a way that the optimal solution is
excluded from the search space.

5.11.4 Cyclic scheduling

Based on the calculation of the schedule ranges of operations, constructive algorithms

as reported in Section 5.6 and 5.8 can be used to produce pipelined schedules. A permu-
tation of operation determines the order in which operations are scheduled, and the

Select procedure determines the cycle step in which these operations are scheduled.

The precedence constraints, time constraints, and throughput constraints of the loop

structure are accounted for by updating the schedule ranges of operations.

When topological scheduling techniques are applied to cyclic structures directly, it
searches for operations for which all predecessors have been scheduled. Assuming that
delay nodes contain initial tokens, the initial set of unscheduled operations consist of
the set of successor operations of each delay node and the input nodes. The search
space of scheduling in such a case is equal to the single iteration model reported in Sec-
tion 5.11.1, severely restricting the search space for scheduling.

The method presented in Section 5.10 for creating pipelined schedules can also be
applied to cyclic loop structures. A permutation is used to determine both the pipeline
stage assignment and the schedule of operations of the data-flow graph. Such a strategy
allows operations besides successor operations of delay nodes to be scheduled at the
top of pipeline stages, but according to Algorithm 5.17 is restricted to those operations
for which deferring to successive pipeline stages is sensible. Although optimal results
are not guaranteed, empirical results presented in Section 6.9 show that the approach
produces optimal solutions in all cases tested, which validates the use of such a strategy.

5.12 Conclusions

In this chapter a classification of constructive high-level synthesis scheduling methods
is presented, based on permutations of operations. This classification shows some
advantages of constructing a schedule in a topologically sorted way, because in many
cases it prevents the creation of infeasible solutions, and the search effort can be ori-
ented towards finding good quality solutions instead of finding feasible solutions.

A topological schedule constructor, assigning operations to the first cycle step in which
no resource conflicts arise, has been proven to contain the optimal schedule solution
inside its search space. By application of special data structures, such as heaps and
array implementations of doubly linked lists, the complexity to construct a schedule
from a permutation in a topological manner eq@(l1| - log[1|), where[l| denotes

the length of the permutation.
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Furthermore it has been shown that the constructive creation of pipelined schedules or
cyclic schedules is a more complicated task to perform. A new strategy to incorporate
retiming into the scheduling process has been presented. Despite the fact that optimal
results are not proven to be part of the search space, it provides a way to search for good
quality schedules in a more global way when compared to strategies which perform
retiming before scheduling is started.

The methods presented in this chapter can be considered as an engine to translate a per-
mutation of operations into a schedule. The search for an optimal schedule is defined as
finding a permutation for which the scheduling method will return an optimal solution.
Simple heuristic strategies, some of which have been presented in this chapter, often
fail to find good quality solutions. In the next chapter a probabilistic search method,
called genetic algorithms, will be used to search for permutations, resulting in better
quality schedules.



Chapter
6 Genetic Algorithms and Scheduling

6.1 Introduction

In the previous chapter various algorithms have been examined to construct schedules
from permutations. A classification of constructive schedulers has been made, empha-
sizing the feasibility and greed of the algorithms constructing the schedule. The ques-
tion about how to find permutations which result in optimal or near-optimal schedules
hasn’t been explored yet, and will be the main topic of this chapter.

In general, exhaustive search takes too much computation time and heuristics provide
poor quality results. The choice for genetic algorithms is based on the fact that they
have been successfully applied to many combinatorial optimization problems (for an

overview see [Mich92]), and are assumed worth considering for solving the scheduling

problem.

This chapter first presents a short introduction about genetic algorithms. Then a statisti-
cal analysis about the convergence of genetic algorithms is presented. After that, a new
encoding of the resource constrained scheduling problem is presented, accompanied
with some benchmark results. Subsequently the genetic algorithm is extended with the
possibility to allocate extra resources, resulting in a time constrained scheduler. Finally,
results are presented with respect to scheduling cyclic data-flow graphs.

6.2 Introduction to genetic algorithms

Genetic algorithms [Holl75] are probabilistic search algorithms which are inspired on
the principle of “survival of the fittest”, derived from the theory of evolution described
by Charles Darwin iThe Origin of Speciessenetic algorithms maintain a collection

of potential solutions, which evolve according to a measure reflecting the quality of
solutions.

The evolution process of a genetic algorithm works on an encoding of the search space,
represented by a chromosome.

Definition 6.1 (Chromosomey). Let A be an alphabet (in other words a set of
symbols). A chromosomg is a string of symbols from alphab&t The number of
symbols ofy is called the length gf, denoted byx||. The sef\, with | O N, consists of
all possible chromosomeswith [x| =I. x(i) denotes theth symbol, with (i < of
chromosome.
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Definition 6.2 (EncodingEnc decodingDeq). Let (F, c) be a search problem. L&tbe

a set of chromosomes. The ohtiunction Dec Al = F is called a decoding. The
functionEnc F - Al is called an encoding. The encodiwgqf) of an element [ F is
defined as an element of {1 A | Dedx) =f}. Hence, for each elemeht] F, one or
more encodingg [ A exist. If for allf O F the set of possible encodings consists of
exactly one element, the encoding is called one-to-one.

Classical genetic algorithms as described in [Holl75] use bit-strings as encodings, in
other words alphabet = {0, 1}. In other publications alternative encodings are pro-
posed, consisting of arbitrary symbols (for example natural numbers, or nodes of a
graph). Also the length of the chromosomes might not be a constant. In [Koza92], chro-
mosome representations are even extended to graph structures.

To make the process of evolution possible, a distinction between “more fit” and “less
fit” chromosomes is needed. This is accomplished by assigning a fithess value to each
chromosome, which is associated to the csbf a candidate solutidrni] F of a com-
binatorial optimization problent=(, c).

Definition 6.3 (Fitnesss, scaling functionX). Let (F, c¢) be an instance of a
combinatorial optimization problem. Led' be a set of chromosomes, and let
Dec Al = F be an onto function. The fitnessA' R is a function, withs(x) the
fithess (or score) of chromosorgél A. Fitnesssiis related to cost functionby use of

a scaling functioix: R - R, given bys(x) = Z(c(DedX))).

In many cases the scaling function equals the identity function, and hence the fithess
value equals the cost of the original combinatorial optimization problem. Alternative
scaling functions and their effect on the evolution of genetic algorithms will be
explained in Section 6.4.

During the run of a genetic algorithm, it keeps track of a collection of chromosomes,
called a population.

Definition 6.4 (PopulationP, population sizeF|, individuals). A populatio® is a bag

(also called collection), the elements of which are taken from the set of chromosomes
A. The elements d® are called individuals. The size of the populatpdenoted byA|

is called the population size Bf

In a genetic algorithm the initial populatiéty is created by randomly selectirigy||
individuals from the set of chromosomas A genetic algorithm iteratively tries to
improve the average fithess of a population by the construction of new populations,
using selection and recombination mechanisms.

1. each element d7 is the image undddec of some element &
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crossover point

xl\so sl s2 | s3 s4 s5 s6 s7
x, 0 tl 2 |3 t4 t5 6 t7|

oftspring | SO sl s2 t3 tA 15 t6 7 |

Figure 6.1 Example of single point crossover.

crossover point crossover point

X1 ‘SO sl s2 |s3 s4 s5|s6b s7
, 10 t1 2 |3 t4 5 |6 (7

X

ofispring (SO s1 s2 t3 t4 5 s6 ST
Figure 6.2 Example of 2-point crossover.

Recombination of individuals is performed by so-called operators. An operator accepts
a set of chromosomes (sometimes called parents), and constructs new chromosomes
(called offsprings or children) by copying information from the parents.

Definition 6.5 (OperatorO). An operatorO is a mappingO: (A')m - (A')”, with
nmON. It acceptsm chromosomes (also called parents), and, using a particular
mechanism, generatachromosomes (called children or offsprings).

Many different operators for genetic algorithms have been published. The most popular
operators are called crossover and mutation. Mutation takes one chromosome, changes
its contents, and returns the modified chromosome as a result. Crossover takes two
chromosomegq,X> U A, exchanges information between these chromosomes to create
new chromosomes, and returns one or two chromosomes as a result. Without any loss
of generality this thesis assumes that only one offspring is created by crossover. There
are many different types of crossover operators, some of which are the following:

» Single point crossover. A crossover-pdiritl N is randomly chosen in the interval
[0, - 2], and the offspring is defined as (see also Figure 6.1):

a
x(i) = Exl(l) if iD[O, K]
EXZ(I) ifid[k+11-1]

* n-point crossover. Instead of 1 cross-over pairi, N crossover points are chosen,
with n<|. A child is constructed by copying symbols, starting from the first parent,
and changing to the other parent each time a crossover point is encountered (see also
Figure 6.2).
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bitmask 1 1 0 0 1 0 1 1

.| sO| sl| s2 s3| s4| s5]| s6]| s7 |
x, 10 tl | t2 |3 |t |56 (7

oftspring. SO sl t2 t3 s4 t5 s6  s7 |
Figure 6.3 Example of uniform crossover.

» Uniform crossover. For each position a bitmask string (a string with the same length
as the parents, consisting of ‘O’'s and ‘1's) determines whether a symabiof, is
copied to the same position of the offsprpdf the value of the bitmask at position
I equals 1, theg(i) = x4(i), elsex(i) = x(i). The values of the bitmask are generated
randomly. The probability that the value of the bitmask at a particular position equals
1 is given by the so-called bit-mask probability, denotegpy (see also Figure
6.3).

In Section 6.4 more details about operators will be presented.

The selection of parents from a population is performed such that better (above aver-
age) individuals have a higher probability to be selected than other individuals. The
selection process is a stochastic process, based on the fitness of the individuals of a pop-
ulation.

Definition 6.6 (Selection probabilityse). Let P be a population, and Igt] P. The
selection probability is a functioset P - [0, 1]0 R, with selX) the probability that
individual X is chosen from the population as a parent for a particular operator.

A well-known way of performing selection is by using so-called roulette wheel selec-

tion (also called proportionate selection), in which for a chromospthe selection
probabilityselis defined as follows:

sely) = —X) 6.1)
s(X)

A template for a genetic algorithm can be found in Algorithm 6.1.

Definition 6.7 (Generation). The population at th' iteration of a genetic algorithm,
denoted byp;, is called the th generation of populatioR
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Algorithm 6.1 (Genetic Algorithm Template).

i=20; // generation count
P; = ‘bag of random individuals’; // initialize population
while !I(‘stop criterion is met’) do
i=1+1;
while (|P;] < |Pi.1]) do
Operator = Select(Operators); // Select an operator
Parents = Select(P;.;,0perator); // Select sufficient
// individuals for operator
Children = Apply(Operator,Parents); // Create new individuals
P; = P; O Children; // Add to current population
endwhile;
endwhile;
return best solution found; // Return result

Definition 6.8 (Average score of population). LB} denote the th generation of a
genetic algorithm, and lstbe a fitness function. The average score of populatigh
is defined by:

S(R) = 03 W

In [Holl75] a theorem called thechema theoreris presented to give a possible expla-
nation about how a genetic algorithm works.

Definition 6.9 (Schema, defining length) ordero). Let A be an alphabet consisting of
symbols, excluding don’t care symbol *'. A schema is a string consisting of symbols
from the alphabeA O {*}. Let HO (AT {*}) . Letd: (AO {*}) | -~ N be the defining
length of a schema, witi(H) =j -i, withi = MIN(kO [0, 1 - 1] | H(k) O A), i.e the first
symbol element of alphabAtin H, andj = MAX(k O [0, - 1] | H(k) O A), i.e. the last
symbol element of alphabgtin H. Leto: (AT {*}) I, N be the order of a schema,
with o(H) = #K I [0,] - 1] | H(K) O A), in other words the number of symbols Hn
element of alphabé.

Definition 6.10 (Contain). Let A be an alphabet, with &' A. A chromosome [ A,
with | O N, is said to contain scherkbll (A I {*}) | denoted by [ H, if and only if:

Uiop,1,..5-1 &0 =H@G) OH®) =)

in other words( can be obtained froid by substituting symbols froma for the don’t
care **’in H. Each chromosome of lendtliontains bschemas.

Definition 6.11 (Average score of schema). Udt(]l (A O {*}) ' be a schema. The
average fitness of the individuals in a populaBarontaining schemH is defined as:
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B 1
P = oo oA 2

Let x be a chromosome which contains a scheimi x is selected for recombination,

the resulting offspring might or might not contain schetndf a schema is destroyed
during recombination, it is said to be disrupted. The probability that an operator dis-
rupts a schema is denoted .

Let N(H , P;) denote the number of individuajslJ P;, containing schem#l. Let
E[N(H, P;)] denote the expected number of individuals containing sckemaopula-

tion P;. Assuming that individuals are selected proportionally to their fitness, the fol-
lowing relation can be derived, called the schema theory [Gold89]:

s(H, P)
E[N(H, P, 1)] = E[N(H, P)] DW ({1 - pyis) (6.2)

Equation (6.2) shows that short low order, above average schema receive exponentially
increasing trials in subsequent generations. A genetic algorithm builds new individuals
by juxtaposition of building blocks. The building block hypothesis, as presented in
[Gold89], claims that juxtaposition of building blocks results in the construction of bet-
ter individuals. It is concluded that a combinatorial optimization problem should be
encoded in such a way that the building blocks are not misleading to the genetic search.
In such a case genetic algorithms are assumed to have a good chance of finding good
quality solutions.

Despite the successful application of genetic algorithms to many optimization prob-
lems, the underlying theory presented in [Holl75,Gold89] doesn’t guarantee a certain
degree of performance. This can considered to be the main drawback of the use of
genetic algorithms. Because of the lack of an underlying theory, little is known about
how to efficiently apply genetic algorithms to solve combinatorial optimization prob-
lems (for example how should operators look like, which selection scheme should be
applied, what kind of encoding should be used, how should the stop criterion look like,
and how many individuals should a population consist of). Most publications report
rather arbitrary choices with respect to the implementation of a genetic algorithm,
mainly guided by some empirical results achieved. In Section 6.4 an analytical relation
between the statistics of two subsequent populations will be presented, providing some
knowledge about how to apply a genetic algorithm to the scheduling problems defined
in Chapter 3 as efficient as possible.

6.3 Genetic Algorithms and combinatorial optimization

In the context of combinatorial optimization, genetic algorithms can be considered as
probabilistic search algorithms, which try to find an optimal solution. Genetic algo-



GENETIC ALGORITHMS AND SCHEDULING 99

rithms are abstracted from problem specific details, and therefore are not limited to a
restricted set of problems, and hence fall into the class of so-called general purpose
search algorithms. They closely follow the concept of local search strategies, in other
words, they search for successive improvements by examination of so-called neigh-
bourhood solutions [Papa82] (see page 62 for more details).

In Algorithm 6.2 a general local search algorithm template as presented in [Papa82] can
be found. It starts with a (randomly generated) initial solutjg U F, and searches

for a better solution in a so-called neighbourhood structure. If such a solution exists, it

replaces the current solution and the algorithm is repeated using the new solution. The
algorithm terminates if no improvements can be obtained.

Algorithm 6.2 (Local search algorithm).
T = Tinitials
while (O g neiy c(j) < c(i)) do
j = Select(N(i)); // Select a solution j O N(i)
if (c(j) < c(i)) then
=13
od;

A disadvantage of the local search algorithm as presented in Algorithm 6.2 is that the
quality of the solution obtained usually depends on the initial solution. An advantage of
genetic algorithms is that they are less sensitive to the initial solution, by working on a
population of solutions instead of on single solutions. Another important difference
between Algorithm 6.2 and genetic algorithms is that subsequent populations are not
created based on cost improvements, but stochastic mechanisms are used to select and
construct new solutions.

There is no easy mechanism known for a genetic algorithm to determine whether it did
find a local or global optimum. If a genetic algorithm is stuck in a local optimum and
continues processing, the usage of time and resources can considered to be very ineffi-
cient. From this perspective it should be avoided that a genetic algorithm converges too
quickly, and might get trapped in a local optimum. If there is no convergence whatso-
ever, the underlying mechanisms of a genetic algorithm as suggested in the building
block hypothesis are missing. Hence there should be a proper balance of convergence,
which can be viewed from the perspective of the so-called exploration-exploitation
trade-off.

If the correlation of the scores between two subsequent populations is low, the genetic
algorithm is called explorative. If the correlation of the scores between two subsequent
populations is high, the genetic algorithm is called exploitative. A random search algo-
rithm is highly explorative, while the local search algorithm as given in Algorithm 6.2
can be highly exploitative, depending on the neighbourhood structure. The key mecha-
nisms to control exploration and exploitation in a genetic algorithm are selection and
recombination, as will be explained in more detail in Section 6.4.
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Many empirical results have been published about how to control the explora-
tion-exploitation trade-off in genetic algorithms (for example by use of alternative
selection strategies, operators, cost scaling, parameter tuning, and many more).
Because of the lack of theoretical analysis, these results are difficult to generalize, and
therefore it is difficult to predict how to apply genetic algorithms to particular combina-
torial optimization problems efficiently. In the following sections, theoretical results
will be presented which give an indication about how to use genetic algorithms for the
scheduling problem.

6.4 Recombination and disruption

A closer look to the crossover mechanisms as presented on page 95 show that they have
a different effect with respect to the disruption of schemas. With single point crossover,
the probability of disruption increases if the defining length of schemas is higher.
Hence, in a genetic algorithm using single point crossover, schemas with a low defining
length have higher probability of survival than schemas with a higher defining length.
This property of such a crossover strategy is called positional bias. The building block
hypothesis doesn’t consider the effects of positional bias on the defining length of sche-
mas. A genetic algorithm based on crossover techniques with positional bias, will have
a bad convergence if schemas with high defining lengths represent solutions with the
highest fitness.

The probability of disruption caused by uniform crossover does not depend on the
defining length of a schema, and hence eliminates encoding effects leading to positional
bias. Furthermore, the disruptiveness of uniform crossover can be controlled by a single
parametepyc (see also page 96), which leaves the question how to detgsirier

a particular situation.

Let the ordeo(H) of schemaHd be equal tk, denoted byH,. Lets(H, , P;) =a. E;[d],

in which a O R, with E;[s] denotes the expected average score of populBfigsee
also equation (6.4)). In [Mesm95] it is derived that for uniform crossover
(1-pgis) = p'L‘JC, with pyc the bit-mask probability for uniform crossover, hence
equation (6.2) can be rewritten as:

E[N(H,, P., )] = E[N(H,, P,)] Ca0p}c (6.3)

From this equation it can be concluded that the probability of survitd} décreases
exponentially with the ordec of schemeH,. For a schem&d, to survive, the average
fitness ofH, must increase exponentially ka This shows that uniform crossover is
very disruptive, the amount of disruptiveness depending on probgjlity

In genetic algorithms, disruption of schemas is associated with exploration because the
correlation between the cost of parents and offspring is considered to be low. The
schema theorem from [Holl75] guarantees that above average schemas grow exponen-
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tially in subsequent populations when they are not disrupted in the crossover process.
This result has lead researchers to use exploitative genetic algorithms, in order to pre-
serve schemas, and enhance the convergence. Nevertheless experimental results in
[Sysw89] show that uniform crossover outperforms single point crossover, and hence
exploration seems more desirable. The following section will analyse the phenomenon
in more detail.

6.5 Evolution statistics

To obtain an idea about the convergence of a genetic algorithm, it is interesting to
derive a statistical relation between the average score of successive popB|adimhs

Pi+1, withi O N. For this purpose the distribution (or relative frequency) of fitness val-
ues in a population is considered in more detail in this section.

Definition 6.12 (Distributionf). LetP; be a population, |} be a range of scoresi
given by tuple (MIN  pi S(X) , MAX . 0 pi S(X))- The distributiorf;: S — R is given by:
fi(s) = Qx O Py |s(x) =st0/ 0

Some characteristics of a distribution can be summarized by the moment of a distribu-
tion. Them order moment of distributiok(s) is defined as:

E[s"] = ;fi(s) 5" ,also written as E[s"] = Zfi(s) "

The first order moment, also known as theanor expectationis given by:

Eils] = f.(s) & (6.4)
2
The relation between the expected score and the average score of popplatgwen
by:
Eils]

= {def. (6.4)}

;fi(s)ts

= {def. distribution}

[{x OP;|s(x)= s}
P
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= {calculus}
B PACELLO R

= {summation over all individuals separately}

1
=0 s(x)
P2,

Hence the expected valtsds] equals the average scc@;) of populationP;.

Let pi(s(x) = s) (shorthand notatiop,(s)) be the probability that an offspriggn popu-
lation P; is created with fitnesxx) =s. The distributiorfi(s) of the fitness valuesin
populationP; is then given by:

f.(s) = % pi(s) if s =s(x)OxOP, (6.5)
00 else

Let’'s assume that all membersRyf ; are offsprings created by using crossover applied
on parentx , y, which are selected frof. Let p(x, y) represent the probability that
individuals x and y are selected from populatio®; for crossover, and let
p(s(crosgx, y)) =s|xy) represent the probability that crossover generates an offspring
X =crosgx, y) with fitnesss(x) =s. Then:

Pi+1(8) = p(x y) Lp(s(crosg x )= s|x y) (6.6)

X yUP,

According to [Mesm95] the first order moment of populafan is then given by:
Eit1[S]

= {equation (6.6) and (6.5)}

pP(x y) Cp(s(crosg x y)= s|x y) [5

S XV Pi

= {calculus}
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p(X% Y) DZ p(s(crosg x ¥)= s|x y) s
P. S

X, Y

= {express explicitly in summation over all chromosomes}

Z p(X% Y) DZ ; p(crosg x ¥= c|x y) &
Xy S cOAls

(0 =s

= {summation oves}

p(x y) O Z p(crosg x ¥y= c|x, y) 05(c) (6.7)
Xy cOA

Assume that proportionate selection is used, in other words

s(X)

;s( 0

Let S = ZP s(c) . Then (6.7) can be rewritten as:
Cc

p(x) =

10 Z S B DY perosd x ¥= /% Y B(0) (6.8)
y

Sz % cOA

In the following step of this analysis, it is assumed that the fitness of each offspring

generated equals the average fitness of the parents used (in othes(eyords2 - §x)

+ 5(y))). Although this assumption will not be true for a specific pair of parents applied

to a specific crossing, the assumption only needs to be valid on the average of all cho-

sen parents. Hence, in contrast to the general belief, it is assumed that crossover doesn'’t
improve the fithess of parents by exchange of schemas. It is only assumed that, on aver-
age, crossover doesn’'t produce below average individuals. By using this assumption,

(6.8) can be rewritten as:

s(X) L5(y) L(s(x) +s(y)) DZ p(crosg x y= c|x )

2E52 Z £
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={ Z p(cros{ x y=c|x y) =1 }

cOA

_1 g Z sz(x) [B(y) +s(X) ESZ(Y)
yUP,

208

= {symmetry}

e ; s2(x) C(y)

S

= {calculus}

éz Dx;i s%(x) Dy;i s(y)

= {def. S}

é DX;:_ s%(x)

= {def. §}

1 2
£ 0P DXZPS (X)

= {def. 2" order momentp} | and proportionate selection}

= {def. E;[$]] = E{q[s] + var; [s]}
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var,[ ]

E.[]

Ei[s] +

Hence the progress in fithess between two succeeding popuRtiandP;,, is pro-

portional to the variance in the population and inversely proportional to the average
score, described by the following expression:

var,[ ]

Sl ~Eld = g

(6.9)

From this relation, some conclusions can be drawn (endorsed by empirical results pub-

lished about genetic algorithms):

» Because the expected average s€pfg| increases for increasing generationghe

factorvar[s] / E;[s] will decrease for increasing This behaviour will lead to popu-
lations of which the score will become more homogeneous, which redarcés,

again leading to a decreasing factar,[s] / E;[s] for increasing. This means that

for increasing generations the increase in expected score will decline, leading to con-
vergence.

The increment of the expected score of populéa@gn is inversely proportional to
the average scoig [s] of populationP;. If E; [s] is very high with respect tear; [5],
then the increment in score is expected to be rather poor.

A possible way to obtain low average scores, without messing up with the search
towards better solutions, is to apply cost scaling (see also Definition 6.3f. L&t (

be an instance of a combinatorial optimization problemxUe® an element of the
encoding of~. LetZ(X) be a scaling function, given by the identity function, in other
wordss(X) = c(Ded)), and letE; [s] be the average score of populatlnusingx

as scaling function fos. Let cyj,= MINs g (c(f)) be the minimal cost of an
instance of a combinatorial optimization problefn, €). Let 2'(X) = Z(X) - B, with

0 <B < ¢yin (hence ifc(f) > O for allf O F, thenZ'(Endf)) > 0), and leg;’[ ] be the
average score of populatid?), using2’ as scaling function fos. In that case
E'[s|=E[s] - B andvar[s] = var;[s], and hencevar[s] / E[9] is larger than

var; [s] / E; [g], resulting in a larger expected score for the next generation. This
agrees with empirical studies done on the effect of cost scaling to improve the con-
vergence behaviour of genetic algorithms.

The increment of the expected score of populddn is proportional to the vari-
ancevar; [9] in the current populatioR;. The variance depends on the kind of cross-
over mechanism used, because proportionate selection tends to diminish the variance
of successive populations, which results in a bad long-term effect with respect to the
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average score. Hence a crossover operator should be designed such that it maximizes
the variance of the next generation instead of just maximizing the average score.

A high variance in score doesn’t necessarily imply the need for large stochastic vari-
ations in search (i.e. a search which closely approaches randomness). If optimal
solutions are characterized by a schema consisting of low order building blocks, this
imposes the need for much disruptiveness. If optimal solutions are characterized by a
schema consisting of high order building blocks, these can only be obtained and
maintained in a population when disruption is not too severe. It is assumed that uni-
form crossover is the most disruptive crossover mechanism known. The amount of
disruptiveness can be controlled by a single bitmask paramgteas has been
shown in Section 6.4. The question is gy should be adapted with respect to the
statistics of the population.

In [Mesm95] the linear all one problem is used to derive some statistical analysis on
how to adappyc with respect to the statistics of the population.The linear all one
problem is a problem in which a chromosome containing many ‘ones’ has higher fit-
ness than chromosomes containing less ‘ones’. The optimal solution is the chromo-
some consisting of only ‘ones’. The linear all one problem is characterized by low
order schema consisting of strings containing all ones, and the building block
hypothesis is clearly applicable to this problem. It is proven that for this problem the
optimum bitmask parametpy,c equals 0.5, and hence it is independent of the popu-
lation statistics. From this result it can be concluded that uniform crossover leads to
exactly the correct amount of variation if it is set to its most disruptive behaviour. It
is likely that this conclusion holds in general for all problems which are character-
ized by low order schema. Problems which are not characterized by low order
schema have a higher risk to get trapped in local optima. For these kinds of problems
it is expected that even more exploration is needed, in other words for these prob-
lems the amount of disruption that can be achieved by uniform crossover should be
set to its maximum value, henggc = 0.5.

 If the population size is very small, the variance among individuals in successive
populations will be small too.

From these observations it can be concluded that the trade-off between exploration and
exploitation mainly depends on the kind crossover mechanism used. The selection
mechanism of the genetic algorithm (exploitation) can be considered as the process
which increases the average score, but will lead to a decrease of the value of the vari-
ance. The selection pressure should be balanced with disruptive crossover (exploration)
to achieve an acceptable amount of variance. Analysis performed on the linear all one
problem shows that uniform crossover using maximum disruptiveness is expected to
give best performance.

Table 6.1 lists the results for the application of a genetic algorithm to a particular sched-
uling problem (topological scheduling using the fast discrete cosine transform example
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with a time constraint of 14 cycle steps; for details see Sections 6.6.7 and 6.7), using
different rates of recombination and different population sizes. The results shown in
this table are typical for numerous of examples that have been tested.

A random generator used by a genetic algorithm can be initialized by a seed value,
shown in the first column of the table. A random generator which is initialized by the
same seed value will produce the same sequence of random numbers. For different seed
values a random generator will in general produce different sequences of random num-
bers. Hence for each different seed-value, the initial population will in general contain a
different set of individuals. The number of generations needed to reach an optimal solu-
tion is shown in the following five columns, given the population size (100 and 50) and
the amount of offsprings created by different operators. In the second column (100/
100UC) the results are given in case uniform crossover is used to create all offsprings.
In the last row the (ceiling of the) average number of generations needed to generate an
optimal solution is given. The third column (100/100SP) shows the results when single
point crossover is used to generate all offsprings. The maximum number of generations
equals 100, and the table shows that, using this bound, the optimal solution is not found
in many cases. Comparison of single point crossover and uniform crossover shows that
a genetic algorithm using uniform crossover produces optimal solutions much faster.
The fourth column (100/classical) shows the results when using a ‘classical’ genetic
algorithm, in which operators like copy (just copy the selected individual to the new
population without changing its contents), mutate (select two positions, and swap the
corresponding elements), invert (select two position, and mirror the elements between
these two positions), and uniform crossover are used. The rate at which these operators
are applied is determined empirically, and has resulted in a stochastic distribution of
copy/mutate/invert/cross given by 50%/4%/6%/40%. Although the results are better
than those of single point crossover, on average twice as many generations are needed
as compared to a strategy in which uniform crossover creates all its offsprings (see the
second table column labelled 100/100UC). Almost similar results are obtained when
using a 50%/50% distribution for copy and uniform crossover (see the table column
labelled 100/50UC), making the use of specialized operators such as mutation and
inversion debatable. The sixth column shows the results obtained when the population
size is decreased from 100 to 50 (see the fifth column labelled 50/50UC). The column
shows that in some cases the optimal solution isn’t found within 100 generations. Com-
paring column 6 to column 2 and 5 shows that a population size of 50 is too small for
this problem. The last column shows the results obtained when individuals are created
randomly. After the creation of 10.000 ‘individuals’ the algorithm is terminated. An ‘X’

in the table denotes that no optimal result has been found, while an ‘0’ in the table
means that an optimal result has been found.

The average number of generations needed to generate an optimal solution is the small-
est in case uniform crossover is used to generate all offsprings, and comparisons with
other strategies show that this strategy is very fruitful indeed.
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Table 6.1 Number of generations needed to find an optimal solution.

population size / cross rate
seed value _ random
100/100UC | 100/100SP|  100/classical 100/50UC 50/50UC search

1 10 42 8 3 12 X

2 2 7 14 18 12 X

3 14 > 100 23 11 11 X
4 10 > 100 14 27 >100 X
5 6 19 27 18 5 X

6 11 > 100 13 18 13 X

7 7 11 20 7 X
8 10 12 14 28 X
9 10 10 18 20 5 o}
10 > 100 12 4 17 X
100 7 > 100 22 22 5 X
123 6 > 100 13 33 24 0
145 4 > 100 5 9 >100 X
167 15 > 100 20 24 5 X
190 11 14 19 23 > 100 X
200 7 9 14 8 1 X
1001 4 > 100 29 9 55 X
1300 13 > 100 21 25 18 X
2344 6 >100 7 17 11 X
5689 8 > 100 19 15 11 X
9453 11 > 100 17 5 14 X
‘average’ 8 > 67 16 17 > 26 -

This leaves us with the problem how to encode a search problem, in specific the time
constrained scheduling problem.

6.6 Scheduling encodings

In this section the relation between an encoding of a schedule and the way a schedule is
constructed will be investigated. The section starts with very straightforward encodings,
some disadvantages of these encodings are pointed out, and suggestions are used to
overcome these disadvantages resulting in new and better encodings.

6.6.1 Classic bit-vector encoding

In classical genetic algorithms the encoding alphal={0 , 1}. In that case, chromo-
somes consist of bit vectors. Although such an encoding may work fine for some kind
of problems, they may introduce efficiency problems for other kind of search problems.
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An encoding of a schedule must describe how operations are assigned to cycle steps.
Let V={vp,Vq, ... ,Vh.1} be the set of operations to be scheduled, andT ket

{0,1, .., Thax- 1} be the range of cycle steps available for operations to be sched-
uled.

To encode operations frovhat leastlog, nldigits are needed. This means that at least
2tog2nl_ strings represent infeasible operations. While running the genetic algo-
rithm, the construction of these infeasible strings needs to be avoided, implying restric-
tions with respect to the construction of offsprings, and hence on the initialization of the
population and on the operators involved. It is difficult to predict the effects on the qual-
ity of the search under these kind of restrictions. Furthermore, an encoding of a sched-
ule contains each operation exactly once, and extra care is needed to maintain this
property for offsprings created by application of operators to individuals. A similar
analysis can be given for the encoding of the range of cycle steps. One can think of a
genetic algorithm in which infeasible encodings are accepted, but a genetic algorithm
spending large amounts of computation time generating and evaluating infeasible
encodings can hardly considered to be efficient, and should therefore be avoided.

A feasible encoding can be achieved by using the element3/feordT directly. This
still leaves many encodings to be possible, some of which will be discussed in the fol-
lowing subsections.

6.6.2 Cycle assignment encoding

Another straightforward encoding is a sequencensisting ofn elements fronT, in
which1(i) denotes the schedule timéy;) for eachv; LI T. The disadvantage of such an
encoding is that it includes infeasible schedules with respect to precedence constraints
(u < v andg(u) + distancéu , v) > ¢(v)). The encoding shows similar problems as with

the binary encoding, in other words, preventing encodings of infeasible schedules is
difficult to achieve during the run of the genetic algorithm. A genetic algorithm based
on such an encoding would result in an inefficient search strategy.

6.6.3 Absolute displacement encoding

In [Wehn91] an encoding is presented which assigns to each operatidran abso-
lute displacemerd,(v) U N. The schedulé(v) of operatiorv is determined by:

¢(v) = asafv) + dy(V)

The asap and alap values of other operations are updated after scheduling a particular
operation. The advantage of encoding a schedule in terms of absolute displacements
instead of encoding a schedule directly in terms of elemenftdsofhe fact that each
encoding represents a feasible schedule with respect to the precedence constraints. A
closer look at this encoding shows that the displacement of operations in the critical
path has a large impact on the completion time of the schedule. In [Wehn91] special
routines are presented to construct an initial population exhibiting schedules. For each



110 CENETIC ALGORITHMS AND SCHEDULING

007020 0=0=0
Qe*e o \.Q}\G
(x)

Y 99 V9 V¥ 99

Figure 6.4 Fast Discrete Cosine Transform Filter Example.

pathp in the data-flow graph, a particular amount of cycles, called the global displace-
mentA, LN, are distributed among the operationg of the following way:

Z d(v) <4,
viTp

An improvement of the quality of the results is reported, however no attention has been
paid to adapt operators such that distribution of the global displacement is preserved
during the run of the genetic algorithm. This is confirmed by our own experiments, in
which a time constrained method derived from the method originally presented in
[Wehn91] has been tested (see [Jaco94] for details). Originally, the method does not
address the problem of meeting constraints, but searches for a trade-off between the
resource allocation and the completion time. In the time constrained method, experi-
ments show that only a few offsprings represent feasible schedules with respect to the
time constraint. Hence the genetic algorithm spends a lot of time in creating and evalu-
ating infeasible solutions, and hence in the original algorithm of [Wehn91] explores
significantly more schedules with a large completion time than with a short completion
time. The use of penalty functions to favour feasible solutions is questionable, because
the search might be trapped in local optima. The method has been implemented and
tested, and some results for different time constraints can be found in Table 6.2 and
Table 6.3 In these tables the resource allocation is specified by the number of adders
and multipliers, assuming that a multiplier requires 2 cycle steps for a multiplication
and an adder requires 1 cycle step for an addition. An ‘X’ in the tables means that no
feasible schedule with respect to the time constraint could be found. The first example,
shown in Figure 6.4, is the fast discrete cosine transform taken from [Mall90], and the
second example shown in Figure 6.5, is the wave digital filter taken from [DeWi85].
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Figure 6.5 Wave Digital Filter Example.

From these tables it is clear that the method based on absolute displacements fails to
find feasible solutions in many cases.

Table 6.2 Encoding results for Wave Digital Filter.

Time _ Optimal _Absolute _ Relative
constraint displacement displacement

cycles #mult| #add| #mul #add #mdlt #add
17 3 3 3 3 3 3
18 2 2 3 3 2 3
19 2 2 2 3 2 3
20 2 2 2 2 2 2
21 1 2 X X 2 2
22 1 2 X X 1 2
23 1 2 X X 2 2
24 1 2 X X 1 2
25 1 2 X X 1 2
26 1 2 X X 1 2
27 1 2 X X 1 2
28 1 1 X X 1 1
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Table 6.3 Encoding results for Fast Cosine Transform Filter.

Time _ Optimal _Absolute _ Relative
constraint displacement displacement
cycles #mult| #add| #mul #add #mdlt #add
8 8 4 8 4 8 5
9 8 4 9 4 8 4
10 5 4 X X 5 4
11 4 3 5 6 5 4
12 4 3 X X 4 4
13 4 2 X X 4 4
14 3 2 X X 4 3
15 3 2 X X 3 4
16 3 2 X X 3 3
17 3 2 X X 3 4
18 2 2 X X 3 3
19 2 2 X X 3 3
20 2 2 X X 3 2
21 2 2 X X 3 3
22 2 2 X X 3 2
23 2 2 X X 3 2
24 2 2 X X 2 3
25 2 2 X X 2 2
26 2 1 X X 2 3
27 2 1 X X 3 2
28 2 1 X X 2 3
29 2 1 X X 2 3
30 2 1 X X 2 3
31 2 1 X X 2 2
32 2 1 X X 2 2
33 2 1 X X 2 2
34 1 1 X X 2 2

6.6.4 Relative displacement encoding

One way to prevent the creation of infeasible schedules with respect to precedence con-
straints and time constraints (specifiedThy,) iS to use an encoding based on relative
displacements. In this encoding, to each operatiary a relative displacement value

d.(v) O [0, 1] is assigned, which contains at I€Bgk, finite numbers. Operations are
selected in a particular (fixed) order, and the scheflw)eof operatiorv is determined

by:

¢(v) =asagv) + Ld,.(v) . (@lap(v) - asagv) - d(v))U
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If the asap and alap values of operations are updated after scheduling an operation (see
equation (4.5) and (4.6)), feasibility with respect to both precedence constraints and
time constraints is guaranteed while constructing the schedule.

In Table 6.2 and Table 6.3 some schedule results based on the relative displacement
encoding can be found. The results are rather disappointing, because in many cases
non-optimal solutions are found. An extension of the encoding, in which the order oper-
ations are scheduled is exchanged (encoded by a permutatdroperations), has

been incorporated into the schedule encoding. This hasn’t resulted in any substantial
change in the quality of the solutions generated.

A possible explanation for the failure of the algorithm is the lack of so-called problem
specific knowledge during decoding chromosomes. The method for example doesn't
prevents 2 additions being scheduled simultaneously, even if both operations have large
schedule ranges. Strategies to increase the performance of the schedule, by reschedul-
ing operations after decoding, might incidentally produce better solutions, but it is hard

to predict whether the optimal solution can be reached at all with such a strategy.

6.6.5 Permutation encoding

To characterize the problem of the relative displacement encoding more clearly, sup-
pose that a part of a data-flow graph has been scheduled. Suppose that the relative dis-
placement decoding decides to place an operation in parallel to another operation,
increasing the resource allocation induced by the new partial schedule. At this specific
moment it is unknown whether the partial schedule, inducing an increment of the
resource allocation, is part of an optimal solution. To get more information about the
optimal solution, the final resource allocation ought to be known, but this is the result
searched for!

This brings us back to Section 4.6, in which the close relationship between time con-
straints and resource constraints has been presented. If for a time constrained (resource
constrained) scheduling problem a lower bound estimate of the minimal resource allo-
cation (completion time) is known, this lower bound can be used to decide about local
schedule choices. Another important aspect of such a lower bound is that when a solu-
tion has been found meeting this bound, the solution is an optimal solution by defini-
tion, hence it provides the genetic algorithm with a very accurate stop criterion.

The decision whether operations should be deferred in time, depends on the fact
whether resources are available in a particular cycle step. From the proof given in Sec-
tion 5.8 it is known that an operatiorilV can be assigned to the first cycle step

> asafv) where an appropriate resource is available, without excluding the optimal
solution from the search space. Hence the use of an encoding using displacements
seems to be unnecessary in this case. Rather, a schedule can be encoded by a permuta-
tion I of operations fronV (see Algorithm 5.14).
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Figure 6.6 Uniform crossover for permutations

Operators should be able to construct new permutations from existing permutations. In
[Star91] an overview of crossover operators dealing with permutations is given. In
[Sysw91] an uniform crossover operator for permutations is given. Using a bitmask, it
selects several positions in one parent, and copies the operations at these position to the
same position of the offspring. Operations that haven’t been copied yet are copied in an
order-preserving way from the other parent, filling the empty positions of the offspring
(see Figure 6.6 for an example).

Algorithm 5.4 on page 69 can be used to decode a permutation which tries to satisfy
both time constraints and resource constraints. Given a permutation, this algorithm
might be aborted, because no resource is available in the range of cycle steps in which
an operation can possibly be scheduled. Instead of aborting the scheduling procedure,
one can try to schedule as many operations as possible, and keep track of the number of
unscheduled operations (Algorithm 6.3). The number of unscheduled operations can
serve as a cost function. If a schedule with no unscheduled operations has been found,
an optimal solution has been found, and the scheduling procedure can be stopped.

Algorithm 6.3 (Feasible constrained permutation scheduling).

u=|nj; // # unscheduled operations
for i =0 to M| - 1 do
v =T(i); // select operation
C = selectCycles(v,asap(v),alap(v)); // determine cycle steps in which
// resource for v are free
if (C <> O) then ¢(v) = MIN(C); // select cycle step from C
u=u - 1;

update schedule ranges;

update resource usage;
endif;
endfor;

One point of concern is whether the encoding provides enough information for the
genetic search. When an operation is scheduled such that it fixes other operations, a
large part of the permutation is not investigated. This means that the order information
of these operations is of no value to the schedule produced so-far, and the emphasis lies
on the first elements of the permutation. It is difficult to see how the exchange of
non-investigated parts of the permutation can lead to successful crossover mechanisms
with a high variance in fitness for the succeeding population.



GENETIC ALGORITHMS AND SCHEDULING 115

Another point of concern is the fact that the lower bound resource allocation might be
estimated wrongly (in other words, too few resources are available, and hence a feasible
schedule does not exist). In that case the resource allocation needs to be increased.
More details about how to increase the lower bound resource allocation during schedul-
ing can be found in Section 6.7.

6.6.6 Permutation encoding and list scheduling techniques

To avoid the creation of infeasible schedules, list scheduling techniques as described in
Section 5.8 can be used. The resource allocation is performed less greedy when com-
pared to the method in the previous section, and when relaxing the time constraint the
genetic algorithm is given the opportunity to explore the information contained by the
whole permutation.

A possible way of performing constructive scheduling topologically is by using the per-
mutation as a priority list for a list scheduler [Heij95a]. The completion time of the
schedule can be used to determine the fitness of a chromosome. The genetic algorithm
will search for a priority function, which in combination with the list scheduler results

in the smallest completion time. The results of an implementation based on this mecha-
nism can be found in Table 6.4 and Table 6.5.

Table 6.4 Encoding results for Wave Digital Filter.

cFi)iss?zi(;? Optimal Genetic List Orlc_j;sntary Topological
#mult | #add cycles cycles cycles cycles

3 3 17 17 17 17

2 2 18 18 19 18

1 2 21 21 21 21

1 1 28 28 28 28

Table 6.5 Encoding results for Fast Discrete Cosine Transform.

i;ssc:?ari(;ﬁ Optimal Genetic List Orfilstary Topological
#mult | #add cycles cycles cycles cycles

8 4 8 8 ) 3

5 4 10 10 10 10

4 3 11 11 13 11

4 2 13 13 15 13

3 2 14 14 17 14

2 2 18 18 21 18

2 1 26 26 27 26

! ! 34 34 40 34
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In all cases the genetic algorithm based on a list scheduler finds the optimal results.
Comparison with an ordinary list scheduler, using the critical path as a priority func-
tion, shows that the genetic search improves the quality of the results obtained. The run
times of the scheduler are between 0.1 and 20 seconds for each entry of the tables using
an HP9000/735 computer.

In [Ahma95,Dhod95] permutations are encoded by assigning integer numbers to opera-
tions. Operations can be converted into a permutation by sorting the operations using
the integer numbers as sorting key. It is claimed in these articles that such an encoding
is closer towards the principles of classical genetic algorithms, but there is no clear
explanation about the advantages of such an encoding. The methods use roulette wheel
selection in combination with single-point crossover, and mutation at a very low rate.
The first population is initialized with solutions created by some well-known heuristics,
and individuals are derived from these solutions by applying special kind of mutations.

It is unclear how these methodologies affect the variance and average score of the pop-
ulation, and whether the selection pressure leads to locally optimal results. Only a few
results are published, which are given in Table 6.6 and Table 6.7.

Table 6.6 Comparison Wave Digital Filter.

Resource constraint Optimal [Dhod95 Orlc_j;gtary Genetic List
#mult | #add plfnedll?ed cycles cycles cycles cycles

3 3 - 17 17 17 17

2 2 - 18 19 19 18

1 2 - 21 21 21 21

- 3 2 17 17 17 17

- 3 1 18 18 19 18

- 2 1 19 19 19 19

Table 6.7 Comparison Fast Discrete Cosine Transform.
Resour_ce [Dhod95] Genetic List Ordinary List
constraint
#mult | #add cycles registers cycles registers cycles registers

3 2 18 13 14 10 17 12
2 2 - - 18 13 21 11

Comparisons show that the completion time and the register allocation (see Section 6.8
for details about register allocation) resulting from the methods presented in
[Ahma95,Dhod95] are significantly larger than the genetic list scheduling technique
presented in this section when using 3 multiplier (requiring 2 cycle steps) and 2 adders
(requiring 1 cycle step). A more tight resource constraint of 2 multipliers and 2 adders
leads to similar results for the genetic list scheduling approach presented in this section.
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The results of [Dhod95] hardly improve the results obtained by an ordinary list sched-
uler.

In [Ahma95b] list scheduling is used in combination with a strategy called simulated
evolution [Koza92]. Within simulated evolution, mutation is the dominant operator, and
the goal is to introduce variations in the solution. The encoding is similar to the one pre-
sented in [Ahma95]. It is not clear from the article what the advantages are of using
simulated evolution instead of genetic algorithms (no such comparisons can be found).
Furthermore, no high-level synthesis benchmark results have been reported.

6.6.7 Permutation encoding and topological scheduling techniques

Despite the good performance, the disadvantage of list scheduling is that it has been
proven that there exist examples for which it misses out on the optimal solution, inde-
pendent of the permutation used (see also Figure 5.1). In Algorithm 5.14 a constructive
scheduler has been presented, for which at least one permuatagiasts, resulting in

an optimal solution [Heij95b]. Compared to the methods presented in Section 6.6.4 and
6.6.5, it gradually constructs schedules, and hence prevents the greedy allocation of
resources. The results achieved using this encoding can be found in Table 6.4 and Table
6.5. In all cases the genetic algorithm based on a topological scheduler finds the optimal
results. The running times of the scheduler are between 0.1 and 10 seconds for each
entry of the tables using an HP9000/735 computer.

6.7 Supplementary resource allocation

In some cases, lower bound resource allocation estimation finds a lower bound for
which no feasible schedule exists, in other words the resource allocation induces a com-
pletion time for which each resource constrained schedule exceeds the time constraint
specified initially. Consequently, the method must allow the allocation of extra hard-
ware. When exact methods like IP scheduling [Hwan91,Gebo92] are used, the danger
exists that they will perform an exhaustive search, because they cannot detect that a
combination of constraints is infeasible, and hence large run times might result. Heuris-
tic iterative methods allocate supplementary resources depending on the scheduling
results achieved. In [Kuma91] a list scheduling strategy is proposed, in which opera-
tions are detected which cannot be scheduled within their schedule range, and extra
resources are allocated immediately to make the schedule of these operations possible.
In [Heij91] a similar strategy is followed, but the decisions about the resource type to
be increased are based on statistics obtained by complete schedules instead of partial
schedules, and the whole schedule process is restarted using a new resource allocation
to balance the resource usage more equally over the whole schedule. The disadvantage
of iterative schemes is that they heavily depend on the initial resource allocation and the
scheduling method.

The supplementary resource allocation can also be integrated in the scheduling method
as follows. LetModTypebe a set of module types. LR#,i,(I) O N represent a lower
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bound resource allocation of module typé ModType Let RA,,5,(I) represent an esti-
mated upper bound resource allocation of a modulel typdodType

The supplementary resource allocat®A, 1) U [0, RAn,(1) - RAnin(l)] of module
typel O ModTypedenotes the number of supplementary resources admitted for sched-
uling, in other words, the resource constraint for each moduld typéodTypeequals

RAin(l) + RAsy ).

A lower bound resource allocatidRA,,j, can be estimated using the method from
[Timm93] as presented in Section 4.6. In [Potk89] an asap-scheduling algorithm is used
to determineRA 5« Although this method will result in an upper bound for the total
resource allocation cost, it will not result in a correct upper bound for each module type
separately. In Figure 6.7, an example can be found, in which an asap schedule induces a
resource allocation of two multipliers and one adder (an addition requires one cycle
step to execute on an adder, and a multiplication requires two cycle steps to execute on
a multiplier), whereas the optimal schedule within 6 cycle steps induces a resource allo-
cations of two adders and one multiplier.

The upper bound resource allocati®A,,x can be modelled as a min-flow max-cut
problem on a so called comparability graph [Golu80]. An undirected gvapb) (is a
comparability graph if there exists an orientation Vf, ), specified by a directed

graph ¥, F), satisfying:
1.FnFl=0
2.FOFl=E
. u,vOFONV,wOFO (u,wOF
In whichF1 denotes the reversal Bf given byFt = {(v,u) | u,v) O F}.

Let (X,<) be a partially ordered set. LetX (F) be a graph for which
Huvoxju<v(U,v) OF and let X, E) be a graph for whicikX =V, and for each
Ouvoxju<v{u,vt OE (in which {u, v} denotes an undirected edge betweeand

V). Because X, <) is a partial order,X, F) is an orientation ofX, E), and hence
(X, E) is a comparability graph. L&y = {{u,v} | AOXOuv OAO{u,v} OE}. A
clique is a subset [ X such that& , E,) induces a complete subgraph (in other words
Oapoa{a, b} OEp). Aclique cover is a partition éfin A; , Ay, ... ,A¢ such that for
eachi{1, 2, ... k}, A is a clique. A stable set is a sub&ef X of which no two
vertices are adjacent (in other wofdg, 1 o {@, b} 0 E). A maximum stable set is a
stable set of maximum cardinality.

Let (Y, <) be a partially ordered séft.is called a chain (or linearly ordered subset) if
each distinct pain,b 0Y is comparable, in other words, eittek b orb<a. Y is
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Figure 6.7 Example of partial data-flow graph for upper bound determination.

called an anti-chain if each distinct pajp [1Y are incomparable, in other worask b

and b<a Let X,<) be a partially ordered set. There exists a partition
X=C,0GC,0..0C,, inwhichC;, withi 0 {1, 2, ... ,n}, is a chain, ana is called

the width of K, <), which is equal to the smallest clique coven¢f E) (see [Trot92]

for a proof). Because a comparability graph G is a perfect graph (see [Golu80] for
details), the size of the smallest possible clique ck@r equals the number of verti-

ces in a maximum stable $€G) of G. In [Golu77] an algorithm is given to find a max-
imum stable set, by transforming (F) into a network flow problem as follows:

1. Add two vertices andt to X.

2. Add for each input node] X an edgeq, i) to F, and for each output noade] X
an edged,t) toF.

3. Split each node [J X into two nodes andx,, and add an edgg(, X{) to F with
a low capacity flow of 1.

4. In the resulting network graph, initialize a compatible integer values flow. This
can be achieved by for each edga the network graph, increasing the flow on a
path fromstot containing edge.

5. A minimum flow froms to t can be found by searching for reducible paths (paths
for which the flow on each edge is larger than the low capacity flow), and reduce
the flow on that path. If no reducible paths can be found, the algorithm can be
stopped. The resulting flow frogtott will equal the cardinality of the maximum
stable set ofX , F) [Golu77].
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The data-flow edgeSprg of an acyclic data-flow grapVgeg , Eprg) induce a strict

partial order onVpgg. Let (Vpeg,E) be the comparability graph induced by
(Vpeg » <). The minimum number of paths that partitdg=g equals the maximum
number of resources needed to implement the operations in those paths, which on its
turn is given by the number of vertices in a maximum stable s&fek(, E). To be

able to obtain an upper bound resource allocation for each moduleiydedType
separately, the lower bound capacity flow in the corresponding network flow graph is
set to 1 only for those operation§] V, with the operation type mappid¢v) =1, and is

set to O for all the other operations. An alternative method presented in [Boer94] gener-
ates a reduced network flow graph, consisting of operations and precedence relations
restricted to a particular module type.

An extension to the min-flow max-cut method presented above consists of the incorpo-
ration of time constraint information. Le{ andv, be two operations in a data-flow
graphDFG, and letv; andv, be elements of a maximum stable set of the corresponding
comparability graplGpeg, induced by the partial order of ti#-G (in other words,

there is no flow of data betwegpandv,, and they can be executed concurrently). Let
alap(v,) andalap(v,) be the upper bound of the schedule range of operatjarglv,,

caused by a time constraifif,,, If alap(v;) <asafv,) or alap(v,) < asagfvy), then
operationv; andv, can never be executed concurrently in a feasible schedule, and
hence should not contribute to an upper bound resource allocation extracted from the
topology of the data-flow graph. By adding an edge \,) in casealap(v,) < asagv,)

or an edge\, , v4) in casealap(v,) < asafv,) to data-flow grapFG, the comparabil-

ity graph Gpgg induced by the new partial order will contain an edgg, -}, and
hencev; andv, can never be member of the maximum stable set simultaneously. The
addition of edges implies that for small time constraints the upper bound resource esti-
mations will be more accurate than with large time constraints. Some results confirming
this behaviour can be found in Table 6.8.

Table 6.8 Upper bound resource allocations.

Example DFG Trnax # mult # add # sub
Wave Digital Filter 17 4 5 1
34 4 5 1

Fast Discrete Cosine Transform 8 14 5 5
16 14 6 7

The resource allocation available for scheduling is determined by the lower bound esti-
mationRAin extended with a supplementary resource allocation. The supplementary
resource allocation is encoded as follows. For éacModType RA, () - RAmin(l)
positions are allocated in a string. A binary value at such a position denotes whether a
supplementary resource is available (1) or not available (0) for scheduling.

The permutation encoding used in Section 6.6.7 is extended by the supplementary
resource allocation string. Uniform crossover is performed separately on both the per-
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mutation and the supplementary resource allocation string. The fitness of an individual
is determined by a combination of the completion time and the resource allocation. A
small penalty on the completion time is used to favour individuals representing sched-
ules that are within their original time constraint. Ig,, be the original time con-
straint, letRA. ., represent the cost of the maximal resource allocatiorG\gi(9)
represent the completion time of the scheduyland lIetRA($) represent the resource
allocation used for scheduling. The scale funclas given by:

2=0- (Cma)(q)) - (Tmax' 1)) +RA9)

with ® > RA, Some results obtained for the wave digital filter and the fast cosine
transform filter are given in Table 6.9 and Table 626G @2 -RAy4y-

Table 6.9 Results for Wave Digital Filter.

Coﬁ'grzim Optimal Topological ifds
cycles #mult| #add| #mult #add #mdlt #add
17 3 3 3 3 3 3
18 2 2 2 2 2 3
19-20 2 2 2 2 2 5
21-27 1 2 1 5 1 5
28 ! 1 1 1 1 1

Table 6.10 Results for Fast Cosine Transform Filter.

Time

constraint Optimal Topological ifds

cycles #mult| #add| # mul # add
8-9
10
11
12
13
14 - 17
18
19-25
26 -31
32
33
34
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Comparison with the results obtained by state of the art heuristic schedulers, such as
improved force directed scheduling (denoted by ifds) [Verh91,Beso94] shows that the
genetic topological strategy finds better results in many cases. Some execution times
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reported in Table 6.11 show that the genetic scheduling approach is faster, especially
for large time constraints (both methods are implemented using the NEAT system on a
HP9000/735).

Table 6.11 Run times in seconds for Fast Discrete Cosine Transform Filter.

Time constraint| genetig ifds
10 1.30 17.7
20 1.30 101.5
30 1.34 203.0
40 1.40 327.6

In Table 6.12 and Table 6.13 the schedule results of some larger examples are shown.
The example used to produce the results in Table 6.12, is a four times unfolded Wave
Digital Filter (152 operations). In all cases, optimal results are found. Run times are 30
seconds or less for each example tested.

Table 6.12 Results for unfolded Wave Digital Filter.

Time . Topological
constraint
cycles #mult| #add
65 - 68 3 3
69 - 80 2 2
81-111 2 1
112 1 1

The example used to obtain the results of Table 6.13 is an artificial example constructed
from the fast discrete cosine transform filter shown in Figure 6.4. It has been ‘unfolded’
four times, and this unfolded graph has been duplicated twice to generate an example
which contains a lot of concurrency and symmetry, making it rather difficult to sched-
ule. It contains 582 operations. In all cases, optimal results are found. Run-times are
120 seconds or less for each example tested.

Table 6.13 Results for unfolded Fast Cosine Transform Filter.

Time . Topological
constraint

cycles #mult| #add
36 24 12
37 24 8
38 15 8
39 14 8
40 13 8
44 12 7
47 11 7
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Table 6.13 Results for unfolded Fast Cosine Transform Filter.

Time

. Topological
constraint polog

cycles #mult| #add

49 11
51
56
59
63
72
74
83
98
122
147
162
242
294
482
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6.8 Extensions

By using lower bound estimations in combination with a special schedule construction
mechanism, specific knowledge is incorporated into the genetic algorithm to improve
its efficiency. By using problem specific information, genetic algorithms are moved
away from their general characteristics towards the class of tailored algorithms. Never-
theless, there is still the possibility to optimize other parameters by making use of the
general characteristics of the genetic algorithm. One example is to extend the cost of a
schedule with the cost of the register allocation induced by the schedule. The register
allocation induced by a schedule can be determined efficiently by using the left-edge
algorithm from [Kurd87]. Assuming that each input value of the data-flow graph needs
to be stored immediately at the first cycle step, the total area including register costs can
be found in Table 6.14. In this table it is assumed that the area of a multiplier equals
100, the area of an adder equals 10, and the area of a register also equals 10, which have
been chosen close to the ratio of module areas produced by module generators used in
the NEAT system [Thee93]. The results show that the genetic algorithm including reg-
ister allocation costs finds schedules requiring less registers. The results are comparable
with the results achieved with improved force directed scheduling extended with regis-
ter costs, as described in [Paul89].

It should be noted that by extending a cost function, register costs are optimized in a
general way. This means that no strategies tailored to optimize register costs are used by
this method. Therefore it is expected that for memory intensive applications this general
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approach will not provide an efficient way to optimize the overall register costs, and
methods tailored to this problem will be needed as discussed in Section 4.5.

In [Dhod95,Wehn91] the scheduling and allocation problem is defined in terms of find-
ing a trade-off between speed (completion time) and area (resource allocation). They
use a general approach by application of a weighted cost functions to find solutions to
the resource allocation problem and completion time simultaneously. Disappointing
results presented in Table 6.6, Table 6.7, Table 6.2, and Table 6.3 show that these gen-
eral approaches fail to find good results.

Table 6.14 Scheduling results for Fast Discrete Cosine Transform Filter.

Time constraint Wi'?heonue':[t:Zg. geneticwith | ifds with
cost reg. cost reg. cost

8 960 960 940

13 540 520 530

18 350 340 420

23 340 320 440

28 340 320 330

33 340 320 320

6.9 Scheduling cyclic data-flow graphs

The method presented in Section 5.11 can be used to create schedules for cyclic
data-flow graphs from permutations. Just like with scheduling acyclic graphs, genetic
search strategy can be applied to search for a permutation which leads to good quality
solutions.

Table 6.15 Schedule results of Cyclic Wave Digital Filter.

Resource constraint Section 5.11 [Radio6]
— Throughput
#mult | # add p'&elzll?ed constraint Latency Latency
3 3 16 14 18
2 3 16 17 18
2 2 17 15 19
1 2 19 21 21
1 1 28 28
3 2 16 14 18
2 2 17 15 19
3 1 16 17 18
2 1 17 17 19
1 1 28 28
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Figure 6.8 Fifth order PCM voiceband-filter.

The first example tested is the cyclic wave digital filter of Figure 1.2 (see Table 6.15).
The results are compared to the results reported in [Radi96], which use a OBDD-based
representation for scheduling. Although it is claimed in [Radi96] that their results are
the best and optimal results published so-far, the genetic approach presented in Section
5.11 finds better results in all cases tested. An example of an optimal schedule having a
completion time of 14 cycle steps, using a throughput rate of 16 cycle steps and a
resource constraint of 3 multiplier and 3 adders, is shown in Figure 6.9.

In case retiming is used in combination with scheduling techniques for acyclic
data-flow graphs as presented in Section 6.6.7 [Fran94], the results presented in Table
6.16 have been found. In all cases the genetic strategy in which retiming and scheduling
are integrated into one method finds better solutions.

Table 6.16 Schedule results of Cyclic Wave Digital Filter (2).

(I::\:)iss??ar;? Section 5.11 [Fran94]
#mult | #add Throughput Latency Throughput Latency

3 4 16 14 16 16

3 3 16 14

2 3 16 17 17 17

2 2 17 15 18 18

1 2 19 21 20 20

1 1 28 28 28 28

The second example is the fifth order PCM voiceband-filter example from [Goos89b].
The results are given in Table 6.17.

Table 6.17 Schedule results of fifth order PCM voiceband-filter.

Resource
constraint Throughput Latency
#mult | #add cycles cycles
5 3 4 6

4 3 5 6
4 2 6 6
3 2 7 6
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Figure 6.9 Schedule of cyclic wave digital filter.

Table 6.17 Schedule results of fifth order PCM voiceband-filter.

Resource
constraint Throughput Latency
#mult | #add cycles cycles
2 2 10 6
2 1 10 9
1 1 20 11

The last example is from [Chao93], and is called 2-cascaded biquad filter, which is
derived from the fifth-order PCM voice-band filter (see Figure 6.8) by excluding the

last first order section. The algorithm in [Chao93] starts with a given schedule, and
moves operations to different pipeline stages, in order to obtain a smaller data introduc-
tion interval. No extra analysis to minimize the completion time are reported in

[Chao93], in other words the completion time equals the shortest path in the data-flow
graph, given by the data introduction interval. The latency found by the genetic search
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using the method reported in 5.11 are therefore equal or better than the results found in

[Chao93].

Table 6.18 Schedule results of fifth order PCM voiceband-filter.

Resource constraint Section 5.11 [Chao93]
#mult | #add Eﬁil Throughput Latency Throughput Latency
4 2 4 4 4 4
3 2 6 4 6 6
2 2 8 4
2 1 8 7 8 8
1 1 16 7 16 16
2 4 4 4 4
2 8 6 8 8
1 8 7 8 8

6.10 Exhaustive search

The topological scheduling technique has also been incorporated and tested in an
exhaustive search, using branch and bound techniques.

Let I be a permutation. A new permutatidhcan be obtained by changing the order of

the elements in permutatidh. Some pairs of elements can be identified for which it
makes no sense to exchange their order in a permutation. Opevafiovisvhich have
data-flow in common with an operatiog JV (in other words for which

v; <v; Oy, <), will never be scheduled concurrently. When using topological sched-
uling techniques, exchange of these operations will lead to the same schedule. Opera-
tions which don't have overlapping execution intervals can never be scheduled
concurrently in a feasible schedule. Although changing the order of a permutation
might lead to a change in the order of operations which do have overlapping execution
intervals, the process of exchange can be restricted to those operations which have
cycle steps in common in their schedule ranges.

Letl [0 ModType Letu OV be an operation with operation mappétg) =1, which has
overlapping execution intervals with- 1 other operationg 1V with (v) =1. If nis

smaller than the number of resources available for scheduling, according to the proof
on page 77, these operations never have to be deferred in time. If such an operation
becomes available for scheduling, it can be scheduled immediately without introducing
any resource conflicts. Assuming that these operations will always be scheduled imme-
diately after all their predecessors have been scheduled (and hence these operations can
never block the schedule of successor operations because of their position in a permuta-
tions), the exchange of order of these operations with any other operation in a permuta-
tion is useless.
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All of these observations result in a reduction of the number of permutations to be
investigated in an exhaustive search (depending on the size of the time constraint and
the resource constraint given or derived). An exhaustive search based on these observa-
tions has been implemented and tested. Despite the reduction techniques used, the
resulting execution times were outrageous, and many runs had to be cancelled after
days of running times for almost each example tried out.

6.11 Conclusions

In this chapter constructive scheduling methods have been combined with genetic algo-
rithms to search for a suitable order to schedule operations of a data-flow graph.

First, a statistical analysis about the fithess values of successive populations of genetic
algorithms has been performed, to gain some insight in how to obtain a genetic algo-
rithm with maximum progress. The results have been observed in terms of exploration
versus exploitation, and the effects of applying uniform crossover to create all off-
springs have been discussed and tested with positive results.

It has been shown that applying a genetic search strategy without the incorporation of
specific knowledge regarding scheduling, gives poor results. For a genetic approach to
be successful, the problem should be approached from the problem characteristic point
of view, and not only from a genetic algorithm point of view. In this section much atten-
tion has been paid to avoid the creation of infeasible solutions (by using a permutation
encoding instead of bit-strings), to avoid the creation of non-optimal solutions (by
using lower bound estimations, and by building schedules in a topological way to pre-
vent the greedy allocation of resources), and by deriving accurate stop criteria (also by
making use of lower bound estimations).

The method is extended with an encoding capable of allocating supplementary
resources during scheduling. This makes the scheduling method very suitable for
high-level synthesis strategies based on lower bound estimation techniques.

Experiments and comparisons show high quality results and fast run-times, the combi-
nation of which outperforms results produced by other heuristic scheduling methods.
Although optimal results are not guaranteed by the method, optimal results are found in
all cases tested.
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7 Conclusions and future work

7.1 Conclusions

In this thesis a solution approach to the high-level scheduling and allocation problem is
presented. Solutions are constructed using topological scheduling techniques, guided
by a permutation of operations, and genetic algorithms are used to search for good
guality solutions with acceptable run time.

The principles of genetic algorithms have been analysed statistically, providing some
new insights in how to efficiently apply genetic algorithms to the scheduling and alloca-
tion problem. From the analysis it can be concluded that the variance of a population
should be kept as high as possible to obtain efficient convergence, which can be
achieved by generatirgl offsprings using uniform crossover. Some empirical results
have been presented to support these observations.

Furthermore, the relation between the encoding of the high-level synthesis scheduling
problem and the search principles of genetic algorithms has been analysed in detail.
The conclusions from these investigations can be summarized as the need to prevent the
creation of infeasible encodings (by using permutations of operations instead of bit-
strings), the need to prevent the creation of infeasible solutions (decoding an individual
always results in a solution satisfying the schedule constraints), and the need to prevent
the creation of non-optimal solutions as much as possible (by preventing a greedy con-
struction of a schedule, and by using lower bound resource allocation estimations).
Without these extra additions, the genetic search fails to come up with acceptable solu-
tions.

These observations have resulted in permutations of operations to be the key mecha-
nism for constructing schedules. It is proven that there exists at least one permutation
for which the construction of schedules in a topologically ordered manner, combined
with an as early as possible cycle step selection strategy (satisfying both dependence
and resource constraints), results in an optimal schedule (in other words with the small-
est completion time). Another important observation is that the ratio of optimal solu-
tions versus the total number of solutions in the resulting search space is larger than the
ratio resulting from other constructive scheduling algorithms or from the solution
space. This increases the chance that probabilistic search methods like genetic algo-
rithms find an optimal solution more quickly.
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The topological permutation scheduling method used in the genetic algorithm is
resource constrained. Lower bound resource allocation estimations can be used to
translate time constrained scheduling problems into resource constrained scheduling
problems. To be able to find feasible schedules with respect to the original time con-
straint, a possibility to allocate additional resources should be integrated. A new method
is presented in which additional resource allocation are encoded in combination with a
permutation, and genetic search is applied to search for good quality solutions. Results
and comparisons show that optimal solutions have been found with acceptable
run-times in all cases that have been tested.

Furthermore it is shown that constructive scheduling of loop structures is a more diffi-
cult task than scheduling acyclic structures. A topological permutation based schedule
constructor is presented, in which loop pipelining or retiming is integrated in the per-
mutation encoding. Genetic algorithms are used to search for permutations resulting in
good quality solutions, and results show that optimal solutions have been found in all
cases that have been tested.

Efficient algorithms are presented to update the schedule range of operations, to main-
tain feasibility with respect to throughput rate and time constraints at any time during
the construction of a schedule. These algorithms are based on all-pairs longest-path
algorithms and a distance matrix. Also, a new efficient algorithm is presented to calcu-
late the minimal throughput rate given a data-flow graph containing loop structures.

Finally, an object-oriented synthesis system called NEAT is presented, which provides
a software platform for interacting high-level synthesis tools. Various synthesis strate-
gies have been implemented using NEAT, without having to bother about the order and
way in which tools are applied.

7.2 Future work

7.2.1 Conditionals

One point of concern is the scheduling of conditional structures. Resource conflicts
induced by parallelism is not directly visible from the structure of the graph, and extra
analysis is needed to investigate whether operations can be scheduled concurrently to
obtain efficient schedules without inducing superfluous resource allocations and/or
completion times.

Operations enclosed by basic blocks have limited resource sharing capabilities. Graph
transformations known as code motion (in which operations are transferred from one
basic block to another) are often used to exploit resource sharing capabilities across
basic blocks (see [Rim95] for an overview).
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Code motion, state assignment, and scheduling of basic blocks are interdependent
tasks, and de-coupling these tasks and solving them separately by heuristic methods
may lead to non-optimal results. A way is needed to solve these problems simultane-
ously in such a way that the optimal solution is still part of the search space.

In [Sant96] the scheduling problem and code motion problem are stated as one single
problem. The main idea is to bind operations to the basic block in which or before
which they have to be scheduled, depending on the control-selection strategy chosen for
the data-path (for example pre-execution, control selection or data selection). By
extending the topological constructive scheduler of Algorithm 5.14 with this basic
block information, it can be decided whether operations can be moved to other basic
blocksduring scheduling, which establishes a close interaction between resource con-
straints imposed, schedule results obtained so-far, and code motions. It is proven that
using this method, the set of possible code motions is such that it doesn’t exclude the
optimal solution from the search space with respect to a class of optimization criteria
based on the execution lengths of paths. This proof is based on the fact that a schedule
is constructed in a topological way, and just like in Chapter 5 the scheduling problem
can be stated as a search problem in terms of a permutation. Code motions resulting in
worse solutions are prevented, hence a pruning technique is embedded in the method to
reduce the size of the search space. A genetic search strategy is applied to the resulting
search problem, and the results obtained are comparable or better than other results
published in literature.

7.2.2 Module execution interval analysis

To increase the quality of the results of topological scheduling even more, module exe-
cution interval analysis can be integrated. In [Timm95] it is shown that this strategy
proves to be very successful. Nevertheless, the way a permutation of operations is
searched for is not topologically oriented, and only an intuitive explanation is given
how to guide the search with particular heuristics. More research is needed to get some
unambiguous statistics about different search strategies and their efficiency.
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Stellingen

behorende bij het proefschrift van Marc Heijligers

Het in een topologische volgorde construeren van een schedule van een
data-flow reduceert de kans op de generatie van niet geldige oplossingen. [Dit
proefschrift]

Een formaat of standaard ten behoeve van synthese van digitale schakelingen
moet op zijn minst de synthese problematiek duidelijk kunnen representeren en

kunnen anticiperen op bepaalde voor de hand liggende oplossingen. Indien het
daaraan niet voldoet, dan zullen synthese tools gebruik makende van zo’n for-

maat in zijn algemeenheid geen goede oplossingen kunnen creéren.

Omdat menig artikel over genetische algoritmen de lezer probeert te overtuigen
met behulp van argumenten gebaseerd op analogieén uit de evolutieleer, loopt
deze wetenschap groot gevaar zijn geloofwaardigheid te verliezen.

Aangezien de eigenschappen van een object zich door meer dingen laten bepa-
len dan alleen het type van het object, zou het predikaat ‘type-georiénteerde
programmeertaal’ in plaats van ‘object-georiénteerde programmeertaal’ minder
valse verwachtingen opwekken omtrent de toepasbaarheid van de in C++
object-georiénteerde geboden mogelijkheden.

Het idee van christelijke politieke partijen om de evolutieleer uit het middel-
baar onderwijs te schrappen, en het impliciet prefereren van een mogelijke
interpretatie van een bijbelse tekst boven de tot nu toe verkregen wetenschap-
pelijke resultaten, veronderstelt dat men onwetendheid verkiest boven alge-
mene ontwikkeling, een gedachte die een obstakel vormt voor de progressie
van de wetenschap in het algemeen.

Een startend minister zou net zoals een AlIO om dezelfde redenen evenredig op
zijn salaris gekort moeten worden.

Het bekritiseren van de eufonische eigenschappen van een buizenversterker op
basis van meet-technische gegevens zoals harmonische vervorming, dempings-
faktor en bandbreedte, getuigt van wetenschappelijke bekrompenheid.



10.

11.

12.

13.

14.

Het aanpassen van de regeling van verkeerslichten ter stimulatie van het
gebruik van het openbaar vervoer heeft een negatieve invloed op de hoeveel-
heid uitgestoten uitlaatgassen.

Een authentieke uitvoering van een muziekstuk is een farce als men bedenkt
dat menig componist beschouwd wordt als een slecht vertolker van eigen werk.

Het is onjuist om het begrip persvrijheid te vertalen in het recht hebben op
informatie.

Het verbieden van het kopen van produkten uit het buitenland in combinatie
met het afdwingen van een verkoop adviesprijs aan de detailhandel is per defi-
nitie een prijsafspraak, en dus bij de wet verboden.

Het gevaar van statistiek voor de volksgezondheid blijkt uit de recente adver-
tenties van de fabrikant Philip Morris, waarin deze met selectief cijfermateriaal
aan probeert te tonen dat het drinken van een glas water een grotere kans op
kanker zou geven dan het passief meeroken van tabakswaar.

Een ster in het vermenigvuldigen, daar zou een wiskundige geen punt van
mogen maken!

Over smaak valt juist wel degelijk te twisten.
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