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Abstract

This paper describes a model to perform simulation of the glass flow in an oven. The
Navier-Stokes equations are discretised by a finite difference method on a collocated
grid and solved by a pressure correction method. Efficiency of the solution method
can be enhanced if the consistency condition for the boundary values is satisfied. A
special feature is that we employ refinement by uniform grids and solve the global
system by so called local defect correction (LDC). A special correction of the bound
ary conditions for LDC, preserving the consistency condition, is introduced. The
performance of the method is illustrated by practical examples.

1 Introduction

Products made completely or partially from glass, such as TV and computer screens,
windows, tableware, play an important role in our daily life. Before one is able to produce
such products, the glass itself needs to be made. This process takes place in a so-called
glass oven or melting tank. The manufacturing starts with putting raw material, the
main components being soda and sand, into one side of the oven, which is heated by gas
burners from above. During the melting all components mix with each other. This heating
and mixing takes about 20 hours, after which the glass flows via feeding channels to the
production lines. There are therefore several processes involved, like melting, flow and heat
transfer, as well as various chemical reactions. Numerical simulations are an essential tool
for understanding these processes. In this paper we restrict our attention to the molten
glass flow simulation. The glass oven can be considered as a three-dimensional domain
domain composed of blocks. The molten glass is then essentially a three-dimensional flow.
For a proper simulation of the latter, we would need about 100 grid points in each spatial
dimension. This leads naturally to the choice of tensor grids and as compact and as simple
data structures as possible.

*Scientific Computing group, Department of Mathematics and Computing Science, Eindhoven Uni
versity of Technology, PO BOX 513, 5600MB Eindhoven, The Netherlands, nefedov@win.tue.nl,
mattheij@win.tue.nl
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Since the flow has some areas of high activity a uniform grid does not give enough
resolution there or is too expensive. Such areas occur for instance where stirring is needed
to make the glass more uniform or air bubbles are being injected to insure a proper mixing
process. In order to properly resolve these phenomena a local refinement procedure is
needed. The method we are using was originally suggested in [9], see also [1]. It is
called Local Defect Correction (LDC) and is a an iterative procedure which accurately
combines solutions computed on a global coarse and local fine meshes. The paper is built
up as follows: the model of the glass flow is formulated in the next section, discretisation
techniques and the solution method for the flow equation are described in section 3, section
4 contains the detailed description of LDC. The fifth section deals with the estimates for
the perturbation parameters needed for construction of the local boundary conditions. In
the last section we illustrate an application of LDC to the glass flow and compare LDC
and non-uniform refinement using tensor grids.

2 The glass oven model
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Figure 1: Sketch of the glass tank (horizontal and vertical cross sections)

The geometry of industrial glass ovens may vary, still each one contains some typical
part In figure 1 we have sketched a simple oven. It consists of two tanks connected via a
channel. The left tank is an area where the heating and melting occur. The smaller, right
tank is connected via the feeders with the production lines. Since our primal interest is the
flow itself, we ignore the melting, assuming that the glass melt of a certain temperature
flows into the oven via the inflow area. We assume the glass to be a Newtonian fluid, cf
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[16]. Let ii = (u, v, if;f denote the velocity, p the pressure, jJ, the viscosity of glass, p the
density of glass and let F = (0,0, -pgf be the body force per unit volume. The flow
equations can be written as follows

(p(x)ii, Vii) = F - Vjj + V . (jJ,(x)Vii), (conservation of momentum)

and
V· (p(x)ii) = 0. (conservation of mass)

Tildes indicate that variables and parameters are dimensionfull. The equations are written
in a time-independent form, because for larger time scales the glass flow exhibits steady
state behaviour. The viscosity jJ, and density p are temperature dependent. In order to
obtain the temperature values we need to· add the energy equation to our model. However,
it would make the computations significantly more complex and not really add to our
major objective Le. to demonstrate our refinement technique. Instead, we use a realistic
temperature field which varies in space and approximates the actual temperature in the
oven. The flow equations are still too general since they might as well represent any viscous
fluid in a oven. In order to restrict the model to the particular case of the glass flow we
are interested in, we need to specify the parameters of the equation, namely the viscosity
and the density. Both entities are functions of the temperature. The viscosity decays
exponentially as the temperature increases. The expression for the viscosity is known as
the Vogel Fucher Tamman law, [16]

'.5

3.5

Figure 2: Viscosity of tv-glass

(1)

Since the viscosity is a function of the temperature and the temperature varies in space,
the viscosity is also a spatially dependent function. We will further refer to it as jJ,(x). The
coefficients a, b, c in (1) are specific for different glass types (tv-glass, window-glass etc).
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Figure 3: Density of tv-glass

The most significant factor in a glass flow computation is the density. It may be modeled
as a linear function of the temperature, more precisely

p = p(T) = a(1 - f3(T -1')), (2)

The changes in density, however small, are the driving force behind the glass flow. In order
to understand the relevant phenomena in our model we introduce dimensionless quantities
as follows:

1_ 1_ 1_ I_
x:= Xx, u:= Uu, p:= poP' J.l:= J.lo J.l,

where X, U, Po and J.lo are the characteristic length, velocity, density and viscosity respec
tively For a typical glass flow these values are

m kg kg
X = 2[m], U = 0.01[-], Po = 2200[-3], J.lo = 40[-].

s m m'B

The gradient and divergence operators written in old variables - V, V· and new variables
V' and V'. are related via

V' = XV, V'. = XV ..
Substituting this information into the flow equations we have

pou2 - 1 _ J.loU
X(pu, V'u) = F - X V'p + X2 V'(J.lV'. u),

PoU V' . (pu) = O.
X

Dividing the momentum equation on both sides by X/(POU2), the continuity equation by
poU/ X and defining

X-I - Re:= poXU,
F := poU2 F, p:= P

O
U2 P, J.lo
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(where Re is a Reynolds number) we obtain the dimensionless Navier-Stokes equations

{
(p(x)u, \7u) = F - \7p + ~e \7 . (j.t(x)\7u),

\7 . (p(x)u) = 0.
(3)

The Reynolds number is not small enough to neglect the convection term, thus we need
to consider full Navier-Stokes equations. The boundary of any oven is composed of several
parts, such as inflow, outflow, the top layer, and glass-wall border, see Figure 1. On each
of these boundary conditions for the velocity must be defined. We shall prescribe fixed
inflow and outflow velocities. At the border between wall and glass we assume no-slip. The
top layer is modelled as a symmetry plane, that is the normal component of the velocity
is zero; elsewhere we prescribe homogeneous Neumann boundary conditions.

UlrinflOW = Uo, vlrinflOW = 0, W!in/low = 0,

ulroutflow = ull viroutflow = 0, W lout/low = 0,

ulrwall'9lass = Ul, VlrWa ll,gla8S = 0, Wlwall,glass = 0,

~~ Irtop = 0, ~~ Irtop = 0, W Itop = 0.

3 The solution-method for the governing equations

For simplicity and efficiency reasons we opt for the finite difference method (FDM) among
the various discretisation techniques. The natural choice for the (FDM) applied to in
compressible viscous flow problems is a staggered grid, where all dependent variables are
computed in different locations, see e.g. [13]. The problem discretised on a staggered grid
is always well-posed. However, the grid is far more complex than a standard tensor or
collocated grid, where all variables are computed at the same mesh nodes. Since we like
to carry out a simulation in a three dimensional space, where the domain is composed of
blocks and the number of grid points can easily be as large as 106, we would prefer to use
a collocated grid. On such a domain we introduce a tensor grid which is a product of three
one-dimensional grids

Xi = iHx , Hx = a/Nx , i = l. ..Nx ,

Yj = jHy , Hy = b/Ny , j = 1...Ny ,

zk = kHz, Hz = c/Nz, k = 1. ..Nz.

Here a, band c are the length, width and height of the oven and Hx , HII , Hz are the grid
sizes. We would refer to the maximum grid size as H, Le. H = max(Hx , Hy,Hz). The grid
domain !JH is a set of grid points belonging to the physical domain. We do not describe
the details of the discretisation of the diffusion-convection and the body force here, see e.g.
[7]. Instead we concentrate on the gradient and the divergence operators. The discrete
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(5)

gradient V h is defined by

(V ).. .- (PHI,j,k - Pi-I,j,k Pi,j+l,k - Pi,j-I,k Pi,j,k+1 - Pi,j,k+I)T (4)
hP t,J,k .- 2H

x
' 2H

y
, 2H

z
•

Similarly the discrete divergence Vh is defined as

(V . ).. ._ UHI,j,k - Ui-I,j,k + Vi,j+l,k - Vi,j-I,k + Wi,j,k+1 - Wi,j,k+1
h U t,J,k .- 2H

x
2H

y
2H

z
'

After collecting these relations we obtain a discrete Navier-Stokes system of the following
form

{
MH(U)U + VHp = F, (6)
V H · pu = O.

The discrete operator M H includes diffusion and convection components. Its non-linearity
is indicated by explicit dependence on u.

The solution method we use for solving (6) is of pressure correction type cf.[lO]. We
first rewrite the momentum equation

(7)

Rather than solving (7) directly we consider a transient equation

(8)

Using Euler-backwords for the time dependent term and Picards iteration to handle the
non-linearity (a part of the nonlinear term is computed using the information from the
previous iteration), we can formulate the predictor step

(9)

Assuming un and pn to be known we can solve (9) for u*. Since u* might not satisfy the
continuity equation, we need to correct it. We use an expression like (9) but now in explicit
form

1
_(pun+1 _ pun) = F - MH(u*)u* - VHpn+l . (10)
!:It

This equation involves two unknown entities: the new velocity field un+! and the new
pressure pn+!. To resolve this problem we apply the discrete divergence (5) to both parts
of (10). Requiring 'VH . pun+1 = 0 we obtain an equation from which we can compute the
new pressure pn+ I

(11)
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(12)

To construct (11) we used the continuity equation. It turns out, that for some applications,
other constraints can used, see e.g. [15]. The boundary conditions for (11) follow from the
fact that we do not correct the velocity at the boundary

1
0= _(pun+l - pun) = F - MH(un)u* - "VHpn+l at the boundary.

t:lt

Hence
"VHpn+l = F - MH(u*)u* at the boundary.

After having found pn+l we substitute it into (10) and compute the new velocity un+l.
The algorithm thus far can now be summarized as the follows:
Algorithm 1 Pressure Correction
O. Let un. pn, t:lt be given.
1. Find the predicted value of the velocity u* from

1
-(pu* - pun) = F - M(un)u* - "Vhpn.
t:lt

2 Find pn+l from the pressure equation

-"Vh · "Vhpn+l = -"Vh' (F - M(u*)u* + ~pun).
t:lt

3 Compute the corrected velocity field u n+l from

1
_(pun+l _ pun) =F - M(u*)u* - "Vhpn+l.
t:lt

4. Check convergence, returtn to step 1 if residuals are not small enough.

The major problem arises when solving the system for the pressure. If the pressure ma
trix "VH . "VH is constructed as a combination of the discrete divergence and the discrete
gradient as introduced above thus acting on a pressure as follows

(_ "V . "V ).. - 2Pi,j,k - Pi-2,j,k - Pi+2,j,k +
H HP z,J,k - 4Hz

x

2Pi,j,k - Pi,j-2,k - Pi,j+2,k + 2Pi,j,k - Pi,j,k-2 - Pi,j,k+2

4Hz 4H2y z

The pressure computed from (12) might exhibit high oscillations. This unphysical be
haviour is caused by the fact that the pressure matrix - "Vh . "Vh has eight zero eigenvalues.
To avoid the problem we replace the pressure matrix by a standard 5-point discretisation
of the Laplace operator denoted as "V~,

(_ \72 ).. ._ 2Pi,j,k - Pi-l,j,k - Pi+l,j,k +
HP Z,J,k .- H2

x

2Pi,j,k - Pi,j-l,k - Pi,j+l,k + 2Pi,j,k - Pi,j,k-l - Pi,j,k+l (13)
H2 H2

y z
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The two matrices - VH . VHand - V~ both are approximate the same continuous Laplace
operator. It can be shown see e.g. [7] that the difference between them can be estimated
as

11- V H ·VHp+ yr~plloo ~ CH2
,

where C depends on fourth order derivatives ofP, e.i. for smooth P the error introduced by
changing the pressure matrix would be small. For the overall performance of the method
it is essential to be able to solve the pressure system efficiently; therefore we would like to
analyse - yr~ a bit better. It has the following properties:
1. The diagonal coefficients are positive, off-diagonal - non-negative.
2. The row-sums are zero for each row.
3. It is irreducible.
4. It can be symmetrised by diagonal scaling.
Thus for any vector P the sum of all components on the left-hand side of the system applied
to P is equal to zero

L(-V~P)i,j,k = O.
i,j,k

The same should hold for the right-hand side

2:)-yrh' (F - MH(u*)u* + ~tPUn]i,j,k = O.
i,j,k

(14)

All components on the left-hand side of (14) corresponding to the internal points of the
grid cancel each other and we are left with an expression which involves only the boundary
nodes. We recall that at the boundary the following relation holds

V Hpn+l = F - MH(u*)u*

Taking this into account (14) can be reformulated as

Ny,Nz N:c,Nz N:c,Ny

L HyHz(Ul,j,k - UN:c,j,k) + L HxHz(Vi,l,k - Vi,Ny,k) + L HxHy(Wi,j,l - Wi,j,Nz ) =O.
j,k=l i,k=l i,j=l

(15)
Condition (15) is thus a consistency condition for the pressure system. Since (15) depends
only on the boundary values of the velocity, it can be checked prior to solving the Navier
Stokes equations. If (15) is satisfied the pressure system has infinitely many solutions which
differ by a constant vector. If (15) is not satisfied the situation can be repaired in various
ways. Most common is to simply fix the pressure at one point; it makes the pressure matrix
non-singular, i.e. the pressure system will always have a solution. However, this way of
avoiding the problem has a drawback; fixing the pressure at one point often significantly
increases the number of iterations needed to solve the pressure system. An alternative
approach will be analysed in the next section.
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4 Local defect correction

Since computing on a uniform fine mesh in a three-dimensional space is too expensive we
rather like to refine only locally. One way to do this is employing Local Defect Correction
(LDC) cf. [5], [6]. LDC enables us to combine results computed on two or more grids.
One grid is always the coarse grid covering the whole domain while other (fine) grids cover
regions with higher activity. Besides the global coarse grid OH we shall use a local fine grid
n~ which is a tensor product of three grids inside a block [Xio, XiI] X [Yjo' Yjl] X [Zko, Zkl]'

nl {l I I}
Hh = Xi' Yj' Zk ,

hx = Hx/CTx, 0::; i::; N; := 1 + (XiI - xio)/hx1
hy = Hy/CTy, 0::; j ::; N~ := 1 + (Yh - Yjo)/hy,

hz = Hz/CTz, 0::; k ::; N; := 1 + (Zkl - zko)/hz.

(16)

(17)
(18)

(19)

A superscript l indicates that that the variable is defined locally, the subscripts Hand h
indicate the coarse and fine meshes respectively. The CTx, CTy and CTz are called the refinement
factors. They are assumed to be positive integers larger than one, Le.

O"x E N, CTx > 1, CTy E N, O"y > 1, (Jz E N, CTz > 1.

The grids OH and O~ form together the composite grid OH,h

D,H.h = nH U n~.

We also need a grid which is a set of vertexes belonging to both global and local grids,
denoted as nk, i.e.

n~ = {Xi, Yj, Zk}, io ::; i::; iI, jo::; j ::; jl, ko ::; k ::; kl .

First, we solve the discrete Navier-Stokes equations on nH

MH(UH)UH + 'lHPH = F H,
'lH' PUH = O.

(20)

Next, by using linear interpolation for the computed velocity field we find Dirichlet bound
ary conditions for the problem on the local fine mesh. In order to be able to solve the local
problem we need to check whether the boundary conditions for the local problem satisfy
the compatibility condition (15). In general (15) is not satisfied. It means that

N~,Ni N~,Ni Ni,N~

:E hyhz(uL,k-U~~,j,k)+:E hxhz(vtl,k-vtNt,k)+:E hxhy(wtj,l-Wtj,Nl)=~' (21)
j,k=l i,k=l i,j=1

To mend this this we can adjust the boundary values at,the grid points which belong to
the local grid only. First we need a notation for the indices of local grid points at the faces

9



of the n~

It := {(j, k)l(xLy~,zk) E n~ \ n~},
Jl := Hi, k)1 (xLy~, z~) E n~ \ n~},
jl := {(i, k)l(xLy~, zk) E n~ \ n~}.

When the consistency condition is not satisfied, this means that inflow and outflow do not
balance each other. The residual 0 can be zero, positive or negative. If zero, there is no
problem. If 0 > 0 the outflow is larger than inflow and if 0 < 0 the inflow dominates. Let
us assume, for simplicity, that 0 > 0, i.e. the outflow is larger than inflow. The idea is
to make the inflow larger and the outflow smaller by correcting the velocity at the local
points only. Thus we define the new velocity value ij,t as

UL,k = (1 - sign(uL,k)a)uL,k' U~J"j,k = (1 + sign(u~Lj,k)a)u~J"j,k' (i,j) E K l
. (22)

By analogy we correct the other components of the velocity field. Substituting the updated
velocity into (21) we have

Nt ,N; Ni,N; NLN~

L hyhz(Ul,j,k - UNJ"j,k) + L hx hz(i\l,k - Vi,NL,k) + L hx hy(Wi,j,1 - Wi,j,N~) =
j,k=1 i,k=1 i,j=1

0- a L hyhz(luL,kl + IU~Lj,kl) + a L hx hz(lv:'l,kl + IvtNL,kl) +
(j,k)EII (i,k)EJI

a L hxhy (IWtj,11 + IWtj,N~ I)·
(i,j)EKI

Therefore, the natural choice for a is given by

a-I = c5-1
[ L hyhz(luL,kl + IU~Lj,kl) + L hxhz(lv~,I,kl + IvtNL,kl) +
(j,k)EXI (i,k)EYj

L hx hy (lwL,11 + IwL,N~I)].
(i,j)EZI

(23)

(24)

(25)

Using the newly corrected velocity at the boundary of n~ we can formulate the local
problem

Mh(U~)U~+ \lhP~ = F~,
\lh' pu~ = O.

After having solved the local problem we combine the two results into the solution at the
composite mesh

{
ulh' if the node is in nL

UHh =
, UH, otherwise.

If we would combine the solution on the local fine grid with that on the complementary
coarse grid we will not obtain a sufficiently globally accurate solution in general. We need

10



to provide a certain exchange of information between solutions on coarse and fine grids to
correct the approximation on the composite grid. First we construct a (grid) function gH
that is defined on the coarse mesh points

{
Ub, if the node is in nk,

gH =
UH, otherwise.

The function gH can be considered to be a projection of UH,h onto the coarse mesh OH'
Next we compute the defect d

(26)

(27)

(28)

Since gH coincides with UH outside Ok, the defect is only nonzero in Ok. The right-hand
side of (20) is updated with the defect and we have

M H (u1)u1 + V'HP1 = F H - d,
V'H' pu1 = o.

The boundary conditions for the problem on the local fine grid are obtained by interpolating
uk. Since they will generally not satisfy the compatibility condition (15) we correct them
in the above-described fashion. After solving the local problem

Mh(U~l)U~l + V'hp~l = FL
V'h' pU~l = 0,

we combine uk and U~l into a new composite solution

u l = { U~l, if the node is in n~,
H,h uk, otherwise.

The solution method for the glass flow can be now formulated as follows:
Algorithm 2 Local Defect Correction
O. d := 0, i:=O
1. Solve by algorithm 1

MH(U~)U~ + V'HP~ = F H - d,
V'H' pu~ = O.

2. Create boundary conditions for the local problem by interpolation.
3. Correct the boundary conditions if (15) is not satisfied.
4. Solve by algorithm 1

Mh(U~i)U~i + V'hP~i = F~,
I .

V'h' PUh~ = o.
5. Construct the composite approximation

u i _ { u~i, if the node is in n~,
H,h - ui otherwise.H,

6. i:=i+1; return to step 1 if residual is not small enough.

11
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5 Estimate for the perturbation parameter

Since we perturbed the boundary conditions for the local problem by (1 - a) we would
like to obtain an estimate for a. This is borne out in a property, the derivation of which is
deferred till the end of this section. We start with a definition of a discrete integral norm.

Definition 1 For f(x, y) E C([a, b] x [c, d]), hx = (b - a)/(N -1), hy = (d - c)/(M -1),
Xi = a + ihx , Yb = c + jhy, the discrete integral norm 01 I is defined by

N,M

II/"L~ := L hxhylf(Xi, Yj)1
i,j=l

Next we introduce a concept which is useful to describe a function requirements needed
below.

Definition 2 A lunction I E C([a, b] x [c, d]) is called infinitely oscillating around zero if
there exists a point x E [a, b] x [c, d] and a direction r, such that lor any € > 0, there exist
o< t1 < t2 < € such that

The following lemma gives an estimate of the difference between the integral and discrete
integral norms

Lemma 1 For I(x, y) E C2([a, b] x [c, d]), such that I is not infinitely oscillating and
Z:= {(x, y)l/(x, y) = O} the roots of I form a one-dimensional manifold or a finite set of
points, the following holds

1II/IIL1 -II/IIL~I ~ C1h
2

Proof We note that for a function which is only positive or only negative on [a, b] x [c, d],
the discrete integral norm coincides with midpoint integration. We can encounter problems
only at those points where I changes sign. Therefore we need handle this cases separately.
We split the complete domain [a, b] x [c, d] into two parts

[a, b] x [c, d] = ([a, b] x [c, d] \ Vz) U Vz,

where Vz is a h-neigbourhood of Z

(30)

Vz := U(i,j) Vi,j, Vi,j:= [Xi - hx/2, Xi + hx/2] x [Yj - hy/2, Yj + hy/2],
(i,j) E {(i,j)13(x,y) E zn Vi,j}' (31)

Using the fact that J: = J: + .he and the splitting (30) we have

II III IL1([a,bjx[e,dJ) -II/IILh([a,bjx[e,dJ)1 ~

II III ILl([a,bjx[e,dJ\Vz) - "fIIL~([a,bjx[e,dJ\vz)1 + 1II/IIL1(vz) -II/IIL~(Vz)l· (32)
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The first term of the right-hand side of (32) can be interpreted as an error of the midpoint
integration rule

IllfIILl([a,bjx[c,d]\Vz) - IlfIIL~([a,bjx[c,d]\vz) I ::; D1h
2

Let now (e, TJ) E Z be the point in h-neighbourhood of (Xil Yj), that is

(e, TJ) E Vi,j C Vz .

We need to estimate JIf(Xi,Yjl-lf(x,Y)ldxdy.
Vi,}

Using a Taylor expansion around (e, TJ) we have

IJIf(Xi,Yjl-lf(x,Y)ldxdYI::; D2h3
,

Vi,}

where D2 incorporates first derivatives of f. The integral over Vz can be represented as a
sum of integrals over Vi,j constituting Vz

IllfIILl(VZ) -llfIIL~(Vz)1 = ~ IJIf(Xi,Yjl-lf(x,Y)ldxdYI·
~,J Vi,}

(33)

Expression (33) can be estimated by the number of Vi,j times the maximum over all inte
grals. Noting that that the number of Vi,j is at most Jz Idf/h, we have

IllfIIL1(Vz) -llfIIL~(Vz)1 ::; D 2 JIdfh
2

Z

Finally,

"If IIL1([a,bjx[c,d]) - IlfIIL~([a,bjx[c,d]) I ::; C1h2
,

with C1 = D1 + D2 fz 1df.•
Before we arrive at our desired property we first give another lemma for which we need a
notation for the indices of points at the faces of ok, viz.

/9 := Hj, k)l(xLy;, zi) E o~,

J9 := Hi, k)J(xLy~, zL) E n~,

K9:= Hi,j)l(xLy;,zL) E n~.

Let us denote the global fine mesh as Oh, and the solution computed on o'h as (u, iJ, W)T.
The following lemma estimates the distance between ul and h at the faces of o,~.

Lemma 2 If the analytical solution of (3) is twice continuously differentiable, then the
following holds

max (Iu~ J' k - Ul j kl) ::; CzHz
(i,j)EK9UKI ' , , ,

13



Proof The distance can be estimated as a maximum of two distances

max(luLk-ihJ'kl) ::;max( max (IUllJ'k-ihJ'kl), max (IU~J'k-Ul,j,kl)).
(i,j) lJ' ' , (i,j)EKg' , , , (i,j)EKI ' ,

We recall that Ul,j,k is the solution of the discrete problem on the fine mesh. Further,
when (j, k) E Kg, UL,k is a solution discrete problem on coarse mesh. Since they both
approximate the same exact solution U, we have for some constant Dg

Therefore
max lu~ J' k - Ul J' kl ::; 2D3H 2

•(j,k)EKg , , , ,

We now look for an error estimate at fine grid points not being coarse grid points at the
same time (i.e the set KI). The estimate can be obtained as follows

max lu~ J' k - Ul J' kl::; max IU~J' k - Ul J' kl + max lUI J' k - U1J' kl· (34)
(j,k)EKI ' , , , (j,k)EKI ' , , , (j,k)EKI ' , , ,

The second term on the right-hand side of (34) is an approximation error, since U1,j,k is
the discrete solution on the fine mesh and Ul,j,k is the exact solution, i.e.

In order to obtain a similar estimate for the first term of (32) we introduce a reference
function u8 which is found by a cubic spline interpolation of the coarse grid solution (20)

uk = L Ul,j,kCf,k(Y' z),
(j,k)EKg

where Cf,k(Y' z) is cubic B-spline cf. [4] Then applying the triangle inequality we have

I I - 1< II 8 I 18
- Imax U ' - u' max U ' - u, + max u ' - u '

(j,k)EKI 1,J,k I,J,k - (j,k)EKI 1,J,k 1,J,k (j,k)EKI 1,J,k 1,J,k
(35)

The first component on the right hand side is simply the linear approximation error. An
estimate for the second component follows from the fact that u8 can be represented as

uk = L: U1,j,k Cf,k(Y' z) = L (Ul,j,k + D j ,kH2 )cf,k(Y' z),
(j,k)EKg (j,k)EKg

where
Ul,j,k = Ul,j,k + D j ,kH2 , for some Dj,k'

14



(36)

Hence,

for some D4 , Ds. Here D4 is the error constant of spline approximation. We note that if
U E C 3 (n), then

max luf J' k - ill J' kl :s; D4 H3 + max(DJ, k)H2
•

(j,k)EKI ' , , , ,

due to the fact that the spline approximation yields a better accuracy for a smoother
function. Having proved (34), we finally proved the statement of the lemma, with C2 =
max(2D1, Ds).•
We can now find the required estimate for the perturbation parameter a.

Property 1 If the analytical solution of (3) is twice continuously differentiable, then the
following holds .

< 6C2SH2

a - (1 _ a-2)(C3 - 12C1h2) '

where C1 and C2 are constants from lemma 1 and lemma 2, respectively,

Proof The expression in the square brackets in (23) can be considered as the sum over all
points minus the sum over only global points

l: hyhz(luL,kl + IU~Lj,kl) + L hxhz(l vt1,kl + IvtNt,kl) +
(j,k) Ell (i,k)EJI

L hxhy(lwtj,ll + IwL,N~1) =
(i,j)EKI

Nt,N~ N~,N~ N~,Nt

l: hyhz(luL,kl + IU~Lj,kl) + L hxhz(lvb,kl + IvtNpl) + L hxhy(l wtj,ll + Iwt;,Nll) -
j,k=l i,k=l i,j=l

L hyhz(luL,kl + IU~1,j,k\) - L hxhz(lvh,kl + IvtNt,kl) -
(j,k)EI9 (i,k)EJ9

L hxhy(lwL,ll + IW~,j,Nll)·
(i,j)EK9

15



We denote as ui a twice continuously differentiable function that attains values UL,k at
points (xLy~, zD, e.g. a cubic spline. Using the notation of the discrete integral norm we
can rewrite (36) as follows

l: hyhz(luL,kl + IU~~,j,kl) + l: hxhAlvt,l,kl + IVtNpl) +
(j,k)EX, (i,k)EYz

l: hxhy([wL,ll + IwL,Nil) =
(i,j)EZ,

IIu11ILh + IluNIIL" + IIv11ILh + IlvMIILh + IIw11ILh + I/wLIILh -
1 1 1 1 1 1

a;la;1(llu11IL{f + lI uNIIL{f) - a;la;1(lIv1I IL{f + IlvMIIL{f)-
a;la;1(llw1IIL{l + II wLIIL{l) 2:

(1- a-2)[(llu1IILI + lIuN~IILI + IIv1IILI + IlvN~I/Ll + IIw11ILl + IIwN~IILJ -12C1h2
].

This estimate follows directly from lemma 1. We denote IIU11ILI + IluN~IILl + IIv11ILl +
IlvN~I/Ll +llw1lIL1 + IlwN~IILl as C3 . The next step is to estimate 6. Note that the solution
(u, V, W)T on the global fine mesh Oh satisfies the consistency condition (21) exactly

Nt,N~ N~,Ni N~,Nt

L hyhz(U1,j,k-UNJ"j,k) + L hxhz(Vi,l,k-Vi,NL,k)+ L hxhy(Wi,j,l-Wi,j,Nl) =0. (37)
j,k=l i,k=l i,j=l

Subtracting (21) from (37) we find that

Nt,~ N~,Ni

6 = l: hyhz(uL,k - U~~,j,k) + L hxhz(Vt,l,k - vtNL,k) +
j,k=l i,k=l

N~,Nt Nt,~

L hxhy(wt,j,l - WL,Ni) - L hyhz(U1,j,k - UN~,j,k) -
i,j=l j,k=l
N~,N~ N~,Nt

L hxhz(Vi,l,k - Vi,NL,k) - L hxhy(Wi,j,l - Wi,j,Nl)'
i,k=l i,j=l

Rearranging terms and applying the triangle inequality we obtain

Nt,N~ Nt,N~

6 ~ L hyhzluL,k - U1,j,kl + L hyhzlu~1,j,k - UN1,j,kl +
j,k=l j,k=l

N~,N~ Nl,N~

" hxhzlv! 1 k - Vi! kl + " hxhzlv! N' k - Vi N' kl +L....J II) , , , L....J ,,) y' , y'

i,k=l i,k=l
N~,NL N~,Nt

L hxhylwL,l - Wi,j,ll + L hxhylwL,NI - Wi,j,Nil·
i,j=l i,j=l

16



'.2

Figure 4: Typical pattern of the velocity field for bubbling

Using lemma 2 we have that
(38)

•
6 Numerical Experiments

A good example to test our method for the glass oven is bubbling. Although this is a
typically local phenomenon, it has a noticeable global effect. It works as follows. Air
bubbles are injected at the bottom of the oven and on their way to the top attract air from
the glass, thus making the glass medium more uniform. Another important feature of the
bubbling is enforcing the so-called backflow, which is important for proper melting of all
components. In figure 4 we plot a typical velocity field pattern when bubbling is used.
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Figure 5: Velocity field in the vicinity of the bubbler, computed with non-uniform tensor
refinement (left) and LDC (right), x = 3.4
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Figure 6: Absolute values of the velocity in the vicinity of the bubbler, computed with
non-uniform tensor refinement '(left) and LDC (right), x = 3.4

The bubbling is modelled as follows.
Let us assume that the initial volume of the bubble is Yo. Since the hydrostatic pressure

decreases in going to the glass surface, the diameter of the bubble Vb increases. From the
gas law we have

v; - V; Pa + pgH (39)
b - °pa+pg(H - z)'

where Pa is the ambient pressure, p the density of glass, 9 the gravitational constant, H
the glass height and z the momentary glass height. We denote the total volume flow by
Q. Then the distance between the bubbles is

d= VOv
Q'

(40)

where v is the bubble rising velocity, which is the sum of the undisturbed vertical glass
velocity and the relative glass-bubble velocity. The force acting on the glass from one
bubble is

Fb = -Vbpg. (41)

Since per vertical meter, there are on average l/d bubbles acting on the glass, the average
force per meter height is

F = Fb = _VbpgQ. (42)
d VOv

Let us denote the intersection of the bubble and the plane z = Zk as Bk and the cell around
the point (Xi, Yj) as Vi,j, Le. Vi,j := [Xi - hx /2, Xi + hx /2] x [Yj - hy /2, Yj + hy ]. The body
force is now corrected by

Fi~j,k = -Pi,j,kg + F ! Idxdy/ lk 1dxdy.

BknV"j

18
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Figure 7: Absolute value of the velocity in the vicinity of the bubbler, computed with
non-uniform tensor refinement (left) and LDC (right), z = 0.5

method memory time
tensor 36519 15120
LDC 6835 5213

Table 1: Computation cost for tensor refinement and LDC, oven with two bubblers

To put it another way, the bubbling is modelled by a local perturbation of the body force.
The first example we consider is an oven of the size 6 x 2 x 1, with two bubblers, located
at the points x = 3.4, y = 0.4 and x = 3.4, y = 1.6, radius of both bubblers is equal to
0.06. Since the size of the bubbler is much smaller than the size of the oven, we need to
either use uniform fine mesh everywhere, or refine locally. The uniform refinement is not
feasible due to a huge overload. First we solve the problem refining in the vicinity of the
bubblers by means of a non-uniform tensor grid. Then we solve the same problem but this
time employing LDC and three uniform grids: the global coarse grid covering the whole
oven and to local fine each covering one bubbler. Thus the local problems in LDC can be
computed in parallel. The refinement factors are

U x = 4, u y = 2, Uz = 2.

We plot the results for both approaches in figures 5-7. Pictures on the left and the right
sides are virtually identical. This means, that by using LDC we obtain the same results
as when using a non-uniform tensor grid. However by using LDC we achieve a significant
reduction of overload, see Table 1, namely approximately three times g~in in storage and
computational time.

The second example we consider is the same oven, but now with seven stirrers, equally
distributed along the line x = 3.4. Again we compute the problem by means of two ap
proaches: non-uniform tensor refinement and LDC. However, we use now only one local
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Figure 8: Velocity field in the vicinity of the bubblers, computed with non-uniform tensor
refinement (left) and LDC (right), x = 3.4

method memory time
tensor 39231 17236
LDC 8029 6875

Table 2: Computation cost for tensor refinement and LDC, oven with 7 bubblers

grid for LDC. The results of the computation are depicted in figures (8)-(10). For this ex
ample LDC again has a considerable advantage in storage and time, see Table 2. However,
since we used one larger local grid, the speed-up is slightly smaller. It can be explained by
observing that doubling the number of grid points leads to more than two times increasing
the computational time. We denote the solution obtained with LDC by (UH,h, VH,h, WH,h)T
and the solution obtained with non-uniform tensor refinement by (u, V, W)T. The distance
between these solutions is measured by

U IluH,h - ulloo tI IlvH,h - vll oo w IlwH,h - wll oo

e = Ilu/loo ,e = Ilvlloo ,e = Ilwlloo •

As can be seen from the table 3 the solutions differ about 10-2, which corresponds to an
interpolation error, that cannot be overcome. Therefore the result achieved is the best one
we can expect from our method.

# bubblers eU e'IJ eW

2 2.34.10-2 2.01.10-2 9.85.10-3

7 2.17.10-2 1.85. 10-2 8.76.10-3

Table 3: Difference between solutions obtained by LDC and tensor refinement
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