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Summary 

The nucleation of cracks and their subsequent growth can be described in a unified fashion 
using continuum damage mechanics. A field variable is introduced which represents the 
development of microstructural material damage in a continuum sense. At a certain critical 
level of this damage variable all strength is locally lost and a crack is thus initiated. Under 
continued loading the completely damaged zone (i.e., the continuum damage representation 
of the crack) propagates by a process of damage growth and stress redistribution. The rate 
of propagation and its direction are governed by the damage growth in a relatively small 
process zone in front of the crack instead of by the separate fracture criteria used in fracture 
mechanics. 

Numerical analyses based on standard damage models, however, are often found to de
pend heavily on the spatial discretisation. The growth of damage tends to localise in the 
smallest band that can be captured by the spatial discretisation. As a consequence, increas
ingly finer discretisation grids lead to crack initiation earlier in the loading history and to 
faster crack growth. In the limit of an infinite spatial resolution, the predicted damage band 
has a thickness zero and the crack growth becomes instantaneous. The response is then per
fectly brittle, i.e., no work is needed to complete the fracture process. This nonphysical 
behaviour is caused by the fact that the localisation of damage in a vanishing volume is no 
longer consistent with the concept of a continuous damage field which forms the basis of the 
continuum damage approach. 

The origins of the pathological localisation of damage have been studied for elasticity
based damage models of quasi-brittle fracture and high-cycle fatigue. Two mechanisms play 
an important role in it. Firstly, the set of partial differential equations which govern the 
rate of deformation may locally lose ellipticity at a certain level of accumulated damage. 
Discontinuities may then arise in the displacement solution, which result in a singular damage 
rate. This damage rate singularity in turn leads to the instantaneous initiation of a crack. 
Secondly, when a crack has been initiated, either prematurely as a result of displacement 
discontinuities or because the damage variable has become critical in a stable manner, the 
damage rate singularity at the crack tip results in instantaneous failure of the material in front 
of the crack tip. Since the damage rate singularity is preserved as the crack propagates, the 
remaining cross section is traversed instantaneously. 

Displacement discontinuities and damage rate singularities can be avoided by adding non
locality to the damage model. In nonlocal damage theory spatially averaged quantities are 
used for this purpose. The enhanced continuum description which is thus obtained results 
in smooth damage fields, in which the localisation of damage is limited to the length scale 
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introduced by the averaging. As a consequence, p1emature initiation of cracks is avoided and 
predicted crack growth rates remain finite. 

A similar effect can be achieved by including higher-order deformation gradients in the 
constitutive model. Two of these gradient enhancements have been considered, which can 
both be derived as approximations of the nonlocal model. In the first approach second-order 
strain gradients explicitly enter the stress-strain relations. In the second approach the depen
dence on strain gradients follows implicitly from a partial differential equation which must be 
solved in addition to the equilibrium equations. Particularly the implicit approach is equiva
lent to the non local model in many respects. Indeed, implicit gradient models can be shown to 
contain the same long-range spatial interactions which are characteristic of non local models. 

The implicit gradient damage model can be fitted with relative ease into a standard nonlin
ear finite element formulation. Crack growth is simulated by removing completely damaged 
elements from the discretisation. This remeshing is necessary to avoid nonphysical damage 
growth at the crack faces as a result of interactions between the crack and the remaining 
continuum. 

The finite element formulation has been used to simulate quasi-brittle fracture and high
cycle fatigue fracture. The damage bands obtained in these analyses have a finite width which 
depends on the intrinsic length introduced by the gradient enhancement. The quasi-brittle 
model shows a stable softening response, which compares well with experimental data. The 
fatigue model results in a finite crack initiation life and a finite crack growth rate. For both 
phenomena results are no longer sensitive to the spatial discretisation. 

Chapter 1 

Introduction 

1.1 Background and motivation 

Preventing failure of mechanical systems has been an important issue in engineering design 
ever since the early stages of the industrial era. Each individual component of these systems 
must be dimensioned such that it can resist the forces to which it will be subjected during 
normal service. Additionally, safety factors can be applied to account for unforeseen load
ings or material flaws . For standard design purposes the yield limit is often used as a failure 
criterion, which means that the component will never undergo permanent deformation under 
design loads. However, when safety and reliability are critical (e.g., in nuclear installations) 
or when the added weight and cost of overdimensioning cannot be tolerated (aircraft), more 
accurate predictions are needed for the onset of failure, as well as of the fracture process itself 
(crack paths, residual strength, remaining service life, etc.). These issues have traditionally 
been addressed using fracture mechanics. Starting from the assumption of an idealised, dom
inant flaw, fracture mechanics theory provides conditions for the growth of a crack from this 
flaw. Additional criteria have been developed for the crack growth direction, growth rates un
der dead loads (creep) or repeated loading (fatigue) and other aspects of the fracture process, 
see for instance Broek (1986) for a review of these techniques. 

The advent of digital computing technology has greatly extended the practical relevance 
of fracture mechanics. Where a large degree of simplification used to be necessary, accurate 
numerical analyses can nowadays be performed for arbitrary geometries and loading condi
tions (Atluri, 1986; Aliabadi and Rooke, 1991). Furthermore, the ability to numerically solve 
complex mathematical problems has inspired extensions of the classical, linear theory with 
nonlinear material behaviour (e.g., Kanninen and Popelar, 1985; Aliabadi et al., 1992). Under 
the influence of these developments, a second, fundamentally different type of modelling has 
emerged, in which fracture is considered as the ultimate consequence of a material degrada
tion process. Instead of separately defining constitutive relations and a fracture criterion, this 
loss of mechanical integrity is accounted for in the constitutive model. Crack initiation and 
growth then follow naturally from the standard continuum mechanics theory. This concept 
can be implemented for instance in standard plasticity by assuming a decrease of the yield 
stress with increasing deformation (strain softening) after a certain amount of plastic flow 
(Pietruszczak and Mr6z, 1981; Feenstra and de Borst, 1996). 
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However, the most distinct exponent of conti:.1Uum approaches towards fracture is con
tinuum damage mechanics. It introduces a set of field variables (damage variables) which 
explicitly describe the local loss of material integrity. The notion of a continuous represen
tation of- intrinsically discontinuous- material damage stems from the work of Kachanov 
(1958) on tertiary creep and was further developed by Rabotnov (1969). But it was not be
fore the mid-1970s that it was realised that the theory could be used to describe not only the 
formation, but also the growth of macroscopic cracks (Hayhurst et al., 1975). A crack is then 
represented by that part of the material domain in which the damage has become critical, i.e., 
where the material cannot sustain stress anymore. Redistribution of stresses results in the 
concentration of deformation and damage growth in a relatively small region in front of the 
crack tip. It is the growth of damage in this process zone which determines in which direction 
and at what rate the crack will propagate, hence the term 'local approach to fracture' which 
is sometimes used for this type of crack modelling (Lemaitre, 1986; Chaboche, 1988). 

The very fact that damage mechanics and related models use a continuous representation 
of cracks renders them particularly suitable for numerical simulations. Damage formulations 
can be fitted into nonlinear finite element algorithms and implemented in simulation codes 
with relative ease and they do not rely on the special discretisation and remeshing techniques 
used in numerical fracture mechanics. It is an essential requirement of finite element formu
lations that the approximate solutions provided by them converge to the actual solution of the 
boundary value problem when the discretisation is refined. In the early 1980s, however, it 
was found that finite element solutions of softening damage and plasticity problems do not 
seem to converge upon mesh refinement (e.g., Pietruszczak and Mr6z, 1981; Bazant et al., 
1984; Schreyer and Chen, 1986). As a matter of fact, they do converge to a solution, but this 
solution is physically meaningless . Accordingly, the mesh sensitivity of the analyses is not 
caused by the numerical methods which are used, but by the fact that the underlying contin
uum model does not properly describe the physical phenomena that take place (Bazant et al., 
1984; Triantafyllidis and Aifantis, 1986; de Borst et al., 1993). 

The failure of continuum damage models in describing fracture processes can be under
stood if one realises that the concept of a continuous damage variable presumes a certain 
local homogeneity- or at least smoothness- of the microstructural damage distribution. But 
the continuum models based on this concept allow for discontinuous solutions, in which the 
development of damage localises in a surface while the surrounding material remains un
affected. This localisation of damage is in contradiction with the supposed smoothness of 
the damage field and thus affects the physical relevance of the model. Two possible ways 
out of this conflict present themselves: either the smoothness requirement must somehow be 
eased, or the continuum formulation must be modified in such a way that a larger degree of 
smoothness is ensured. 

The cohesive zone models of Dugdale (1960) and Barenblatt (1962) and the fictitious 
crack model proposed by Hillerborg et al. (1976) can be considered as examples of the first 
category. They assume that the nonlinearity is concentrated in a plane in front of the actual, 
discrete crack. The faces of this fictitious crack can still transfer stresses, with a magnitude 
which is a function of their separation. More recent studies have shown how such functions 
can be derived from continuum models (Simo et al., 1993; Larsson and Runesson , 1994; 
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Oliver, 1996). Notice that this approach is also closely related to (nonlinear) fracture me
chanics, since it assumes a discrete crack. 

The second strategy concentrates on preventing the so-called pathological localisation of 
damage and deformation. Stability and bifurcation analyses of plasticity and damage for
mulations have provided a reasonable understanding of the origins of the behaviour and the 
conditions under which it occurs (Hill, 1962; Rudnicki and Rice, 1975; Rice, 1976; Benallal 
et al., 1989). A range of extensions to the conventional damage and plasticity models have 
been proposed in order to regularise the localisation of deformation (see for instance de Borst 
et al. (1993) for a review). Among them, the most promising is perhaps the class of nonlocal 
and gradient models. Both approaches introduce spatial interaction terms in the constitutive 
model, either using integral (nonlocal) relations (Bazant et al., 1984; Pijaudier-Cabot and 
Bazant, 1987; Tvergaard and Needleman, 1995) or gradients of some constitutive variable 
(Aifantis, 1984; Coleman and Hodgdon, 1985; Lasry and Belytschko, 1988; Mtihlhaus and 
Aifantis, 1991; de Borst and Mtihlhaus, 1992). The additional terms have a smoothing effect 
on the deformation (and damage) fields, and thus preclude localisation in a plane. From a 
physical standpoint, the presence of spatial interactions can be motivated by microstructural 
considerations for some classes of materials (e.g., Aifantis, 1984; Bazant, 1991; Fleck and 
Hutchinson, 1993; Geers, 1997). 

The past decade has provided us with some understanding of the mathematical implica
tions of the nonlocal and gradient enhancement, particularly in avoiding pathological locali
sation. But fundamental questions still remain. For example, the role of the enhancement in 
crack growth modelling and the associated treatment of boundaries have not yet been fully 
clarified. Furthermore, nonlocal and gradient models are known to be closely related, but 
may nevertheless behave quite differently. In fact, very similar gradient formulations have 
been observed to lead to remarkably different localisation properties. It is therefore believed 
that these and other issues need to be further resolved in order to fully exploit the potential of 
nonlocal and gradient formulations. 

1.2 Scope and outline 

The aim of this thesis is to provide a deeper insight into the mathematical and numerical as
pects of continuum models of damage and fracture, and to develop a consistent, continuum 
description of these processes. Continuum damage mechanics will serve as the conceptual 
framework of these developments. In order not to obscure the key issues with needless com
plexity, the damage model which is used has been kept as simple as possible: it essentially 
consists of linear elasticity extended with an isotropic damage mechanism. The lack of per
manent deformations in this constitutive model limits its practical relevance to quasi-brittle 
fracture and high-cycle fatigue. Although these phenomena can be treated in the same elas
ticity based damage framework, the damage models which describe them are quite different 
in some respects. Both models will therefore be used as examples throughout this thesis. 

Chapter 2 introduces the general concepts of damage mechanics. Constitutive relations 
of elasticity based damage are first developed in a general format. These relations are then 
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particularised for quasi-brittle fracture and fatigue, respectively. The shortcomings of the 
classical theory are demonstrated in Chapter 3. The origins of the pathological localisation 
are first shown in a one-dimensional setting. The general, three-dimensional case is analysed 
by considering the rate equilibrium problem. Examples are given of the resulting mesh sensi
tivity in quasi-brittle and fatigue damage. At the end of the chapter a brief overview is given 
of existing methods to overcome these difficulties. The discussion then focuses on non local 
and gradient-enhanced damage formulations (Chapter 4). It is shown that nonlocality may 
be introduced at the macroscopic level to represent the influence of the microscopic material 
structure on damage processes. Gradient formulations are derived as approximations of the 
non local theory, and the mathematical consequences of both enhancements in crack initiation 
and crack growth are discussed. 

In Chapter 5 finite element formulations of the gradient damage models for quasi-brittle 
and fatigue fracture are developed. For the high-cycle fatigue model the time integration of 
the damage growth relation is reformulated such that large numbers of cycles can be sim
ulated without needing an excessive number of increments. A consistent Newton-Raphson 
solution scheme is developed for the discretised equations. Special attention is given to the 
numerical treatment of crack growth. In Chapter 6, examples of the application of the numer
ical models are given. The quasi-brittle model has been applied to concrete fracture and to 
fracture of a short fibre reinforced polymer. The fatigue model has been used to simulate the 
initiation and growth of fatigue cracks in a low-strength steel. Emphasis is on demonstrating 
the mesh objectivity of these simulations, but where possible the results are compared with 
experimental data from the literature. Chapter 7, finally, gives a brief summary of conclusions 
and discusses perspectives for continuum damage modelling of fracture. 

Chapter 2 

Elasticity based damage mechanics 

Three decades of research have provided us with a wealth of damage models for virtually 
any combination of material behaviour and fracture mechanism. However, since our pri
mary interest is understanding the behaviour of classical and enhanced damage formulations 
in mathematical terms, the complexity of the damage modelling is reduced here as much 
as possible. Thermal and other nonmechanical influences are left out of consideration and 
strains and rotations are assumed to be small. Furthermore, viscous effects and permanent 
deformations are neglected and the material behaviour is assumed to be linear elastic in the 
absence of damage growth. The remaining class of models basically consists of linear elastic
ity extended with a damage mechanism and is therefore often called elasticity based damage 
or damage coupled with elasticity (Lemaitre and Chaboche, 1990; Lemaitre, 1996). 

Applications of elasticity based damage mechanics are limited to phenomena in which 
the growth of material defects is the predominant dissipation mechanism and plastic de
formations remain negligible. Although particularly the latter condition imposes a severe 
limitation, two important fracture mechanisms remain: quasi-brittle fracture and high-cycle 
fatigue. Both phenomena involve a high degree of microstructural change before complete 
fracture occurs, and therefore lend themselves well for a description in a damage mechan
ics framework. After the introduction of some concepts and definitions of classical damage 
mechanics in general (Section 2.1) and elasticity based damage in particular (Section 2.2), 
constitutive models of quasi-brittle damage and high-cycle fatigue are discussed in detail in 
Sections 2.3 and 2.4, respectively. 

2.1 Concepts of damage mechanics 

The basic premise of continuum damage mechanics is that microstructural defects (micro
cracks, rnicrovoids) in a material can be represented by a set of continuous damage variables. 
An illustration of this concept is given in Figure 2.1: the value of the damage variable D in 
a certain point of the continuum is a measure of the number and size of defects in a small 
volume at this point. Several definitions of damage variables in terms of measurable, physical 
quantities exist, see for instance Lemaitre and Chaboche (1990). However, for macroscopic 
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Figure 2.1: Damage variable as a representation of microstructural defects. 

modelling purposes the precise physical interpretation of the damage variables is often less 
relevant. A precise definition is therefore not given at this point. 

It is assumed in the sequel that the development of damage does not introduce anisotropy 
into the material behaviour and that a single, scalar damage variable suffices to describe 
the local damage state. In the more general, anisotropic case, a set of damage variables (or a 
tensor) must be used (Krajcinovic and Fonseka, 1981; Lemaitre and Chaboche, 1990; Fichant 
eta!., 1995). The damage variable Dis defined such that 0:::; D :::; 1, where D = 0 represents 
the initial, undamaged material and D = 1 represents a state of complete loss of integrity. 
Strictly speaking, the initial material always contains some defects, but it is assumed that 
these are accounted for in the virgin material properties, so that the initial damage can be set 
to zero. 

After a certain amount of loading, three regions can generally be distinguished in the 
material domain Q (Figure 2.2). No damage may have developed at all in a part Q0. The 
damage variable still has its initial value D = 0 in this region and the material properties 
are those of the virgin material. In a second region r.lct, some development of damage has 
occurred, but the damage is not yet critical (0 < D < 1). The limiting value D = 1 has 
been reached in the third region r.lc, i.e., the mechanical integrity and strength have been 
completely lost in this region. 

The completely damaged region r.lc is the continuum damage representation of a crack. It 
is important to realise that the local, complete loss of strength in r.lc implies that stresses are 
identically zero for arbitrary deformation fields. The equilibrium equations are meaningless 
in this region (see the next section for an example) and it must therefore be excluded from 
the equilibrium problem by introducing an internal boundary, on which the condition of zero 
stress is imposed as a boundary condition. A free boundary problem is thus obtained, in 
which the position of the internal boundary (the crack front and crack faces) follows from the 
growth of damage. 

Elasticity based damage mechanics 7 

Figure 2.2: Damage distribution in a continuum. 

2.2 Elasticity based damage 

The classical stress-strain relation of elasticity based damage mechanics reads (see for in
stance Lemaitre and Chaboche, 1990) 

a;j = (1- D) C;jkt ekt· 

Einstein's summation convention has been used in this relation; aij (i, j 
the Cauchy stress components and ek{ (k, l = 1, 2, 3) the linear strains 

ekt =~(auk+~), 
2 OX[ OXk 

(2.1) 

1, 2, 3) denotes 

(2.2) 

where uk are the displacement components with respect to the Cartesian coordinates x = 
[x 1, x2 , x3]T. The reference configuration (uk = 0) is assumed to be stress-free. The elastic 
constants C;jkt are given by 

(2.3) 

with 8 the Kronecker delta and )... and J.L Lame's constants. The latter can be expressed in 
terms of Young's modulus E and Poisson's ratio v according to 

Ev 
)...= , 

(1 + v)(1 - 2v) 

E 
(2.4) 

J.L = 2(1 + v) · 

Relation (2.1) shows that the damage variable acts as a stiffness reduction factor. For increas
ing damage, the effective stiffness moduli (1 - D)C;jkt decrease, until they become zero for 
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D = 1. When all stiffness has vanished, no ::;tresses can be transferred (aij = 0), so that we 
indeed have a stress-free situation for D = l. 

Substitution of (2.1) and (2.2) into the standard equilibrium equations 

aa. 
_'_1 = 0 
ax; 

(2.5) 

and making use of the right minor symmetry of the elasticity tensor (i.e., C;jkt = C;j/k) gives 
the system of second-order partial differential equations 

a2uk aD auk 
(1 - D) C;jkl -- - - C;jkl - = 0. 

ax;axt dX; axt 
(2.6) 

For a given damage field D(x) < 1, the displacement components uk can be determined 
from this differential system and the corresponding kinematic and dynamic boundary con
ditions. In a crack however, where D = 1, both terms in the differential equations vanish. 
Consequently, the differential system degenerates and the boundary value problem becomes 
ill-posed. As discussed in Section 2.1, this situation must be avoided by limiting the equi
librium problem to the subdomain Q = S1o U S1ct where D < 1 and applying the natural 
boundary condition n;a;j = 0 at the boundary between crack and remaining material. 

The stress-strain relation (2.1) defines the effect of the damage variable on stresses and
through the equilibrium equations- on the deformation field. At the same time, however, the 
damage variable may increase under the influence of stresses and strains. Whether damage 
growth is possible is decided on the basis of a damage loading function in terms of the strain 
components: 

f(£, K) = f- K, (2.7) 

with & a positive equivalent measure of the strain state and K a threshold variable. The equa
tion f = 0 defines a loading surface in strain space (cf. the elastoplastic yield surface in 
stress space). The shape and size of the loading surface are determined by the definition 
of the equivalent strain & in terms of the strain components and by the threshold variable 
K, respectively. For strain states within the loading surface (f < 0) there is no growth of 
damage and the material behaviour is elastic. The damage variable can only increase when 
the equivalent strain reaches the threshold value K, i.e., when f 2:: 0. The precise conditions 
for damage growth are different for the quasi-brittle and fatigue models; they are given in 
Sections 2.3 and 2.4, respectively. 

When the appropriate conditions are satisfied, the growth of damage is governed by an 
evolution law which reads in its most general form 

D = g(D, &) f, (2.8) 

where a superimposed dot denotes differentiation with respect to time. Notice that the depen
dence of the damage growth rate on the equivalent strain rate is linear in order to avoid rate 
effects . Specific expressions for the evolution function g(D, &) and the equivalent strain & for 
quasi-brittle damage and fatigue are given in the following sections. 

Elasticity based damage mechanics 9 

2.3 Quasi-brittle damage 

Quasi-brittle fracture is a collective noun for fracture processes which are not accompanied 
by large-scale plastic flow, but nevertheless take significantly more energy than needed for the 
creation of the crack surface. Fracture is not the consequence of the growth of one dominant 
crack, but rather of a process of nucleation, growth and coalescence of microscopic defects 
in a volume which is much larger than that occupied by the final, macroscopic crack. As a 
consequence, a gradual decrease of the deformation resistance is usually observed instead of 
the sudden loss of strength in perfectly brittle fracture. Examples of materials which exhibit 
quasi-brittle fracture are concrete, rock, ceramics and some fibre reinforced composites . 

Figure 2.3 shows the stress-strain response which is typically observed in tensile tests of 
concrete specimens if the load is removed at regular intervals (e.g., Mazars and Pijaudier
Cabot, 1989; Shah and Maji, 1989). It should be mentioned that the strain in this diagram 
is actually an average strain since it is usually obtained by dividing the relative displacement 
of two points (e.g., the supports) by their distance. For small strains the response is practi
cally linear. When the deformation increases, however, the slope of the stress-strain curve 
decreases, until it becomes zero at the fracture strength. After having reached the fracture 
strength, the stress decreases gradually for increasing strain. In this softening stage the load 
was removed from the specimen at four different stress levels. The slope of the correspond
ing unloading loops in the diagram becomes smaller for each following unloading-reloading 
sequence- that is, the elastic stiffness of the material decreases as the damage process contin
ues, as predicted by elasticity based damage. However, a considerable amount of deformation 
remains at zero stress, which cannot be described by standard elastic damage models. These 
permanent deformations can be taken into account by adding inelastic terms to the constitu-

b 

Figure 2.3: Stress-strain response of concrete in tension. 
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tive model (e.g., Lubliner et al., 1989; Mazars and Pijaudier-Cabot, 1989), but this extension 
will not be considered here for simplicity. 

It can also be observed from Figure 2.3 that when the deformation is increased again after 
unloading, damage growth starts approximately at the point where the unloading started. In 
terms of the damage model of Section 2.2 this means that the elastic domain in strain space 
must grow for increasing damage, such that the strain state remains on the loading surface 
(f = 0, j = 0; cf. elastoplasticity). This implies that the damage threshold K is always equal 
to the largest value of the equivalent strain l which was locally attained during the loading 
history. Mathematically, this condition can be formulated by the set of Kuhn-Tucker relations 

fie= 0, f ~0, ic :::: 0, (2.9) 

which must be supplemented by an initial value K = Ko in order to define the initial elastic 
domain. 

The damage growth relation can now be written as 

D= !g(D,e)i if f=Oand}=OandD < 1, 
0 else, 

(2.10) 

where the condition D < 1 reflects the fact that the damage cannot grow beyond the critical 
value D = 1. Since D > 0 if and only if f = 0 and i > 0, and thus ic > 0, and since 
both D and K are semi-monotonic, a one to one relation exists between these two internal 
variables: D = D(K). This relation can be obtained from (2.10) by integration and use of 
the consistency relation j = 0, but it is usually specified directly for quasi-brittle damage 
models. In the latter case the corresponding evolution function g(D, £) can be obtained by 
differentiation with respect to K. 

For theoretical developments the evolution of damage is often defined as 

{ 

Kc K- KQ 

D = t Kc- KQ 
if K < Kc, 

(2.11) 
if K 2: Kc. 

This relation has been plotted in Figure 2.4(a). In a uniaxial stress situation, and assuming 
that£ equals the axial strain £, (2.11) results in linear softening, followed by complete loss of 
stiffness at£ = Kc, see Figure 2.4(b). 

Softening in real materials is usually nonlinear, with a relatively steep initial stress drop 
followed by a more moderate decrease (cf. Figure 2.3). An exponential softening law is 
sometimes used for concrete (Mazars and Pijaudier-Cabot, 1989; Peerlings eta!., 1998a): 

D = 1- Ko (1 -a+ ae-/3(K-Kol) . 
K 

(2.12) 

This expression and the corresponding stress-strain relation have also been plotted in Fig
ure 2.4. Notice that the damage variable approaches D = 1 asymptotically, which means 
that there will never be complete fracture (Figure 2.4(c)). For£ ~ oo the uniaxial stress 
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Figure 2.4: Damage growth and corresponding uniaxial stress-strain response for (a,b) 
linear softening case (2.11), (c,d) exponential softening (2.12) and (e,f) 
modified power law (2.13). 
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a approaches (1 - a)EKo (Figure 2.4(d)); this asymptote represents the long tail of exper
imentally obtained load-displacement diagrams, which is the result of crack bridging (e.g., 
Hordijk, 1991). The parameter f3 in (2.12) determines the rate at which the damage grows. A 
higher value results in a faster growth of damage and thus in a more brittle response. 

Geers (1997) has proposed a so-called modified power law to describe fracture of short 
glass-fibre reinforced polymers: 

I (KO){J ( Kc- K )" 

D = : - -; Kc - Ko 
if K < Kc , 

if K 2: Kc. 

(2.13) 

This relation results in complete fracture (D = 1) forK = Kc (Figure 2.4(e,f)). The parameter 
f3 in (2.13) mainly influences the initial rate of damage growth, whereas a determines the final 
softening stage, close to complete failure (Geers, 1997). 

Apart from the evolution law for the damage variable, the equivalent strain £ must be 
defined in order to have a complete quasi-brittle damage model. The equivalent strain defini
tion maps the strain components onto a scalar variable. It must therefore reflect the different 
effects of the strain components on damage growth by weighting these components appro
priately. If the constitutive relations are derived within the framework of thermodynamics 
of irreversible processes, damage evolution is usually related to the energy release rate asso
ciated to the damage variable, which for elasticity based damage is given by (Lemaitre and 
Chaboche, 1990) 

(2.14) 

The energy release rate depends only on the strain components and can thus be regarded 
as an equivalent strain measure which uses the elastic moduli to weight the different strain 
components. In fact, if the equivalent strain is taken as £ = Y , the damage formulation which 
is used here coincides with the classical model based on thermodynamics. 

The slightly modified expression 

£ = (2.15) 

is more natural in the sense that £ is dimensionless and equals the axial strain for the uniaxial 
tensile stress case. Definition (2.15) is represented graphically in Figure 2.5(a), which shows 
a constant-£ curve in the principal strain space. The diagram has been scaled such that £ = 1. 
A plane-stress situation has been assumed and Poisson's ratio has been set equal to v = 0.2. 
The dashed lines in the diagram represent uniaxial stress paths. 

Figure 2.5(a) shows that the normalised energy release rate definition (2.15) lacks the 
ability to distinguish between tension and compression. Under uniaxial loading the energy 
release rate model predicts damage initiation and failure at the same load levels in compres
sion and tension. For engineering materials, however, the compressive strength is often higher 
than the tensile strength . For instance, the compressive strength of concrete is ten to twenty 
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Figure 2.5: Equivalent strain definitions in principal strain space (plane-stress): (a) 
normalised energy release rate (2.15) , (b) Mazars (2.16), (c) modified 
von Mises (2.17). 
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times the tensile strength . This difference can be accounted for in the damage model by us
ing an equivalent strain measure which is more sensitive to positive strains than to negative 
strains. A widely used definition is (Mazars and Pijaudier-Cabot, 1989) 

(2.16) 

with c; (i = 1, 2, 3) the principal strains and () the McAuley brackets: (x) = !Cx + lxl) . 
The contour £ = 1 associated to relation (2.16) has been plotted in Figure 2.5(b). The 
dependence on solely the positive principal strains indeed renders the equivalent strain more 
sensitive to tensile strains than to compressive strains. Under uniaxial loading, the ratio of 
the compressive strength and the tensile strength is given by arc/an = 1/(v.J2) (Brekelmans 
et al., 1992). For v = 0.2 this ratio is approximately 3.5, which is still considerably lower 
than experimentally obtained values for concrete. 

A third equivalent strain definition, first proposed in a strain based format by de Vree et al. 
(1995), is the modified von Mises definition. This definition originates from plasticity models 
for polymers, where it has been formulated in terms of stresses. It is obtained by adding the 
first invariant of the stress tensor to the standard von Mises flow criterion (Williams, 1973). 
The stress based form of the modified von Mises definition can be rewritten in terms of strains 
using Hooke's law, resulting in: 

k- 1 1 
8 = 2k(1 - 2v) h + 2k 

(k- 1)2 2 12k 
-(1---2-v)""'2 11 - (1 + v)2 h (2.17) 

with h and h the first invariant of the strain tensor and the second invariant of the deviatoric 
strain tensor, respectively, given by 

(2.18) 

The parameter k governs the sensitivity in compression relative to that in tension. The defi
nition of the equivalent strain is such that a compressive uniaxial stress of magnitude ka has 
the same effect on damage growth as a tensile stress a. The parameter k is therefore usually 
set equal to the ratio of the compressive and tensile strength: k = arc/an. Two-dimensional 
graphical representations of the modified von Mises definition for k = 1 and k = 10 are 
given in Figure 2.5(c). 

2.4 High-cycle fatigue damage 

Engineering components are often submitted to cyclic or fluctuating loads. Fracture under 
these circumstances is usually the result of fatigue: the repetitive character of the loading 
causes an accumulation of microstructural damage, which culminates in the formation and 
growth of cracks. Fatigue fracture occurs at stress amplitudes which are well below the static 
fracture strength or even below the static yield limit of the material. When plastic strains 
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remain small, the process is referred to as high-cycle fatigue. The fatigue life is typically of 
the order of 105-106 cycles in high-cycle fatigue . 

Elasticity based damage models of high-cycle fatigue assume a decrease of the elastic 
stiffness as the damage grows. This loss of stiffness can indeed be measured in some materi
als. Figure 2.6 shows the decrease of the effective elastic modulus, E, as typically measured 
in metals under constant stress amplitude loading (see for instance Chaboche, 1988; Lemaitre, 
1996). The number of loading cycles N has been normalised by dividing it by the fatigue life 
Nr and the effective elastic modulus E has been divided by Young's modulus of the virgin 
material, E. The diagram shows a relatively slow loss of stiffness during a large part of 
the fatigue life, followed by an abrupt loss of the remaining stiffness. Other measurement 
techniques confirm this strongly progressive growth of damage (Marom, 1970; Ping, 1984). 

OL-------------------------------~ 
0 

N/Nr 

Figure 2.6: Elastic stiffness decrease in high-cycle fatigue. 

The fact that stress cycles of a constant amplitude result in damage growth means that 
the role of the loading surface in the fatigue damage model must be different from that in the 
quasi-brittle model. If the Kuhn-Tucker relations were also used for fatigue, there would only 
be damage growth in the first loading cycle, followed by an elastic response in all subsequent 
cycles. Following Paas et al. (1993) the elastic domain is therefore kept fixed in the fatigue 
model by setting K = Ko. The strain is allowed to exceed the loading surface, so that f > 0 
(cf. overstress viscoplasticity models) . The loading surface can now be related to the fatigue 
limit: if the strain remains within the loading surface everywhere in a component, there will 
be no damage development and the component has an infinite fatigue life. For materials 
which do not exhibit a fatigue limit, the threshold parameter Ko can be set to zero. In addition 
to the condition f ::: 0, it is assumed that the damage variable can only increase for continued 
loading, i.e., for j ::: 0, and that it remains constant during unloading (Paas, 1990; Paas et al., 
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1993). The rate of damage growth can then be written as 

D = l g (D, 'i) i iff:=::: 0 and j :=::: 0 and D < 1, 
0 else. 

(2.19) 

When dealing with loading histories composed of well defined, discrete cycles, an evo
lution law in terms of the number of cycles and their amplitudes is often considered more 
practical in the literature. The number of cycles, N, is then regarded as a continuous, time
like variable and the growth of damage, which occurs during discrete time intervals within a 
cycle, is spread to a continuous evolution over the entire cycle. Such a cycle based formu
lation can be obtained from (2.19) by integration over one loading cycle and approximating 
the growth of damage within this cycle, resulting in a relation of the form (Lemaitre and 
Chaboche, 1990; Paas, 1990; Paas et al. , 1993; Peerlings, 1997) 

av 
- = G(D, ea) , (2.20) aN 

with ea the amplitude of the equivalent strain cycle. 
Fatigue damage growth relations are often formulated directly in a cycle based format, 

but traditionally in terms of stresses rather than strains (e.g., Lemaitre and Plumtree, 1979; 
Hua and Socie, 1984; Chaboche, 1988; Chaboche and Lesne, 1988). Notice, however, that 
such a stress based evolution can always be rewritten in a strain format by substitution of the 
stress-strain relations (2.1). In this thesis (2.19) will be regarded as the primary definition. 
This relation does not require that the loading history consists of well defined loading cycles. 
As a result, variable amplitude loading, overloads, etc . can be dealt with in a natural fashion, 
although the load interactions and retardation effects associated to these irregular loadings 
can be described only to a limited degree by the elasticity based damage model (Peerlings, 
1996, 1997). It will be shown in Chapter 5 that efficient numerical analyses of constant am
plitude loading are nevertheless possible using definition (2.19) if the appropriate numerical 
techniques are used. 

For the evolution function g(D , 'i) an expression which is slightly different from that of 
Paas (1990) is used here: 

(2.21) 

with C, a and fJ material parameters. This form has the advantage that it does not become 
zero for D = 1. It can therefore also be used with an initial damage equal to zero, in contrast 
to the relation proposed by Paas (1990). 

The growth of damage and the fatigue life can be solved in closed form for the situation of 
uniaxial, fully reversed loading with a constant strain amplitude ea. It is furthermore assumed 
for simplicity that the equivalent strain equals the axial strain amplitude ea at both extremes of 
the strain cycles (i .e., in tension and compression) and that there is no fatigue limit (Ko = 0). 
After substitution of (2.21), relation (2.19) can then be integrated over N cycles, yielding 
(Peerlings, 1997): 

D =--In 1- -- e N . 1 ( 2a C tl + l ) 
a {3+1 a 

(2 .22) 
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The fatigue life Nr is obtained as a function of the strain amplitude from (2.22) by setting 
D = 1 and solving for N, resulting in 

Nr = f3 + 1 (1- e-"') e;<tJ+ll. 
2aC 

This equation can also be written as 

(2.23) 

(2.24) 

which is of the same form as the high-cycle part of the classical strain based approach to 
fatigue (Manson and Hirschberg, 1964), or Basquin's (1910) law, 

a; b 
ea = E (2Nr) , 

with the fatigue strength coefficient a; and fatigue strength exponent b given by 

-1 
b=--. 

{3+1 

(2.25) 

(2.26) 

Using (2.23), relation (2.22) can be rewritten in terms of the relative number of cycles 

N/Nr: 

(2.27) 

0.8 

0.6 

0.4 

0.2 0.4 0.6 0.8 
N/Nr 

Figure 2.7 : Damage variable as a function of the relative number of cycles. 
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This relation has been plotted in Figure 2.7 for several values of the parameter a . The effect 
of variation of this parameter is quite clear: a higher value of a results in an initially slower 
accumulation of damage, but a higher growth rate towards the end of the fatigue life. Since 
a is the only parameter in equation (2.27), it can be determined from experiments by fitting 
the growth of damage during the fatigue life (cf. Figure 2.7). The other two parameters of 
the evolution law, C and {3, can then be solved from relations (2.26) for the fatigue strength 
coefficient and exponent, the values of which are available for many materials in fatigue 
handbooks. Notice, however, that this procedure requires that the strain amplitude in the 
critical cross-section is kept constant. 

Since high-cycle fatigue damage is usually the result of plastic flow at the microscale, 
it seems natural to use the von Mises strain as equivalent strain measure in fatigue . The 
definition of£ then reads 

- 1 r-M € = -- -312 
1+v ' 

(2.28) 

where the factor 1/(1 + v) scales the equivalent strain such that it equals the axial strain in the 
uniaxial stress case. Notice that the modified von Mises definition (2.17) reduces to (2.28) 
for k = 1. A graphical representation of (2.28) is therefore given by the curve associated to 
k = 1 in Figure 2.5(c). 

Chapter 3 

Localisation and mesh sensitivity 

Finite element simulations using continuum damage models are known to be susceptible to 
so-called mesh sensitivity: when the finite element discretisation is refined, the numerical so
lution does not converge to a physically meaningful solution of the problem (e.g., Saanouni 
et al., 1989; Murakami and Liu, 1995; de Vree et al., 1995). This behaviour is not unique 
for damage models, but also occurs in softening plasticity and other continuous representa
tions of material degeneration (Pietruszczak and Mr6z, 1981; Bazant et al., 1984; de Borst 
and Mi.ihlhaus, 1991; Needleman and Tvergaard, 1994). Neither is it necessarily related to 
the finite element method, since other numerical solution methods also show irregularities 
under similar circumstances. Indeed, mesh sensitivity is not caused by numerical artifacts 
or inadequate solution algorithms, but it is the numerical consequence of shortcomings of 
the underlying mathematical modelling. In the academic case of uniform material properties 
and stresses, the equilibrium problem has an infinite number of solutions and the problem is 
therefore ill-posed. In practical problems, which are always inhomogeneous, the growth of 
damage tends to localise in the smallest possible volume, that is, in a surface. Consequently, 
no work is needed to complete the fracture process, even if the specific energy dissipation is 
positive. The conditions under which such pathologically localised solutions can develop in 
elasticity based damage are examined in Section 3.1. The discussion is then particularised 
to quasi-brittle fracture and fatigue in Sections 3.2 and 3.3, respectively. Section 3.4 gives a 
brief account of measures which can be taken to avoid the problems associated to localisation. 

3.1 Localisation of deformation and damage 

The fundamental difficulties associated to damage localisation are best demonstrated in a 
one-dimensional setting. A uniform bar is considered (Figure 3.1), which is supported at one 
end and loaded by a prescribed displacement U(t) at the other end. The axial strain e in the 
bar is assumed to be positive at all times; the equivalent strain £can then be set equal to e. 
The one-dimensional stress-strain relation 

u = (1- D)Ee (3.1) 
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., X U u(x, t) .r U(t) 
L 

Figure 3.1: One-dimensional bar problem. 

(cf. (2.1)) renders the equilibrium equation for the bar nonlinear in terms of the deformation. 
However, the problem can be linearised by considering the associated rate problem 

a& 
- = 0 (3.2) 
ax 

and assuming damage growth everywhere in the bar. Notice that this linearisation is equiva
lent with the classical assumption of a linear comparison solid (Hill, 1958). Differentiation 
of (3.1) with respect to time, followed by substitution of the general growth law (2.8) gives 
the stress rate as 

a=££, (3.3) 

where the tangential stiffness E is defined as 

E(D , c) = (1 - D)E- g(D , c)Ec. (3.4) 

For E > 0 the stre~s increases for an increasing strain (hardening), for E = 0 the stress is 
stationary, and for E < 0 it decreases (softening). Substitution of (3.3) and the kinematical 
relation t = av;ax, with v(x, t) the axial velocity in the bar, into (3 .2) results in a linear 
differential equation in terms of v: 

- a2v a£ av 
E(D, c) ax2 + ih ax = 0, (3.5) 

with 

aE ( a8 ) ac ( a8 ) aD -a =- g(D, c)+ c- E-- 1 + c- E-. 
X ac ax aD ax 

(3.6) 

If a reference solution with homogeneous strain and damage co, Do is now assumed, the 
second term in (3.5) vanishes and the coefficient of the second derivative of v is constant: 

- a2v 
E(Do, co) axz = 0. (3 .7) 
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An obvious solution of this problem is the linear velocity field v(x) = V xI L , where V = 
dU /dt is the velocity imposed on the right end of the bar. This solution, for which the 
strain rate and the damage rate remain homogeneous, is the only possible solution as long 
as E > 0. However, it can be seen directly from equation (3.7) that other solutions are 
possible when E = 0. The stress rate is then insensitive to variations of the strain rate and the 
differential equation (3.7) degenerates to an identity. Each twice differentiable velocity field 
which satisfies the boundary conditions is a solution of the boundary value problem, which 
is therefore ill-posed. In addition to these classical, strong solutions, an infinite number of 
weak solutions of the problem exist. A weak or generalised solution satisfies the differential 
equation in a distribution sense and can therefore have discontinuities in its first and second
order derivatives or even in the solution itself, see for instance Courant and Hilbert (1953) for 
a precise definition. 

In the inhomogeneous situation where the limit point E = 0 is first reached in only one 
cross-section of the bar, say at x = Xc, a discontinuous velocity field is the only possible 
solution of the linear rate problem. Since the stress cannot be constant for increasing strain in 
the remaining part of the bar, where E > 0, the strain rate € = av;ax must be zero for x =f. Xc. 

In order still to satisfy the boundary conditions, the velocity field must then have a jump at 
the critical cross-section x = Xc . This jump in the velocity field means that t is singular and 
thus that iJ is singular. For continued loading the damage variable therefore immediately 
reaches its critical value D = 1 at x = Xc and the stress becomes zero. The only way for the 
rest of the bar to follow this stress drop is to unload elastically. Thus, the deformation and 
growth of damage are localised in the critical cross-section, which immediately turns into a 
crack. This crack divides the bar in two stress-free bodies, the separation of which (i.e., the 
crack opening) is equal to the rigid body movement U that is imposed on the right body. 

In the general, three-dimensional case similar difficulties arise when the traction rate vec
tor acting on an arbitrary surface is insensitive to a velocity gradient across the surface (Rice, 
1976). In order to further define this situation, consider a surfaceS given by lf!(X) = 0, with 

IVIPI = (L;=l (aiP;ax;)2
)

112 =f. 0. New independent variables ~m (m = 1, 2, 3) are intro
duced, with ~3 = if! (i.e., normal to S) and~~, ~2 interior variables on S, see Figure 3.2 for a 
schematic representation. The transformation from the coordinates x; to the new coordinates 
~misgiven by the derivatives a~m/ax; = ~mi; in particular, a~3/ax; = a!pjax; = IPi· The 
unit normal n = [n 1, nz, n3]T to S is then given by 

1 alP IPi 
n; = ---- = --. 

IVIPI ax; IVIPI 

Differentiation of the stress-strain relation (2.1) gives for the stress rate 

where the tangential stiffness tensor C;jkl is defined by 

- a£ 
C;jkl = (1- D)Cijkt- g(D, £)C;jmncmn --. 

ackf 

(3.8) 

(3.9) 

(3 .10) 
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~2 

Figure 3.2: Definition of surface coordinates ~m· 

The tensor C;Jkl satisfies the left symmetry C;Jkl = CJikl as a consequence of the symmetry 
of the stress rate tensor ir;J. Because of the symmetry of the strain rate ekl it can also be 
assumed to satisfy the right symmetry C;Jkl = C;Jik without loss of generality. Using (3.9), 
the traction rates iJ acting on Scan be written as 

. . - avk 
TJ = 11;aiJ = 11;C;Jkl-a . 

X[ 
(3.11) 

Rewritten in terms of derivatives with respect to the new independent variables ~m this relation 
reads 

. - avk 
Tj =11;C;jki--~mf, 

a~m 

or, separating the derivative normal to Sand using (3.8), 

. - avk ..f-. - avk 
Tj = 11;Cijkfl1f a;;+~ 11;Cijkl~ml at' 

m=l <>m 

(3 .12) 

(3.13) 

where a;al1 = 11;a;ax; = IV(/11 a;a(/1 denotes differentiation in the direction of the surface 
normal n. 

If the second-order tensor 11; C;Jkfl1f, which is sometimes referred to as acoustic tensor, is 
now singular, i.e., 

(3.14) 

the traction rate does not depend on the velocity derivative avk!a11 = mk> with m the right 
eigenvector associated to the vanishing eigenvalue of 11; C;jkfl1f. This means that the nor
mal derivative of the velocity component Vkmk need not be defined in order to satisfy rate 
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equilibrium, i.e. , vkmk may be discontinuous across S. Notice that, in contrast to the one
dimensional case, the stationarity of iJ with respect to the velocity derivative mk avk j an does 
not automatically imply that iJ = 0, i.e., that the traction vector itself is stationary. 

If relation (3 .14) holds in each point of the surface S, then S is a characteristic surface of 
the rate equilibrium equations 

2 -
- a w ac;Jki avk 
C;Jkl --+ --- = 0. 

ax;axl ax; ax/ 
(3.15) 

It can be shown that (weak) solutions of linear partial differential equations with smooth 
coefficients can have discontinuities or discontinuous derivatives only across characteristic 
surfaces (Courant and Hilbert, 1953). No characteristic surface can be constructed through 
a point if the characteristic form det(n;C;jkf11I) has no real roots in this point. The set of 
equilibrium equations is then called elliptic and solutions cannot have jumps or derivative 
jumps in this point. 

Boundary value problems are normally associated to partial differential equations which 
are elliptic in the entire domain. Indeed, the rate equilibrium equations can easily be shown 
to be elliptic for linear elastic behaviour. In this case the characteristic determinant reads 
det (11; C;jkfl1f ) , which, after substitution of the elastic constants (2.3) and some algebra, can 
be written as 

(3.16) 

It can be seen directly that the characteristic determinant is positive for all n , so that no 
characteristic surfaces exist and the elastic rate equilibrium equations are elliptic. 

Under the influence of damage growth, the ellipticity of the rate equilibrium equations 
may be lost at a certain stage and consequently discontinuities may arise. Conditions for the 
loss of ellipticity are difficult to obtain in closed form for general, three-dimensional defor
mations. Such conditions have been derived by Oliver and Pulido (1998) for plane-stress and 
plane-strain and a damage model which is somewhat different from that considered here. The 
loss of ellipticity is illustrated here by the relatively simple case of a triaxial deformation state 
eiJ = e 8iJ. A closed form expression can then be derived if the normalised energy release 
rate as defined in (2.15) is used as equivalent strain (cf. Benallal et al. , 1989). Substitution of 
e;1 = e8iJ into (2.15) gives the equivalent strain as a function of e: 

- (K e = 3,;-Ee, (3.17) 

where the compression modulus K is defined as 

2 E 
K = ).. + 3 f.L = -3 (-1---2 v-) (3 .18) 

For the normalised energy release rate definition of the equivalent strain the tangential moduli 
(3.10) can be written as 

- g(n,n 
C;Jkl = (1- D)C;Jkl- Ee C;Jmnemn epqCpqkf, (3 .19) 
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or, after substitution of the elastic moduli, the assumed triaxial strain state and relation (3.17), 

(3.20) 

This expression can also be written as 

Cijkl = "5..8ij0kf + iL (8ik0jf + OifOJk), (3 .21) 

with "5.. and fL defined by 

)._ = (1 - D)A.- 3cg(D, e)K fK, . v£ [L = (1 - D)JJ- . (3 .22) 

Expression (3.21) is of the same form as expression (2.3) for the elastic moduli. The charac
teristic determinant can therefore be written down immediately as (cf. (3.16)) 

(3.23) 

Thus, the characteristic determinant is equal to zero if fL = 0 or ).. + 2[L = 0. The first 
solution implies that D = 1, i.e., that the material is completely damaged. In this situation 
one cannot speak of loss of ellipticity because the equilibrium equations are no longer defined. 
The second solution results in a meaningful condition for the loss of ellipticity before crack 
initiation: 

cg(D, e) A.+ 2JJ-
= 

3K,JKjE. 
(3.24) 

1- D 

When the ellipticity of the partial differential equations is lost in homogeneous problems, 
the situation becomes similar to the one-dimensional problem. This is the case which is usu
ally considered in localisation studies (e.g. , Rudnicki and Rice, 1975; Rice, 1976; Ottosen 
and Runesson, 1991). Indeed, equation (3.14) is identical to the classical condition for lo
calisation resulting from these analyses. The same criterion also follows from the analysis 
of acceleration waves in the limit of a vanishing wave velocity (Hill, 1962; Pijaudier-Cabot 
and Benallal, 1993). For homogeneous damage and homogeneous strains the coefficients of 
the second-order derivatives in the partial differential system (3.15) are constant, whereas the 
first-order terms vanish because of acijki/OXi = 0. Loss of ellipticity occurs simultaneously 
in the entire domain, resulting in a family of parallel, flat characteristic surfaces cp(x) = C. 
Arbitrary velocity fields Vk = w(cp)mk. with w(cp) zero at those parts of the boundary where 
kinematic boundary conditions exist, can now be added to the homogeneous solution, such 
that the resulting velocity field still satisfies the differential equations and boundary condi
tions . Thus, the boundary value problem has an infinite number of solutions and the problem 
ceases to be well-posed. If the derivative of w(cp) has a finite number of discontinuities, the 
classical localisation bands of finite width (weak discontinuities) are retrieved (Rudnicki and 
Rice, 1975; Rice, 1976). Similarly, the case where the function w(cp) itself contains jumps 
corresponds to so-called strong discontinuities, i.e. , localisation in a surface (Ottosen and 
Runesson, 1991; Simo et al. , 1993; Oliver, 1996). 
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In inhomogeneous problems the ellipticity of the differential equations is usually first lost 
at only one point of the domain. When the velocity field becomes discontinuous at this point, 
the strain rate is singular. Similar to the one-dimensional inhomogeneous case, this strain rate 
singularity results in a singular damage growth rate. For continued deformation all stiffness 
is therefore immediately lost at this point and a crack is initiated. The equilibrium equations 
locally degenerate and, as discussed in Chapter 2, an internal boundary must be introduced. 
But the singularity of the damage growth rate also means that the most critical point in front 
of the crack tip will fail instantaneously, i.e., that the crack starts to propagate. Since the 
material adjacent to the crack must unload elastically in order to follow the resulting stress 
drop, the width of the crack remains zero. This implies that the strain and damage growth 
rate at the crack tip remain singular as the crack grows and consequently that the crack grows 
at an infinite rate, since each new critical point in front of the momentary crack tip fails 
immediately. No work is needed in this instantaneous fracture process, since it involves 
damage growth in a vanishing volume. Thus, the development of a displacement (velocity) 
jump at some point in the material domain leads to instantaneous, perfectly brittle fracture. 

3.2 Quasi-brittle fracture 

It has been shown in Chapter 2 that the damage model for quasi-brittle fracture must show a 
rapid growth of damage immediately after reaching the elastic limit in order to realistically 
describe the softening behaviour observed in experiments (Figure 2.4). As a consequence 
of this rapid initial damage growth, loss of ellipticity occurs immediately after reaching the 
damage threshold in quasi-brittle damage models. It has further been shown in the previous 
section that loss of ellipticity in one point of the domain may result in immediate, com
plete fracture without energy dissipation. It can therefore be concluded that the quasi-brittle 
damage model predicts perfectly brittle fracture right after the elastic limit has been reached 
somewhere in the component. The gradual loss of stiffness in the post-peak regime, which 
the model was supposed to describe, cannot be observed at the structural level because the 
strain softening comes only into play in a vanishing volume. 

Finite element solutions try to follow the nonphysical behaviour of the actual solution, 
but are limited in doing so by their finite spatial resolution. Standard finite element meth
ods deliver weak solutions of boundary value problems, but in a Galerkin sense rather than a 
distribution sense. For the second-order partial differential equations of the equilibrium prob
lem this means that the displacement field must be eo-continuous, i.e., the displacements are 
continuous and piecewise continuously differentiable. The displacement jumps and singular 
strains of the actual solution can therefore only be approximated by high, but finite displace
ment gradients in the finite element solution. As a consequence, a finite volume is involved in 
the damage process, and thus a positive amount of energy is dissipated in the fracture process. 
Also, because the damage growth rate at the tip of the damage band remains finite , the crack 
propagates at a finite velocity. 

When the spatial discretisation grid is refined, however, the finite element approximation 
becomes more accurate in the sense that the displacement gradients which describe the dis
continuities become stronger. Consequently, the predicted fracture energy becomes smaller 
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and the crack propagates faster. In the limit of vanishingly small elements, the actual solution 
is retrieved, i.e., zero fracture energy and an infinite crack growth rate. This convergence 
of the finite element approximation to the actual, nonphysical solution of the problem is the 
origin of the apparent mesh sensitivity of damage models and other continuous descriptions 
of fracture. 

An example is given in Figure 3.3, which shows the load-displacement curves obtained 
from two-dimensional finite element analyses of crack growth in a compact tension specimen 
made of a composite material. The problem and modelling will be described in detail in 
Chapter 6. Four different finite element meshes have been used, with an increasingly finer 
discretisation in the region which is affected by damage. In the coarsest mesh square elements 
with an edge length of h = 2 mm were used; this length was successively halved in the finer 
meshes. Figure 3.3 shows that each level of further refinement results in a lower predicted 
fracture strength and in a more brittle post-peak response. 
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Figure 3.3: Predicted load-displacement response of a compact tension specimen 
modelled with elements of 2, 1, 0.5 and 0.25 mm. 

Apart from the dependence of the fracture energy and crack growth rate on the mesh 
finen~ss, the finite element description of displacement discontinuities by strong gradients 
also mtroduces preferential directions for the propagation of damage. As a consequence, 
crack patterns predicted by numerical damage analyses tend to be aligned with the finite 
element grid (e.g., Sluys, 1992; Jinisek, 1998). 
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3.3 Fatigue 

In contrast to the quasi-brittle damage model, the initial damage growth in the fatigue model 
is slow and therefore has little effect on stresses and strains (cf. Figure 2.6). Consequently, 
the rate equilibrium equations remain elliptic until near the end of the fatigue life, when the 
growth of damage becomes faster. Even if the ellipticity of the governing equations is lost 
at this stage and a crack is immediately initiated, this has a limited effect on the predicted 
number of cycles needed to initiate the crack (i.e., the initiation life). 

It can be shown that there can be no loss of ellipticity at all for the cycle based growth law 
(2.20). If f denotes the frequency of the loading cycles, the rate of damage growth is given 
by (2.20) as 

D = fG(D, £a). (3.25) 

Using this relation, the stress rate aij can be written as 

(3.26) 

where E'kl must be interpreted as the strain state for which £ = E'a. Likewise, aij represents 
the stress envelope rather than the stress variations within the loading cycles. Notice that the 
second term in (3.26), which represents the effect of damage growth on the stress rate, does 
not depend on the strain rate. As a consequence, this term appears as a source term rather 
than a differential coefficient when (3.26) is substituted into the rate equilibrium equations 
a&ij/axi = 0: 

(3 .27) 

Ellipticity is lost when the characteristic determinant associated to this set of equations be
comes zero, i.e., when 

(3.28) 

or, invoking (3.16), when 

(3 .29) 

This equation cannot be satisfied when D < 1, and the rate equilibrium equations thus re
main elliptic until a crack is initiated. Apparently, the transition from the rate form (2.8) to 
the cycle based form (2.20) removes the possibility of loss of ellipticity. As a result, dis
placements remain continuously differentiable and a stable growth of damage is obtained in 
a finite volume (see Peerlings, 1997, for an example). 

Even if loss of ellipticity does not occur, the initiation of a crack (when D = 1 at a certain 
point) still introduces a singularity in the problem. Indeed, a singularity may already be 
present in the initial problem as a result of the geometry. Since the crack faces must be stress
free, the strain at the crack tip becomes singular for continued loading. As a consequence of 
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this singularity of the strain, or of the strain amplitude in a cycle approach, the damage growth 
rate is infinite. This in tum means that the crack will immediately traverse the remaining 
cross-section of the component (cf. the discussion at the end of Section 3.1). Thus, the model 
predicts instantaneous, perfectly brittle fracture, instead of the small amount of crack growth 
per cycle which is observed in experiments. 

Similar to quasi-brittle damage, finite element solutions are limited by their spatial reso
lution in capturing the singularity at the crack tip. Consequently, finite element simulations 
show a finite crack growth rate, which increases as the spatial discretisation is refined. An 
example of this apparent mesh sensitivity is given in Figure 3.4. The diagram shows the 
steady-state fatigue crack growth rate predicted by a finite element analysis versus the size 
of the elements which were used in this analysis. The problem geometry, loading conditions 
and modelling for which these results have been obtained will be detailed in Chapter 6. The 
dependence of the crack growth per cycle, dajdN, on the element size h is quite strong in 
this example: a decrease of the element size by roughly one decade leads to an increase of 
the crack growth rate by almost three decades. 
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Figure 3.4: Predicted fatigue crack growth rate versus element size. 

A similar trend has been observed in dynamic ductile fracture by Needleman and Tver
gaard (1998) and in creep crack growth problems by Saanouni et al. (1989) and Liu et al. 
(1994). However, only the latter authors seem to have made a connection with singularities at 
the crack tip. It is further noted that the sensitivity of predicted crack paths to the orientation 
of the discretisation may be even larger in fatigue (and creep) problems than in quasi-brittle 
damage because the strongly progressive damage growth of these models renders them more 
sensitive to initial conditions and numerical errors. 
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3.4 Regularisation methods 

From the previous sections it has become clear that merely improving numerical solution 
schemes cannot eliminate the problems associated to localisation and mesh sensitivity. Even 
if the convergence to the actual solution is improved, the fact remains that this solution does 
not show the intended behaviour and may not even make sense from a physical point of view. 
Nevertheless, some authors have proposed to adapt the parameters of the damage growth 
relation to the spatial discretisation in such a way that a constant global response (e.g. , fracture 
energy) is obtained for different element sizes (Pietruszczak and Mr6z, 1981; Simo, 1989; 
Brekelmans and de Vree, 1995). Damage growth remains limited to a band of elements in 
this so-called fracture energy approach, and the width of the predicted damage zone thus still 
depends on the element size. Furthermore, the direction of crack growth is still sensitive to 
the orientation of the finite element mesh. Nevertheless, this approach may be practical in 
some situations when used carefully. 

A second, related strategy introduces enhanced finite element interpolations to describe 
the damage zone as a band of fixed width (weak discontinuity) or a surface (strong discon
tinuity) (Ortiz et al., 1987; Larsson and Runesson, 1993; Oliver, 1996; Sluys and Berends, 
1998). For some particular cases the weak discontinuity approach can be shown to yield finite 
element formulations which are identical to those resulting from the fracture energy approach 
(Berends, 1996; Sluys, 1998) and may thus inherit some of its disadvantages. Indeed, finite 
element analyses using weak discontinuities may be sensitive to the mesh orientation (Sluys, 
1997). When a strong discontinuity is used to model the damage zone, the constitutive re
lations must be reformulated in terms of relative displacements instead of strains in order to 
obtain a finite fracture energy. These models are therefore closely related to the cohesive zone 
and fictitious crack approaches of nonlinear fracture mechanics (Dugdale, 1960; Barenblatt, 
1962; Hillerborg et al. , 1976). 

On the other hand, a number of methods have been developed which aim at avoiding the 
pathological localisation of deformation and damage growth (or plastic flow) by improving 
the continuum model. The preceding discussion has shown that it is not sufficient for these so
called regularisation methods to preserve the ellipticity of the rate equilibrium problem, since 
loss of ellipticity only acts as the initiator of instantaneous fracture . In order to realistically 
describe the growth of cracks the regularisation must also remove the damage growth rate 
singularity at the crack tip. The different approaches are discussed here only briefly; see 
for instance Pijaudier-Cabot et al. (1988), Sluys (1992) or de Borst et al. (1993) for detailed 
discussions and comparisons. 

Viscous or time-dependent terms in the constitutive model may prevent the loss of ellip
ticity of the original, time-independent solids. Under transient loading conditions a natural 
approach is therefore to include the inherent rate sensitivity of many materials in the consti
tutive description (Needleman, 1988; Sluys and de Borst, 1994). 

Cosserat continua introduce micro-rotations as degrees of freedom, in addition to the 
conventional displacements. Gradients of these rotations give rise to micro-couples, which 
appear in the moment of momentum equations. The interaction between these rotational bal
ances and the conventional, translational balances prevents the concentration of deformations 
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in a surface. However, a mode-II compone;lt is needed in the deformation field in order to 
activate this mechanism. As a consequence, pathological localisation may still occur in prob
lems which are dominated by mode-l loading (Mtihlhaus and Vardoulakis, 1987; de Borst 
and Mtihlhaus, 1991; Sluys, 1992). 

Nonlocal models abandon the principle of local action satisfied by conventional contin
uum models. Weighted volume averages of certain state variables appear in the continuum 
model, thus introducing direct spatial interactions. The nonlocality has a smoothing effect on 
the deformation and on the damage, thus precluding localisation in a surface (Bazant et al., 
1984; Pijaudier-Cabot and Bazant, 1987; Tvergaard and Needleman, 1995; de Vree et al., 
1995). 

Gradient-enhanced models or higher-order continua use higher-order deformation gradi
ents or gradients of internal variables to create spatial interactions. Similar to the nonlocal 
models, discontinuities are smoothed by these models so that strains remain finite (Aifantis, 
1984; Coleman and Hodgdon, 1985; Lasry and Belytschko, 1988; Mtihlhaus and Aifantis, 
1991; de Borst et al., 1995). 

The nonlocal and gradient approaches, which are closely related, seem to be the most 
generally applicable. The potential of these methods in describing crack growth problems is 
therefore examined in detail in the next chapter. 

Chapter 4 

Nonlocal and gradient-enhanced damage 

Damage in engineering materials is highly inhomogeneous and localised. Microcracks are 
initiated at stress concentrations and their subsequent growth affects a volume which is usu
ally small compared to the entire structural component. Since the development of damage is 
governed by microstructural changes and interactions, the scale of the microstructure plays 
an important role in setting the size of the damaged region. For instance, the intragranular slip 
processes which are responsible for metal fatigue are strongly influenced by the grain bound
aries. As a consequence, the grain size has an important effect on the extent of fatigue damage 
(Hertzberg, 1989; Suresh, 1991). Similarly, cracks in concrete and fibre reinforced polymers 
are bridged by aggregates and fibres, respectively, which renders the fracture process sensi
tive to the size and distribution of these microstructural elements. Indeed, the dependence 
of the width of damaged zones on the length of fibres in short fibre reinforced polymers has 
been established experimentally by Geers et al. (1998a, 1999a). 

However, the scale of the microstructure is not included in the classical damage models 
as discussed in the previous chapters. The volume that is affected by damage is therefore 
not properly defined by these models. As a consequence of this indefiniteness the growth 
of damage localises in a surface, thus bringing about the physically unrealistic behaviour 
demonstrated in the previous chapter. In order to limit the localisation of damage to the scale 
of the microstructure, terms must be added to the constitutive modelling which describe the 
influence of the microstructure on the damage process. A conceptually simple way to do so 
is by introducing nonlocality into the constitutive relations. This approach is explained in 
Section 4.1. The nonlocality can also take the form of higher-order deformation gradients in 
the constitutive relations. Section 4.2 shows how gradient-enhanced models can be derived as 
approximations of the nonlocal theory. Special attention is given to the treatment of bound
aries in both approaches (Section 4.3) . The effect of the nonlocality on the initiation and 
propagation of cracks is shown in Sections 4.4 and 4.5, respectively. The salient properties 
of both approaches are briefly reviewed, finally, in Section 4.6. 
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4.1 Nonlocal damage mechanics 

In Chapter 2 damage variables have been introduced as field variables which describe mi
crostructural defects in a continuum sense. This implies that the damage variables vary 
smoothly at the scale of the microstructure, or at least that they do not vary strongly within 
microstructural elements (e.g., grains). In the previous chapter it has been shown, however, 
that in the standard model damage tends to localise in a vanishing volume, i.e., in a volume 
which is much smaller than that of the microstructural elements. This strongly discontinu
ous damage distribution conflicts with the supposed smoothness of the damage variable. The 
nonphysical behaviour of the model is a direct consequence of this inconsistency. 

The necessary piecewise smoothness of the damage field can be ensured by defining the 
damage variable explicitly at the level of the microstructural elements. The growth of the 
damage variable associated to an element then depends on the average deformation in the 
element. In terms of the elasticity based damage model the above reasoning means that the 
growth of damage in a point x is no longer governed by the local equivalent strain £(x), but 
by the average of € on the volume Qe(x) occupied by the microstructural element at x: 

£(x) = -
1

- f e(y)dQ. 
Qe(X) 

(4.1) 

Sle(X) 

where y denotes the position of the infinitesimal volume dQ. The loading function (2.7) and 
the damage evolution law (2.8) must then be replaced by 

f(£, K) = £- K (4.2) 

and 

iJ = g(D, £) £. (4.3) 

The dependence of the value of € in x on the strain state in a finite volume Qe(x) implies 
that the constitutive model does no longer satisfy the principle of local action. The model 
has become nonlocal, i.e., stresses in a point x depend on the deformation not only in x itself, 
but also in its vicinity. Accordingly, the averaged strain € is often referred to as nonlocal 
equivalent strain. Physically, this nonlocality represents long-range interactions and hetero
geneities at the microscale, which can no longer be neglected when the scale of fluctuations 
of the constitutive variables approaches that of the microstructure (Beran and McCoy, 1970; 
Eringen and Edelen, 1972; Bazant, 1991). 

Definition (4.1) of the nonlocal equivalent strain corresponds with the cell averaging of 
Hall and Hayhurst (1991). It is meaningful when the microstructure is known in detail, for 
instance because the material consists of a regular stacking of well defined microstructural 
elements. When the microstructure is not periodic, however, such as in polycrystalline ma
terials, concrete, etc., taking into account the full detail of the material structure becomes 
unpractical. The cell average can then be replaced by a moving average on a volume which 
corresponds to the average size of the microstructural elements, for instance to the average 
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Figure 4.1: Weighted averaging for an irregular microstructure. 

grain size. Furthermore, since the averaging volume is no longer explicitly related to the 
material structure, and to account for variations in the grain size, it seems appropriate to use 
a smooth weight function rather than the piecewise uniform weighting which has been im
plicitly assumed in (4.1), see Figure 4.1. The nonlocal equivalent strain£ is then defined by 
(Pijaudier-Cabot and Bazant, 1987) 

£(x) = -
1

- /1/f(y; x)£(y) dQ, 
\II (x) 

with 1/f(y; x) the weight function. The factor 1/\fl(x), with \fl(x) defined by 

\II (x) = j 1/1 (y; x) dQ, 

Q 

(4.4) 

(4.5) 

scales £ such that it equals € for homogeneous strain states. Notice that the integration in 
(4.4) and (4.5) is limited to the domain Q = Q \ Qc where D < 1, because € is not uniquely 
defined on Qc (see also the next section). 

The weight function 1/f(y; x) is assumed to be homogeneous and isotropic, i.e., it depends 
only on the distance p = lx- yl between the points y and x: 1/f(y; x) = 1/f(p). Several 
functions 1/1 (p) have been considered in the literature, of which the Gaussian function seems 
to have become the most popular (see Figure 4.1): 

1 [ p2 J 
1/f(p) = (2rr)3/2[3 exp - 2[2 . (4.6) 
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The factor (2rr)-312z-3 in this expression normalises the weight function on JR3 such that 

f 1/J(p) dQ = 1. (4.7) 

JR3 

The length parameter l determines the volume which contributes significantly to the nonlocal 
equivalent strain and must therefore be related to the scale of the microstructure. Notice that 
the local continuum is retrieved when l ~ 0, since£ then becomes equal to£. 

4.2 Gradient formulations 

For sufficiently smooth e-fields, the integral relation (4.4) can be rewritten in terms of gradi
ents of e by expanding e(y) into a Taylor series (Bazant et al., 1984; Lasry and Belytschko, 
1988; Peerlings et al., 1995, 1996a): 

_ _ a.s 1 a2.s 
c(y) = c(X) + -;;-:-(Y;- X;)+ -21 ~(y; - X;)(Yj- Xj) 

aX1 .uX1 ux1 

Substitution of this relation into (4.4) yields after some calculus 

where the coefficients c; and Cij are given by 

c; = 2!11Jl f 1/l(p) (y;- x;)2 ds-2, 

Q 

1 f 2 2 Cij = 
4

!1Jl 1/J(p)(y;- X;) (yj- Xj) dQ. 

Q 

(4.8) 

(4.9) 

(4.10) 

Odd derivatives vanish in (4.9) as a result of the isotropy of the weight function and the 
coefficients c; (with i = 1, 2, 3) are all equal, so that the index i can be dropped. It should 
be noted that this is true only when the support of the weight function 1/f lies entirely in 
the domain Q, i.e., if X is sufficiently far from the boundary r of Q. For the Gaussian 
function (4.6) this condition can only be met when Q equals JR3 . However, the relevance of 
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the equation (4.9) lies not so much in its strict equivalence with (4.4), but in the fact that it 
provides the possibility to approximate the integral relation (4.4) by the differential relation 

(4.11) 

where the Laplacian operator '112 is defined by '112 = L; a2 ;ax?. Equation (4.11) is obtained 
by neglecting terms of order four and higher in (4.9) . The dependence on the coordinates x 
has been dropped for brevity. If the non local equivalent strain defined by ( 4.11) is used in the 
loading function (4.2) and growth law (4.3), a gradient-enhanced damage model is obtained. 
The internal length scale of the nonlocal model is preserved in the gradient coefficient c, 
which is of the dimension length squared. For instance, for the Gaussian weight function 
(4.6) on JR3 (4.10) 1 gives c = ~12 . Substitution of (4.11) into the equilibrium equations 
results in a set of fourth-order partial differential equations instead of the usual second-order 
equations. For this reason, additional boundary conditions must be specified in order for the 
equilibrium problem to be well-posed, see Section 4.3. 

An alternative gradient formulation can be derived from (4.9) by applying the Laplacian 
operator to it and multiplying by c. If the result is subtracted from ( 4.9), the following relation 
is obtained: 

a4-
- n2- - ( 2) c c - C v c = c + Cij - C - 2--2 + ... 

OX;OXj 
(4.12) 

Again neglecting terms of order four and higher in the right-hand-side gives a second approx
imation of (4.4): 

(4.13) 

In contrast to definition ( 4.11), the non local strain f: is not given explicitly in terms of e and 
its derivatives, but as the solution of the boundary value problem consisting of the Helmholtz 
equation (4.13) and appropriate boundary conditions, see Section 4.3. The resulting gradient 
damage formulation will therefore be referred to as implicit, while the model based on (4.11) 
will be referred to as explicit gradient formulation. 

For simple geometries equation (4.13) can be solved analytically using Green's function 
associated to the boundary value problem. Green's function G(x; y) is defined as the (weak) 
solution of the partial differential equation (4.13) with the source term replaced by a Dirac 
function 8(x- y), 

G(x; y)- cV2G(x; y) = 8(x- y), (4.14) 

which satisfies the boundary conditions associated to (4.13). For the free-space problem (i.e., 
Q = JR3 ) these boundary conditions are replaced by the requirement that G(x; y) ~ 0 as 
lxl ~ oo. The corresponding free-space Green's function is given by (Zauderer, 1989): 

G(x; y) = -
1

- exp [-_!!___], 
4:rr:cp .jC 

(4.15) 
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where p = lx- yl. The right-hand-side of the original equation (4.13) is now considered as 
a superposition of Dirac functions : 

£(x) = J £(y)8(x- y) dQ . (4.16) 

Q 

The solution of this problem is then obtained by the same superposition of Green's functions: 

£(x) = Js(y)G(x; y)dQ . (4.17) 

Q 

Since Green's function is symmetric in its arguments, i.e ., G(x; y) = G(y; x), this relation 
can also be written as 

£(x) = J G(y; x)£(y) dQ, 

Q 

(4.18) 

which is of exactly the same form as equation (4.4) for the nonlocal model. This means 
that the gradient damage model based on the differential equation (4.13) can be considered 
as a special case of the class of nonlocal models, in which the weight function lfr(y; x) is 
defined as Green's function G(y; x). For the free-space problem this weight function has 
been plotted as a function of p in Figure 4.2. A value of -JC = 1mm has been used for the 
internal length scale. The Gaussian weight function (4.6), with the corresponding internal 
length l = ffc = -/2 mm, is also shown for comparison. Notice that 

J G(y; x)dQ = 1, 

IR.J 

(4.19) 

so that both weight functions are normalised. The most striking difference between the two 
functions is that Green 's function is singular at p = 0, while the Gaussian weight function 
remains finite. However, since the volume associated to small p is relatively small, this sin
gularity probably has a limited effect on the overall response of the implicit formulation . 
Green's function assigns more weight to points at a smaller distance p compared to the Gaus
sian function . The 'average' interaction distance is therefore smaller for the implicit gradient 
model than for the nonlocal model. 

Relation (4.18) shows that the gradient model according to (4.13) is truly nonlocal in 
the sense that variations of the local equivalent strain in a pointy always affect the nonlocal 
equivalent strain£ in x. This is not true for the explicit approximation (4 .11), since variations 
of £(y) at some distance from x may have no effect on £(x) and V2£(x), and thus on £(x). 
For a sufficiently smooth £-field, (4 .18) can be written in the differential format (4.9). The 
coefficients of the higher-order derivatives, which then depend on Green 's function, will not 
generally vanish. Thus, although terms with higher-order derivatives of£ were neglected in 
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constructing ( 4.13), they are still implicitly present in the derivative of£ in ( 4.13). This is in 
contrast to the explicit gradient approximation (4.11), in which the higher-order terms have 
been entirely neglected. It will be shown in the remainder that these subtle differences be
tween the two gradient approximations have an important effect on the localisation behaviour 
of the resulting gradient damage models. 

It is noted that gradient models need not necessarily be considered as approximations of 
the corresponding nonlocal theory. Some authors have directly included gradient terms on 
a thermodynamical or phenomenological basis. Assuming that the power of internal forces 
depends on the gradient of the damage variable, Fremond and Ned jar (1995) have arrived at a 
second-order partial differential equation of the same type as the implicit relation (4.13), but 
in terms of the damage variable. A similar formulation has been derived by Pijaudier-Cabot 
and Burlion (1996) from a void growth model. Phenomenological considerations have led to 
the gradient damage formulations of Comi and Driemeier (1997); Comi (1998) and de Borst 
et al. ( 1996). 

4.3 Boundary conditions 

The need for additional boundary conditions in the gradient damage formulations has already 
been touched upon briefly in the previous section. The treatment of boundaries may have 
an important effect on the behaviour of the models, particularly in terms of crack growth. 
The subject is therefore discussed here in detail for the two gradient formulations and for the 
nonlocal model. 
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The situation is perhaps the clearest in '.he implicit gradient model , based on equation 
(4.13). This approach defines an additional , second-order partial differential equation in terms 
of the nonlocal strain£. A unique solution requires that the value of£, its normal derivative, 
or a linear combination of these quantities is specified on the boundary r. Fixing £ itself 
seems to be difficult to motivate on physical grounds. The natural boundary condition 

a£ a£ 
- =n;- =0, 
an ax; 

(4.20) 

with n the unit normal to r , is therefore adopted here. With this boundary condition £ equals 
e for homogeneous deformations and the gradient approximation is thus consistent with the 
nonlocal relation (4.4) in this respect. 

In the presence of cracks, equation (4.13) is defined only on the domain Q where the 
damage variable has not yet become critical. This is not only natural, since the equilibrium 
problem is defined only on Q, but also necessary because the right-hand-side e is not uniquely 
defined in the cracked region as a result of the indefiniteness of the displacement field (see 
Chapter 2). The boundary condition ( 4.20) associated to ( 4.13) must therefore be defined on 
the boundary f of Q, i.e., not only at the boundary of the problem domain, but also at the 
internal boundary which represents the crack. 

The explicit gradient approach according to ( 4.11) does not introduce an additional differ
ential equation, but renders the stresses dependent on second-order derivatives of the equiv
alent strain. Since these second-order derivatives of e are related to third-order derivatives 
of the displacements and since equilibrium involves one more differentiation, fourth-order 
displacement derivatives enter the equilibrium equations. However, these fourth-order terms 
become active only in the process zone, i.e., in the region where damage grows. In there
maining part of the body the equilibrium equations are still of order two, except, obviously, 
in the completely damaged region Qc , where the equilibrium equations are meaningless. A 
similar situation thus arises as in the gradient plasticity model of de Borst and Mi.ihlhaus 
(1992). Additional conditions must be provided at the internal boundary between the pro
cess zone and the remaining material, or, where the process zone touches the boundary f 
of the equilibrium problem, at this external boundary. At the internal boundary these con
ditions are provided by continuity requirements (cf. de Borst and Mi.ihlhaus, 1992). At the 
external boundary, however, they must be explicitly defined in terms of higher-order normal 
derivatives of the displacements. 

The treatment of boundaries in the nonlocal model seems to be the most natural. The 
normalisation of € by Ill ensures that € does not become unrealistically small when part of 
the support of the weight function lies outside the problem domain. This normalisation can 
therefore be considered as the nonlocal counterpart of the additional boundary conditions in 
the gradient models. It has already been stipulated in Section 4.1 that the cracked region Qc 

must not be included in the integral which defines £. Accordingly, the normalisation by Ill 
must also be applied at the internal boundary which represents the crack and it must be re
evaluated as the crack grows. The necessity of this identical treatment of internal and external 
boundaries does not seem to have been recognised in the literature. If the - nonphysical -
strains in the crack are included in the integration, however, the nonlocal equivalent strains at 
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Figure 4.3: Nonlocality at a sharp notch. 

both faces of the crack increase as the crack opening increases. As a consequence, the damage 
variable continues to grow at the crack faces and the width of the crack thus continues to 
increase along the entire crack surface, until it finally occupies the entire domain. The implicit 
gradient formulation exhibits the same behaviour if the crack is not correctly separated from 
the remaining material by defining the boundary condition (4.20) at the internal boundary 
(Geers, 1997). 

For strongly concave geometries the spatial interactions modelled by the standard nonlo
cal approach become questionable. Consider for instance the sharp notch of Figure 4.3. In the 
standard non local model the influence of the strain in a pointy across the notch has the same 
effect on the nonlocal strain in x as that in a point y' at the same distance, but on the same 
side of the notch. This example may seem academic, since the domain of influence around x, 
which is related to the intrinsic length scale l, will often be small compared with the thickness 
of the notch. However, the same situation arises at cracks, which have a thickness which is of 
the same order as l or even smaller. The problem can be avoided by reformulating the weight 
function in (4.4) in terms of the smallest distance within the domain Q (i .e., the dashed line in 
Figure 4.3) . This is done in a natural way in the gradient models, in which direct interactions 
between the faces of the notch are impossible. 

4.4 Crack initiation 

It has been shown in Chapter 3 that the classical, local damage model predicts the immediate 
initiation of a crack when the displacement field becomes discontinuous. This is particularly 
undesirable in quasi-brittle damage modelling, where discontinuities may arise right after 
reaching the elastic limit and stable damage growth thus becomes impossible. A necessary 
condition for the existence of displacement discontinuities is the loss of ellipticity of the 
rate equilibrium equations. The introduction of nonlocality - either in an integral or in a 
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differential format - can prevent the loss of ellipticity. This can be easily shown for the 
implicit gradient formulation. For the three regularised models the stress rate can be written 
as 

. avk - .:. 
aij = (1- D)C;Jkl-- g(D, c)C;jkt£kt£. 

axt 

Substitution of this relation into the rate equilibrium equations yields 

(4.21) 

( 
_ ackt ag aD ag a£) . 

- Cijkl g(D, £) - + Ckl-- + Ck/-:::- £ = 0 (4.22) 
ax; aD ax; ac ax; 

for j = 1, 2, 3. After differentiation with respect to time, relation ( 4.13) for the implicit 
gradient formulation can be rewritten as 

(4.23) 

Together, equations (4.22) and (4.23) form a system of four second-order partial differ
ential equations in terms of the variables v* = [vt. V2, V), e]T. The classification of this 
system depends on the principal part of the differential equations, i.e., on the second-order 
terms. If the coefficients of these second-order derivatives a2vkfax;ax1 are defined as c;.k, 
(i, l = 1, 2, 3 and j, k = 1, 2, 3, 4), with 

1 

CfJkl = (1- D)CiJkl for j, k = 1, 2, 3, 

C"iJkt = o 
CfJkl =coil 

for j = 1, 2, 3, k = 4 and j = 4, k = 1, 2, 3, 

for j, k = 4, 

(4.24) 

the characteristic determinant associated to the system is given by det ( n; CiJk1n1). Using 

(4.24) this determinant can be elaborated as 

det(n;C"iJk1nt) = cdet(n;(1- D)Cijktnt). (4.25) 

Comparison with (3.28) shows that 

det(n;C"iJk1nt) = c(1- D)311-2 () .. + 211-). (4.26) 

This expression is positive for all D < 1 and the partial differential system is therefore elliptic 
throughout the initiation phase. 

As a result of the fact that the rate equilibrium equations remain elliptic, the deformation 
and damage cannot concentrate in a surface. Instead, finite deformation bands are formed, 
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with a width which depends on the internal length scale provided by the non local or gradient 
terms. This is best demonstrated for the one-dimensional problem of Section 3.1. In the one
dimensional case with a homogeneous reference state £o, Do, the rate equilibrium equations 
(4.22) reduce to 

a2 v a£ 
(1 - Do)E ax2 - g(Do, co)Eco ax = 0, (4.27) 

where use has been made of the fact that the nonlocal strain £o equals £o for homogeneous 
deformations. 

For the explicit gradient model the nonlocal strain rate £ can be written in terms of the 
velocity by differen.tiation of the one-dimensional equivalent of (4.11) with respect to time 
and substitution of£= f: = av;ax: 

.:. av a3v 
£=-+c-. 

ax ax3 
(4.28) 

Using this relation, (4.27) can be rewritten as the fourth-order differential equation 

- a2v a4 v 
E(Do, co) ax2 - cg(Do, co)Eco ax4 = 0, (4.29) 

where E denotes the tangential stiffness of the local model as defined by (3.4). In contrast 
to the corresponding equation (3.7) for ~he conventional, local model, the left-hand-side in 
equation (4.29) does not vanish when E becomes zero. The remaining, fourth-order term 
does not allow for strong or weak discontinuities in the velocity field. Although bifurcation 
into an inhomogeneous solution is still possible, the deformation and damage growth can no 
longer localise in a surface and the strain and damage growth rate thus remain finite. 

Inhomogeneous terms in the velocity field satisfying (4.29) must be harmonic, i.e., of the 
form 

v(x) = veikx' (4.30) 

with v the complex amplitude and k the wave number. Substitution of this expression into 
(4.29) gives 

(4.31) 

For a positive tangent E this equation has only the trivial solutions fj = 0 and k = 0. This 
means that the response remains homogeneous in the hardening regime. When E ::; 0, 
however, a nontrivial solution exists, given by 

k= 1( 1-Do) 
~ 1 

- £og(Do, £o) · 
(4.32) 

Thus, the inhomogeneous velocity field has a wave length A. = 2rr I k with k according to 
(4.32). This wave length depends on the reference state £o, Do and it is a linear function of 
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the length scale ,JC of the gradient enhancement. Discontinuous solutions, for which A = 0, 
cannot exist for positive c. 

In the implicit gradient formulation the nonlocal strain is defined by (4.13). Differentia
tion of this relation with respect to time gives for the one-dimensional case (cf. (4.23)) 

a2 t: av :. 
c- +- - e = 0. (4.33) ax2 ax 

Substitution of (4.30) and 

into relations (4.27) and (4.33) gives the set of equations 

e(l- Do) v + ikcog(Do, eo)£ = 0, 

-ik f) 

(4.34) 

(4.35) 

(4.36) 

For a nontrivial solution the coefficient determinant of these equations must be zero, i.e., 

which gives the nontrivial wave number 

k = ~ (eog(Do, eo) _ 1)· 
c 1- Do 

(4.37) 

(4.38) 

Again, the inhomogeneous velocity field has a finite wave length and discontinuous solutions 
are impossible. 

For the nonlocal model a similar analysis can be carried out if it is assumed that the bar 
has an infinite length (cf. the dynamic analysis of Pijaudier-Cabot and Benallal (1993) and 
Huerta and Pijaudier-Cabot (1994)). If it is furthermore assumed that the weight function 
1/1 has been normalised such that the scaling factor \II = 1, the nonlocal strain rate can be 
written as (cf. (4.4)) 

00 . f av s(x) = 1/l(iy- xi)- dy , ax (4.39) 

- 00 

or, using y' = y - x, 

00 

:. J (I 'I) av ' e (x) = 1/1 y -dy , ax (4.40) 

-oo 

where the velocity derivative must be evaluated at y = x + y' . Substitution of relations ( 4.40) 
and (4.30) into (4.27) results in 

k2 E(1- Do- eog(D0 , eo)W(k))veikx = o, (4.41) 
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with W (k) the Fourier transform of the weight function 1/1. Nontrivial solutions must satisfy 

, 1- Do 
\ll(k) = . 

eog(Do, eo) 
(4.42) 

For the one-dimensional case the Gaussian weight function (4.6) is defined as 

1 [ p2 J 1/J(p) = -- exp -- . 
v'2iil 212 

(4.43) 

It can be verified that the scaling factor \II is indeed equal to one for this definition. The 
Fourier transform of (4.43) reads 

(4.44) 

so that for the Gaussian weight function equation (4.42) can be rewritten as 

k =- 2ln . 1 ( 1-Do) 
l eog(Do, eo) 

(4.45) 

The wave lengths A associated to the wave numbers given by (4.32), (4.38) and (4.45) 
have been plotted versus the reference strain eo in Figure 4.4. The linear softening law (2.11) 
has been used in this figure, with parameters Ko = 0.0001 and Kc = 0.0125. The gradient pa
rameter has been set to c = 1 mm2 . For the non local model, the corresponding internal length 
l = ffc = ../2 mm has been used. The diagram shows a qualitative agreement between the 
three localisation limiters. The wave length of the inhomogeneous solution decreases as eo 
increases for all three models. Quantitatively, the differences between the three curves be
come more apparent for higher strain levels . This is due to the fact that the higher-order 
terms which have been neglected in the gradient approximations become more important as 
the wave length of the velocity field decreases. 

In the nonlocal and implicit gradient models A approaches zero as eo goes to Kc . These 
models thus show a gradual transition from a damaged zone into a line crack. In the explicit 
gradient formulation the wave length remains finite . A dynamic analysis of the three models 
has shown that the behaviour of the explicit gradient formulation in terms of wave propaga
tion is also fundamentally different from that of the other two models and even doubtful from 
a physical viewpoint (Peerlings et al. , 1996b, 1998c). The rigorous neglect of higher-order 
terms in the explicit formulation apparently renders the approximation too crude to follow 
the behaviour of the nonlocal model. It has been shown in Section 4.2 that higher-order terms 
are still present in the implicit gradient formulation. Accordingly, the response of this for
mulation shows a better agreement with the nonlocal model. The fact that A is smaller for 
the implicit gradient model is consistent with the observation in Section 4.2 that the average 
interaction distance is smaller in the implicit model than in the nonlocal model. 

Although the analysis of harmonic solutions of the rate problem (4.27) provides much 
insight in the localisation behaviour of the three regularised damage models and the relation 
between the regularisation methods, it is unrealistic in a number of respects. The assumption 
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Figure 4.4: Wave length of inhomogeneous response in the gradient and nonlocal 
models. 

of a perfectly homogeneous configuration is seldom justified in practice. Even if the initial 
problem is homogeneous, the strain and damage will not generally be homogeneous in the 
softening stage. But the most important limitation is probably that the analysis is valid only 
for the linear comparison solid. By considering the rate equilibrium equation (4.27) it has 
been tacitly assumed that relation (4.3) holds everywhere in the bar. This means that the 
damage variable decreases in regions where £ < 0, whereas it would remain constant in the 
real, nonlinear solid. 

Analytical solutions of the nonlinear equilibrium problem are difficult to obtain, even in 
the one-dimensional case. A semi-analytical solution has been derived by Peerlings et al. 
(1996a) for the damage equivalent of perfect plasticity, i.e., a damage growth law which 
results in a constant stress level. For the linear softening law the one-dimensional nonlinear 
bar problem (3.1) has been solved numerically using the nonlocal model and the implicit 
gradient model (Peerlings et al., 1996a,b). The same parameter set has been used as in the 
linear analysis. Furthermore, a value of E = 20 GPa has been used for Young's modulus. 
The length of the bar has been set to L = 100 mm and the cross-section has been reduced by 
10% in the centre of the bar in order to trigger a localised response. 

Figure 4.5 shows the development of the strain and the damage along the bar for the two 
enhanced models. For relatively small deformations, the strain distributions of the nonlocal 
and the gradient-dependent model match almost perfectly. At a certain stage the deformation 
and damage growth start to localise in an ever smaller region. For the gradient model this 
localisation is slightly stronger than for the nonlocal model. This trend is consistent with 
the linear analysis, which predicts a decreasing wave length for increasing deformation and a 
smaller wave length for the (implicit) gradient formulation than for the non local model. 
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Figure 4.5: Comparison of the development of (a) strain and (b) damage in the non lo
cal and implicit gradient formulations. 
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Figure 4.6: Comparison of the stress-displacement responses of the nonlocal and im
plicit gradient formulations. 

The stress in the bar has been plotted versus the displacement of its right end, U, in Fig
ure 4.6 for the two models. Although the linear softening law has been used, the softening 
branches of these load-displacement curves are nonlinear as a result of the progressive locali
sation of deformation. The strongly localised deformations at the end of the process result in 
snap-back behaviour. The responses of the two models agree quite well in a qualitative sense. 
The predicted tensile strengths are practically equal, but the gradient-enhanced formulation 
exhibits a somewhat more brittle post-peak behaviour than the nonlocal model as a result of 
the slightly more localised damage growth (Figure 4.5). 

The influence of the internal length scale on the final damage distribution and the load
displacement response is shown for the implicit gradient formulation in Figure 4.7. Apart 
from the reference value of Jc = 1 mm, results are shown for Jc = 0.5 and 2 mm. Fig
ure 4.7(a) clearly shows that a larger value of the internal length scale results in a more 
widespread development of damage. As a consequence, the load-displacement response be
comes less brittle (Figure 4.7(b)). 

4.5 Crack growth 

It has been shown in the previous section that the introduction of nonlocality in the elastic
ity based damage model precludes the development of displacement discontinuities and the 
associated strain singularities for noncritical damage values, i.e., for D < 1. As a result, 
the premature initiation of cracks which is observed in the local damage model is no longer 
possible. However, when the damage variable is critical somewhere in the component, and 
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Figure 4.7: (a) Damage and (b) stress response of the implicit gradient formulation 
for Jc = 0.5, 1 and 2 mm. 
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a crack has thus been initiated, a strain singularity may be unavoidable at the crack tip. It is 
important that the damage growth rate still remains finite, because the crack growth would 
otherwise be instantaneous (see Section 3.1). Since the damage growth rate depends on the 
nonlocal equivalent strain e in the non local and gradient formulations, this implies that e must 
remain finite at the crack tip in order to have a finite crack growth rate. 

Analytical expressions for the nonlocal strain can be obtained for a linear elastic crack 
in an infinite medium. One should realise that this situation is not representative for crack 
growth in a damaging material, since the development of damage in front of the crack may 
have an important effect on the strain singularity at the crack tip. Indeed, for a mode-III prob
lem Liu and Murakami (1998) have shown that the degree of singularity of the asymptotic 
strain field is larger for an assumed damage field than in the elastic case. For the cylindrical 
damage distribution considered by these authors the strain singularity varies from the elastic 
r- 112 singularity for no damage to a r - 1 singularity for widespread damage. The present 
analysis, which assumes the r- 112 singularity predicted by linear fracture mechanics, can 
therefore only give an indication of the real crack growth behaviour. It is also relevant for 
situations where a singularity is a priori present as a consequence of the problem geometry, 
e.g., at sharp notches. The conventional, local damage theory then predicts immediate, com
plete fracture for each positive loading level. In order to avoid this nonphysical behaviour, & 
must also remain finite for such geometrical singularities. 

A two-dimensional, plane-stress configuration is considered here, see Figure 4.8. Carte
sian coordinates XJ, x2 and polar coordinates r, l'J will be used as convenient; the origin of 
both coordinate systems coincides with the crack tip. The crack is assumed to be loaded in 
mode-l. The nontrivial asymptotic strains at the crack tip can be derived from the displace
ment field given by linear elastic fracture mechanics (e.g., Kanninen and Popelar, 1985) as 

cJJ = ~cos!l'J (1- v- (1 + v)sin!l'Jsin~l'J), 
E 2rrr 

t:22= ~cos!l'J(1-v+(1+v)sin!l'Jsin~l'J), 
E 2rrr 

KI I . I 3 
cJ2 = E.J27r;:(1 + v) COS 2l'J Stn 2l'J cos 2JJ, 

1~ =======------------" X[ 

Figure 4.8: Linear elastic crack problem. 

(4.46) 
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with K1 the stress intensity factor. The von Mises equivalent strain (2.28) is used here. Sub
stitution of relations (4.46) in (2.28) and some algebra then give the equivalent strain as 

K1 r-----------------
t: = ;;c::-.)(1- cos 1J)(5- 3 cos lJ). 

2Ev LJrr 
(4.47) 

For the nonlocal damage model, the nonlocal strain equivalent strain at the crack tip, &(0), 
is given by 

&(0) = J l/f(r)&(r, lJ)dQ, 

n 
(4.48) 

where n is defined as {x E IR21r > 0, -rr < lJ < rr} and it has been assumed that Ill = 1. 
Substitution of the normalised Gaussian weight function in IR2, 

1 [ p2 J 1/l(p) = 2rr[2 exp - 2[2 , (4.49) 

and the equivalent strain according to (4.47) into this relation results in 

oo rr 

&(0) = 4rrK~12 J Jr exp [- ;
1

2

2 J dr J J (1 -cos 1J)(5- 3 cos l'J) dlJ. (4.50) 

0 -rr 

The first integral in this expression can be rewritten as 

(4.51) 

where f(a) denotes the gamma function 

00 

f(a) = je-tta-ldt. (4.52) 

0 

The second integral in (4.50) yields after some manipulation 

rr 

j J(l- cos 1J)(5- 3 cos l'J) dlJ = 8 + ~ arctanh (!J3). (4.53) 

-rr 

Substitution of these two results into (4.50) finally results in 

(4.54) 
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This expression is indeed finite for l > 0, so that the damage growth rate at the crack tip 
remains finite in the nonlocal model. 

For the implicit gradient formulation, the partial differential equation (4.13) must be 
solved to obtain e. Because of the symmetry of the problem with respect to the x1-axis, 
the equation need only be solved for the half-plane Q+: x2 > 0. A Neumann boundary con
dition a.c:;ax2 = 0 must then be applied at x2 = 0. For x1 ::; 0 this condition represents the 
free boundary of the crack surface and for XJ > 0 it follows from the symmetry of the prob
lem. The boundary value problem is solved using Green's function. The free-space Green's 
function for the Helmholtz equation (4.13) in JR2 reads (Zauderer, 1989): 

G(x; y) = 2~c Ko(~), (4.55) 

with p = lx - yl and Ko(z) the modified zero-order Bessel function of the second kind. It 
can easily be verified that Green's function for the half-space problem with the homogeneous 
Neumann boundary condition is then given by 

G(x; y) = G(x; y) + G(x; y'), (4.56) 

with x, y E n+ andy' = [y1, -y2]T the mirror point of yin the line x2 = 0. The solution of 
the half-space problem can now be written as 

e(x) =I e(y)G(x; y) dQ, 

n+ 

or, using (4.56) and the symmetry e(y') = e(y) of the equivalent strain, as 

e(x) =I .C:(y)G(x; y) dQ. 

n 

In the limit x; ~ 0 the nonlocal strain approaches 

s(O) =I e(y)G(O; y) dst, 

n 

which, using (4.47) and (4.55), can be written as 

oo rr 

£(0)= KI 1./i-Ko( ~) driJ(l-cosf})(5-3cosf})df}. 
4-/2rr 312Ec vc 

0 -rr 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

The second integral in the right-hand-side is identical with that in (4.50) and is thus given by 
(4.53). The first integral can be written as (Gradshteyn and Ryzhik, 1994) 

(4.61) 
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Combination of these results yields 

_ K1r
2
(i) ( 1 (' r;:;)) s(O)=rr 312 E.;(C 1+

2
.J3arctanh 2v3 , (4.62) 

which is again finite. This result can be compared with expression (4.54) for the nonlocal 
model by setting c = ~!2 . The two expressions then differ exactly by a factor rG) ~ 1.23, 
i.e., the non local equivalent strain is approximately 23% higher in the implicit gradient model 
than in the nonlocal model. 

The nonlocal equivalent strain (4.11) according to the explicit gradient model follows by 
differentiation of (4.47). It can be seen directly that the r- 1/ 2 singularity of .C: then results 
in a r-5/ 2 singularity of e, which means that the £-field has a stronger singularity than the 
local strain field. Indeed, e may become singular at the crack tip even if the local strain is 
nonsingular. This result seems to indicate that the explicit gradient model cannot realistically 
describe crack growth. 

The above analysis of a crack problem is relevant for quasi-brittle as well as for fatigue 
fracture, since the local models of both phenomena predict perfectly brittle fracture. An 
interesting difference exists, however, in the shape of the crack that results in the enhanced 
quasi-brittle and fatigue models. In the quasi-brittle model the crack is still a line, or, in 
the three-dimensional case, a surface. This follows from the fact that the nonlocal equivalent 
strain will always have its maximum at the crack tip. When the point with the highest damage 
value in front of the crack tip becomes critical, and the crack tip thus propagates, the non local 
strain decreases in points adjacent to the previous crack tip, which are now at the crack face. 
Since the damage variable can only increase when e = K and since K has been set by the 
value of e at the crack tip, the damage ceases to grow in these points, so that the width of the 
propagated crack remains zero. 

The situation in the fatigue model is different as a consequence of the loading surface 
being fixed (K = Ko) . Even if the nonlocal strain amplitude decreases at the faces of the 
propagating crack, it may still be well above the damage threshold K . In each subsequent 
loading cycle the damage therefore still grows by a certain amount, so that points adjacent to 
the crack can also become critical and the width of the crack locally increases. This process 
continues until the non local strain amplitude has become smaller than the threshold value K. 

The width of the crack thus depends on- among other parameters- the threshold value K 

and the internal length scale of the material. Since this length scale, which follows either 
from the weight function (in the integral model) or the gradient parameter (in the gradient 
formulations), will generally be small, the width of the fatigue crack will also be small. 

The zero crack thickness predicted by the quasi-brittle model corresponds to the classical 
notion of a line crack. However, the finite crack width of the fatigue model seems equally 
defendable if the microstructural origin of the nonlocality is taken into account. The crack 
can then be considered as a band of 'cracked' microstructural elements (grains). Indeed, 
this notion is consistent with the fact that the width of the crack depends on the internal 
length scale, which represents the microstructure of the material. Although these different 
perceptions may give rise to some theoretical debate, the practical consequences are probably 
limited since the positive crack width in fatigue problems will usually be small compared to 
the size of the component. 
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4.6 Discussion 

The two types of gradient enhancement have been shown to result in quite different responses 
in crack initiation and particularly in crack growth. The implicit method shows a good quali
tative agreement with the non local model. Quantitatively, the differences between the implicit 
and nonlocal approaches are limited, given the large degree of uncertainty in most practical 
problems. The behaviour of the explicit model, on the other hand, is entirely different and 
may even be nonphysical in some aspects. This difference between the two gradient formu
lations is quite remarkable since both methods introduce the same degree of approximation 
with respect to the nonlocal model. However, two fundamental differences exist between the 
two approaches, which must be held responsible for their different behaviour. 

Firstly, gradient terms of orders higher than two have been rigorously neglected in the 
explicit model, whereas these terms have been partially preserved in the implicit formulation. 
As a result, spatial interactions span the entire domain in the implicit model, similarly to 
the nonlocal model. The explicit formulation is local in a mathematical sense, because the 
non local strain in a point depends only on the local strain and its gradients in that same point. 
Spatial interactions are therefore limited to the immediate neighbourhood in this model. 

Secondly, the explicit gradient formulation imposes stronger continuity requirements on 
the displacements than the implicit and nonlocal approaches, since it introduces fourth-order 
displacement derivatives in the equilibrium equations. These requirements may be difficult 
to meet in the strongly localised or singular deformation fields considered here and may 
therefore have an important effect on the predicted response. 

The results obtained in the previous two sections give reason to doubt the applicability of 
the explicit gradient model to fracture problems. The two remaining approaches, i.e., the non
local and implicit gradient formulations, are largely equivalent. The quantitative differences 
can be accounted for by using different parameters for the two models. In the rare situation 
where well defined spatial interactions exist in a material, the nonlocal approach may be pre
ferred, because it models the nonlocality in a more transparent way. On the other hand, the 
treatment of- external and internal- boundaries seems to be better defined in the gradient ap
proach. In most practical cases, neither of these arguments is decisive and the choice between 
the two regularisation methods is therefore largely a matter of convenience. An advantage 
of the gradient approach in this respect is that the set of partial differential equations which 
describes the damage problem can be cast in the form of a standard nonlinear equilibrium 
problem with four instead of three dependent variables, cf. equations (4.22) and (4.23). As 
a result, the implementation of the method in standard nonlinear finite element codes may 
be less complicated than for the nonlocal model, which does not fit into a standard, local 
finite element framework. This is the reason why the following chapters will concentrate on 
the gradient formulation. Reference is made to Saanouni et al. (1989); Pijaudier-Cabot and 
Huerta (1991); Huerta and Pijaudier-Cabot (1994) for details of the numerical implementa
tion and numerical results of nonlocal damage models. 

Chapter 5 

Finite element implementation 

Analytical solutions of the equations which govern damage and fracture problems are diffi
cult to obtain even for simple geometries and loading conditions. Practical problems, with 
complex geometries and nonuniform loading, invariably require a numerical approach. The 
success of numerical analyses using nonlocal or gradient damage models in realistically de
scribing damage processes depends critically on the numerical methods which are used. If 
the numerical implementation is not consistent with the continuum model, the enhanced lo
calisation properties of the nonlocal and gradient formulations may be completely lost and 
the predicted behaviour may even become physically unrealistic. This has been found to be 
true particularly in crack growth problems, where the numerical treatment of the completely 
damaged zone (crack) may have an important effect on the predicted crack growth if the 
discretisation is not consistent with the underlying initial-boundary value problem. For this 
reason the numerical implementation of the implicit gradient damage formulation is discussed 
here in detail. 

The partial differential equations of the equilibrium problem are first discretised in space 
by a finite element interpolation. The time discretisation of the problem follows by dividing 
the loading history in a finite number of time increments and integrating the growth of damage 
within these increments. The resulting set of nonlinear algebraic equations is solved in each 
increment by an iterative process. These three steps are discussed in Sections 5.1, 5.2 and 
5.3, respectively. It is assumed in these sections that the damage is noncritical everywhere in 
the body, i.e., that no crack has been initiated yet. The extension to crack growth is discussed 
in Section 5.4. 

5.1 Spatial discretisation 

The equilibrium problem for the implicit gradient damage formulation consists of the stan
dard equilibrium equations (2.5) combined with the partial differential equation ( 4.13) for the 
nonlocal equivalent strain . These equations must be supplemented by the standard kinematic 
and dynamic boundary conditions and the additional boundary condition (4.20). Both partial 
differential equations are first cast in a weighted residuals weak form, which is subsequently 
discretised using a Galerkin approach. 
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The weak form of the equilibrium equations follows in a standard fashion by multiplica
tion by test functions ~j, integration on the domain r.! and use of the divergence theorem: 

(5.1) 

where j = 1, 2, 3 and Tj = n;aij denote the boundary tractions at r. Equations (5.1) must 
be satisfied for all admissible test functions ~j . For equation (4.13) multiplication by the test 
function f, integration and application of the divergence theorem result in the weak form 

!( af a£ - ) ~- a£ c--+~(£-£) dr.!= ~n;-dr, ax; ax; ax; 
n r 

and consequently, using the boundary condition (4.20), 

!( af a£ - _ ) 
c-- + ~(£- t:) dr.! = 0. ax; ax; 

Q 

(5.2) 

(5.3) 

Standard, C'o-continuous finite element interpolations are now introduced for the displace
ment vector and the nonlocal equivalent strain: 

u=Na, 

£ = Ne, 

(5.4) 

(5.5) 

where the column matrices a and e contain the nodal values of the displacement components 
and the nonlocal equivalent strain. Following a Galerkin approach, the interpolations N and 
N are also used for the respective test functions ~j and f . Differentiation of (5.4) gives the 
strain components, gathered in the column£ = [t:ll, t:22, t:33 , 2t: I2, 2c23, 2t:3I]T, as 

£ =Ba. (5.6) 

Because of the symmetry of the stress tensor the same mapping can be used for the derivatives 
of the test functions ~j· Likewise, the derivatives V;£ = as;ax; (i = 1, 2, 3) are given by 

V£ =Be. (5.7) 

The derivatives of~ again follow from the same interpolation. 
Substitution of the interpolations (5.4)-(5.7) into (5 .1) and taking into account that the 

resulting equations must be satisfied for all admissible test functions results in the discrete 
force balance 

(5.8) 
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where the internal and external nodal forces fai and fae are given by 

(5.9) 

(5.10) 

The stress column CJ in (5.9) is defined as CJ = [all, a22, 0"33, a12, a 23 , a3I]T and the traction 
column "t in (5 .10) as -r = [ r1, r2, r3]T. Similarly, discretisation of equation (5.3) yields 

Keee- fe = 0, 

with the matrix Kee and the vector fe given by 

Kee = J (c iJTB + NTN) dr.!, 

Q 

fe = J NT£ dr.! . 

Q 

(5.11) 

(5.12) 

(5.13) 

The interpolations functions in N and N can be defined independently and need not be of 
the same order. Indeed, it has been found that using interpolation polynomials of the same or
der may result in stress oscillations. The origin of these oscillations is illustrated in Figure 5.1 
for a one-dimensional problem with piecewise linear interpolations of u and£. The linearity 
of the displacements within each element results in the local strain t: being piecewise constant 
(Figure 5.1(a)). Since the damage variable depends on the nonlocal equivalent strain, which is 
piecewise linear, Dis continuous and nearly linear within the elements for sufficiently small 
elements (Figure 5.1(b)). The combination of the constant local strain and varying damage 
in the stress-strain relation (3.1) leads to a stress distribution as shown in Figure 5.1(c). The 
stress gradient within the elements is set by the damage gradient and the strain; the oscilla
tions are therefore observed particularly in regions with high gradients of the damage variable 
and high strains. Refining the discretisation does not lead to a decrease of the stress gradients. 
Indeed, it may even result in an increase because high damage and displacement gradients 
can be described more accurately with a finer mesh. Similar incompatibilities of higher-order 
polynomials have been observed to cause similar, but less pronounced stress oscillations. 

Although the stress field of Figure 5.l(c) is a perfectly valid solution of the weak equi
librium problem, the stress oscillations may lead to serious misinterpretations and should 
therefore be avoided. An obvious way to do so is by using quadratic instead of linear poly
nomials for the displacements, so that the strain field is no longer constant and agrees with 
the linear nonlocal equivalent strain. Particularly when combined with a reduced Gauss in
tegration for the equilibrium equations and a full Gauss integration for equation (5.11), this 
discretisation has been found to be effective and efficient. A second possibility is to retain 



56 Chapter 5 

l 
X 

(a) 

X 

(b) 

X 

(c) 

Figure 5.1: Stress oscillations caused by a linear-linear finite element interpolation. 
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the linear interpolations of the displacements and nonlocal equivalent strain, but to define the 
damage variable as uniform in each element. The strain and damage are then both piecewise 
constant, so that the stress is also piecewise constant. This approach is preferred in crack 
growth problems, see Section 5.4. 

5.2 Temporal discretisation 

The time discretisation of the equilibrium problem follows by dividing the loading history 
into a finite number of time intervals and requiring the discrete balances (5.8) and (5.11) 
to be satisfied only at the end of each interval. Assuming the complete deformation and 
damage state to be known at time t, the problem then reduces to finding the displacements 
and nonlocal strains which satisfy (5.8) and (5.11) at the end of a time increment 11t, i.e., 

(5.14) 

(5.15) 

Both left-hand-side terms in (5.15) can be written directly in terms of the unknowns at+t.l 

and er+t.1. The internal nodal force vector r~+t.l in (5.14) depends on the stresses, which are 
given by 

(5.16) 

with C containing the elastic constants. The strains €1+6.1 can also be directly related to at+t.l, 

but the damage variable vr+t.1 cannot generally be written in terms of at+t.r and e1+t.t since 
it depends on the growth of damage during the interval (t, t + !1t) . To obtain vr+t.l the 
damage growth rate must be integrated from t tot+ !1t . In the quasi-brittle damage model, 
this integration can be carried out analytically (see Section 2.3) , resulting in a direct relation 
between the damage variable D 1+t.l and the value of the threshold variable K at t + !1t, which 
in tum depends on e1+6.l for an incrementally uniform process. 

In the fatigue model the damage rate cannot be integrated analytically and an approxima
tion must therefore be used. The damage variable at t + !1t can formally be written as 

1+6.1 

D(t + 11t) = D(t) + I D(r) dr. (5.17) 

The integral in the right-hand-side of this expression is now approximated by the one-step 
linear integration rule 

1+6-t I D(r) dr ~ {cl- {})D1 + {} D1+t.1) 11t, (5 .18) 

with the parameter {} satisfying 0 .::: {} .::: 1. For {} = 0 this rule reduces to the explicit 
Euler rule. The damage rate in the interval (t , t + 11t) is then approximated by its value at t. 
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Similarly, D is approximated by J)l+lll in the implicit Euler scheme, which is obtained by 
setting {} = 1. Both these integration rules are of order 1, i.e., the truncation error is ap
proximately proportional to !::..t 2 . For{} = 0.5 , (5.18) equals the trapezoidal rule, which is 
of order 2 (order t::..t 3 truncation error) . If it is assumed that the damage variable increases 
during the entire interval (t , t + !::..t), which means for the fatigue model that / 1 ?: 0 and 
!::..J = J 1+lll - J 1 ::: O, the damage rateD is given by the evolution law (4.3). Using (5.18) 
and assuming that£ is constant within the increment then results in the discrete approximation 
of (5.17) 

(5 .19) 

If {} i= 0, (5 .19) is a nonlinear algebraic equation for D 1+ll1
• This equation must be solved 

iteratively, for instance by a Newton-Raphson scheme. 
As an alternative to solving the nonlinear equation (5.19), the damage variable at t + !::..t 

can first be estimated with the explicit Euler rule({} = 0). This estimate is then substituted 
in the right-hand-side of (5.19): 

DP = Dt + g(DI, £1)!::..£, 

vt+llt =Dr+ {(1- {})g(DI , £1) + {}g(DP, et+lll)) !::..£. 

(5 .20) 

(5.21) 

This is a so-called predictor-corrector scheme; (5 .20) is called the predictor step and (5.21) the 
corrector step. For{} = 0.5 equations (5.20), (5 .21) are known as the improved Euler scheme 
or Heun 's method. It can be shown that the accuracy of this scheme is of the same order 
as the implicit trapezoidal rule, i.e., the truncation error is of the order !::..t 3 (see for instance 
Kreyszig, 1993). For other values of{}, the integration is also of the same order as that of the 
implicit rule (5 .19). The price that is paid to avoid solving a nonlinear equation consists of 
more stringent stability requirements. The predictor-corrector scheme is only conditionally 
stable, whereas the implicit scheme (5.19) is unconditionally stable for{} ::: 0.5 . However, 
numerical stability is not an issue in the fatigue model because the growth of damage is 
usually strongly progressive. 

Relations (5 .19) and (5 .20), (5 .21) must be modified slightly if the conditions for damage 
growth are not satisfied during the entire interval (t, t + !::..t). If the conditions J 1+t:.t ::: 0 
and !::..f?: 0 are satisfied, but the deformation state at the beginning of the increment does not 
give rise to damage growth (jl < 0), evolution law (4.3) is not valid on the linear elastic part 
of the increment. The value of the non local equivalent strain at t, £1

, must then be replaced by 
Ko and the nonlocal equivalent strain increment !::..£ by £1+!ll - Ko to account for the fact that 
the damage variable starts to grow from the moment that£ = Ko. Furthermore, if the damage 
value at the end of the increment vr+t:.t as computed using (5.19) or (5 .21) is greater than 
one, it must be set to vr+lll = 1 and kept constant in subsequent increments. The damage 
variable must be set to D 1+!lr = D 1 if there is no damage growth because jr+!lt < 0 or 
!::..J::::; 0. 

The discrete approximation (5 .18), on which the implicit and explicit integration schemes 
are based, is accurate when the damage rate varies slowly within the time increment. Under 
cyclic loading conditions this implies that each loading cycle must be interpolated with a 
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number, say 0(10), of increments. The total number of increments needed to simulate the 
entire fa~igue fracture process would then be of the order of ten times the fatigue life. For low
c~cle fatigue analyses, wh.ere the fatigue life is typically between 10 and 1000 cycles, this may 
still be acceptable. But h1~h-cycl~ fatigue simulations, involving fatigue lives of 105 cycles 
and more, would become Impractical. For such analyses there is a need for an approximate 
mtegratwn which allows to span a large number of cycles within each time increment. The 
loss of r~solution which is inevitable in such a procedure is acceptable since it is usually not 
the precise, small growth of damage within each loading cycle which is relevant, but rather 
the more substantial changes in the damage field resulting from larger numbers of cycles. 

Th~ evolution of£ during ~n i~terval (t , t + !::..t) which comprises a number of loading 
~ycl~s IS sho~n schematically m Figure 5.2. It has been assumed in this figure that the load
mg IS proportiOnal and fully reversed. Furthermore, the equivalent strain has been assumed 
to be. equally ~ensitive to tensile and compressive strains. The nonlocal equivalent strain is 
then Ide~tical m th~ tensile and compressive parts of the cycles for constant damage. This 
assumptiOn, which IS satisfied by the von Mises equivalent strain (2.28), and the assumption 
of fully reversed loading are not essential and are only made here for simplicity, see Peerlings 
~1997) for a more general development. The extension to nonproportionalloading is less triv
Ial, bec~use the maximum of the nonlocal equivalent strain then cannot be linked directly to 
the loadmg cycle. Each loadi~g cycle results in two maxima of£ in the diagram of Figure 5.2, 
one ~orresp~ndmg to the tensile part of the cycle and one to the compressive part. Both these 
maxima, which are denoted by BaJ and £a2, follow the envelope ea. 

--

'"' 

KQ 

Figure 5.2: Nonlocal equivalent strain cycles. 

The integration of the damage rate according to (5 .17) still holds for the situation of 
Figure 5.2. However, the difficulty is that the integral in the right-hand-side of (5.17) can 
no longer be directly approximated by (5 .18) because £ and£, and thus also b, fluctuate 
strongly within the increment. Instead of directly using an integration rule, the integral is 
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formally written as a sum of integrals on the cycles within the increment t!.t : 

N+6. N tn+6.tn 

vr+t..r = vr + L J bdr, 
n=N In 

(5 .22) 

where tn and tn + f!.tn correspond to the beginning and end of cycle n, respectively, an~ N 
and N + t!.N correspond to t and t + t!.t . Taking into account that damage growth IS pos~1ble 
only if e :::: Ko and j = E: :::: 0 and using evolution law (4.3), relation (5 .22) can be rewntten 

as 

N+6.N ( f a! f a2 ) 

vN+t..N = DN + 1~ [ g(D, e) de+ [ g(D, e) de , (5.23) 

where it has been assumed that ea :::: Ko. Obviously, cycles in which ea < Ko do not contribute 
to the growth of damage. In contrast toe and b, the amplitudes eat and ea2 as w.ell as the 
damage variable D can be assumed to vary slowly within the increment. Thus, Siffillar to the 
integration rule used for the rate type evolution law, the sum over the cycle numbe~s 1~ (5 .23) 
can be approximated by a weighted average of the integrals evaluated at the begmnmg and 
end of the increment multiplied by the number of cycles in the increment, t!.N: 

DN+t..N = DN + ( (1 _ ~)G(DN, e~) + ~G(DN+t..N, e~+t..N)) t!.N, (5.24) 

with G(D, ea) defined by 

fa 

G(D , ea) = 2 f g(D, E:) de, (5 .25) 

KQ 

while G(D, ea) = 0 if ea < Ko or if D = 1. The integral in (5 .25) must be evaluated for fixed 
D and can often be determined analytically. For instance, for the evolution functiOn (2.21), 

withe replaced bye' (5.25) can be elaborated as 

2C aD (-{3 fJ) G(D, ea) = --e ea - Ko . 
,8+1 

(5.26) 

Interestingly, exactly the same expression for vN+t..N is obtained by ap~lying the linear, one
step integration rule to the non local equivalent of the cycle based evolut~on of damage.' (2.20) 
(Peerlings, 1997). The 'jump-in-cycles' -procedure which has been denved by L~maltre and 
Doghri (1994) on the basis of this approach can be retrieved from (5 .24) by settmg ~ = 0. 
When~ =1= O, relation (5.24) is a nonlinear equation in terms of the damage .variabl~ vN+t..N. 
It can either be solved iteratively, or approximated by replacing vN+t..N m the nght-hand
side by a predictor value. In the latter case the integration scheme reads (cf. (5 .20), (5 .21)): 

DP = DN + G(D N, e~)t!.N, (5.27) 

vN+t..N = DN + ((1- ~)G(DN, e~) + ~G(DP , e~+t..N)) t!.N . (5.28) 
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Since the incremental damage growth is given by (5.24) or (5.27), (5 .28) in terms of the 
nonlocal equivalent strain envelope ea. the equilibrium problem must be solved for this en
velope at t + t!.t. This means that the unknowns at+t..t, e1+t..r and the external nodal forces 
in equations (5 .14), (5.15) must be interpreted as the momentary amplitudes of the displace
ments, nonlocal strains and nodal forces, rather than the actual values of these variables at 
t + t!.t (which would be zero in Figure 5.2). The nonlocal equivalent strain e equals ea in this 
interpretation, so that the index a can be dropped in the sequel. 

The increment size t!.N in (5.24) and (5.27), (5 .28) can be selected arbitrarily, with 
smaller increments resulting in a more accurate integration of the damage growth and thus in 
a more accurate solution. A straightforward approach is to use the same increment size for 
the entire loading history. Yet, considering for instance the damage growth curves for a = 10 
and 100 in Figure 2.7, it is obvious that the size needed to describe the fast growth near the 
end of the fatigue life with sufficient accuracy is much smaller than that needed for the slow 
initial growth of damage. A more sophisticated distribution of increment sizes is therefore 
called for, with relatively large steps in the first stages of damage growth and smaller steps 
near failure. This concept can be formalised by considering the error that is made in comput
ing the damage growth. Two types of errors can be distinguished in the numerical integration 
of damage growth: truncation error and inherited error. Truncation error is the error made 
in each increment as a result of the approximations involved in the time discretisation. For 
instance the error made in (5.18) is of the order t!.t 3 for the trapezoidal rule(~ = 0 .5). In
herited error is the error which is propagated from the previous increments. For a converging 
family of solutions this propagation tends to be damped, but for diverging solution families 
the inherited error increases as the solution progresses. Realistic fatigue damage growth laws 
lead to highly divergent growth curves. For this reason inherited error is believed to be crit
ical in the present situation. The step size will therefore be related to the inherited error, in 
contrast to Paas (1990), who has proposed a step size algorithm based on the truncation error. 

Substitution of G(DN+t..N, eN+t..N) = G(DN, eN)+ O(t!.N) in relation (5 .24) gives the 
damage variable at the end of the increment t!.N as 

(5 .29) 

Now suppose that the computed value of the damage variable at N, denoted as f>N, contains 
a small error 8: f>N = DN + 8. Using this initial value, expression (5.29) gives the damage 
variable at the end of the increment as 

(5.30) 

Linearising this result with respect to 8 gives a first-order approximation of the inherited error 
at N + t!.N due to the error 8 at N: 

jjN+t..N - DN+t..N ~ ( 1 + :~ t!.N) 8. (5 .31) 

This relation indeed shows that the inherited error is smaller than its source 8 if the direction 
field associated with the growth of damage is convergent, i.e., if oGjoD < 0. If oG/oD > 0, 
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on the other hand, the error is amplified. Since th1s amplification is repeated in each following 
increment, the inherited error will increase exponentially. Additionally, a truncation error is 
made in each increment, which is again propagated exponentially, etc. Relation (5.31) is used 
to control the error propagation by choosing the increment size t:.N such that the second term 
in the amplification factor equals a predefined constant ry: 

t:.N= T7 
aG;av (5.32) 

In order to prevent excessively small or large cycle increments, additional lower and upper 
bounds can be imposed upon !1N. 

Figure 5.3 shows the effect of using relation (5.32) to determine the increment size in 
numerical analyses (Peerlings, 1997). The diagram shows the growth of damage in a one
dimensional, uniform bar under constant strain amplitude cycling. Since the nonlocal equiv
alent strain equals the local strain in this situation, the growth of damage is given in closed 
form by (2.22). This analytical solution is shown for comparison in Figure 5.3; it predicts 
failure after 6.6 . 105 cycles. In the numerical analyses the cycle based integration (5.27), 
(5.28) has been used, with{} = 0.5. Two values have been used for the error control parame
ter ry : T7 = 0.5 and 0.1. Each marker in the diagram represents one increment of the numerical 
analyses. The adaptive step size algorithm indeed selects relatively large increments early in 
the fatigue life and reduces the step size as the damage growth becomes steeper. With the 
value T7 = 0.5 a reasonable approximation is already obtained using 16 increments. Notice 
that this analysis would require 0(107) increments with the standard, direct integration of 
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Figure 5.3: Influence of adaptive step size control parameter T7 on the predicted dam
age growth . 
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damage growth. The value T7 = 0.1 results in smaller increments than ., = 0.5 during the 
entire loading and in a more accurate prediction of the growth of damage and the fatigue life. 

5.3 Iterative procedure 

Using the appropriate analytical or numerical integration to determine the damage vr+l'!.r, 

the discrete equations (5.14), (5.15) have been written entirely in terms of the unknowns 
at+l'!.t, et+l'!.t in the previous section . The dependence of ct+l'!.t and rt +l'!.t on these variables is 

ru e 
nonlinear, so that the set of equations cannot be solved directly. Instead, a Newton-Raphson 
procedure is used. This means that a new approximation of the solution is obtained in each 
iteration by linearising the system of equations around the approximate solution obtained 
in the previous iteration and solving the resulting linear system. This sequence is repeated 
until it has converged to a sufficiently accurate solution. The convergence of this process is 
quadratic if the linearisation is consistent. 

Relations (5.14) and (5.15) can be rewritten for iteration i + 1 as 

8fai = fae- f~, 

Keeoe - 8fe = f~ - Keeei, 

(5.33) 

(5.34) 

where the superscript t + !1t has been dropped for brevity and fai and fe have been written as 
the sum of their value in the previous iteration f~, f~ and iterative corrections ofai, 8fe. The 
column fe depends on the local equivalent strain 8; its variation can therefore be linearised 
using 

8£ = sTBoa, 

where 

s--a£/ 
- ae £=ei • 

Similarly, the change of the internal nodal forces , Ofai, is linearised by 

8a = (1- Di)CBoa- oDCBai. 

(5.35) 

(5.36) 

(5.37) 

The second right-hand-side term in this equation vanishes when the conditions for damage 
growth are not satisfied. In the quasi-brittle model this is the case when &i < K 1 or Di = 1. 
If iteration i predicts damage growth, 8 D is linearised in the quasi-brittle model as 

oD = qN oe , (5.38) 

with q defined by 

dD/ q--
- dK K=Ki • 

(5.39) 
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(5.41) 

The corresponding expression for the predictor-corrector scheme (5.20), (5.21) i~ obtain~d 
by setting the denominator equal to one in (5.41) and evaluating the second and t~t~d term m 
the numerator for D = DP instead of D = D'. In the implicit as well as the exphctt scheme 
£r and f1£i must be replaced by Ko and £i - Ko in (5.41) if part of the nonlocal equtvalent 
strain increment lies within the loading surface, i.e., if / 1 < 0 (see Sec~ion 5.2). I~ th~ cycle 
based integration according to (5.24) q can be derived along the same lines, resultmg m 

a a 
!J-11N 

a£ 
q = --=a-:::a=---

1- !J-11N aD 

(5.42) 

where the index a of "Ea has been dropped. The predictor-corrector expression for q is again 
obtained by setting the denominator to one and evaluating aG I a£ for D = DP. . 

Using (5.35), (5.37), (5.38) and the appropriate expression for q, the set of equatiOns 
(5.33), (5.34) can be written as one linear system 

[ ~: ~:] [~:] = [r[a~ ~;i]. (5.43) 

with 

Kaa = B (1- D )CBdQ, I T i (5.44) 

Q 

Kae = - B C e q N dQ, I T i - (5.45) 

Q 

Kea = - N s B dQ. 1-T T (5.46) 

Q 
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Solving this system gives improved approximations ai+l = ai + 8a and ei+l = ei + 8e 
of at+t.r and er+t.t. The field variables which correspond to this new approximation are 
computed and the terms of equations (5.14), (5.15) are updated. If the residual on these 
equations exceeds a predefined convergence tolerance, the procedure is repeated until the 
residual has become smaller than this tolerance. If the Newton-Raphson process does not 
converge, it is restarted with a smaller increment size. 

5.4 Crack growth 

A crack is represented by a region of completely damaged material, Qc, in continuum dam
age models. It has been argued in Chapter 2 that this cracked region should not be a part 
of the equilibrium problem because the equilibrium equations are not meaningful in it. Ac
cordingly, the equilibrium equations and the additional partial differential equation (4.13) of 
the gradient approach are defined only on the domain f2 = Q \ Qc and boundary conditions 
must be provided at the boundary f' of f2. For the finite element formulation this means 
that the weak forms (5.1), (5.3) and the finite element interpolations of the displacements 
and nonlocal equivalent strain must be limited to the noncritical domain n. The difficulty 
is, however, that this effective domain may change as the numerical simulation progresses. 
Under the influence of damage growth the crack propagates and the remaining domain f2 thus 
shrinks. Consequently, the problem domain must be redefined in the numerical analysis for 
each increment of crack growth and a new finite element discretisation must be defined. 

In order to avoid the reformulation of the finite element problem after each time step, 
numerical damage analyses are often defined on the original domain Q even if this domain 
contains a crack. The material in the crack is given a small residual stiffness, for instance 
by limiting the damage variable to a value which is slightly smaller than one, in order to 
avoid the discrete equilibrium equations becoming singular. It is then argued that the stresses 
which are still transferred by the crack influence equilibrium only marginally if the residual 
stiffness is sufficiently small. This may indeed be true in local damage models, in which the 
large -nonphysical - strains in the crack do not influence the surrounding material. But if 
this approach is followed for nonlocal and gradient damage models, the nonlocal equivalent 
strain maps the large strains in the cracked region onto the surrounding material in which the 
damage variable is not (yet) critical. This does not only result in faster growth of damage 
in front of the crack and consequently in higher predicted crack growth rates, but also in 
damage growth at the faces of the crack, thus causing the thickness of the crack to increase, 
see Section 4.3. 

In truly nonlocal damage models it may be sufficient to limit the averaging volume in 
( 4.4) to f2 in order to remove the influence of the strains in Qc on the remaining material. For 
the implicit gradient model considered here, Geers (1997) has proposed to eliminate the in
teraction between crack and surrounding material by using a variable length scale. However, 
since the difficulties originate in the numerical implementation rather than the underlying 
continuum model, it seems more natural to improve the numerical description of the prob
lem instead of adding complexity to the continuum model. A rigorous and elegant approach 
would be to track the movement of the internal boundary which represents the crack contour 
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and to adapt the finite element discretisation to the new crack front after each increment. The 
remeshing can be used at the same time to adapt the element size to local variations of the 
solution, so that the accuracy is optimal. A disadvantage is that constitutive variables must 
be mapped from the old mesh onto the new mesh, which inevitably introduces interpolation 
errors. Instead, a rather crude remeshing method is used here: completely damaged elements 
are removed from an otherwise fixed finite element mesh. The crack contour always follows 
the (initial) grid lines in this approach, which means that a fine discretisation is needed in a 
relatively large region. When the damage variable is critical at the end of an increment in a 
certain element, this element is removed from the finite element mesh. Nodes and degrees of 
freedom which are not connected to other elements are also removed and the set of equations 
(5.8), (5 .11) is resized accordingly. The increment which led to the critical damage is then 
recomputed starting from the converged state in the previous increment, in which the element 
was not yet cracked, so that the growth of damage in other elements is consistent with the 
momentary configuration. 

It has been found that partly cracked elements, i.e., elements in which the damage vari
able has become critical in only a part of the element, have a negative influence on the mesh 
objectivity of the analysis. Deformations in the cracked part of the element, which should the
oretically be excluded from the boundary value problem, may become unrealistically large. 
These large strains lead to an increase of the nonlocal equivalent strain and consequently to an 
overprediction of the damage growth. This effect decreases when the discretisation is refined 
and the crack contour is thus described more accurately. But the convergence upon mesh 
refinement has been found to be significantly better if partially cracked elements are avoided 
by using elements with constant damage. As an additional advantage, the convergence of 
the Newton-Raphson process is better with these elements because nearly singular elements 
are largely avoided. A critical value of the damage variable is used which is slightly smaller 
than one (typically 0.999999) to avoid numerical singularities, but this does not influence the 
growth of damage since the increment in which it is reached is discarded after removing the 
element. 

Chapter 6 

Applications 

The beh~viour of the gradien~-enhanced damage formulations for quasi-brittle and fatigue 
fractu.re IS ~emonstrated m th1~ chapter by numerical analyses of these fracture processes. 
The SimulatiOns have been earned out using the finite element implementation discussed in 
the prevwus chapter. ~he quasi-brittle model has been applied to concrete (Section 6.1) and 
~o a short glass-fibre remforced composite (Section 6.2). Two problems have been considered 
m ~he concrete fracture analyses: a direct tension experiment taken from Hordijk (1991) and 
a smgle-edge notched ?earn under an anti-symmetric four-point loading (Schlangen, 1993). 
T~e numencal difficulties in ~escribing crack growth have been avoided in these analyses by 
us1~g a damage growth relatiOn for which the damage variable will never become critical. 
T~1s approach can .no longer be followed for the large crack openings observed in the fibre 
remforced composite. The remeshing procedure of Section 5.4 has therefore been used in 
these a~alyses. The results are compared with the experimental data given by Geers (1997). 
Th~ fatigue model has been tested on a thin steel specimen with a rounded notch (Section 6.3). 
This. problem ha~ also been used to study the influence of the internal length scale in the 
gradient formulatiOn on crack growth. 

6.1 Concrete fracture 

The direct tension experiments of Hordijk (1991) on lightweight concrete have been taken as 
a reference for the first concrete fracture problem considered here (see also Peerlings et al., 
1998a; de Borst et al., 1999). In these experiments, double-edge notched specimens of dif
ferent lengths w.ere glued to loading platens and subjected to an axial, tensile load, see Fig
ure 6 .. 1. Followmg Rots and de Borst (1989), these loading conditions have been modelled 
by fixm~ the ?ottom of the speci~en and keepi~g the upper edge straight by introducing the 
appropnate displacement constramts. A translatiOnal and a rotational spring have been fixed 
t? the upper loadmg platen, representing the stiffness of the testing machine. The transla
tw~al and rotatiOnal st1ffnesses ha:e been computed by Hordijk (1991) as 148 000 N/mm and 
10 Nm~rad respectively. The thickness of the specimens is 50 mm. Although the response 
observed m the expenments was essent1ally three-dimensional, a plane-stress situation has 
been assumed m the numerical analyses. 
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t 

50 

Figure 6.1: Modelling of the direct tension experiments (dimensions in mm). 

Specimens of three different lengths were tested by Hordijk (1991) and have also been 
analysed numerically: L = 50, 125 and 250mm. The tests were performed under servo 
control, with the average deformation in the fracture zone, 8, as the control parameter; 8 was 
measured by four pairs of extensometers with a gauge length of 35 mm, attached as indi
cated in Figure 6.1. In the simulations, the servo control has been replaced by its numerical 
counterpart, i.e., indirect displacement control (de Borst, 1986). This procedure uses the av
erage deformation of a 35 mm section of the specimen to control the loading force, which 
corresponds to the 35 mm gauge length of the extensometers in the experiments. 

The elastic constants have been set toE = 18 GPa and v = 0.2. The exponential damage 
growth law (2.12) has been used, with the parameters Ko = 2.1 · w-4, a = 0.96 and f3 = 
350. The damage variable never reaches its critical value D = 1 for this growth law, so 
that theoretically a crack will never be initiated and the material will never be completely 
separated. As a result, no remeshing is necessary in the analyses. For large deformations 
this assumption is physically unrealistic, but for the relatively small crack openings with 
considerable crack bridging observed in concrete, realistic responses can be obtained with 
this approach. For the equivalent strain the modified von Mises definition (2.17) has been 
used, with a compressive/tensile strength ratio k equal to 10. The gradient parameter c has 
been set to 1 mm2. This value is based on the fact that the largest aggregates in the material 
are of the order of several millimetres. 

The L = 50 mm geometry has been used to examine the mesh sensitivity of the gradient 
damage model. For this purpose, the problem has been analysed with three finite element 
discretisations with increasingly smaller elements in the area between the notches. The three 
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(a) 

(b) 

(c) 

Figure 6.2: Finite element discretisations used in the mesh sensitivity study: (a) h = 
5 mm, (b) h = 2.5 mm and (c) h = 1.25 mm. 

~iscretisations are shown in Figure 6.2; they consist of 106, 424 and 928 elements, respec
tively an.d have square elements with edge lengths h = 5, 2.5 and 1.25 mm in the fracture 
zone. Etght-n~ded serendipity shape functions have been used for the displacements and 
four-~oded, bthnear shape functions for the nonlocal equivalent strain. A 2 x 2 Gauss in
tegr.atw? scheme has been applied; it has been verified that the reduced integration of the 
eqmhbnum equations does not influence the results. 

The stress~de~ormation curves obtained with the three meshes are shown in Figure 6.3 . 
The de~ormatwn IS represented by the average relative vertical displacement of the 35 mm 
measunng sectiOn, 8; the stress in Figure 6.3 is the engineering stress with respect to the 
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Figure 6.3: Stress-deformation curves for the three meshes. 

smallest cross-section of the bar. For an increasing level of mesh refinement the curves con
verge to a solution with a positive, finite energy dissipation. Whereas the h = 5 mm mesh 
slightly overestimates the strength, the finer meshes give practically identical results. The 
discretisations used in the remainder of this section therefore have the same fineness in the 
process zone as the coarsest of these two meshes, i.e., h = 2.5 mm. Figure 6.4 shows the evo
lution of the damage variable as computed with the h = 1.25 mm mesh. The damage zones 
which have been formed in the hardening stage at both notches coalesce after reaching the 
fracture strength of the specimen. The damage then continues to grow more uniformly along 
the smallest cross-section. In contrast with local damage models, in which the damage would 
have localised in a line, the final damage band has a finite width. The damage distribution 
is therefore insensitive to the element size as long as the discretisation is sufficiently fine to 
describe the width of the band with a reasonable accuracy. 

As demonstrated in Figure 6.5(a), in which the numerical responses of the three specimen 
sizes (L = 50, 125 and 250 mm) have been plotted together, the stress-deformation curves 
of the different specimens practically coincide. The same trend was observed in the exper
imental data, with the exception of the 50 mm specimen, which showed a substantially Jess 
brittle response (Hordijk, 1991). In Figure 6.5(a) the fracture strength is slightly higher for 
this length than for the other two lengths. This is probably due to the influence of the bound
ary constraints at the top and bottom of the specimen, which are much closer to the fracture 
zone in the small specimen than in the longer specimens. Figure 6.5(b) gives the engineer
ing stress versus the vertical displacement of the top of the bar, U. A snap-back response 
is observed for the 250 mm specimen after reaching the fracture strength, that is, continued 
loading results in a decreasing displacement with a decreasing load. This demonstrates the 
necessity of the indirect displacement control procedure in the simulations. If the analyses 
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Figure 6.4: Damage evolution in the 50 mm specimen (h = 1.25 mm discretisation). 
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Figure 6.5: Computed stress versus (a) deformation of the ~rocess zone and (b) total 
elongation of the L = 50, 125 and 250 mm spectmens. 
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had been performed under direct displacement control or direct load control, it would have 
been impossible to follow the entire softening path for the longest specimen. 

In Figure 6.6 the computed stress-deformation curves are compared with the experimen
tally obtained curves for the 125 and 250 mm specimens as given by Hordijk (1991). The 
50 mm specimen has not been included in the comparison because the experimental data for 
this specimen do not seem to be consistent with that of the other specimens. A reasonable 
agreement of the numerical and experimental curves can be observed. Most striking are the 
two 'bumps' in the experimental curves, which are not present in the numerical curves. Nu
merical as well as experimental studies have demonstrated that these bumps are related to 
asymmetry in the response of the bar (Rots and de Borst, 1989; Hordijk, 1991). This asym
metry is triggered by the fact that the specimen geometry and its properties are not perfectly 
symmetric in the experiments. In the numerical idealisation, however, this symmetry the
oretically exists. If the accuracy of the computations is sufficient, the damage growth and 
deformation are perfectly symmetric with respect to the vertical axis of the specimen, see 
Figures 6.4 and 6. 7(a). An asymmetric response can be obtained if the symmetry of the prob
lem is removed by the introduction of a small imperfection at one of the notches. This has 
been done for the 250 mm bar by reducing the damage threshold Ko by 1% in a 5 x 5 mm2 area 
in front of the left notch. With this imperfection an asymmetric response is indeed obtained, 
as shown in Figure 6.7(b). 

The stress-deformation responses of the symmetric and asymmetric problems are given in 
Figure 6.8. The curve for the specimen with an imperfection clearly shows a bump. The dam
age growth corresponding to this stress-displacement curve has been plotted in Figure 6.9. 
Initially, the growth of damage is essentially symmetric. At the peak in the stress curve, 
however, damage growth is arrested at one notch, while the damage zone at the other notch 
continues to grow. When this zone has reached the damage zone at the other notch, the re
sponse again becomes symmetric. It is in the transition from the asymmetric to the symmetric 
response that the bump occurs in the stress-deformation diagram. Only one bump is observed 
in the simulation instead of the two bumps in the experimental curves as a consequence of the 
fact that the simulation is two-dimensional. In the finite element idealisation the response can 
only be asymmetric in the model plane, whereas the experiments also showed out of plane 
displacements. 

The second concrete fracture problem consists of a single-edge notched beam subjected 
to an anti-symmetric four-point loading (Figure 6.10). The geometry and loading conditions 
have been taken from Schlangen (1993), who analysed the problem experimentally as well as 
numerically with a lattice model. The thickness of the beam is 50 mm. The anti-symmetric 
loading results in a curved crack path in experiments, starting from the right comer of the 
notch and ending to the right of the lower-right support (Schlangen, 1993). 

The specimen has been modelled with 1362 elements with an eight-noded quadratic dis
placement field and a bilinear nonlocal equivalent strain, see Figure 6.11. The elements in the 
fracture zone have an edge h = 2.5 mm. The two supports near the centre of the beam have 
been modelled as (20 mm wide) rigid bodies by introducing the appropriate linear dependen
cies between the nodal displacements . Since the supports at the ends of the beam are not 
expected to have a significant effect on the response, they have been represented by a nodal 
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Figure 6.6: Comparison of numerical and experimental stress-deformation curves for 
the (a) L = 125 mm and (b) L = 250 mm specimens. 
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Figure 6.7: Deformation in the (a) symmetric and (b) asymmetric solutions; displace
ments have been scaled by a factor 750. 
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Figure 6.8: Stress-deformation curves for the symmetric and asymmetric configura
tions. 
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Figure 6.9: Asymmetric damage evolution in the L = 250 rom specimen. 
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Figure 6.10: Single-edge notched beam problem (dimensions in rom). 

restraint and a nodal force. A plane-stress situation has been assumed. The parameters v, k, a 
and c have been taken identical to those of the direct tension analyses, i.e., v = 0.2, k = 10, 
a = 0.96 and c = 1 mm2 . In the experiments the specimens were made of normal-weight 
concrete, so that Young's modulus and the parameters related to the material strength must 
be altered. These parameters have been set to E = 35 GPa, Ko = 6.0 . w-5 and f3 = 100. 
An indirect displacement control procedure has again been used, with the deformation pa
rameter 82 defined by Schlangen (1993), as input, see Figure 6.10. In the experiments the 
deformation 82 was measured as the vertical displacement of a steel bar, which was glued to 
the centre of the specimen near the lower supports, with respect to the upper-right support 
(Schlangen, 1993). Since the vertical displacement of the upper supports is zero in the finite 
element model, 82 is represented by a linear combination of the displacements of the lower 
supports. 

Figure 6.11 : Finite element discretisation of the single-edge notched beam. 

The evolution of the damage variable has been plotted in Figure 6.12. In the first stage 
of the fracture process, damage is initiated at the right comer of the notch and opposite to 
the central supports. The damage growth at the latter locations, which is due to bending of 
the specimen, is arrested at a certain stage. In the experiments, some cracking was indeed 
observed in these areas (van Mier, 1997). The damage zone at the notch continues to grow, 
following a curved path which ends to the right of the lower-right support. The final damage 
distribution is given in Figure 6.13, along with the experimentally determined crack paths 
in three different specimens as given by Schlangen (1993). A satisfactory agreement of the 
experimental and numerical paths is observed, with the cracks lying within the damage band 



78 Chapter6 

8z = 0.006mm D 
1 

0.5 

0 

8z = 0.008mm 

8z = 0.05mm 

Figure 6.12: Damage evolution in the single-edge notched specimen. 

obtained in the numerical analysis. It has been shown by Peerlings et al. (1998a) that the 
development of a curved crack in the numerical analysis depends critically on the definition 
of the equivalent strain. If the influence of compressive strain components on the equivalent 
strain is too large, as in the normalised energy release rate (2.15) and Mazars definition (2.16), 
failure by a straight crack or by penetration of the lower support is predicted. 

The displacements at the end of the fracture process (magnified by a factor 100) are 
given in Figure 6.14. This figure and Figure 6.13 show that the deformation and damage 
are localised in a band which comprises a number of elements. The damage distribution is 
therefore insensitive to the element size for sufficiently fine meshes. Indeed, if the size of 
the elements is doubled (h = 5 mm), the shape and width of the damage band change only 
marginally (Geers et al., 1998c; de Borst eta!., 1999). Furthermore, the curved crack shape 
shows that the direction of damage growth and thus the final damage distribution are not 
affected by the orientation of the finite element mesh. 

Figure 6.15 shows the load P versus three deformation quantities measured by Schlangen 
(1993): the deformation parameter 82 which was also used for the indirect displacement 
control, and the crack mouth opening and sliding displacements (CMOD and CMSD respec
tively). The CMOD and CMSD are defined as the relative horizontal and vertical displace-
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Figure 6.13: Comparison of the final damage distribution and experimental crack pat
terns. 

Figure 6.14: Displacements at the end of the fracture process, scaled by a factor 100. 
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~ents of the notch faces at the top of the beam. The solid curves are the computed load
displacement relations, while the dashed curves represent the three experiments reported by 
Schlangen (1993). A good agreement is observed, with the numerical curves lying within or 
closet~ the band formed by the experimental curves. The computed response is slightly too 
bnttle m the lower half of the softening regime, but since the same trend is observed in all 
three diagrams it is believed that the fit can be improved by using a different evolution law 
for the damage variable. The fact that there is no significant discrepancy between the CMOD 
and CMSD curves suggests that the anisotropy of the local material response, for instance 
due to sliding friction between crack faces and aggregate interlock, plays a minor role, which 
is consistent with the experimental and numerical observations by Schlangen (1993). 
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Figure 6.15: Load-deformation curves: P versus (a) h (b) CMOD and (c) CMSD. 
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6.2 Composite fracture 

Modelling damage and fracture processes in fibre reinforced polymers is more challenging 
than modelling concrete fracture in the sense that the larger deformations which are observed 
in polymer composites may give rise to nonphysical responses if the growth of cracks is 
not described correctly by the numerical model. The experimental analysis of composite 
fracture by Geers (1997) provides an excellent basis to study the behaviour of the gradient 
damage model under these circumstances. In the experiments, compact tension specimens 
of different sizes were tested almost until complete fracture. The specimens were made of 
polypropylene, reinforced with 30 wt.% 12.5 mm glass-fibres in a random distribution. The 
geometry considered here is shown in Figure 6.16, see ASTM standards E399 and E647 
(ASTM, 1993) or Geers (1997) for details. The thickness of the specimens was 3.8 mm. 
Displacements were measured in a square area in front of the notch by optically tracking a 
marker grid, so that accurate deformation data is available for these experiments. 

c!) 
0 

err 
\0 

I. 62.5 .I 
Figure 6.16: Problem geometry of the compact tension experiments (dimensions in 

mm). 

The experiments were modelled by Geers (1997) using a so-called transient-gradient dam
age formulation, i.e., a gradient damage model with a length scale which depends on the (lo
cal) strain state, see also Geers eta!. (1998f). This variable length scale was used to avoid 
pathological growth of damage at the crack faces. Here the standard, constant gradient dam
age formulation is used and nonphysical damage growth is avoided by removing completely 
damaged elements from the finite element problem, see Section 5.4. The other components 
of the damage model have been adopted unaltered from Geers (1997), which means that the 
Mazars equivalent strain definition (2.16) and the modified power law (2.13) for the damage 
growth have been used and the model parameters have been set to E = 3200 MPa, v = 0.28, 
c = 2mm2 , Ko = 0.011, Kc = 0.5, a = 5 and fJ = 0.75. It is noted that this parameter 
set may not be optimal for the present model because of the different role of the gradient 
parameter c. 
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Figure 6.17: Finite element discretisations of the compact tension specimen with el
ement sizes (a) h = 2mm, (b) h = 1mm, (c) h = 0.5mm and (d) 
h = 0.25 mm in the fracture zone. 
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Because of the symmetry of the problem, only the top half of the specimen has been 
modelled in the finite element analyses . The appropriate symmetry conditions have been 
applied at the axis of symmetry. For the nonlocal equivalent strain this condition is identical 
to the free boundary condition (4.20). Four different finite element meshes have been used, 
with elements of h = 2, 1, 0.5 and 0.25 mm in the fracture zone and a total of 206,439, 1143 
and 3507 elements, respectively (Figure 6.17). The meshes consist of plane-stress elements 
with bilinear interpolations of the displacements and nonlocal equivalent strain and a constant 
damage variable. A 2 x 2 point Gauss integration has been used. The loading force has been 
applied by nodal forces acting on the two uppermost nodes of the pinhole contour. The 
average vertical displacement of these two nodes has been used in the indirect displacement 
control of the loading process. Damage growth has been suppressed in the elements around 
the top half of the pinhole to avoid fracture in this area. 

The global responses obtained with the four discretisations have been plotted in Fig
ure 6.18. This diagram shows the pin force versus the relative vertical displacement of the 
loading pins, which is defined here as twice the average vertical displacement of the two 
nodes at the top of the pinhole. The corresponding results for the local damage model have 
already been given in Figure 3.3 . In contrast to the local damage model, the solution of the 
gradient formulation converges to a stable response with a finite fracture energy upon refine
ment of the discretisation. The damage distributions at the end of the loading process have 
been plotted in Figure 6.19 for the four meshes. A relatively large region takes part in the 
damage process, instead of the vanishing volume in the local damage model. The width of 
the damage zone is approximately the same in the four discretisations. Moreover, the width 
of the damage zone is approximately constant along the crack, which indicates that there is 
no damage growth at the crack faces as the crack opening increases. 
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Figure 6.18: Predicted load-displacement response for the four meshes. 
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Figure 6.19: Final damage distributions computed with the (a) h = 2 mm, (b) h = 
1 mm, (c) h = 0.5 mm and (d) h = 0.25 mm meshes. 
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It has been argued in Section 4.5 that the width of the crack must be zero in the quasi
brittle damage model, because the material adjacent to the projected crack path unloads im
mediately after the crack tip has passed. This vanishing crack width is represented in the finite 
element analyses by the smallest possible band of cracked elements. Figures 6.19(b-d), how
ever, show that the crack tip does not always propagate element by element and that elements 
thus remain in the wake of the crack tip. Since the damage variable is already close to one in 
these crack bridging elements, they have only a marginal influence on the stress distribution. 
When the crack opening further increases, these elements successively fail, so that a complete 
separation of the material is still obtained. The intermittent crack growth is a consequence 
of the fact that the finite element representation of the crack has a finite width. This means 
that when an element fails, a finite volume with relatively high equivalent strains no longer 
contributes to the nonlocal equivalent strain. As a result, the nonlocal equivalent strain at the 
newly created crack tip decreases by a small amount and its maximum shifts to some distance 
in front of the crack. If this distance is larger than the size of one element, it may not be the 
element next in line which fails next, but an element further along the projected crack path. 
The nonlocal strain in the remaining elements then decreases because a further contribution 
vanishes, and the damage growth in these elements is therefore temporarily arrested. When 
the crack opening further increases, however, the nonlocal equivalent strain increases again 
in these elements, and they still fail. 

In Figure 6.20 the load-displacement response obtained with the finest mesh is compared 
with the experimental data of Geers (1997) . Instead of the pin displacement, the more ac
curate optical displacement measurements have been used in this diagram. For this purpose, 
two reference points were defined close to the loading pins in the experiments. In the sim-
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--- simulation 
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5 

Figure 6.20: Comparison of the numerical and experimental load-displacement re
sponses. 
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ulation the relative displacement of these points, W, has been determined by interpolation 
of the nodal displacements. Although the parameter set which has been used in the anal
yses is probably not optimal for the constant gradient damage model, the predicted load
displacement curve lies almost entirely in the band of experimental responses. The predicted 
fracture strength is slightly higher than that of the transient-gradient model of Geers (1997), 
while the post-peak response is somewhat more brittle. 

6.3 Metal fatigue 

In the fatigue analyses the problem of Figure 6.21 has been considered. The thickness of the 
specimen is 0.5 mm. A blunt notch has been used in order to have a finite number of cycles 
to crack initiation, which allows us to study the initiation and propagation of a crack in the 
same problem. The lower edge of the specimen is fixed in all directions, while fully reversed 
vertical displacement cycles with an amplitude of 0.0048 mm are forced upon its top edge. 
The material data that have been used in the analyses are those of 1015 steel and have been 
taken from Suresh (1991). The fatigue limit of this material, defined for 5 · 108 cycles, is 
240 MPa. The damage threshold Ko is obtained by dividing this value by Young's modulus 
E = 210GPa, resulting in Ko = 0.00114. Poisson's ratio has been set to v = 0.3 and the 
von Mises equivalent strain (2.28) has been used. The parameter a of the damage evolution 
function (2.21) has been set to 10. The damage growth curve which is obtained for this value 
(Figure 2.7) is in reasonable agreement with experimental data (e.g., Lemaitre and Chaboche, 
1990; Lemaitre, 1996). The remaining parameters C and fJ of the evolution law have been 
solved from expressions (2.26) for the fatigue strength coefficient (a; = 827 ~a) and the 
fatigue strength exponent (b = -0.110), yielding C = 6.60·1021 and fJ = 8.09. The internal 
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Figure 6.21: Problem geometry and loading conditions of the fatigue problem (di
mensions in mm). 
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Figure 6.22: ~inite el~ment discretisations used in the mesh sensitivity study: (a) en
tire spectmen and refinements with (b) h = 0.04 mm, (c) h = 0.02 mm, 
(d) h = 0.01 mm, (e) h = 0.005 mm. 
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length has been set to .JC = 0.1 mm, which is a rough estimate of the maximum grain size in 
the material. 

Because of symmetry only half of the specimen has been modelled in the finite element 
analyses. The reference mesh contains a regular grid of elements with an edge length h = 
0.04mrn in an area of approximately 0.65 x 0.12mm2 at the notch tip, see Figure 6.22(a,b). 
The discretisation has been successively refined in this area to h = 0.02, 0.01 and 0.005 mm 
(Figure 6.22(c-e)). The resulting discretisations consist of 612, 738, 1065 and 2046 plane
stress elements with bilinear displacement and nonlocal strain interpolations and a constant 
damage variable. A 2 x 2 Gauss scheme has been used for the spatial integration. The 
integration in time has been carried out with the explicit cycle based scheme (5.27), (5.28), 
with(} = 0.5, YJ = 0.5 and minimum and maximum increment sizes of 1 and 105 cycles. 
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Figure 6.23: Damage and crack growth at the notch tip in the h = 0.005 mm mesh. 
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Figure 6.23 shows the crack initiation and growth process as simulated with the finest of 
the four meshes. The stress concentration at the notch tip leads to a concentration of damage 
in this area. At a certain stage a crack is initiated, i.e., the damage variable becomes critical 
in an element which is then removed from the mesh. For continued cycling the crack grows 
along the symmetry axis. In contrast to the quasi-brittle analyses of the previous section, the 
crack has a finite width, which is in agreement with the arguments put forward in Section 4.5. 
The crack width decreases as the damage zone which was formed before crack initiation is 
traversed. Beyond this damage zone the crack width becomes stationary at 0.02 mm, which 
is of the same order as the internal length .JC = 0.1 mm. 

The influence of the finite element discretisation on the crack shape is shown in Fig
ure 6.24, in which the final crack pattern has been plotted for the four discretisations. The 
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Figure 6.24: Final crack pattern in the (a) h = 0.04 mm, (b) h = 0.02 mm, (c) h = 
0.01 mm and (d) h = 0.005 mm meshes. 
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Figure 6.25: Influence of the element size on the predicted crack growth. 
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Figure 6.26: Influence of the element size on the steady-state crack growth rate pre
dicted by the local and gradient damage models. 
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coarsest mesh (Figure 6.24(a)) gives a rather crude approximation of the crack shape and nec
essarily overestimates the width of steady-state part of the crack because this width is smaller 
than the element size. But the h = 0.02 and 0.01 mm meshes give a good approximation 
of the crack shape in the finest discretisation. The steady-state width of the crack does not 
vary between the three finest discretisations. Figure 6.25 shows the length of the crack, a, 
versus the number of loading cycles N for the four meshes. For an increasingly refined dis
cretisation the growth curves converge to a response with a finite number of cycles to crack 
initiation and a finite growth rate. The converged initiation life is approximately 4210 cycles. 
Immediately after its initiation, the crack starts to grow at a relatively high rate. The growth 
slows down as the damage zone which was formed before crack initiation is traversed until it 
becomes almost linear beyond this zone. This transition corresponds to the width of the crack 
becoming constant (Figure 6.23). The steady-state crack growth rate has been plotted versus 
the element size h in Figure 6.26. The corresponding values for the local damage model, 
which have already been given in Figure 3.4, have also been plotted in the diagram. Whereas 
the local model shows a drastic increase of the crack growth rate when the element size is 
reduced and goes to infinity in the limit h ~ 0, the growth rate becomes practically constant 
at 1.42 . 10-5 mm/cycle in the gradient model. 

Figure 6.27 demonstrates the influence of the internal length Jc on the crack growth 
behaviour. The reference value Jc = 0.1 mm has been reduced to 0.05 and 0.025 mrn. The 
h = 0.005 mrn mesh has been used in these analyses. For smaller values of the internal 
length the crack is initiated sooner (after 814 and 309 cycles, respectively) and it grows faster 
(approximately 2.51. 10- 4 and 3.18 · 10-2 mm/cycle). This trend is caused by the fact that 
the nonlocal equivalent strain follows the local equivalent strain more closely for smaller 
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Figure 6.27: Influence of the internal length scale on the crack growth. 
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Figure 6.28: Influence of the internal length scale -JC on the final damage distribution 
and crack shape: (a) -JC = O.lmm, (b) -JC = 0.05mm and (c) -JC = 
0.025mm. 

length scales. As a consequence, the nonlocal equivalent strain at the notch tip and, after 
initiation of a crack, at the crack tip is higher, resulting in faster damage growth and thus 
in faster initiation and growth of the crack. The effect of the length scale on the final crack 
shape is shown in Figure 6.28. As expected, a smaller length parameter results in a smaller 
steady-state crack width. Furthermore, this constant crack width is reached after a smaller 
amount of crack growth as a result of the fact that a smaller area has been damaged before 
crack initiation. 

Chapter 7 

Conclusion 

The principal objective of the research reported in this thesis was to develop a mathematically 
consistent continuum damage formulation which can realistically describe fracture processes. 
A key issue in the development of continuum damage and other continuous fracture models 
is their ability to correctly describe the localised deformations which are characteristic of 
fracture problems. If this issue is not properly addressed, the damage process which repre
sents the initiation and growth of cracks tends to localise in a vanishing volume. A perfectly 
brittle response is then obtained, even if the constitutive relations show a gradual loss of 
strength. This pathological localisation of damage is usually related to loss of ellipticity of 
the rate equilibrium equations as a result of material instabilities. When the rate equilibrium 
equations locally lose ellipticity, discontinuities may arise in the displacement field. Discon
tinuous displacements imply that the strain field is singular, i.e., that the deformation localises 
in a vanishing volume. As a consequence, the damage development becomes unstable and a 
crack is initiated prematurely. 

The role of material instabilities and loss of ellipticity in crack growth, however, may 
sometimes have been overestimated. Singularities at the crack tip may render the damage 
growth rate singular. The material in front of the crack then fails immediately and in a van
ishing volume, even if the rate equilibrium equations do not first lose ellipticity. The crack 
traverses the remaining cross section at an infinite growth rate and the thickness of the cor
responding damage band is zero. This mechanism is not only relevant in time-dependent 
fracture processes, as suggested by Murakami and Liu (1996), but also in time-independent 
fracture. Loss of ellipticity may act as a premature initiator of singularities in this situation, 
but it is the instantaneous crack growth caused by the singular damage rate which renders the 
fracture process perfectly brittle. 

The nonphysical behaviour of the standard models can be effectively removed by the in
troduction of nonlocality in the constitutive relations. In a strict sense nonlocality means that 
stresses in a material point are no longer a functional of the deformation history solely in that 
point- as in standard, local continua- but also of the deformation history in a vicinity of the 
point. In continuum damage models this concept can be implemented by defining a nonlocal 
strain measure which is a weighted average of its standard, local counterpart and reformu
lating the growth of damage in terms of this nonlocal strain . As a result, the localisation of 
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damage is limited to the scale of the intrinsic length which is introduced by the averaging pro
cedure and which must be related to the microstructure of the material. The damage field thus 
remains smooth and displacement discontinuities and damage rate singularities are avoided. 
Crack growth is no longer instantaneous in the enhanced model and a finite, positive volume 
takes part in the damage process which describes the crack growth, even if the final crack 
may have a vanishing thickness. This also means that a positive amount of work is needed 
for the crack growth and that the fracture process is thus no longer perfectly brittle. 

A sirrtilar effect can be achieved by including nonstandard gradient terms in the consti
tutive model. In fact, such models can be derived as approximations of the nonlocal formu
lation. Two forms of this gradient enhancement have been considered in Chapter 4. In the 
first, so-called explicit approach, second-order strain gradients enter the constitutive model. 
As a result of the continuity of the deformation field, deformation gradients in a point contain 
information about the deformation in the surrounding material and therefore introduce a cer
tain nonlocal action. In a mathematical sense, however, the gradients are local quantities and 
the model is thus local. Indeed, strain variations in a certain point affect the strain gradients
and thus the nonlocal strain and damage- in only an infinitesimal volume around the point. 

The situation is subtler in the second, so-called implicit gradient formulation. This model 
contains gradients of the nonlocal strain instead of the local strain. As a consequence, the 
non local strain is no longer defined explicitly in terms of the local strain, but as the solution of 
a partial differential equation in which the local strain appears as a source term. This means 
that variations of the local strain in a certain point affect the nonlocal strain in the entire 
domain and thus that the model is truly nonlocal in this sense. Indeed, it has been shown in 
Chapter 4 that the nonlocal strain which follows from the implicit gradient approach can be 
written in the integral format of the nonlocal model by formally solving the partial differential 
equation for the nonlocal strain. 

The different character of the nonlocal interactions in the two gradient models has far
reaching consequences for their ability to describe damage localisation and crack growth. 
The implicit gradient formulation results in smooth solutions without discontinuities or dam
age rate singularities and shows a qualitative agreement with the corresponding nonlocal 
model. The response of the explicit model, on the other hand, is fundamentally different and 
may even be physically unrealistic in some respects. Its applicability to fracture problems is 
therefore doubtful. 

In each of the enhanced damage models the treatment of boundaries must be specified 
separately. In the nonlocal model the normalisation of the weight function changes in the 
presence of boundaries. The gradient models require additional boundary conditions for the 
displacements (explicit gradient model) or the nonlocal strain (implicit gradient model). Ho
mogeneous, natural boundary conditions have been selected for this purpose, but the physical 
motivation of these conditions is still rather poor. Nevertheless, the treatment of the nonlocal
ity at boundaries may have an important effect on the predicted response. This is particularly 
true in crack growth problems, where an internal boundary separates the crack from the re
maining material. In the gradient models not only the standard dynamic boundary conditions 
must be applied at this internal boundary, but also the additional boundary conditions required 
by the gradient enhancement. In the nonlocal model cracked material must be removed from 
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the weighting volume and the weight function must be renormalised accordingly as the crack 
grows. 

Numerical implementations of the enhanced damage models must reflect the separation 
o~ the ~ra~ked region from the remaining part of the continuum. This means that the spatial 
dtscrettsatwn of the equilibrium problem must be adapted for each increment of crack growth. 
If this separation is not made rigorously, the damage growth rate may be overestimated and 
nonphysical damage growth may be predicted at the faces of the crack. The numerical imple
mentation of the implicit gradient model which has been detailed in Chapter 5 is consistent 
with ~he underlying continuum model in this respect. Numerical solutions provided by the 
algonthm have been shown to yield meaningful, mesh objective results. Analyses of quasi
brittle fracture result in stable crack growth and in a finite fracture energy. The predicted 
dam~ge band is insensitive to the fineness and the orientation of the spatial discretisation, 
provided that this discretisation is sufficiently fine to describe the strongly heterogeneous de
formations in the fracture zone. The fatigue model can describe the formation and growth 
of high-cycle fatigue cracks. A special time integration scheme has been used to simulate 
the large numbers of cycles which are characteristic of high-cycle fatigue with an acceptable 
computational effort. In these analyses cracks have a finite, positive width, which depends 
on the internal length scale provided by the gradient enhancement, but which is insensitive 
to the spatial discretisation. Crack growth rates remain finite and are also insensitive to the 
element size. 

Although reliable and useful for development purposes, the numerical implementation 
which has been used in this thesis is probably not yet suitable for most practical problems. 
When the location of crack initiation and the direction of crack growth are not known in ad
vance, adaptive spatial discretisation techniques are needed to follow the free boundary which 
represents the crack and to accurately describe the high deformation gradients at its tip. These 
requirements are very similar to those of (nonlinear) fracture mechanics and some of the tech
niques needed may therefore be borrowed from numerical fracture mechanics. Indeed, this 
'convergence' of discrete and continuous representations of fracture can be observed not only 
in their numerical implementations, but also in the underlying theory. In a sense, the contin
uum damage formulation used in this study already results in a discrete crack. On the other 
hand, strong discontinuity approaches assume a discrete (fictitious) crack surface, but never
theless use stress-strain relations from continuum mechanics to model the nonlinearity of the 
fracture problem (e.g., Oliver, 1996) and can sometimes be regarded as solutions of nonlocal 
formulations (Planas eta!., 1994). 

In comparison with the classical fracture mechanics modelling of cracks, continuum dam
age models and related continuous fracture models are often more complex and have larger 
~arame~er sets. Furthermore, the mechanisms represented by these parameters show strong 
mteractwns, so that the parameters often cannot be determined independently and an inverse 
modelling approach is necessary. The nonlocality or gradient enhancement adds a further 
parameter to these models: the intrinsic length scale which is used to regularise the devel
opment of damage. If this length cannot be uniquely determined from the microstructure 
of the material, it must also be fitted on experimental results. This can be done indirectly, 
by relating the internal length scale to the difference between homogeneous and heteroge-
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neous responses (Bazant and Pijaudier-Cabot, 1989) or to size effects (Pijaudier-Cabot, 1995; 
Carmeliet, 1996). But a more direct and probably more reliable method is to measure the ex
tent of material damage in experiments, for instance by optical deformation measurements 
(Geers, 1997; Geers et al., 1998e, 1999b). 

The complexity of the constitutive modelling and the number of model parameters fur
ther increase when some of the limitations made in this thesis are lifted. The most important 
of these limitations is probably the lack of permanent deformations. The practical relevance 
of the damage modelling greatly increases if plastic or viscoplastic terms are added to the 
constitutive models, since analyses of creep, low-cycle fatigue and ductile fracture then be
come feasible. Theoretically, the introduction of these terms does not seem to require major 
changes in the concepts developed here. Indeed, nonlocal damage or damage-like models 
have already been used to model creep (Saanouni et al., 1989) and ductile fracture (Needle
man and Tvergaard, 1998) with a varying degree of success. A second possible extension of 
the theory is obtained by taking into account the anisotropy exhibited by many engineering 
materials. This anisotropy may either be intrinsically present in the undamaged material or be 
introduced by the development of damage. Particularly the latter case may require some rein
terpretation since it may involve several damage variables, which generally do not become 
critical at the same moment. 

Despite theoretical , numerical and experimental difficulties, damage mechanics and re
lated local fracture models seem to be gaining interest. An important reason for this devel
opment is probably that these models often can be linked more closely to the microstructural 
processes which govern crack initiation and crack growth in engineering materials than the 
traditional fracture mechanics approaches. Since the accuracy of existing models can only be 
improved by including more detail of these processes in the modelling, it is believed that the 
importance of continuum approaches to fracture will continue to increase in the near future. 
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Samenvatting 

Continue-schademechanica kan gebruikt worden om zowel de vorming als de groei van 
scheuren te beschrijven. In deze theorie wordt microstructurele schade in materialen in een 
gemiddelde zin gerepresenteerd door een continue variabele. Voor een zekere kritieke waarde 
van deze schadevariabele verliest het materiaallokaal zijn samenhang en ontstaat er dus een 
scheur. Voortzetting van het belastingsproces leidt tot voortplanting van de scheur (gerepre
senteerd door het gebied waarin de schadevariabele kritiek is) door middel van schadegroei en 
herverdeling van spanningen. De snelheid en richting van scheurgroei worden bepaald door 
de schadegroei in een relatief klein gebied voor de scheurtip, in plaats van door de aparte 
scheurgroeicriteria die in de breukmechanica worden gebruikt. 

Numerieke simulaties die gebaseerd zijn op standaard schademodellen blijken echter vaak 
sterk bei"nvloed te worden door de ruimtelijke discretisatie van het probleem. De schadegroei 
vertoont de neiging zich te concentreren in het kleinste gebied dat nog door de ruimtelijke 
discretisatie beschreven kan worden. Als gevolg hiervan wordt voor fijnere discretisaties eer
der de vorming van een scheur voorspeld, die bovendien sneller groeit. In de limiet van een 
oneindige ruimtelijke resolutie wordt de dikte van de schadezone nul en plant de scheur zich 
oneindig snel voort, zonder dat daarvoor arbeid nodig is. Dit in fysisch opzicht onrealistische 
gedrag wordt veroorzaakt door het feit dat de lokalisering van schade in een vlak niet in over
eenstemming is met de veronderstelling van een continue schadeverdeling die ten grondslag 
ligt aan de continue-schademechanica. 

De oorzaken van de lokalisering van schade zijn onderzocht voor schademodellen van 
quasi-brosse breuk en vermoeiing. Twee effecten spelen een belangrijke rol. Ten eerste kan 
het stelsel van partiele differentiaalvergelijkingen dat de snelheid van deformatie bepaalt op 
een zeker moment zijn ellipticiteit verliezen. Als gevolg hiervan kunnen discontinui"teiten 
ontstaan in het verplaatsingsveld, die leiden tot een singuliere schadegroeisnelheid. De sin
gulariteit van de schadegroei leidt op haar beurt tot de onmiddellijke vorming van een scheur. 
Ten tweede resulteert de singuliere schadegroei aan de tip van een eenmaal gevormde scheur 
onmiddellijk in falen van het materiaal voor de scheur. Omdat de singulariteit van de scha
degroeisnelheid blijft bestaan wanneer de scheur groeit, treedt onmiddellijk volledige breuk 
op. Dit effect doet zich niet aileen voor bij voortijdige scheurinitiatie als gevolg van ver
plaatsingsdiscontinui"teiten, maar ook als de schadevariabele op een stabiele wijze kritiek is 
geworden. 

VerplaatsingsdiscontinuYteiten en singulariteiten in de schadegroei kunnen voorkomen 
worden door niet-lokaliteit toe te voegen aan de schademodellering. In de niet-lokale scha
demechanica worden daartoe ruimtelijke gemiddelden gei"ntroduceerd. Het verbeterde model 
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dat hieruit voortvloeit resulteert in gladdere schadevelden, waarin de lokalisering van schade 
beperkt blijft tot de lengteschaal die gelntroduceerd wordt door de middeling. Hierdoor wordt 
de voortijdige vorming van scheuren voorkomen en blijft de voorspelde scheurgroeisnelheid 

eindig. 
Een soortgelijk effect kan bereikt worden door hogere-orde deformatiegradienten op te 

nemen in het constitutieve model. Twee van dit soort verbeteringen zijn onderzocht; beide 
kunnen afgeleid worden als benaderingen van het niet-lokale model. In het eerste type wor
den tweede-orde rekgradienten expliciet opgenomen in de spanning-rekrelaties. De tweede 
aanpak definieert de afhankelijkheid van hogere-orde gradienten op een meer impliciete 
wijze, via een particle differentiaalvergelijking die moet worden opgelost naast de even
wichtsvergelijkingen. Vooral deze laatste, impliciete benadering is in vele opzic;hten equi
valent met het niet-lokale model. In het bijzonder kan worden aangetoond dat het impliciete 
gradientenmodel ook de ruimtelijke interacties over langere afstanden vertoont die karakte
ristiek zijn voor het niet-lokale model. 

Het impliciete gradientenmodel kan relatief eenvoudig in een eindige-elementenformule
ring gegoten worden. Scheurgroei wordt gerepresenteerd door elementen waarin de schade 
kritiek is geworden te verwijderen uit de discretisatie. Deze aanpassing van de discretisa
tie is noodzakelijk om onrealistische schadegroei aan het scheuroppervlak ten gevolge van 
interacties tussen scheur en het omliggende materiaal te voorkomen. 

De eindige-elementenformulering is gebruikt om quasi-brosse breuk en vermoeiings
breuk te simuleren. De berekende schadezones hebben een eindige dikte, die afhangt van 
de intrinsieke lengteschaal die samenhangt met de gradienttermen. Het quasi-brosse model 
laat een stabiele afname van sterkte zien, die goed overeenkomt met experimentele gegevens. 
Het vermoeiingsmodel resulteert in scheurvorming na een eindig aantal belastingscycli en in 
scheurgroei met een eindige groeisnelheid. Voor beide breukmechanismen zijn de numerieke 
analyses niet Ianger gevoelig voor de ruimtelijke discretisatie. 
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Stelling en 

behorende bij het proefschrift 

Enhanced damage modelling for fracture and fatigue 

1. Klassieke lokaliseringscriteria, gebaseerd op homogene referentietoestanden, kunnen 
niet zonder meer worden toegepast op de sterk inhomogene deformaties rond scheuren. 

• Rice, J.R., 1976. The localization of plastic deformation. Koiter, W.T. eta!. (eds.), 
Theoretical and Applied Mechanics. Proc. 14th IUTAM Congress, North-Holland, 
Amsterdam, 207-220. 

• Dit proefschrift, Hoofdstuk 3. 

2. Bij breukproblemen spelen singulariteiten aan de scheurtip een minstens zo belang
rijke rol in de lokaliseringsproblematiek als discontinuneiten in het verplaatsingsveld; 
dit geldt niet aileen in de schademechanica, maar ook in plasticiteit. 

• Liu, Y., Murakami, S. and Kanagawa, Y. , 1994. Mesh-dependence and stress sin
gularity in finite element analysis of creep crack growth by continuum damage 
mechanics approach. Eur. J. Mech. A/Solids, 13, 395-417. 

• Dit proefschrift, Hoofdstuk 3. 

3. De 'impliciete' gradient-schadeformulering kan met recht niet-lokaal genoemd worden. 
De naamgeving van deze en vergelijkbare formuleringen is dan ook verregaand arbitrair. 

• Dit proefschrift, Hoofdstuk 4. 

4. Realistische wiskundige beschrijvingen van scheurgroei leiden noodzakelijkerwijs tot 
vrije-randproblemen. Het niet in acht nemen van dit gegeven kan numerieke moeilijk
heden veroorzaken. 

• Dit proefschrift, Hoofdstuk 5. 

5. De theoretische en praktische verschillen tussen discrete en continue breukmodellerin
gen worden vaak sterk overdreven. 

• de Borst, R., Feenstra, P.H., Pamin, J. and Sluys, L.J., 1994. Some current issues 
in computational mechanics of concrete structures. Mang, H. eta!., Computational 
Modelling of Concrete Structures. Proc. EURO-C 1994 Int. Conf., Pineridge Press, 
Swansea, U.K., 283-302. 

• Dit proefschrift, Hoofdstuk 7. 



6. De ontwikkeling van (niet-destructieve) schadedetectie-technieken is ver achter geble
ven bij de theoretische modelvorrning van schadeprocessen. Als gevolg hiervan kunnen 
schademodeilen veelal aileen indirect gevalideerd worden. 

7. Numerieke methoden behoren te worden aangepast aan het voorliggende wiskundige 
probleem en niet andersom. 

8. Soms is het nodig het wiel opnieuw uit te vinden om de werking ervan goed te begrijpen. 

9. Elegante oplossingen zijn vaak ook de beste. 

10. 'Principieel' wordt niet aileen op de basisschool regelmatig verward met 'in principe'. 

Ron Peerlings 

Eindhoven, 23 maart 1999 
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