

A performance study of BDD-based model checking

Citation for published version (APA):
Yang, B., Bryant, R. E., O Hallaron, D. R., Biere, A., Coudert, O., Janssen, G. L. J. M., Ranjan, R. K., &
Somenzi, F. (1998). A performance study of BDD-based model checking. In G. Gopalakrishnan, & P. Windley
(Eds.), FMCAD : formal methods in computer-aided design : international conference : proceedings, 2nd, Palo
Alto, CA, USA, November 4-6, 1998 (pp. 255-289). (Lecture Notes in Computer Science; Vol. 1522). Springer.
https://doi.org/10.1007/3-540-49519-3_18

DOI:
10.1007/3-540-49519-3_18

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/3-540-49519-3_18
https://doi.org/10.1007/3-540-49519-3_18
https://research.tue.nl/en/publications/400bf2d4-3012-412a-99e5-941fcd83fdec

A Performance Study

of BDD-Based Model Checking

Bwolen Yang1, Randal E. Bryant1, David R. O’Hallaron1,
Armin Biere1, Olivier Coudert2, Geert Janssen3,

Rajeev K. Ranjan2, and Fabio Somenzi4

1 Carnegie Mellon University, Pittsburgh PA 15213, USA
2 Synopsys Inc., Mountain View CA 94043, USA

3 Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
4 University of Colorado, Boulder CO 90309, USA

Abstract. We present a study of the computational aspects of model
checking based on binary decision diagrams (BDDs). By using a trace-
based evaluation framework, we are able to generate realistic benchmarks
and perform this evaluation collaboratively across several different BDD
packages. This collaboration has resulted in significant performance im-
provements and in the discovery of several interesting characteristics of
model checking computations. One of the main conclusions of this work
is that the BDD computations in model checking and in building BDDs
for the outputs of combinational circuits have fundamentally different
performance characteristics. The systematic evaluation has also uncov-
ered several open issues that suggest new research directions. We hope
that the evaluation methodology used in this study will help lay the
foundation for future evaluation of BDD-based algorithms.

1 Introduction

The binary decision diagram (BDD) has been shown to be a powerful tool in
formal verification. Since Bryant’s original publication of BDD algorithms [7],
there has been a great deal of research in the area [8,9]. One of the most power-
ful applications of BDDs has been to symbolic model checking, used to formally
verify digital circuits and other finite state systems. Characterizations and com-
parisons of new BDD-based algorithms have historically been based on two sets
of benchmark circuits: ISCAS85 [6] and ISCAS89 [5]. There has been little work
on characterizing the computational aspects of BDD-based model checking.

There are two qualitative differences between building BDD representations
for combinational circuits versus model checking. The first difference is that for
combinational circuits, the output BDDs (BDD representations for the circuit
outputs) are built and then are only used for constant-time equivalence checking.
In contrast, a model checker first builds the BDD representations for the sys-
tem transition relation, and then performs a series of fixed point computations
analyzing the state space of the system. In doing so, it is solving PSPACE-
complete problems. Another difference is that BDD construction algorithms for

G. Gopalakrishnan, P. Windley (Eds.): FMCAD’98, LNCS 1522, pp. 255–289, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

256 Bwolen Yang et al.

combinational circuit operations have polynomial complexity [7], while the key
operations in model checking are NP-hard [16]. These differences indicate that
results based on combinational circuit benchmarks may not accurately charac-
terize BDD computations in model checking.

This paper introduces a new methodology for the systematic evaluation of
BDD computations, and then applies this methodology to gain a better under-
standing of the computational aspects of model checking. The evaluation is a
collaborative effort among many BDD package designers. As results of this eval-
uation, we have significantly improved model checking performance, and have
identified some open problems and new research directions.

The evaluation methodology is based on a trace-driven framework where
execution traces are recorded from verification tools and then replayed on several
BDD packages. In this study, the benchmark consists of 16 execution traces from
the Symbolic Model Verifier (SMV) [16]. For comparison with combinational
circuits, we also studied 4 circuit traces derived from the ISCAS85 benchmark.
The other part of our evaluation methodology is a set of platform independent
metrics. Throughout this study, we have identified useful metrics to measure
work, space, and memory locality.

This systematic and collaborative evaluation methodology has led to bet-
ter understanding of the effects of cache size and garbage collection frequency,
and has also resulted in significant performance improvement for model checking
computations. Systematic evaluation also uncovered vast differences in the com-
putational characteristics of model checking and combinational circuits. These
differences include the effects of the cache size, the garbage collection frequency,
the complement edge representation [1], and the memory locality of the breadth-
first BDD packages. For the difficult issue of dynamic variable reordering, we
introduce some methodologies for studying the effects of variable reordering al-
gorithms and initial variable orders.

It is important to note that the results in this study are obtained based
on a very small sample of all possible BDD-based model checking computations.
Thus, in the subsequent sections, most of the results are presented as hypotheses
along with their supporting evidence. These results are not conclusive. Instead,
they raise a number of interesting issues and suggest new research directions.

The rest of this paper is organized as follows. We first present a brief overview
of BDDs and relevant BDD algorithms (Sec. 2) and then describe the experi-
mental setup for the study (Sec. 3). This is followed by three sections of experi-
mental results. First, we report the findings without dynamic variable reordering
(Sec. 4). Then, we present the results on dynamic variable reordering algorithms
and the effects of initial variable orders (Sec. 5). Third, we present results that
may be generally helpful in studying or improving BDD packages (Sec. 6). After
these result sections, we discuss some unresolved issues (Sec. 7) and then wrap
up with related work (Sec. 8) and concluding remarks (Sec. 9).

A Performance Study of BDD-Based Model Checking 257

2 Overview

This section gives a brief overview of BDDs and pertinent BDD algorithms.
Detailed descriptions can be found in [7] and [16].

2.1 BDD Basics

A BDD is a directed acyclic graph (DAG) representation of a Boolean func-
tion where equivalent Boolean sub-expressions are uniquely represented. Due
to this uniqueness property, a BDD can be exponentially more compact than
its corresponding truth table representation. One criterion for guaranteeing the
uniqueness of the BDD representation is that all the BDDs constructed must
follow the same variable order. The choice of this variable order can have a
significant impact on the size of the BDD graph.

BDD construction is a memoization-based dynamic programming algorithm.
Due to the large number of distinct subproblems, a cache, known as the com-
puted cache, is used instead of a memoization table. Given a Boolean opera-
tion, the construction of its BDD representation consists of two main phases. In
the top-down expansion phase, the Boolean operation is recursively decomposed
into subproblems based on the Shannon decomposition. In the bottom-up re-
duction phase, the result of each subproblem is put into the canonical form. The
uniqueness of the result’s representation is enforced by hash tables known as
unique tables. The new subproblems are generally recursively solved in a depth-
first order as in Bryant’s original BDD publication [7]. Recently, there has been
some work that tries to exploit memory locality by using a breadth-first or-
der [2,18,19,21,26].

Before moving on, we first define some terminology. We will refer to the
Boolean operations issued by a user of a BDD package as the top-level operations
to distinguish them from sub-operations (subproblems) generated internally by
the Shannon expansion process. A BDD node is reachable if it is in some BDDs
that external users have references to. As external users free references to BDDs,
some BDD nodes may no longer be reachable. We will refer to these nodes as
unreachable BDD nodes. Note that unreachable BDD nodes can still be refer-
enced within a BDD package by either the unique tables or the computed cache.
Some of these unreachable BDD nodes may become reachable again if they end
up being the results for new subproblems. When a reachable BDD node becomes
unreachable, we say a death has occurred. Similarly, when an unreachable BDD
node becomes reachable again, we say a rebirth has occurred. We define the death
rate as the number of deaths over the number of subproblems (time) and define
the rebirth rate as the fraction of the unreachable nodes that become reachable
again, i.e., the number of rebirths over the number of deaths.

2.2 Common Implementation Features

Modern BDD packages typically share the following common implementation
features based on [4,22]. The BDD construction is based on depth-first traversal.

258 Bwolen Yang et al.

The unique tables are hash tables with the hash collisions resolved by chaining.
A separate unique table is associated with each variable to facilitate the dynamic
variable reordering process. The computed cache is a hash-based direct mapped
(1-way associative) cache. BDD nodes support complement edges where, for each
edge, an extra bit is used to indicate whether or not the target function should
be inverted. Garbage collection of unreachable BDD nodes is based on reference
counting and the reclaimed unreachable nodes are maintained in a free-list for
later reuse. Garbage collection is invoked when the percentage of the unreachable
BDD nodes exceeds a preset threshold.

As the variable order can have significant impact on the size of a BDD graph,
dynamic variable reordering is an essential part of all modern BDD packages. The
dynamic variable reordering algorithms are generally based on sifting or window
permutation algorithms [22]. Typically, when a variable reordering algorithm is
invoked, all top-level operations that are currently being processed are aborted.
When the variable reordering algorithm terminates, these aborted operations
are restarted from the beginning.

2.3 Model Checking and Relational Product

There are two popular BDD-based algorithms for computing state transitions:
one is based on applying the relational product operator (also known as AndExists
or and-smooth) on the transition relations and the state sets [10]; the other is
based on applying the constrain operator to Boolean functional vectors [11,12].

The benchmarks in this study are based on SMV, which uses the relational
product operation. This operation computes “∃v.f ∧ g” and is used to compute
the set of states by the forward or the backward state transitions. It has been
proven to be NP-hard [16]. Figure 1 shows a typical BDD algorithm for comput-
ing the relational product operation. This algorithm is structurally very similar
to the BDD-based algorithm for the AND Boolean operation. The main differ-
ence (lines 5–11) is that when the top variable (τ) needs to be quantified, a new
BDD operation (OR(r0, r1)) is generated. Due to this additional recursion, the
worst case complexity of this algorithm is exponential in the graph size of the
input arguments.

3 Setup

3.1 Benchmark

The benchmark used in this study is a set of execution traces gathered from
the Symbolic Model Verifier (SMV) [16] from Carnegie Mellon University. The
traces were gathered by recording BDD function calls made during the execution
of SMV. To facilitate the porting process for different packages, we only recorded
a set of the key Boolean operations and discarded all word-level operations. The
coverage of this selected set of BDD operations is greater than 95% of the total
SMV execution time for all but one case (abp11) which spends 21% of CPU time
in the word-level functions constructing the transition relation.

A Performance Study of BDD-Based Model Checking 259

RP(v, f , g)
/* compute relational product: ∃v.f ∧ g */

1 if (terminal case) return result
2 if the result of (RP, v, f , g) is cached, return the result
3 let τ be the top variable of f and g
4 r0 ← RP(v, f |τ←0, g|τ←0) /* Shannon expansion on 0-cofactors */
5 if (τ ∈ v) /* existential quantification on τ ≡ OR(r0, RP(v, f |τ←1, g|τ←1)) */
6 if (r0 == true) /* OR(true, RP(v, f |τ←1, g|τ←1)) ≡ true */
7 r ← true.
8 else
9 r1 ← RP(v, f |τ←1, g|τ←1) /* Shannon expansion on 1-cofactors */
10 r ← OR(r0, r1)
11 else
12 r1 ← RP(v, f |τ←1, g|τ←1) /* Shannon expansion on 1-cofactors */
13 r ← reduced, unique BDD node for (τ , r0, r1)
14 cache the result of this operation
15 return r

Fig. 1. A typical relational product algorithm.

A side effect of recording only a subset of BDD operations is that the con-
struction process of some BDDs is skipped, and these BDDs might be needed
later by some of the selected operations. Thus in the trace file, these BDDs need
to be reconstructed before their first reference. This reconstruction is performed
bottom-up using the If-Then-Else operation. This process is based on the prop-
erty that each BDD node (vi, child0, child1) essentially represents the Boolean
function “If vi then child1 else child0”.

For this study, we have selected 16 SMV models to generate the traces. The
following is a brief description of these models along with their sources.

abp11: alternating bit protocol.
Source: Armin Biere, Universität Karlsruhe.

dartes: communication protocol of an Ada program.
dpd75: dining philosophers protocol.
ftp3: file transfer protocol.
furnace17: remote furnace program.
key10: keyboard/screen interaction protocol in a window manager.
mmgt20: distributed memory manager protocol.
over12: automated highway system overtake protocol.

Source: James Corbett, University of Hawaii.

dme2-16: distributed mutual exclusion protocol.
Source: SMV distribution, Carnegie Mellon University.

260 Bwolen Yang et al.

futurebus: futurebus cache coherence protocol.
Source: Somesh Jha, Carnegie Mellon University.

motor-stuck: batch-reactor system model.
valves-gates: batch-reactor system model.

Source: Adam Turk, Carnegie Mellon University.

phone-async: asynchronous model of a simple telephone system.
phone-sync-CW: synchronous model of a telephone system with call

waiting.
Source: Malte Plath and Mark Ryan, University of Birmingham,
Great Britain.

tcas: traffic alert and collision system for airplanes.
Source: William Chan, University of Washington.

tomasulo: a buggy model of the Tomasulo algorithm for instruction
scheduling in superscalar processors.
Source: Yunshan Zhu, Carnegie Mellon University.

As we studied and improved on the model checking computations during the
course of the study, we compared their performance with the BDD construction
of combinational circuit outputs. For this comparison, we used the ISCAS85
benchmark circuits as the representative circuits. We chose these benchmarks
because they are perhaps the most popular benchmarks used for BDD perfor-
mance evaluations. The ISCAS85 circuits were converted into the same format
as the model checking traces. The variable orders used were generated by the
order-dfs in SIS [24]. We excluded cases that were either too small (< 5 CPU
seconds) or too large (> 1 GBytes of memory requirement). Based on this crite-
ria, we were left with two circuits — C2670 and C3540. To obtain more circuits,
we derived 13-bit and 14-bit integer multipliers, based on the C6288, which we
refer to as C6288-13 and C6288-14. For the multipliers, the variable order is
an−1 ≺ an−2 ≺ ... ≺ a0 ≺ bn−1 ≺ bn−2 ≺ ... ≺ b0, where A =

∑n−1
i=0 2iai and

B =
∑n−1

i=0 2ibi are the two n-bit input operands to the multiplier.
Figure 2 quantifies the sizes of the traces we used in the study. The statistic

“# of BDD Vars” is the number of BDD variables used. The statistic “Min. #
of Ops” is the minimum number of sub-operations (or subproblems) needed for
the computation. This statistic characterizes the minimum amount of work for
each trace. It was gathered using a BDD package with a complete cache and no
garbage collection. Thus, this statistic represents the minimum number of sub-
operations needed for a typical BDD package. Due to insufficient memory, there
are 4 cases (futurebus, phone-sync-CW, tcas, tomasulo) for which we were not
able to collect this statistic. For these cases, the results shown are the minimum
across all the packages used in the study. These results are marked with the
“<” symbol. The third statistic, “Peak # of Live BDDs”, represents the peak
number of reachable BDD nodes during the execution. It provides a lower bound

A Performance Study of BDD-Based Model Checking 261

on the memory required to execute the corresponding trace. Note that neither
“Min. # of Ops” nor “Peak # of Live BDDs” reflects the effects of the dynamic
variable reordering process.

Min. # of Ops Peak # of Live BDDs
Trace # of BDD Vars (×106) (×103)

abp11 122 116 53

dartes 198 6 468
dme2-16 586 106 905

dpd75 600 41 1719

ftp3 100 132 763

furnace17 184 30 2109

futurebus 348 < 10270 4473
key10 140 91 626

mmgt20 264 35 1113

motors-stuck 172 29 325

over12 174 58 3008

phone-async 86 329 1446
phone-sync-CW 88 < 3803 22829

tcas 292 < 1323 19921

tomasulo 212 < 1497 26944

valves-gates 172 44 433

c2670 233 15 4363

c3540 50 57 7775

c6288-13 26 60 3378

c6288-14 28 178 9662

Fig. 2. Sizes of the benchmark traces. “# of BDD Vars” is the number of BDD
variables. “Min. # of Ops” is the minimum number of sub-operations which
characterizes work. “Peak # of Live BDDs” is the maximum number of reachable
BDD nodes, which characterizes the minimum memory requirement.

3.2 BDD Packages

The following is a list of the BDD packages used in the study. For each BDD
package, we note how it differs from the common implementation described in
Sec. 2.2. Although many of these BDD packages contain a wide variety of useful
features, only those pertinent to the study are described in this section.

ABCD (Author: Armin Biere)
ABCD [3] is an experimental BDD package based on the classical depth-
first traversal. Interesting features include mark-and-sweep based garbage
collection, the integration of BDD nodes with the BDD unique table by using
open addressing, and index-based (instead of pointer-based) references to

262 Bwolen Yang et al.

BDD nodes. These techniques reduce the BDD node size by half (2 machine
words instead of 4). In addition, to avoid clustering in open addressing,
ABCD uses a quadratic probe sequence for the hashing collision resolution.

CAL (Authors: Rajeev Ranjan and Jagesh Sanghavi)
CAL [20] is a publicly available BDD package based on breadth-first traver-
sal to exploit memory locality. The garbage collection algorithm is based on
reference-counting with memory compaction. To increase locality of refer-
ence, each BDD node contains the indices of its cofactor nodes. To keep the
node size to 4 machine words, bit tagging is used to store and retrieve the
value of the reference count of a node. For this study, the relational product
operation is based on the depth-first traversal with the quantification step
(line 7 in Fig. 1) computed using the breadth-first traversal.

CUDD (Author: Fabio Somenzi)
CUDD [25] is a publicly available BDD package based on depth-first traver-
sal. In CUDD, the reference counts of the nodes are kept up-to-date through-
out the computation. To counter the impact on performance of these updates
when many nodes are freed and reclaimed, CUDD enqueues the requests for
updates and performs them only if they are still valid when they are ex-
tracted from the queue. The growth of the tables in CUDD is determined by
a reward policy. For instance, the cache grows if the hit rate is high. CUDD
partially sorts the free list during garbage collection to improve memory
locality. Another distinguishing feature is that CUDD contains a suite of
heuristics for dynamic variable reordering.

EHV (Author: Geert Janssen)
EHV [14] is a publicly available BDD package based on depth-first traver-
sal. The main differences from the common implementation are additional
support for inverted inputs [17] and provisions for user data to be attached
to a BDD node. The latter feature allows intermediate results to be stored
in the BDD nodes, which in turn, removes the need to use separate com-
puted caches for some special BDD operations. This feature incurs a memory
overhead of 2 extra machine words per BDD node.

PBF (Authors: Bwolen Yang and Yirng-An Chen)
PBF [26] is an experimental BDD package based on partial breadth-first
traversal. The partial breadth-first traversal along with per-variable memory
managers and the memory-compacting mark-and-sweep garbage collector
are used to exploit memory locality. The partial breadth-first traversal also
bounds the breadth-first expansion to avoid the potential excessive memory
overhead of a full breadth-first expansion.

TiGeR (Authors: Olivier Coudert, Jean C. Madre and Herve Touati)
TiGeR [13] is a commercial BDD package based on the depth-first approach.
Interesting features include the segmentation of the computed caches and
the garbage collection algorithm. In TiGeR, each operation type has its own
cache. This allows the caches to be tuned independently. For this study, the
caches for the non-polynomial operations such as relational product are set
to be about four times as sparse as the caches for the polynomial operations.
TiGeR’s garbage collection algorithm is different from typical garbage col-

A Performance Study of BDD-Based Model Checking 263

lection algorithms in two ways: the free-list is sorted to maintain memory
locality, and the memory compaction is performed when memory resources
become critical.

3.3 Evaluation Process

The performance study was carried out in two phases. The first phase studied
performance issues in BDD construction without variable reordering. The second
phase focused on the dynamic variable reordering computation. The evaluation
process was iterative, with the study evolving dynamically as new issues were
raised and new insights gained. Based on the results from each iteration, we
collaboratively tried to identify the performance issues and possible improve-
ments. Each BDD package designer then incorporated and validated the sug-
gested improvements. During this iterative process, we also tried to hypothesize
the characteristics of the computation and design new experiments to test these
hypotheses.

4 Phase 1 Results: No Variable Reordering

Figure 3 presents the overall performance improvements for Phase 1 with dy-
namic variable reordering disabled. There are 6 packages and 16 model checking
traces, for a total of 96 cases. Figure 3(a) categorizes the results for these cases
based on speedups. Note that the speedups are plotted in a cumulative fashion;
i.e., the > x column represents the total number of cases with speedups greater
than x. Figure 3(b) presents a comparison between the initial timing results
(when we first started the study) and the current timing results (after the au-
thors made changes to their packages based on insights gained from previous
iterations). The n/a results represent cases where results could not be obtained.

Initially, 19 cases did not complete because of implementation bugs or mem-
ory limits. Currently, 13 of these 19 cases now complete (the new cases in the
figures). The other 6 cases still do not complete within the the resource limit
of 8 hours and 900 MBytes (the failed cases in the figures). There is one case
(the bad case in the charts) that initially completed, but now does not complete
within the memory limit.

Figure 3(a) shows that significant speedups have been obtained for many
cases. Most notably, 22 cases have speedups greater than an order of magnitude
(the > 10 column), and 6 out of these 22 cases actually achieve speedups greater
than two orders of magnitude (the > 100 column)!

Figure 3(b) shows that significant speedups have been obtained mostly from
the small to medium traces, although some of the larger traces have achieved
speedups greater than 3. Another interesting point is that the new cases (those
that initially failed but are now doable) range across small to large traces.

Overall, for the 76 cases where the comparison could be made, the total CPU
time was reduced from 554,949 seconds to 127,786 seconds — a speedup of 4.34.
Another interesting overall statistic is that initially none of the 6 BDD packages

264 Bwolen Yang et al.

could complete all 16 traces, but currently 3 BDD packages can complete all of
them.

Cumulative
Speedup Histogram

22

33

61

75 76 76

13
6

1
6

0

10

20

30

40

50

60

70

80

>
10

0

>
10 >

5

>
2

>
1

>
0.

95 >
0

ne
w

fa
ile

d

ba
d

speedups

of

 c
as

es

(a)

Time Comparison

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 100000
0

current results (sec)

in
it

ia
l r

es
ul

ts
 (

se
c)

new
failed
bad
rest

1x10x100x

n/a

n/a

(b)

Fig. 3. Overall results. The new cases represent the number of cases that failed
initially and are now doable. The failed cases represent those that currently still
exceed the limits of 8 CPU hours and 900 MBytes. The bad shows the case that
finished initially, but cannot complete currently. The rest are the remaining cases.
(a) Results shown as histograms. For the 76 cases where both the initial and the
current results are available, the speedup results are shown in a cumulative
fashion; i.e., the > x column represents the total number of cases with speedups
greater than x. (b) Time comparison (in seconds) between the initial and the
current results. n/a represents results that are not available due to resource
limits.

The remainder of this section presents results on a series of experiments
that characterize the computational aspects of the BDD traces. We first present
results on two aspects with significant performance impact — computed cache
size and garbage collection frequency. Then we present results on the effects of
the complement edge representation. Finally, we give results on memory locality
issues for the breadth-first based traversal.

4.1 Computed Cache Size

We have found that dramatic performance improvements are possible by us-
ing a larger computed cache. To study the impact of the computed cache, we
performed some experiments and arrived at the following two hypotheses.

A Performance Study of BDD-Based Model Checking 265

Hypothesis 1 Model checking computations have a large number of repeated
subproblems across the top-level operations. On the other hand, combinational
circuit computations generally have far fewer such repeated subproblems.

Experiment: Measure the minimum number of subproblems needed by using
a complete cache (denoted CC-NO-GC). Compare this with the same setup
but with the cache flushed between top-level operations (denoted CC-GC).
For both cases, BDD-node garbage collection is disabled.

Result: Figure 4 shows the results of this experiment. Note that the results for
the four largest model checking traces are not available due to insufficient
memory.
These results show that for model checking traces, there are indeed many
subproblems repeated across the top-level operations. For 8 traces, the ratio
of the number of operations in CC-GC over the number of operations in CC-
NO-GC is greater than 10. In contrast, this ratio is less than 2 for building
output BDDs for the ISCAS85 circuits. For model checking computations,
since subproblems can be repeated further apart in time, a larger cache is
crucial.

Repeated Subproblems
Across Top-Level Ops

1

10

100

Model Checking Traces ISCAS85

of

 o
pe

ra
ti

on
s

C
C

-G
C

/C
C

-N
O

-G
C

Fig. 4. Performance measurement on the frequency of repeated subproblems
across the top-level operations. CC-GC denotes the case in which the cache is
flushed between the top-level operations. CC-NO-GC denotes the case in which
the cache is never flushed. In both cases, a complete cache is maintained within
a top-level operation and BDD-node garbage collection is disabled. For four
model checking traces, the results are not available (and are not shown) due to
insufficient memory.

266 Bwolen Yang et al.

Hypothesis 2 The computed cache is more important for model checking than
for combinational circuits.

Experiment: Vary the cache size as a percentage of the number of BDD nodes
and collect the statistics on the number of subproblems generated to measure
the effect of the cache size. In this experiment, the cache sizes vary from 10%
to 80% of the number of BDD nodes. The cache replacement policy used is
FIFO (first-in-first-out).

Results: Figure 5 plots the results of this experiment. Each curve represents
the result for a trace with varying cache sizes. The “# of Ops” statistic is
normalized over the minimum number of operations necessary (i.e., the CC-
NO-GC results). Note that for the four largest model checking traces, the
results are not available due to insufficient memory.

These results clearly show that the cache size can have much more significant
effects on the model checking computations than on building BDDs for the
ISCAS85 circuit outputs.

Cache Size Effects for
MC Traces

1

10

100

1000

10000

10% 20% 40% 80%

Cache Size (% of BDD nodes)

of

 O
ps

 (
no

rm
al

iz
ed

)

(a)

Cache Size Effects for
ISCAS85 Circuits

1

10

100

1000

10000

10% 20% 40% 80%

Cache Size (% of BDD nodes)

of

 O
ps

 (
no

rm
al

iz
ed

)

(b)

Fig. 5. Effects of cache size on overall performance for (a) the model checking
traces and (b) the ISCAS85 circuits. The cache size is set to be a percentage of the
number of BDD nodes. The number of operations (subproblems) is normalized
to the minimum number of subproblems necessary (i.e., the CC-NO-GC results).

4.2 Garbage Collection Frequency

The other source of significant performance improvement is the reduction of the
garbage collection frequency. We have found that for the model checking traces,

A Performance Study of BDD-Based Model Checking 267

the rate at which reachable BDD nodes become unreachable (death rate) and
the rate at which unreachable BDD nodes become reachable (rebirth rate) can
be quite high. This leads to the following conclusions:

– Garbage collection should occur less frequently.
– Garbage collection should not be triggered solely based on the percentage of

the unreachable nodes.
– For reference-counting based garbage collection algorithms, maintaining ac-

curate reference counts all the time may incur non-negligible overhead.

Hypothesis 3 Model checking computations can have very high death and re-
birth rates, whereas combinational circuit computations have very low death and
rebirth rates.

Experiment: Measure the death and rebirth rates for the model checking traces
and the ISCAS85 circuits.

Results: Figure 6(a) plots the ratio of the total number of deaths over the total
number of sub-operations. The number of sub-operations is used to represent
time. This chart shows that the death rates for the model checking traces
can vary considerably. In 5 cases, the number of deaths is higher than the
number of sub-operations (i.e., death rate is greater than 1). In contrast, the
death rates of the ISCAS85 circuits are all less than 0.3.

That the death rates exceed 1 is quite unexpected. To explain the significance
of this result, we digress briefly to describe the process of BDD nodes becom-
ing unreachable (death) and then becoming reachable again (rebirth). When
a BDD node become unreachable, its children can also become unreachable
if this BDD node is its children’s only reference. Thus, it is possible that
when a BDD node become unreachable, a large number of its descendants
also become unreachable. Similarly, if an unreachable BDD node becomes
reachable again, a large number of its unreachable descendants can also be-
come reachable. Other than rebirth, the only way the number of reachable
nodes can increase is when a sub-operation creates a new BDD node as
its result. As each sub-operation can produce at most one new BDD node,
a death rate of greater than 1 can only occur when the corresponding re-
birth rate is also very high. In general, high death rate coupled with high
rebirth rate indicates that many nodes are toggling between being reachable
and being unreachable. Thus, for reference-counting based garbage collec-
tion algorithms, maintaining accurate reference count all the time may incur
significant overhead. This problem can be addressed by using a bounded-size
queue to delay the reference-count updates until the queue overflows.

Figure 6(b) plots the ratio of the total number of rebirths over the total
number of deaths. Since garbage collection is enabled in these runs and
does reclaim unreachable nodes, the rebirth rates shown may be lower than
without garbage collection. This figure shows that the rebirth rates for the
model checking traces are generally very high — 8 out of 16 cases have rebirth

268 Bwolen Yang et al.

rates greater than 80%. In comparison, the rebirth rate for the ISCAS85
circuits are all less than 30%.

The high rebirth rates indicate that garbage collection for the model checking
traces should be delayed as long as possible. There are two reasons for this:
first, since a large number of unreachable nodes do become reachable again,
garbage collection will not be very effective in reducing the memory usage.
Second, the high rebirth rate may result in repeated subproblems involving
the currently unreachable nodes. By garbage collecting these unreachable
nodes, their corresponding computed cache entries must also be cleared.
Thus, garbage collection may greatly increase the number of recomputations
of identical subproblems.

The high rebirth rates and the potentially high death rates also suggest that
the garbage collection algorithm should not be triggered based solely on the
percentage of the dead nodes, as with the classical BDD packages.

Death Rate

0

0.5

1

1.5

2

2.5

3

Model Checking Traces ISCAS85

of

 d
ea

th
s

/ #
 o

f
op

er
at

io
ns

(a)

Rebirth Rate

0

0.2

0.4

0.6

0.8

1

Model Checking Traces ISCAS85

of

 r
eb

ir
th

s
/ #

 o
f

de
at

hs

(b)

Fig. 6. (a) Rate at which BDD nodes become unreachable (death). (b) Rate at
which unreachable BDD nodes become reachable again (rebirth).

4.3 Effects of the Complement Edge

The complement edge representation [1] has been found to be somewhat useful
in reducing both the space and time required to build the output BDDs for the
ISCAS85 circuits [17]. In the following experiments, we study the effects of the
complement edge on the model checking traces and compare it with the results
for the ISCAS85 circuits.

A Performance Study of BDD-Based Model Checking 269

Hypothesis 4 The complement edge representation can significantly reduce the
amount of work for combinational circuit computations, but not for model check-
ing computations. However, in general, it has little impact on memory usage.

Experiment: Measure and compare the number of subproblems (amount of
work) and the resulting graph sizes (memory usage) generated from two BDD
packages — one with and the other without the complement-edge feature.
For the graph size measurements, sum the resulting BDD graph sizes of all
top-level operations. Note that since two packages are used, minor differences
in the number of operations can occur due to different garbage collection and
caching algorithms.

Results: Figure 7(a) shows that the complement edges have no significant effect
for model checking traces. In contrast, for the ISCAS85 circuits, the ratio of
the no-complement-edge results over with-complement-edge results ranges
from 1.75 to 2.00. Figure 7(b) shows that the complement edges have no
significant effect on the BDD graph sizes in any of the benchmark traces.

Complement Edge’s Effects
on Work

0

0.5

1

1.5

2

2.5

Model Checking Traces ISCAS85

of

 o
pe

ra
ti

on
s

no
 C

.E
. /

 w
it

h
C

.E
.

(a)

Complement Edge’s Effects
on Graph Sizes

0

0.5

1

1.5

Model Checking Traces ISCAS85

su
m

 o
f

re
su

lt
 B

D
D

 s
iz

es
no

 C
.E

. /
 w

it
h

C
.E

.

(b)

Fig. 7. Effects of the complement edge representation on (a) number of the
operations and (b) graph sizes.

4.4 Memory Locality for Breadth-First BDD Construction

In recent years, a number of researchers have proposed breadth-first BDD con-
struction to exploit memory locality [2,18,19,21,26]. The basic idea is that for
each expansion phase, all sub-operations of the same variable are processed to-
gether. Similarly, for each reduction phase, all BDD nodes of the same variable

270 Bwolen Yang et al.

are produced together. Note that even though this levelized access pattern is
slightly different from the traditional notion of breadth-first traversal, we will
continue to refer to this pattern as breadth-first to be consistent with previous
work. Based on this structured access pattern, we can exploit memory locality
by using per-variable memory managers and per-variable breadth-first queues to
cluster the nodes of the same variable together. This clustering is beneficial only
if many nodes are processed for each breadth-first queue during each expansion
and reduction phase.

The breadth-first approach does have some performance drawbacks (at least
in the two packages we studied). The breadth-first expansion usually has higher
memory overhead. In terms of running time, one drawback is in the implementa-
tion of the cache. In the breadth-first approach, the sub-operations are explicitly
represented as operator nodes and the uniqueness of these nodes is ensured by
using a hash table with chaining for collision resolution. Accesses to this hash
table are inherently slower than accesses to the direct mapped (1-way associa-
tive) computed cache used in the depth-first approaches. Furthermore, handling
of the computed and yet-to-be-computed operator nodes adds even more over-
head. Depending on the implementation strategy, this overhead could be in the
form of an explicit cache garbage collection phase or transferring of a computed
result from an operator node’s hash table to a computed cache. Maintenance
of the breadth-first queues is another source of overhead. This overhead can be
higher for operations such as relational products because of the possible addi-
tional recursion (e.g., line 7 in Fig. 1). Given that each sub-operation requires
only a couple hundred cycles on modern machines, these overheads can have a
non-negligible impact on the overall performance.

In this study, we have found no evidence that the breadth-first based packages
are better than the depth-first based packages when the computation fits in main
memory. Our conjecture is that since the relational product algorithm (Fig. 1)
can have exponential complexity, the graph sizes of the BDD arguments do not
have to be very large to incur a long running time. As a result, the number of
nodes processed each time can be very small. The following experiment tests
this conjecture.

Hypothesis 5 For our test cases, few nodes are processed each time a breadth-
first queue is visited. For the same amount of total work, combinational circuit
computations have much better “breadth-first” locality than model checking com-
putations.

Experiment: Measure the number of sub-operations processed each time a
breadth-first queue is visited. Then compute the maximum, mean, and stan-
dard deviation of the results. Note that these calculations do not include the
cases where the queues are empty since they have no impact on the memory
locality issue.

Result: Figure 8 shows the statistics for this experiment. The top part of the
table shows the results for the model checking traces. The bottom part shows
the results for the ISCAS85 circuits. We have also included the “Average /

A Performance Study of BDD-Based Model Checking 271

Total # of Ops” column to show the results for the average number of sub-
operations processed per pass, normalized against the total amount of work
performed.

The results show that on average, 10 out of 16 model checking traces pro-
cessed less than 300 sub-operations (less than one 8-KByte memory page) in
each pass. Overall, the average number of sub-operations in a breadth-first
queue is at most 4685, which is less than 16 memory pages (128 KBytes).
This number is quite small given that hundreds of MBytes of total memory
are used. This shows that for these traces, the breadth-first approaches are
not very effective in clustering accesses.

of Ops Processed per Queue Visit Average / Total # of Ops
Trace Average Max. Std. Dev. (×10−6)

abp11 228 41108 86.43 1.86

dartes 27 969 12.53 3.56

dme2-16 34 8122 17.22 0.31
dpd75 15 186 4.75 0.32

ftp3 1562 149792 63.11 8.80

furnace17 75 131071 42.40 2.38

futurebus 2176 207797 76.50 0.23

key10 155 31594 48.23 1.70
mmgt20 66 4741 21.67 1.73

motors-stuck 11 41712 50.14 0.39

over12 282 28582 55.60 3.32

phone-async 1497 175532 87.95 3.53
phone-sync-CW 1176 186937 80.83 0.19

tcas 1566 228907 69.86 1.16

tomasulo 2719 182582 71.20 1.95

valves-gates 25 51039 70.41 0.55

c2670 3816 147488 71.18 204.65
c3540 1971 219090 45.49 34.87

c6288-13 4594 229902 24.92 69.52

c6288-14 4685 237494 42.29 23.59

Fig. 8. Statistics for memory locality in the breadth-first approach.

Another interesting result is that the maximum number of nodes in the
queues is quite large and is generally more than 100 standard deviations away
from the average. This result suggests that some depth-first and breadth-first
hybrid (perhaps as an extension to what is done in the CAL package) may
obtain further performance improvements.

The result for “Average / Total # of Ops” clearly shows that for the same
amount of work, the ISCAS85 computations have much better locality for

272 Bwolen Yang et al.

the breadth-first approaches. Thus, for a comparable level of “breadth-first”
locality, model checking applications might need to be much larger than the
combinational circuit applications.

We have also studied the effects of the breadth-first approach’s memory lo-
cality when the computations do not fit in the main memory. This experiment
was performed by varying the size of the physical memory. The results show that
the breadth-first based packages are significantly better only for the three largest
cases (largest in terms of memory usage). The results are not very conclusive
because as an artifact of this BDD study, the participating BDD packages tend
to use a lot more memory than they did before the study began, and further-
more, since these BDD packages generally do not adjust memory usage based
on the actual physical memory sizes and page fault rates, the results are heavily
influenced by excessive memory usage. Thus, they do not accurately reflect the
effects of the memory locality of the breadth-first approach.

5 Phase 2 Results: Dynamic Variable Reordering

Dynamic variable reordering is inherently difficult for many reasons. First, there
is a tradeoff between time spent in variable reordering and the total elapsed
time. Second, small changes in the triggering and termination criteria may have
significant impact in both the space and time requirements. Another difficulty
is that because the space of possible variable orders is so huge and variable
reordering algorithms tend to be very expensive, many machines are required
to perform a comprehensive study. Due to these inherent difficulties and lack
of resources, we were only able to obtain very preliminary results and have
performed only one round of evaluation.

For this phase, only the CAL, CUDD, EHV, and TiGeR BDD packages were
used, since the ABCD and PBF packages have no support for dynamic variable
reordering. There are 4 packages and 16 traces, for a total of 64 cases. Figure 9
presents the timing results for these 64 cases. In this figure, the cases that did
not complete within the resource limits are marked with n/a. The speedup lines
ranging from 0.01x to 100x are included to help classify the performance results.

Figure 9(a) compares running time with and without dynamic variable re-
ordering. With dynamic variable reordering enabled, 19 cases do not finish within
the resource limits. Six of these 19 cases also cannot finish without variable re-
ordering (the failed cases in Fig. 9(a)). Thirteen of these 19 cases are doable
without dynamic variable reordering enabled (the bad cases in Fig. 9(a)). There
is one case that does not finish without dynamic variable reordering, but finishes
with dynamic variable reordering enabled (the new in Fig. 9(a)). The remain-
ing 45 cases are marked as the rest in Fig. 9(a). These results show that given
reasonably good initial orders (e.g., those provided by the original authors of
these SMV models), dynamic variable reordering generally slows down the com-
putation. This slowdown may be partially caused by the cache flushing in the
dynamic variable reordering phase; i.e., given the importance of the computed
cache, cache flushing can increase the number of repeated subproblems.

A Performance Study of BDD-Based Model Checking 273

To evaluate the quality of the orders produced, we used the final orders pro-
duced by the dynamic variable reordering algorithms as new initial orders and
reran the traces without dynamic variable reordering. Then we compared these
results with the results obtained using the original initial order and also without
dynamic variable reordering. This comparison is one good way of evaluating the
quality of the variable reordering algorithms since in practice, good initial vari-
able orders are often obtained by iteratively feeding back the resulting variable
orders from the previous variable reordering runs.

Figure 9(b) plots the results for this experiment. The y-axis represents the
cases using the original initial variable orders. The x-axis represents the cases
where the final variable orders produced by the dynamic variable reordering
algorithms are used as the initial variable orders. In this figure, the cases that
finished using the original initial orders but failed using the new initial orders are
marked as the bad and the remaining cases are marked as the rest. The results
show that improvements can still be made from the original variable orders. A
few cases even achieved a speedup of over 10.

Effects of Rerordering
Time Comparison

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 1E+06

with reorder (sec)

no
 r

eo
rd

er
 (

se
c)

new
failed
bad
rest

1x10x100x

.1x

.01x

n/a

n/a

(a)

Effects of New Initial Order
Time Comparison

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 1E+06

new initial orders - no reorder (sec)

no
 r

eo
rd

er
 (

se
c)

bad

rest

n/a

n/a

1x10x100x

.1x

.01x

(b)

Fig. 9. Overall results for variable reordering. The failed cases represent those
that always exceed the resource limits. The bad cases represent those that are
originally doable but failed with the new setup. The rest represent the remain-
ing cases. (a) Timing comparison between with and without dynamic variable
reordering. (b) Timing comparison between original initial variable orders and
new initial variable orders. The new initial variable orders are obtained from the
final variable orders produced by the dynamic variable reordering algorithms.
For results in (b), dynamic variable reordering is disabled.

274 Bwolen Yang et al.

The remainder of this section presents results of a limited set of experiments
for characterizing dynamic variable reordering. We first present the results on
two heuristics for dynamic variable reordering. Then we present results on sen-
sitivity of dynamic variable reordering to the initial variable orders. For these
experiments, only the CUDD package is used. Note that the results in this sec-
tion are very limited in scope and are far from being conclusive. Our intent is to
suggest new research directions for dynamic variable reordering.

5.1 Present and Next State Variable Grouping

We set up an experiment to study the effects of variable grouping, where the
grouped variables are always kept adjacent to each other.

Hypothesis 6 Pairwise grouping of present state variables with their corre-
sponding next state variables is generally beneficial for dynamic variable reorder-
ing.

Experiment: Measure the effects of this grouping on the number of subprob-
lems (work), maximum number of live BDD nodes (space), and number of
nodes swapped with their children during dynamic variable reordering (re-
order cost).

Results: Figure 10 plots the effects of grouping on work (Fig. 10(a)), space
(Fig. 10(b)), and reorder cost (Fig. 10(c)). Note that the results for two
traces are not available. One trace (tomasulo) exceeded the memory limit,
while the other (abp11) is too small to trigger variable reordering.

These results show that pairwise grouping of the present and the next state
variables is a good heuristic in general. However, there are a couple of ex-
ceptions. A better solution might be to use the grouping initially and relax
the grouping criteria somewhat as the reordering process progresses.

5.2 Reordering the Transition Relations

Since the BDDs for the transition relations are used repeatedly in model checking
computations, we set up an experiment to study the effects of reordering the
BDDs for the transition relations.

Hypothesis 7 Finding a good variable order for the transition relation is an
effective heuristic for improving overall performance.

Experiment: Reorder variables once, immediately after the BDDs for the tran-
sition relations are built, and measure the effect on the number of subprob-
lems (work), maximum number of live BDD nodes (space), and number of
nodes swapped with their children during dynamic variable reordering (re-
order cost).

A Performance Study of BDD-Based Model Checking 275

Effects of Grouping

Work

0

1

2

3

4

Model Checking Traces

of

 o
pe

ra
tio

ns
gr

ou
p

/ n
o

gr
ou

p

(a)

Space

0

1

2

3

Model Checking Traces

m
ax

 #
 o

f
liv

e
no

de
s

gr
ou

p
/ n

o
gr

ou
p

(b)

Reorder Cost

0

1

2

3

Model Checking Traces

of

 n
od

es
 s

w
ap

pe
d

gr
ou

p
/ n

o
gr

ou
p

(c)

Fig. 10. Effects of pairwise grouping of the current and next state variables on
(a) the number of subproblems, (b) the number of maximum live BDD nodes,
and (c) the amount of work in performing dynamic variable reordering.

Results: Figure 11 plots the results of this experiment on work (Fig. 11(a)),
space (Fig. 11(b)), and reorder cost (Fig. 11(c)). The results are normalized
against the results from automatic dynamic variable reordering for compar-
ison purposes. Note that the results for two traces are not available. With
automatic dynamic variable reordering, one trace (tomasulo) exceeded the
memory limit, while the other (abp11) is too small to trigger variable re-
ordering.

The results show that reordering once, immediately after the construction
of transition relations’ BDDs generally works well in reducing the number
of subproblems (Fig. 11(a)). This heuristic’s effects on the maximum num-
ber of live BDD nodes is mixed (Fig. 11(b)). Figure 11(c) shows that this
heuristic’s reordering cost is generally much lower than automatic dynamic
variable reordering. Overall, the the number of variable reordering for au-
tomatic dynamic variable reordering is 5.75 times the variable reordering
frequency using this heuristic. These results are not strong enough to sup-
port our hypothesis as cache flushing may be the main factor for the effects
on the number of subproblems. However, it does provide an indication that
the automatic dynamic variable reordering algorithm may be invoking the
variable reordering process too frequently.

5.3 Effects of Initial Variable Orders

In this section, we study the effects of initial variable orders on BDD construction
with and without dynamic variable reordering. We generate a suite of initial
variable orders by perturbing a set of good initial orders. In the following, we

276 Bwolen Yang et al.

Effects of Reordering Transition Relations

Work

0

1

2

3

Model Checking Traces

of

 o
pe

ra
tio

ns
tr

an
s

re
or

de
r

/ a
ut

o

(a)

Space

0

1

2

3

Model Checking Traces

m
ax

 #
 o

f
liv

e
no

de
s

tr
an

s
re

or
de

r
/ a

ut
o

(b)

Reorder Cost

0

1

Model Checking Traces

of

 n
od

es
 s

w
ap

pe
d

tr
an

s
re

or
de

r
/ a

ut
o

(c)

Fig. 11. Effects of variable reordering the transition relations on (a) the number
of subproblems, (b) the number of maximum live BDD nodes, and (c) the amount
of work in performing variable reordering. For comparison purposes, all results
are normalized against the results for automatic dynamic variable reordering.

describe this experimental setup in detail and then present some hypotheses
along with supporting evidence.

Experimental Setup
The first step is the selection of good initial variable orders — one for each
model checking trace. The quality of an initial variable order is evaluated by the
running time using this order without dynamic variable reordering.

Once the best initial variable order is selected, we perturb it based on two
perturbation parameters: the probability (p), which is the probability that a
variable will be moved, and the distance (d), which controls how far a variable
may move. The perturbation algorithm used is shown in Figure 12. Initially, each
variable is assigned a weight corresponding to its variable order (line 1). If this
variable is chosen (with the probability of p) to be perturbed (by the distance
parameter d), then we change its weight by δw, where δw is chosen randomly
from the range [−d, d] (lines 3-5). At the end, the perturbed variable order is
determined by sorting the variables based on their final weights (line 6). This
algorithm has the property that on average, p fraction of the BDD variables are
perturbed and each variable’s final variable order is at most 2d away from its
initial order. Another property is that the perturbation pair (p = 1, d = ∞)
essentially produces a completely random variable order.

Since randomness is involved in the perturbation algorithm, to gain better
statistical significance, we generate multiple initial variable orders for each pair
of perturbation parameters (p, d). For each trace, if we study np different pertur-
bation probabilities, nd different perturbation distances, and k initial orders for
each perturbation pair, we will generate a total of knpnd different initial variable

A Performance Study of BDD-Based Model Checking 277

perturb order(v[n], p, d)
/* perturb the variable order with probability p and distance d.

v[] is an array of n variables sorted based on decreasing
variable order precedence. */

1 for (0 ≤ i < n) w[i]← i /* initialize weight */
2 for (0 ≤ i < n) /* for each variable, with probability p, perturb its weight. */
3 With probability p do
4 δw ← randomly choose an integer from [−d, d]
5 w[i]← w[i] + δw
6 sort variables in array v[] based on increasing weight w[]
7 return v[]

Fig. 12. Variable-order perturbation algorithm.

orders. For each initial variable order, we compare the results with and without
dynamic variable reordering enabled. Thus, for each trace, there will be 2knpnd

runs. Due to lack of time and machine resources, we were only able to complete
this experiment for one very small trace — abp11.

The perturbed initial variable orders were generated from the best initial
variable ordering we found for abp11. Using this order, the abp11 trace can
be executed (with dynamic variable reordering disabled) using 12.69 seconds of
CPU time and 127 MBytes of memory on a 248 MHz UltraSparc II. This initial
order and its results are used as the base case for this experiment. Using this
base case, we set the time limit of each run to 1624.32 seconds (128 times the
base case) and 500 MBytes of memory.

For the perturbation parameters, we let p range from 0.1 to 1.0 with an
increment of 0.1. Since abp11 has 122 BDD variables, we let d range from 10 to
100 with an increment of 10 and added the case for d =∞. These choices result
in 110 perturbations pairs (with np = 10 and nd = 11). For each perturbation
pair, we generate 10 initial variable orders (k = 10). Thus, there are a total of
1100 initial variable orders and 2200 runs.

Results for abp11.

Hypothesis 8 Dynamic variable reordering improves the performance of model
checking computations.

Supporting Results: Figure 13 plots the number of cases that did not com-
plete within various time limits for runs with and without dynamic variable
reordering. For these runs, the memory limit is fixed at 500 MBytes. The
time limits in this plot are normalized to the base case of 12.69 seconds and
are plotted in log scale.

The results clearly show that given enough time, the cases with dynamic
variable reordering perform better. Overall, with a time limit of 128 times

278 Bwolen Yang et al.

the base case, only 10.1% of cases with dynamic variable reordering exceeded
the resource limits. In comparison, 67.6% of cases without dynamic variable
reordering failed to complete.

Note that for the time limit of 2 times the base case (the > 2x case in the
chart), the results with dynamic variable reordering is worse. This reflects
the fact that dynamic variable reordering can be expensive. As the time
limit increases, the number of unfinished cases for with dynamic variable
reordering drops more quickly until at about 32 times the base case. After
this point, the number of unfinished cases for both with and without dynamic
variable reordering appear to be decreasing at about the same rate.

Another interesting result is that none of the cases takes less time to complete
than the base case of 12.69 seconds (i.e., the > 1x results are both 1100).
This result indicates that the initial variable order of our base case is indeed
a very good variable order.

Effects of Variable Reordering
(# of unfinished cases)

0

400

800

1200

>1x >2x >4x >8x >16x >32x >64x >128x

time limit

of

 c
as

es

no reorder

reorder

Fig. 13. Effects of variable reordering on abp11. This chart plots the number of
unfinished cases for various time limits. The time limits are normalized to the
base case of 12.69 seconds. The memory limit is set at 500 MBytes.

To better understand the impact of the perturbations on running time, we
analyzed the distribution of these results (in Fig. 13) across the perturbation
space and formed the following hypothesis.

Hypothesis 9 The dynamic variable reordering algorithm performs “unneces-
sary” work when it is already dealing with reasonably good variable orders. Over-
all, given enough time, dynamic variable reordering is effective in recovering from
poor initial variable order.

A Performance Study of BDD-Based Model Checking 279

Supporting Results: Figure 14(a) shows the results with a time limit of 4
times the base case of 12.69 seconds. These plots show that when there are
small perturbations (p = 0.1 or d = 10), we are better off without dynamic
variable reordering. However, for higher levels of perturbations, the cases
with dynamic variable reordering usually does a little better.

Figures 14(b) and 14(c) show the results with time limits of 32 and 128
times, respectively, the base case. Note that since 128 times is the maximum
time limit we studied, Fig. 14(c) also represents the distribution of the cases
that did not complete at all for this study. These results clearly show that
given enough time, the cases with dynamic variable reordering perform much
better.

Hypothesis 10 The quality of initial variable order affects the space and time
requirements, with or without dynamic variable reordering.

Supporting Results: Figure 15 classifies the unfinished cases into memory-out
(Fig. 15(a)) or timed-out (Fig. 15(b)). For clarity, we repeated the plots for
the total number of unfinished cases (memory-out plus timed-out results) in
Fig. 15(c). It is important to note that because the BDD packages used in this
study still do not adapt very well upon exceeding memory limits, memory-out
cases should be interpreted as indications of high memory pressure instead
of that these cases inherently do not fit within the memory limit.

The results show that levels of perturbation directly influence the time and
memory requirement. With a very high level of perturbation, most of the
unfinished cases are due to exceeding the memory limit of 500 MBytes (the
upper-left triangular regions in Fig. 15(a)). For a moderate level of pertur-
bation, most of the unfinished cases are due to the time limit (the diagonal
bands from the lower-left to the upper-right in Fig. 15(b)).

Note that the results in Fig. 15 are not very monotonic; i.e., the results are
not necessarily worse with a larger degree of perturbation. This leads to the next
hypothesis.

Hypothesis 11 The effects of the dynamic variable reordering algorithm and
the initial variable orders are very chaotic.

Supporting Results: Fig. 16 plots the standard deviation of running time
normalized against average running time. For the cases that cannot complete
within the resource limits, they are included as if they use exactly the time
limit. Note that as an artifact of this calculation, when all 10 variants of a
perturbation pair exceed the resource limits, the standard deviation is 0. In
particular, without variable reordering, none of the cases can be completed
in the highly perturbed region (upper-left triangular region in Fig 15(c)) and
thus these results are all shown as 0 in the chart.

The results show that the standard deviations are generally greater than the
average time (i.e., with the normalized result of > 1). This finding partially

280 Bwolen Yang et al.

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance
Pr

ob
ab

ili
ty

No Reorder
(> 4x or > 500Mb)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance

Pr
ob

ab
ili

ty

Reorder
(> 4x or > 500Mb)

(a)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance

Pr
ob

ab
il

it
y

No Reorder
(> 32x or > 500Mb)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance
Pr

ob
ab

il
it

y

Reorder
(> 32x or > 500Mb)

(b)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance

Pr
ob

ab
il

it
y

No Reorder, Unfinished
(> 128x or > 500Mb)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance

Pr
ob

ab
il

it
y

Reorder, Unfinished
(> 128x or > 500Mb)

(c)

Fig. 14. Histograms on the number of cases that cannot be finished within the
specified resource limits. For all cases, the memory limit is set at 500 MBytes.
The time limit varies from (a) 4 times, (b) 32 times, to (c) 128 times the base
case of 12.69 seconds.

A Performance Study of BDD-Based Model Checking 281

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance
Pr

ob
ab

ili
ty

No Reorder, Memory Out
(> 500Mb)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance

Pr
ob

ab
ili

ty

Reorder, Memory Out
(> 500Mb)

(a)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance

Pr
ob

ab
il

it
y

No Reorder, Timed Out
(> 128x)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance
Pr

ob
ab

il
it

y

Reorder, Timed Out
(> 128x)

(b)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance

Pr
ob

ab
il

it
y

No Reorder, Unfinished
(> 128x or > 500Mb)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0
1
2
3
4
5
6
7

8

9

10

of

 C
as

es

Distance

Pr
ob

ab
il

it
y

Reorder, Unfinished
(> 128x or > 500Mb)

(c)

Fig. 15. Breakdown on the cases that cannot be finished. (a) memory-out cases,
(b) timed-out cases, (c) total number of unfinished cases.

282 Bwolen Yang et al.

confirms our hypothesis. It also indicates that 10 initial variable orders per
perturbation pair (p, d) is probably too small for some perturbation pairs.

The results also show that with very low level of perturbation (lower-right
triangular region), the normalized standard deviation is generally smaller.
This gives an indication that higher perturbation level may result in more
unpredictable performance behavior.

Furthermore, the normalized standard deviation for without dynamic vari-
able reordering is generally smaller than the same statistic for with dynamic
variable reordering. This result provides an indication that dynamic variable
reordering may also have very unpredictable effects.

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0

0.5

1

1.5

2

2.5

St
d.

 D
ev

.
/ A

vg
. T

im
e

Distance

Pr
ob

ab
il

it
y

No Reorder, Time Std. Dev.

(a)

10203040506070809010
0

in
f

1.0

0.7

0.4

0.1
0

0.5

1

1.5

2

2.5

St
d.

 D
ev

.
/ A

vg
. T

im
e

Distance

Pr
ob

ab
il

it
y

Reorder, Time Std. Dev.

(b)

Fig. 16. Standard deviation of the running time for abp11 with perturbed initial
variable orders (a) without dynamic variable reordering, and (b) with dynamic
variable reordering. Each results are normalized to the average running time.

6 General Results

This section presents results which may be generally helpful in studying or im-
proving BDD packages.

Hash Function
Hashing is a vital part of BDD construction since both the uniqueness of
BDD nodes and the cache accesses are based on hashing. Currently, we have
not found any theoretically good hash functions for handling multiple hash
keys. In this study, we have empirically found that the hash function used by
the TiGeR BDD package worked well in distributing the nodes. This hash
function is of the form

H(k1, k2) = ((k1p1 + k2)p2)/2w−n

A Performance Study of BDD-Based Model Checking 283

where k’s are the hash keys, p’s are sufficiently large primes, w is the number
of bits in an integer, and 2n is the size of the hash table. Note that division
by 2w−n is used to extract the n most significant bits and is implemented
by right shifting (w − n) bits.

The basic idea is to distribute and combine the bits in the hash keys to
the higher order bits by using integer multiplications, and then to extract
the result from the high order bits. The power-of-2 hash table size is used
to avoid the more expensive modulus operation. Some small speedups have
been observed using this hash function. One pitfall is that for backward com-
patibility reasons, some compilers might generate a function call to compute
integer multiplication, which can cause significant performance degradation
(up to a factor of 2). In these cases, architecture-specific compiler flags can
be used to ensure the integer-multiplier hardware is used instead.

Caching Strategy
Given the importance of cache, a natural question is: Can we cache more
intelligently? One heuristic, used in CUDD, is that the cache is accessed only
if at least one of the arguments has a reference count greater than 1. This
technique is based on the fact that if all arguments have reference counts
of 1, then this subproblem is not likely to be repeated within the current
top-level operation. In fact, if a complete cache is used, this subproblem will
not be repeated within the same top-level operation. Using this technique,
CUDD is able to reduce the number of cache lookups by up to half, with a
total time reduction of up to 40%.

Relational Product Algorithm
The relational product algorithm in Fig. 1 can be further improved. The new
optimizations are based on the following derivations. Let r0 be the result of
the 0-cofactors (line 4 in Fig. 1), v be the set of variables to be quantified,
and h be any Boolean function, then

r0 ∨ (∃v.r0 ∧ h) = r0 ∨ (r0 ∧ ∃v.h) = r0

and
r0 ∨ (∃v.(¬ r0) ∧ h) = r0 ∨ ((¬ r0) ∧ ∃v.h) = r0 ∨ ∃v.h

The validity comes from the fact that r0 does not depend on the variables in
v. Based on these equations, we can add the following optimizations (between
line 7 and line 8 in Fig. 1) to the relational product algorithm:

7.1 else if (r0 == f |τ←1) or (r0 == g|τ←1)
7.2 r← r0

7.3 else if (r0 == ¬f |τ←1)
7.4 r← r0 ∨ (∃v.g|τ←1)
7.5 else if (r0 == ¬g|τ←1)
7.6 r← r0 ∨ (∃v.f |τ←1)

284 Bwolen Yang et al.

In general, these optimizations only slightly reduces the number of sub-
problems, with the exception of the futurebus trace, where the number of
subproblems is reduced by over 20%.

BDD Package Comparisons
In comparing BDD packages, one fairness question is often raised: Is it fair
to compare the performance of a bare-bones experimental BDD package with
a more complete public domain BDD package? This question arises particu-
larly when one package supports dynamic variable reordering, while the other
does not. This is an issue because supporting dynamic variable reordering
requires additional data structures and indirection overheads to the compu-
tation for BDD construction. To partially answer this question, we studied
a package with and without its support for variable reordering in place. Our
preliminary results show that the additional overhead to support dynamic
variable reordering has no measurable performance impact. This may be
due to the fact that BDD computation is so memory intensive, a couple
additional non-memory intensive operations can be scheduled either by the
hardware or the compiler without any measurable performance penalty.

Cache Hit Rate
The computed cache hit rate is not a reliable measure of overall performance.
In fact, it can be shown that when the cache hit rate is less than 49%, a
cache miss can actually result in a higher hit rate. This is because a cache
miss generates more subproblems and these subproblems’ results could have
already been computed and are still in cache.

Platform Independent Metrics
Throughout this study, we have found several useful machine-independent
metrics for characterizing the BDD computations. These metrics are:
– the number of subproblems as a measure for work,
– the maximum number of live nodes as a measure for the lower bound on

memory requirement,
– the number of subproblems processed for each breadth-first queue visit to

reflect the possibility of exploiting memory locality using the breadth-
first traversal, and

– the number of nodes swapped with their children during dynamic variable
reordering as a measure of the amount of work performed in dynamic
variable reordering.

7 Issues and Open Questions

Cache Size Management
In this study, we have found that the size of the compute cache can have a
significant impact on model checking computations. Given that BDD com-
putations are very memory intensive, there is an inherent conflict between
using a larger cache for better performance and using a smaller cache to
conserve memory usage. For BDD packages that maintain multiple compute
caches, there are additional conflicts as these caches will compete with each

A Performance Study of BDD-Based Model Checking 285

other for the memory resources. As the problem sizes get larger, finding
a good dynamic cache management algorithm will become more and more
important for building an efficient BDD package.

Garbage Collection Triggering Algorithm
Another dynamic memory management issue is the frequency of garbage
collection. The results in Fig. 6(b) clearly suggest that delaying garbage
collection can be very beneficial. Again, this is a space and time tradeoff
issue. One possibility is to invoke garbage collection when the percentage of
unreachable nodes is high and the rebirth rate is low. Note that for BDD
packages that do not maintain reference counts, the rebirth rate statistic is
not readily available and thus a different strategy is needed.

Resource Awareness
Given the importance of space and time tradeoff, a commercial strength BDD
package not only needs to know when to gobble up the memory to reduce
computation time, it should also be able to free up space under resource
contention. This contention could come from different parts of the same tool
chain or from a completely different job. One way to deal with this issue is
for BDD packages to become more aware of the environment, in particular,
the available physical memory, various memory limits, and the page fault
rate. This information is readily available to the users of modern operating
systems. Several of the BDD packages used in this study already have some
limited form of resource awareness. However, this problem is still not well
understood and probably cannot be easily studied using the trace-driven
framework.

Cross Top-Level Sharing
For the model checking traces, why are there so many subproblems repeated
across the top-level operations? We have two conjectures. First, there is quite
a bit of symmetry in some of these SMV models. These inherent symmetries
are somehow captured by the BDD representation. If so, it might be more ef-
fective to use higher level algorithms to exploit the symmetries in the models.
The other conjecture is that the same BDDs for the transition relations are
used repeatedly throughout model checking in the fixed-point computations.
This repeated use of the same set of BDDs increases the likelihood of the
same subproblems being repeated across top-level operations. At this point,
we do not know how to validate these conjectures. To better understand this
property, one starting point would be to identify how far apart are these
cross top-level repeated subproblems; i.e., is it within one state transition,
within one fixed-point computation, within one temporal logic operator, or
across different temporal logic operators?

Breadth-First’s Memory Locality
In this study, we have found no evidence that breadth-first based techniques
have any advantage when the computation fits in the main memory. An
interesting question would be: As the BDD graph sizes get much larger, is
there going to be a crossover point where the breadth-first packages will be
significantly better? If so, another issue would be finding a good depth-first
and breadth-first hybrid to get the best of both worlds.

286 Bwolen Yang et al.

Inconsistent Cross Platform Results
Inconsistency in timing results across machines is yet another unresolved
issue in this study. More specifically, for some BDD packages, the CPU-
time results on a UltraSparc II machine are up to twice as long as the
corresponding results on a PentiumPro, while for other BDD packages, the
differences are not so significant. Similar inconsistencies are also observed
in the Sentovich study [23]. A related performance discrepancy is that for
the depth-first based packages, the garbage collection cost for UltraSparc II
is generally twice as high as that of PentiumPro. However, for the breadth-
first based packages, the garbage collection performances between these two
machines are much closer. In particular, for one breadth-first based package,
the ratio is very close to 1. This discrepancy may be a reflection of the
memory locality of these BDD packages. To test this conjecture, we have
performed a set of simple tests using synthetic workloads. Unfortunately,
the results did not confirm this hypothesis. However, the results of this test
do indicate that our PentiumPro machine appears to have a better memory
hierarchy than our UltraSparc II machine. A better understanding of this
issue can probably shed some light on how to improve memory locality for
BDD computations.

Pointer- vs. Index-Based References
Another issue is that within the next ten years, machines with memory sizes
greater than 4 GBytes are going to become common. Thus the size of a
pointer (i.e., memory address) will increase from 32 to 64 bits. Since most
BDD packages today are pointer-based, the memory usage will double on
64-bit machines. One way to reduce this extra memory overhead is to use
integer indices instead of pointers to reference BDDs as in the case of the
ABCD package. One possible drawback of an index-based technique is that
an extra level of indirection is introduced for each reference. However, since
ABCD’s results are generally among the best in this study, this provides a
positive indication that the index-based approach may be a feasible solution
to this impending memory overhead problem.

Computed Cache Flushing in Dynamic Variable Reordering
In Sec. 5, we showed that dynamic variable reordering can generally slow
down the entire computation when given a reasonably good initial variable
order. Since the computed cache is typically flushed when dynamic variable
reordering takes place, it would be interesting to study what percentage of
the slowdown is caused by an increase in the amount of work (number of
subproblems) due to cache flushing. If this percentage is high, then another
interesting issue would be in finding a good way to incorporate the cache
performance as a parameter for controlling dynamic variable reordering fre-
quency.

A Performance Study of BDD-Based Model Checking 287

8 Related Work

In [23], Sentovich presented a BDD study comparing the performance of sev-
eral BDD packages. Her study covered building output BDDs for combinational
circuits, computing reachability of sequential circuits, and variable reordering.

In [15], Manne et al. performed a BDD study examining the memory locality
issues for several BDD packages. This work compares the hardware cache miss
rates, TLB miss rates, and page fault rates in building the output BDDs for
combinational circuits.

In contrast to the Sentovich study, our study focuses in characterizing the
BDD computations instead of doing a performance comparison of BDD packages.
In contrast to the Manne study, our work uses platform independent metrics
for performance evaluation instead of hardware specific metrics. Both types of
metrics are equally valid and complementary. Our study also differs from these
two prior studies in that our performance evaluation is based on the execution
of a model checker instead of benchmark circuits.

9 Summary and Conclusions

By applying a new evaluation methodology, we have not only achieved significant
performance improvements, we have also identified many interesting character-
istics of model checking computations. For example, we have confirmed that
model checking and combinational circuit computations have fundamentally dif-
ferent performance characteristics. These differences include the effects of the
cache size, the garbage collection frequency, the complement edge representa-
tion, and the memory locality for the breadth-first BDD packages. For dynamic
variable reordering, we have introduced some new methodologies for studying
the effects of variable reordering algorithms and initial variable orders. From
these experiments, we have uncovered a number of open problems and future
research directions.

As this study is very limited in scope, especially for the dynamic variable
reordering phase, further validations of the hypotheses are necessary. It would
be especially interesting to repeat the same experiments on execution traces from
other BDD-based tools.

The results obtained in this study clearly demonstrate the usefulness of sys-
tematic performance characterization and validate our evaluation methodology.
We hope that the trace-drive framework and the machine-independent metrics
will help lay the foundation for future benchmark collection and performance-
characterization methodology.

288 Bwolen Yang et al.

Acknowledgement

We thank Yirng-An Chen for providing the ISCAS85 circuits in the trace for-
mat and providing the software which forms the core of our evaluation tool.
We thank Claudson F. Bornstein and Henry R. Rowley for numerous discus-
sions on experimental setups and data presentation. We are grateful to Edmund
M. Clarke for providing additional computing resources. This research is spon-
sored in part by the Defense Advanced Research Projects Agency (DARPA) and
Rome Laboratory, Air Force Materiel Command, USAF, under agreement num-
ber F30602-96-1-0287, in part by the National Science Foundation under Grant
CMS-9318163, in part by DARPA under contract number DABT63-96-C-0071,
in part by Cadence Design Systems, and in part by SRC contract 96-DJ-560.
This work utilized Silicon Graphics Origin 2000 machines from the National
Center for Supercomputing Applications at Urbana-Champaign.

References

1. Akers, S. B. Functional testing with binary decision diagrams. In Proceedings
of Eighth Annual International Conference on Fault-Tolerant Computing (June
1978), pp. 75–82.

2. Ashar, R., and Cheong, M. Efficient breadth-first manipulation of binary deci-
sion diagrams. In Proceedings of the International Conference on Computer-Aided
Design (November 1994), pp. 622–627.

3. Biere, A. ABCD: an experimental BDD library, 1998.
http://iseran.ira.uka.de/~armin/abcd/.

4. Brace, K., Rudell, R., and Bryant, R. E. Efficient implementation of a BDD
package. In Proceedings of the 27th ACM/IEEE Design Automation Conference
(June 1990), pp. 40–45.

5. Brglez, F., Bryan, D., and Kozmiski, K. Combinational profiles of sequential
benchmark circuits. In 1989 International Symposium on Circuits And Systems
(May 1989), pp. 1924–1934.

6. Brglez, F., and Fujiwara, H. A neutral netlist of 10 combinational benchmark
circuits and a target translator in Fortran. In 1985 International Symposium on
Circuits And Systems (June 1985). Partially described in F. Brglez, P. Pownall,
R. Hum. Accelerated ATPG and Fault Grading via Testability Analysis. In 1985
International Symposium on circuits and Systems, pages 695-698, June 1985.

7. Bryant, R. E. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35, 8 (August 1986), 677–691.

8. Bryant, R. E. Symbolic Boolean manipulation with ordered binary decision
diagrams. ACM Computing Surveys 24, 3 (September 1992), 293–318.

9. Bryant, R. E. Binary decision diagrams and beyond: Enabling technologies for
formal verification. In Proceedings of the International Conference on Computer-
Aided Design (November 1995), pp. 236–243.

10. Burch, J. R., Clarke, E. M., Long, D. E., McMillan, K. L., and Dill, D. L.

Symbolic model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 13, 4 (April 1994),
401–424.

A Performance Study of BDD-Based Model Checking 289

11. Coudert, O., Berthet, C., and Madre, J. C. Verification of sequential ma-
chines using Boolean functional vectors. In Proceedings of the IFIP International
Workshop on Applied Formal Methods for Correct VLSI Design (November 1989),
pp. 179–196.

12. Coudert, O., and Madre, J. C. A unified framework for the formal verification
of circuits. In Proceedings of the International Conference on Computer-Aided
Design (Feb 1990), pp. 126–129.

13. Coudert, O., Madre, J. C., and Touati, H. TiGeR Version 1.0 User Guide.
Digital Paris Research Lab, December 1993.

14. Janssen, G. The Eindhoven BDD Package. University of Eindhoven. Anonymous
FTP address: ftp://ftp.ics.ele.tue.nl/pub/users/geert/bdd.tar.gz.

15. Manne, S., Grunwald, D., and Somenzi, F. Remembrance of things past:
Locality and memory in BDDs. In Proceedings of the 34th ACM/IEEE Design
Automation Conference (June 1997), pp. 196–201.

16. McMillan, K. L. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
17. Minato, S., Ishiura, N., and Jajima, S. Shared binary decision diagram with

attributed edges for efficient Boolean function manipulation. In Proceedings of the
27th ACM/IEEE Design Automation Conference (June 1990), pp. 52–57.

18. Ochi, H., Ishiura, N., and Yajima, S. Breadth-first manipulation of SBDD of
Boolean functions for vector processing. In Proceedings of the 28th ACM/IEEE
Design Automation Conference (June 1991), pp. 413–416.

19. Ochi, H., Yasuoka, K., and Yajima, S. Breadth-first manipulation of very
large binary-decision diagrams. In Proceedings of the International Conference on
Computer-Aided Design (November 1993), pp. 48–55.

20. Ranjan, R. K., and Sanghavi, J. CAL-2.0: Breadth-first manipulation based
BDD library. Public software. University of California, Berkeley, CA, June 1997.
http://www-cad.eecs.berkeley.edu/Research/cal_bdd/.

21. Ranjan, R. K., Sanghavi, J. V., Brayton, R. K., and Sangiovanni-

Vincentelli, A. High performance BDD package based on exploiting memory
hierarchy. In Proceedings of the 33rd ACM/IEEE Design Automation Conference
(June 1996), pp. 635–640.

22. Rudell, R. Dynamic variable ordering for ordered binary decision diagrams. In
Proceedings of the International Conference on Computer-Aided Design (November
1993), pp. 139–144.

23. Sentovich, E. M. A brief study of BDD package performance. In Proceedings of
the Formal Methods on Computer-Aided Design (November 1996), pp. 389–403.

24. Sentovich, E. M., Singh, K. J., Lavagno, L., Moon, C., Murgai, R., Sal-

danha, A., Savoj, H., Stephan, P. R., Brayton, R. K., and Sangiovanni-

Vincentelli., A. L. SIS: A system for sequential circuit synthesis. Tech. Rep.
UCB/ERL M92/41, Electronics Research Lab, University of California, May 1992.

25. Somenzi, F. CUDD: CU decision diagram package. Public software. University
of Colorado, Boulder, CO, April 1997. http://vlsi.colorado.edu/~fabio/.

26. Yang, B., Chen, Y.-A., Bryant, R. E., and O’Hallaron, D. R. Space- and
time-efficient BDD construction via working set control. In 1998 Proceedings of
Asia and South Pacific Design Automation Conference (Feb 1998), pp. 423–432.

	Introduction
	Overview
	BDD Basics
	Common Implementation Features
	Model Checking and Relational Product

	Setup
	Benchmark
	BDD Packages
	Evaluation Process

	Phase 1 Results: No Variable Reordering
	Computed Cache Size
	Garbage Collection Frequency
	Effects of the Complement Edge
	Memory Locality for Breadth-First BDD Construction

	Phase 2 Results: Dynamic Variable Reordering
	Present and Next State Variable Grouping
	Reordering the Transition Relations
	Effects of Initial Variable Orders

	General Results
	Issues and Open Questions
	Related Work
	Summary and Conclusions
	References

