
 

Approximate solutions for a stochastic lot-sizing problem with
partial customer-order information
Citation for published version (APA):
Dellaert, N. P., & Melo, M. T. (1999). Approximate solutions for a stochastic lot-sizing problem with partial
customer-order information. (BETA publicatie : working papers; Vol. 38). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/e3061f04-96ab-43fd-9a34-c067094f99ce


Approximate solutions for a 
stochastic lot-sizing problem 
with partial customer-order 

information 
N.P. Oellaert, M.T. Melo 

WP~" 

BETA publicatie 

ISBN 
ISSN 
NUGI 

Eindhoven 
Keywords 

BETA-Research Programme 
Te publiceren in: 

...,' ~' 

WP 1,[:, (working 
paper) 
90-386-1009-2 
1386-9213 
684 
Oktober 1999 

Unit Management 
Operations 
Research 



Approximate solutions for a stochastic lot-sizing 
problem with partial customer-order information 

N.P. Dellaert 
Eindhoven University of Technology 

P.O. Box 513, 5600 MB Eindhoven, The Netherlands 

M.T. Melo 
Institute for Techno- and Economathematics (ITWM) 

Erwin-Schroedinger-Strasse, Building 49 

D-67663 Kaiserslautern, Germany 

Abstract 

We address a stochastic single item production system in a make-to-stock environ­
ment with partial knowledge on future demand resulting from customers ordering in 
advance of their actual needs. The problem consists of determining the optimal size 
of a production lot to replenish inventory, so that delivery promises are met on time 
at the expense of minimal average costs. For this problem an optimal policy is formu­
lated. However, since the optimal policy is likely to be too complex in most practical 
situations, we present approximate strategies for obtaining production lot sizes. The 
well-known (R, S) inventory policy is compared to two rules where production de­
cisions take into account the available information on future customer requirements 
and the probabilistic characterisation of orders yet to be placed. It is shown that the 
(8, S) inventory policy is a special case of one of the rules. An extensive numerical 
study reveals that the newly developed strategies outperform the classical ones. 

1 Introduction 

We consider the production of an item on a single machine with unrestricted capacity. 
Production activity is carried out in discrete time periods. Customer orders arrive ran­
domly and are divided into different categories according to their degree of urgency. If the 
lead times that are promised by the company vary from 1 to N periods, then the customer 
orders can be divided into N categories. In an arbitrary period t, the company promises 
to customers of category i (1 ::; i ::; N) to have their orders ready by the end of period 
t i. Furthermore, demands in each order category are assumed to be stationary, indepen­
dently distributed and specified by known probability distributions. Demand categories 
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can arise due to market strategy reasons, as in those situations where customers receive 
a special treatment by paying a premium or by signing long-term purchase contracts. In 
many situations, customers have a good perception of their needs and can provide advance 
warning of their actual demands. Gregory et al. [7] describe such a situation in a knitwear 
company. Furthermore, with the advent of electronic data interchange and private satellite 
communication systems, it became possible to link the computers of customers and suppli­
ers so that orders can be placed instantaneously, thus providing suppliers with additional 
advance warning. Also, in JIT manufacturing, purchase contracts typically specify exact 
intervals between orders and deliveries. An example of a company where customer orders 
are divided into categories with fixed delivery promises is given by Dellaert & Wessels [5] 
who report the results of a simulation study for a lot-sizing problem in make-to-order 
manufacturing with multiple items and machines. 

At the end of each period the system is reviewed. If the decision is to operate the 
machine in the following period, then a certain batch of items is manufactured. The items 
can be used for immediate delivery or alternatively can be added to a buffer stock of 
finished products. This buffer stock serves to anticipate unknown short term demand. 
In every period with positive production a fixed setup cost is charged which accounts for 
preparation costs associated with machine adjustments, cleaning, etc. Customer orders 
that are not ready by their due dates are backlogged and subject to a linear penalty cost 
until delivery. In addition, items kept in stock pay linear holding costs. The problem 
concerns the amount of items to be produced, given the pattern of known customer orders 
and a probabilistic characterization of orders yet to come. We seek a lot-sizing policy that 
minimizes the long-run average costs per period. 

An interesting feature of our problem is that it contains partial knowledge on future 
customer orders, unlike the pure make-to-stock situation where only statistical information 
about future demand is available or used. At the end of an arbitrary period t, we know 
the exact demand requirements for period t 1 and also have partial knowledge on the 
required deliveries for periods t + 2, ... , t + N. The incomplete information about the 
demand derives from the possibility of receiving more orders for these periods, after t. 
Dellaert & Melo [3, 4] explored this characteristic in a make-to-order context. Unlike pure 
inventory models, it seems natural that our production decisions should take into account 
the pattern of known customer orders. 

Recently, Hariharan & Zipkin [9] and Wijngaard [18] investigated the effect of fore­
knowledge of demand in make-to-stock environments. The problems studied by Hariha­
ran & Zipkin [9] rely on the assumption that customers are all equally important which is 
a special case of our model. Hariharan & Zipkin analyze the effect of demand lead time 
on overall system performance for both the cases of constant and independent stochastic 
lead times. Wijngaard [18] also assumes the same demand lead time for all orders and 
analyses the role of foreknowledge of demand in situations with high utilization rate. One 
of the benefits of knowing future customer requirements is that it gives the possibility to 
anticipate capacity problems by initiating production of known orders in advance of their 
due dates. Zijm [19] investigated a stochastic lot-sizing problem with the same demand 
categories as in our model. By assuming that in each period with positive production a 
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fixed amount of orders is manufactured, Zijm obtains myopic decisions by means of dy­
namic programming. Although this technique appears to give near-optimal results, it does 
not work well in our case since we charge a setup cost in every period with production. 
Recent studies based upon the same dynamic demand evolution have been carried out by 
Heath and Jackson (11], Giillii [8] and Graves, Kletter and Hetzel (6]. However, they all 
use demand forecasts and forecast revisions, instead of known probability distributions. 
Another difference between these three papers and our paper is the fact that we assume 
that the demand for the first period is always known completely, whereas they assume that 
this is not the case. The consequence of this difference will be discussed in Section 5. Heath 
and Jackson considered a dynamic forecast process as part of a simulation model that was 
used to analyze safety stock levels in a multiproduct situation and Giillii studied the value 
of extra information in the forecast evolution. Graves et al. analyzed a single-stage model 
to determine production smoothness and stability. Afterwards they show that the single 
stage can be used as a building block in a multistage supply chain. 

In the next section, we formulate our problem as a Markov Decision Process with 
multi-dimensional state space, and briefly sketch how the optimal production/inventory 
policy can be obtained. Since the optimal policy is likely to be too complex in most 
practical situations, we present in Section 3 three different lot-sizing strategies yielding 
approximate solutions for our problem. The first strategy is the so-called (x, T, w)-rule 
where production is initiated during a period for which the required deliveries are at least 
x units. In that situation, the known demand for the next T periods is manufactured plus 
w units for a buffer stock. In case T = 1, the (x, T, w)-rule reduces to the well-known 
(8, S) policy. The second rule is a least-cost-per-period strategy which allows production 
to cover the known demand requirements for a non-fixed number of periods. FUrthermore, 
unlike the (x, T, w)-rule, the amount manufactured for the buffer stock is not always the 
same. In our comparison we also include the well-known (R, S) inventory policy, which 
neglects all future demand information. We first selected some small test problems to 
compare the performance of the heuristics to the optimal solution. Then we tested the lot­
sizing heuristics by selecting a larger data set covering a wide variety of demand and cost 
parameters. The results obtained are reported in Section 4. Finally, Section 5 summarizes 
the main conclusions. 

2 The Markov decision model and the optimal policy 

We denote by Db D2 , ••• , DN the one-period demands for the item in each order category, 
and assume that they are independent, non-negative discrete random variables with known 
probability distributions such that dice) = JP(Di = t) represents the probability that 
during an arbitrary period t, t orders belonging to category i are placed to be delivered by 
the end of period t + i, with 1 ~ i ~ N, t = 0, 1, ... and L:e>o ~(t) = 1. For simplicity, we 
consider that each customer order consists of one unit of product. Observe that di(t) does 
not depend on the time period t due to the stationarity assumption. Therefore, we shall 
suppress time subscripts throughout. Within each period the following sequence of events 
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occurs: 

1) implementation of lot-sizing decision; 

2) completion of production (if any); 

3) inventory replenishment (if production took place); 

4) arrival of new demand; 

5) review of the system and cost accounting. 

We formulate our problem as a dynamic program with stages being successive time 
periods and states being described by N-dimensional vectors r (rb r2, . .. ,rN)' At the 
end of an arbitrary period t, the first component rl is defined by 

rl := required deliveries for period (t + 1) + backorders stock. 

A negative value of rl should be interpreted as the amount of items held in stock. All 
the other components ri of the order state vector give the number of known but unfilled 
customer orders with a due date i periods ahead, that is, t i with 2 ~ i < N. 

Associated with each state r there is a non-empty set of actions A( r). An action a 
specifies the size of a production lot. In case the inventory level in a certain period is non­
negative (that is, -rl 2:: 0), this means that there is no demand for immediate delivery. 
In such a situation the best action is to delay production. This results from the fact that 
production capacity is unrestricted, from our exact knowledge of the demand requirements 
for the next period, and from the assumption that when production occurs in a period, the 
finished items are available before the end of the same period. Hence, action a = 0 is to be 
selected when rl <= O. If rl > 0, we can exclude action a = 0 in those situations where 
the penalty costs charged for not satisfying this demand on time are higher than the setup 
cost. Denoting by K the fixed setup cost and by P the unit penalty cost charged to each 
backlogged item, it follows that the action space A( r) for each state r is defined as: 

A(r) 
A(r) 
A(r) 

{OJ 
{r!, rl + 1, ... , 'Lf::l ri,"'} 
{O, rl, rl + 1, ... , 'Lf::l ri" .. } 

if rl ~ 0, 
if rIP> K, 
if rIP ~ K. 

Although theoretically A( r) may contain an infinite number of actions, the knowledge of 
the demand distributions provides in practice information on the subset of actions that 
actually needs to be considered. 

Moving ahead one period causes production to be netted against requirements. De­
mand for the previous period that was not satisfied is carried forward as backlogged de­
mand in the current period. Let Q a (r) denote the order state before the arrival of new 
demand. In the sequence of events listed above, Q a (r) results from applying 3). At 
the end of every period, new demands (.e b .e2, ... , .eN) for each one of the next N periods 
are placed. These are added to any unfilled demands observed in previous periods. Thus, 
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Qa(r) = (rl-a+r2, rS, ... , rN, 0) and the transition to a new state z = Qa(r)+(.e1, . •. ,.eN) 
takes place with probability P:z = nf:,l di(.ei). 

The direct costs C; of selecting action a on observing a state r are charged in the 
period in which they are incurred as in a classical inventory modeL If a 0 and rl ~ 0, we 
have holding costs -hrl with h denoting the unit holding cost. In case a = 0 but rl > 0, 
we pay penalty costs prl- Finally, manufacturing at least rl items leads to a setup cost 
and holding costs for those a rl items that will replenish the inventory. In summary, we 
have 

{ 

-hri 
C; = pri 

K h(a 

if a = 0 and rl ~ 0, 
if a = 0 and rl > 0, 

rl) if a;:::: rl-

To determine the lot-sizing policy with minimal long-run average costs, we apply the value­
iteration algorithm as described by Odoni [13] and Tijms [16, Chapter 3]. Let vn(r) denote 
the minimal expected costs with n periods left to the time horizon when the current state is 
r and a terminal cost vo(z) is incurred when the system ends up at state z. The recursive 
value function vn(r) takes the form: 

vn(r) = min [c; + L P:zvn-I(Z)] , r E 3i, n = 1,2, .. _ 
aEA(r) ZE!R 

If the associated Markov chain is aperiodic (a condition satisfied in our case), then it is 
possible to obtain upper and lower bounds on the minimal expected costs g* per transition, 
and these bounds converge to g*. Thus, starting with vo(r) 0 for every r E 3i, we 
compute in each stage the value function vn(r), the lower bound LI(n) = minrE!R[vn+1(r) 
vn(r)] and the upper bound L2(n) = maxrE!R[vn+1(r)-vn(r)]. We stop when the difference 
between L2(n) and LI(n) is smaller than a pre-specified tolerance. The value of [Ll(n) + 
L2(n)]/2 is then an estimation of g*. 

In Section 4 we will use this method to compare the results of the heuristics with the 
optimal solution. Although this technique is widely used to solve large-scale Markov decision 
problems, from a practical point of view its applicability is limited due to the size of the 
state and decision spaces. For example, if there were 6 order categories and the maximum 
demand in each category were 30, we would have at least 306 = 729000000 possible 
combinations of values for the vector of requirements r in each period. Furthermore, the 
exact structure of the optimal strategy can be very complex and therefore unattractive to 
implement in practice. Therefore, we will focus in the next section on the development of 
special subclasses of policies with a structure that captures most of the optimal solution's 
properties, but due to its simplicity, has more intuitive appeal. 

3 Lot-sizing strategies 

Before describing the heuristics for solving our problem, we introduce some of the notation 
that will be used throughout this section. 
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Let I-£i denote the expectation of each random variable Di , that is, I-£i lE(Di) = 

Ll>O f di (i) for every 1 ::; i ::; N, and let 1-£ be the average demand per period (1-£ 
L!l/-ti)· 

At the end of an arbitrary period t, the expected demand for period t + i under the 
assumption that no required deliveries for period t + i have been produced, is denoted by 

N N 

ei = L lE(Dm) L /-tm, i = 1,2, ... ,N. (1) 
m=i m=i 

Finally, let us define bit as the probability that during the last i periods, a total number 
of f orders was placed for the current period, that is 

i 

bu = JP(DI + " . + Di = i) = L IT dk(lk), i = 1,2, ... , N, l = 0,1,... (2) 
Lit k=l 

with Cit denoting the set of all possible one-period demands (ill 12,' .. ,fN) for which the 
sum of the first i components equals i. 

3.1 The (x, T, w)-rule 

By examining the optimal production policy for some instances of our problem, we 
could observe that in many cases the decision whether or not to replenish the inventory 
in a certain period only depends on the number of orders that should be delivered in that 
period. Moreover, the total amount of finished items covers not only the demand in Tl 
but also the known orders for some future periods, plus an extra quantity which protects 
the system against unforeseen short term demand. This means that upon production, two 
types of finished goods stock are generated: one is a staging post for known orders awaiting 
delivery (a so-called dedicated stock), while the other is a non-dedicated stock of items which 
are not committed to any specific customer orders. Furthermore, we noticed that generally, 
a production lot covers the same number of known period's demands, and that the amount 
manufactured for the non-dedicated stock is fixed. To give an example of an optimal policy 
exhibiting such a structure, consider N 4, K = 20, h = 1 and p = 3. The demand in each 
order category i follows a binary distribution such that di(O) = 0.5 = ~(1) (1 < i ::; 4). 
The basic outcome is that for vectors of requirements r with Tl > 2, we produce the known 
demand for the first 4 periods and 3 additional items. The optimal strategy follows this 
rule in 98% of the states. Only in the states with unexpectedly high or low demand for 
the periods 2 until 4 we find deviations from the basic rule. 

The above structure of the optimal policy results from the interaction between the cost 
parameters and the demand pattern. For low Tl-values postponing production is cheap. 
If Tl becomes bigger production can no longer be delayed and it is natural to use the 
available partial information on future order requirements to decide on the amount to be 
manufactured. By building a dedicated stock, the timely delivery of the orders covered by 
that stock is ensured and the next setup is delayed. The latter benefit is obtained especially 
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when the holding costs are relatively low since in such a situation it may compensate to 
cover a larger number of period's demands. Since future demand is not completely known 
beforehand it also seems logical to maintain a stock of uncommitted items. The production 
of extra items will help to cope with the arrival of short term orders without having to 
initiate production again. 

Based on these observations, we propose a simple lot-sizing strategy called the (x, T, w)­
rule. Such rule states that production does not occur in a period with rl < x. Whenever 
rl ~ x, the known demands for the next T periods are manufactured plus w units for 
the non-dedicated stock. The parameters x, T and w are decision variables. If T = 1, 
we obtain the well known (8, S) policy with 8 = -x and S = w. The special case of 
w ° corresponds to a decision strategy that applies to make-to-order systems, that is, to 
systems where production is only carried out to respond directly to known customer orders. 
Under various conditions, Dellaert [2] and Melo [12] studied in detail such systems. 

By making the distinction between dedicated and non-dedicated stock it is possible to 
make an exact analysis of the (x, T, w)-rule. Upon production we immediately update the 
state vector r by replenishing the inventory with w units and removing the demands that 
will certainly be satisfied on time. This implies that the action a 2:;:1 ri + w generates 
a new state z = Qa(r) + (il, ... ,iN) with Qa(r) (-w,O, ... ,O,rT+l) ... ,rN,O). In 
addition, the costs of a production decision are given by K h 2:J=2(j - l)rj + hw. For 
large values of T it may be profitable to keep more items as non-dedicated stock, instead 
of reserving part of the production lot to the orders in r2, . .. ,rT. This strategy, however, 
is much more complex to analyze and may also be inconvenient from a practical point of 
view, since upon production it will not be possible to immediately inform customers that 
their orders will be met on time, except those with required deliveries in the production 
period. Therefore, we will keep our 'direct payment' of the holding costs for the reserved 
items. 

Since demand is stationary and the (x, T, w)-rule is a fixed production strategy, there 
is a natural regenerative point in the stochastic process representing ri' As shown by 
Melo [12], such a regenerative point coincides with a production epoch. Each time produc­
tion takes place, a cycle is said to begin. In order to determine the expected costs during a 
cycle we describe the demand requirements in each period by a Markov process with states 
(i, j) such that 

i-number of periods elapsed since the last production period, 

j - value of rl in the ith period since previous production. 

Observe that production is triggered simply by the value of rl. In addition, the production 
decision is always the same when rl ~ x, namely the known demands for the first T periods 
are manufactured along with w items. On the other hand, it is not difficult to show that 
the effects of producing during some period will influence the net requirements over the 
subsequent T periods only. Therefore, we can restrict the state space to i 1, ... ,T - 1 
and j = -w, .. . ,0, ... ,x. In every state (i, x) we aggregate all the cases with rl ~ x in the 
ith period. Also, each state (T - I, j) aggregates all the states not only during period T - 1 
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but also in subsequent periods. As already mentioned, the expected costs in these states 
do not involve the time of the last production. In Figure 1 the structure of the Markov 
chain is displayed. 

Figure 1: The states and possible transitions in the Markov chain of the (x, T, w)-rule for 
T? 2. 

Let Cij denote the expected costs in each state (i,j) of the above chain. Whenever 
j < x there is no production. In such case, if j < 0 this means that - j items are held 
in stock with holding costs -hj. However, if j ? 0 penalty costs pj are incurred. In the 
remaining states (i, x), setup costs and usually also holding costs are charged. To avoid a 
complicated state space, the holding costs corresponding to the known demand are paid 
immediately. Their expected value depends on the time elapsed since the last production 
period, that is, on the i-value of the state (i,x). For T > 2 it holds that if we have just 
produced in the previous period, the expected number of orders for future periods will not 
be as large as they would be after T - 1 periods, because some of the orders for these 
periods have already been produced. Since the non-dedicated stock is replenished with w 
items, holding costs must also be taken into account. In summary, we obtain 

if -w ::; j < 0, 
if 0::; j < x, 
if j = x. 

with ek+1 and ek+Hl defined by (1). For j = x, Cij simplifies into K +h".£I;;;l ek+1 min(i, k) 
+hw. 

Let qij denote the proportion of time spent in state (i,j) between two consecutive 
production periods. Due to the special structure of the Markov chain, the values of qij can 
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be calculated as follows, If T 2:: 3, in the first period after a production period we enter 
state (l,x) or one of the states (l,j), Hence, 

. _ { b 1,j+w if -w :::; j < X, 
qlJ - 1 x-I b 'f . 

- Lk=-w l,k+w 1 J = x. 

with b1, given by (2), 
For 2 :::; i :::; T - 2, we move to state (i, j) from a state (i - 1, k) with probability bi,j-k, 

and enter state (i, x) if the number of orders was less than x in period i 1 and at least x 
in period i. This yields 

" _ { L{=-w qi-l,k bi,j-k if -w :::; j < x, 
qtJ - ~x-l [ ] 'f' 

L-k=-w qi-l,k - qik 1 J x. 

During one cycle, state (T 1,j) aggregates the visits related to period T - 1 and all 
subsequent periods, We can move to this state from state (T 2, k) as well from a state 
(T - 1, k) with 1 :::; k :::; j. If during the N previous periods no orders have arrived with this 
specific delivery date, then we stay in the same state with probability bNO ' Furthermore, 
there is exactly one production period during one cycle. Hence, if there is no production 
during the first T 2 periods, then it will certainly occur in one of the later periods. 
Therefore, we have for T 2:: 3 

{ 

'E~=-w 1lT-2,k lrr-l,j-k+ L~=~w qT-l,k bN,j-k if -w < . < X 
I-bNO - J , 

1 qix if j = x. 

For the special case of T = 2, the values of qlj are given by 

{ 

b ~j-l 
l,i+w+ L-k--w qlkbN,j-k'f <. 

_ 1 -w J < X 
qlj - I-bNO -

1 lij x 

while for T = 1 we simply need to replace the term b1,j+w in the above expression by 
bN,j+w' 

With the knowledge of each qij the calculation of the expected cycle length becomes 
straightforward: 

lEL( T ) - { 'Eic=-w qlj if T = 1, 
x, ,w - ~,!-l ~:I! .. 'f T > 2 

L-t=l L-J=-W qtJ 1 _' 
(3) 

In addition, the expected costs during a cycle are determined by 

lEC( T ) = { Lf=-w Cljqlj if T = 1, 
x"w ~T-l~x 'fT 2 

L-i=l L-j=-w Cijqij 1 2::, 
(4) 

Therefore, the average costs per period g(x,T,w) are obtained by dividing (4) by (3), 
To find the triplet that yields the lowest costs per period, we apply certain bounds 

that allow us to limit the number of triplets that need to be considered, The following 
result establishes an upper bound on x* for given values of T and w, and is a natural 
generalization of a bound proposed by Dellaert [2, Chapter 4] for the special case w = O. 
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Proposition 1 For fixed values of T and w, the optimal value x* satisfies 

By combining the above bound with the fact that x* > 1, we obtain an interval 
containing the optimal choice for x, with T and w fixed. 

It is possible to derive better upper bounds for the optimal values of T* and w* than 
the obvious T* ~ N and w* < L ~ J 1 (see also Melo [12]), but determining these bounds 
is almost as complicated as finding the best x, T and w values. Usually, the following 
procedure offers a quick result: 

Step O. Set x:= LK/pJ + 1, T:= 1 and w := lK/hJ + l. 
Step 1. Determine g(x, T, w). 

If x > L 9(X,:,W) J + 1 Then x l g(x,:,w) J + 1 and repeat Step 1. 

Step 2. If w > l 9(X,[,W) J + 1 Then w := l 9(X,[,W) J + 1. 
Determine K(T) = minx,wg(x,T,w) by first decreasing was long as 
g(x, T, w) decreases, and then by decreasing x until no further decrease 
of g(x, T, w) occurs. 
If x and w have different values from the ones at the beginning of this step 
then repeat Step 2. 

Step 3. If T = 1 or (K(T) < K(T - 1) and T < N) Then T := T + 1 
repeat Step 2 

Else Stop. 

Observe that for fixed T and decreasing x or w, the determination of the average costs 
does not involve the calculation of every qij since most of these values are not affected 
by changes in the components x or w. For example, given the triplet (x, T, w) and the 
corresponding qwvalues, we only need to calculate qi,x-l for 1 ~ i ~ T 1 to be able to 
determine the costs of the triplet (x - 1, T, w). Similarly, we can compute the average costs 
of the (x, T, w 1}-rule by using the information of the triplet (x, T, w). Denoting by qiAw) 
the qwvalues of the latter rule, it is easy to see that qij(w-l) = qi,j-l(W) for 1 <i ~ T-l 
and -w + 1 ~ j ~ x 1. Hence, we simply need to calculate qi,x( wI) for 1 ~ i ~ T - l. 
Finally, given the triplet (x, T-l, w) and the corresponding qij(T I)-values, it is required 
to determine qT-2,j(T) and qT-l,j(T) for -w ~ j ~ x, with respect to the triplet (x, T, w) 
and in case T ~ 4. Otherwise, the new qij (T) have to be recalculated completely. 

3.2 The least-cost-per-period strategy 

For a single product inventory problem subject to a deterministic time-varying demand 
pattern, Silver & Meal [14] designed a lot-sizing heuristic which consists of selecting the 
replenishment amount that produces the (first local) minimum of the total relevant costs 

10 



per unit of time. These costs are obtained by dividing the setup cost and the total holding 
costs of a replenishment, by the number of periods corresponding to the demand require­
ments that are covered by the replenishment. This strategy is myopic in that it looks at the 
replenishment in the current period only and not at its relation to future replenishments. 
The rule is simple, intuitively appealing and seems to perform well in many situations as 
reported by Blackburn & Millen [1] and Silver, Pyke & Peterson [15, Chapter 6]). 

In this section we derive a least-cost-per-period (LCP) strategy by applying the same 
criterion as in the Silver-Meal heuristic and taking into account that backlogs are permitted 
in our case. 

As in the (x, T, w)-rule, we consider that whenever production occurs, part or whole 
of the known demand requirements is manufactured together with an extra amount for 
a buffer stock. However, in contrast to the previous rule, the new strategy will attempt 
to adapt to the pattern of known customer orders. This means that we consider each 
state vector r separately and restrict our attention to a subclass of production decisions 
of the action space A( r) that are characterized by two components, T and w. The first 
component indicates the number of periods with known demands that are covered by a 
batch, while the second component gives the extra number of items that are included in a 
production lot to replenish the non-dedicated stock. Using this approach, the direct costs 
incurred by selecting action a Ei=l ri + w on observing state r are determined by 

if a = ° and rl < 0, 
if a ° and rl > 0, 

hw if a 2 rl. 

Apart from the above costs we will also consider indirect costs in the decision criterion 
by assuming that if the known requirements for the next T periods are covered, then the 
following production will be planned T periods from now. This assumption is necessary 
since there is no production trigger as in the (x, T, w)-rule. Its impact is measured by extra 
penalty costs during T 1 periods without production. Due to the possibility of building 
a stock of uncommitted items, we may also have to pay holding costs. Consequently, the 
costs charged during the T 1 periods immediately after a production in some period t, 
depend on the initial amount w in the non-dedicated stock and also on the number of orders 
that will be placed during periods t, t+ 1, ... ,t+ T - 2 with due dates in t+ 1, ... ,t T-1. 
Since this future demand is unknown at t, we use its expected value. To give an example, 
suppose that N = 4 and we produce during t the known orders until t + 2 (Le. T = 3) 
plus w items. The demand that arrives during t to be delivered by the end of t + 1 has 
an expectation /JI. If the amount w in stock is larger than /Jl, we will pay holding costs 
h( w - /Jl), otherwise we will have penalty costs P(/Jl - w). In each case, at the end of period 
t + 1 the inventory level becomes w - /J}. The expected demand for period t + 2 that arrives 
during t and t + 1, is given by /J2 and /J}' respectively. As a result, if /JI +!J2 ~ w - /Jl, the 
expected demand for period t + 2 can be satisfied and the remaining items in stock must 
pay holding costs. Otherwise, penalty costs are charged. 

Summarizing, for the action a = Ei=l ri +w with T 2, the holding and penalty costs 
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during the next T - 1 periods given an initial buffer stock of w items, are estimated by 

HP(T,w) = ht, [w- E~l'j -~I'r 
pt, [-w+ E~I';+ ~I'r 

with [m]+ = max(O,m). Clearly, HP(T,w) = ° for T = 0, l. 
For the domain of w, we choose values depending on T in such a way that the amount 

that can be manufactured for the non-dedicated stock is bounded from above by the total 
expected demand for the periods without production. In short, wE {O, "', '.EL2 '.E~:i fLj}' 

Hence, on observing a state r we select the action a' '.ELI ri + w that minimizes the 
expected costs per period, that is 

,_ . {C;+HP(T,w)} 
a - argmm { T} 

a max 1, 

with T E {O, 1, ... , N} and W E {O, .. " '.EL2 '.E~:i fLj}' 
The long-run average costs per period of the LCP approach are obtained by applying 

a similar iteration scheme to that of the optimal lot-sizing policy or by simulation, if the 
number of possible states is too large. Observe that although the choice of the action a' is 
influenced by the costs incurred during those periods without production, in practice we 
may produce again, even in the following period. 

3.3 The (R, S) policy 

In a classical (R, S) system, every R units of time the inventory level is monitored and a 
sufficient amount is ordered to raise the inventory position to the level S (Hax & Candea [10, 
Chapter 4]). The (R, S) policy (or periodic replenishment rule) is a simple strategy that 
is largely used in practice. Applying this rule to our problem implies that a setup occurs 
every R periods, unless there is no new demand for the next R periods and the stock level 
is still S. To raise the inventory level to S at each review epoch, a total of rl + S items must 
be manufactured. As a result, the costs K + hS are charged at the end of the production 
period. However) since production will not take place in the R - 1 periods following a 
setup, we also need to estimate the holding and penalty costs during those periods. Let 
L(y) denote the one-period expected holding and penalty costs when the stock on hand 
minus backorders is y, and the demand for the period is not included. The function L(y) 
often appears in the analysis of classical inventory problems (Veinott & Wagner [17]) and 
is defined by 

y 00 

L(y) - hI)y k)bNk + P L (k y)bNk , y= ... ,-l,O,l, ... 
k=O k=y+1 

y 

- (h+p) L(y k)bNk + P(fL y), y = ... , -1,0,1, ... (5) 
k=O 
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In case R ~ 2 and production takes place in some period t + 1, then the expected costs in 
period t + 2 are given by L( 8). In each one of the following periods t i with i 3, ... , R, 
the costs partly depend on the orders for periods t + 2, ... , t + i - 1. The total demand 
for one period is given by the convolution of the N variables D1, ••• , DN . Hence, the total 
demand for say i periods is obtained by convoluting iN random variables. As a result, the 
expected costs incurred in those R - 1 periods without production are given by 

R-2 00 

G(R, S) = L(8) L Lb~kL(S k), R ~ 2, (6) 
i=l k=O 

with b~k the i-fold convolution of bNk . 
Observe that if there are no demand requirements in the R periods immediately fol­

lowing an inventory replenishment, then at the beginning of the next cycle the inventory 
position is still at S. Consequently, production does not occur and a setup cost is not 
incurred. Since the probability that there is demand for at least one of the next R periods 
is given by (1 - (bNO)R), it follows by (6) that for fixed Rand 8, the average costs per 
period are determined by 

g( R, 8) = _K..;...(l_{:...-bN_o):...-R.:..-) +_h8_+_G_{.:..--R...:-' 8.-:,.) 
R 

In order to find the pair (R, S) with the lowest average costs, we make use of the fact that 
for R fixed, the function F(8) = hS + G(R, 8) is convex (since L(y) is a convex function). 
Therefore, for fixed R ~ 2, the best choice for 8 is the unique integer satisfying 

~F(S 1) < 0 ::; ~F(S), 

where ~F(y) = F(y + 1) - F(y). Due to the form of the cost function L(y) in (5), it can 
easily be seen that L(y) = L(y - 1) + (h + p) 2:%:6 bNk - p and so by (6) it follows that 

s 
G(R, 8 + 1) - G(R, S) (h+p) LbNk p-(R-2)p 

k=O 

R-2 00 S-k 

(h+p) L L Lb~kbNj 
i=l k=O j=O 

S ~2S 

(h+ p) LbNk - (R -l)p+ (h+ p) L Lb~!l) 
k=O i=l k=O 

R-l S 

(h p) L Lb~k (R-1)p. 
i=l k=O 

Therefore, S is determined from 

(7) 
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It is clear that for R 1 the best value for S is 0 and the corresponding average costs are 
given by K(1-bNO )' Starting with R = 1, we set R = R+l, find the S-value satisfying the 
inequalities in (7), and calculate the average costs of the new pair. After each increment 
of R, the lowest costs obtained until then are saved. This procedure is repeated until we 
obtain a pair with higher costs than the best pair so far. In all the numerical tests reported 
in the next section, this stopping criterion yielded the optimal pair (R*, S*). 

4 Numerical results 

In this section we present the results of our computational experiences. First we consider 
a small test set, where we compare the results of the heuristics with the optimal solution 
obtained by the Markov formulation of Section 2. Then we perform a large set of tests 
covering variations in both the cost and the demand parameters. 

4.1 Comparison with optimal solution 

The optimal solution can only be calculated for small problems. For larger problems the 
state space grows too large. Therefore we only consider 16 cases with a binary demand 
and a horizon of 5 periods. As a measure of the variability of the demand, we consider 
the coefficient of variation C1J which is defined as the ratio of the standard deviation (J to 
the mean total demand per period J.L. Observe that since the holding cost is normalized to 
one, the setup and penalty costs in Table 1 are in fact ratios of those actual costs to the 
holding cost 

From Table 1 we can observe that on average, the difference between the costs of the 
(x, T, w)-rule and the optimal costs is less than 1 %. The corresponding values for the LCP 
strategy, the (s, S) policy and the (R, S) policy are 2.6 %, 3.9 % and 16.5 % respectively. 

4.2 Comparison of heuristics 

In this subsection we consider a large test set as shown in Table 2. In total, 324 cases 
were examined covering a sufficiently wide variety of combinations to offer insight into the 
quality of the heuristic procedures presented in the previous section. 

For values of J.L and C1J such that (J2 / J.L < 1, the demand Di in each order category is 
assumed to follow a binomial distribution. In those cases with (J2 / J.L 2: 1, Di is described 
by a negative binomial distribution. For J.L and N fixed, the mean J-ti of the variable Di 
(1 S; i S; N) is obtained by first generating numbers Vi from a uniform distribution in 
[0,1), and then calculating J-ti = J.Lvd L:~1 Vj' With the values of j-ti, the corresponding 
parameters in the binomial and negative binomial distributions are determined. 

The performance of the (x, T, w)-rule is examined not only through the best triplet 
(x*, T*, w*), but also by simply approximating the decision variables by means of a rule­
of-thumb. The well-known EOQ model for constant demand (Silver, Pyke & Peterson [15, 
Chapter 5]) provides us with a simple way for deriving approximations for the values of x 
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cv K p (x*, T*, w*) gap (s*, S*) gap LCP-gap (R*, S*) gap 
0.89 8 3 (2,3,1) 1.97 (-2,2) 6.33 2.72 (4,2) 32.88 
0.89 8 6 (1,3,1) 0.34 (-1,3) 5.31 3.26 (4,3) 46.23 
0.89 32 3 (3,5,4) 0.21 (-3,6) 1.46 11.90 (7,5) 19.47 
0.89 32 6 (2,5,4) 0.00 (-2,6) 1.31 6.53 (7,6) 24.41 
0.55 8 3 (2,2,1) 1.85 (-2,3) 4.34 4.49 (3,3) 18.55 
0.55 8 6 (1,2,1) 2.46 (-1,4) 5.00 3.32 (3,4) 25.83 
0.55 32 3 (4,4,5) 0.28 (-4,8) 1.18 1.72 (6,8) 9.20 
0.55 32 6 (2,5,5) 0.11 (-2,9) 1.03 0.96 (6,9) 14.05 
0.37 8 3 (2,2,1) 0.88 (-2,4) 5.46 0.92 (3,5) 13.75 
0.37 8 6 (1,2,1) 0.83 (-2,4) 8.71 0.75 (2,4) 18.10 
0.37 32 3 (4,4,5) 0.44 (-4,10) 1.12 1.26 (5,10) 5.24 
0.37 32 6 (2,5,5) 0.38 (-3,11) 1.01 0.10 (5,11) 7.80 
0.22 8 3 (3,2,1) 0.40 (-3,4) 6.89 0.79 (2,4) 8.40 
0.22 8 6 (2,2,1) 0.32 (-2,5) 11.00 0.55 (2,5) 13.38 
0.22 32 3 (5,4,5) 0.10 (-5,12) 0.72 1.47 (5,13) 2.27 
0.22 32 6 (3,4,5) 0.12 (-3,13) 1.55 0.10 (4,12) 4.17 

Table 1: Percentual extra costs compared to the optimal policy. 

and T. For the number of periods whose known demands are covered by a production lot, 
we select 

For the above value of 1', it follows that the average costs per period according to the EOQ 
model, are given by C(T) = KIT + {lThI2. Hence, by applying the upper bound on the 
value of x provided by Proposition 1, we obtain the following approximation: 

(8) 

Our choice of l' influences the amount that must be produced to replenish the non­
dedicated stock. A logical approximation consists in taking the expected demand that 
can be placed after the current period for delivery in the next l' periods, and that was not 
included in the production lot, i.e. Ej:l {lj. However, if both the setup and penalty 
costs are relatively large and the unit holding cost is low, it may be advantageous to man­
ufacture more than the above quantity. Observe that by building a dedicated stock with 
the known demands in the first l' periods, we do not cover any requirements beyond T. It 
is reasonable to assume that in each period after 1', {l items need to be delivered. Hence, 
we compare the EOQ estimation of the total costs per period C(T), with the holding costs 
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Parameter 
holding cost per period 
setup cost per period 

penalty cost per period 
number of demand categories 

mean demand per period 
coefficient of variation 

Symbol 
h 
K 
p 
N 
J.L 
cv 

Values tested 
1 

100,200,500 
5,10,15 
4,5,6 

5,10,50 
0.25,0.5,1,1.5 

Table 2: Combination of parameters tested. 

that should be paid if we would keep J.L units in stock in every period. This yields the 
following estimation for the value of w: 

T i-I 

W = LLJ.Lj + (n T)J.L (9) 
i=2 j=1 

with n max (T, L CJf) J). 
Since the (8,8) policy is a special case of the (x, T, w)-rule, we apply the approximation 

in (8) to obtain s = -x. In addition, we estimate the size of a production lot by the 
corresponding value in the EOQ model, that is 

S - s~ J2~1-' 
Table 3 presents the average costs per period obtained by each heuristic procedure 

over the 324 test problems. These costs result from adding the average setup, holding and 
penalty costs indicated in columns 3, 4 and 5. An important performance criterion in a 
production system is the service level, that is, the percentage of customer orders delivered 
on time. This value is given in column 6. 

From Table 3 we observe that both in the (x*,T*,w*)-rule and the (8*,8*) policy 
the number of occasions with production is approximately the same. The (8*,8*) policy 
cannot adapt to the demand requirements as well as the (x*, T*)-rule, and therefore incurs 
higher holding and penalty costs. The LCP strategy seems to follow a different approach by 
initiating production frequently and by replenishing inventory with less items than in the 
(x*, T*, w*) and (8*,8*) policies. FUrthermore, by inspecting the penalty costs, it appears 
that with the LCP strategy the system is less protected against stockouts. This latter 
aspect is more evident in the (R*, 8*) policy, as expected. 

To study the performance of the lot-sizing strategies in detail, we divided the average 
costs of each rule by the costs of the optimal triplets (x*, T* , w*). Table 4 indicates the 
distribution of the percentage of deviations. The 'Average % Dev.' column presents 
the average of the deviations. The next block of eight columns gives the distribution of 
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Strategy average costs setup holding penalty serv(%) 
(x*, T*, w*)-rule 80.72 43.83 32.78 4.11 96.73 
(x, T, w)-rule 83.19 40.37 36.70 6.12 95.60 
(8*, S*) policy 82.73 44.30 34.10 4.33 96.60 
(8, S) policy 85.62 37.93 41.46 6.23 94.80 
LCP 86.64 52.48 26.87 7.29 92.98 
(R*, S*) policy 107.53 58.20 35.63 13.70 85.43 

Table 3: Average performance of the strategies (324 cases). 

the percentage of deviations for each heuristic. For example, in 20% of the cases, the 
LCP strategy was at least 0.5% better than the (x*, T*, w*)-rule. 

Average Percentage of Cases Whose 
Strategy % Dev. Deviation Was Strictly Less than 

-0.5% 0% 0.5% 1% 5% 10% 20% 40% 
'" (x, T, w)-rule 3.3 0 0 27 42 81 91 96 100 

(8* , S*) policy 2.3 0 0 34 45 87 96 100 100 
(8, S) policy 5.8 0 0 10 24 66 81 94 100 
LCP 9.1 20 30 40 46 60 71 82 94 
(R*, S*) policy 32.1 0 0 0 0 18 29 46 67 

Table 4: Performance of the strategies relative to the (x*, T*, w*)-rule (324 cases). 

It can be seen that the average costs of the optimal pairs (8*, S*) deviate very little 
from those of the (x*, T* , w*)-rule. Also, the approximations of the parameters x, T and 
w yield good results and the approximations sand S do not reveal very large deviations. 
The LCP strategy performs better than the (x*, T*, w*)-rule in 30% of the problems, but 
there appears to exist cases for which large deviations occur. Finally, the (R*, S*) policy 
performs poorly. 

To identify the conditions that most influence the behavior of each rule, we analyzed 
the results of several parameter combinations and realized that the magnitude of the setup 
cost and the demand variability are responsible to a large extent to the results displayed 
in Table 4. 

We will start by studying the effect of K. In Tables 5 and 6 we compare the distribu­
tions of the percentage of deviations for the lowest and the highest values of the setup cost 
in our test bed. Striking differences in the performance of almost every rule are noticeable 
when K increases from 100 to 500. With a relatively small setup cost, the LCP strategy 
is in 38% of the cases better than the (x*, T*, w*)-rule. In the remaining problems, the 
deviations are always less than 12%. The good performance of this strategy is due to the 
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Average Percentage of Cases Whose 
Strategy % Dev. Deviation Was Strictly Less than 

-0.5% 0% 0.5% 1% 5% 10% 20% 40% 
'"' (x, T, ill)-rule 1.1 0 0 38 54 100 100 100 100 

(s*, S*) policy 3.5 0 0 23 36 76 87 100 100 
(8, S) policy 9.0 0 0 9 23 48 64 87 100 
LCP 1.4 20 38 53 64 86 97 100 100 
(R*, S*) policy 33.3 0 0 0 0 13 19 44 69 

Table 5: Performance of the strategies relative to the (x*, T*, w*)-rule for small setup cost 
(K = 100; 108 cases). 

fact that contrary to the (x*, T*, w*)-rule, a decision to produce in a certain period is based 
not only on the value of Tl but also on the demand requirements in the other components 
of the order state vector. Moreover, a batch does not always cover the known demands for 
the same number of periods and the amount manufactured for the non-dedicated stock is 
not fixed. Thus, the strategy is more flexible than the (x*, T*, w*)-rule. However, when 
K becomes large the quality of the results deteriorates. In that case, it is natural that to 
prevent from paying too many setup costs, one should restrict the number of occurrences 
of production, and in every period with production, larger batches should be manufac­
tured. This is particularly important with respect to the amount that replenishes the 
non-dedicated stock. Recall from Section 3.2 that in the LOP approach, the maximum 
number of items that can be produced for the non-dedicated stock is bounded from above 
by the expected demand for those periods covered by the production of known orders. Ob­
viously, such a bound does not depend on the magnitude of the setup cost, but in situations 
with large K it is often beneficial to increase the production of uncommitted items beyond 
this limit. Since this is not permitted, the rule tends to initiate production very often at 
the expense of high setup costs. These features account for the large deviations displayed 
by the LOP strategy in Table 6 and for a total average deviation of 20.4%. Nevertheless, 
in 28% of the problems, the strategy still performs better than the (x*, T*, w*)-rule. These 
cases refer mostly to problems with relatively high demand variability. 00000 00000 00000 
00000 00000 00000 

The (x*, T*, w*)-rule tends to overestimate the values of T and wand as a result, 
the holding costs increase. Although in the LCP strategy production still takes place 
more often, the extra setups together with lower holding costs yield in total somewhat 
smaller costs than in the (x*, T*, w*)-rule. The approximations X, T and ill also seem to 
be affected by the size of K. The values of x overestimate x* with the resulting effect that 
higher penalty costs are incurred. With respect to T, the estimated values often equal T* 
or T* + 1. From the expression in (9), we notice that if K increases then ill grows as welL 
This often results in a very large value which contributes to the deviations provided in 
Table 6. 
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Average Percentage of Cases Whose 
Strategy % Dev. Deviation Was Strictly Less than 

-0.5% 0% 0.5% 1% 5% 10% 20% 40% 
(x, T, w)-rule 7.0 0 0 6 17 56 75 89 100 
(B*, S*) policy 1.2 0 0 48 63 97 100 100 100 
(8, S) policy 3.6 0 0 8 24 81 90 100 100 
LCP 20.4 19 28 31 32 33 39 53 82 
(R* , S*) policy 29.2 0 0 0 0 24 39 50 69 

Table 6: Performance of the strategies relative to the (x*, T*, w*)-rule for large setup cost 
(K = 500; 108 cases). 

Average Percentage of Cases Whose 
Strategy % Dev. Deviation Was Strictly Less than 

-0.5% 0% 0.5% 1% 5% 10% 20% 40% 
"" (x, T, w)-rule 2.7 0 0 48 63 84 93 96 100 

(B*, S*) policy 2.0 0 0 70 78 86 89 100 100 
(8, S) policy 3.8 0 0 33 57 78 88 94 100 
LCP 11.3 19 30 41 44 59 65 79 93 
(R*, S*) policy 5.5 0 0 0 0 68 85 99 100 

Table 7: Performance of the strategies relative to the (x*, T*, w*)-rule for low demand 
variability (cv = 0.25; 81 cases). 

In the (8*, S*) policy a large setup cost has the reverse effect. This is due to the 
fact that since only the known requirements for the first period are manufactured, it is 
necessary to keep a large inventory of items to cope with demands in the following periods. 
Clearly, the (8*, S*) policy builds a larger non-dedicated stock than the (x*, T*, w*)-rule. 
If K is relatively high, however, the differences tend to decrease. This is also observed for 
the approximations of the reorder point 8' and the order-up-to level S. Finally, the (R*, S*) 
policy shows considerable deviations to the (x*, T*, w*)-rule. The demand variability has 
a stronger impact on the performance of this policy than the magnitude of the setup 
cost. This is confirmed in Tables 7 and 8 where the distribution of the percentage of 
deviations for cv 0.25 and cv = 1.5 are presented. It is interesting to see that the 
LCP strategy is sensitive to demand fluctuations and yields better results for large values 
of cv. The performance of all the other strategies deteriorates as the variability of the 
demand increases. 
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Average Percentage of Cases Whose 
Strategy % Dev. Deviation Was Strictly Less than 

-0.5% 0% 0.5% 1% 5% 10% 20% 40% 
(x, T, w)-rule 4.7 0 0 0 11 70 88 96 100 
(s* , S*) policy 3.4 0 a 7 11 75 100 100 100 
(8, S) policy 11.1 a a a a 31 60 80 100 
LCP 6.5 26 31 37 37 60 78 88 96 
(R*, S*) policy 68.4 0 a a a a a 0 15 

Table 8: Comparison of the performance of the strategies to the (x*, T*, w*)-rule for large 
demand variability (cv = 1.5; 81 cases). 

5 Conclusions 

In this paper we proposed two different strategies to compute near-optimal decisions for 
a stochastic single-item make-to-stock problem with partial customer-order information. 
We noticed that for the majority of the possible states the optimal solutions to our lot sizing 
problem have the same structure as in the so-called (x, T, w)-rule, where production is 
initiated during a period for which the required deliveries are at least x units. In that 
case, a batch covers the known demand requirements for the next T periods plus w units. 
The finished items corresponding to the known demands are reserved for delivery at the 
promised due dates. The remaining items are not committed to any specific customer 
orders and form a non-dedicated stock. In the least-cost-per-period (LCP) strategy, the 
production decisions are also based on all available information concerning future customer 
requirements. However, in contrast to the (x, T, w)-rule, lot sizes do not cover the demand 
for a fixed number of periods. Also, the non-dedicated stock may be replenished with a 
variable amount. The performance of these two lot-sizing strategies was compared to that 
of the well-known (8, S) and (R, S) inventory policies. As remarked in Section 3.1, the 
(8, S) policy is in fact a special case of the (x, T, w)-rule with 8 = -x, T = 1 and S = w. 
By only covering the requirements in the current period, the (8, S) policy does not explore 
the structure of the demand process completely. This feature also applies to the (R, S) 
policy but has a stronger impact on the performance of this rule since it is only allowed 
to produce at fixed intervals. In that respect, the (8, S) policy is more flexible and can 
choose the reorder point and the order-up-to level so that the system is not exposed to 
stockouts very often. This characteristic was confirmed by the extensive numerical tests 
conducted in Section 4. Nevertheless, taking into account the known required deliveries in 
the next periods leads to a better planning of production as observed in the (x, T, w)-rule, 
especially when demand has large fluctuations. For problems with both small setup cost 
and demand variability, the LCP strategy yielded very good results. In the remaining 
cases, the (x, T, w)-rule gave the lowest average costs. We also derived approximations 
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for the decision variables x, T and w by applying the EOQ model. Surprisingly, the costs 
obtained were usually only a few percent higher than those of the optimal values x*, T* and 
w*. The approximations of s* and S* seemed to be less robust, especially when demand 
showed large fluctuations. 

All presented heuristics could also be used for the alternative problem, described by 
Heath and Jackson [11] and others, where the demand for the first period is not known 
with certainty. Only slight modifications to the direct costs in the various states would 
be necessary and undoubtedly, the optimal (x*, T*, w*)-solution for such a problem will 
contain most of the structure of the optimal solution. 
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