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On a Recursive Formula for the Moments of Phase Noise
Idelfonso Tafur Monroy and Gerard Hooghiemstra

Abstract—In this paper, we present a recursive formula for
the moments of phase noise in communication systems. The
phase noise is modeled using continuous Brownian motion. The
recursion is simple and valid for an arbitrary initial phase value.
The moments obtained by the recursion are used to calculate
approximations to the probability density function of the phase
noise, using orthogonal polynomial series expansions and a
maximum entropy criterion.

Index Terms—Brownian motion, derivation of moments, error
analysis, maximum entropy, optical communication, phase noise.

I. INTRODUCTION

PHASE noise has proven to be a major performance-lim-
iting factor in a number of communication systems. For ex-

ample, in optical coherent or weakly coherent systems, e.g., [1],
[2]. Multicarrier transmission, using orthogonal frequency-di-
vision multiplexing, for instance in wireless indoor systems, is
very sensitive to phase noise [3], [4]. Phase noise is also reported
to degrade the performance of coherent analog amplitude-mod-
ulated wide-band rectifier narrow-band optical links [5], among
others. The statistical properties of phase noise (in the context
of optical communication systems) have been studied by sev-
eral authors, e.g., [1] and [2] and by those authors to whom they
refer. It is a complex problem for which different types of ap-
proximate solutions have been presented (cf. [2]). The authors
in [1] use simulation techniques; a characterization through mo-
ments has been given by [6] and [7], whereas a numerical ap-
proach is given in [8]. The list of references on phase noise anal-
ysis cited here is by no means complete but demonstrates the
range of different approaches.

From a mathematical point of view, characterizing phase
noise is equivalent to the study of the complex-valued stochastic
process (cf. [1])

(1)

where is Brownian motion starting from 0, with
zero mean and variance

The parameter , where is the Lorentz linewidth
of the oscillator (laser linewidth in the case of optical systems).
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The process can be decomposed into its real
and imaginary part

(2)

We present a recursive formula, (8), for the moments of
and , for fixed . The recursion has two advantages
over the one given in [6]. It is simpler in form, and it is valid
for arbitrary initial value of Brownian motion

, whereas the recursion of [6] is restricted to the initial
value .

We close the section with a definition and some notation. We
denote by the probability measure of the Brownian motion
starting from . More specifically for each Borel set,
consisting of continuous functions on

where is the probability measure of Brownian motion
, starting from 0. The symbol is used for the

mathematical expectation with respect to the probability mea-
sure . Note that the distribution of is equal to the
distribution of . When we write , , or without subscript,
we mean , , or , respectively. Finally, we often write
instead of .

II. RECURSIVEFORMULA

We consider the following functional of the Brownian mo-
tion:

(3)

where is a measurable, nonnegative function. Moreover, for
some the function should satisfy

(4)

Denote for fixed , by , , the Laplace–Stieltjes
transform of the random variable . We first derive from a
simplified form of the Feynman–Kac formula (cf. [9, p. 272])
a functional equation for the double Laplace transform

of the random variable . From this functional equation, the
moment recursion (8), which is surprisingly simple, follows.

Observe that
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is a so-called additive functional

where is the shift operator ( maps the set of continuous
functions on onto the set of the continuous functions on

and is defined by , where is a
continuous function on ). The proof that is
additive is straightforward

where it is implicitly assumed that both sides
and are applied to the random continuous function

.
Following [9, p. 272], we obtain for

(5)

Here, the first equality sign follows from

which implies

Changing the order of integration (this is permitted by Fubini’s
theorem since the integrand is nonnegative) yields the third line.
The third equality is justified by a change of variables ,
and by

where we use the additivity of the functional . Fi-
nally, the last equality is the (weak) Markov property (see [9] or
Freedman [10]). The Brownian motion starts afresh from posi-
tion .

Define

The left-hand side of (5) can be written as

and the right-hand side as

Hence, we get the functional equation

(6)

By expanding on both sides of (6) the expression in a
power series in and comparing the coefficients of ,
we obtain

A recursive formula for can be obtained by taking on both
sides of the above equation the inverse Laplace transform. Note
that the inverse Laplace transform of

is equal to

(7)

where

So

This proves the following recursion:

(8)
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Fig. 1. Probability density ofX (t)=t. Zero initial valuex = 0. Solid lines represent the results by a maximum entropy approach while dashed lines denote the
Chebyshev polynomial series expansion. (a)�t = 1. (b) �t = 2. (c) �t = 4. (d) �t = 18.

where

The above recursion has two advantages over the recursion
given in [6]. It is simpler in form, and it gives the moments
starting from arbitrary .

III. A PPLICATIONS

We apply (8) to find the moments of

Note that the cosine can be negative; however, it is not difficult
to show that both the functional equation (6) and the recursion
(8) also hold for functions that are bounded from below and
satisfy (4). From , and

we obtain

(9)

For the second moment, we obtain

(10)

The third moment can be expressed in terms involving and

As the order increases, the expressions become more com-
plex. We used a computer program supporting symbolic inte-
gration to find the moments up to the 15th order.

Based on the moments, we used a maximum entropy crite-
rion (cf. [11]) to obtain an approximation for the probability
density function (pdf) of . We also used a series ex-
pansion involving Chebyshev polynomials for comparison. Two
cases were treated as follows: 1) zero starting value and
2) a random, uniformly distributed on , initial value
(steady-state regime [7]). In Fig. 1, we present the results of the
case of zero initial value for different values of. The results of
the steady-state regime are displayed in Fig. 2. In both figures,
the solid lines represent calculations with the maximum entropy
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Fig. 2. Probability density ofX (t)=t. The initial valuex is random, uniformly distributed on(��; �) (steady-state regime). Solid lines represent the results by
a maximum entropy approach while dashed lines denote the Chebyshev polynomial series expansion. (a)�t = 0. (b)�t = 1. (c)�t = 4. (d)�t = 8. (e)�t = 18.

approach, while the dashed lines represent the Chebyshev poly-
nomial series expansion. Both approaches yield a similar shape
of the pdf of . However, the maximum entropy approach
seems to converge faster than the orthogonal polynomial repre-
sentation.

The results for the steady-state regime are found to be in good
agreement with previously published results [7]. As one can ob-
serve in Figs. 1 and 2, for large values of(what can be con-
sidered as strong filtering), the pdf of tends to acquire
a Gaussian shape.

IV. CONCLUSIONS

A simple recursive formula for the moments of phase noise
and its real and imaginary parts is presented. In fact, the re-
cursion is valid for any integral of a function of the Brownian
motion provided that the function is measurable, bounded from
below, and satisfies (4). The recursion also gives the moments
for an arbitrary starting value. Approximate pdf’s can be found
through a maximum entropy approach or an orthogonal polyno-
mial series expansion. Moments may also be used for the cal-
culation of error probabilities by Gaussian quadrature rules; see
[12].
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