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SOME FUTURE DIRECTIONS IN
COMPUTATIONAL FAILURE MECHANICS

R. DE BORST", J. CARMELIET?, J. PAMIN and L.J. SLUYS
Delft University of Techr%;logy, Faculty of Civil Engineering,
P.O. Box 5048, 2600 GA ;@'Delft, The Netherlands

Abstract. Continuum approaches are reviewed which can properly model localised deforma-
tions that act as a precursor to final fracture in quasi-brittle materials. Next, one such
higher-order damaging continuum model is combined with a stochastic approach to describe
the heterogeneity in quasi-brittle materials.

Keywords: Softening, localisation, finite element analysis, random fields

1. Introduction

Failure in quasi-brittle and frictional materials involves localisation of defor-
mation, i.e., we observe that at incipient failure small zones of highly
strained material develop abruptly while the remainder of the body experi-
ences virtually no additional straining. Examples are cracks in concrete,
shear bands in soils and rock faults. Experiments show that these localisa-
tion phenomenona are accompanied by a sharp decrease of the load-carrying
capacity. This phenomenon is commonly named strain softening and leads to
ill-posed boundary value problems in standard continuum theories, since in
quasi-static problems ellipticity of the governing set of differential equations
is lost and in dynamic problems hyperbolicity is lost. In numerical simula-
tions this leads to an extreme mesh sensitivity in terms of fineness and direc-
tion of the grid lines. To remedy this improper behaviour the standard contin-
uum model must be enriched by adding higher-order terms, either spatially
or in the time domain. These techniques are commonly referred to as regular-
isation methods. In this contribution we shall scrutinise the possibilities of
using enriched continuum theories (non-local and gradient theories) to reme-
dy this deficiency of the standard continuum. For dynamic problems the pos-
sibility of adding viscosity to the constitutive model will also be investigated.
Finite element analyses are presented to illustrate some of the approaches.
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Another important property of these materials is the inherent heterogeneity
at a relatively large scale. This heterogeneity may imply that the exact fail-
ure mode can be highly dependent upon the precise flaw distribution. To
model this inhomogeneity stochastic material properties must be assumed in
numerical simulations. However, the use of a stochastic approach does not re-
solve the above mentioned issue of the change of character of the governing
differential equations during progressive damage. A simulation technique
that describes the true failure process properly within the framework of con-
tinuum mechanics must incorporate both a regularisation of the standard
continuum during progressive damage and a stochastic strength distribution.
This statement will be substantiated in this contribution. To do so we will
present finite element analyses of direct tension tests with a local damage
model and with a nonlocal damage model. In both cases deterministic as well
as stochastic calculations using a Monte Carlo technique will be presented for
two different levels of discretisation. The randomness in the damage process
will be introduced by considering the initial damage as a univariate homoge-
neous random field, describing the continuous spatial distribution and the
autocorrelation.

2. Cracking, damage and localisation of deformation

The essential deficiency of the standard continuum model can be demonstrat-
ed simply by the example of a simple bar loaded in uniaxial tension [1]. Let
the bar be divided into m elements. Now suppose that one element has a ten-
sile strength that is marginally below that of the other m—1 elements. Upon
reaching the tensile strength of this element failure will occur. In the other,
neighbouring elements the tensile strength is not exceeded and they will un-
load elastically. The result in terms of the displacement of the end of the bar
is fully dominated by the discretisation, and convergence to a ‘true’ post-peak
failure curve does not seem to occur. In fact, it does occur, as the failure
mechanism in a standard continuum is a line crack with zero thickness. The
finite element solution of our continuum rate boundary value problem simply
/" tries to capture this line crack, which results in localisation in one element,
irrespective of the width of this element. The result on the load-average
strain curve is obvious: for an infinite number of elements (m — o) the post-
peak curve doubles back on the original loading curve. Numerous numerical
examples for all sorts of materials exist which further illustrate the above ar-
gument. From a physical point of view the above behaviour is unacceptable
and when we adhere to continuum ﬁescriptions one must enrich the continu-
um by adding higher-order terms,/either in space or in time, which can ac-
commodate narrow zones of highly localised deformations.

2.1 The fracture-energy ‘trick’

As an intermediate solution between using the standard continuum model
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Fig. 2. Displacements of concrete specimen (¢ = 0.50 - 107 s).

and adding higher-order terms a number of authors [2-4] have proposed to re-
gard the area under the softening curve as a material parameter, namely the
fracture energy G¢:

Gf=Jadu=Jog(s)ds. €))

Assuming a constant softening modulus # and adopting a constant strain dis-
tribution over the band, we now obtain that

u/L _ 1 2G; -
6 E Lf2°

which shows that the solution in the post-peak regime is now only dependent
upon the Young’s modulus E, the fracture energy Gy, the tensile strength f;,
and the length of the bar L. When we prescribe the fracture energy G; as an
additional material parameter the global load-displacement response can be-
come insensitive to the discretisation. However, locally nothing has altered
and localisation still takes place in one row of elements. This is logical, since
the loss of ellipticity occurs at a local level, even though the energy that is
dissipated remains constant by adapting the softening modulus to the ele-
ment size. For numerical simulations this implies for instance that severe
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Fig. 3. Displacements for rate-dependent analysis at r =0.45- 107 s.
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Fig. 4. Axial strain profile in the notched area at r =0.45- 107 s.

convergence problems are usually encountered if the mesh is refined or if in
{ addition to matrix failure interface debonding between matrix and fibres is
modelled by inserting interface elements in the numerical model. Also, the
frequently reported observation still holds that the localisation zones are bi-
ased by the discretisation and tend/to propagate along the mesh lines. This
can be nicely demonstrated with the example of impact loading a concrete
specimen in a Split-Hopkinson deﬁice, Figure 1 [5]. The results for the de-
formed specimen at failure are shown in Figure 2 for three different discreti-
sations in the region between the notches. We observe a clear spurious locali-
sation pattern with the localisation concentrated in a single band of elements
which generally follows the mesh lines and occasionally jumps from one row
to the next and back without any physical motivation.
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2.2 Rate-dependent continuum models

From a physical point of view the introduction of rate dependence is perhaps
the most natural way to regularise ill-posed initial value problems which
arise because of the introduction of damage or frictional effects. Here we
adopt a simple, linear rate-dependent smeared crack model as developed by
Sluys [5]. In it the major principal stgress degrades according to
[ o

d=ﬁ;§1—h8‘+m§t—, 3)
with & the inelastic strain, # the softening modulus and m a rate-sensitivity
parameter.

Using the rate-dependent smeared crack model as defined in eq. (3) the
experiment of a concrete specimen under impact loading in a Split-Hopkinson
bar (cf. Figures 1 and 2) has been reanalysed. The incremental displacement
patterns are shown in Figure 3. The most striking difference with the dis-
placement pattern of Figure 2 is that localisation now does not proceed along
the element lines and is no longer confined to the rows of elements between
the notches. This is even more obvious when the strains in the vertical direc-

tion are plotted (¢,,) as has been done in Figure 4. We observe a clear branch-
ing of the cracks.

2.3 Non-standard continuum models

The deficiency of the standard continuum model with regard to properly de-
scribing strain localisation can also be overcome by introducing higher-order
terms in the continuum description, which are thought to reflect the mi-
crostructural changes that take place at a level below the continuum level.
Examples of such changes are void formation in metals and crack bridging
phenomena in the context of concretes [6]. Essentially, one then departs from
the concept of a ‘simple’ solid which has been the starting point for virtually
all modern developments in continuum mechanics. A number of suggestions
have been put forward for non-standard continuum descriptions that are ca-
pable of properly incorporating failure zones. These include the non-local
models [7,8], the use of the Cosserat continuum [9-11] and the gradient mod-

oI5 [11-16].

Non-local models can either be introduced in a plasticity-based formal-
ism or in a damage-based format. The latter approach has gained most popu-
larity. In fact, it has been shown in [17] that non-local plasticity models are
extremely difficult to implement properly. Non-local damage theory follows
standard elasticity-based damage mechanics in that it introduces an internal

variable, the damage parameter @, which accounts for degradation of the
elastic stiffness matrix D:

c=(1-w)D’ 4)

In this isotropic elasticity-based damage theory the damage variable o grows
from zero to one (complete loss of integrity). Damage growth is possible if the
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damage loading function \,
f€,xk)=€-x. 5)

vanishes. In particular, the damage loading function f and the rate of dam-
age growth & have to satisfy the discrete Kuhn-Tucker conditions

f<0 , 20 , fo=0. ©)

In (5) £ is the equivalent strain, which can be a function of the strain invari-
ants, the principal strains as in Mazars [18,19]:

3
£= \/ (< g >)? )
i=1

with ¢; the principal strains, and <¢; >=¢; if ;>0 and < g, >=0 otherwise, or
the local energy release due to damage. The parameter « starts at a damage
threshold level x, and is updated by the requirement that during damage

growth f=0. Damage growth occurs according to an evolution law F (€) such
that

w=F(). ®

The salient departure from the local damage theory occurs when the local

damage parameter » in the above identities is replaced by an averaged or
non-local value @, such that

1
B(x)= - _[ ox+7)g@)dV , V= j g(z)dV ©)
gy Vo

with z the separatioh vector between the points x and x+7, and g an attenu-
ating weighting function, e.g., the error function

g(r)=exp(~ 72 21%) (10)

in which the non-local parameter / has the role of an internal length scale.

Non-local damage theory suffers from the drawback that the issue of ad-
ditional boundary conditions for this higher-order continuum is still not com-
pletely settled, thus rendering the theory incomplete. Also, they seem less
amenable to an efficient implementation, thus making large-scale computa-
tions less feasible. It is for these reasons that gradient models, in which the
higher-order gradients of internal parameters are considered instead of aver-
aging one or more internal parameters, are here considered as a serious alter-
native for non-local approaches. j’

Below we shall restrict ourselvés to a brief discussion and an example of
a gradient-enhanced Rankine flow plasticity theory [20-22]. The essential fea-
ture of gradient plasticity theory is that the yield function f not only depends
upon the stress ¢ and an equivalent inelastic strain measure y!, but that
there is also a dependence upon gradients of ', e.g., the Laplacian:

f=flo.v, V7. (11)
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100. 0[] 100. 0[]
90.0 90.0[ N
T =N T EEERY
] NN [ EERNAN
80.01 80. 0 /I DARRRL
] EEIN NI AR
B \ e INALATAY
70.0H 70. ORI THHRR
\ AR AAYAAY Vi
\ \ e
60.0 ] 60.0 ALY IRRVRTAN
\ v \ iy
N A\ VALY nuiem
50.0 AAN 50.0 MANRAZZRTLAVAY
\ \ \ i
D i N
40.0 y 40.0 NNV BT
/ \ LR RAN \
N }\\\\ \\\ \ \
30.0 A\ 30.0 NAIRER
NILVAY [
RN SRR
20.0 MEAR 20.0 N
]
N\ N/ 1]
10.0 ) 10.0 f
N N
N
0.0 ' 0.0
7.5 2.5 12,5 22.5 32.5 42.5 -7.5 2.5 12,5 22.5 32.5 42.5

Fig. 6. Contour plots of equivalent fracture strain at the final load level for
[=2mm (left) and I=3mm (right).

If we denote by o, the major principal stress and by & the instantaneous ten-
sile strength, then

f=o01=6(' V3. (12)

When it is further assumed that the dependence upon the gradient term is
linear - the simplest possible case - then eq. (12) reduces to

f=01-6(")—eV3y . (13)

In the example calculations that will be presented below ¢ has been taken
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proportional to the rate of softening: ¢=1°95/0y'. The material parameter !
has the dimension of length and represents the gradient influence. For /=0
the standard Rankine flow theory is recovered.

The gradient-dependent Rankine plasticity model has been applied to
mixed-mode crack propagation in a Single-Edge Notched plain concrete beam
(Iosipescu geometry). The experimental resuls are from Schlangen [23]. The
loading configuration including some aspects of the numerical discretisation
is shown in Figure 5. The loading plates have been included in the discretisa-
tion and have also been modelled with reduced integrated eight-noded
quadrilaterals, but with a higher stiffness. Details of the employed mixed fi-
nite element formulation are given in [21,22].

The material data for the concrete, determined as the average experimen-
tal values are: Young’s modulus E = 35 GPa, Poisson’s ratio v = 0.2, the ten-
sile strenth £, = 3.0 MPa and fracture energy G; = 0.1 N/mm. For this value of
the fracture energy two different length scales / have been considered, name-
ly I = 3 mm and subsequently ! = 2 mm. The differences with respect to the
width of the fracture process zone are shown in the contour plots of the equiv-
alent fracture strain of Figure 6. Provided that the fracture energy is kept
constant a variation of the internal length parameter ! does, however, not af-
fect the load-CMSD diagrams shown in Figure 7, neither does the discretisa-
tion influence the results for this level of mesh refinement. Since the comput-
ed load-CMSD diagram is too brittle compared with the experiment another

analysis with a higher value of the fracture energy (0.2 N/mm) has also been
conducted, Figure 7.

3. Stochastic methods and damage evolution

A fundamental question regarding application of random fields to localisation
phenomena is whether a statistical description of the standard continuum re-
solves the ill-posedness that arises after the onset of localisation. This ques-
tion becomes imperative especially if we consider that the description of a
heterogenous continuum by correlated random variables introduces a length
'parameter in the form of the correlation length ¢ analogous to the introduc-
tion of an internal length scale [ in non-standard continua. The correlation
length 6 is a measure for the rate of fluctuations of the random field and may
significantly influence the damage process and global response of the struc-
ture. The example of a tensile specimen with random initial damage is well
suited to study this fundamental 1531[19 We assume that the initial damage
threshold is randomly distributed ovgr the solid and can be represented by a
non-Gaussian correlated random field. For the non-Gaussian field a three-
parameter Weibull distribution function is assumed:

F(Ko)=Au(Ko— KFM T exp[— MKy — K§™)*] (14)

with 1,  the Weibull-parameters and K" the lower bound of the initial dam-
age threshold. The material parameters are taken from Carmeliet [24] and
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Fig. 7. Computed and experimentally obtained load-CMSD diagrams.

have been assigned the following values: 1=6.56-10°, u=1.6,
K™ =0.66-10"*. An inverse fitting procedure, comparing the numerical re-
sponses to the experimental distribution of tensile strength and energy dissi-
pation, was used for the proper identification of the material parameters [24].
The field is assumed to be homogeneous and isotropic, which implies that the
autocorrelation coefficient function can be expressed in terms of the separa-
tion vector z between the points x and x+z. The autocorrelation coefficient

function is assumed to be of the same form as the weight function of the non-
local damage model:

p(7)=exp(=1z212d%) (15)

with d a parameter. In case of a squared exponential function as in eq. (15) d
is related to the correlation length 6 by d =6/2. The correlation length 8 is
defined here as the length over which the autocorrelation coefficient function
drops to a small value, say e”!. In the simulations the correlation parameter
has been assigned the value d = 5 mm or, equivalently, a correlation length 6
=7 mm.

For the finite element discretisation two different meshes have been used:
8%32 and 16x64 elements. During the discretisation process, the size of the
stochastic element is not changed. This means that a stochastic element is ei-
ther a block of one or of four finite elements with identical random properties.
Furthermore, we assume a constant linear softening diagram with a soften-
ing modulus 2=-0. 1E and an elastic modulus E = 20000 MPa.

The differences between the local and nonlocal stochastic models become
most clear when comparing the total energy dissipation during damage for
the two different finite element discretisations. Figure 8 shows the cumula-
tive distributions calculated from the responses of 100 samples using the
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Fig. 8. Cumulative distribution of the energy dissipation during failure.
Left: local damage model. Right: non-local damage model.

Monte Carlo technique. The results for the local damage model, obtained for
a less steep softening branch, h=-0.01E, are clearly mesh dependent: a de-
creasing energy dissipation is observed upon mesh refinement. On the con-
trary, the results for the nonlocal stochastic model show a perfect agreement
for both discretisations. These observations correspond fully with the findings
for deterministic models.

So far, we have shown that a stochastic continuum description of damage
localisation must include a regularisation technique to prevent loss of well-
posedness of the rate boundary value problem. A major problem now lies in
combining the two different length parameters introduced in a physically re-
alistic manner: the internal length scale [ of the nonlocal continuum and the
correlation length 6 of the random field. Both length parameters result from
the transition of a micro-level to a macro continuum level. While the internal
length I depends merely on the typical size of defects (or aggregates), the cor-
relation length 6 depends on the size as well on the frequency, i.e. the dis-
tance between successive defects.

{
4. Some reflections on future ;work
/

In this contribution current developments have been reviewed for modelling
localisation and fracture via continuum methods. Various promising ap-
proaches exist, but there is no such a thing like a panacea which cures the
shortcomings of standard, rate-independent continua upon the introduction
of strain softening and/or non-symmetry in the constitutive rate equations.

In the authors’ opinion the most pressing issues that require further at-
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tention for failure computations are:

o The proper determination of the additional model parameters that

emerge in the higher-order and rate-dependent continuum models when
compared to the classical approach. Especially in higher-order continua
this problem is not solved easily, since the additional parameters are not
dlrectly derivable from elementary tests such as uniaxial or triaxial ten-
sion or compressmn tests. Eveh if one would be able to carry out a test
on a perfect specimen, so that homogeneous deformations would occur
throughout the entire loading programme, these parameters could not
be measured because for homogeneous deformations there is no effect of
the higher-order continuum models. Therefore, one must proceed in a
semi-inverse manner, whereby the experlmental results of different
types of tests are fitted in the post-peak regime.

The steep strain gradients that occur in higher-order and rate-
dependent continua during failure require that very fine meshes are
used to capture the failure mode properly. If such analyses are to be car-
ried out on nowadays’ or even tomorrow’s computers, then the use of
adaptive mesh refinement techniques or spectral overlay methods is a
conditio sine qua non. A problem is the development of proper criteria
for mesh refinement in inelastic, non-standard continua. Although nec-
essary this will probably not prove an easy task.

The proper combination of stochastic methods with higher-order contin-
uum models for frictional and damaging materials.
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