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0. One-parameter semi-groups of operators

Notations:

e X: Banach space with norm | - ||

e L(X): Bounded operators on X.

e A€ L(X)|A| =sup M
sex ||l

Definition. A semi-group of operators on a Banach space X is a mapping:

[0,00) — ﬁ(X), t— Pt, {-Pt}tZO

such that

1) =1

2) VisoVsyo PiPs = Py,
Definition.

° {H}tZO is called a uniformly continuous semi-group on X if t — P, is continuous
as a mapping: [0,00) — L(X).

o {P.}i>0is called a strongly continuous semi-group on X if V,ex t — Pz is continu-
ous as a mapping: [0,00) = X.

Examples.

o tr el o€ IR and fixed, is uniformly continuous.

o Take Ly(IR) and define P, : t — Pu by (Pu)(z) = u(x —t). In this case B, is

strongly continuous but not uniformly continuous. Proof?



1. Uniformly continuous semi-groups

Theorem 1.1. Let A € £(X), t € C, and define

PtzetA=i thA™ .
e~ nl

Then

1) {P.}s»0 is a uniformly continuous semi-group.

2) A=lim 221
hl0

in  L(X).
3) Ry = / e~ MP,dt for A € C with Re X > ||A||.
0

Note: The resolvent Ry of A appears as the Laplace transform of {Pt}tZO-
Remark: A is called the infinitesimal generator of the semi-group {P;}:0.

Proof. 1) and 2) ¢t — P, is obviously an entire analytic function and hence continuously
differentiable. From the expansion:

d
apt=APt=PtA.
Therefore
d . P
A—APO—EPtlmo—-l}:%l A .
X rA" o tn|| All™ .
3) P=Y L < 3 HEAR _ e
n=0 n. n=0 n.

So

Re A > |4 = /||e"‘tPt||dt< o = /e"“Ptdt
0 0

is absolutely convergent.
Now, put Sy = / e~ MPdt.
0
We will show that Sy = (A — A)~! = Ry:



(A= A)Sy = (A= A) / ¢~ Pydt = A / e MP,dt — / e M AP dt
0 0 0
[o o] o0 d
) / e MP,dt — 0/ e = Pudt =

=) / e MPdt — e NP + / —Xe~MP,dt =

= hm (—e™MP)+1.
Since
e~ P,|| = e~ Be 23| P,|| < e Re 2-ll4l)

and Re A > ||A]| it follows that sli)rglo e~ P, = 0.
So (A — A)S) = 1. Also AP, = P,A implies Sy(A — A) = 1.
Therefore Sy = (—A — A)~! = R, whenever Re A > ||A]. ]

Note: Cf. the highschool formula

T 1
/ e—Ateatdt = }\—:—a VaGC’ Re )\ > |a| .
0

Definition. {P,}:50 is a called a contradiction semi-group if Vy>o || P|| < 1.

Remark. For a contraction semi-group we have
Re )l > 0= / lle=P,||dt < oo .
0

So the resolvent R exists whenever Re A > 0.

For the resolvent set p(A) of A it now follows p(A) D {A € C| Re A > 0} and for the
spectrum o(A) of A: 0(A) C {A € C| Re A <0}.

Finally

%) _ ) e 1
||RA||=||/e’\tPtdt||§/etR M=o
0 0

Theorem 1.2. (Reverse of theorem 1.1).
Let {P.}:>0 be a uniformly continuous semi-group. Then

H!A € £(X)Vt20 [Pt = etA] .



(A is called the infinitesimal generator).

Proof.

a 1 a 1 a
VasoViso © / Pypdt = = / P,Pdt=P, - / P.dt .
a 0 a 0 a 0

1 a
P; is continuous = lim — / Pdt=1.
al0 @q 2
1 a
For a > 0, sufficiently small, |- - / Pdt|| < 1.
. ;0 .
1 1 -
But then I — (I - = / Ptdt) = 1 / P,dt is invertible and (—- / Hdt) ' € L(X).
%% %% %%
sta

Further, l / P, .dt = l / P.dt is differentiable to s. Hence, also
a a
0

S

1 f 1 -1
P,=- 0/ Posedt - (2 0/ P.di)

is differentiable to s, whereas

Pss"Ps Ps_-[
P;:lﬂ*T:hgl P, .
P.—1

If we put li{(rjl = A then we have P, = AP, = P, A.

Let Q; = e"*P,. Then Q) = e"*AP! — e7**AP, = 0. This implies Q; = constant =
Qo=1.

Finally, e"*AP, = I or P, = e'4. a



2. Strongly continuous semi-groups

Lemma. Let {P;};>0 be strongly continuous on X.
Let e >0,8>0, z € X and put

P -1
€

A =

anstxz-i—/Pta:dt.

Then B, is a bounded operator, B, € £(X), and
A.B,z = A,B.r = B,A.x .
Proof. The mapping ¢ — Pz is continuous. Hence
Vsso0 Vzex [ sup || Pz| < 00] .
0<t<s
Then, with Banach-Steinhaus, sup ||P| < o0.
0<t<s

This implies the boundedness of B;.
Concerning the algebraic part of the Lemma:

A.Byz = —/ Pie — P)z dt = —{ / P di — /Pt'c dt}

=—{/Bxdt /Pt:cdt}_ / vt — P)z dt = A,B.z .

Theorem 2.1. Put D(A) = {z € X | liI(r} A,z exists}.
Define A: D(A) - X by Az = 111%1 A.z. Then

1) D(A) =

2) Ais a closed linear operator.



(A is called the infinitesimal generator of {P;}:>0).
Proof.

- 1 7
1) Let ¢ € X. We want to show ¢ € D(A). From B,z = " / P,z dt and the strong

0
continuity of {P,}¢>o it follows that li{g B,z = z. So we are ready if we show that
Bsz € D(A). Indeed A, continuous = 1ig1 A,B.x = A,r.

Lemma = li{{} A.B,x = A;z = B,z € D(A).

2) Observe z € D(A) > lim B,A.z = A,z = B,Az. Consider a sequence {z,}ns0 C

D(A) such that hrn xn = ¢ and hrn Az, = .

If we show that : :L‘ 6 D(A) and A:v = y the operator A is closed. Indeed, for all
s>0

B,y = lim B,Az, = lim Az, = Az .
But then y = 1i£51 By = ligl A,z, which says z € D(A) and y = Az.

O

Theorem 2.2. Consider a strongly continuous semi-group {P;}i>0. Then {P;}s>0 is
uniformly continuous iff the infinitesimal generator A is bounded.

Proof. See theorem 1.2. 0
Now we discuss the resolvent of infinitesimal generators.

Lemma. Let f : [0,00) — IR be sub-additive and bounded from above on compact
sets, then the limiet Jim @ exists in [—o0, c0).

Proof. Sub-additivity means V>0 f(s + t) < f(s) + f(t). Take to > 0 and put

a= sup f(t) < oo.
0<t<tp

Vi0 Inye N Ir)0<rt)<to [t = n(t)to + (1))
and one has
f(t) = f(n(t)to +r(t)) < n(t)flto) +

So

-J



Hence

Vi,>o limsup f@ < 1(to) }
t—oo t to

Therefore also

lim sup ft) < inf 1)

1300 i — 0 ¢

It follows that

lim f—(tlzinfw<oo.

t—bco ¢ t>0 ¢
O

Corollary. Let {P.};>0 be a strongly continuous semi-group. Then the function
f(t) = log||P| is sub-additive and bounded on compact sets. (This follows from
Vzex V1o [|| Pez|| is bdd on on [0, T]] and Banach-Steinhaus). So

lim

t—o00

1

og | A — W< 0o
t

Theorem 2.3. Consider {P,};>o with infinitesimal generator A. Put

1
w = lim 2&l20
t—o00

Then for A € C, with Re A > w, one has A € p(A) and
(M—-A)1z2=Ryz= / e~ MP,z dt .
0

Proof. Choose a € IR with w < a < Re A. Then

log || 7|
14

Fto>0 Vst [ Saor B < eta] .

Because, via Banach-Steinhaus, sup ||P|| = o < oo, we find
0<t<to

IM,>0 Viso || B £ Mae' .

Estimate



oo o0 M
0/ e Padt < / e R MM, etz fldt = ——Ilall

This shows that the integral

Syz= [ eMPz dt

converges absolutely and defines a bounded operator Sj.
We now want to show

liig()\l — A)S\z = lii’gl S\(AI—A)z=z, forallze X.

Indeed,

(e}

(M — A.)Sxz = AS)z —/ f”’se;ﬂ e~ Mo di
0

i -1 17 Y
=/\S,\;r:—/e " Ptxdt-}——s—/e Pz dt
0

[

=S A —AShc+z=2z, aselO0.

We conclude Sxz € D(A) and (A — A)S\z = z, for all ¢ € X. It also follows that
(AT — A) is surjective. Because of AP, = P, A, for all ¢, > 0 we also have

li}})l SA(AI — Az =z = S\(A — Az,

for all z € D(A), which implies that (AI — A) is injective.
Conclusion: For all A € €, Re A > w, A\l — A: D(A) = X is bijective.

This means A € p(A) and (A — A)"'z = S\z = R)z. o
Corollary.
|| R} M AeEC, Rerd>a>w.

| < w5z
(Re X —a)

Proof.

o0 o0 (e o]
KCE = / e_’\t"Ptndtn / G_Atn_lljtn_l dtn—l S eee '/ G—Atl Ptl.'l? dtl
0 0 0



o0 0 o0
= / e‘)‘t"dtn ] C—At"_ldtn_l *ees j e_l\tlptnptn_l t et Ptlx dtl .
0 0 0

o0 o0 o
||Rf\‘:z|| S/ |e"\t"|dtn / |e—>‘t"‘1|dtn-1 .. / Ie—-A:, |ea(t,.+...+t,)dt1
0 0 o

7 1
<M, T [ lem et dty = My ——— O
=10

7

n

(Red—a)*’

1

Remarks.

1)

If {Pt}tzo is a strongly continuous contraction semi-group then, in Theorem 2.3, we
1
can take w < 0, since || P;|} £ 1 implies ?log | P:|| < 0.

We have || P|| < M,e® with a > w. Observe that {Q;}:>0 with Q; = e™**P, is again
a strongly continuous semi-group and

d
?d_tth = —ae" Pz + e"‘”%Pt:v )

At t = 0 this leads to B = A — a if A and B denote the infinitesimal generators of
{P:}+>0 and {Q+}s>0, respectively.
From p(A) 2 {A € C| Re A > w} it follows that

p(BYD2{N€C| ReA>0>w—d}.

So, without losing generality we could restrict to uniformly bounded semi-groups,
the spectra of whose infinitesimal generators all lie in the closed left half plane.

Theorem 2.4. If two semi-groups {P;}i>0 and {Q:}i>0 have the same infinitesimal
generator, they are the same.

Proof. For suitable a,b € IR we have

Pl < Mae® and  [|Q]| < Mie™ .

Let A and B be the infinitesimal generators of {P,} and {Q.} respectively. Then for
Re A > max{a, b}

0\8

e MPax dt = Ryx(A)z = R\(B)z = / e MQux dt .
)

It is sufficient to show that Pz = Q;z, for all z € X.
For Re A > max{a,b} = m we have

10



/ e'(’\"m)te'mt(Ptx —Quz)dt =0. @
0
Since span{t ~» e~(*~™)t} is dense in Cy([0, 00)) we find
/ o(t)e™(Piz — Quz)dt =0 for all ¢ € Co([0, 00)) .
0

Take ¢:
and let € } 0.
Then

u

V’U.ZO / e_mt(PtSC - th)dt =0.

0

1 ¥

u u+te — ¢

Differentiate to u,

e Py — Quz) =0

Hence P,z = Qu, Vu>0 Vzex.

Theorem 2.5. (Hille-Yosida). Consider a closed operator A in the Banach space X;
D(A) = X. Then A is the infinitesimal generator of a strongly continuous semi-group
& Im>0 JaeRVaca Ve

ek

) € () and I < 57

Proof. = Theorem 2.3.

< For all A > a we have Ry = (A — A)™! € L(X). Form By = —A(I — AR)) € L(X)
for A > a. We will construct the operators P; of the desired semi-group as the strong
limit for A — oo from the operator etFx.

1) Let

2 n n
t>0, A > a; eBr = g~ t+NBy _,\tz ()\t R} |

n=0

11



2)

3)

This implies

= nt(A—a)”

Ata

2
||etBXH S Me_)‘t — Me_’\t .eﬁ = Mek—a .

At
Pick a; > a. Since lim ¢ _ ta, it follows that
A—00 —a
(*) FaoeR Vazrosa [[|€8H]| < Memt] .

We show that V,ep(a) [AILm Byz = Az]. Let z € D(A) and A > a

M||A'v||

¢ ||AR \z — z|| = ||ARxz — R\(A — A)z|| = || RaAz|| £ —0,as A = oo.

MII

o\, crVas) AR £ 1< 2M.

£
elete >0and y € X onep(,;) [||:zo — y|| < min <6M 3)]
We derive, for A sufficiently large,

IABxy — yll < [ABay — MRxoll + [IABxzo — soll + llea —
e €
< oM|ly - Stic<ce.
S 2M|ly — ol + 5+ 5 <e
So
Vyex [}Lrglo ARyy = y]
and from this, Vzep(a)
By = —A(I = ARy)z = —A(R\(A — A) — AR))z =
= AR\Az — Az, as A = 00 .
Put Sy(t) = €'Br for A > @ and t € IR*. Then {S(t)}:>0 is a uniformly continuous
semi-group. We will show that - for z € D(A) - S\(t)z converges to a limit Pir as
A — 00, uniformly on bounded intervals in [0, 00).
Let A\, > a. Since R\R, = R, R,, it follows that ByB, = B,B) and S\(t)B, =
B,Sx(t). Let £ € D(A), on [0,1] the function S,(t — s)S\(s)z = elt=9)ButsBa jg
continuously differentiable to S, the derivative is

e(t—S)Bp’I'sBA(B/\ - Bu).‘t .

We estimate

12



4)

5)

t
1832 = Su@ll = || [ eC~I5+B7(By - B,z ds|
0

(+)
< [ =B [|e*B|| | Baz — Buzllds <

o .

< Men(t=9) Mene .t . ||Byz — Bzl =
= M?*te™!||Byz — B,z||, for all A,u > )o .

Because of thos the limit Pz = /\lim Sx(t)x, z € D(A), exists and the convergence
—+00

is uniformly on bounded intervals.

Let z € D(A) and € > 0. Then

ag>a Vs, [ Pez|| < [|ISa()al + €
Therefore

1Pll < S50 llzll + ¢ < Me[ja] +<
So

Veep(a) | Px|| < Met||z]| .

Together with D(A) = X this implies that P, extends to a bounded linear operator

on X. The extension is again denoted by P;.
Note that ||P|| < Me'®.

Let z € X and y € D(A). Estimate

Bz — Sx@)z|l < || Pz — Pyl + | Py — Sx(@)yll + 1S5 ()y = Sa(t)=]|

(=)
<Pl = yll + 1Py = Sx@yll + 152 (Ol ly — =l <
< M|z —y|| + || Py — Sx(@)y|| + Me*t||lz — g -

Then, with 3), forallz € X Pz = }im S)(t)z, uniformly in ¢ on bounded intervals.
—00

From this the continuity of ¢ = P;z 1s immediate. In order to get the semi-group
property for P, we estimate

|Potez = PPe]) < ||Pogez = Sa(s + Dl + [1Sx () I1$x(8)e — Peal|+

(*)
H1(Sx(s) = P)Pial| < [[Prge = Sa(s + t)all+
Me||$y(t)z — Peal + || (Sx(s) — Py)Pea] -

13



6)

Let A — oo and it follows that P,y; = P,P;. We know that S)(0) = I = P,.
Thus we have shown that || P||:>0 is a strongly continuous semi-group.

Finally, we want to show that A is the infinitesimal generator of || P;}:>o.
Analoguous to 3), Vzep(a)

(*x) S\t —2z = / Sx(s)Baz ds .

Because of
1Sx(s)Baz — PsAz|| < [[Sa(s)(Bx — A)z||+

(*)
+I(Sx(s) = Bs)Az|| < Me*||Bxz — Az + |[(Sx(s) — P.) Az

and P,z = /\lim Sx(s)zm for all z € X, uniformly in s on [0, 1], it follows that for
—

all z € D(A) P, Az = /\ll_)m S\(s)Byz, uniformly in s on [0,7]. That is why we may
interchange integral and limit in (**), so that

i
Ptx—mszsAz ds .
0

Hence

t

= lim l P, Az ds = Az .
o 1 J

Pir—z

VeeD(4) htrln

This means that the infinitesimal generator of {P;}:>0, call it B, is an extension of

A:

D(B) 2 D(A) and V ep(a) [Bx = Ax] .
However for A € IR sufficiently large

A€ p(A)Np(B) and X = (A — A)D(A) = (A — B)D(A) ,
and also X = (A — B)D(B).

Since R)(A) and R,(B) exist both we finally have D(A) = D(B) and therefore
A=B. ]

Corollary. (Hille-Yosidas for contraction semi-groups). Let A be a closed operator

in a Banach space X. D(A) = X. Then A is infinitesimal generator of a strongly
continuous contraction semi-group <

14



1
Vaso[A € p(A) and ||Ry|| < X] .

Proof.

. log||P,
=) [Vizo |2l £1] = w = lim M

<0.

From Theorem 2.3, in this case, A > 0 = X € p(A), and V,ex [Rrz = / e MPz di).
0
So

T _ 1 1
IRsall < [ e lfelldt = Slloll and | R < 5 -
0
t n 1
<) 1B < |IBA™ < -
Apply Theorem 2.5 with M =1, a = 0.
Further, ||etBr|| < Me>s, so that |letBr|| < 1. Let A — oo, then still ||P]| < 1. O

Theorem 2.6. (Perturbations). Let A be the infinitesimal generator of a strongly
continuous semi-group and B € £(X) then A + B is again the infinitesimal generator
of a strongly continuous semi-group.

Proof. See [BM].

Theorem 2.7. (Hille’s Inversion Formula).
Pz = lim (I tA "
= lig (1= DA™=

uniformly on bounded sets in [0, c0).

Theorem 2.8. (A regularity result). Let {P;}:;>0 be a strongly continuous semi-group
in a Banach space X. Let A be its infinitesimal generator. Let n € IV and = € D(A™).
Then

l) VtZO Pt.’l? S D(An)

ii) ¢+ Pz is n times continuously differentiable.

iii) gﬁ(ax) = A"P.z = P,A"z.

Proof. Note that D(A") = R}(X) for A sufficiently large. Take n =1, z € D(A) and
put ¢ = Ryy = (A — A)~'y. We have

u(t) = Px = PRyy = R\Py = / e_AsPH.sy ds =
0

15



= et / e > P,y dr € D(A),
¢

which is obviously differentiable. Calculate

(2—1: = APz — Py = AP,z — (A — A)R\Py

= APz = (A - A)P,R\y = AP,z = Au(t) .

If n > 1 this procedure can be repeated, replacing = by Az with 1 < k < n — 1,
successively. =}

Corollary. Obviously u(t) = Pz solves the Cauchy-problem

du(t)
{—E——AMﬂ
u(0) =z € D(A) .

A sort of motivation for writing P, = e*4 is the following:

Theorem 2.9. Let {P,}:50 be a strongly continuous semi-group in a Banach space X.
Let A be its infinitesimal generator. Then V>0 Voex

. t \on
th:-r}l)rg)(l_;;:A) Z .

Proof. (Sketch). By induction it easily follows that

1 ©o
A=Az = —'/s"‘le"\sPsx ds, nelN.
(n—1)! J
t -n,, _ n"mn " n” T n—-1_-~2s
([-—‘T;A) .’l)—z'n—(?— ) .’l}—m/s € Psxds.
0

Notice that s"'e~%* has its maximum at s = (1- i)t and also that
1 T n" n—-1_-2s
VneN W/Fs e Pds=1.
0
Now, show that the norm of
([t rp e [P a1 -2 -
Pz — (I — LA) x-J(n_Dws ¢~ (Pyx — Pe)ds

tends to zero as n — oo.

16



3. Homomorphic semi-groups

In this chapter we suppose that {P,};>0 is a strongly continuous semi-group of bounded
operators on a Banach space X. Its infinitesimal generator is denoted by A.

Lemma. Suppose

Vt>0 VJ;GX [Pt.'I? € D(A)] .

Then

1) Vt>ovzex [Pt.’lI E D(Aoo)]

ii) Veex Viso [Pz is 0o — differentiable at ¢]

ii) Vnen VisoVoex [P{Mz = AmPx = (PL)"z = (AP:)"a] .

Proof. By induction we show

® Vi50VneN Veex [Pz € D(A%)].
e t — P,z is n-times continuously differentiable at ¢ > 0.

° R(")x = A"P,z.
Let 0 < ¢y < t, Pox = P;—4y P,,z. Apply Theorem 2.8.

P,_,, P,z € D(A)
P,z € D(A) = ¢ P4, P,z is continuously differentiable at ¢
Pt'x = Pt,-—toPtox = Pt—toAPtom = APt-T

n=k|=> |n=k+1| Again by Theorem 2.8,
Pt(k):z: = A*Pz = P,_4, P1y A*Pyx € D(A) and continuously differentiable
2 2
d
5 PPz =P, Py A*Poa = AP, Py A*Pyz = A" Pz .

Finally, since P, and A commute

Pz = A"Pz = (AP )"z = (P))"z .

n

17



Theorem 3.1. (Yosida) Assume dp1<m<oo Veso || P < M.
Then the following 3 conditions are equivalent

[ VeexViso[Prx € D(A)], and
JsoVaocict 1B = AP < o]

II. a) {P,}+>0 has a holomorphic extension, locally given by

A— 1
Pm—z( Pz, :cGX,larg/\|<arctan£.

n=0
b) 35,0<5<1 3K>0 V)\,|arg/\|<arctan(6é) [”e-)\P)\” < I(]

IIL. 350 Jes0 Va, Re ap1+e |AMAT — A)~H| < B.

Proof.

a) For A > 0,t > 0 we write Taylor’s formula

Pz = Nf M PMz 4 Ry(A —1t),
h=0
with
At
Rn(A—1t) (N —1)! 6/ TN= lP)EIL). dr = (Lemma)

-1

1 A 1 NN At FN-1 A—T N
—_(N—l)!,O/TN (Px%)NxdT:(N—l)! 0/ TS {( i )(P;_;,L)} z dr .

Case A —t > 0. Choose N so large that —-(1+ 1)<1 then/\<(1+—)t=>
A—T
N

A=t A=t
NN / TN=-1 NN N / TN-I < eNaN

o
oIl < (N = 1) dr < —/——m N <
0

1B (A = A—7)¥ (N=1)!

(A=-t)N.

Therefore the power series converges to Py if 0 < aTe(/\ —t)< 1. Case A-t < 0.
Choose N so large that % <1.

A= t
Then NT < ]—V-< 1 and
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b)

N 9 N-1 NN
||RN(A—t)||shaN [ A e

Therefore the power series converges to Py if 0 < aTe(t -A) <1l

. . . 1 .
Conclusion: On every compact interval in ( (1 + —) t) the power series for
ae

142’
P, converges uniformly to Py.
Im A
1
ae
The radius of convergence of the power
series
(A=t 1
Z ——( ‘ ) Pt("):v att >0 /lt Re A
n=0 n. /

. 1 : .1 : :
is at least —t and in the sector | arg A| < arcsin —, the function P, can be continued
ae ae

analytically to Py. If it so happens that L > 1 this implies that P, is analytic at
ae
A =0 and hence D(A) = X.

Note that analytic extension is guaranteed in the sector |arg A| < arctan é.

S; = e7'P, is a semi-group with infinitsimal generator A — I and has the property
Veex Veso [Sez € D(A - I) = D(A)] .

We have
0<t<1:|tS))| = |lte™* P —tetP||<a+ M < M(l+a).
t>1:|tS)]| = |lte PAP P,y — te™'P|| < Ma+ M .

Therefore

1 ) 1
Viso l(ES)" < M"(1+a)" = 5z, with & = gra—s <1
1

According to a) we have the representation

0o _ n é
e‘)‘PAx =Sz = Z (’\—3(3___)‘)_. S(;)e \Z, |arg ,\| < arctan (?1) .
n=0 :

Restrict to |arg A| < arctan(d,8;e71), with 0 < §; < 1. Then
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— ReA"n" 1

”( Re A
| Re A|*  n! ()"

2 (A
ISl <3

61575 1) 2|

n=0
oo L | 1
<Y (G167 ||| € ——]l=]| -

Take & = 6,6,. This proves b).
Corollary. (Hille).

limsup ||tP]]| <e™'= D(A) =X .
£10 )

Proof. According to d’Alembert the series

>, (/\—-t)n (n) _co ()\—t)"n" t s\
L B G
: |A =t , :
converges in the sector {) | T < 1+ 4,6 > 0}. This sector contains A = 0 and

Pz analyticat A =0 = D(A) = X.

11— 111

For A € IR the assertion follows from Theorem 2.3 and its Corollary. Indeed we have
here w = 0, take a = 1 and ¢ > 0, then

M1 Ml Ml
|R\| € =—= and |AR\|| < +—~<—,
. 1 €
sinceA>1l4+e=>1—-—-2 . Now for A complex
AT 1+

(/\R,\):z;::/\/e“APtxdt, Red>0,z€X .
4]

With \=140+ir,0>e>0, 7 € IR and S; = e~!P; this becomes

(0’ + 1 + iT)Ra-I—l-}-i-rx = (0’ + 1 + ZT) / e—-(a+iT)tSt.’L' dt .
0

Let 7 > 0. Deform the path of integration to a radius re* in the sector 0 < argA <
arctan(<)

ae
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((c+14i7)Royiyir)z = (0 + 14 17) / e=(e+inre’ o oz ePdr
0

with estimate

o0
(e +1+ir)Royrpir)al| < [zl lo + 1+ 47| - K / el=o cost47sind)r gy
0

lo + 1+ 7] ||z|] 142 1
<K <K=y — :
<& | -~ 7sinf + o cos | ~ K c0s0 T 5ind Iz

since

lo + 1+ i7| <|a+1|+ -7 <1+§ 1
(—7sin0+o0cosh) ~ ocosd —Tsinf = cosf  sinf

An analogous estimate can be given for 7 > 0. Choose for 8 the worst constant in the
estimates above. In fact we showed that for all ¢ > 0 an estimate III can be given.

Finally,
[l= 1

Take Re Ao 2> 1 + ¢, then

| | Im ) ReA=1+4¢
A= X|®
|(A = Ao)"RY z|| < Wcﬂ%ﬂn“w“ .
The resolvent series
- n pn ; A
R)\ — Z (AO _ A) R,\;H al 0
n=0 Rl -+
is therefore convergent if P\I; ?0| B <1
0

That’s why the sectors
—721: <arg A <6y and -8y < arg ) < —% ,

|A| = R, with 8, sufficiently small and FR
sufficiently large certainly belong to the re-
solvent set p(A) of A.
In these sectors and in the right half plane
we now want the estimate

IR ST i W2 R ()

—— o —— - - — o ———— am o — e —— - —— . ———"— i —— o ——
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For Re XA > 1+ ¢ this already follows from assumption III. From the above resolvent

series
1 I)\ - /\QI)-—I 1
| Aol

|/\—A0| -1
1R < (1= 8 55%)  Bsell < (5= 5

()

where we imposed |A — Xo| < %| Im Ag|.
Consider Ry in the domain {1 +¢ > Re A > —%I Im A|, |A| 2 R}. Take in (*%)
M=14+ec+iImA
1 1
Ry £ <
R < = =3l = T A+ Re A= (14 2)
1
< if ReA>0.
S min, D{ Im A+ Re AJ - (1+¢e) = =~ 1)

For —35| Im A| < Re A < 0 holds | Re A| = — Re A < 55| Im A| and hence also

%%| Im A| > 2| Re A
Starting from { we then find
L <
| Im A+ 5/ Tm A+ Re A= (1+4¢) ~
L if —;15|Irn)\|_<_ Re A <0.

<
~ min(g5, ){| Im A[ + | Re A} = (1 +¢)

This proves (x).
Now consider the path of integration I' as drawn. Parametrization in 2nd quadrant

A:ia+53,
a>R,s>0,|b|=1,% <argh< I +arctan .

Parametrization in 3rd quadrant: A = —ia + bs. Define

Pt$=-1—,/eAtRAdi, t>0,zeX.
27”1‘

We want to show that I3t = P;. Successively we show

i) Veen(a lim Pz =z

ll) Vt>0 V:L‘GX pt'x = Ai)tw
22



iii) || P.z|| grows at most exponentially as t — co.

Proof of i). Let g € D(A), Ao right of I
Let (Ao] - A):ZIQ =%

A P 1
Pt:ro = PtR/\oyo = 5— / GMR,\R)\Oyod/\ =
Tl v

1 |
- / (% = X) 7 Rayod — 5 f (Mo — A)~1 Ry, yodh .
r

T 2m
r

The second integral is zero, close by a big circle! Because of the estimate for Ry we
may take the limit for ¢ | 0 under the integral sign. So

.o 1 _
lim Pzo = 5= r/ (o= ) Bagodh, g0 = (o — A)zo

Close I' by a big circle on the right: Residu Ry,yo = zo.
Proof of ii). Using the closedness of A we find P,z € D(A) and

APz = i / eMAR\z d)\ = l [ ARz d)\ — 1 eMz d) .
271 J 2m1 J 2

T

The second integral is zero again. )
By differentiating the defining integral for P,z the wanted identity ii) follows.

Proof of iii). Straightforward because the part of I' where Re A > 0 has finite length.
The unique solvability (cf. Corollary of Theorem 2.8) of the Cauchy-problem leads to
the conclusion

. 1 _
Po=Pao=— F/ eMRyz d) € D(A) ift >0 and

(tP))e = 2—1— [ 00) Bz i

me
K|z
epnel < B2 7oy
r

Take 0 <t <1

|eX|¢|dA| < LePlmax |
I', Re A20

o0 [oo]
. 1
(m+bs)tt blds = / st Re bt ds = )
E)/ e |b|ds J € s TRe |
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Take

o = Lellmax 4

| Re b|
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4. Some applications

Definition. A semi-inner product on a Banach space X is a mapping [,-] : X xX = C
such that

a,pBel

° [ax+ﬁy,2] = a[m7z]+ﬂ[yaz]’ z,y,z € X

o |[z, ]l < ll=l| [lyll-

o [z,2] = ||z||*.

Note that linearity in the second argument is not required. Note that the inner product
(-,-) on a Hilbert space is also a semi-inner product.

Example. Consider the Banach space X = Co(IR)

Co(R)={f| f:IR— C, f continuous, lim f(7)=0}.

| 7| =00

Choose a mapping ¢ : X — IR such that y(f) = a € IR = |f| attains its maximum at
a. It will be clear that

[f,g] = f(b)g(b) with b= p(g) € R

defines a semi-inner product.

Definition. The numerical range ¥(A) of an operator A in a Banach space X is defined
by

5(4) = {[Az,2]| = € D(A), ||=|| =1},

Theorem. Let A € C\X(A). Let d be the distance between ¥(A) and A then A — AJ
is injective and for all y € R(A — )) one has [|[(A — A)"'y|| < %|ly|. If in addition A is
closed and A € p(A) then this inequality holds for all y € X.

Proof.
Ve € D(A),||z]| = 1|[(A - MNe,z]| = |[Az,z] — A| = d]|]2]]* .
Therefore

llzll 1(A = M)zl = dl|=||* .
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Put (A— Nz =y. 0

Example 1. Consider A = a(z)< in Co(IR), a(-) continuous and

0 <e<a(z) <M <oo. Take D(A) = {u | v € Co(IR)}. Show that A is closed.
Check that at a maximum point of f = p+i1), ¢ and ¥ real valued, one has p¢'+yp’ =0
and ¢ + ¥ + " + pyp” < 0. (For the latter the second derivative has to exist of
course). We now find

[Af, 1 = a(e) f'()(£)() with a = u(f)
= a(a)(¢'(@) +1'(a))(p(a) — iY(a)) € 1R .
Further w > 0 belongs to the resolvent set since the equation

o~ a(e)fe = f

is solved by

Hence we find, applying the above theorem that A generates a strongly continuous
dissipative semi-group in Co(IR).
Exercise. Investigate the operator

A = a(z)— + b(z), b(-) is C-valued

in Co(IR) for being an infinitesimal generator.

Example 2. First note that the equation
Quu=wu—Upe=f, w>0

is solved by

we) =gz [ Pree.

-0

Now consider the operator B and the resolvent equation
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(B - w)u = Ugy — WU + a(x)um + b(u)uz + C(x)u = f
[1 + (adz: + 00: + €)Q7"Quu = f . (+)

1 1
Note that in Co(IR) we have ||QZ}] = o and [|0:Q7 = NS
If the coeflicients a, b, ¢ are complex valued, continuous, bounded and moreover
|(z)] < 2 then by taking w sufficiently large, we can achieve ||(ads. +b0; + )@ < 1.

The resolvent equation can be solved then
u = Q5[+ (adss + b0z + )@ f .

With our semi-inner product we now calculate the numerical range X(B). The operator
B is a closed operator on the domain

D(B) = {u | u' € Co(IR), u" € ColR)} = Q' (Co(IR)) .
Put f = ¢ + i3 again

[0 +iP", o+ ] = "o+ " + (Y0 — ¢"P)  at  a=pu(f)

S = =P +i(P"p — ")
So if we take the coefficient a reéel then [Bf, f] will be in some left half plane Re A < A,
say. ’

Gathering our results we find that B — Al is a generator of a dissipative semi-group.
Find conditions such that the semi-group is holomorphic.

Example 3. The same evolution equation

Ou

5 = Uzz + (2 )Ugg + b(2)uy + c(T)u

as in Example 2. But now inLy(/R). That case is easier. However ’some’ differentiability
of a is needed.
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Appendix A

Elementary Spectral Properties of Operators in a Banach Space

Definition. Let X denote a Banach space over C.

o A linear operator A, with domain D(A), is

i) A linear subspace D(A) C X.
ii) A linear map A: D(A4) — X.
e The imageof Ais Im A = {Az |z € D((A)}.

o ’A densely defined’ means D(A) = X.

e A is called a restriction of A; and A, is called a prolongation (an extension)
of Ay if D(A1) C D(A;) and Az = Az if z € D(A,). Notation A; € A; or
A; D A
We say A = A; iff D(A,) = D(Az) and A; C A,.

Definition. Sums and Products of operators A and B.

e D(A+ B)= D(A)Nn D(B), (A+ B)r = Az + Bz
D(AB)={z € D(B) | Bz € D(A)}, (AB)z = A(Bxz).

¢ If A is injective the inverse A™! is D(A™!) = Im A and A 'y =z if Az =y.

One has (A71)~! = A. Note that in general 04 C0, A7!A # AA~'and A7'AC ]
(0 is null operator, I identity operator with D(0) = X, D(I) = X).

Note the simple properties: (A+B)+C = A+(B+C), A+B = B+A, (AB)C = A(BC),
(A+ B)C=AC+ BC,C(A+ B)2CA+ CB. A7'A = I|pa).

Definition.
‘e An operator A is called continuous iff
M0 YeeD(4) | Az < M|z .

e L(X) denotes the set of all continuous operators A with domain D(A) = X.
Note that £(X), supplied with the norm

Al = sup{]|Az|| [ ]l=]| <}

is again a Banach space and even a Banach algebra. One has e.g. ||AB| <

Il BII-
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Theorem (Neumann Series). Let A € L(A), ||A]l < 1,then I—A: X — X is bijective,
(I—A)™' € L(X) and

(I-A) 1 +i+ A=A+ +A+..=) A".
n=0

Definition. An operator A is called closed if its graph G4,
Ga={(z,9) | (z,y) € D(A) x X, Az =y} CX x X

is a closed linear subset of X x X.
This is equivalent to

[z € D(A), 2, = z, Az, = y] = [z € D(A) and y = Az] .
Theorem.

e If A is injective and closed then also A~! is closed.
o [Ais closed, B € L(X)] = A+ B is closed.
o [Aclosed, A€ C]= A— A=Al — Ais closed.

Theorem. Let A be closed and D(A) = X. Then A is continuous iff D(4) = X.

Theorem.

o The resolvent set p(A) C € of A is the set of all A € C, such that

1) A — A is injective.
ii) Im (A — A) dense in X.

iii) (A — A)7! is continuous.
e The spectrum o(A) C C of A is the complement o(A) = C\p(A).
e For ) € p(A) the resolvent (operator) of A4 is Ry = R(\, A) = (A — A)™L.

Theorem.

o Let A be closed then A € p(A) iff A — A: D(A) = X is bijective.
In this case one has Ry € L(X).

o Conversely, if A is an operator and if there exists A € p(A) with Ry = (A—A)~! €
L(X) then A is closed.
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Theorem. Let A be a closed operator. Then:

i) p(A) is an open subset of C.

ii) If p(A) # 0 then A = R, € L(X) is an analytic (bounded) operator valued function
on p(A).

ili) Ry — R, = (0 ~ A)R)\R, and hence R\R, = R, R) for all A\, € p(A).
iv) For p € p(A) and |A — p|||R,|| < 1 one has A € p(A) and

Ry=)Y (u— "R,

n=0

Theorem. If A € £(X) then o(A) is non-empty and compact. For an arbitrary closed
operator the spectrum may be empty. Also p(A) can be empty. Any compact set in €
can be the spectrum of an operator in £(X).

Examples.

a) Operator with empty spectrum.

X = Co([0,1]) = {u | v :[0,1] = €, u continuous, u(0) =0},

lull = max lu(t)] -

D(A) = {v | v continuously differentiable, v'(0) = 0}

(Av)) = (1)

Check all the details!

b) Any closed set S in C is the spectrum of an operator in £5.

X = €2 = {(101,112,...) I Z I.’L‘j|2 < OO} .

7=1
Let S C C. S # 0. Choose a sequence {A,} C S which is dense in S.
D(A) = {(zn) | (zn) € b3, (AnTn) € L2} .
Put Az = y with y = (yn) = (Anzn).

Note that the A, are eigenvalues of A, this means that A, — A is not injective. The
set of eigenvalues is called the discrete spectrum of the operator.

c) Spectrum equal to C but no eigenvalues.
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X = L(B) = {u| [ [ lu(z,y)dady < 00}
D(A)={v | [ [(z*+y))lulz,y)ldady < oo}
Au = v with v(z,y) = (z + iy)u(z,y). Here A is closed, o(A) = C.

Theorem. Let A be a closed operator with p(A) # 0. Let P be a polynomial of degree
n>1

P(z)=ap+ a2+ a2+ ...+ a,2", a,#0.

Then the operator P(A) = ap + a1A + ... + a,A™ with domain D(P(A)) = D(A") is
closed and o(P(A)) = P(a(A)).

Some hints for the proof.
o If P(z) = k(A — 2)(M2 — 2) - ... - (A, — 2) then also
P(A)=k(M —A)(A—A)-...- (M —A).

e Proceed by induction and write P(A) = (A — A)Q(A) + rI with 7 a number.

o Put p— P(z) = k(p1 — 2)(p2 — 2) - ... - (Lo — 2) and observe that u & P(o(A)) =
/“iep(A)v]-SiSn-
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Appendix B

Integration of functions with values in a Banach space
Let X be a Banach space. Let I = [a,b] denote a compact interval. Denote the length
of I by |I|.

n
Definition. A step function f : I — X is a function which can be written f = Z 15,4,

=1

n
where | = U I; a partition of I in sub-intervals and z; € X.

i=1

Definition. The integral of a step function is

[ o= [ 1 at=$ lhfe.

T =1

(Verify that the definition does not depend don the choice of the decomposition {I;}.

Properties.

1) (f+g)dt= | fdt+ [ g dt, MNfdt=X | fdt, MeC.
Jaras i foi [rra=y]
2 | / s < [S1de < s IS0
3) Uel(X) [Uf®)di=U | f@t)dt.
foron=v]

Definition. A ruled function (F: reglée) is a function f : I — X which is a uniform
limit of step functions.

Remarks.

e Continuous functions f : I — X are ruled.

o A function f: I — X is ruled iff at each point a € I both the limits ltle f(t) and
ltxgl f(t) exist.
Definition. Let f: I — X be ruled. One defines

b

/ F(t)dt = / fdt = lim / fodt
I

e I
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where (f,) is a uniformly approximating sequence of f.

Theorem. The definition is OK and the limit does not depend on the approximating
sequence.

Note. In the proof of this, the estimate

I [ fudt = [ fndtll < 111 1fn = oo
I I

plays the key role.

Theorem. Let f : [a,b] = X be continuous. Let F(¢ / f(s)ds. Then F is
differentiable on [a,b] and F' = f. (F!(a) = f(a), F.(b) = f(b)).

Lemma. Let f : [a,b] & X be continuous and assume thet f'(¢) = 0 for a < t < b.
Then f is constant.

Theorem.

o Let f : [a,b] - X be continuous and suppose F : [a,b] — X be differentiable
b

mmpmzfmxmm/fmﬁzpw—pmy

o Let t — s(t) from [, 3] onto [a, b] then the classical formula holds:

B
/bf(S)ds = [ #ss'tyat

Theorem. Let X,Y, Z be Banach spaces and let (z,y) — z-y be a continuous bilinear
mapping from X x Y to Z.

Ifu:l— X andv:I—Y are differentiable then ¢ — u(t) - v(¢) is also differentiable
and

d
77 u(8) - v(t) = w'(2) - o(t) + u(t) - v'(F) -
Definition. (Absolutely convergent integrals). Suppose

o f:[a,0) — X is continuous.

b
./me<m.
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b 0
Then bli)m / f(t)dt exists and is written / f(t)dt.

b
Theorem. Let f : [a,b] X (a,3) = X be continuous and put F(A) = / F(t,A)dt.

a

e If f is continuous then also F is continuous.

e If in addition gj{ : [a,b] x (e, B) = X exists and is continuous, then F' is continu-
ously differentiable and

b
F'(\) = %f\f(t, \)dt .

The proof of all these results are standard and similar to the ”scalar valued” case. The
results for integrals on infinite intervals are also similar to the classical case.

Theorem. Suppose

e u:(a,f) > X, ~0<a<f<oo.
¢ Let A be a closed operator and suppose

—  Vie(a [u(t) € D(A)]
- Au:(a,B) = X is continuous.

8 B
. / llu(®)||dt < oo /||Au(t)||dt<oo.
Then

B 8 B
/ u(t)dt € D(A) and A / u(t)dt = / Au(t)dt .
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