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Chapter 1. Introduction 

1.1 Background of the Research 

Batch manufacturing of higher added-value specialities has been a fast growing 
segment of the process industry (i.e. [petro]chemical, pharmaceutical, food and 
beverages, etc.) in most industrialized countries. One of the important 
advantages of batch plants lies in their flexibility. They can be designed to 
produce several types of products in the same equipment and the same pieces 
of equipment may be used for a variety of different processing operations. They 
are less expensive than continuous plants and take less time to build, and after 
the product has discharged they can· be more easily adapted to produce other 
products [JUB86, ROS87, FIS90]. 

If one focuses on how batches are being produced, the ever returning common 
factor is the use of recipes. Recipes specify products and prescribe how products 
are to be produced. If one looks critically at the way recipes are being used 
within the process industry, one finds that they are actually unnecessarily 
inflexible and, in consequence, often not as efficient as they could be [RIJ91]. 
Different feedstock properties, changes in quality specifications, variations in 
process behaviour, new market conditions, additional practical experiences with 
the process and so on, are not reflected in the recipes, though it would often be 
profitable to adapt them to the changed conditions. New products and processes 
add an extra dimension (time-to-market) to the above perspective. 

In fact, because the fundamental goal of an enterprise is to make profit, 
economical process optimization was, is and will still be a major topic in the 
process industry. Process optimization to reduce, among other· things, the 
consumption of feedstocks and energy, and the production of waste materials, 
is also of importance in connection with environmental protection and in this 
sense business and environmental interests may coincide to a great extent. 

In summary, in view of recent trends, the process industry has to cope with the 
following problems [VER94b]: 
a) more short-term dynamics in supply and end-product markets as well as 

Chapter I Introduction 



more unpredictable and turbulent demand patterns; 
b) more complicated processes which may be more difficult to operate; 
c) short series of the manufactured products; 
d) stricter requirements on product quality; 
e) greater emphasis on shorter and more reliable production time; 
f) a growing number of product grades and brands; 
g) a need for improved customer service level. 

In practice, recipes are often only approximately adjusted to the actual process 
and market situation. Experienced operators develop and apply their own "feel" 
for the process even though this deviates from the formally prescribed 
procedures. This informal learning process builds an insight which is often 
important for efficient process operation, especially when handling exceptions. 
However, all too often this insight is gained through trial and error, which gives 
no guarantee that the "best" solution is being found in a reasonable time, if at 
all. 

1.2 Research Objectives 

From the above it will be clear that batch plants require the development of 
special techniques supporting recipe development and next, recipe adjustment 
during processing. This is the starting point for developing the approach 
described in this thesis. The solution is, on the one hand, a better exploitation 
of the data generated by the process, and, on the other hand, making the process 
generate data that may be needed for its improvement. In all probability the 
proposed methods will also be applicable for continuous processes. 

This thesis describes a methodology and a coherent collection of techniques for 
systematic and efficient recipe generation, improvement and execution in batch 
processes by means of so-called recipe adaptation sets, together with a 
supporting software system. Experiment design, mathematical modelling, 
statistics and optimization are at the basis of the presented approach, called the 
FRIS- (Flexible Recipe Improvement System) or flexible recipe-approach. 

In the proposed approach two main activities can be distinguished. 

Firstly, during the development of a recipe adaptation set, future batch runs are 
suggested which make the plant generate the necessary data. Next, these data are 
used in either a sequential or model-based fashion for improving process 
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performance, which is to be stated explicitly in terms such as product quality, 
or profit, added value per unit of time or batch duration. 

Secondly, the developed recipe adaptation set is used for improving any 
particular batch by compensating for known deviations in the beginning of the 
batch and during processing. 

1.3 Contents of this Thesis 

The thesis is structured as follows. In Chapter 2, the proposed FRIS-approach 
(Flexible Recipe-Improvement System) and the basic terms recipe adaptation 
and recipe adaptation set are defined and explained. Chapter 3 discusses a 
procedure for developing recipe adaptation sets using techniques from the area 
of design of experiments and statistical modelling. The approach is illustrated 
by an example of a simulated fermentation process. Particular attention is paid 
to the design of experiments for processes having time-dependent parameters, 
such as temperature or pressure as a function of time. Next, the recipe adaptation 
set is used for recipe generation or improvement. Chapter 4 discusses how a 
recipe adaptation set can be used for batch initialization and for correction 
during the execution of a batch. The methods associated with the presented 
approach were implemented in the software package FRIS, which facilitates the 
application of the approach to industrial R&D as well as production processes. 
This package is outlined in Chapter 5. In Chapter 6, the application of the 
approach is demonstrated by one industrial and one laboratory case. Finally, the 
achievements of this study are summarized in Chapter 7. 

At the end of the thesis, a list of literature is given. References to the literature 
are indicated in the text by a three-letter-two-number code with the first three 
letters of the author's name and the year of publication. 
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Chapter 2. The F,lexible Recipe
Improvement System 

2.1 Recipe Types According to the ISA-S88 Terminology 

2.1.1 Introduction 

In the past, a need for standardisation of the batch-production terminology was 
recognized, in first instance by the chemical industry. As a result, in 1988 the 
Instrument Society of America (ISA) started a project group SP88. Almost at the 
same time, various organizations initiated similar activities in Europe, e.g. the 
NAMUR organisation in Germany, the ISA Netherlands Batch Working Group 
in the Netherlands and similar groups in other countries, all striving for the 
definition of a standard terminology for batch processing and batch control 
systems. The European organisations have come together in the European Batch 
Forum (EBF) and became an informal consulting body for ISA SP88. The final 
report of a batch terminology has recently been published and has been declared 
as the standard ISA S88 [ISA95]. 

Although, in our opinion, the ISA-terminology still has a lot of shortcomings, 
we shall try to utilize its terms as far as possible. Where appropriate, we will 
present some comments of our project group contributed to ISA SP88 and 
introduce a variety of extensions that are necessary in view of the new concepts 
introduced in this thesis. 

2.1.2 Recipe Structure 

According to the ISA S88-terminology, recipes contain the following categories 
of information: header, formula, equipment requirements, procedure, and other 
information concerning e.g. plant, process and economical constraints [ISA95]. 
The header comprises the administrative information such as the recipe and 
product identification, the version number, the name of the author etc. 
The formula is a category including process inputs, process parameters and 
process outputs. 
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A process input is the identification and quantity of a raw material or 
other resource required to make the product. 
A process parameter details information such as temperature, pressure and 
processing time. 
Finally, a process output is the identification and quantity of a material 
and/or energy expected to result from one execution of the recipe. 

Equipment requirements constrain the choice of the equipment that may be used 
for processing. 
The recipe procedure defines the sequence of actions for carrying out the 
process. 

2.1.3 Recipe Types 

The ISA SP88 Committee has defined four levels of recipes that can be found 
in an enterprise, namely: general, site, master, and control recipe. 

A general recipe defines a product and prevides global information that is 
needed for the production, but without detailed specification of the equipment 
to be used. 

A site recipe is specific to a particular site. It is usually derived from a general 
recipe to meet the requirements found at a particular manufacturing location, e.g. 
local feedstocks, units of measurement, language, etc. It still does not specify a 
particular set of process equipment. 

In our opinion, the distinction of a site recipe, as defined, is impractical. Why 
should any recipe be site-specific, if the similar equipment is being used in 
another site? A well-integrated business unit shares knowledge and experience, 
hence strives for unifofn! recipes. Instead of site recipe, it makes more sense to 
have a term such as "plant-type recipe". This would also reflect the possibility 
to make the same product(s) in plants on a different scale, for instance in a 
multi-purpose plant when the demand is low, and in a dedicated plant when the 
demand is high. 
In the context of the FRIS-approach, this type of recipe, as well as the general 
recipe, will not be used. 

ISA SP88 defines a master recipe as a recipe which is equipment-dependent and 
which provides specific and unique batch-execution information describing how 
a product is to be produced in a given set of process equipment. 
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Finally, a control recipe, starting as a copy of the master recipe, contains 
detailed information for minute-to-minute process operation of a single batch. 

It is at this level and just above, that this new standard seems already to be old
fashioned because, in spite of repeated attempts to alert its authors, it fails to 
adequately recognise the innovations described in this thesis. The next section 
introduces the basic concepts and the new perspectives they open, notably our 
approach using model-based or experimental optimization, together with the 
definition of an intermediate recipe: the master control recipe, and five 
different types of control recipes. 

2.2 Recipe Adaptation 

2.2.1 Further Comments on ISA-S88 

In the framework of this thesis, it turns out to be useful to introduce the concept 
of a master control recipe, to be positioned between the master recipe and the 
control recipes, like a master recipe valid for a number of batches, but adjusted 
to the actual conditions, e.g. to actual prices or quality requirements, from which 
the individual control recipes per batch are derived. For what is the use of 
starting control recipes "as a copy of the master recipe" [ISA95, p.38] when the 
conditions correspond no longer to those under which the master recipe was 
derived? 

Furthermore, at the start of a batch the initial conditions may differ from those 
prescribed by the master recipe, possibly even to the extent of making a 
successful completion unlikely. Examples are deviations in dosages, temperature, 
catalyst activity, equipment fouling and even available processing time. In these 
cases the FRIS-approach makes it possible to alter the still-adjustable process 
conditions, like reactor temperature and pressure, catalyst addition and maybe 
also reaction duration, so as to ensure the most successful completion of the run. 
This is called (batch) initialization, which implies the introduction of a new 
control recipe: the initialized control recipe. 

After that, deviations may be detected during the batch run, and again these may 
be compensated for, at least partly, by application of the FRIS-approach leading 
to yet another recipe: the corrected control recipe. 
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In order to be able to derive those new kinds of control recipes, some suitable 
kind of process model must be available. Chapter 3 discusses in detail how to 
obtain such a model; for the time-being it suffices to note that it may be 
obtained from available process data, but that it is preferable to make the process 
generate more useful data by operating it systematically under a number of 

. conditions that differ slightly from the nominal settings so as to allow statistical 
analysis of the results leading to a better model. The recipes for those runs will 
be called experimental control recipes. In contacts with plant personnel it is 
considered preferable to avoid the term "experimental" and refer to such runs as 
"test runs", which is commonly used to refer to runs that have to be carried out 
particularly carefully. 

Thus, we have now introduced three different types of control recipes; the 
control recipes of the remaining runs, that really went according to "the copy of 
a master recipe", we shall call routine control recipes. 

For monitoring and archiving purposes it is useful to retain a post processing 
.record of what happened, which may be called the accomplished control recipe. 

We have repeatedly tried to alert the ISA SP88 Committee that there is an 
important need to make a distinction between different phases of the control 
recipe, which in first instance was very rigidly defined by ISA. Unfortunately, 
the distinction between these different recipes is not clearly made in the ISA
standard and as a result it completely ignores the new possibilities of improving 
batch operation that will be described below. All that our comments achieved 
was that the ISA SP88 Committee has adopted that a control recipe starting as 
a copy of the master recipe may be subsequently modified before and during the 
processing according to scheduling, equipment and operational information. The 
following examples of possible modifications can be found in the ISA-standard: 

defining at the moment of batch initialization and later during processing, 
unless defined before, the equipment that will actually be used; 
adding or adjusting process inputs and parameters based on an "as
charged" raw materials quality or on run-time analysis; 
changing the actions described by the procedure based on some 
unexpected events. 

2.2.2 Recipe Adaptation 

As mentioned in the preceding section, it makes sense to insert a master control 
recipe between the master recipe and the control recipe as defined by ISA S88, 
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and to distinguish between the different kinds of control recipes. 
To generate these various recipes and, if desired, to improve the master recipe, 
two new components are needed, i.e. 
1) information from which the new recipes can be derived; 
2) one or more procedures for deriving those new types of recipes. 

2.2.2.1 Information: the Recipe Adaptation Set 

The information needed takes the form of a process performance measure, 
often called criterion, which may be regarded as an economic (or quality) 
model, and further at least one process model together with additional 
information that will be specified later on. 

The process performance measure or criterion should enable us to judge, as 
the term suggests, how well the process works in quantifiable terms, depending 
on product properties and quantity, value of feedstocks and utilities, batch 
duration etc. A useful measure may be in$ per batch,$ per month or, if quality 
or its variance is the prime concern, in a commensurate quantity. 

The process model should express all process variables needed for calculation 
of the criterion values in terms of processing conditions, in particular those that 
are adjustable, so that it become possible to calculate that setting of the 
adjustables that results in the best criterion value, given the other processing 
conditions. 

This sketches the crux of the Flexible Recipe-Improvement System: using a 
process model to find the operation of the process that produces the best 
performance under any circumstances. In addition, the very same approach is 
useful in the area of (master) recipe improvement, whether in R&D or in 
production: once "the right" criterion has been agreed upon, and a suitable model 
has been derived from the process data already available and/or the experimental 
test runs mentioned earlier, the FRIS-approach will ensure the fastest evolution 
from the existing recipe to the best one under the given circumstances, and 
subsequently greatly facilitate finding optimal recipes under different 
circumstances and/or other definitions of process performance. 

The criterion and the model, together with the necessary additional information 
specified in Section 2.3.2, make up what is called the recipe adaptation set. 
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2.2.2.2 Procedure(s): the Recipe Adapter 

The procedure for utilizing the information in the recipe adaptation set is called 
the recipe adapter. In essence, it is a procedure optimizing the criterion by 
manipulating the adjustable process settings, taking all relevant requirements and 
constraints into consideration. It is also the "machine11 that may be used to 
produce a master recipe. From time to time it can also be used to replace the 
existing master recipe by one that is better adapted to the prevailing 
circumstances, for example new feedstocks and other market requirements; in 
this manner the best master control recipe for any number of similar batches can 
be found. Further, if the circumstances deviate from its prescriptions, the recipe 
adapter gives best possible initialized and run-time control recipes for each 
individual batch. 

2.2.2.3 The Scope of Recipe Adaptation 

Before we move on to the components of recipe adaptation sets, we must insert 
a note about its scope. In order to avoid misinterpretation, it must be emphasized 
first of all, that the FRIS-approach does not necessarily deal with the whole 
batch processing train or line, but may focus on those process phase( s) that most 
strongly influence the overall performance. Hence, it will often be limited to the 
most important reaction phase and ignore "secondary" operations such as dosage, 
heating, cleaning etc. insofar as these really have only a minor influence or none 
at all. This is not a drawback of the approach but its strength, because it focuses 
on the principal issues( s ). In multistep-reaction processes, the FRIS-approach 
may be applied to a number of successive phases so as to achieve the best 
overall performance. An example is an application in DSM Resins concerning 
the preparation of a powder resin in the two-step reaction process, after which, 
in the third process step, the product was used to prepare a powder coating, 
which in the final step was applied to metal objects to test the quality of the 
coating [SME95]. 

2.3 Components of a Recipe Adaptation Set 

2.3.1 Performance Criterion 

A recipe adaptation set, the comer-stone of the FRIS-approach, may be 
developed in laboratory experiments, pilot plant operation, and/or during normal 
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production by a systematic introduction of acceptably small changes in certain 
process inputs and parameters. It can be used to find improved process 
conditions to cope with variations in process and/or market situations. The 
search for these improved conditions proceeds in the context of the optimization 
of a relevant economic, quality or other criterion, which reveals how "the best 
performance" may be achieved. Examples of such best performance criteria 
include: 

highest product quality; 
smallest variations in the end product; 
shortest production time; 
highest production rates; 
highest added value per unit of time or per batch; 
lowest costs of e.g. feedstocks and energy; 
lowest environmental pollution; 
a formula for calculating the most profitable combination of quality, cost 
and quantity. 

To make calculation possible, the performance criterion included in the recipe 
adaptation set must be expressed as a mathematical formula. (Section 3.3.1 
presents some typical forms.) This may sound easier than it really is. Our 
experience is that the formulation of a ~uitable economic performance criterion 
is often a difficult and laborious matter: the process people talk about quality 
and quantity rather than about profit. Sometimes it is even so, that the aim of 
recipe generation or improvement is to find a region in the factor space in which 
end specification conditions are satisfied. In other words, no performance cri
terion is defined but just a list of e.g. quality requirements. The actual aim is to 
find at least one single point in the desired space of adjustable parameters, 
namely at least one recipe, which satisfies the end specification. If no criterion 
is formulated, mathematical optimization can not be performed. For such 
problems we have developed the so-called triplet-choice multi-objective method, 
which is described in Section 3.6.3.2, and the end-specification approach. An 
application of the latter to an industrial process is described in Section 6.1.2. 

2.3.2 Other Components 

A recipe adaptation set is always associated with a master recipe, which is 
already developed or which is in the development phase at the moment. It is 
obtained, as presented in Figure 2.1, by taking process inputs, parameters and 
outputs, as defined in Section 2.1, plant, process and economical constraints and 
equipment requirements from the corresponding master recipe, and 
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supplementing them by external factors, performance criteria, process data 
condensed into process model(s) and the so-called correction information (see 
below). 

It should be mentioned that the FRIS-approach pays much attention to handling 
constraints in an efficient manner. A very important distinction is made between 
constraints, which cannot be exceeded and constraints, which should not be 
exceeded. The latter type may offer lucrative opportunities: if the solution of the 
optimization problem lies on the boundary of the permitted area, then it can be 
profitable to shift the appropriate constraint(s) a little. If the promising shifting 
is allowable, then the allowed operating area may be expanded. 

Take from a conventional S88 rigid master recipe: 

Process inputs, parameters and outputs 

Plant, process and economical constraints 

Choice of equipment 

Add the following information: 

External factors 
Performance criteria 

Process data condensed into process models(s) 
complete with model validity constraints 

Correction information 

To obtain: 

A RECIPE ADAPTATION SET 

Figure 2.1 The change of a rigid master recipe into a recipe adaptation set 
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To be more specific, the components of a recipe adaptation set are as follows: 
1. adjustable or at least measurable recipe items that may possibly affect the 

result of the process, i.e.: process inputs (e.g. dosage of ingredients), 
process parameters ( e.g setpoints of reactor pressure and temperature 
controls, which may actually be varied during the run) and any external 
factors (e.g. quality of feedstocks ); 

2. process outputs (e.g. product quality, energy consumption, yield); 
3. relevant plant, process, and market constraints; 
4. at least one performance criterion; 
5. values (often prices of ingredients and products) of variables used in the 

performance criterion; 
6. nominal process model, with its validity constraints; 
7. any available auxiliary models, with their validity constraints; 
8. correction information; 
9. unit-configuration. 

It may be useful to specify the meaning of a few new terms here. 

External factors are factors other than process input and parameters, which may 
also affect the process, e.g. quality of used materials or catalyst activity, cooling 
jacket or coil fouling, ambient temperature. 

Nominal process model: In this thesis any models associated with a recipe 
adaptation set are of the "black-box" type. They relate process outputs to 
selected recipe items. The main process model is called a "nominal process 
model". Such a model should be valid around the prescribed ("nominal") process 
conditions. If present, the other models for neighbouring operating conditions 
form the group of auxiliary models. These models can become the nominal 
model, if the search for the best recipe leads to conditions for which the initially 
nominal model is not valid. The FRIS-software checks continuously model 
validity and automatically selects right models. 

The correction information is necessary to correct a batch during processing. 
It includes the information about the choice of sample and correction moments, 
possible process outputs measured at the sample moment(s), correction variables 
(e.g. extra ingredients, processing time) and correction models. 
It will be comprehensively described in Chapter 4. 

With a unit-configuration we mean the specification of a set of processing units 
and other equipment that is expected to be used in the production of a batch 
corresponding to the recipe adaptation set, where: 
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on a single unit-configuration only one batch can be run at the same time; 
equipment units of a configuration may be combined in various manners; 
a batch does not necessarily have to use all the equipment; 
the equipment combination may be determined at the beginning of the 
batch; 
the same recipe adaptation set must be valid for the various equipment 
combinations. This means that one of two possibilities occurs: 
a) the process output does not depend on the used equipment 

combination (this is the most common situation); 
b) if the process output does depend on it, the used combination is 

included in the recipe adaptation set as an external factor, i.e. extra 
recipe item. 

The unit-configuration may be seen as a specification defining a subset of the 
allowable equipment described in the master recipe. 

2.4 The FRIS-Approach 

2.4.1 The Two Activity Domains of the FRIS-Approach 

In the FRIS-approach two main domains of activities can be distinguished: 
firstly, the development of a recipe adaptation set intended for generation of a 
master recipe or improvement upon it, and generation of an actual master 
control recipe. Subsequently, its application to process monitoring, or to the 
improvement of any particular batch, by generating and adjusting a best control 
recipe. Table 2.1 summarizes these activities. 

As presented in Table 2.1, · the FRIS-approach shows these activity domains, 
aiming at two, usually quite different, groups of users in the process industry, 
namely those in R&D and those in Production. The development of a recipe 
adaptation set and the development of a master (control) recipe are in the 
domain of R&D, the application of a recipe adaptation set is in the domain of 
Production department. 

It should be added that the R&D functions will often be combined with those 
of Production, especially in a laboratory or a pilot-plant, or during 
experimentation. Nevertheless, the partition of the approach into a recipe 
development part and an operational application part, and the distinction of two 
groups of users is quite useful because: 
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a) in R&D, costs and time-to-market are of prime importance and in 
Production, best plant performance, or fastest performance improvement; 

b) development of a recipe adaptation set together with a master (control) 
recipe is a relatively long-term occupation involving a number of batches, 
whereas an application of such a set regards, in principle, one individual 
batch; 

c) development of a recipe adaptation set has freedom of choice as the user 
may decide how and at which moment test runs are to be done; recipe 
application, however, has to realize production requirements before the 
end of the individual batch run; 

d) in the operational application phase, it is common practice to organize 
different types of batches per scheduling sequence, with the consequence 
that various recipe adaptation sets will be used one after the other. In 
contrast, recipe development utilizes similar types of batches in different 
scheduling sequences. 

Table 2.1 Activities of the PRIS-approach 

The Flexible Recipe-Approach 

1. Development of a recipe 2. Application of a recipe adaptation 
adaptation set and recipe set 

improvement 

Aim: Aim: 

• Generation/improvement • Generation/adjustment 
of a master recipe of a control recipe 
or a master control recipe (batch initialization 

and batch correction) 
• Process monitoring 

Techniques: Techniques: 

• Design of experiments • Recipe optimization in the context of 
• Process modelling batch initialization 
• Model-based recipe improvement and batch correction 
• Experimental process optimization 
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2.4.2 The Development of a Recipe Adaptation Set in Brief 

The development of a recipe adaptation set is the activity which is principally 
done by R&D people. They may use the developed recipe adaptation set to 
determine the best master recipe in a systematic fashion, or to improve upon it, 
and to generate a master control recipe, e.g. owing to new research findings, 
changed prices or customer demands. 
The principal techniques involved in this activity are: design of experiments, 
modelling, model-based recipe improvement and experimental (sequential) 
optimization. 

Design of experiments defines the successive experiments (test runs) and 
provides a pattern for the introduction of variations in selected recipe items in 
order to maximize process information required for finding e.g. process models 
or optimal process conditions, in a minimal number of runs. 
In essence, without upsetting normal production the process is made to produce 
data about itself. 

During modelling, the parameters of a process model are estimated on the basis 
of the available data. For ease of discussion, it is helpful to make a distinction 
between "white" and "black" modelling. The former constructs the model 
equations on the basis of the so-called first-principle laws from physics, 
thermodynamics, chemistry and chemical engineering. The latter estimates the 
parameter values of arbitrary postulated mathematical formulae (a parameterized 
model) from the records of input/output data by minimizing an criterion, which 
gives an indication of the difference between the actual and estimated process 
output data. Usually, such a black-box model does not reflect the internal 
process structure. A more detailed description of both types of models is given 
in Section 3.2.1. 

It should be emphasized that, actually, in practice neither "white" nor "black
box" modelling is used, but a judicious combination, resulting in more or less 
"grey" models. As mentioned before, this distinction is only made for ease of 
discussion. 

Unlike white models, which are seldom available in many branches of the 
process industry, black-box models may be relatively easily obtained by, 
experimentation, provided that small variations in process operation are allowed. 
Therefore, black-box models, more precisely "dark grey" models, of the type 
henceforth to be called transition models, are presently used in the FRIS-appro
ach: most of the time a parameterized model is postulated in the form of simple 
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polynomial, and parameters are estimated from the observed process data, but 
process knowledge is extensively used in design of experiments, and in the 
selection of variables and model-structure. A transition model gives the relation 
between the initial process conditions and the final output without describing 
what happens in between initial and final moments, or, more generally, it relates 
the process conditions at one moment to the conditions at a later moment, given 
all important inputs to the plant in the period in between. 
However, if a white process model happens to be available, it makes sense to 
incorporate it in the recipe adaptation set. 

The model-based recipe improvement searches for improved process 
conditions, i.e. by optimizing the predefined performance criterion, subject to the 
estimated process model and defined constraints, using a suitable optimization 
method. Because the FRIS-approach employs, in the first instance, the black-box 
transition models, the corresponding optimization methods have static character. 
Section 3 .4 describes what kind of optimal control problem will be obtained in 
case a white process model is available. That section also explains how the 
FRIS-approach corresponds to the optimal-control approach. 

During experimental optimization one searches for optimal operating 
conditions by sequential comparison of the process data, without using 
mathematical models, like in zero-order optimization methods. To speed-up the 
classical experimental optimization, we have developed a new method, called 
multiplex fitting, which proceeds towards an optimum by local approximation 
of the process surface. 

2.4.3 The Run-Time Application of a Recipe Adaptation Set in Brief 

Once defined, a recipe adaptation set can be applied in Production for batch-by
batch generation and adjustment of an improved, i.e. initialized or corrected, 
control recipe, and in process monitoring, which may be helpful in improving 
models and recipes, and in the detection of disturbances (e.g. catalyst 
deactivation, fouling, changes in feedstocks ). The principal mathematical 
technique involved in generation and adjustment of a control recipe is recipe 
optimization in the context of batch initialization and correction. 

With batch initialization we mean generation the process is actually 
started, of a control recipe adapted to detected deviations in process and/or 
market conditions, whereas batch correction deals with adaptation of a control 
recipe during the batch run, based on measured deviations. 
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To sum up, the strength of the FRIS-approach is that it improves the efficiency 
of determination of the best master recipe and, owing to the separation between 
the process model and the market model, it allows for an almost instantaneous 
improvement upon the master recipe to rapid economic changes without process 
remodelling, i.e. the generation of the best actual (master) control recipe. 
Furthermore, the approach enables repeated utilization of the recipe adaptation 
set to find (near-) optimal control recipes under varying market and process 
conditions. 

Chapters 3 -:- 4 describe in more detail the concepts introduced on the basis of 
a fermentation process. 
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Chapter 3. Development of a Recipe 
Adaptation Set and 
Master Recipe Improvement 

A recipe adaptation set, as defined in Chapter 2, includes two kinds of com
ponents: conventional ones and flexible model-based ones. The development 
of a recipe adaptation set always starts with the definition of the conventional 
recipe components presented in Figure 2.1, that is, relevant process inputs, 
process parameters, and other components such as process outputs, plant, 
process and market constraints, and choice of equipment. For practical rea
sons recipe adaptation does not cover all process inputs and parameters. 
Rather, one should select those items, which are expected to have a strong 
impact on the criterion and/or constraints that may turn out to play an active 
role. 

The second step is to investigate whether the external factors, like the quality 
of feedsctocks or the ambient temperature, have an effect on production 
results. If this is the case, it is recommendable to measure them and to incor
porate them in a recipe adaptation set. 
In the next step a performance criterion and constraints should be formulated. 
This is a subject of Sections 3.3.1 + 3.3.2. 

Other essential parts of a recipe adaptation set are process models. As already 
mentioned in Section 2.4.2, two kinds of process models can be distinguis
hed: white (first principle or mechanical) models on the one hand, and black
box (empirical) models on the other. 

Before both types of models will be described, we will concentrate on the 
methods of design of experiments, which support the development of black
box models of the transition type. 

As pointed out in Chapter 2, a recipe adaptation set can be used in generation 
and improvement of a master recipe or a master control recipe, and subse
quently in generation and adjustment of a control recipe. This chapter des
cribes the former activities, Chapter 4 the latter. 

At this point it should be mentioned that, upon request, this chapter has been 

---------------·-----·····-·-----------·~-·····----
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written in such a way that it may also serve as an introduction to the FRIS
approach for those who want to put it into practice themselves. 

3.1 Design of Experiments 

3.1.1 Introduction 

The field of "design of experiments" has its own terminology: any process 
input or parameter selected for experimentation is called a factor, a measured 
process output is called a response. For the remainder of this thesis, in the 
context of experimentation, these terms will be used. 

Because experiments are time-consuming and may interfere with normal 
production, the importance of an efficient design procedure for the planning 
of experiments can not be stressed strongly enough. Experiments can be 
planned and next carried out in one of the following manners: 
1) as unstructured experiments: one tries to experiment for various process 

conditions, which are chosen rather arbitrarily; 
2) as "one-factor-at-a-time" experiments: during one experiment only the 

value of one factor is changed; 
3) according to any customary design of experiments scheme, which will 

be described below. 

The most important advantages of design of experiments in comparison with 
one-factor-at-a-time or unstructured experiments are: 
1) efficiency is greater, because the aimed objective can be realised in a 

relatively small number of experiments; 
2) the procedures are structured so that they are clear in execution and 

reporting; 
3) the data lend themselves better to modelling and in the continuous 

improvement of the process operation. 

The concepts of Response Surface Modelling (RSM) are very useful in design 
of experiments [BOX87]. This is a strategy intended to estimate a process 
model and to use it to predict response(s) and to optimize performance. This 
strategy forms an essential part of the proposed model-based flexible recipe
approach. 
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The selection of factors is an important step. Some rules of thumb can be 
given: 
1) try to select not too many factors, e.g. not more than four: the growing 

number of factors means an even stronger growth in the number of 
experiments; 

2) because of noise, choose the factors' settings not too close together (see 
Formula (3.1) below); 

3) choose the factors settings not too far apart, so that a linear or quadra
tic approximation of the measured effect may adequately describe 
responses in the corresponding area; 

4) take into account that possibilities for experimentation during commer
cial production tend to be more limited than those in comparison with a 
pilot plant, so the allowed variations in a commercial plant are usually 
smaller than in a pilot plant. 

If, in first instance, more than four factors are selected, it is recommendable 
to use the so-called Screening Design method (e.g. Plackett-Burman [PLA46], 
Opperman [UPP93]) or the fractional factorial design [BOX87, MON91] to 
identify the most important ones. In this manner the number of experiments 
can be reduced. 

The Principal Components Analysis can be helpful to investigate whether the 
involved factors are correlated. In such a case, the variations in the original 
factors can be accounted for by a smaller number of so-called principal 
components [MAN94]. 

It is important to realize that the effect of unknown influences, like e.g. 
catalyst ageing, may be reduced when the experiments proposed by the de
sign method are done in a random order. Because the response measurements 
are noisy, it is necessary to know how many experiments, performed under 
the same process conditions, so-called replicates, are needed. An often used -
rule of thumb is [BAN94]: 

where: 

20 

r 
(J2 

Yi, Y2 

number of experiments in the same point 
variance of the measured response 

(3.1) 

average response for the first and second process 
conditions, respectively. 
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Among the established design of experiments methods, factorial-like and 
optimal designs are most suitable to be used to investigate multifactor respon
se surfaces. There is a lot of literature on this subject [e.g. BOX87, MON91, 
BAN94], which can be consulted for a comprehensive description of the 
methods; a brief description is given Appendix A. 

There are also many software packages supporting design of experiments, e.g. 
RS/Discover, STATGRAPHICS, SAS, ECHIP, but the expertise for using 
them in an industrial environment is not widely available, and their use pro
vides no more than individual pieces of a puzzle instead of solving the puzzle 
as a whole. The development of the FRIS-approach is an attempt to change 
this situation. 

3.1.2 Design of Experiments for Processes Having Time-Dependent 
Parameters 

It should be noted that batch operation can often be improved by varying 
process parameters such as temperature or pressure as a function of time. 
Classical design of experiments methods have been developed for time-inde
pendent factors only. When a batch process involves time-dependent recipe 
items, the search for the optimal profile of such recipe item would require 
dynamic optimisation, for which purpose a dynamic process model is neces
sary, which is rarely available. Fortunately, in many batch-processes time
dependent recipe items can be approximated by simple, often piecewise linear 
or lower-order polynomial (spline) functions of time, with or without con
straints [RIJ91, VER95]. In the FRIS-approach, a simple and practical way of 
improving process operation is by such an approximation of time-dependent 
recipe items. 

Let u(t;t0,tF) be a vector of time-dependent recipe items on the interval [t0,tF]. 
Each element u(t;t0,tF) of this vector can be approximated by: 

where: 
u 

x 

Chapter 3 

(3.2) 

approximation of u on the interval [t0,tF], often in the form 
of a piece-wise linear, not necessarily continuous, function; 
parameter vector associated with the approximating func
tion; the elements of this vector serve as factors (recipe 
items) during experimentation (where confusion is unlike
ly, the parameter x may be omitted). 
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For example, this means: a time-dependent recipe item u(t;t0, tp) may be 
approximated on the interval [t0, tp] by a linear function u(t;t0,tp,x) of time, 
where x denotes a vector with the initial level u(t0) as the first element, and 
the slope of the line as the second element. In such a case the search for an 
optimal profile of the time-dependent recipe item is replaced by a search for 
the optimal values of the parameters x and so this problem can be solved 
with the known design of experiments methods. This will be illustrated by an 
example. 

Let us consider a simulated fed-batch fermentation process (see Appendix B 
and [OVE92]). The micro-organisms produce penicillin in a reactor, provided 
that during the reaction sugar is added. It is known that the temperature for 
the maximal growth rate of the micro-organisms is higher than the tempe
rature for the maximal rate of product formation. It is not known, however, 
what temperature profile in the batch reactor has to be chosen so as to obtain 
the maximal amount of the final product, denoted by Pf. If one decides to find 
this profile T(t;t0,tp,x) by design of experiments, one first has to choose a 
suitable form of u(t;t0,tp,x). 

30 

Tb 
28 

26 

temp. [oC] 
24 

22 

20 

Figure 3.1 

0 

to 
2 

time [h] 

10 

-- temp_subopt 
temp_opt 

An optimal temperature profile of the fermentation process temp_ opt 
(dotted line) can be approximated by a suboptimal linear profile 
temp_ subopt (continuous line) with the initial temperature Tb and the 
slope SL 

In Figure 3.1 the optimal temperature profile is shown by the dotted curve; of 
course, usually this profile is seldom known beforehand and will never be 
known if you proceed as intended. In the examination of this example, this 
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profile was actually obtained by dynamic optimization of the simulated pro
cess. For that purpose the so-called two-point boundary value problem 
TPBVP based on a white process model had to be solved as shown in Appen
dix B. 

A simple candidate for a sub-optimal approximation is: 

(3.3) 

where: 
x [Tb, Sl] 
Tb initial temperature [°C] 
SI temperature slope [°C/h]. 

If the initial temperature value Tb and the slope Sl are varied according to an 
design of experiments method and the response Pf is estimated as the functi
on of these factors, then the performance index can be optimized and the best 
approximation of the optimal profile can be found. 

In this case, experiments were simulated, in which the temperature was varied 
according to the Box-Behnken design method (see Appendix A), with Tb and 
SI as factors under the following constraints: 

27 s Tbs 30 
- 1 s SI s - 0.5. 

The estimated process model was found to be: 

Pf(tF=lO h) - 752.629 - 61.002 Tb - 287.512 SI 
- 12.199 Tb· SI- 1.220 Tb2 

- 36.986 SI2 

(3.4) 
(3.5) 

(3.6) 

The maximization of the production yield Pf gives: Tb= 29.41 and SI = - 0.96. 
The linear sub-optimal profile (3.3) with the coefficients found by the optimiza
tion of (3.6) is indicated by the continuous line in Figure 3.1. It may be added 
that the sub-optimal yield, corresponding to this linear approximation, is 40.87, a 
result which is only 0,4% less than the true dynamic optimum of 41.04. 

The optimal profile is hardly ever known beforehand. Experience and know
ledge of the process may then be helpful; indeed, on the basis of such experi
ence, a suitable approximation may be proposed, for example like (3.3). Next, 
one may try to extend the first approximation with one having more degrees 
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of freedom, of course provided experimentation according to such a more 
"extensive" approximation is not too time-consuming. 

In this particular example, the second approximation attempt was as follows: 

{

Tb 

Tb + Sl (t - t 1) 

(3.7) 

where: 
x [Tb, Sl, t 1] 

Tb initial temperature, held fixed in the time-interval [t0, t 1] 

SI temperature slope after t1 

t 1 time break-point in the approximation. 

In this case the optimization of the response Pf according to the new estima
ted process model of these three factors resulted in t1 ::= to- Therefore it was 
safe to conclude that the optimal profile may be approximated by (3.3) 
[MEI94]. 

3.2 Process Modelling 

3.2.1 Characteristics of White and Black-Box Process Models 

This sub-section presents the most important characteristics of white models 
as well as black-box models. 

For white models: 
1) the development of such models can only be done by experts and, 

moreover, is usually very time-consuming; 
2) often they consist of many hundreds or even thousands of differential 

and/or, possibly non-linear, algebraic equations, which are time-con
suming to solve. Of course, simpler models may sometimes be obtained 
by making assumptions concerning the process, but in such a situation 
it may be not evident how these simplifying assumptions influence 
model adequacy; 

3) they have a relatively large validity region, depending on the assumptions 
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made during the model development, but often they are not very accurate; 
4) they do not only describe the input-output relations, but also the "inner 

behaviour" of the process, and all model parameters and variables have, 
in principle, a clear physical meaning. 

For black-box models: 
1) the development of such models is based on experimental data and not 

on first principles; 
often model equations may be quite simple; 2) 

3) the model is valid only in the region between and around the performed 
experiments and any extrapolation can be risky. On the other hand, the 
model can be as accurate in this small area as the accuracy of measu
rements permits; 

4) because these models describe input-output relations only, they say no
thing about what happens inside during processing. 

From here on, whenever process models are mentioned, transition models of 
the black-box type are meant. To avoid confusion, white models will be 
always called "white" or "first-principles models". How they may be used for 
recipe improvement will be discussed in Section 3.4. 

3.2.2 The Introduction of a Transition-Model Development Scheme 

For process modelling, the following transition-model development procedure 
was developed in the context of this thesis (see Figure 3.2): 

1. Define the purpose of the experimentation and modelling; 
2. Investigate the available process knowledge; 
3. Define an experiment design task; 
4. Perform experiments; 
5. Estimate model parameters; 
6. Conduct statistical tests to check model adequacy; if necessary, apply 

model reduction or extension, input/output transformations and/or ro
bust regression and return to 5; if statistical techniques do not give 
satisfactory results, define new (extra) experiments and return to 3 or 
give up; 

7. Investigate the tentatively accepted process model: visualize its respon
se surface, compute the effects of factors and their confidence inter
vals, predict responses under various circumstances to learn more about 
the model, and possibly also about the process. 
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1. Define the purpose 

1 purpose 

2. Investigate process knowledge 

1 process knowledge 

.------.------ 3. Define experiment design task 

j 
(initial) regression model 
planned experiments 

4. Perform experiments 

l process data 

C
. Estimate process model 

1 estimated model parameters 

. Conduct statistical tests 

(model reduction/expansion, bisquare method 
~------ R2

, R2
adj• R2

PRESS• ANOVA, Residual analysis) l tentatively accepted model 

7. Investigate the tentatively accepted model 

1 more process knowledge 

8'. Perform validation experiments 

1 process data 

~----------- 8". Accept the model 

Figure 3.2 

26 

accepted model 

9. Validate and/or update the model 
with new data 

10. Include the process model 
in the recipe adaptation set 

The transition-model development scheme 

r new process data 
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8. Define and perform validation experiment(s) to validate and accept the 
model; if a model is not valid, define new (extra) experiments and 
return to 3; 

9. Use all batch process data for model validation and/or model updating, 
so as to improve the model; 

10. Include the validated process model cum annexis in the recipe adapta
tion set. 

3.2.2.1 Defining the Purpose of the Experimentation and Modelling 

This would appear to be a rather obvious part of any experimentation, but in 
practice it is by no means always clear at once to everybody involved. As 
already mentioned in Chapter 2, some possible goals are: 

improving process yield; 
determining what recipe settings will ensure that the desired end speci
fication is reached; 
reducing production costs; 
reducing processing time. 

3.2.2.2 Investigating the Available Process Knowledge 

This is a very important part of modelling. 
Below a set of standard questions is given to support knowledge structuring. 
1) What are important process, plant and economical constraints? 
2) Can the various factors be varied independently from each other? If 

recipe items are correlated, apply Principal Components Analysis first. 
In the case that the factors are concentrations in a mixture prepare so
called Mixture experiments [MON91]; 

3) Does the process in question involve time-dependent parameters? 
4) What are the allowed variations for each factor? 

What, if any, complications are to be expected? 
5) Are there any factor interactions possible? 
6) How accurate are the measurements? 
7) How many repetitions of an experiment under the same process condi

tions are needed? 
The proper understanding of the process information may help design better 
experiments. 
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3.2.2.3 Defining an Experiment-Design Task 

An experiment-design task is a set of experiments defined to realize the 
specified goal. Because this issue is very extensive, it was separately descri
bed in Section 3.1 which showed that the selection of an appropriate experi
ment-design scheme also involves a choice of the factor variation size, the 
number and type of experiments, and the type of initial regression model. As 
will be shown below, transition models are built using multiple polynomial 
regression (the response is regressed on a number of factors together with 
their powers and products), but the choice of the appropriate initial regression 
model is not a statistical issue, it should rather be based on process know
ledge and the experience obtained during previous experimentation. 

3.2.2.4 Performing Experiments 

Experiments should be performed very carefully to obtain good results so as 
to avoid unnecessary replication of experiments. As will be shown below, 
repetition of experiments is necessary to obtain an estimate of the experi
mental error and, as a consequence, a more precise estimation of the effect of 
the factors. 
Moreover, because the statistical methods involved in the data analysis requi
re that the observation errors are independently distributed random variables, 
it is recommendable to perform experiments in random order, as mentioned 
in Section 3 .1.1. 

3.2.2.5 Estimating Model Parameters 

As mentioned before, the relationship between the process response and the 
selected "factors", i.e. recipe items, is represented by a mathematical model. 
After an appropriate model structure is chosen, e.g. 

y=X{:l+t: 

where: 
y 
(:J 

x 

28 

(3.8) 

process output, here called response 
vector of the unknown model parameters (in the context of 
regression analysis called vector of model coefficients) 
data matrix including the column vector 1, which is neces
sary when a model with a constant term is estimated 
random error with zero mean value and variance cr2 
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the model parameters can be estimated from the experimental data set using 
appropriate statistical methods. A common estimation method is to minimize 
the sum of squares of the differences between the measured response values 
and the values predicted by the regression equation for the set of experimen
tal data - hence the term "least-square regression analysis". 

As well as providing values for the unknown model parameters, regression 
analysis also yields estimates of their standard deviation, so that both point 
estimates and confidence intervals for the factors become available, which 
information enables certain hypotheses to be tested, e.g. whether the values of 
model parameters differ significantly from zero or not. 

The data matrix X depends on the structure of the process model to be esti
mated. The transition models used in this thesis are of the polynomial type, 
so that the X matrix contains the experimental values for each factor, inclu
ding interaction terms and/or powers. 

For a complete discussion of the least square regression method see, for 
example, [DRA81 ]. As the method is quite common, we shall concentrate on 
the analysis of the estimated model, rather than on the estimation procedure 
itself. 

As already mentioned in Section 3 .1.1, there are many statistical software 
packages with graphical support that can be helpful in modelling and data 
interpretation. The analyses for this thesis have been done using the RS/Dis
cover package, which we found to be the most complete and user-friendly 
software in this area at the time a package had to be selected. 

The modelling of the fermentation process introduced in Section 3 .1.3 is used 
as an example. Let us assume that three factors are varied during experimen
tation: initial temperature Tb, temperature slope SI and sugar dosage Sd. In 
first instance, the three selected factors are varied according to the factorial 
design (see Appendix A) in the following range: 

TbMIN = 27, 
Slr-.11N 1, 
SdMIN 0.85, 

TbMAX = 30; 
SlMAX = - 0.5; 
SdMAX = 1.15. 
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Table 3.1 

Exp. Tb 

1 30.0 
2 27.0 
3 30.0 
4 28.5 
5 27.0 
6 30.0 
7 27.0 
8 28.5 
9 27.0 

10 28.5 
11 30.0 

Worksheet with experiments. The measured response is the 
final product amount Pf. 

Sl Sd Pf 

0.50 0.85 26.08 
0.50 0.85 34.87 
0.50 1.15 33.18 

-0.75 1. 00 40.77 
-1.00 1.15 36.15 
1. 00 1.15 45. 73 
0.50 1. 15 44.70 

-0.75 1. 00 40.65 
-1. 00 0.85 30.05 
-0.75 1. 00 40.06 
1. 00 0.85 35.91 

Altogether eleven experiments are performed in random order (eight accor
ding to factorial design plus three extra experiments in the centre point), 
which are presented in Table 3.1. The fin.al amount of the product Pf is the 
measured and modelled response. 

On the basis of these experiments the following process model is estimated: 

Pf= 37.314 - 0.821 ·(-Tb) - 1.339·(-Sl) + 4.394·(-Sd) + 
- 4.181 ·(-Tb· -SI) - 0.089·(-Tb · -Sd) - 0.086·(-Sl · -Sd) 

(3.10) 

where: 
-Tb = ((Tb - 28.5) I 1.5) 
-SI = ((Sl + 0.75) I 0.25) 
-Sd = ((Sd - 1) I 0.15) 

(3.11) 
(3.12) 
(3.13) 

Table 3.2 presents the accessory statistical information. It shall be used to 
explain what statistical analyses have to be done in order to properly arrive at 
an acceptable model. 

The column 1 of Table 3.2 ("Term") presents the number of the factor and its 
symbol, the sign "~" indicating that this factor has been transformed as indi
cated in th~ column 6 ("Transformed Term"). In this case the so-called or
thogonal scaling is used: 

(3.14) 
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where: 

xM = (xMAX + XM1N) I 2 
ox = (xMAX - xMIN) I 2 

(3.15) 
(3.16) 

so that the value of any selected factor after such scaling is between -1 and 
+l. 

Table 3.2 Model MODI for the worksheet of Table 3.1 

Least Squares Coefficients, Response Pf, Model MODl 

1 Term 2 Coeff. 3 Std. Error 4 T-value 5 Signif. 6 Transformed Term 

1 1 
2 -Tb 
3 -sl 
4 -Sd 
5 -Tb*Sl 
6 -Tb*Sd 
7 -sl•sd 

37.313636 
-0.821250 
-1. 338750 

4.393750 
-4.181250 
-0.088750 
-0.086250 

1.001673 
1.174566 
1.174566 
1.1 74566 
1.174566 
1.174566 
1.174566 

-3. 56 
-0.08 

0.07 

0.0236 
0.9434 
0.9450 

No. cases 11 R-sq. = 0.8768 RMS Error= 3.322 
Resid. df 4 R-sq-adj. = 0.6920 Cond. No. = 1 
- indicates factors are transformed. 

( (Tb-2.85e+Ol)/l.5) 
( /2.5e-Ol) 
( .5e-Ol) 

It is recommendable to use orthogonal scaling during the model estimation 
procedure. Firstly, because such scaling helps to reduce numerical instability 
during the computation of the inverse of the matrix (XTX) needed by the least 
squares algorithm. Secondly, if the used design scheme is orthogonal, that is: 
if X has orthogonal columns, the variance of the estimated model coefficients 
is minimal and the coefficients can be estimated independently, which means 
that if a term is removed from the model, the remaining coefficients do not 
change. Examples of orthogonal designs are the 2k factorial designs and 
fractional designs with orthogonally scaled factors. 

The standard 2k design does not give enough information to estimate the 
experimental error. To estimate it, some runs have to be repeated. By aug
menting the orthogonal 2k design with a number of experiments in the centre 
point, the design remains orthogonal and estimation of the experimental error 
will be possible. This "augmented" factorial design has been used in this 
example. 

In columns 2 and 3, Table 3.2 gives the estimated coefficient values 
("Coeff. ") and their standard error ("Std. Errorn), respectively; the latter 
indicating a measure of uncertainty of the estimated coefficient, defined as 
follows: 
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SE([3) (3.17) 

where: 

[3, 
SE([3i) 
cii 

(j 

the i1
h model coefficient 

standard error of [3i 
the (i,iYh element of (Xrxy1 

estimated standard deviation of the random error t. 

Columns 4 and 5 in Table 3.2 give information for testing the null-hypothesis 
that the actual values of the coefficients being estimated are in fact zero, in 
which case the associated term can be removed from the model. This proce
dure is described in the following sub-section. 

Table 3.2 further presents the Root Mean Square error ("RSM Error"), which 
is a measure of the response variability that is not explained by the fit: 

RSM Error = (MSREsm)112 

where: 

MSREsm = SSREsm I (n-p): 
n 

SSRESID L: (y, - 9'i 

Y1 
9'1 
n 
p 

i=I 

(3.18) 

residual mean square (3.19) 

residual sum of squares (3.20) 

measured response of the i1
h experiment 

estimated response of the i1
h experiment 

number of experiments 
number of model terms (including the 
constant term, if present) 

If the model is correct, this value gives an estimate of cr. This will become 
clear after the explanation of the lack of fit which is discussed in Section 
3.2.2.6. 

The additional information given by "R-sq." and "R-sq-adj.", presented at the 
bottom of Table 3 .2, gives some indication for checking the fit and it is also 
discussed in Section 3.2.2.6. 

The last item in Table 3.2, "Cond. No.", is the condition number indicating to 
what extent the matrix X is ill-conditioned. This number can vary from one, 
which indicates a perfectly orthogonal design, to infinity, which indicates a 
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design containing at least one singularity, i.e. one factor being an exact linear 
combination of the others, as a consequence one factor must be left out of 
consideration. A condition number higher than l 00 indicates some collinearity 
among factors which can cause the model parameters to be much more poorly 
estimated than would happen when using an orthogonal design. 

3.2.2.6 Conducting Statistical Tests 

To check model adequacy and, if considered necessary, to apply model re
duction or extension, input/output transformation and/or robust regression, we 
have selected the following statistical techniques: 
l) Investigation of the coefficient of determination and the adjusted 

coefficient of determination, denoted by R2 and R2
adj• respectively. 

2) Investigation of the significance of model parameters. 
3) Analysis of Variance. 
4) Residual analysis. 
5) Investigation of the goodness-of-fit with the x2-test. 
6) Investigation of the PRESS test. 

Appendix C gives a description of these generally accepted techniques. 

The statistical analysis starts with an investigation of the coefficient of deter
mination R2 (in Table 3.2 presented by "R-sq.") and the adjusted coefficient 
of determination R2

adj (in Table 3.2 presented by "R-sq-adj."), which say 
something about how well correlated the fitted values produced by the model 
are with the actual response values, in other words they give an indication 
about the explanatory ability of the model. A high value of these coefficients 
(the maximal possible value is 1) indicate a good fit. Because the values of 
both statistics R2 and R2

adi for the fermentation model MODI are satisfactory 
(R2 0.8768, R2

adi = 0.6920), we may go on with the test of the significance 
of the model parameters. The following null hypothesis is tested for each 
estimated parameter ~: 

? 
H0 : ~ * 0 

As one can see in Table 3.2, the ''significance", actually the insignificance of 
the terms Tb*Sd and Sl*Sd is very high, namely 0.9434 and 0.9450, respec
tively, i.e. their significance levels are very low: (1-0.9434)·100% and (1-
0.9450)·100%, respectively. This means that both terms may be removed 
from the model. The reduced model, called MODl_RED, is as follows: 
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Pf 37.314 - 0.821 ·(-Tb) - 1.339'(-Sl) + 4.394·(-Sd) 
- 4.181 (-Tb· -SI), (3.21) 

see also Table 3.3. 

Table 3.3 Reduced model MODl RED 

Least Squares Coefficients, Response Pf, Model MODl RED 

1 Term 2 Coe ff. 3 Std. Error 4 T-value 5 Signi f. 6 Transformed Term 

- - - - - - - - - -
1 l 37 .313636 0.818997 
2 -Tb -0.821250 0.960359 ((Tb-2.85e+Ol)/l.5) 
3 -Sl -1.338750 0.960359 ((Sl+7.5e-Ol)/2.5e-Ol) 
4 -Sd 4.393750 0.960359 4.58 0.0038 ( (Sd-1) /1. 5e-Ol) 
5 -Tb*Sl -4.181250 0.960359 -4.35 0.0048 

No. cases 11 R-sq. = 0.8764 RMS Error = 2. 716 
Res id. df 6 R-sq-adj. .. 0.7941 Cond. No. 1 
- indicates factors are transformed. 

The Analysis of Variance, investigating sums of squares of residuals and 
resulting variances, for the model MODl_RED is presented in Table 3.4. 

Table 3.4 The variance analysis of the model MODl_RED 

Least Squares Summary ANOVA, Response Pf, Model MODl_RED 

Source df Sum Sq. Mean Sq. 
------ - - - -

1 Total(Corr.) 10 358 3067 
2 4 314.0368 78.5092 
3 3 174.1739 58.0580 
4 Non-linear 1 139.8628 139.8628 
5 Residual 6 44.2699 7.3783 
6 Lack of fit 4 43.9810 10.9953 
7 Pure error 2 0.2889 0.1444 

R-sq. = 0. 8764 
R-sq-adj. = 0.7941 

Model obeys hierarchy. The sum of squares for linear terms 
is computed assuming nonlinear terms are first removed. 
F(4,2) as large as 76.13 is a rare event => 

likely that significant terms are missing from model. 

F-Ratio .Signif. 
------ - - - -

10.64 0.0068 
7.87 0.0168 

18.96 0.0048 

76 13 0.0130 

The F-ratio, used to determine whether the non-linear terms, as a group, 
make a significant contribution to the model fit, is 139.8628/ 7.3783 18.96 
(see row 4 in Table 3.4). As one can see in the adjacent significance column, 
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such an F-ratio would occur in about 0.48 percent of the cases if the true fit 
were a linear model. As this seems a very rare event, it appears likely that the 
second-order model fits significantly better than a linear one. 

Because, in this case, there are replicated observations (i.e. two or more 
experiments made at an identical set of factor values), it is possible to test the 
so-called lack of fit. The F statistic computed to estimate a lack of fit is F = 

10.9953 I 0.1444 = 76.13 (see row 6 in Table 3.4). Such an F-ratio would 
occur about in 1.3% of the cases if there were no model terms missing, 
which means the calculated F-value is significant. Because this is a rare event 
(one expects at least 10%), it is likely that there are additional model terms 
that should be added to the model. 

It may be mentioned that the pure mean square error (row 7, column 
"Mean Sq.") gives an estimate of cr2

, irrespective of whether the fitted 
model is correct or not. Only if the model is adequate, the residual mean 
square MSREsm and the mean square due to lack of fit also give an estima
te of cr2

, otherwise they estimate not only cr2 but also a bias term caused by 
the inadequacy of the model. 

In the presented example the process variance cr2 estimated on the basis of the 
eleven experiments is 0.1444. 

Because model MOD 1 _RED has lack of fit, we had to update the experi
ment-design task described in Section 3.2.2.3 by defining extra experiments 
to enable the estimation of a full second-order model. Six of these experi
ments, presented in random order in Table 3.5, are defined according to the 
central composite faced design (see Appendix A), and the other four, marked 
with an asterisk, are experiments in the centre point. The last column of this 
table shows the measured response. 

Table 3.5 Additional experiments of central composite faced design 

Exp. Tb Sl Sd Pf 

12 28.5 0.50 1. 00 38.14 
13 28.5 0.75 0.85 36.90 
14 28.5 1. 00 1. 00 40. 38 
15 28.5 0.75 1.15 46.46 
16* 28.5 -0.75 1. 00 40.07 
17 30.0 -0.75 1. 00 37.19 
18* 28.5 -0.75 1. 00 40.12 
19 27.0 -0.75 1. 00 39.06 
20* 28. 0.75 1. 00 41.03 
21* 28.5 -0.75 1. 00 38.49 
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The new process model is estimated on the basis of all 21 experiments and 
after removing non significant terms, the following model, called 
MOD_ RED, results: · 

Pf= 40.574 - 0.844·(-Tb) - 1.295·(-Sl) + 4.471 ·(-Sd) + 
- 4.181 ·(-Tb ·-SI) - 2.755·(-Tb2

) - 1.620·(-Sl2
). 

See also Tables 3.6 3.7. 

Table 3.6 Estimated second-order model MOD RED 

Least Squares Coefficients, Response Pf, Model MOD_RED 

(3.22) 

1 Term 2 Coeff. 3 Std. Error 4 T-value 5 Signif. 6 Transformed Term 

1 1 
2 -Tb 
3 -Sl 
4 -Sd 
5 -Tb*Sl 
6 -Tb**2 
7 -Sl**2 

40.573708 
-0.844000 
-1. 295000 

4 .471000 
-4.181250 
-2.755393 
-1. 620393 

0.279304 
0 .277748 
0.277748 
0.277748 
0.310532 
0.488228 
0.488228 

No. cases 21 R-sq. • 0.9764 
Resid. df 14 R-sq-adj. = 0.9662 
- indicates factors are transformed. 

16 .10 
13 .16 
-5.64 
-3.32 

0.0001 
0.0001 
0.0001 
0.0051 

RMS Error 0.8783 
Cond. No. = 3.503 

((Tb-2. /1.5) 
( (Sl+7 .5e-Ol) .5e-01) 
((Sd-1)/1.5e-01) 

Table 3.7 Analysis of variance for the model MOD RED 

Source df Sum Sq. Mean Sq. F-Ratio Signif. 
-------~-- ---------- ~------~~ 

1 Total (Corr. ) 20 456.8922 
2 Regression 6 446.0920 74.3487 96. 38 0.0000 
3 Linear 3 223. 7920 74.5973 96. 70 0.0000 
4 Non-linear 3 222.3000 74.1000 96. 05 0.0000 
5 Residual 14 10.8002 0.7714 
6 Lack of fit 8 6.6232 0.8279 1.19 0.4282 
7 Pure error 6 4.1770 0.6962 

0.9764 
0. 9662 

Model obeys hierarchy. sum of squares for linear terms 
is computed assuming nonlinear terms are first removed. 
F(8,6) as large as 1.189 is not a rare event 

no evidence of lack of fit. 

In this case, as one can see in Table 3.7, there is no lack of fit (Significance 
of lack of fit = 0.4282 ji!;> 0.1 ). This model will be further investigated as a 
potential candidate for acceptance. 



Another useful method to check a model is residua) analysis. Figure 3.3 
presents the histogram of model MOD _RED, which shows one negative 
outlier with the residual between -2.5 and -2.0, which is about three times the 
estimated standard deviation cr = (0.6962);;, 0.834, calculated as the root of 
the pure mean square error, presented in Table 3.7. The histogram is not alto
gether symmetric. However, the occurence of more positive (thirteen) than 
negative residuals (eight) can simply be explained by the presence of one 
outlier and the assumption that the estimated mean of the error e must be 
zero. On the basis of the presented histogram there seems to be no need to 
transform the model. 
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Figure 3.3 Histogram of residuals according to the model MOD_RED 

Figure 3.4 presents the residuals in the time sequence. The negative outlier is 
marked with a circle. There seems to be no reason to suspect process "drift". 
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Figure 3.4 Residuals according to the model MOD_ RED versus experiment number 
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Figure 3.5 shows the residuals versus fitted output value m model 
MOD_RED. No unusual structure is apparent. 
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Figure 3.5 Residuals versus fitted value according to the model MOD_RED 

Figure 3.6 shows the probability plot of the considered model. Apart from an 
outlier, marked with a circle, this plot raises no serious doubts concerning the 
distribution. 
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Figure 3.6 Normal probability plot of residuals according to the model 
MOD RED 
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All four residual plots show that the negative outlier is present. In such a 
situation, a robust regression method, sometimes also called bisquare regres
sion, is preferable [DRA81]. The bisquare method supported by the RS-pac
kage weighs the residuals unevenly, using the Tukey's weighting function: 
the method recalculates the coefficients with the least square method, using 
the results of the previous fit as a starting point, and it continues in this way 
until they converge to stable values. 

The result of the bisquare estimation applied to the fermentation example is 
presented in Table 3.8 as the model MOD_RED_ROB. It is as follows: 

Pf 40.621 - 0.841-(-Tb) - 1.288-(-Sl) + 4.462-(-Sd) + 
- 4.176·(-Tb · -Sl) - 2.775-(-Tb2

) - 1.642-(-Sl2) (3.23) 

The model MOD_RED_ROB, presented by (3.23) has the same terms as the 
previously estimated second-order model, and only slightly changed parame
ters, which results in slight improvement of the coefficients R2 and R2

actj· 

Table 3.8 Refined process model MOD RED ROB estimated with bisquare 
regression method 

Bisquare Coefficients, Response Pf, Model MOD_RED_ROB 

l Term 2 Coeff. 3 Std. Error 4 T-value 5 Signif. 6 Transformed Term 

l l 40.620705 0.277765 
2 -Tb -0.840804 0.276218 ((Tb-2.85e+Ol)/l.5) 
3 -Sl -1.287789 0.276218 ((Sl+7.5e-Ol)/2.5e-Ol) 
4 -Sd 4.461946 0.276218 16.15 0.0001 ( (Sd-1)/1.5e-01) 
5 -Tb*Sl -4.175997 0.308821 -13.52 0.0001 
6 -Tb**2 2.775243 0.485538 .72 0.0001 
7 -Sl**2 1.642294 0.485538 -3.38 0.0045 

No. cases 21 R-sq. = 0.9766 RMS Error 0.8735 
Res id. df 14 R-sq-adj. = 0.9666 Cond. No. = 3.503 
- indicates factors are transformed. 

To decide whether the bisquare regression is to be recommended, the error 
variance of least-square regression, denoted by MSRESIDJeast_square• might be 
compared with the error variance associated with robust regression, denoted 
by MSREsm robust· If the first one is lower than the second, then it can be con
cluded that -the bisquare method is not appropriate. 
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In this example, the efficiency of bisquare regression compared to least squa
res regression is as follows: 

efficiency = MSRESID_lcast_square I MSRESID_robust = (0.8783 I 0.8735)2, (3.24) 

which is about 1.01; the error variance of least square regression is a little bit 
higher than the error variance associated with robust regression. This indica
tes only a very slight improvement by applying robust regression in this case. 

The residual analysis does not always tell the whole story. To check the 
regression assumption about the normal distribution of the random error E, 

x2-test may be used to test the so-called goodness-of-fit, i.e to check the 
hypothesis whether the population is normally distributed, especially in dubi
ous cases [HA Y94]. However, this procedure is not supported by the RS
software and must be, if necessary, prepared by the user. See Appendix C. 

The PRESS-test gives an indication about the prediction ability of the model. 
See also Appendix C. Also this test is not available in the RS-software for 
models estimated with bisquare regression and it must be, if necessary, prepa
red by the user. Its use was not attempted in the fermentation example. 

After all necessary statistical tests are performed, the best process model can 
be tentatively accepted. In the case of the fermentation process it is the model 
MOD_RED_ROB (3.23). 

3.2.2. 7 Investigating the Tentatively Accepted Process Model 

By visualizing the response surface, the factors' main and interaction effects 
and their confidence intervals (see below), and by predicting process outputs 
for various factor settings one can learn more about the model and at the 
same time often also about the process itself. 

Visualizing the response surface 

Figure 3.7 gives an example of the contour plot of the selected response 
surface as a function of the initial temperature Tb and the temperature slope 
SL The boundaries of the presented contour plot correspond with the expe-, 
rimentation boundaries given by (3.4) and (3.5). The sugar dosage is fixed at 
its optimal level: Sd=l.15. 

40 a Recipe Adaptation Set 



Sl [oC/h] 

-0.9 

44 Pf= 45 

-1.0 --+ 
27.0 27.2 27.4 27.6 27.8 28.0 29.2 29.4 28.6 29.8 29.0 29.2 29.4 29.6 29.8 30.0 

Tb [oC] 

Figure 3. 7 Contour plot of the estimated response Pf for the fixed optimal value 
of Sd=l.15. The maximum is marked by a dot. 

The response surface has the optimum on the boundary of the rising ridge. 

The visualisation of the response surface in contour plots, like in Figure 3.7, 
also gives information about the effects of the factors. 

Investigating the effects 

The estimated main effect of a factor is defined as the maximal change in the 
fitted response in the experimentation area due to this factor, if all other 
factors are fixed at their mean level [MON91]. For linear models, the main 
effect is calculated by changing the factor from its lowest value to its highest. 
For higher-order models the main effect is equal to the largest response 
change due to this factor. To calculate it, two points are isolated between the 
highest and lowest factor values which produce the largest effect. 

Because the effects do not include information about their precision, their 
confidence intervals are also mentioned. The lower and upper confidence 
bounds define the range of values in which the values will lay with a speci
fied level of confidence. 

Table 3.9 shows the main effects and interaction effects calculated for the 
accepted model MOD_REF _ROB. The main effect of the initial temperature 
Tb at the mean level of the temperature slope, i.e Sl=-0.75, is equal to -3.68 
over the interval [28.27; 30.00]. Although the main effect of Tb as well Sl 
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is negative, the situation changes if one of these factors is fixed at its mini
mal level. 

Table 3.9 

Factor Settings 

Tb 28.27 30 

Sl -0.85 to 0.5 

Sd 0.85 to 1.15 

Main effects (in bold) and interaction effects with 95% confidence 
bounds for the model MOD RED ROB 

Settings of Lower Estimated 
other factors bound effect 

------- - - - - -
Sl=-1 -0.70 1.14 2.98 
Sl 0.75 -5.24 -3.6'8 -2.12 
Sl=-0.5 10.34 -8.50 -6.66 

Tb=27 0.72 2.66 4.60 
Tb=28.5 -4.72 -3.18 -1.65 
Tb=30 -10.97 -9.03 -7.09 

Tb=28.5 & Sl=-0. 75 7.74 8.92 10.11 

If there is an interaction term in the model, an interaction graph or table may 
be produced to show the main effect of one factor at several fixed levels of 
the other factors. This may be helpful to. determine whether the effect of one 
factor changes with the value of others, and by how much, yielding conclu
sions that are valid over the experimentation area. 

3.2.2.8 Performing Experiments to Validate and Definitively Accept 
the Model 

The statistical tests described in Section 3.2.2.6, may give an indication as to 
whether the model is valid or not, but it is recommendable to carry out extra 
validation experiments using factor values other than those used in the orig
inal experiments. The design of validation experiments depends on the type 
of model, its accuracy and the experiments already performed, e.g. the vali
dation experiments can be planned around the expected optimum or, for 
linear models, they can be planned around the centre point to explore whether 
the assumption of linearity is acceptable. If the validation experiments do not 
disqualify the tentative model, they may, if desired, be used in further impro
vement and definitive acceptance of the model. When talking about 11definiti
ve11 acceptance, we actually mean "definitive for the time-being": new process 
data may indicate the need for model updating, for which purpose the proce
dure described in Section 3.2.2.5 has to be resumed. However, if the valida
tion experiments do not confirm the tentative model, one has to go back to 
the experiment-design task as defined in Section 3.2.2.3, by selecting a new 
type of model, defining new (additional) experiments and/or new constraints. 

42 Chapter 3 



To validate the tentatively accepted model MOD_RED_ROB, one experiment 
was done for the factor values: Tb= 29.4, Sl -1.0 and Sd = 1.15. These 
are process conditions in the expected boundary optimum, where no experi
ments were performed before. Table 3.10 presents the measured response and, 
for comparison, the predicted response, too. Because the predicted value of 
the response does not tell the entire story, as a rule statisticians provide an 
interval, e.g. a 95% confidence interval determined by its lower and upper 
bound, within which the value of the response in question would be expected 
to lie. 

Table 3.10 Validation experiment for the optimal settings 

Factor 
settings 

Tb=29.4, Sl=-1.0, Sd=l.15 

Lower 
bound 

43.lB 

Predicted 
response 

45.73 

Upper 
bound 

48.2B 

Measured 
response 

45.97 

On the basis of this experiment, here is no reason to assume that the model is 
not adequate, so the model MOD_ RED_ ROB is definitively accepted. After 
inverse transformation to the physical scales the following process model is 
obtained: 

Pf= -748.031+60.878 Tb+ 273.756 SI+ 29.807 Sd 
- 11.150 Tb·Sl - 1.225 Tb2 

- 25.926 Sl2 (3.25) 

This model will subsequently be used for both the generation/improvement of 
a master recipe or a master control recipe, and the adjustment of a control 
recipe. 

3.2.2.9 Using Batch Process Data from Other Batch Runs for Model 
Validation and/or Model Updating 

In principle, any data relating to the same type of batch process can be used 
for model validation and, if desired, for model improvement. If the process is 
slowly changing, it is recommendable to give lower weights to the old data 
and repeatedly estimate the process model. Such a procedure belongs to 
process monitoring. 

The validated process model cum annexis can be included in the recipe adap
tation set. The following sections show how it may be used. 
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3.2.3 Conclusions 

The previous section described a systematic strategy for black-box process 
modelling based on statistical analyses together with the transition-model 
development scheme that comprises a logical sequence of steps and learning 
loops for improving the choice of the model structure and the experiment
design task-definition on the basis of the intermediate results. 

It should be emphasized that, as shown, statistical analyses alone are not 
enough to definitively accept a model. The investigation of the tentatively 
accepted model and the results of validation test-runs is also a very important 
step. 

3.3 Model-Based Recipe Generation and Improvement 

The idea of model-based· recipe generation and improvement, is to use a 
process model to compute the most desirable process conditions by optimiza
tion of an appropriate performance criterion. 
Let us consider situations where only one single performance criterion is 
involved. How multi-objective problems can be tackled is presented in Secti
on 3.6. 

3.3.1 Performance Criterion 

The performance criterion provides the measure for the optimization. A great 
variety of performance criteria is possible; several will be considered in Chap
ter 6. For the exposition of the theory of this chapter the following perform
ance criterium is considered as being typical of the FRIS-approach: 

tF 

const + si y + $~ x + ${; J u(t) dt 
to 

J= ~max (3.26) 
d 

where: 
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d= 

J 
const 

(3.26a) 

(3.26b) 

the batch cycle time; for the operation at hand this equals: 
( tp - to) + tREST + tIDLE (3 .26c) 
time of "secondary" operations such as dosage, heating, 
cleaning etc. 
time in waiting for the completion of the batch cycle time 
tBC 

performance criterion (performance index) 
the negative of the costs of other parts of the production 
chain 
process output vector 
time-independent recipe item vector 
time-dependent recipe item vector 
value vector corresponding to y 
value vector corresponding to x and to u(t), respectively; 
as these vectors correspond to costs, they usually have only 
negative components. 

The denominator d of the performance criterion is either equal to 1, as defi
ned by (3.26a), or to the total batch cycle time, as defined by (3.26b), i.e. the 
sum of the transformation time (tp - to) of the process phase under considera
tion and the remaining time tREsT needed for the complete batch cycle, which 
is the time of ingredients dosage, heating, other reaction phases, cleaning etc. 

In the simplest case, denominator d = 1 (3.26a). This covers the cases in 
which one is interested in: 
1) maximization of the total added value per batch; 
2) maximization of the production yield y (then y is one-element vector 

and $y = 1; 
the values Sx and Su are zero); 

3) minimization of the production time according to the specified con
straints, e.g. on quality, (then there is only one output y, namely the 
processing time, $y = - 1, and Sx, Su are zero). 

If the denominator is equal to the total batch cycle time, then the performance 
criterion defines the average added value of the process per unit of time. This 
may serve as an indication of the expected profit per unit of time and may be 
recommended for economic process optimization. In certain cases, t8 c is 
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actually not a constant, but dependent on the transformation time (tF - t0). As 
long as optimization of the transformation time (tF - to) satisfies: 

t!DLE ;::: 0 (3.27) 

then t8 c is not affected, since it is determined by other operations in the pro
duction chain. However, if optimization would lead to a negative trnLE• then 
t8 c has to be increased in order to satisfy (3.27), which may greatly compli
cate the optimization, as we shall see in Figure 3.9. Often this will lead to a 
decrease of the performance criterion, in which case the optimum transfor
mation time will correspond to zero idle time. 

It should be mentioned that the values $y, Sx and Su corresponding to process 
outputs and inputs often indicate internal value assignments, or the actual 
prices, taking into consideration, if needed, costs of transport, storage, marke
ting etc. Thus, the vector values do not necessarily correspond to prices on 
the market. 

3.3.2 Constraints 

Of course, the economic optimization has to be subordinated to the quality 
assurance, usually expressed in terms of constraints on the end specification 
of the product. Moreover, when there are known relations originating from 
e.g. mass or energy balances, they can be seen as a supplement to the model 
equations and used here equality constraints. Besides, depending on the situa
tion, some extra constraints on process output, recipe items or in the form 
like (3.33) or (3.34), may be added, so to constrain, for example, the energy 
consumption. 

In general, the following constraints may be considered: 

XMIN S X S XMAX 

axMIN :::; Ax :::; axMAX 

CXMIN :::; c(x) :::; CXMAX 

UMIN S u(t) S UMAX 

YMIN :::; y :::; YMAX 

tF 

clMIN S $~ y + $~ X + $0 J u(t) dt S clMAX 

to 

tf 

c2MlN :::; { $~ y + $~ x + $'[; J u(t) dt }/ tBc :::; c2MAX 

to 

(3.28) 
(3.29) 
(3.30) 
(3.31) 
(3.32) 

(3.33) 

(3.34) 
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·where: 

c(x) 

CXMIN• CXMAX 

UMIN• UMAX 

YMIN• YMAX 

Si, $~, S0 
clMIN• c2MIN 

clMAX• c2MAX 

lower, upper bound on x, respectively 
linear constraint matrix on x 
lower, upper linear constraints on x, 
respectively 
vector function of non-linear constraints 
on x 
lower, upper bound on c(x), respectively 
lower, upper constraint on u(t), respec
tively 
lower, upper bound on y, respectively 
coefficient matrix 
lower general constraints 
upper general constraints. 

These constraints may be divided into four groups: 
1) constraints on time-independent items (3.28 ..;- 3.30), including con-

straint on the total batch time as defined by (3.27); 
2) constraints on time-dependent items (3 .31 ); 
3) constraints on process outputs (3.32); 
4) general integral constraints (3.33 + 3.34), which may involve all recipe 

items and process outputs; they can be used, for example, to constrain 
the energy consumption. 

3.3.3 Generation and Improvement of a Master Recipe 

The objective is to determine, on the basis of an accepted recipe adaptation 
set, the operating process conditions, that optimize defined performance 
criterion. See Figure 3.8. 

Recipe 

adaptation 
set 

RECIPE GENERATION 

/ IMPROVEMENT 

I roved) master 

(control) recipe 

Master (control) 

Figure 3.8 Scheme of recipe generation and/or improvement 
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In the case of a single performance criterion, the recipe-generation/improve
ment problem turns out to be an optimization problem of the LP (linear 
programming), QP (quadratic programming), NLP (non-linear problem with 
linear constraints) or NNP (non-linear optimization problem with non-linear 
constraints) type, (depending on the type of the process model, constraints 
and performance criterion) as shown in Figure 3.9. 

To determine the optimization type one has to check first of all whether the 
final time tF of the process phase under consideration is a free item, and 
whether time-dependent recipe item vctor u(t) affects the performance criteri
on. Section 3.1.2 presented how a time-dependent recipe item u(t) can be 
approximated by a number of time-independent recipe items to be used in a 
process model. The same set of time-independent items, which uniquely 
describes a time-dependent recipe item u(t), is used to transform the chosen 
performance criterion into a mathematical criterion as a function of time-inde
pendent items only. 

Suppose a time-dependent item u(t) can be approximated by a number of 
straight lines; see Figure 3.10 for the approximation by three such lines. Then 
the following approximation of the integral of this time-dependent item over 
time can be used: 

~ N 
J u(t) dt ~ Li ( tF - t0) + 112 L ssn(tF - 1n)2 

~ Fl 
(3.35) 

where: 
n-1 

ssn sn - L sk (3.35a) 
k=l 

Li initial level of the approximating function 
sn slope of the n1

h line, , ... ,N 
1n time break-point of the n1

h line, n=l, .. .,N and tN tF 
N number of lines used for approximation of u(t) 

By applying such an approximation, the integral term in the performance 
criterion is transformed into a polynomial or another non-linear term. The 
type of the ultimate optimization criterion together with the specified con
straints determine the type of optimization problem. Most of the time it will 
be a non-linear optimization problem with linear (NLP) or non-linear con
straints (NNP). 
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Criterion (3.26) with denominator (3.26a) 
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...-------- Constraints type (3.34) 
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Figure 3.9 Determining a optimization type corresponding to a recipe-improvement problem 
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Such problems can be solved with an SQP-method (Sequential Quadratic 
Programming) designed to optimize a smooth non-linear function subject to 
constraints, which may include simple bounds on the optimization variables, 
linear constraints and smooth non-linear constraints, see e.g. [SCA85, 
LAW94]. 

u(t) 

Li 

tF ti ti 
fu(t) dt >:::i f(Li + S1(t - to)) dt + f(Li + S1(ti- to) + S2(t - t1)) dt 

iv iv t, 
tF 

+ f(Li + s1(t1 - to) + s2(t2 - t1) + slt - ti)) dt (3.35b) 
t2 

Figure 3.10 Approximation of the time dependent item u(t) presented by a dotted 
line by three line-pieces presented as a continues line. 

The solution found may be used to generate or improve a master (control) 
recipe. When the recipe suggested by the optimal solution is not satisfactory, 
the formulation of the problem has to be re-examined with a view to refor
mulating the performance criterion or the constraints. If that does not help, 
then the used process model must be re-examined, and the whole modelling 
procedure may have to be repeated. 
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3.4 Recipe Generation and Improvement on the Basis of 
First-Principle Models 

Up till now, this thesis has dealt with recipe generation/improvement on the 
basis of black-box models. In some cases, batch processes can be modelled 
on the basis of first principles: the fundamental physical laws, such as the 
laws of conservation of mass and energy, and the relationships of chemical 
reactions such as those involving the Arrhenius temperature dependence. 
When a batch process is modelled in this manner, it can often be described by 
ordinary differential equations. The problems involved in this type of model
ling were already described in Section 3.2.1. 

In this section, we want to concentrate on recipe generation and improvement 
on the basis of first-principle models and especially on the solution of the 
corresponding optimization problem. 

A fairly general form of a white model of a batch process is: 

d:x(t)/dt = g(x(t), u(t), t) 
y(tp) = h(x(tp)) 

where: 
time, t E [to, tp] 
vector of state variables; x : [to, tp] 4 Rn 
vector of control variables; u : [t0, tp] 4 Rm 

(3.36a) 
(3.36b) 

t 
x(t) 
u(t) 
g 
.y(tp) 
h 

vector function g: Rn * Rm * [to, tp] 4 Rn 
measured process output vector y e JRP 
vector function h: Rn ~ ]RP 

R space of real numbers. 

Comparing this notation with that used before in the context of transition 
models (see Section 3.3) one can see that the time-independent recipe items x 
there, other than the final time tp, are a sub-set of the initial states x(t0) here. 
The time-dependent recipe items u(t) there are a sub-set of the control varia
bles u(t) here. Finally, the process outputs y of transition models can be seen 
as a function of the final states x(tp) here. 

The optimization problem corresponding to recipe generation or improvement 
can be formulated here as the following optimal control problem: 
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max1m1ze 
tF 

J f(x(t), u(t), t) dt - 'f'(x(to)) + <P(x(tF)) 
u(t) to . 

subject to: 
dx(t)/dt g(x(t), u(t), t) 

y(tF) = h(x(tF)) 

x(t0), x(tF), tF may be free, to be chosen optimally 

XMIN s x(to) s XMAX; 

axMIN s Ax(t0) s axMAx 

CXMIN :::; c(x(to)) s CXMAX 

UMIN S u(t) S UMAX 

YMIN s h(x(tF)) s YMAX 

tF 

clMIN s { $~ h(x(tF)) + $~ x(to) + $'[; J u(t) dt } s clMAX 
to 

where: 

initial cost function 

(3.37) 

(3.36a) 

(3.36b) 

(3.28') 

(3.29') 

(3.30') 

(3.3 I') 

(3.32') 

(3.33') 

(3.34') 

'f'(x(t0)) 
<f>(x(tF)) final value function, often a function of the process 

outputs y(tF). 

It should be mentioned that, like in the case of recipe improvement on the 
basis of the black-box models, the constraints (3.33') and (3.34') are used 
when one decides to constraint the total energy consumption. 

Table 3. I I compares the terms used in the criterion of the optimal control pro
blem (3.37) with the terms used in the criterion as in formula (3.26) in the 
context of black-box transition-models. For convenience, it is assumed that to = 
0 and the processing time (tp - to) is equal to the final time tF. Three situations 
are distinguished: 
(i) the performance criterion is to minimize the processing time tF. 
(ii) the performance criterion is other than tF, which is fixed; 
(iii) the performance criterion is other than tF, which is an optimization 

variable. 
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Note that, when the processing time has to be minimized (situation (i)), in 
conventional dynamic optimization, the following criterion will be maximi
zed: 

(3.38) 

whereas in the context of black-box transition models, the processing time is 
treated as a measured response y and the following criterion is to be 
maximized: 

J = $y y (3.39) 

I) 

where $y = -1 and y tF. 

Table 3.11 Comparison of optimization criteria used in the context of 
first-principle models and black-box transition-models 

terms 
used in 
the context 
of white models 

f(x(t), u(t), t) = 

\f(x(to)) = 

(initial cost 
function) 

<D(x(tF)) = 

(final value 
function) 

(i) 

0 

0 

Performance 
criterion is other than 

t1'" whieb is fix:ed 

(ii) 

as $'[ u(t) in formula 
(3.26) 1

) 

as $~ x in formula 
(3.26) 

as $~ y in formula 
(3.26) 

fF 

J = {const + $~ y + $~ x + $0 J u(t) dt }/ d 
to 

-+ max 

for the case (i) 
(constant) 

(not constant) 

Performance 
criterion is other 
than tF, Which ill 
an. optintization 

variable 
{iii} 

as $0 u(t) in formula 
(3.26)1

) 

as $~ x in formula 
(3.26), but with $~ 0 
if Xi= tF 

as $~ y in formula 
(3.26) 

(3.26) 

for the case (ii) 

for the case (iii) 
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If the performance criterion is other than to minimize processing time, but tF 
is an optimization variable (situation (iii)), then in the context of transition 
models it will be an element of x, and in the context of white models it will 
be handled as a separate variable, namely free end-time. 

It is worth emphasizing that the optimal control problem (3.37), (3.28' -
3.34'), stemming from recipe generation or improvement, distinguishes itself 
from optimal control problems as usually defined, by the following features: 
1) the optimization function can contain not only a final value function 

but also an initial cost function; 
2) final time can be a free variable, which in many cases may have to be 

chosen optimally; 
3) not only final states, but also initial states can be free variables, which 

may be chosen 
optimally; 

4) the optimization problem almost always involves constraints on states 
variables, which are notoriously difficult to handle; 

5) constraints may be imposed (lower/upper bounds, linear and non-linear 
constraints) on initial and final states variables; 

6) integral constraints may be imposed on control variables; these con
straints may also involve initial and final states, and possibly final time. 

To solve that rather different kind of problems, first of all each integral 
constraint such as (3.33') or (3.34'), if present, should be replaced by an 
additional differential equation for newly defined state variables w(t) (see 
formula 3.40) with boundary conditions (3.41) and constraints (3.42, 3.43). 
Thus, (3.33') can be replaced by: 

dw(t)/dt = si u(t), 

w(t0) = 0 

clMIN - $~ h(x(tF)) - $~ x(to) ~ w(tF) 

w(tF) ~ clMAX- $~ h(x(tF)) - $~ x(to) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

The same method should be used if constraints in the form of (3.34') are 
present. The total number of states will be n+ncl+nc2, where ncl, nc2 are 
numbers of integral constraints type (3.33') and (3.34'), respectively. 

The necessary optimality conditions for optimal control problems are given 
by the Maximum Principle of Pontryagin, see e.g. [HES66], [LE092]. When 
the final time and the initial/final states are not fixed, some additional condi-
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tions are needed to determine their optimal value. These conditions are called 
transversality conditions. 

Table 3.12 gives a general view of the necessary optimality and transversality 
conditions for possible dynamic optimization problems corresponding to 
various cases of recipe generation/improvement (for convenience, the total 
number of states is represented there by n). It is also assumed that no con
straints on state variables are involved and that the so-called rank condition is 
satisfied, that is that the number of active constraints (constraints which at a 
moment hold as equalities) is not greater than the number of control varia
bles. 

In the context of the PRIS-project the first-principle models, one of an irre
versible first-order reaction A --+ B, and other of a fermentation process, are 
applied to generation of a master recipe, see [STE92], [THI94]. Other exam
ples of optimal control problems for (fed-) batch processes can be found in 
e.g. [RIJ9 l ], [V AN93], [OVE92]. 

A great drawback of the approach based on first-principle models is that state 
constraints are very difficult to handle. Moreover, the optimality conditions 
result in a so-called two-point boundary value problem, TPBVP, which is 
often hard to solve. Another important drawback is that the optimal control 
solution is very model-specific. If a white process model is made after a 
number of simplifying assumptions, the resulting optimal profiles/initial 
conditions are actually sub-optimal. However, the most important problem is 
that white process models are seldom available in many branches of the 
process industry. The effort for building a useful first-principle model often 
exceeds one man-year and therefore it may be not worthwhile to develop it 
for a short-lived process. 
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Table 3.li The necessary optimality conditions including transversality conditions for general constrained 
optimal control problems 

Definition• of general constrained 
control probl(im 

tf 

max J I f(x(t),u(t),t)dt + 0(T0,TF) 
u(t) t

0 

subject to: 

dx(t)/dt = g(x(t),u(t),t) 
Ki(u(t)) = 0 j=l, ... ,r' 
Kk(u(t)) z 0 k=r'+l, ... ,r 
vj(To,TF) = 0 j=l, ... ,E 
vk(To,TF) z 0 k=E+l, ... ,E+I 

where: 

x(t) = (x1(t), ... ,x.(t))r 
u(t) = (u1(t), ... ,um(t))T 
To = (to,x,(to), ... ,x.(to))T 
TF = (tF,X1(tF), ... ,x.(tF))T 
0(T0,TF) : initial cost/ final value 

function 

The necessary Qptlniality contlitions 
(Maxhnµ)n. Principle of Pontryagin) 

If x*(t), u*(t) are optimal, 
then 3 (felt), j=l, ... ,r) such that 

a:£*/aui 0 i=l,. .. ,m 

Ki(u*(t)) 0 
~(t) Z 0, Kk(u*(t)) Z 0 
~(t) Kk(u*(t)) 0 

dni(t)/dt 
dx*(t)/dt 

where: 

a:£*taxi(t) 
a:£* 1a1f(t) g(x(t),u(t),t) 

:£(x(t),u(t),t) '.H(x(t),u(t),t) 
+ 2: A-/t)Ki(u(t)) Lagrangean 

'.H(x(t),u(t),t) f\x(t),u(t),t) 
+ 7rr(t) g(x(t),u(t),t) Hamiltonian 

7r(t) : adjoint (costate) variable; 
continuous with piecewise-con
tinuous derivatives 

T~nsversality conditions 

To assure that T/,TF* are optimal 
the following transversality conditions 
must also be satisfied: 

E+I 

'.H*(t0) - ae*tat0 - 2:µj av/lat0 = o 
j•I 

E+I 

lti(to) + 00*/~(to) + I:µj av//3x;(to) = 0 
j=l 

E+l 

'.Ji*(tF) + 30*/atF + Lµj avtfatF = 0 
j=I 

E+l 

lt;(tF) - 30*/~(tF) - Lµj 3v//~(tp) = 0 
j=l 

i=l, ... ,n 

where: 

µi: multipliers (not included in Hamil-
tonian) with the following properties: 

- µj are constants, j = l , ... ,E+I 
- Vi(T0*,TF*) = 0 j=l, .. .,E 
-·µi z 0, ·vi(T0*,TF*) z 0, µivj(T0*;rF*) 0 

j=E+ 1, ... ,E+I 

the asterisk * by functions and derivatives 
means that they are evaluated at x*(t), 
u*(t), To*•TF* 



3.5 Experimental Process Optimization 

Experimental process optimization is an approach quite different from the 
model-based one. It is also used for recipe generation and improvement, but 
it is based only on data from test runs and, in principle, without using a 
mathematical process model. In this section, the discussion is limited to pro
blems where only one performance criterion, denoted by J, has to be maxi
mized. 

The experimental strategy searches for a process optimum by evaluating the 
responses corresponding to a number of test runs performed for various 
settings of recipe items. There are a number of possibilities, for example: 
1) the (Nelder-Mead) simplex method; 
2) the multiplex-fitting method; 
3) line optimization. 

What these methods have in common is their heuristic character and their 
goal: to find a process optimum without utilizing a process model. With this, 
they can be distinguished from model-based recipe improvement methods. 
Moreover, model-based methods are directed towards improvement, and 
experimental ones towards optimization. Therefore, we prefer to talk about 
"experimental optimization", rather than about "experimental improvement". 
The following sub-sections describe the three empirical strategies. 

3.5.1 The Nelder-Mead Simplex Method 

In 1962 Senedley proposed an empirical optimization technique, which uses 
simplices instead of a factorial design [SPE62]. Nelder and Mead modified it 
for function minimization [NEL65]. 

The idea is to evaluate the process response in a number of experimental 
settings forming a so-called simplex in the factor space and continually for
ming new simplices toward the optimum. Basically outlined, the algorithm 
repeatedly creates a new simplex by "reflecting" the point with the worst 
response with respect to the hyperplane of the remaining points and next 
adapts it to the local landscape, with the goal of ultimately enclosing the opti
mum in the simplex interior. Next, the simplex is shrunk towards the vertex 
with the best response (see below for the two-dimensional example). 

An n-dimensional simplex, where n is the number of factors varied during 
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experimentation, is defined by n+ 1 non-collinear points called vertices and 
denoted by x1, ••• , x0 +1 because of their correspondence to recipe item vectors. 
For two factors a simplex will be a triangle, for three factors a tetrahedron, 
etc. 

To execute an iteration of a Nelder-Mead simplex algorithm, only ordinal 
information about responses corresponding to the simplex vertices is needed, 
and what one actually needs to know is only which set of process conditions 
gives the best response, and which set gives the worst and which the second 
worst. Thus, one has at each iteration (N) a triplet of vertices (xbN , x_._ 1N, x,/) 
each corresponding to one set of recipe items values, where xbN is the vertex 
that is the best approximation to the solution (i.e. J(xbN) is the highest value 
of the criterion) while xw.t and xwN are the second worst and the worst (i.e. 
J(xw_1N), J(xw"') are the second lowest and lowest value of the criterion), res
pectively, in the current (Nh) simplex. As we shall see one does not need any 
order information about the remaining vertices to drive this algorithm. 

The algorithm proceeds by "moving the simplex" away from the current worst 
vertex x_.N. The four possible operations are called reflection, expansion, contrac
tion and shadow contraction. When the optimum is enclosed in the simplex 
interior, the fifth operation, so-called shrinkage, is applied. 

Altogether, these five operations are defined as follows: 

1) reflection: XwN ~ xr 

xr = (l+a) XN - a x_.N; a> O; e.g. a = 1 (3.44) 

2) expansion: xr ~ Xe 

Xe = ~ Xr + (1 - ~) XN; ~ > l; e.g. P = 2 (3.45) 

3) contraction: XwN ~ Xe 

Xe = y x_.N + (1 - y) xN; 0 < y < 1; e.g. y 112 (3.46) 

4) shadow contraction: xr ~ xsc 

xsc 0 XN + (1 - 0) Xr; 0 < 0 < 1; e.g. 8 = 1/2 (3.47) 

5) shrinkage: X·N ~ 
N+l 

I xi i = l,. . .,n+ 1 
XN+l _ 

i - TJ xt + (1 - TJ) xbN; 0 < TJ < 1; e.g. TJ 1/2 (3.48) 
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where xN for Nh iteration 1s the centroid of all points except xwN and is 
calculated as follows: 

n+I 
xN = ( L: xt - xwN) In (3.49) 

i=I 

They are presented in Figure 3.11 for the case n=2. 

1 = x/' 
2 = xt 

6 =Xe 

7 = x'c 

8 = x' 

9 = X0 

XN 
w 

X N+l 
3 

Figure 3.11 Start simplex for two factors, marked by dotted lines, and after 
various possible operations: 
reflection 1 ---? 8 
expansion 8 ---? 9 
contraction 1 ---? 6 
shadow contraction I ---? 7 
shrinkage 1 ---? 5 & 3 ---? 4 & 2 ---? 2. 

Figure 3.12 illustrates the Nelder-Mead simplex algorithm applied to the 
optimization of a two-dimensional function. 

A more detailed description of the basic operations moving a simplex in the 
factor space and our method of dealing with cases in which constraints are 
present, is detailed in Appendix D. 

A novel and promising method of dealing with multi-criteria opt1m1zation, 
also employing the Nelder-Mead empirical optimization method, is described 
in Section 3.6.3.2. 
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Figure 3.12 Illustration of the Nelder-Mead simplex algorithm applied to the 
optimization of the function: 
f(x 1,x2) ~x1 - 1)4 + (x2 - 1)4 

- 4 (x1-l)-4 (x2-l). 
The start simplex is marked by dotted lines. 

3.5.2 The Multiplex-Fitting Method 

The Nelder-Mead simplex method makes a rather limited use of the informa
tion coming from the test runs, only those belonging to the present simplex 
are utilized by the procedure; once a point is removed from the simplex, its 
data will never be used again. Moreover, the reflection procedure does not 
utilize information about the response surface. Therefore, we have developed 
an alternative experimental process optimization method, called multiplex fit
ting, which defines new experimental settings not only by comparison of 
previous test run results, but also on the basis of an estimated model of the 
response surface. This method was found to be more efficient than the sim
plex method. 

The principle of multiplex fitting is based on a local approximation of the 
response surface, for which initially the so-called restricted quadratic model is 
chosen. It can be presented as follows: 

(3.50) 
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where: 
y 

~i 
n 

response 
model coefficient to be estimated, i = O, ... ,n+ 1 
number of recipe items (factors) 
·th . . • 1 i recipe item, i = , ... ,n. 

In order to estimate n+2 model coefficients and the variance of the error, at 
least n+ 3 test runs have to be done. These first n+ 3 test runs can be planned 
according to the Nelder-Mead simplex method as discussed before. 

The restricted quadratic model (3.50) will be used as long as the number of 
the test runs is insufficient to estimate a full second-order model: 

n n n-1 n 

Y = ~O + L ~i Xj + L ~n+i Xj
2 

+ L L~2n+(i-l)(n-0.5i)+j-iXj~ (3.51) 
i=l i=l i=l j>i 

Here 0.5(2+n)(l +n) coefficients must be estimated, therefore at least 
1 +0.5(2+n)(l +n) test runs results must be available. To estimate the model 
coefficients, the regression method, described in Section 3.2.2.5, can be used. 

Before describing the algorithm, we would like to introduce the concepts of 
the domain and the design area, defined for each iteration step N. Both 
terms are visualized in Figure 3 .13. 

The domain DN of the Nh iteration is a rectangular area determined by the 
last p+ 1 test runs, where "p" is the number of estimated model coefficients, 
i.e. p = n+2 for a restricted quadratic model and p = l+0.5n(n+ 1) for a full 
second-order model. The formal definition is as follows: 

where: 
Xjj 

p 

(3.52) 
I :>j :> p+l 

h ·th 1 f h ·th . . 1 . 1 1 t e i e ement o t e J pomt , i= , ... n, J= , ... ,p+ ; 
only points corresponding to the last p+ 1 test runs are con
sidered 
number of model coefficients to be estimated. 

As will be presented below, the size of the domain will change for each 
iteration step. If in this domain test-run points are also present, other than the 
last p+ 1, they can also be used for model estimation. However, the user has 
the possibility to assign lower weight factors to these points, if he suspects 
that the older information is out of date. 
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Figure 3.13 Domain ON and design area DAN of the Nh iteratiQn of the multiplex 
fitting mythod applied to tWO factors X 1 and X2; O''M is the domain 
of the (N+ I Yh iteration. Points correspond to the performed test runs; 
xbN is the best point of the domain ON; xNopt is the designed test run 

in DAN. 

The other area used by the procedure is the so called design area. In each 
iteration its size is the same as the size of the domain. Its centre point is the 
best point of the domain, denoted here by xbN (mostly, in the beginning, it 
will be a point at the domain boundary); in other words the design area 
follows from placing the domain around its best point. The design area DAN 
of the Nh iteration is defined as follows: 

DAN = { X E Rn: X.b - 1h (Y. - Y. · ) S Y. S Y.b + 1h (Y. - Y. · ) } 
1 ""1, max "'""l~mm """1 """1 ,,.,, max ""'t,m1n 

Xt,min = 

(3.53) 

i1
h element of the best domain point xt = (x1b, •.. , ~b) 

max Xji (3.54) 
IS:j:S:p+l 

min Xji 
l:S:j:S:p+ I 

(3.55) 

In the design area the multiplex fitting procedure has to calculate (model
based) the settings of the next test run corresponding to a new point xNopt· 
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The multiplex-fitting algorithm for n recipe items works as follows: 
(0) set N = O; 

do p+ l = n+3 test runs according to the Nelder-Mead simplex 
method and choose the best one xb 

0
; 

(1) define the domain DN according to the definition (3.52) on the 
basis on the last p+ 1 test runs; 

(2) define the design area DAN according to the definition (3.53); 
(3) determine whether the domain contains points corresponding to 

the previous test runs, other than the last p+ 1. If this is so, in
clude also these points in the estimation procedure, with adjusted 
weights, if desirable; 

(4) depending on the number of test runs "included" in the domain 
DN estimate a restricted quadratic or a full second-order process 
model; 

(5) optimize the specified performance criterion J(x), see formula 
(3.26), inside the design area DA¥; this optimization can be done 
with the SQP optimization method [LA W94]; 

(6) in the found optimum xNopt perform a test run to obtain J(xN0p1); 

(7) . { XNopt if 

X 
N·r/ -

b -

xb N otherwise 

(8) check the stopping criteria (see 3.57 + 3.58), 
decide to stop or go to (9); 

(3.56) 

(9) replace the "oldest" point from the last p+ 1 points of the domain 
DN by XNopt; 

(10) N = N + 1, go to (1) 

By defining a domain in step (1), one point is different from the points of the 
previous domain. As a consequence, a new domain can have a size different 
from the previous one. As may be expected, in the beginning the domain will 
tend to increase in size, but in due time it will become smaller when the 
procedure approaches the optimum. The size of the domain and the progress 
of the improvement gives an indication to the user as to when to stop. In the 
first instance, the following stopping criterion is checked: 

~max - ~min s; critl i , , 1,. .. ,n (3.57) 

where: 

Chapter 3 

some preset value limiting the domain size in the i1
h 

direction. 
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This criterion checks for each recipe item Xj whether its range in DA is 
smaller than some preset value critli. If it is satisfied, i.e. the domain is 
sufficiently small, then the test runs corresponding to the all points of the 
domain should be repeated a number of times according to the rule (3.1). 
Next, the second stopping criterion, see (3.58), is investigated. It checks 
whether the mean of the criterion values corresponding to the previous best 
and to the actual best process conditions do differ less than crit2, taking into 
consideration the experimental error. 

where: 

crit2 

(3.58) 

mean of the criterion values for the process 
conditions xbN-I and xt, respectively 
some preset value limiting the size of the 
criterion improvement 
a number corresponding to the experimental 
error, defined as in (3.59 + 3.60) 

The computation of the experimental error is analogous to the computation of 
the pure error in the context of experiment design on the basis of replications 
as described in Appendix C. The pure mean square error for one response of 
interest, calculated on the basis of replicated measurements of this response 
for (n+ l) various conditions, divided by a number of degrees of freedom, 
gives an estimate of variance cr2 of the experimental error (see formula (C.11) 
for comparison): 

n+I 

2: 
j=l 

n+l 

(L ri)-(n+l) 
j=l 

where: 

64 

YJk 

r; 

YJ 1/ri L YJk 
k=l 

(3.59) 

kth measurement of the response y at the jth 
point of DA 

response mean for the Jh point of DA 

number of test run repetitions at the jth point 
of DA. 
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Depending on the performance criterion that is optimized, the number s m 
the stopping criterion (3.58) is computed as follows: 

(3.60) 

where $~ and the denominator d are defined as in the performance criterion 
(3.26). 

This concludes our introduction to the new method for experimental optimi
zation. A comparison of the multiplex-fitting method with the Nelder-Mead 
simplex method on the basis of two test fun-ctions was done in [BEE94]. It 
was shown there that multiplex fitting reached the optimum after far fewer 
test runs than the simplex method, as Table 3.13 illustrates. 

Table 3.13 Comparison of the Nelder-Mead simplex method with multiplex 
fitting 

number of test runs 
to reach optimum 
with the Nelder
Mead method 

number of test runs 
to reach optimum 
with the multiplex 
fitting method 

Rosenbrock's Parabolic 
Valley 

f(x1,x2)- 100(xi-x/)2·(l-x1)
2 

175 

65 

3.5.3 Line Optimization 

k 

f(xw •• ,xk)=- I:[(x1 - i)4-4(x;:.i)] 
i=l 

Three examples considered 
for k 2, 3, 4 

92 fork 2 
112 fork= 3 
487 fork= 5 

37 fork 2 
68 fork= 3 
165 fork= 5 

When, during model-based recipe generation or improvement, the optimum 
point has been reached on the boundary, a rather different situation is encoun
tered than when the optimum lies inside the optimization area. In such a case, 
it may be profitable to enlarge the optimization area, if possible, by shifting 
the boundary a little bit, and then compute how many profit can be expected 
by enlarging of the area. But, if there are possibilities to enlarge the optimi
zation area much more, i.e. there are allowed larger variations in recipe items 
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than during model-based optimization, the experimental optimization accor
ding to a line-optimization procedure may be carried out to test along the 
path of steepest ascent where a better optimum lies beyond the original op
timization area. 

Appendix F describes the line-optimization procedure developed for the 
purpose of the FRIS-approach. 

3.6 Multi-Objective Optimization 

During the recipe generation and/or improvement phase one has very often 
not a single criterion, but a variety of objectives that, more often than not, 
tum out to be conflicting: an improvement in any one of them may be ac
companied by a worsening in others. Such problems are called multi-objec
tive or multi-criterion optimization problems. 

For simplicity, it is assumed that there is only one decision maker. It must be 
emphasised that the decision maker is actually searching for an optimal com
promise, rather than for a hypothetical numerical optimum of a multi-objec
tive criterion; that is, to some extent, the criterion serves as an artifice to 
arrive at an "optimal" decision. 

As an example of a multi-objective optimization typical for the process indus
try one may consider the search for a recipe resulting in an end product 
satisfying a number of quality requirements. Another example is the develop
ment of a recipe involving a search for the recipe-item values which result in 
a product with added value as large as possible and, at the same time, with 
environmental pollution as small as possible. 

In principle, a conventional multi-objective optimization problem can be for
mulated as follows [CHA83]: 

max 
XEX 

where: 
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(3.61) 

multi-objective criterion 
individual objective, 
i = 1,2,. . .,k 
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XEX recipe items vector; here 
decision variable vector 
the feasible area determined 
by a set of constraints 
constraint function 
space of real numbers. 

A useful classification of the solution methods for multi-objective optimization 
problems is given by Ignizo, distinguishing three classes of methods [IGN82]: 
1) methods based on some measure of optimality; 
2) methods searching for Pareto-optimal solutions; 
3) interactive methods. 

3.6.1 Methods Based on a Measure of Optimality 

Methods of this group make an attempt to measure alternatives in one way or 
another, for example, by weighting each objective and then optimizing their 
weighted sum. Methods of this category are: the weighting, the lexicographic 
and the so-called E-constraint methods. They are described in Appendix F. 

3.6.2 Methods Searching for Pareto-Optimal Solutions 

Methods of this group work without assigning any weights to conflicting 
objectives and without ranking them. Here the optimal solution x0 P1, as 
defined by Pareto, appears to be the natural extension of optimizing a single 
criterion, in the sense that in multi-objective optimization any further impro
vement in any one objective requires a worsening of at least one other objec
tive [PAR06]. If the individual objective functions are consistent (identical 
local optima), then there is no problem. The opposite - though - is usually the 
case and then the solution may be difficult to obtain. This is especially the 
case when the individual objective functions are non-linear. Further, often the 
solution, if found, it not what the user wished to find. 

3.6.3 Interactive Methods 

Interactive methods use the information obtained from the decision maker in 
an iterative process to assign appropriate importance levels, e.g. weights, to 
all individual objectives. During the solution process the user learns about the 
nature of the problem under consideration. 
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One of the methods of this group, which appeared, at first, to be quite useful to 
the recipe generation and improvement, was proposed by Woods [W0085]. 

3.6.3.1 The Method of Woods 

According to the method of Woods, information provided by the user consists 
of preferences, which follow from the comparison, time after time, of two 
sets of objective values J(x') and J(x") corresponding to two different deci
sion vectors x' and x". 

Such pair-wise comparisons of two individual objectives, which is quite easy 
but laborious, results in the ranking of the decision vectors. This ranking may 
then be used for estimation of the appropriate weighting factors. Next, based 
on the Nelder-Mead algorithm described in Section 3.5.1, and using this 
ranking information, a new decision vector xnew is generated, and the user 
must again compare it with all previous decision vectors. This iteration pro
cess will terminate when the weighting factors are found acceptable by the 
decision maker. Thus, the actual multi-objective problem is reduced to the 
optimization of a single criterion: the weighted sum of the individual objec
tives: 

k 

max I roi Ji(x). (3.62) 
XEX i=l 

where: 

{J)' I weighting factor. 

Such a single-criterion optimization can be done by a standard optimization 
method, e.g. the SQP-method. 

The method of Woods applied to the problem (3.61) works as follows: 
(0) set N = 1, where N is an iteration number, 

choose nd n+ 1 different not-collinear decision vectors 
{ x1, x2 , ... , xnd}, where "nd" represents the number of decision vectors, 
choose starting values for the weighting factors 
wo = [ro10, ro20, ... , rokor = [1, .. .,1]1'; 

(1) compare J(x') with J(x") for each pair {x', x"} of decision vectors 
{xi, X2, .. ., Xnd}, 

where x' '* x'' and decide which one is better; 
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(2) from the comparisons estimate the weighting factor vector 
w [ro 1N, ro/', .. ., ro/Y by optimizing the following criterion, which 
expresses the basic idea of the method to change the weights as little as 
possible at each iteration: 

k 

min L: ( (D.N - I - (DN )2 
N I I 

"' i=l 

(3.63) 

subject to: 
k 

(3) if 

else 

L: ro/1 
= k (normalizing constraint) (3.64) 

i=l 

N > Q . 
(Di - , 1 l, ... ,k; (non-negativity constraint) (3.65) 

(preference constraint) (3.66) 

where: 

11
1(x')-J 1

1(x") J2
1(x')-12

1(x") 1k1(x')-1k1(x") 

WN = 11
2(x')-J/(x") J/(x')-1/(x") 1/(x')-1k\x") 

1 I np(x')-1 t np(x' ') 12 np(x')-12 np(x' ') 1k np(x ')-1knp(x' ') 

(3.67) 

np number of compared pairs (x', x") formed from the 
decision vectors 
{x 1, x2, ..• , x0 d}, whereby x' is judged to be better 
than x" 

the weighting factors ro/', ro/, .. ., rot are accepted by the deci
sion maker or they have converged, then 
optimize the single-criterion problem: 

k 

max L: rot 1Jx) (3.62') 
xEX i=I 

with the found weighting factors and exit 

use a Nelder-Mead algorithm to obtain a new decision vector 
xnew• to be added to the set of decision vectors {x1, x2, ••• , x0d} 
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used in (1), set nd = nd + 1, set N N + 1 and go to (2) 
end if. 

As one can see, the addition of a new decision vector xnew has the consequen
ce that the matrix WN+J contains np rows more than WN, and wN+2 np+ I 
rows more than WN' 1, which means that the decision maker must compare 
more and more pairs in each iteration. If his decisions are not consistent, 
which may occur when the number of pairs is very large, then the algorithm 
may end in a dead loop. This is indeed a great disadvantage of the method of 
Woods. This was the motivation to develop a new, quite different interactive 
strategy, which is much more useful during recipe generation and/or impro
vement because it deals more directly with the quintessence of the multi
objective optimization. It will be described below. 

3.6.3.2 The Triplet-Choice Multi-Objective Method 

It became apparent that a method, based on identification of the best, the 
worst, and the second worst process outcomes in each iteration, e.g. as the 
Nelder-Mead method described in Section 3.5.1, can also be used for multi
objective optimization after a number of modifications. 

The new method, called "the Triplet-choice Multi-Objective Method" is also 
based on a triplet-choice as in the Nelder-Mead method. After the decision 
maker has chosen the best, the worst and the second worst process outcomes, 
the procedure suggest a new test run. Next, the decision maker must compare 
the results of the new test run proposed by the algorithm with the best, worst 
and second worst test runs to identify a new triplet, and the procedure 
repeats. The decisions of the user are usually quite easy. Also, the algorithm 
is not likely to be troubled with inconsistent choices as in the pair-wise com
parisons of the method of Woods. Moreover, for all multi-objective opti
mization methods described above, all individual objectives must be defined 
beforehand as mathematical functions, for which often experiments must be 
performed to estimate process models for each response involved. On the 
contrary, the Triplet-choice Multi-Objective Method starts with a set of well
chosen test runs and without any models. It is also not necessary that the 
individual objectives are formulated mathematically, it is enough to know 
what they are, and that they can be of various types, e.g. taste, colour, 
appearance, quality, property, process time or profit. In other words, it is 
sufficient that each individual objective Ji is an operator: 

JRD (3.68) 
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where: 
R 
m 

space of real numbers 
arbitrary space, e.g. of taste, colour or appearance. 

Moreover, the number of the individual objectives may be enlarged or redu
ced during optimization. Besides, if all responses involved may be measured 
in real units, i.e. 

R, (3.69) 

then the decision maker can decide, when enough information is gathered to 
estimate process models, to stop with real test runs and to continue with the 
models to get the value of each individual criterion. In this manner the num
ber of test runs can be limited. The procedure stops when the decision maker 
has found recipe-item values which correspond, in his opinion, to the best 
choice for the given multi-objective problem. 

This method can also be us~d for solving so-called end-specification problems 
that are typical for the recipe generation phase. The end-specification prob
lem can be defined as follows: 

Find xspec 

where: 
vspec = flx E X . Y < Y < Y } A • MIN - - MAX 

XE Xe Rn 
x 
y 

recipe items vector 
the feasible recipe items area 
process response vector 

(3.70) 

YMIN' YMAX lower, upper bound on y, respectively. 

The individual wishes regarding each response can be seen as individual 
objectives of multi-objective optimization. 

Section 6.1 shows an example of such a problem tackled with the Triplet
choice Multi-Objective Method, which does not investigate the whole xspec, 

but only its elements. 

This method can also be useful when process models for each response of 
interest are available. In principle, by solving the inverse problem xspec can be 
found, but the solution of such an inverse problem is often impossible. On 
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the contrary, the Triplet-choice Multi-Objective Method can always help the 
user to find the best process conditions. 

The Triplet-choice Multi-Objective Method works as follows: 

72 

(0) set N O; 
decide which individual objectives are involved; 
choose n+ 1 sets of the values of recipe items (x/'', ... , xn'\ xn+/·'); 
carry out n+ 1 test runs according to the chosen recipe item 
values; 

(1) from the n+ 1 sets of the recipe item values select the triplet 
(xhN' xw_1N, xwN): xhN with the best, Xw-iN with the second worst 
and xwN with the worsLprocess outcome; 

(2) compute the centroid xN as defined by (3.49) in the Nelder-Mead 
method: 

xN ( I 1 
X;N - xw''') In 

i=I 

(3) if N = 0 then go to (4); 
else 

(3.49) 

decide if the set of the individual objectives involved must 
be enlarged or reduced; 

endif; 

if the set of the individual objectives is not changed then 
if you are satisfied with xh N' exit 
endif, 

(4) compute the reflection point xr according to (3.44): 

e.g. a (3.44) 

if xr not feasible, then apply (4.1) + (4.3) 

(4.1) set: b10w = O; Bup = 1; Bgood = 1; B = 1/2; j = O; 

(4.2) compute x sc according to the definition (3.47): 

X5c b XN + (1 - b) Xr; (3.47) 

if xsc feasible then 
bgood = b; bup = b; b = (blow + b) / 2; 

else 
blow b; b (bup + b) / 2; 

endif; 
j j + 1; repeat (4.2) until j = 5. 
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(4.3) if Ogood > 0.99, then compute xe according to (3.46): 

endif; 

Xe y XWN + (1 - y) xN; e.g. y = 1/2 
replace xr by xe 

else 
replace xr by X80 

end if. 

(3.46) 

(5) according to Figure 3.14 accept expansion, reflection, contracti
on, shadow contraction or decide to shrink; 
if xe is not feasible, then expansion is skipped and xr is accepted 
end if; 

(6) if shrinkage is done, then 
set xtH ri xt + (1 - ri) xt, 1, ... , n+l; 
carry out n test runs according to the recipe item values 
xt+

1
, where i 1, .. , n+l and x(11 * xbN; 

else set: 

endif; 

x1v+1 
l 

for xt * xw , i 1, ... , n+ 1 (3.71) 

xr if reflection accepted 

if expansion accepted 

if contraction accepted 

x50 if shadow contraction accepted 

for x/1 xw , i = 1,. . ., n+ 1 (3.72) 

carry out one test run according to x(11 defined as in 
(3.72); 

(7) set N = N+ 1 and go to (1), unless N 2 Nmax. 

This section started by describing a number of methods known from the 
literature, that are proposed for solving multi-objective optimization problems. 
Because the assumptions on which these methods are based can be quite 
difficult to satisfy in real situations, we developed a useful method based on 
only three choices: the user selects the best, the worst and second worst set of 
recipe item values. The most important advantage of the proposed method is 
its universal character expressing itself in simplicity of application and in as
sumptions about the individual objectives. 
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in the set of the recipe item values (xt, xt ... xn_t) 
indicate a triplet (xbN , x,..t, x,/') 

! 
calculate the centroid xN 

! 
calculate x' (reflection) 

! 
l) is x' better than xbN ? 

y 2) is X' better than Xw-IN ? 

4) is x< better than xbN ? 

x.,N+I = x< lf~ XN = x N 
' w 

y 

Nl 
x;v-i = x' for xt 

! 
x;v-i = xt if x,N 

N N+ 1 

l 

XN 
w 

l N 

3) is x' better than xwN ? I 
'"""!"",. c!.:ow oontraction) I N 

j calculate xc (contraction) 

! " 5) is x'C, resp. xc better than x;' ? 

x,N+I = x« or !c y for x,N = xwN 

N 

x,N+1 T] xt +(I - T]) xbN) 
(shrinkage) 

I= n+J 

Figure 3.14 Flow diagram describing possible simplex operations during one iteration N of the Triplet-Choice Multi-Objective 
Method. Decision flows, corresponding to the (5)-th step of the algorithm, are presented with bold arrows. 



Chapter 4. Run-Time Application 
of a Recipe Adaptation Set 
to Batch Initialization and Batch 
Correction 

This chapter describes two run-time applications of a recipe adaptation set, 
namely to batch initialization and to batch correction. As introduced in Chap
ter 2, a distinction is made between batch initialization and batch correction 
in order to distinguish between adjustment of a control recipe just before the 
beginning of the process and adjustment during processing. 

4.1. Batch Initialization 

Suppose a deviation from the prescribed initial conditions becomes known at 
the start of the batch. For example, the reactor contains more (or less) mate
rial than intended, the available processing time must be shorter than pres
cribed or, maybe, the prices of feedstocks, products or energy differ from the 
values holding at the moment the master recipe was created. In that case it is 
worthwhile to compensate for these known deviations by adjustment of avai
lable recipe items, which may be adjustable initial conditions as well as time
dependent profiles during subsequent batch execution. A control recipe gener
ated in this manner leads to efficient batch initialization, see Figure 4.1. 

master recipe 
(control) adaptation 

recipe w "set 

k 

d 

nown initial BATCH initialized 
~ 

eviations INITIALIZATION control recipe -

Figure 4.1 Batch initialization scheme 
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4.1.1 Hatch-Initialization Procedure 

In the framework or the FRIS-approach, the batch initialization procedure se
arches for the best control recipe by optimizing the performance criterion 
with regard to the accepted process model, defined constraints and known 
disturbances. The model used for batch initialization is either the nominal 
process model or an auxiliary model (mentioned in Section 2.3.2 as the sixth, 
respectively seventh component of a recipe adaptation set), depending on 
which model is valid under the disturbed conditions. Section 3.2 describes 
how such a model can be obtained. 

Batch initialization comes down to the following simple, but effective, pro
cedure: 
1) detect initial deviations in process conditions, and changes in feed

stocks or prices; 
2) define the goal in the form of a performance criterion, which may be 

the same as used during generation of the corresponding master recipe; 
3) add new constraints, if necessary; 
4) choose adjustable initialization variables; 
5) choose a valid initialization model; 
6) optimize the performance criterion subject to the initialization model, 

constraints and known deviations; 
7) present the optimized settings to the user for acceptance/rejection; 
8) accept or reject the presented settings; 
9) if the settings are accepted, then prepare an initialized control-recipe, 

else go to 2 or exit; 
10) start the batch according to the initialized control-recipe. 

The steps 1 + 4, 8 and 10 are done by a user in Production, and the steps 5 + 
7 and 9 are done by the Initialization Module in the PRIS-package, which 
will be described in Chapter 5. 

4.1.2 Batch-Initialization Example 

The example fermentation-process described in Sections 3.1.2.+ 3.2.2 is used 
here to illustrate how batch initialization works (see also Appendix B). The 
corresponding process model was developed in Section 3.2.2. 

Suppose that the initial temperature Tb does not correspond to the master 
recipe (it being 28°C instead of 29.4°C), and that the temperature slope Sl can 
be adjusted, while the other recipe items, including sugar dosage Sd, have to 
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remain fixed at their nominal levels. The initialized control recipe presented 
in the last column of Table 4.1 is obtained by maximization of the final 
amount of desired product Pf: 

max J =max Pf 
SI SI 

subject to the accepted process model of Pf, shown in Formula (3.25): 

Pf= - 748.031 + 60.878 Tb +273.756 SI +29.807 Sd 

- 11.150 Tb· SI - 1.225 Tb2
- 25.926 Sl2 (3.25) 

and the constraints: 

Sd = 1.15 
Tb= 28 
- 1 s Sl s - 0.5 

sugar dosage at the nominal level 
known disturbed initial temperature 
constraints on the temperature slope, 
which is here the optimization variable. 

Table 4.1 

Initia:l 
tenipera:ture Tb 

Temperature 
slope Si 

Sugar do$age 
Sd 

Perforinal1ce in· 
dex: final amount 
of tlte.product ·Pf. 

The results of batch initialization applied to the fermentation process. 
The disturbed recipe item (initial temperature) is presented in italics, 
the initialized item in bold letters. 

Optimal settings 
for undisturbed "Disturbed" Initialized 

situation control recipe control recipe 
{Table 3.10) 

29.4 °C 28.0 "C 28.0 "C 

-1.0 °C/h - 1.0 "C/h - 0.74 °C/h 

1.15 kg 1.15 kg 1.15 kg 

45.73 43.30 45.02 
penicillin units penicillin units penicillin units 

The expected final product amount according to the initialized control recipe 
is 45.02. In the optimal undisturbed situation Pf would have been 45.73, 
whereas without any adjustment it would have been only 43.30.This simple 
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example shows what profit can be expected with batch initialization. More
over, the efficient batch initialization helps avoid production out of specs. Our 
experience is, however, that in present industrial practice little attention is paid 
to the appropriate batch initialization, also when it is very easy to realize. 

4.2. Batch Correction 

Batch initialization, performed at the beginning of the batch phase, takes into 
account known initial deviations only. Often there are also unmeasured devi
ations at the moment the batch begins, further disturbances which occur du
ring processing and deviations between process model and actual behaviour. 
Provided that continuous ( e.g temperature measurements) and/or sample mea
surements are available, it may be possible, to a certain degree, to compensate 
for the effects of unknown disturbances. As soon as the deviation is detected, 
the control recipe can be adapted, as presented in Figure 4.2, for the remai
ning period of time in order to optimally approximate the desired final process 
conditions. This is called batch correction [RIJ92]. 

k 

d 

master recipe 
(control) adaptation 

recipe ', 1 
,set 

nown initial BATCH - BATCH 
eviations - INITIALIZATION -

- PROCESS 

initialized corrected 
control recipe control recipe 

~ BATCH -
CORRECTION 

f 

Figure 4.2 Batch initialization and correction scheme. 

final output -~ -
measured 
deviations 

Whereas batch initialization is a fairly if not completely ne\v approach to im
proving batch processes, batch correction has received a great attention from 
control engineers in the area of predictive control and optimal control. The 
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PRIS-approach, thus far mainly based on black-box transition models, propo
ses another way to obtain a corrected recipe. How a corrected recipe can be 
obtained on the basis of white models is described in [THI94]. 

As pointed out in Section 2.3.2, apart from the performance criterion and the 
knowledge of additional plant, process and economic constraints, the so-called 
correction information, included in a recipe adaptation set, is necessary for correc
ting a batch during processing. The elements of the correction information are: 
a) sample and correction moments, ts and tc, respectively; 
b) process outputs measured at the sample moment(s); 
c) correction variables; 
d) at least two correction models. 

The expected final product amount according to the initialized control recipe 
is 45.02. In the optimal undisturbed situation Pf would have been 45.73, 
whereas without any adjustment it would have been only 43.30.For ease of 
explanation, let us restrict the following to the case that only measurements of 
one single sample become available during the run. 

4.2.1 Sample and Correction Moments 

Sample and correction moments, denoted further by ts and tc respectively, 
have to be chosen carefully. They will be used not only for determining ts and 
tc, but also during development of the correction models. 

Due to the time needed for the analysis, the correction can only be made some . 
time after the sample moment ts, at moment tc. The timing of ts and tc is not 
quite known a priori. If chosen too late, then there might be not enough time 
for the correction to take effect, whereas if chosen too early, then sample 
information about deviations might be too uncertain. The first choice can be 
made on basis of the experience and opinion of the production staff. Usually, 
the production staff will already have chosen a convenient sample time, but 
that may not be the best choice if model-based correction are to be the most 
effective. Therefore, it makes sense to try by experimentation whether a 
shifting of the chosen rrioments is advantageous. 

4.2.2 Process Outputs Measured at the Sample Moment 

The user must decide what process outputs, denoted by ys, will be measured 
by the analysis of a sample. Note that here the output variables correspond to 

Chapter 4 Run-Time 



measured compos1t1on quality, or other process variables, so they are not 
necessarily the same as the process outputs involved in the performance crite
rion (3.26) or (3.27). 

4.2.3 Correction Variables 

Correction variables, for example: extra ingredients, which may be added at 
t0 or the processing time, or the slopes of time-dependent temperature or 
pressure profiles, provide degrees of freedom for batch correction. They are 
denoted by xc. 

4.2.4 Correction Models 

Batch correction requires at least two correction models, that will be further 
called Model Cl and Model C2. 

Model CJ 
This model describes the operating conditions at the sample moment as a 
function of initial process conditions. Its general form is as follows: 

where: 

ys 

fs 

(4.1) 

process output vector at the sample time ts; 
correction-model function describing all components of ys 
as a function of the recipe items x(t0) 

vector with recipe items at to. 

The model Model_CJ may be obtained in the same manner as the nominal or 
an auxiliary process model, e.g. by factorial experimentation. To reduce the 
number of test runs, it is recommendable to estimate this model simultaneous
ly with the nominal process model. 

Model C2 
This model describes the ultimate effect of the values measured at ts as well 
as any run-time corrections applied during the remainder of the processing 
time: 

(4.2) 
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where: 

yF c process output vector at tF due to the correction at t6 this 
vector corresponds to the process output vector involved in 
the performance criterion used for recipe generation, im
provement or batch initialization; 

tc beginning of the correction ts < tc < tF; 
ys m measured process output at ts 
fc correction-model function; 
xc vector of correction variables; if xc = 0, then Model C2 

tells what the expected final process output is due to zero 
correction, i.e. without any subsequent control action. 

To obtain Model_C2, the correction variables xc should be varied according to 
a chosen experiment design method. Because y5 m cannot be varied freely, the 
initial factors x(t0) may be varied, if possible, so that the variations in ys mare 
visible, in other cases the natural variations in ys m are given by the process. 

4.2.5 Batch-Correction Procedure 

If the correction information is available, it can be decided during each batch 
whether a correction is needed and if so, what kind. The procedure is as 
follows: 
1) choose sample and correction moment, correction variables and outputs 

to be measured at the sample moment; 
2) define the goal in the form of a performance criterion used for batch 

correction, denoted further by Jc; it will often be the same criterion as 
for batch initialization; 

3) define constraints on xc and yF c• if necessary; 
4) predict ys according to Model_Cl and the known initial conditions x(to); 
5) take and analyze a sample at ts to obtain y5m ; 
6) use Model_ C2 with xc = 0 to predict the final value of the process 

output yF c without any correction, 
7) if ( yF c is not satisfactory or I y5 

- y5 m I ?::'.: OcoR) 
where OcoR denotes the allowed deviation from the expected 
values ys, 

then compute the corrections xc by solving the following optimization 
problem: 
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with regard to Model_ C2 and the constraints 
else 

no correction is suggested; 
8) prepare a corrected control recipe; 
9) replace the previous control recipe by the corrected control recipe. 

The steps 1 + 3, 5 and 9 are done by a user in Production, the steps 4 and 6 + 
9 are done by the Correction Module in FRIS. Of course, batch correction can 
also be an actual issue in R&D. 

4.2.6 Batch-Correction Example 

The example of the fermentation process illustrates the procedure of batch 
correction. 

To establish the deviation between the measured and the expected process 
condition at ts = 4h, the following models of type Model_ Cl for ys [M4h, 
P4h] have been determined: 

M4h= -20.675 + 1.898 Tb+ 9.780 SI - 5.929 Sd 
- 0.323 Tb· SI + 0.337 Tb· Sd - 0.039 Tb2 (4.3) 

P4h = -160.056+12.648 Tb+ 27.401 SI+ 22.660 Sd 
-0.960 Tb·Sl - 0.735 Tb·Sd - 3.018 Sl·Sd - 0.244 Tb2 (4.4) 

where: 

M4h total biomass in the reactor at ts= 4h 
P4h amount of product in the reactor at ts= 4h. 

The models (4.3) and (4.4) are obtained on the basis of the same 21 test runs 
(see Tables 3.1 + 3.5) used for the estimation of the initialization model 
(3.25), but with interim measurements performed at the sample moment ts 
4h. The statistical information about the corresponding scaled models is pre
sented in Table 4.2 and in Table 4.3. 
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Table 4.2 Process model and the analysis of variance for the response M4h 

Least Squares Coefficients, Response M4h, Model MODEL Cl M4h 
1 Term 2 Coeff. 3 Std. Error 4 T-value 5 Signif. 6 Transformed Term 

1 1 
2 -Tb 
3 -Sl 
4 -Sd 

4 605636 
0 342700 
0.146100 
0.549800 

0.018401 
0.019299 
0.019299 
0.01929,9 
0.021577 
0.021577 
0.026665 

( (Tb-2.85e+Ol)/1.5) 
(Sl+7.5e-Ol)/2.5e-Ol) 
( (Sd-1) /1. Se-01) 

-Tb*Sl 
6 -Tb*Sd 
7 -Tb**2 

-0.121000 
0 075750 

-0.088736 
No. cases 21 R-sq. 0.9888 
Resid. df 14 R-sq-adj. 0.9840 
- indicates factors are transformed. 

R-PRESS = 0.978 

5.61 
3.51 
3.33 

RMS Error 
Cond. No. 

0.0001 
0.0035 
0.0050 
0.06103 
= 2.335 

Least Squares Summary ANOVA, Response M4h, 
Source df Sum Sq. Mean Sq. 

Model MODEL Cl M4h 
F-Ratio Signif. 

1 Total (Corr.) 
2 
3 
4 
5 
6 
7 

Regression 
Linear 
Non-linear 

Residual 
Lack of fit 
Pure error 

20 
6 
3 
3 

14 
8 
6 

4. 667107 
4.614963 
4.410685 
0.204278 
0.052144 
0.021307 
0.030837 

0.769161 
1.470228 
0.068093 
0.003725 
0.002663 
0.005139 

206.50 
394.70 
18.28 

0.52 

0.0000 
0.0000 
0 0000 

0.8087 

Model obeys hierarchy. The sum of squares for linear terms 
is computed nonlinear terms are first removed. 
F(8,6) as large .5182 is not a rare event => 

no evidence lack of it. 

Table 4.3 Process model and the analysis of variance for the response P4h 

Least Squares Coefficients, Response P4h, Model MODEL_Cl_P4h 
1 Term 2 Coeff. 3 Std. Error 4 T-value 5 Signif. 6 Transformed Term 

-------- ----------- --------
1 1 6.280873 0.026076 
2 -Tb .900150 0.027349 (Tb-2.85e+Ol . 5) 
3 -Sl 0.744950 0.027349 (Sl+7.5e-01) .Se 
4 -Sd 0.594820 0.027349 ( (Sd-1) /1. 5e-Ol) 
5 -Tb*Sl -0.360037 0.030577 -11. 77 0.0001 
6 -Tb*Sd 0.165463 0.030577 -5.41 0 0001 
7 -Sl*Sd 0.113188 0.030577 -3.70 0.0027 
8 -Tb**2 0.548663 0.037788 -14.52 0.0001 
No. cases 21 R-sq. 0.9980 RMS Error 0.08648 
Res id. df 13 R-sq-adj. 0.9969 Cond. No. 2.335 
- indicates factors are transformed. 

R-PRESS = 0.995 

Least Squares Summary ANOVA, Response P4h, 
Source df Sum Sq. Mean Sq. 

Model MODEL Cl P4h 
F-Ratio Signif. 

1 Total(Corr.) 20 48.22590 
2 Regression 7 48.12867 6.87552 
3 Linear 3 45.19331 15.06444 
4 Non-linear 4 2.93536 0.73384 
5 Residual 13 0.09723 0.00748 
6 Lack of fit 7 0.03332 0.00476 
7 Pure error 6 0.06391 0.01065 

919.30 
2014.00 

98 11 

0.4 

0.0000 
0.0000 
0.0000 

0.8420 

Model obeys hierarchy. The sum of squares for linear terms 
is computed assuming nonlinear terms are first removed. 
F(7,6) as large as 0.4469 is not a rare event ;> 

no evidence of lack of fit. 
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Table 4.4 presents the predicted process outputs at t8 : M4h and P4h, together 
with their 9S% confidence bounds for the nominal values of the recipe items 
Tb, Sl and Sd. The correction rule for this example is: if the measured values 
of M4h or P4h are not inside their 9S% confidence intervals, then correction 
should be carried out. 

Table 4.4 

Process output 
at t 5 

M4h 
P4h 

Predicted process outputs at ts: M4h and P4h, with their 95% confi
dence bounds according to the models (4.2) and (4.3) 

Lower bound 

5.136 
6.225 

Predicted process 
outputs at t 6 

5.301 
6.513 

Upper bound 

5.466 
6.801 

In this example, the means for coping with detected deviations happen to be 
rather limited for practical reasons: the deviations can only be compensated 
for by decreasing or increasing the temperature during the rest of the batch 
phase, so the only correcting variable is the slope of the temperature Sl_ cor 
after the correction moment Sh. 

To predict the final product amount in the case of me~ured deviations, and to 
calculate the influence of the correction variable on the final output, the fol
lowing model of type Model_ C2 for yF c = [Pf_ cor] is found: 

Pf cor 

where: 

Pf cor: 

0.990 + 2.493 P4h + 0.9S2 M4h - 14.743 Sl cor 
+ l.20S P4h· M4h + 2.211 P4h· SI cor - 0.397 P4h2 (4.S) 

final amount of product after a correction 
of the temperature slope at tc= Sh. 

For the estimation of the correction model (4.S), 2S process measurements 
presented in Table 4.S are used: 11 measurements without any correction, -
already presented in Table 3.1 as factorial experiments and here marked with 
asterisk "* ", and 14 additional measurements with a corrected temperature 
slope Sl_cor. For comparison, Table 4.S presents the initial temperature slope 
Sl in Column 4. Table 4.6 shows the statistical information corresponding to 
the model ( 4.S). 
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Table 4.5 Worksheet with the test runs used for the estimation of the correction 
model (4.5) 

0 Case 1 ~4h 2 ?4h 3 Sl cor 4 Sl 5 Pf cor 6 Fitted 7 Raw 

l* 
2 
3* 
4 
5* 
6 
7* 
8 
9 

10* 
11 
12* 
13 
14* 
15 
16* 
17 
18 
19* 
20 
21* 
22 
23 
24* 
25 

4.355 
4.355 
3.845 
3.845 
5.401 
5.401 
4.610 
4.610 
4.610 
4.389 
4.389 
5.355 
5.355 
4.849 
4.849 
4.610 
4.610 
4.610 
3.505 
3.505 
4.610 
4.610 
4.610 
4.219 
4.219 

2. 411 
2 .411 
6. 513 
6. 513 
2.929 
2.929 
6.266 
6.266 
6.266 
8. 849 
8.849 
5.426 
5.426 
7.912 
7.912 
6.266 
6.266 
6.266 
7.310 
7.310 
6.266 
6.266 
6.266 
4.373 
4.373 

(SlC) initial Pf cor Resid. 

-0.50 
-0.75 
-0.50 
-0.75 
-0.50 
-0.75 
-0.75 
-0.50 
1. 00 
1. 00 
0.75 

-1. 00 
-0.75 
-0.50 
-0.75 
-0.75 
-1. 00 

0.50 
1.00 

-0.75 
-0.75 
-1. 00 
-0.50 
-1.00 
-0.75 

-0.50 
-0.50 
-0.50 
-0.50 
-0.50 
-0.50 
0.75 
0.75 

-0.75 
-1.00 
-1.00 
-1. 00 
-1. 00 
0.50 
0.50 
0.75 
0.75 
0.75 

-1. 00 
-1.00 
-0.75 
-0.75 
-0.75 
-1. 00 
1. 00 

26.08 
28.12 
34.87 
35.66 
33.48 
35.28 
40. 77 
40.00 
40.60 
38.15 
39.72 
45.73 
45 31 
44.70 
45.51 
40.65 
41.11 
40.56 
30.05 
30.99 
40.06 
41.3 7 
40.82 
35.91 
35.02 

26.20 
28.56 
34.41 
34.49 
33.23 
35.30 
40.90 
40.68 
41.12 
38.14 
39.35 
45.70 
45.01 
45.35 
44.67 
40.90 
41.12 
40.68 
30.81 
31. 21 
40.90 
41.12 
40.68 
3 . 63 
34 36 

0.12 
0.44 
0.46 
1.17 
0.25 

-0.02 
-0 .13 
-0.68 
0.52 
0 01 
0. 37 
0.03 
0.30 

-0.65 
0.84 

-0.25 
-0.01 
-0.12 
-0.76 
0.22 
0.84 
0.25 
0.14 
0.28 
0.66 

To follow the progress of the process and to decide whether a run-time cor
rection is needed or not, a sample of the reaction mixture is taken at the 
moment ts = 4h. The analysis reveals that the total biomass is smaller and the 
total product amount is higher than expected: the measured value of M4h is 
3.8 instead of 5.3, and that of P4h is 7.7 instead of 6.5. The adjustment of the 
control recipe is found by calculating the control action that compensates for 
the ultimate effect of the disturbance and, at the same time, optimises the 
performance criterion. 

Therefore, the following non-linear optimization problem with linear con
straints is solved: 

max Jc 
Sl 

max Pf cor 
SI 

subject to the constraints: 

M4h 3.8 
P4h 7.7 
-1 ~ SI cor ~ - 0.5 
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where: 

Pf cor 

M4h 
P4h 

Table 4.6 

final product amount after correction, for which 
model ( 4.5) was found 
total biomass at t5, for which model ( 4.3) is found 
product amount at ts, for which model ( 4.4) is found. 

Correction model and the analysis of variance for the response Pf_ cor 

Least Squares Coefficients, Response Pf_cor, Model MODEL_C2_Pf 

1 Term 2 Coeff. 3 Std. Error 4 T-value 5 Signif. 6 Transformed Term 

1 1 
2 -M4h 
3 -P4h 
4 -SlC 
5 -M4h*P4h 
6 -P4h*SlC 
7 -P4h**2 

39.595577 
12.274859 

5.984360 
0.368744 
7.230754 
2.211310 

-6.349276 

0.155736 
0.364200 
0.309405 
0.157909 
0.854764 
0.464793 
0.576840 

No. cases 25 R-aq. 0.9914 
Resid. df 18 R-aq-adj. • 0.9885 
- indicates factors are transformed. 

R-PRESS 0.984 

8.46 
4.76 

-11.01 

0.0001 
0.0002 
0.0001 

RMS Error 0.5753 
Cond. No. 3.306 

( (M4h-4. 5) /1. 5) 
{P4h-6)/4) 

.5e-Ol)/2.5e-Ol) 

Least Squares Summary ANOVA, Response Pf cor Model MODEL C2 Pf - -
Source df Sum Sq. Mean Sq. F-Ratio Signif. 

1 
2 
3 
4 
5 
6 
7 

--------- --------- -------- --------
Total (Corr. ) 24 691. 0764 

6 685 .1180 114 .1863 345.00 0.0000 
3 549.4985 183.1662 553.30 0.0000 

Non-linear 3 135.6195 45.2065 136.60 0.0000 
Residual 18 5.9583 0.3310 

Lack of fit 12 5.0114 0.4176 2.65 0.1207 
Pure error 6 0.9469 0.1578 

hierarchy. The sum of squares for linear terms 
assuming nonlinear terms are first removed. 

as large as 2.646 is not a rare event;> 
no evidence of lack of fit. 

In this example it was found that the temperature should be decreased by 
-0.5 °C/h after the correction moment instead of by -1 °C/h. Table 4. 7 
shows the performance criterion values in the disturbed situation without 
correction and with optimized control. The profit is evident. 
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Table 4.7 The results of batch correction applied at tc to the fermentation pro
cess. The expected total biomass at t8 4h is M4h = 5.3 and the 
amount of product is P4h 6.5. The measured values are: M4h_meas 
= 3.8 and P4h meas= 7.7. 

"Disturbec!'' recipe "Disturbed i•·. reeipe 
without . correction with. correction 

Correction variable - l 'C/h - 0.5 'C/h 
SI cor ( Sl_cor Sl ) ( Sl_cor # SI ) 

Expected final amount of 
33.26 34.40 

the product J>f_cor penicillin units penicillin units 

4.3 Conclusions 

This chapter described the application of a recipe adaptation set to batch 
initialization and correction, for achieving the best possible processing perfor
mance. The examples illustrated the main ideas of both strategies and gave an 
impression about the expected profits. 

For batch correction, it was assumed that only one sample could be taken and 
analyzed. Sometimes the practical situation is different: more than one sample 
is taken and more corrections can be done. In such a case, more than one pair 
of correction models is needed, namely one pair (Model Cl, Model_C2) for 
every sample/correction moment. 

Chapter 6 describes more comprehensive examples of the proposed strategies, 
when applied to an industrial process producing alkyd resins and to a labora
tory process producing epoxy resins. Further, batch initialization applied to the 
production of benzylalcohol in a pilot plant is described in [KEE93], and 
batch correction applied to a simple irreversible first-order A ._ B reaction is 
described in [STE92]. 
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5. The FRIS-Package 

The flexible recipe-approach, to be used in an R&D and production environ
ment of a large variety of batch processing industry, has to be supported by 
the FRIS software package (the Flexible Recipe Improvement System). The 
implementation of the package is done by the TNO!f PD Institute of Applied 
Physics. This chapter describes my contribution to the software development, 
in particular the definition of the functional model and the software require
ments. The determination of system structure, the choice of the environment 
for the implementation, and the definition of possible system developments in 
the future, resulting from team discussions, are also briefly outlined in this 
chapter. 

5.1 The Functional Model 

During problem analysis leading to software development, making a functio
nal model of the software system turned out to be very useful. A functional 
model describes what the system has to do, without pointing out how and 
when it is done [MAR79]. It consists of a network of processing units, called 
processes or functions. Data-flow diagrams are used to provide the functional 
model with a graphical representation. The structure of a data-flow diagram is 
a directed graph with three kinds of nodes: processes, terminators and data 
stores. Nodes are connected by arrows representing an information flow from 
the source node to the destination node. 

Usually, the following symbols are used [BRU95]: 
- circle: describes a process which transforms data; 
- rectangle: represents a terminator, which is either a sender 

or a receiver of data outside the system; 
together they indicate the environment of the system; 

- pair of parallel horizontal segments: depicts a data store for later use, 
- arrow with a name: describes type of data and the direction of flow. 
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Figure 5.1 Data-context diagram of the FRIS package 

The first data-flow diagram is called the context diagram. It shows the sur
roundings of the software, i.e. just one process, the system itself, and all the 
terminators and all environment data flows. The context diagram of the FRIS
package, among other things with the two types of users: in R&D and in 
Production, is presented in Figure 5.1. When the top layer, i.e. the context 
diagram, is split into sub-processes and next into sub-sub-processes and so 
on, a top-down specification of the software can be done. In Figure 5.2, 
which is the first sub-layer of the data-context diagram, the two processes, 
earlier called the two PRIS activity-domains (see Section 2.3.2), are presen
ted, the first one: development of a recipe adaptation set and recipe impro
vement, and the second: run-time application of a recipe adaptation set. The 
refinement of the levelled data-flow diagrams can go on in successive "lay
ers" until each process may be considered to be "atomic". How it is done for 
batch initialization, which is a sub-process of run-time applications of a 
recipe adaptation set, is described in [VERD95]. 
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5.2 Software Requirements 

According to Jalote, the basic issues which software requirements must ad
dress are [JAL91]: 
I) functionality; 
2) system performance; 
3) design constraints imposed on an implementation; 
4) external interfaces. 

The general requirements of the PRIS system can be summarized as follows: 
1.1 the package must fully support the experiment design and the model develop

ment procedure; 
1.2 the package must support recipe improvement, also when more than one 

objective are involved; 
1.3 in the case of deviations, PRIS must provide an adjusted control recipe 

for batch initialization; it must also do so for batch correction based on 
run-time measurements, including sample analyses; 

1.4 the search for an improved/adjusted recipe must take all specified con-
straints into account; 

1.5 the package should support process monitoring; 
2.1 the system must be sufficiently fast; 
2.2 it must be easy in starting up a module and in modification of the input 

variables during its use; 
3.1 the terms used by the system should not be conflicting with the ISA 

S88 standard; 
4.1 PRIS must serve as an "open" system which allows communication 

with any statistical package preferred by the user; 
4.2 the user interface must be suitable for users with experience in statis

tics, and for users without experience in statistics; 
4.3 the presentation of results must be self-explanatory. 

5.3 The Structure of the FRIS-Package 

At present, the PRIS software-system, as presented in Figure 5.3, consists of 
the following parts [REN95]: 
1) PRIS Monitor ("Main Program") 
2) Recipe-adaptation-set Database (in short called "RECIPES") 
3) Batch Planning/Scheduling and Results Database (in short called 

"BATCH DATA") 
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4) Recipe-adaptation-set Editor 
5) Experiment Design, Modelling and Experimental Optimization 
6) Model-based Recipe Improvement 
7) Interface to external (statistical and other) packages 
8) Batch Initialization 
9) Batch Correction 
10) Process Monitoring. 

They are described below. It should be mentioned that the parts are 
collections of modules, which are embedded in one coherent structure. 
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Figure 5.3 FRJS system functions. The modules 4+ 7 correspond to the develop
ment activity-domain, and the modules 8+ 10 to the application do
main. The module for process monitoring must still be realized. The 
database "RECIPES" contains master (control) recipes and recipe 
adaptation sets, "BATCH DATA" contains routine, experimental, 
initialized, corrected and accomplished control recipes. 
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5.4 Principal FRIS Components 

5.4.1 FRIS Monitor 

The FRIS Monitor is the main component of the package that implements the 
central menu-based user interface, database management and module mana
gement. 

5.4.2 Recipe-Adaptation-Set Database "RECIPES" 

The total FRIS database is composed of two parts, namely: the Recipe-Adap
tation-Set Database (RECIPES) and the Batch Planning/Scheduling and Re
sults Database (BATCH DATA). 

The former part contains a number of recipe-adaptation-set "objects". 
Each recipe-adaptation-set object contains the following information: 
0) a reference to the corresponding master recipe; 
1) a list of recipe items and their properties; 
2) a list of process outputs; 
3) a list of relevant constraints; 
4) at least one performance criterion; 
5) values (often prices of ingredients and products) of variables used in 

performance criteria; 
6) a nominal process model with its validity constraints; 
7) a collection of auxiliary process models; 
8) the correction information; 
9) a description of the processing unit-configuration; 
10) a list of experiment worksheets; 
11) other information, e.g. notes. 

The elements 1-;-9 correspond to the components of a recipe adaptation set as 
defined in Section 2.3.2; the tenth element is added to link corresponding 
experiments with the recipe adaptation set. 

An experiment worksheet is a complete list of planned, at that moment 
active or accotpplished test runs corresponding either to model-based recipe 
improvement with one specific model or to experimental optimization. The 
planned and active test runs can also be found in BATCH DATA under the 
mode "EXPERIMENT" (see below). 
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It should be mentioned that RECIPES part of the database is the domain of 
the user in R&D, who develops a recipe adaptation set during the interactive 
session according to the procedure described in Chapter 3, and next uses it 
for the generation or improvement of a master (control) recipe. 
Once defined, the RECIPES part of the FRIS database has 'read-only' status 
for the operational part of the package. 

5.4.3 Batch Planning/Scheduling and Results Database "BATCH DATA" 

This part of the FRIS database contains information about all individual 
batches, namely: batches which have been, are being, or have to be carried 
out. For each batch the following information is stored: 
1) "mode" describing the kind of control recipe (see below); 
2) "recipe": name of the corresponding recipe-adaptation-set object; 
3) "recipe items": the actual recipe-item values used and the measured 

process outputs. 

Batches can be carried out in one of four possible modes, depending on the 
kind of the corresponding control recipe. The names of these modes are: 
- "ROUTINE": production run according to a routine control recipe; 

its results are important to the FRIS system for the 
comparison of the process performance and for mo
del estimation, validation and/or updating; 

- "EXPERIMENT": test run in the framework of an experiment design or 
experimental optimization according to an experi
mental control recipe; 

- "INIT": production run according to an initialized control recipe; 
- "CORRECT": production run according to a corrected control recipe. 

In planning the mode of batches is either "ROUTINE" or "EXPERIMENT". 
It can be changed at the start of a batch in "INIT", or during processing in 
"CORRECT". When a batch is finished, the results are entered into BATCH 
DAT A. The results of a batch labelled with "EXPERIMENT" are copied to 
the corresponding experiment worksheet and the batch is removed from the 
list of planned batches. If the user so wishes, he can also add results of bat
ches with an other mode to the experiment worksheet. 
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5.4.4 Recipe-Adaptation-Set Editor 

The Recipe-adaptation-set Editor is a module for the creation and modifica
tion of a recipe adaptation set. It offers facilities for specifying all parts of a 
recipe-adaptation-set object as defined in Section 5.4.2. 

5.4.5 Experiment Design, Modelling and Experimental Optimization 

Experiment design modules, e.g. factorial design modules, start with a 
recipe-adaptation-set object and generate a worksheet with planned test runs, 
which are next copied into BATCH DAT A. The results of each completed 
batch are copied back to be used for process modelling or refine
ment/extension of the experiment design task. 

Modelling modules use the data of a worksheet to fit a model, that explains 
the batch results as a function of the recipe item settings. If the fitted process 
model is accepted, then the FRIS Monitor stores it in the recipe-adaptation-set 
object. If more than one worksheet is defined in the object, the FRIS system 
will ask for the name of the worksheet before beginning modelling. 

To the group of experimental optimization belong the Nelder-Mead, Multi
plex-Fitting and Line Optimization modules. They start with a flexible recipe 
object and an input from the user with additional information about stopping 
criteria and direction of search, with which the chosen module generates a 
worksheet with planned test runs. The main program inserts a copy of the 
worksheet into BATCH DATA, so that the test runs can taken care of the 
batch execution part of the FRIS package. 

As soon as a batch is executed, its results are copied back into the worksheet 
and the module can compute new test-run settings. This procedure is repeated 
until the optimized settings are found. The found settings can next be used as 
nominal settings of a master control recipe but also as initial settings for an 
factorial design module intended for process modelling. 

5.4.6 Model-Based Recipe Improvement 

The model-based recipe improvement module, starting with a recipe-adapta
tion-set object, optimizes the performance criterion subject to model, pro
cess/plant and economical constraints. 
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The user is presented with an elaborate user interface for "playing" with the 
optimization process, such as fixing certain recipe items or adding/removing 
constraints. The progress of the criterion value can be monitored, e.g. by 
means of a plot of the criterion value versus the optimization run number or 
of the hilly landscape. 

5.4. 7 Interfaces to External (Statistical and Other) Packages 

This modules give the user the possibility of using external packages, e.g 
packages for design of experiments and process modelling, or Batch Infor
mation & Management systems. For each external package, a separate soft
ware module must be written that converts data from the FRIS database to a 
format to be read by the external package, and vice versa. 

Currently, an interface with the RS/Discover and RS/Explore packages is 
available. Design of experiments and process modelling are done in this RS
environment. 

5.4.8 Batch Initialization 

The batch initialization module presents a user interface, with which the user 
can specify known deviations in initial conditions, set additional operational 
limits on recipe items and process outputs, choose adjustable recipe items, 
process models and the desired performance criterion, and next accept or 
reject the suggested adjusted recipe item values. If the suggested values are 
accepted, then the main program copies them into the BATCH DATA label
led with the mode "INIT" and prepares the initialized control recipe. If they 
are not accepted, then the module can be st~rted again with modified input 
information. 

5.4.9 Batch Correction 

Batch correction is to be used, one or more times, during the batch run. The 
corrected control recipe gives the adjusted recipe settings for the remainder of 
the processing time. 
If the corrected recipe settings suggested by the module are accepted by the 
user, then the main program inserts them into BATCH DAT A under the label 
"CORRECT", and the batch correction can be carried out according to the 
prepared corrected control recipe. 
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5.4.10 Process Monitoring 

Process monitoring uses models to detect disturbances which may be cased 
by changes in feedstocks, fouling etc, and subsequently to improve recipes. 
This module must still be realized. 

5.5 Technical Implementation 

The prototype of the PRIS-package has been implemented as a Windows-NT 
application in the PRIMACS package for real-time data acquisition, intelli
gent data processing & analysis, process modelling and control design of 
continuous processes [LIN90, VERH95]. The FRIS modules are implemented 
in C++ making use of the standard PRIMACS tools for graphical presentati
on. 
The FRIS package can be seen as the extension of PRIMACS to batch pro
cesses. 

5.6 Desired Further System Developments 

At present, the TNO/TPD Institute of Applied Physics defines with a number 
of industrial partners a project, in the :framework of which the development 
of a commercial version of the FRIS package is to be realized. Various im
provements and extensions of the actual FRIS implementation are important 
[RAD95]: 

further development of robust modules for experiment design, process 
modelling, batch initialization and correction; 
realization of the process-monitoring module; 
realization of a :framework for adding modules for recipe generation, 
improvement and adjustment on the basis of white process models; 
linkage with Windows packages for use of the data in reports and 
spread sheets; 
interfacing with other data bases of the Open Data Base Connectivity 
Standard for SQL data bases; 
interfacing with Batch Information & Management (planning/schedu
ling/control) systems and DCS/SCADA-systems; 
adding an expert system for better support of users without experience 
or with little experience in statistical analysis. 
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Chapter 6. Case studies 

The flexible recipe-approach described in this thesis has been successfully 
applied to two simulated and five real processes. In this chapter in details two 
cases will be discussed: 

. a) production of an alkyd resin (industrial application at Akzo Nobel). 
b) production of an epoxy resin (in the laboratory of our University); 
For both cases, after a short process description, the results of recipe 
improvement, batch initialization and correction will be presented. 
Other industrial cases will be mentioned in Section 6.3. 

6.1 Alkyd Resin Production 

This application of the flexible recipe-approach was in the production of 
"Setal" (an alkyd resin) at Akzo Nobel Resins in Bergen op Zoom. Three 
problems were investigated: 
1) process improvement by the use of new raw materials; 
2) optimization of process duration; 
3) process correction for deviations from the desired acid value - viscosity 

band. 
All problems concern the same production process, which will be described 
in brief before the three problems are examined. Because this application 
contains confidential business information, some terms are replaced by blank 
codes, and all models are presented only in a scaled form without 
transformation rules. 

6.1.1 Reaction Mechanism and Process Description for the Production 
of the Alkyd Resin Setal 

The alkyd resin Setal is produced in a so-called fatty acid process, i.e. an 
esterification of a polybasic fatty acid, the molecules of which contain two or 
more carboxyl groups (-COOH), and a polyhydric alcohol, the molecules of 
which contain two or more hydroxyl groups ( OH) [P AT62]. The reaction 
between a carboxyl group of an acid and a hydroxyl group of an alcohol, 
which releases water molecules, is called esterification. Broadly speaking, this 
type of esterification produces compounds of the general class of polyesters. 
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The key feature that distinguishes the alkyd resins, or alkyds, from other 
polyesters is the presence of fatty acid as a major part of their composition. 

c 

D 

R 

Figure .. 6.1 Schematic presentation of the X-cycle in the Seta! process 

The reaction mechanism is an equilibrium reaction. By withdrawing the water 
formed during esterification, the equilibrium "shifts to the right" in favour of 
the formation of alkyds. For this purpose, a volatile component X with 
azeotropic properties is used in an evaporation-distillation-reflux cycle, as 
shown in Figure 6.1: evaporation in the reactor (R) takes care of the removal 
of the X+water mixture from the reactor via the dephlegmator (D); next the 
X+water mixture is condensed (C) and after it settles in a separation tank (S), 
the X component is carried back into the reactor through the pump (P), 
whereas the water is drawn off (A). 
After loading the raw materials into the reactor, the process is started by 
heating the vessel. During this step inert gas is led through the mixture to 
prevent the alkyd from becoming too dark. 

The second step is called the solvent process, which is the actual reaction 
phase. Normally, no inert gas passes through the reactor during this process 
phase, in which the progress is followed by periodical checking of the acidity 
and viscosity of the alkyd. The acid number furnishes an indication of the 
proportion of the reaction completed, and the viscosity furnishes an indication 
of the size and complexity of the alkyd polymers that have been formed. It is 
common practice to plot the acid value versus the viscosity. Figure 6.2 shows 
a characteristic diagram with the ideal progress represented by the so-called 
"heart line" (HL) and the tolerance boundaries. Periodically, a sample is taken 
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from the reactor mixture and after analysis its results can be marked by a 
point in the acid-viscosity diagram. If this point does not lie between the 
allowed boundaries, a correction is necessary: if the point lies above the 
allowed band (point H in the diagram), the correction is done with an 
alcohol, and if it is below (point L in the diagram) an acid is used. The 
reaction is terminated when the viscosity and the acid number lie in the final 
destination area, which is represented by a dotted rectangle in Figure 6.2. 
Next, after the mixture has been cooled, it is transported to a thinning tank to 
bring the product on the final specifications. Finally, the alkyd resin is 
filtered and pumped into storage tanks. 

The critical phase in FRIS-terms is the solvent process, for which the three 
application problems mentioned in Section 6.1 will be examined. 
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Figure 6.2 Acid - viscosity trajectory used for the monitoring of the Setal 
process 

6.1.2 Process Improvement by the Use of New Raw Materials 

This application concerns the improvement of the Setal process, in which the 
old recipe is replaced by a cheaper one: four ingredients of the old recipe are 
replaced by two new feedstocks. 

The question is: how should the dosage of these two new ingredients be 
chosen so as to obtain the final specifications: 
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9 <AC end< 14 

750 < VIS_end < 850; 

(6.1) 

(6.2) 
the desired value of VIS_ end is 800; 

85 < OHv_no < 120; (6.3) 
the desired value of OHv _no is 105; 

in which: 

AC end 
VIS end 
OHv no 

final value of the acid number; 
final value of the viscosity; 
hydroxyl number of the product. 

The conditions ( 6.1) and ( 6.2), which must be satisfied, require that the final 
conditions of the solvent process lie inside the rectangle shown in Figure 6.2. 
Further, it is desirable that no correction takes place during the batch 
operation, in other words: 

H cor = 0 
L cor = 0 

where: 

H cor 

L cor 

(6.4) 
(6.5) 

amount of correction with an alcohol in case the 
sample indicates that the process conditions are 
above the allowed acid-viscosity band; 
amount of correction with an acid in case the sample 
indicates that the process conditions are below the 
allowed acid-viscosity band. 

The problem of finding an appropriate recipe for the new ingredients can be 
seen as an end-specifi-cation problem in accordance with definition (3.82) 
given in Section 3.6.3.2. 

6.1.2.1 Still 30% of Batches Needs Corrections 

After switching over to the new feedstocks, none of the batches progressed 
within the desired acid-viscosity band, i.e. the requirements (6.4) -;- (6.5) were 
violated. To improve this situation, Akzo Nobel found a production point that 
was expected to result in the desired end specification. This was done with 
the help of the available process knowledge and 33 experimental test runs, 
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which, however, had not been done in accordance with the methods from the 
field of "experiment design", as used in the FRIS-approach. Still, for about 
30% of the batches produced under these new process conditions, corrections 
were needed to ensure that the process remained within the acid-viscosity 
bound. 

6.1.2.2 Could the PRIS-Approach Lead to an Improvement of the Seta/ 
Process? 

The aim of the FRIS application was to investigate whether the flexible 
recipe-approach could lead to an adequate improvement of the Setal process. 
Because the experiments had already been done, it was impossible to follow 
the model-development procedure described in Section 3.2.2. Therefore, and 
because of the typical character of the end-specification problem, the 
following procedure was chosen: 
1) become conversant with the available information and the objectives, 

and consider the need of additional experiments; 
2) estimate the transition model for each response yi: 

Yi= ~(x), 1 + 5 (6.6) 

where: 

y [AC_end, VIS_end, OHv_no, H cor, L_cor]; (6.7) 
x = [x1, x2, x3, x4, x5] recipe items (ingredient dosages); 

Note that because the end product is not only affected by the two new 
ingredients but also by the three old ingredients, their dosages are also 
treated as recipe items. It should be mentioned that the total charge is 
constrained by the reactor capacity. 

3) conduct statistical tests in order to judge the models; 
4) investigate the models and decide upon their usefulness; if they are not 

satisfactory, then define additional experiments and do them, if 
possible, and return to 2; 

5) determine the area for the recipe items x1 + x5, from which the required 
end-specification of y can be reached without corrections, and develop 
one or more intelligent methods for investigation of that area; 

6) investigate the scope of and the need for defining one or more 
performance criteria; search for the best recipe for each criterium, or 
define and solve a multi-objective problem. 
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Ad 1 ). Investigation of the available information 
After the examination of the available data the following observations were 
made: 

The five recipe items were varied during the 33 experimental test runs 
as follows: 
x1, x2 and x3 were varied at five levels, x4 and x5 at two .levels. At the 
end of the process, VIS_ end and AC_ end, and in most cases also 
OHv_no, were measured. In all cases the corrections, if carried out, 
were recorded too. 
The variations occurring in ~ were correlated with those in x5: an 
increase in x4 was always coupled with an increase in x5, so that one of 
these, it does no matter which one, had to be left out of consideration. 
It was chosen to proceed with x4• 

The hydroxyl number OHv _no was unknown for nine batches. Upon a 
suggestion by Akzo, it was decided to ignore this response, also 
because the OHv _no value is corrected in the final product thinning 
tank. 
During the experiments there were no batches with too low an acid 
number, so L_cor was always zero. 
The test runs were not performed according to any customary design of 
experiments scheme, therefore it had to be expected that the conditions 
for model estimation are less favourable. 
There turned out to be no possibilities for further experimentation, so 
that the recipe improvement had to be done on the basis of the 
available information. 

Ad 2). Model estimation 

From the five transition models expected by (6.6) only three models remain, 
namely: 

- MOD AC: 
- MOD VIS: 
- MOD H COR: 

AC end 
VIS end= 
H cor 

f1(X1, X2, X3, ~) 
f2(X1, X2, X3, ~) 
f3(X1, X2, X3, X4). 

(6.8) 
(6.9) 

(6.10) 

To estimate them sensitivity analysis was done: first, a correlation matrix was 
built for each response. This matrix was then used to choose the recipe items 
with the strongest linear influence upon the response. After that, a second
order model in terms of the selected items was estimated for each response. 
Next, it was tried to determine whether the addition of the items initially left 
out, and any combination with other items, improves the model. As a 
criterion for model judgement the coefficients R2

, R2
adi and R2

PREss defined in 
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Section 3.2.2.6 were used. The model with the highest values of these 
coefficients was taken into consideration and subsequently reduced by remo
ving any non-significant terms. This resulted in the following models: 

AC_end = 32.227·(-x,) + 31.701·(-x2) 
+ 32.080·(-x1·-x2) + 2.015·(-x2 ·-x3) 

- 1.381·( -x/) + 42.961·(-x/) 

VIS_end = 3484.61 · (-x1) + 3542.05· (-x2) 

+ 6293.80·(-x1 ·-x2) + 1213.51 ·(-x1 ·-x3) 

+ 1220.381 ·(-x2 • -x3) + 7073.64·(-x1
2

) 

H cor = - 885.81 ·(-xi)+ 1948.64·(-x3) 

+ 1431.14·(-x1 ·-x3) + 1434.92·(-x1 ·-x4) 

+ 2602.39·(-X2'-X3) - 2476.57·(-X2'-X4) 
- 5111.09·(-x/) + 1125.54·(-x/) 

( 6.11) 

(6.12) 

(6.13) 

The corresponding Tables 6.1 + 6.3 with the statistical information show that 
the values of the coefficients R2

, R2
adj and R2 

PRESS are higher than 0.8, which 
in first instance is an indication of good fit. That the condition numbers are 
quite high indicates some collinearity among recipe items in each of these 
three models. 

Table 6.1 Model of the response AC_end 

Least Squares Coefficients, Response AC_end, Model MOD_AC 

Term 

1 -X1 
2 
3 
4 
5 
6 

Coeff. 

32.227440 
31. 701115 
32.080279 

2.014662 
-1. 380763 
42.960733 

Std. Error 

7.378336 
7.299435 
7.232632 
0.318834 
0 .474617 
7 .172196 

No. cases 24 R-sq. = 0.9986 
Resid. df 18 R-sq-adj. = 0,9982 
- indicates factors are transformed. 

R-sq-PRESS = 0.997 

104 

T-value 

4.37 
4.34 
4.44 
6.32 

-2. 91 
5.99 

Signif. 

0.0004 
0.0004 
0.0003 
0.0001 
0.0094 
0.0001 

RMS Error 0.4967 
Cond. No. 212 7 
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Table 6.2 Model of the response VIS_ end 

Least Squares Coefficients, Response VIS_end, Model MOD VIS 

Term 

1 -X1 

2 -x, 
3 
4 
5 
6 

Coe ff. 

3484.613019 
3542.045108 
6293,796896 
1213.508375 
1220.460837 
7073.639850 

Std. Error 

1015.175490 
1015.664207 
1227.758987 

563.103665 
569.617962 

1225.851233 

No. cases 17 R-sq. 0.9986 
Resid. df 11 R-sq-adj. 0.9978 
- indicates factors are transformed. 

R-sq-PRESS = 0.997 

T-value 

3 .43 
3.49 
5.13 
2.16 
2.14 
5.77 

RMS Error 
Cond No. 

Table 6.3 Model of the response H_cor 

Signif. 

0.0056 
0 0051 
0 0003 
0.0542 
0 0554 
0.0001 

37.31 
374.1 

Least Squares Coefficients, Response H_cor, Model MOD_H_COR 

Term 

1 -x2 

1 -x, 
3 -X1*X3 
4 ~X1 *X4 
5 ~x2 *X3 
6 -x2 *X4 
7 -X2**2 
8 -x,**2 

Coeff. 

2602.388494 
-24 76. 565672 
·5111.085652 

1125.543292 

Std. Error 

246.705002 
457. 917819 
287 .290963 
287.225995 
638.423855 
636.526172 

1210.555409 
156.116938 

No. cases 29 R-sq. 0.9118 
Resid. df 21 R-sq-adj. 0.8782 
- indicates factors are transformed. 

R-sq-PRESS = 0.816 

T-value 

3.59 
4.26 
4.98 
5.00 
4.08 

-3.89 
-4,22 
7.21 

RMS Error 
Cond. No. 

Signif, 

0.0017 
0.0004 
0.0001 
0 0001 
0.0005 
0.0008 
0.0004 
0.0001 

31.23 
432.6 

Ad 3). Conduction of statistical tests in order to judge the models 

Tables 6.4 -;- 6.6 present the analysis of variance of the three models. In no 
case a lack of fit has to be concluded. 
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Table 6.4 Analysis of variance for the model of the response AC_ end 

Least Squares Summary ANOVA, Response AC end Model MOD AC 

Source df Sum Sq. Mean Sq. F-Ratio Signif. 
------------ ---------------

1 Total 24 3210.990 
2 6 3206.548 534.425 2166.00 
3 2 4.889 2.445 9.91 
4 Non-linear 4 755.951 188.988 765.90 
5 Residual 18 4.442 0.247 
6 Lack of fit 5 1.099 0.220 0.86 
7 Pure error 13 3.342 0.257 

F(5,13) as large as 0.8551 is not a rare event => 
no evidence of lack of fit. 

0.0000 
0. 0013 
0.0000 

0.5357 

Table 6.5 Analysis of variance for the model of the response VIS_end 

Least Squares Summary ANOVA, Response VIS - end Model MOD VIS 

Source df Sum Sq. Mean Sq. F-Ratio Signif. 
----------- ---~--------- -

1 Total 17 10978825 
2 6 10963516 1827253 1313. 00 
3 2 49771 24885 17.88 
4 Non-linear 4 8155744 2038936 1465.00 
5 Residual 11 15309 1392 
6 Lack of fit 1 1200 1200 0.85 
7 Pure error 10 14109 1411 

F(l,10) as large as 0.8506 is not a rare event => 
no evidence of lack of fit. 

0.0000 
0.0003 
0.0000 

0.3781 

Table 6.6 Analysis of variance for the model of the response H _ cor 

Least Squares Summary ANOVA, Response H_ oor Model MOD 

Source df Sum Sq. Mean Sq. F-Ratio 
----------- -----------

1 Total 29 232186.0 
2 8 211706.5 26463.3 27.14 
3 2 133405.8 66702.9 68 .40 
4 Non-linear 6 211629.1 35271. 5 36.17 
5 Residual 21 20479.5 975.2 
6 Lack of fit 5 3688.3 737.7 0.70 
7 Pure error 16 16791.2 1049. 4 

F(S,16) as large as 0.7029 is not a rare event => 
no evidence of lack of fit. 
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H COR 

Signif 

0.0000 
0.0000 
0 0000 

0.6294 
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When one takes a look at the probability plots, like Figure 6.3, or at the 
histograms of the estimated responses, like Figure 6.4, one may conclude that 
the residues do not appear to be normally distributed. This can mean that the 
presumptions of the least square estimation method are not fulfilled. To be 
sure, the goodness-of-fit test with x2 statistic was done: there is no reason to 
reject the null hypothesis about the normality presumption, so that it was 
decided to tentatively accept the models. 
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Figure 6.4 Histogram for the process model of the response VIS_end 
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Ad 4 ). Investigation of the process models 

The visualisation of the modelled responses was found to be very helpful in 
the investigation of the models. If one looks at Figure 6.5, which presents the 
contour plots of the estimated responses as a function of x1 and x2, with the 
other recipe items fixed at a certain level, one can see that the experiments, 
presented as fl* fl, were not very well balanced: they were done for recipe 
settings, which differ very little from each other. The contour plots for other 
recipe items fixed at another level show the same badly balanced distribution 
of the experiments. Since validation experiments and new test runs were 
impossible, it was decided to use the models 6.11 + 6.13 in the search for an 
·improved recipe. 

x2 
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xl 

Figure 6.5 Contour plots of the three estimated responses with the allowable 
area's (shaded) 
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Ad 5). Determination of the allowable area X'pec for the recipe items 

Contrary to the method for recipe improvement described in Chapter 3, the 
circumstances have led us to consider a new view of the problem, namely 
with which beginning dosage the desired end specification can be reached 
without any corrections. 

If the desired end specification is to be reached, the allowable area xspec for 
the selected four recipe items is described as follows: 

xspec = {(x1, X2, X3, X4): 9 < AC end < 14 /\ 750 < VIS end < 850 /\ 
H_cor = 0 } (6.14) 

It looks nice, but what can you do with this? For practical applications such a 
four-dimensional area may be somewhat awkward. In order to arrive at useful 
results the four possibilities were considered. 

The first possibility was to give an answer to the question whether a 
particular combination of the recipe items would lead to the required end 
conditions. If the models are known, a simple computation can answer this 
question with "yes" or "no'1

• However, this method is not satisfactory enough 
because of its limited usefulness. If the answer is "no", the method gives no 
indication of the direction in which to search for a good recipe. 

The second possibility was to make a set of contour plots of the modelled 
responses in one figure, like Figure 6.5, which may give a good impression 
about this allowable area. In this case, it is like a "snake" in a four
dimensional space. This method can be used as a tool to define a good search 
direction. Moreover, it gives some insight in the process. 

The other possibility is to trace whether an important criterion can be 
formulated, which involves, for example, the most expensive ingredient, the 
minimal cost or the highest added value. If such criterion is defined, the 
optimization results in such a combination of recipe item settings, that it not 
only realizes the desired end specification, but moreover does so in an 
optimal fashion. This possibility will be discussed below. 

The fourth possiblity, the finest solution of the dilemma of how to obtain a 
recipe in the four-dimensional space, lies in the problem of complicating the 
previous choice of one criterion. In practice, it is difficult, if not impossible, 
to choose one criterion, especially in situations when there are more 
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requirements than just the degree of freedom. If there is more than one 
criterion in play, one of the current multi-objective methods described in 
Section 3.6 can be applied. However, according to our experience, these 
methods as far from being perfect. Therefore, an other method was 
developed: the Triplet-choice Multi-Objective Method, already described in 
Section 3.6.3.2, for the generation of the permitted combinations of the recipe 
items, which realize the required final specification. The user has to choose at 
each iteration step, from a set of allowed recipes the best, the worst and the 
second worst one. The procedure converges to the best recipe realizing the 
specification requirements. It must be mentioned that at each iteration step, 
additional responses can be added to or removed from the analyzed set of 
responses. Such an extension was also done at Akzo: i.e. hydroxyl number, 
left out of consideration during modelling, oil-length and average molecular 
weight of the alkyd resin were easily analyzed together with the three 
responses, which are modelled. Although there were no possibilities for 
further experimentation, only one iteration step according to the method 
showed its successfulness. 

The same method can easily be used not only for end-specification, but also 
for solving multi-objective problems involving more than one separate 
objectives. Because of its particular usefulness in the industrial environment 
this working method has attracted special attention from Akzo Nobel. 

Ad. 6) Definition of the performance criterion and searching for the best 
recipe 

To investigate how a definition of a performance criterion can help to arrive 
at the best recipe, a criterion yielding a recipe ensuring the cheapest feedstock 
cost was formulated. Akzo Nobel was interested in the minimization of the 
feedstock cost per kg end product. Every time the prices are changed, the 
PRIS-approach makes it possible to compute a new recipe adjusted to the 
changed prices. To be more specific, we have compared the real prices in 
May and in November, which the concern was facing. It has resulted in the 
conclusion that the cheapest recipe in May is not the most economical one for 
November and that both recipes are different from the process conditions 
found by Akzo [K0095]. 

Table 6. 7 shows the percentage of profit increasing which can be reached by 
applying the PRIS-approach. It is 100 % for the most profitable recipe in 
May and in November, respectively. Also the most unprofitable recipes in 
both months were studied by maximization of the criterion. In this manner 
the possible range of improvement is computed: it is 0% for the most 
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unprofitable recipe, 94 % for the actual Akzo recipe for the May prices, and 
62% for the November prices. Thus, the actual Akzo recipe, is not optimal 
according to prices in May as well as in November. 

Table 6.7 Percentage of profit increasing, computed for the feedstock cost per 
kg end product, for recipe settings according to the actual, best and 
worst recipes in May and November, respectively. 

~ 
Percentage of profit Percentage of profit 

increasing increasing 

' -'- ' ' ' -- ---- in May[%} in November [%] 
.. · .. 

actual Akzo recipe 94 62 
.. 

.· 

recipe, lvhich Ill injlilizes 100 95 
the criterion in May 

.. 

recipe, which . mininiizes 99 100 
the criterion in 
November 

recipe, which 0 27 
maximizes the criterion 
in May 

recipe, which 17 0 
maximizes criterion in 
November 

6.1.3 Optimization of Process Duration 

Another application of the flexible-recipe approach was to investigate whether 
it was possible to speed-up the solvent process. The manner in which three 
selected recipe items (other than in the previous case), say v1, v2 and v3, 

influence the reaction time was examined. For this purpose, these three recipe 
items were varied as presented in Figure 6.6, with respect to their nominal 
values denoted with a bolder point. The numbers near the points denote how 
many test runs have been made, and the numbers in parentheses give the 
numbers of runs useful for further analysis. As the remaining 14 batches were 
not taken into consideration because of abnormal process situations, only 26 
of the 40 runs could be used for model estimation. 
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The modelled response, the duration of the solvent process, denoted as 
TIME_ SOL V, was computed for each batch as the time after the heating had 
finished and until the cooling begun. On the basis of the available 26 test 
runs the estimated model for the duration of the solvent process is presented 
in Table 6.8. 
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Figure 6.6 Schematic presentation of the experiments according to 23 factorial 
design aimed at the reaction time reduction. 

The modelled response, the duration of the solvent process, denoted as 
TIME_SOLV, was defined for each batch as the time that elapsed between 
the moment that the heating had finished and the cooling begun. On the basis 
of the available 26 test runs, the estimated model for the duration of the 
solvent process is presented in equation (6.15) and in Table 6.8. 

TIME SOLV 3.622 - 0.213'(~v1 ) - 0.377·(-v2) - 0.202·(~v3) 
- 0.197·(~v2 • ~v3) (6.15) 

Table 6.8 Model of the response TIME_SOLV 

Least Squares Coefficients, Response TIME_SOLV, Model MOD_TIME_SOLV 

Term 

1 1 
2 -v1 

3 -v, 
4 -v, 
5 -V2*V3 

Coeff. 

3.621770 
-0. 213304 
-0. 377169 
-0.201790 
0.197002 

Std. Error 

0 096306 
0.099757 
0.096171 
0.097005 
0.097407 

No. cases 26 R-sq. = 0.5805 
Resid. df 21 R-sq-adj. = 0.5006 
- indicates factors are transformed. 

R-sq-PRESS = 0.359 
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T-value Signif. 

-2.14 0.0444 

-2.02 0.0560 

RMS Error 0.4805 
Cond. No. 1.332 
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Obviously, this model has quite a small explanatory ability (with R2 

0.5805 and R2
adi = 0.5006) as well as a very small predictive ability (R\REss 

is only 0.359). Therefore, this model is not acceptable. However, upon further 
reflection, it becomes clear, that the modelled response was not properly 
chosen. The solvent process was finished when the viscosity and the acid 
number were expected to lie in the desired rectangle of Figure 6.2. This 
means that the end moments of the solvent step were subjected to non-negli
gible fluctuations. As a consequence, another, more consistent, response was 
preferred: the time between the start time of the solvent phase and the 
moment the acid number reaches approximately the value of 12. 

This new modelled response is denoted by TIME_AC12. Equation (6.16) and 
Table 6.9 show the estimated model of this response. It is obvious that the 
explanatory and predictive ability of this model is improved considerably in 
comparison to the model MOD_ TIME_ SOL V. This, together with no evi
dence of lack of fit, as presented in Table 6.10, lays the foundation of tenta
tive acceptation of the new model MOD_ TIME_ AC 12. 

TIME_AC12 = J.259 - 0.123·(-vi) - 0.521 "(-v2) - 0.280"(-v3) 

+ 0.208·(-v1 • -v2) + 0.135"(-v1 • -v3) (6.16) 

Table 6.9 Model of the response TIME_AC12 

Least Squares Coefficients, Response TIME_AC12, Model MOD_TIME_AC12 

Term 

1 1 
2 -v1 

3 -v, 
4 -v, 
5 -Vi*V2 
6 -vi*Vi 

Coeff. 

3.258728 
0.123158 

-0.520802 
-0.279912 
0.208417 
0.135023 

Std. Error 

0.070866 
0 .072274 
0.071278 
0. 072340 
0 .072483 
0.073792 

No. cases 26 R-sq. = 0.8433 
Resid. df 20 R-sq-adj. = 0.8041 
- indicates factors are transformed. 

R-sq-PRESS = 0.739 
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T-value 

2.88 
1. 83 

Signif. 

0.0094 
0.0822 

RMS Error = 0.3487 
Cond. No. = 1.5 
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Table 6.10 Analysis of variance for the process model of the response 
TIME AC12 

Least Squares Summary ANOVA, Response AC_end Model MOD_AC 

Source df Sum Sq. Mean Sq. F-Ratio Signif. 
--------------------- - ------------------------------
1 Total (Corr.) 25 15.51696 
2 Regression 5 13.08501 2.61700 21.52 0.0000 
3 Linear 3 11. 72256 3.90752 32.13 0.0000 
4 Non-linear 2 1.36244 0.66122 5.60 0 .0117 
5 Residual 20 2.43195 0.12160 
6 Lack of fit 4 0.33164 0.08291 0.63 0.6471 
7 Pure error 16 2.10032 0.13127 

Model obeys hierarchy. The sum of squares for linear terms 
is computed assuming nonlinear terms are first removed. 
F(4,16) as large as 0.6316 is not a rare event ;> 

no evidence of lack of fit. 

To validate the model MOD_TIME_AC12, three test runs were planned in 
the centre of the factorial design in Figure 6.5. Unfortunately, one of them 
could not be used for validation because of an unforeseen, and undesirable 
correction, which prolonged the processing time. The results of the remaining 
two valid experiments are presented in Table 6.11. For comparison, the 
expected values and the confidence intervals are also presented for the 
rejected model MOD_TIME_SOLV. The results of both validation test-runs 
lie in the 95% confidence interval of the model MOD_ TIME_ AC 12, whereas 
one result does so for the model MOD TIME SOL V. 

Table 6.11 Validation test runs and the predicted values of the responses 
TIME_SOLV and TIME_AC12 in the centre point of the design 
according to the models MOD_TIME_SOLV and 
MOD_TIME_AC12 

Batch Vl 
Batch V2 

Lower pred. 95% 
Predicted value 
Upper pred. 95% 

TIME_SOLV 

3.50 
2.83 

3.269 
3.621 
3.975 

TIME AC12 

3.00 
2.99 

2.979 
3.259 
3.539 

On the basis of these results, the model MOD_TIME_AC12 was accepted. 
The minimization of the modeled response TIME AC 12 results in a rather 

·····----------------------------------
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surpnsmg mm1mum duration of 2.24 hours, at the boundary of the factorial 
cube of Figure 6.6, namely the point 4(3) at the bottom level. That means: 
shortening the solvent process duration by about 44%! However, such a 
shortening of the solvent step is, unfortunately, not really acceptable in prac
tice, because in case a correction is needed, there would be not enough time 
for it to have effect. However, if one decides to aim at a reduction of the 
reaction time to only 3 hours, the model helps to find the appropriate process 
conditions, which may be done ·by solution of the following optimization 
problem: 

min J(v) =min v1, (6.17) 
v v 

subject to: 

TIME_AC12(v) = 3.0, (6.18) 

which means the minimization of the most expensive recipe item v1 under the 
desired condition (6.18). Next, if the process turns out to be better under 
control, in the sense that corrections are unnecessary, the value in (6.18) may 
be replaced by a new one with shorter processing time. 
In this manner the PRIS-approach can be used to generate an optimal master 
control recipe. 

6.1.4 Process Correction for Deviations from the Desired Acid Value -
Viscosity Band 

This section shows what contribution the flexible recipe approach can make 
to the correction rules in cases in which the solvent phase does not progress 
inside the desired acid-viscosity band. 

Although, as described in . Section 6.1.2, a recipe was found which should 
achieve the end-specification requirements without any interim correction, 
about 30% of the batches still needed corrections. This was a clear-cut 
improvement with respect to the situation just after switching over to new 
ingredients, in which all batches did not progress inside the allowed acid
viscosity band. At present, however, there still are batches processing in an 
undesirable manner, and, moreover, if a correction is carried out, often (in 
more than 50% cases) it does not lead to the desired result. As a consequen
ce, a second and sometimes a third correction is necessary. 

Chapter 6 Case Studies 115 



6.1.4.1 The Correction Rule Used in the Factory 

The progress of the reaction phase is tested by periodically taking a sample 
from the reactor and, if considered necessary, adding a corrective substance. 
Figure 6. 7 presents the time scheme for taking a sample and making correc
tions. The first sample is taken about half an hour after the beginning of the 
solvent process, the analysis takes about 20 minutes, and the rule is that after 
half an hour after the first sample and just after the second sample, a correc
tion can be made. The third sample, taken another half an hour later, shows 
the effect of the correction. If it is not sufficient, a second correction is 
carried out. The size of the correction does not depend on the correction 
moment, but only on the size of the measured deviation in the acid number 
with respect to the heart line: for 1 point of deviation on the acid number 
scale, 1 unit of a corrective substance must be added. In this manner, the 
process is monitored and corrected during the whole phase, but in the last 
hour no correction is allowed. In practice, the correction rule is more a 
guideline than a norm, and the operators, depending among other things upon 
their own experience, administer less or more than prescribed, so that an 
addition of 0.51 or 1.22 unity per 1 point deviation on the acid number scale 
is not uncommon. What is striking furthermore is that the same correction 
rule is applied irrespective of the position of the heart line and the desired 
acid value - viscosity area; the specification band as a whole shifted upwards, 
later the upper bound shifted downwards, narrowing the band. 

0 0.5 h 1 h 1.5 h 
first sample second sample third sample 

and, if necessary, 
first correction 

2h 
fourth sample 
and, if necessary, 
second correction 

time 

Figure 6. 7 Time scheme for taking a sample and performing corrections 

6.1.4.2 The Procedure Followed with FRIS 

As the process data at my disposal did not provide information about correc
tions in case the acid number is lower than expected, the analysis was 
restricted to cases of too high an acid number, the correction being done with 
an alcohol. 

Although the process 1s sampled periodically, it was found impossible to 
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estimate other models than transition models, for example ARMA- or 
impulse-response models. The dynamics apparently play a part in a time 
interval shorter than half an hour and therefore could not be identified. 
Hence, continuous control, for keeping the reaction as closely as possible to 
the heart line, may be very effective. Therefore, it is interesting to examine 
what solution the flexible recipe-approach can offer. 

To estimate the correction models, information about 22 corrected batches, 
i.e. batches with corrections, were at our disposal. The corrections were made 
at various sample moments. Therefore there were not enough data to estimate 
models like ( 6.19) and ( 6.20) for each sample moment separately, which was 
our primary aim: 

where: 

f a,n(acn-1' visn-1' corrn) 
!v,n(acn-1' visn-1' corrn) 

(6.19) 
(6.20) 

n number of sample moment, n=l,2,3, ... 
acn acid number measured at the nth sample moment; 
v1sn measured viscosity corresponding with the nth sample 

moment; 

fa,n 

fv,n 

correction at the n1h sample moment on the basis of the 
measured conditions at the n-1 th moment; 
function describing the correction model for the acid num
ber at the nth moment, for example a second-order poly
nomial in the variables in parentheses; 
function describing the correction model for the viscosity 
at the nth moment, for example a second-order polynomial 
in the variables in parentheses. 

An idea to answer the question, what insight into the correction procedure 
can be given by the flexible-recipe approach, was given by the standard Akzo 
correction rule: for 1 point of deviation on the acid number scale, 1 unit of 
alcohol must be added independently of the correction moment. 

The solution was dealt with in the following way: 
1) as reference for all batches the current specification band and the cur

rent heart line was taken; 
2) at the moment that a deviation in the solvent process was detected, the 

following data were recorded (see Figure 6.8): 
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a) 

b) 

c) 

d) 

e) 

Delta AC 
(D_A) 

Delta VIS 
(D V) 

Corr ale 
(COR) 

New Delta AC 
(l\l_DA) 

New Delta VIS - -
(N_DV) 

the difference in the acid number with respect 
to the heart line (measured vertically) at the 
sample moment when the conditions are out
side the band; 
the difference in the viscosity with respect to 
the heart line (measured horizontally) at the 
sample moment when the conditions are out
side the band; 
added amount of the corrective alcohol half 
an hour later than D A and D V are 
measured; 
the new difference in the acid number with 
respect to the heart line, half an hour after the 
correction is done, thus one hour after D _A is 
measured; 
the new difference in the viscosity with 
respect to the heart I ine half, an hour after the 
correction is done, thus one h~ur after D _ V is 
measured; 

3) for a number of batches without corrections the same data were kept as 
in 2); here COR = 0 for all these batches. Provision had been made to 
assure that approximately as many data without correction as with 
corrections is available; 

4) on the basis of the collected data, as described in 2) and 3), the follow
ing two transition models were estimated: 

N_DA = fA (D_A, D_V, COR) 
N DV /v (D_A, D_V, COR) 

(6.21) 
(6.22) 

where: 
fM fv model functions, in first instance second order 

polynomials in D _A, D V and COR; 
5) the estimated models were used for the generation of new correction rules. 

With the definition of the model structure for f A and f v• the starting point 
was that the place with respect to the acid-viscosity band (in other words: the 
moment of the correction) also has an effect on N_DA and N DV. Due to 
the non-linear shape of the heart line, D _A and D _ V uniquely provide the 
position of a point in the acid-viscosity plane. In this manner one can more or 
less take into account the moment of sample taking. 
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Figure 6.8 Acid - viscosity band with the indication of the modelled variables 

6.1.4.3 The Correction Models 

On the basis of 66 data sets from batches with corrections and without them, 
models as presented in (6.21) and (6.22) were estimated. The starting struc
ture for both models was a second order polynomial in D _A, D _ V and COR. 
After the non-significant terms were removed, linear models without a con
stant remained in both cases. 

Equation (6.23) and Table 6.12 show the tentatively accepted correction 
model, called MOD_ COR _AC, of the new difference in the acid number 
N DA. 

N DA 0.792·D A - 0.212·COR (6.23) 

Table 6.12 Correction model of the response N_DA 

Bisquare Coefficients, Response N_DA, Model MOD_COR_AC 

Term Coeff. Std. Error T-value Signif. 
--------- --------

1 0.792673 0.048397 16.38 0.0001 
2 -0.212526 0.043527 -4.88 0.0001 

No. cases 66 R-sq. 0.8686 RMS Error 0.7722 
Resid. df 64 R-sq-adj. ~ 0.8645 Cond. No. 2.821 
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Figure 6.9 shows a graph of residuals of N_DA according to the model 
MOD COR AC as a function of case number. All residuals lie between -2 
and +2 except for two outliers marked with a circle. The measurements of the 
acid number were done with an accuracy of 0.5 point. On the basis of the 
fact, that about 80% of the cases lie between -1 and + 1, and taking into 
account the poor reproducibility of the process, it was decided to accept the 
model MOD COR AC. 
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Figure 6.9 Case order graph of residuals of N_DA according to the model 
MOD COR AC - -

Similar calculations were done for the response N_DV. Equation (6.24) and 
Table 6.13 present the estimated coefficients of the model MOD_ COR _VIS. 

N DV = 1.115·D V- 10.622·COR (6.24) 

Table 6.13 Correction model of the response N_DV 

Least Squares Coefficients, Response N_DV, Model MOD_COR_VIS 

Term Coeff. Std. Error T-value Signif. 

1 D v 1.114872 0.089457 12.46 0.0001 
2 COR -10.622187 2.384012 -4.46 0.0001 

No. cases 66 R-sq. 0.7789 RMS Error 43.85 
Resid. df 64 R-sq-adj. 0.7720 Cond. No. = 2.837 

R-sq-PRESS = 0.768 
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The residuals computed on the basis of this model are shown in Figure 6.10. 
Most of them lie between -80 and +80. The viscosity measurement had an 
accuracy of 10% of the measured value. All this gives sufficient confidence 
to tentatively accept the model MOD_ COR_ VIS. 
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Figure 6.10 Case order graph of residuals of N DV according to the model 
MOD COR VIS - -

6.1.4.4 Discussion of Both Correction Models 

Before discussing the use of the estimated model for the computation of a 
correction rule, it is useful to place a number of notes. 
According to both models, the size of the correction does not depend on time, 
and the estimated responses are linearly dependent on the size of the correc
tion and the distance (measured vertically or horizontally) from the heart line. 

In essence, the models are contradictory: if N_DA is only dependent on D_A 
and COR, it is impossible that N_DV is dependent only on D_V and COR, 
because of the non-linear character of the heart line. This can be seen in 
Table 6.14, which shows correction sizes, according to the model 
MOD_COR_AC, respectively MOD_COR_VIS, needed to arrive within half 
an hour at the heart line. However, only one model can be used for the com
putation of the correction rule. 
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No 

1 

I~ 
4 

5 

6 

7 

:;: 

Table 6.14 The expected deviations N_DA and N_DV from the heart line after 
corrections COR according to the models MOD_COR_AC and 
MOD_ COD_ VIS; cases 1 + 4 are in the beginning of the solvent step 
and cases 5 + 8 in the final part . 

.. 
NDA ' N DV 

D A DV COR according t.o 
' 

according to 
MOD COR AC MODCOR VIS 

with 95!i;""corifid¢nce with 95% corlfidence 
interval .. interval 

1 20 3.73 11 -o. 32 0.00 0.32 -36.32 -17.32 1.6B 

1 20 2.10 0.19 0.35 0.50 9.48 0.00 9.48 

2 30 7.46 -0.64 0.00 0.64 -85.35 -45.80 -6.24 

2 30 0.70 0.92 1.13 -14.21 o.oo 14.21 ------ ·- ----------------------------- -----------------------------
1 100 3 73 -0.32 0.00 0.32 57.01 71. 87 86.73 

1 100 10.50 -2.49 -1.44 -0.38 -4 7. 3 8 0.00 47.38 

2 150 7.46 -0.64 0.00 0.64 60.02 87.99 115. 96 

2 150 15.75 -3.30 -1. 76 0.22 -71. 07 0.00 71. 07 

The correction computed on the basis of the one model does not lead to the 
heart line according to the other model. This discrepancy is particularly 
pronounced in the beginning and near the end of the acid-viscosity trajectory. 
However, it should be taken into account that the data used for model estima
tion mainly provide information about corrections in the middle of the solvent 
step, where, as shown in Table 6.15, the contradiction is not pronounced. 

No 

1 

2 

122 

Table 6.15 The expected deviations N_DA and N_DV from the heart line after 
corrections COR according to the models MOD_COR_AC and 
MOD_ COD_ VIS; all cases are in the middle of the solvent step 

DA 

1 40 

1 40 

2 70 

2 70 

N~DA 
accordi.ng to 

MOD COR AC 
95%.,.contidence 
interval 

NDV 
ac<:ording- to 
MODCORVIS 

with 95%collfidence . 
interval . 

0.00 0.32 -11.33 4.97 21 27 

-0.09 0.27 18.95 0.00 18.95 

0.00 0.64 35.01 -1.20 32.61 

0.02 0.66 33.17 0.00 33.17 
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Because the model MOD COR AC is a bit better than the model 
MOD_ COR _VIS (see R 2 and R 2 

adj), it was included in the recipe adaptation 
set as the correction model. Thus, it became easy to compare the correction 
results according to the flexible-recipe approach with the results according to 
the standard Akzo method. 

6.1.4.5 Batch Correction According to the Model MOD_COR_AC 

If the selected model MOD_COR_AC is used for the computation of the 
correction rule with the intention that N _DA for the present heart line must 
be zero, then it yields: 

COR 3.73 DA (6.25) 

This means that instead of one unit of the corrective substance per point 
deviation on the acid number scale, 3.73 units of the correction substance 
should be used ! 

The correction model can be used every time the specification band changes, 
for example, when the heart line is shifted +0.5 point in the ACID-direction. 
On the other hand, if the aim is to arrive at +0.5 ACID-point above the heart 
line after correction, the rule would become: 

COR -2.35 + 3. 73 D A (6.26) 

These results are clearly different from the strategy used by Akzo, which may 
explain the number of batches not successfully terminated after correction 
according to their method. As of now, the rule (6.25) will be the correction 
rule used by Akzo. 

6.1.5 Conclusions 

This section described an application where data from the industrial 
polymerisation process were processed and exploited following the flexible 
recipe-approach, so as to find an improved master control recipe, firstly in 
case the recipe ingredients were changed, and secondly, in case the proces
sing time was to be shortened. Thirdly, our findings showed what contribu
tions can be made by the FRIS-approach to the improvement of the correc
tion rule in the event the· process does not progress according to the acid:
viscosity band. For all three cases, reasonably satisfactory models were found 
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for the responses: AC_end, VIS_end, H_cor, TIME_AC12 and N_DA. 

Looking back upon the modelling exercise in case of new recipe ingredients, 
it may be concluded that better and more complete information about the 
process behaviour would have been obtained, if it had been possible to plan 
experiments according to a customary experiment design scheme. The avail
able process data were ill-conditioned and rather scarce. Notwithstanding that, 
it turned out to be possible to find process conditions that came closer in the 
desired end specification, and it was found to be profitable to adapt the recipe 
every time the prices of feedstocks are changed. 

Looking back at this case study, the following conclusions may be drawn: 
1) the PRIS-approach used in an industrial environment proved a number 

of its advantages: without upsetting normal production, information 
can be collected and then be used to derive (in a simple fashion) 
improved recipes or adjusted recipes in case corrections are needed; 

2) once one has obtained estimated models, they can be used to find a 
recipe in case the end specification, or the prices or the processing time 
are changed; 

3) the quality of the estimated models, and therefore also of the obtained 
results, would be better if the data were better conditioned and the 
measurements were more accurately performed; this emphasizes how 
important it is to apply the flexible-recipe approach from the very start 

6.2 Epoxy Resin Production 

The second application of the flexible recipe approach described in this 
chapter concerns the production of epoxy resin Epikote 1001 in the laboratory 
of our University. The function of this case was to test the most important 
aspects of the PRIS-approach: development of a recipe adaptation set, model
based process optimization, batch initialization and batch correction. 
The production of epoxy resin was chosen as a test process because of its 
reasonable reproducibility, simple requirements regarding instrumentation and 
relatively short processing time. 

6.2.1 Reaction Mechanism 

Epoxy resins all have the epoxy group in common [LEE82]. This consists of 
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a triangle with one oxygen and two carbon atoms, see Figure 6.11. To pro
duce epoxy resins two main processes are used in industry: the taf!Y and the 
advancement process. The advancement process, using the Diglycidylether of 
Bisphenol A (DGEBA) and Bisphenol A (BA), is the most widely applied 
process because of the relative simplicity of the reaction. 

0 

'/'" ,,.c-c, 
Figure 6.11 The epoxy group 

The know-how of this process was available from Sheby, a sister company of 
Scado (both companies were part of the Polymer Division of Unilever). 

The process starts after BA and DGEBA have been mixed and heated in a 
reaction vessel under nitrogen until the mixture becomes homogeneous 
(;:::;l l5°C). At this point a basic catalyst is added. At a temperature of about 
140°C the exothermic reaction starts (see Figure 6.12). This raises the tempe
rature to 180-190°C. Next, the mixture will be held at a temperature of 180°C 
for about two hours to complete the reaction. 

Figure 6.12 The reaction of BA with pure DGEBA 

The mole ratio DGEBA:BA governs the degree of polymerization. 
By means of a titration, the Weight per Epoxy group (WPE) can be 
measured. This tells us something about the average chain length of a resin 
molecule. This WPE will be used as the product quality parameter during the 
creation of the recipe adaptation set for this process. 

--···~·~-------------------------
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6.2.2 Process Modelling Helps to Find Unexpected Variations in Feed-
stock Quality 

As already mentioned, one of the important final qualities of the formed 
epoxy resin Epikote 1001 is the WPE-number. For this application it was 
assumed, that the final WPE-number, denoted by WPE_lOOl, has to satisfy 
the following specification: 

480 s WPE_lOOl s 520; 
the desired value is 500. 

(6.27) 

To find process conditions which result in the desired end quality specifica
tion, a process model of the final WPE-number was estimated. However, it 
was not quite clear which recipe items should be included in the flexible 
recipe. For this reason recipe development took place in a number of steps: it 
started with the variation of three factors, then their number was enlarged to 
four and next to five. Finally, one external factor, the quality of one ingredi
ent, was involved too. Reason for these enlargements was the increasing 
process knowledge. 

The following process inputs (1 + 3), process parameters ( 4 + 5) and one 
. external factor ( 6) were eventually chosen as recipe items and then varied 
during the experimentation: 
1) amount of Bisphenol A (BA); 
2) amount of Diglycidylether of Bisphenol A (DGEBA); 
3) amount of catalyst (KAT); 
4) reaction time (TIME); 
5) reaction temperature (TEMP) 
6) WPE-number of Diglycidylether of Bisphenol A (WPE _828). 

The measured process output was the WPE-number of Epikote 1001 
(WPE _ l 00 I). 

The worksheet with the test runs carried out, intended for the model estima
tion of WPE _ 1001, is presented in Table 6.16. The experiments are divided 
into four groups. 

In the first group (exp. 1 + 17) only three factors BA, DGEBA and KAT, 
were varied according to the Central Composite Circumscribed Design for a 
fixed value of TIME and TEMP. The last three test-runs of this series were 
carried out in the centre of the design. 
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Table 6.16 Worksheet with experiments 

Exp. BA DGEBA KAT TIME TEMP WPE 
lOOl 

1 96 355 0.29 108 180 194 458 
2 118 355 0.29 108 180 194 577 
3 96 433 0.29 108 180 194 388 
4 118 433 0.29 108 180 194 459 
5 96 355 0. 37 108 180 194 458 
6 118 355 0. 37 108 180 194 599 
7 96 433 0. 37 108 180 194 401 
8 118 433 0. 37 108 180 194 459 
9 88 394 0.33 108 180 194 388 

10 126 394 0.33 108 180 194 554 
11 107 328 0.33 108 180 194 548 
12 107 460 0.33 108 180 194 398 
13 107 394 0.26 108 180 194 459 
14 107 394 0.40 108 180 194 470 
15 107 394 0.33 108 180 194 470 
16 107 394 0.33 108 180 194 469 
17 107 394 0.33 108 180 194 468 

18 96 355 0.29 132 180 194 472 
19 118 355 0 .29 132 180 194 590 
20 96 433 0 .29 132 180 194 405 
21 118 433 0.29 132 180 194 461 
22 96 355 0.37 132 180 194 474 
23 118 35? 0.37 132 180 194 594 
24 96 433 0. 3 7 132 180 194 410 
25 118 433 0. 37 132 180 194 474 
26 107 394 0.33 96 180 194 456 
27 107 394 0.33 144 180 194 462 

28 118 355 0.29 108 150 194 534 
29 96 433 0. 29 108 150 194 412 
30 96 355 0.37 108 150 194 456 
31 118 433 0. 3 7 108 150 194 457 
32 96 355 0.29 132 150 194 451 
33 118 433 0.29 132 150 194 454 
34 118 355 0.37 132 150 194 587 
35 96 433 0. 37 132 150 194 388 
36 107 394 0.33 120 135 194 453 
37 107 394 0.33 120 195 194 461 

38 118 355 0.29 108 180 190 543 
39 118 355 0.29 108 150 190 548 
40 96 433 0.29 108 150 190 378 
41 96 355 0.37 108 150 190 452 
42 118 433 0.37 108 150 190 449 
43 88 394 0.33 108 180 190 380 
44 126 394 0.33 108 180 190 520 
45 107 328 0.33 108 180 190 542 
46 107 460 0.33 108 180 190 391 
47 107 394 0.33 120 195 190 446 
48 118 430 0.37 165 108 190 456 
49 96 355 0.33 120 150 190 446 
50 118 433 0.33 120 150 190 446 

After the first series was completed TIME was included as a new factor in 
the recipe adaptation set and the full factorial design was applied for four 
factors. Because the experiments for lower value of TIME were already 
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performed, only eight experiments were needed (exp. 18 ..;- 25) for the high 
value of TIME. Experiments 26 and 27 were the star points for TIME of this 
design; see Appendix A. 

Similarly, the next group of experiments (exp. 28 ..;- 37) was defined after 
TEMP was included in the set of recipe items. 

The last group of experiments (exp. 38 + 50) was defined after unexpected 
variations were discovered in the final WPE-number of Epikote 1001 with 
respect to the values predicted by the model estimated after 3 7 test runs. 
Subsequent investigation revealed, that these variations were caused by the 
quality, especially the WPE-number of DGEBA that was used, called 
WPE_828. The second portion of Diglycidylether of Bisphenol A was from 
another batch than the first one. The specification of that product, which 
affects the quality of the resin Epikote 1001, was not the same. For the old 
resin the number WPE_828 was 194, for the new one it was 190 [VER94c]. 

The results of all 50 test runs were used in the estimation of the process 
model presented by equation (6.28) and in Table 6.17: 

WPE 1001 = 474.204 + 76.762·(-BA) -76.027·(-DGEBA) 
+ 7.824·(-KAT) + 6.585·(-TEMP) 
+ 8.242·(-TIME) + 7.183·(-WPE 828) 
- 40.756·(-BA·-DGEBA) + 11.532·(-BA·-KAT) 
- 10.235·(-DGEBA·-KAT) +10.156·(-DGEBA)2 

- 25.530·(-TEMP)2 - 18.787·(-TIME)2 (6.28) 

where: 

- BA = (BA - I 07) I 19 
- DGEBA = (DGEBA - 394) I 66 
- KAT =(KAT - 0.33) I 0.07 
- TEMP = (TEMP - 165) I 30 
- TIME = (TIME - 120) I 24 
- WPE_828 = (WPE_828 - 192) I 2 
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Table 6.17 Model of the final WPE-number. The non-significant terms are not 
shown. 

Least Squares Coefficients, Response WPE_lOOl, Model WPE RED 

Term Coeff. Std. Error T-value Signif. Transformed Term 

1 1 
2 -BA 
3 -DGEBA 
4 -KAT 
5 -TEMP 
6 -TIME 
7 -WPE 828 
8 -BA*DGEBA 
9 -BA*KAT 

10 -DGEBA*KAT 
11 -DGEBA**2 
12 -TEMP**2 
13 -TIME**2 

474.204058 
76.762004 

-76.027227 
7.824398 
6.584537 
8.242292 
7.183309 

-40.756365 
11. 532203 

-10.234964 
10.155850 

-25.530343 
-18.786691 

No. cases ; 50 R-sq. 
Resid. df ; 37 R-sq-adj. 

4.724451 
2. 263975 
2.231006 
2.529443 
2.527179 
2.705849 
1.501066 
4.552465 
4.790017 
4.712417 
5 .110679 
7.813849 
8.242733 

0.9848 
0.9799 

- indicates factors are transformed. 

R-sq-PRESS ; 0.972 

100.37 
33.91 
34.08 
3.09 
2 .61 
3.05 
4.79 
8.95 
2.41 
2.17 
1. 99 

-3.27 
-2.28 

0.0001 
0.0001 
0.0001 
0.0038 
0.0131 
0.0043 
0.0001 
0.0001 
0.0212 
0.0363 
0.0543 
0.0023 
0.0285 

((BA-l.07e+02)/l.9e+Ol) 
((DGEBA-3.94e+02)/6.6e+Ol) 
((KAT-3.3e-01)/7e-02) 
( (TEMP-l.65e+02)/3e+Ol) 
( (TIME-l.2e+02)/2.4e+Ol) 
((WPE_828-l.92e+02)/2) 

RMS Error 8.534 
Cond. No 9.093 

6.2.3 Statistical Analysis of the Model 

Because the values of R2
, R2 

adj and R2 
PRESS were satisfactory, we continued 

with the analysis of variance of the estimated model, the results of which are 
presented in Table 6.18. The lack of fit is quite large in comparison with the 
pure error. This might suggest that some significant terms may be missing 
from the model, but on the other hand, the pure error is estimated on the 
basis of only three replications (see Table 6.16. exp. 15, 16 and 17); the 
measured values of WPE _ 1001 are almost the same and therefore the pure 
error is actually very small. 

Nevertheless, it was decided to go on with this model and to decide after 
residual analysis whether it will be accepted or not. Figure 6.13 shows the 
histogram and Figure 6.14 the plot of residuals versus experiment number. 
Both figures do not indicate model inadequacy or deviation from a normal 
distribution as presumed in regression analysis. Therefore, in spite of the lack 
of fit, . it was decided to tentatively accept the model and to pass on to the 
investigation of the main effects of each recipe item. Table 6.19 shows these 
main effects with their 95% confidence intervals. 
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Table 6.18 The variance analysis of the estimated model 

Least Squares Summary ANOVA, Response WPE_lOOl, Model WPE_RED 

Source df Sum Sq. Mean Sq. F-Ratio Signif. 
--------- - ----------------------
1 Total (Corr.) 49 177146 .6 
2 12 174451.9 14537.7 199.60 0.0000 
3 6 163767.8 27294.6 374 80 0.0000 
4 Non-linear 6 7895.4 1315. 9 18.07 0.0000 
5 Residual 37 2694.8 72.8 
6 Lack of fit 35 2692.8 76.9 76. 94 0.0129 
7 Pure error 2 2.0 1. 0 

F(35,2) as large as 76.94 is a rare event => 
likely that significant terms are missing from model. 
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It should be noted, that BA and DGEBA have nearly the same effect in the 
chosen experimentation area, albeit the first one is positive and the second one 
negative. All remaining recipe items have positive main effects on the respon
se, the effects are smaller than those of first two and their 95% confidence 
intervals are relatively large, which means that the corresponding effects are 
estimated less accurately. This information will next be used in the interpreta
tion of batch initialization results. 
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Figure 6.14 Graph of residuals versus experiment number 

Table 6.19 Main effects with 95% confidence intervals on the response 
WPE 1001 

Predictor Settings 

BA 
DGEBA 
KAT 
TEMP 
TIME 
WPE 828 

88 to 126 
328 to 460 
0.26 to 0.4 
135 to 168.87 
96 to 125.26 
190 to 194 

6.2.4 Performance Criterion 

Lower 
Bound 

144.42 
-165.32 

5.96 
10.70 

5.95 
8.28 

Estimated 
Effect 

153.60 
-153.94 

16.20 
32.54 
27.93 
14.37 

Upper 
Bound 

162.77 
-142.57 

26.44 
54. 3 8 
49.91 
20.45 

To examine the "economic side" of the production, a performance criterion 
defined as the average added value per unit of time was chosen. It is formu
lated here as the difference between component values at the end of the reac
tion and the costs of energy and ingredients used for the production, divided 
by the total time of the batch cycle: 

J = ($E 1001 E_lOOl - $BA BA - $DGEBA DGEBA - $ENERG ENERGY)/ 1iot 
- (6.35) 

where: 

E 1001 
$ENERG 
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benefits and costs of product, respecti
vely reactants; 
amount of produced Epikote 1001; 
costs of the used energy; 
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ENERGY amount of the consumed energy; 
the total batch time; it is the sum of the 
reaction time TIME and the remaining 
time needed to complete the batch cycle, 
that is the time of ingredients dosage, 
heating and reactor cleaning. 

The following prices were used: 

$E 1001 

$B~ 
$DGEBA 

$ENERGY 

001 
ENERGY 
4ot 
const 

1.0 $/gr 
0.528 $/gr 
0.655 $/gr 
0.02 $/MJ 
BA+ DGEBA 
const ·TIME · (TEMP-19) 
TIME+ 20 min 
0.05 MJ/min·°C; constant for the reactor, which in

dicates how much energy is nee
ded to keep the reactor at 20°C 
during one minute. 

6.2.5 Constraints 

Besides the following model-validity constraints: 

96 s BA s 118 (6.36) 
355 s DGEBA s 433 (6.37) 
0.29 s KAT s 0.37 (6.38) 
108 s TIME s 132 (6.39) 
150 s TEMP s 180 (6.40) 

It was decided to include in the recipe adaptation set two additional process 
constraints: bounds on the amount of the used catalyst, and bounds on the 
final WPE-number. 

To avoid the resin becoming muddy, what happened occasionally during 
experimentation if more than 0.33 ml catalyst was added into reactor, we re
stricted the catalyst amount: 

KAT s 0.33 (6.41) 
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Because of model inaccuracy and to be sure that the final WPE-number does 
not exceed the allowed specification bounds mentioned in (6.27), it was deci
ded to add a tighter constraint on the process output: 

499 s WPE 1001 s 501. (6.42) 

6.2.6 Search for the Master Recipe 

To obtain the master recipe, the following model-based recipe optimization 
must be done: 

max J, subject to: 499:::; WPE_JOOJ :::; 501; KAT :::; 0.33. (6.43) 

This is an optimization problem of the non-linear type with non-linear con
straints, that is: 

subject to: 

96 S X1 s 118 
355 S X2 :::; 433 
0.29 S x3 s 0.33 
108 S X4 s 132 
150 S X5 S 180 
190 s ~ s 190 

499 s - 25.40·102 + 13.98x1 + 1.22x2 - 56.85x3 + 8.17x4 + 9.58x5 

+ 3.59~ - 32.50•10'3X1X2 + 86.71 ·10·1x1X3 - 22.15·10·1x2X3 

(6.44) 

(6.45) 
(6.46) 
(6.47) 
(6.48) 
(6.49) 
(6.50) 

(6.51) 

where x1 corresponds to BA, x2 to DGEBA, x3 to KAT, x4 to TIME, x5 to 
TEMP and~ to WPE_828. 

It results in the recipe setting presented in Table 6.21. Before these settings 
can be accepted as nominal ones it was decided to do two validation test
runs; these resulted in WPE_lOOl values of 496.9 and 491.6, which gave no 
cause for rejection of the model. 
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Table 6.21 Optimized recipe settings of the master recipe 

BA 118 
DGEBA 395 
KAT 0.33 
TIME 108 
TEMP 160 
WPE 828 190 

The expected WPE_number WPE_lOOl 499 

its 95% confidence interval [479; 519] 

ance index 1.36 

6.2. 7 Batch Initialization. Why It Is Occasionally not as Successful as 
Desired? 

As presented in Chapter 4, in those cases where initial process conditions are 
disturbed, or the prices of energy, used materials or products have unexpec
tedly changed, it makes sense to search for better process conditions, which 
can compensate as well as possible for these deviations. 

Table 6.22 shows results of six batch initialization cases with changed initial 
process conditions. All these runs are performed for KAT= 0.33 and WPE_828 

190, and with the rule: perform initialization if the expected value of 
WPE _ 1001 without initialization is lower than 490 or larger than 510. 

In the first four cases the profit of batch initialization is evident: the all 
measured values of WPE 1001 do not differ from 500 more than 10. The last 
two cases, with identical recipe items, cause some disappointment: the mea
sured number WPE_lOOl deviates more from the expected vale than without 
initialization. However, it is quite logically, because in these two batches no 
ingredients are used as initialized variables, but only TIME and TEMP. As 
presented in Table 6.19, it are the ingredients that determine the response, 
and not the other recipe items, which have quite small main effects with rela
tively large confidence intervals. 
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Table 6.22 Results of batch initialization. The disturbed recipe items are presen
ted in italics, the initialized ones are double underlined. 

1 2 3 4 5 6 

BA 114 126 118 108 113 113 

DGEBA 383.3 .±11.._ 386 ~ 388 388 

TIME 108 10& 108 108 llL .ill_ 

TEMP 158.9 156 145 162 ~ 16& 

expected WPE_IOOl 482.7 531.4 485.4 461.0 488.8 48&.& 
without initialization 

expected WPE_1001 499.l 499.6 499.1 500.0 499.0 499.0 
with initialization 

measured WPE_1001 .. 495.5 504.5 50&.4 499.0 F° 484.4 
after ·batch initialization 

The initialization results as a whole show that it is possible to achieve the 
final WPE-number according to the end specification (6.27). The performed 
batches clearly indicate that the best results can be obtained using BA and/or 
DGEBA as initialized variables. 

6.2.8 Batch Correction 

Batch correction, intended to compensate for the effects of (unknown) distur
bances, is applied to the production process of Epikote 1001 when some 
deviation in process conditions with respect to the expected values are mea
sured during a run. 

In the examples discussed below, a sample of the reaction mixture is taken at 
the moment ts, and the WPE-number is measured. If it is other than expec
ted, then correction is done some time later, at tc. Because the time needed 
for sample analysis was about 20 minutes, and some time was needed for the 
correction to yield a result, it was decided that ts = 50 min and tc = 70 min. 

Here, the correction variables are: 
- amount of BA added at the correction moment: 
- amount of DGEBA added at the correction moment: 
- reaction time, which can be reduced or prolonged: 
- temperature, which can be changed after tc: 
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BA_COR; 
DG_COR; 
TIME; 
TEMP COR. 
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The response, the measured WPE-number of the sample, is denoted by 
WPE 50. 

6.2.8.J Process Models Required for Correction 

As defined in Chapter 4, besides the performance criterion and the information 
about the detected deviations, for performing batch correction two correction 
models, are necessary. These models, called Model_Cl and Model_C2, will be 
described now. 

Model Cl 

This model predicts the value of the WPE-number measured at the sample 
moment t5 as a function of the initial values of BA, DGEBA, TEMP and 
WPE _ 828. The amount of catalyst KAT is assumed to be fixed at the nomi
nal value, therefore it does not occur in the model. 

The WPE-number at ts= 50 min, called WPE_50, was estimated by Model_CJ 
presented in equation (6.52) and Table 6.23. 

Table 6.23 First correction model and the analysis of variance of the response 
WPE 50 

Least Squares Coefficients, Response WPE_SO, Model MODEL_Cl_WPE_SO 

Term Coe ff. Std. Error T-value Signif. Transformed Term 

1 1 
2 -BA 
3 -DGEBA 
4 -BA*DGEBA 
5 -WPE 828 -
6 -WPE 828*BA -7 -WPE 828*DGEBA -

452.008333 1.158315 
40.541667 1.234768 

-41. 666667 1.234768 
-5.550000 1.209821 
8.091667 1.158315 
5.458333 1.234768 
2.583333 1.234768 

390.23 
32.83 

-33.74 
-4.59 
6.99 
4.42 

-2.09 

0.0001 
0.0001 ((BA-l.07e+02)/1. 
0.0001 ((DGEBA-3.94e+02) 
0.0004 
0 0001 ((WPE_828 1.92e+2)/2) 
0.0005 
0.0538 

No. cases = 22 R-sq. = 0.9936 
Resid. df = 15 R-sq-adj. 0.9910 
- indicates factors are transformed. 

RMS Error = 5.41 
Cond. No. = 1.225 

R-sq-PRESS. = 0. 984 

Least Squares Summary ANOVA, Response WPE_50 Model MODEL_Cl_WPE_50 

Source df Sum Sq. Mean Sq. F-Ratio Signif. 
--------- --------

1 Total {Corr.) 21 68176 .36 
2 6 67737 .26 11289. 54 385.70 0.0000 
3 3 66319.51 22106.50 755.20 0.0000 
4 Non-linear 3 1316 .22 438.74 14.99 0.0001 
s Residual 15 439.10 29.27 
6 Lack of fit 10 438.60 43.86 438.60 0.0000 
7 Pure error 5 0.50 0.10 

F(l0,5) as as 438.6 is a very rare event => 
highly that significant terms are missing from model. 

----------------------------- -----·······--
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As in the case of the nominal process model ( 6.28), a lack of fit had to be 
concluded also here. The very small pure error may explain this fact. 

WPE 50 452.204 + 40.542·(-BA) -41.667·(-DGEBA) 
+ 8.092·(-WPE_828) - 5.550·(-BA·-DGEBA) 
+ 5.458·(-BA·-WPE 828) 
- 2.583·(-DGEBA·-WPE 828) 

where: 

-BA 
-DGEBA 
- WPE 828 

Model C2 

(BA - 107) I 11 
(DGEBA - 394) I 39 
(WPE_828 - 192) I 2 

(6.52) 

(6.53) 
(6.54) 
(6.55) 

According to the definition given in Chapter 4, the second correction model 
Model_ C2 should give the final WPE-number, WPE _ 1001, as a function of 
the measured value of WPE_50 and the correction variables. However, to be 
more precise in this case, two correction models were used to represent the 
above-mentioned relation. On the basis of the measurements intended to 
choose the best sample moment, it was possible to estimate the WPE-number 
at the correction moment tc, called WPE_70, as a function of WPE_50. This 
model, called MODEL_C2_1 is presented by (6.56) and in Table 6.24. Be
cause no test run was repeated here, it was not possible to estimate pure 
error. Therefore the analysis of variance is omitted here. 

WPE 70 473.908 + 102.136·(-WPE_50) + 3.079·(-WPE_50)2 (6.56) 

where: 
- WPE 50 (WPE_50 - 470) I 97 (6.57) 

Table 6.24 Second correction model of the response WPE_70 

Least Squares Coefficients, Response WPE_70, Model MODEL_C2_1 

Term Coeff. Std. Error T-value Signif. Transformed Term 

1 1 473.908210 
2 -WPE 50 102.136100 
3 -WPE=50**2 3.078959 

0.670563 
0.884617 
1.285879 

706.73 
115.46 

2.39 

0.0001 
0.0001 

0. 0271 
({WPE_50-4.7e+02)/9.7e+Ol) 

No. cases 22 
Resid. df 19 
- indicates factors are 

R-sq-PRESS 
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RMS Error= 2.299 
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Next, the third correction model, called Model_C2_2 was estimated. It gives 
the relation between the estimated WPE-number at tc = 70 min, the corrective 
variables and the final WPE-number WPE _ l 001. This model is presented by 
(6.58) and in Table 6.25. 

WPE 1001 - 0.207 + 0.117·(~BA_COR) - 0.193·(~DG_COR) 
+ 0.030·(-TIME)+ 0.631 '(~WPE_70) 
+ 0.014·(-BA_COR·~TIME) 
+ 0.020'(-BA_COR·~WPE_70) 
- 0.118·(~DG_COR·-WPE_70) 
+ 0.118'(-DG_COR·-WPE_70) 
+ 0.020·(-TIME·-WPE_70) (6.58) 

where: 

- BA COR 
-DG COR 
-TIME 
-WPE 70 

(BA_COR - 5.87) I 5.87 
(DG_COR - 20.145) I 20.145 
(TIME - 120) I 20 
(WPE_70 - 456) I 81.6 

(6.59) 
(6.60) 
(6.61) 
(6.62) 

Table 6.25 Third correction model of the response WPE _ 1001 

Least Squares Coefficients, Response WPE_lOOl, Model MODEL_C2_2 

0 Term Coeff. Std. Error T-value Signif. Transformed Term 

1 1 
2 
3 
4 
5 -WPE 70 
6 -BA COR*TIME 
7 -BA-COR*WPE 70 
8 -DG-COR*WPE-·70 
9 -TIME*WPE_ 7.0 

-0.206745 
0.117359 

-0.192873 
0.029884 

0.630750 
0.014169 
0.019773 

-0.118319 
0. 019770 

0.005343 
0.005736 

0.005829 
0.006491 

0.007894 
0.006982 
0.008357 
0. 008710 
0.009525 

- indicates factors are transformed. 

No. cases = 96 R-sq. = 0.9903 
Resid. df = 87 R-sq-adj. = 0.9894 

indicates factors are transformed. 

R-sq-PRESS = 0.988 
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-38.70 
20.46 

-33.09 
4,60 

79.90 
2.03 
2.37 

-13. 58 
2.08 

0.0001 
0.0001 

0.0001 
0.0001 

0.0001 
0.0455 
0.0202 
0.0001 
0.0409 

RMS Error 0.05115 
Cond. No. 1.399 

.87)/5.87) 
20.145)/20.145) 

1.2e+02)/2e+Ol) 
70-4.56e+02)/81.6) 
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6.2.8.2 Results: Always Successful 

Table 6.26 shows the results of four cases with batch correction. The recipe 
presented in Table 6.21 was used to start each batch. At the sample moment 
the expected value of WPE_50 according to Model CJ was 483.42. The 
applied correction rule was: if the measured value of WPE_50 differs more 
than 10 from the expected value, then perform batch correction based upon 
optimization of the following performance criterion: 

J = { $E 1001 1001 - $8A(BA+BA_COR) - $0 GEBA(DGEBA +DG_COR) 
- $EN~RG ENERGY } / 1iot 

according to (6.36) and the model validity constraints 6.59 
correction variables. 

(6.63) 

6.62 on the 

Table 6.26 The results of batch correction. The expected value of WPE_50 is 
483.42. 

1 2 4 

WPE 50 45 516.25 473.24 
measured at t5 50 min 

Correetion at tc ::;; 70 min DG_COR = BA_COR BA_COR = 

22.9 7.1 3.83 

expected WPE .. )001 470.7 542.7 481.9 489.6 
without corrc!!tion 

expected· WPE_lOOl 499.0 499.0 499.1 499.0 
with correction 

measured WPE_1001 487.6 494.l 504.0 
after batch correction 

In all cases the corrections were realized by adding BA or DGEBA at tc. The 
other possible corrective variable, TIME, was not used, as could have been 
expected because of its small effect on the response. As a whole, recipe 
correction brought about improvement of the final results. 

6.2.9 Conclusions 

Section 6.2 showed an application of the PRIS-approach to the production of 
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epoxy resin. After the recipe adaptation set was developed, the recipe settings 
of the master recipe were found. Next, the recipe adaptation set was used to 
compensate for measured deviations in process conditions before and during 
batch operations by means of batch initialization and correction. 

Because only two factors, BA and DGEBA, had large estimated main effects 
on the response, and the other factors had quite small effects with wide 95% 
confidence intervals, batch initialization did not in two cases lead to the 
expected adjustment. Nevertheless, the final WPE-number after initialization 
was on specifications. 

The batch correction showed that the deviations in the WPE-number, measu
red during processing, can best be compensated by an extra dosage of ingre
dient BA or DGEBA. The ultimate effect of such corrections was satisfactory 
every time. 

6.3 Other Applications 

Another industrial application of the flexible recipe-approach was done in the 
area of semiconductor device modelling and optimization in cooperation with 
the Electrical Engineerig Department of our Univeristy and with Philips Elec
tronics Ltd. [OTT93]. Two types of electronic integrated circuits, that is the 
Inverse-T LDD (ITLDD) and the Oblique Rotated Implanted LDD (OLDD) 
MOSFETs, were studied there and compared with each other in terms of bulk 
current, lateral electric field, source-drain series resistance and drain current 
[OKU91]. Process models of both types of MOSFETs were estimated after 
simulated experiments. Then, end specification problems were solved by 
choosing one output variable (lateral electric field) as a performance criterion 
which was to be minimized, and by bounding the other outputs within desi
rable limits. The outcome was that the OLDD MOSFET has the fabrication 
simplicity of the "normal" LDD MOSFET and the advantages of the ITLDD 
MOSFET and therefore it is probably most promising for mass production. 
This work was further extended into recipe initialization with a more sophisti
cated performance criterion [OTT93]. 

In Section 2.2.2.3 an industrial PRIS-application regarded an industrial pro
duction of powder resins was mentioned. Not only was the best overall per
formance achieved, but also the development of a recipe adaptation set for 

140 Chapter 6 Case Studies 



one production step made it possible to reduce the concentration of an undesi
rable by-product from 0.28% to 0.08% [SME95]. 

In [KEE93] model-based recipe improvement was compared with simplex 
process-optimization applied to a specific industrial application: the producti
on of benzylalcohol on a pilot plant scale. It was concluded there that for 
more complex response surfaces, e.g. saddle, the model-based approach is 
preferable to the simplex strategy. 

Chapter 6 Case Studies 141 



Chapter 7. Final Considerations 

7.1 Conclusions 

This thesis focused attention on a practical approach, called the flexible 
recipe-approach, intended for efficient generation and improvement of a 
master (control) recipe, and for model-based recipe adjustment in the batch 
processing industry. The application of this approach was illustrated on the 
basis of three examples. The first one: the simulated fermentation process, 
was used to explain the concepts introduced. The two real processes, one real 
industrial process and one accomplished in the laboratory of our group, 
demonstrated what benefits can be expected when using the FRJS-approach. 

In spite of the fact that the presented applications did not cover the entire 
flexible recipe-approach, it was shown that the FRJS-strategy indeed leads to 
process improvement and/or more profit. Further support of this conclusion 
was provided by a number of simulated applications and a variety of indus
trial applications carried out during the project, which were mentioned in 
Section 6.3. 

All applications showed that the flexible recipe-approach offers a systematic 
and fast way to recipe generation and improvement as well as to batch 
initialization and correction, and therefore also to better performance. The 
general conclusion, that the FRJS-approach provides invaluable support for 
the purposes of control and improvement of product quality and quantity, as 
well as for improving the economy of process operation, is supported by the 
following more detailed findings: 
1) In the process industries, many current batch processes are not 

modelled at all, but are operated using heuristic process understanding. 
The first-principle models are only rarely available. The black-box tran
sition models, proposed in this thesis, can be estimated relatively quick
ly and, what is maybe somewhat surprising, black-box modelling may 
yield valuable process insight; 

2) After suitable approximation of time-dependent recipe items and appli
cation of an experiment design method, as described in Section 3.1.3, 
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near-optimal time-dependent profiles can easily be found; 
3) The positive effect of the proposed methods of batch initialization and 

correction is especially apparent in cases where without them the end 
product would not meet the specifications; 

4) For the purpose of the experimental optimization, the multiplex fitting 
method, based on a local approximation of the response surface, has 
been developed. This method is a valuable tool for quickly locating a 
process optimum, especially in cases when the optimum is expected to 
lie rather far away from the starting point; 

5) Because of its effectiveness and simplicity, the developed Triplet
choice Method for solving multi-objective optimization problems is 
very useful in the industrial environment for solving end-specification 
problems involving more than one response; 

6) Once well-tried and accepted, a recipe adaptation set can be utilized for 
process monitoring, so that the need for corrections or the recognition 
of process drift may be readily established. Process monitoring may 
also be helpful in improving models and recipes, and in augmenting 
plant and process knowledge; 

7) Most of the existing industrial approaches for achieving consistent and 
reproducible results from batch processes are based on built-up experi
ence or Statistical Process Control (SPC) analysis [KEA91]. That stra
tegy, which is actually a kind of monitoring, is mainly used for the 
"stabilization" of the process, that is, for the detection of special causes 
of process deviations (contrary to common causes of deviations, which 
are always present), and next for making and keeping the process 
stable. Examples of the causes of such special process deviations given 
by SPC-practitioners are: variations in the quality of used materials or 
in used machines, equipment defects and differences in operating prac
tices between various shifts. It is evident that a number of these causes, 
e.g. differences between shifts, can and must be eliminated to m;:ike the 
process as reproducible as possible. However, not all causes of devi
ations, e.g. varying quality of feedstocks, can be permanently elimina
ted. By accounting for them in a recipe adaptation set, the FRIS
approach achieves the reduction of process variance. 

It should be mentioned that for the proposed approach, to be successful, a 
number of prerequisites is necessary with reference to the process and to the 
user [RAD95]: 

reasonable process reproducibility; 
adequate, well-calibrated process instrumentation; 
management support; 
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sufficient operator involvement and discipline; 
insight into process, plant operation and safety; 
appreciation of statistics and insight in production economics on the 
plant floor. 

7.2 The FRIS-Methodology 

My study did not pretend to result in a ready-made, directly-applicable theory 
concerning the improvement of batch processing recipes. Rather, the 
described approach serves as a way of thinking and looking at industrial 
reality and thus as a guide in empirical investigations. 

I dare say that the FRIS-approach can be seen as a methodology of industrial 
process optimization. Here, the term "methodology" should not be understood 
as the science of science in general. Methodology here, has a more restricted 
meaning. There are several interpretations of this term. The first and most 
important one is that it is a part of the philosophy of science, the another one 
has a praxiological character, that is the way of approaching problems 
towards a goal [KRA 77]. 

Table 7 .1 shows the praxiological view on methodology according to the 
ideas of the Polish philosopher Kotarbinski [KOT82]. 

The work described in this thesis can be seen as a methodology of research 
actions towards a practical goal. For the user of the flexible recipe-approach it 
will be more a methodology of practical skills. When I talk about the FRIS
methodology I mean the intersection of both these meanings. 

7.3 Prospects 

Up till now, my research has mainly employed black-box transition models of 
one, critical, production phase. Important further steps can be the investigation of 
first-principle models and light grey models especially, and application of recipe 
adaptation to more than one process phase. 

Recipe transposition, that is the preparation of a similar recipe adaptation set for 
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another plant, forms another interesting subject for further research. 

Table 7.1 The praxiological view on methodology with its domains presented 
in brackets. 

.· 

General methodology 
describingthe.way·of·approacbirm problems·towards various goals 

.· 

Methodology of theoreti-
cal research 

(theoretical research 
questions) 

Methodology of research actions 
(theoretical and practical research questions) 

Methodology of practical skills 
(practical research questions and 
practical non-research problems) 

Apart from the development of new and the improvement of existing methods 
much effort has to be put into further software development. As pointed out 
in Section 5.6 the TNO!TPD Institute is busy defining a new project to devel
op the FRIS-prototype into a powerful commercial package. 
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Appendix A Design of Experiments 

A.1 Design of Experiments Used for Response Surface 
Modelling 

By way of illustration, a very short description of the factorial design method 
will be given below. 

Table A.I 

factor 1 -
X1 

1 -1 
2 -1 
3 -1 
4 -1 
5 +1 
6 +1 
7 +1 
8 +1 

Full factorial design scheme for 3 factors at two levels 

factor 2 -
X2 

-1 
-1 
+1 
+1 
-1 
-1 
+1 
+1 

factor 3 
X3 

-1 
+1 
-1 
+1 
-1 
+1 
-1 
+1 

/ 

I 
I 
I 
I 
I 

//._ ___ _ 

X2 

In a so-called 2k factorial design for k factors, each can have 2 values, around 
the selected or nominal value, so that 2k different conditions are created. For 
3 factors, the 23 dsign of experiments can be simply presented as in Table 
A.1, where "-1" indicates that, compared to the reference value, this factor is 
smaller, and "+ 1" indicates that the factor is larger. It may also be mentioned 
here that the scaling of factors between -1 and + 1 considerably simplifies the 
computation of model coefficients. 

Together all these experiments give sufficient information for the estimation 
of the following so-called interaction process model (without power terms), 
which is implicitly assumed by the choice of design of experiments method: 
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k k k 

y = Po + I Pi Xj + I I. Pij Xj ~ + s 
i=I i=I J>I 

(A.I) 

where Po is the model constant, P; a model main effect coefficient, Pu a 
model interaction effect coefficient, Xj the experimental factor, y the response, 
k is the number of factors selected for experimentation and s is a stochastic 
normally-distributed error. Thus, for three factors seven coefficients have to 
be estimated on the basis of eight experiments. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Table A.2 Extension of full factorial design into central composite design for 3 
factors 

factor 1 factor 2 factor 3 • - -
X1 X2 X3 • 

1.6818 0 0 
-1.6818 0 0 

0 1.6818 0 
0 -1.6818 0 "] 

• 
0 0 1.6818 
0 0 -1.6818 • 
0 0 0 " 
0 0 0 
0 0 0 

If a limited model like the interaction model (A. I) is not satisfactory, the.n it 
recommended to estimate a full second-order model with power terms: 

k k k k 

Y Po + I Pi Xj + I ~. Pij Xj ~ + .I Pii Xj 
2 + s 

1=1 1=1 J>• i=l 
(A.2) 

For this purpose the so-called central composite design can be applied to 
expand factorial design with so-called star points and with a number of expe
riments in the middle of the design. Table A.2 shows the scheme for this 
extension for 3 factors, whereby "O" indicates the reference value. Experi
ments l +6 are the star points. Experiments 7 +9 must be done according to 
the reference values. They are needed to estimate experimental error. As one 
can see, the star points are situated outside the original experimentation area. 
When they are not acceptable to run, the star points will be located on ~he 
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permissible low and high levels. Such experiments form the so-called central 
composite faced design. 

When in the beginning of experimentation there is enough process knowledge 
to assume that the second-order process model is adequate, it is recommen
dable to at once use the Box-Behnken design presented in Table A.3. 

Table A.3 Box-Behnken design for 3 factors at three levels 

factor 1 factor 2 factor 3 -
X1 X2 X3 

1 -1 -1 0 
2 -1 +1 0 
3 +1 -1 0 
4 +1 +l 0 
5 -1 0 -1 
6 -1 0 +1 
7 +1 0 -1 

XI 

8 +1 0 +1 
9 0 -1 -1 

<-·-,... 

10 0 -1 +1 X2 

11 0 +1 -1 
12 0 +1 +1 
13 0 0 0 
14 0 0 0 
15 0 0 0 

In principle, all these factorial-like methods work well if the experimentation 
area is not constrained. In case of constraints, optimal designs [ATK82] give 
a better solution. In this category a process model structure is explicitly 
assumed. Experiments are defined by optimization of a specific criterion that 
in some way comprises the covariance matrix of the estimated coefficients in 
the assumed model. This clearly differs from factorial designs. Here a process 
model determines experiments, there the quite reverse is valid: there experi
ments determine what kind of a model may be estimated. This explicit model 
assumption can sometimes be a disadvantage of the optimal design method, 
because the correct structure of the process model is not always known a 
priori and as consequence the defined experiments are not optimal any more. 
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A.2 Other Design of Experiments Methods 

The factorial and optimal designs are mostly used during the development of 
a recipe adapter, because they lead to a process model. Sometimes other types 
of design will be very useful too, for example, sequential or Taguchi design. 

The sequential design, as proposed by Nelder and Mead, does not rely on a 
specific process model, but starts with a number of prespecified experiments, 
after which new experiments are defined on the basis of the comparison of 
the results of experiments already performed. It is worthwhile mentioning that 
this method can easily cope with constraints [SPE62, NEL65]. Because the 
Nelder-Mead method is very useful in experimental optimization it is in more 
detail described in Section 3.5 and in Appendix D. 

Taguchi designs, often called off-line quality control designs, search for the 
operating regions where the production is least sensitive to the sources of 
various "noise factors" (disturbances) [TAG87]. If the effect of such noise 
factors are rather costly or impossible to control, it may often be preferable to 
avoid such control if a production region can be found where the natural 
variations of the noise factors have an insignificant effect on the response of 
interest. Taguchi design uses its own design matrices and methods of analy
sis, which are not model-based. However, it is still possible to estimate pro
cess models on the basis of experiments planned according to Taguchi's 
method. 
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Appendix B Fermentation Process 

B.1 White Model for the Fermentation Process 

Consider a fed-batch fermentation process, as described in [OVE92]. In the 
reactor a micro-organisms grow for the production of penicillin. Sugar is used 
as the culture medium for bacteria. 
The process is described by the following differential equations: 

dMb(t)/dt 
dPf(t)/dt 

= c1(T(t)) · Sd 
= Qp(T(t)) · Mb(t) 

(B.1) 
(B.2) 

with the initial conditions: 

Mb(t=O) 
Pf(t=O) 

where: 

Mb(t) 
Pflt) 
Sd 
T(t) 
c1(T(t)) 
Qp(T(t)) 

c1(T(t)) 
Qp(T(t)) 

= 1.0 
= 0.0 

amount of the micro-organisms [kg] 
amount of the produced product [penicillin unit] 
sugar dosage [kg/h] 
temperature as a function of time [0 C] 
yield factor [-] 

(B.3) 
(B.4) 

specific production velocity [penicillin unit I kg · h] 

- 8.0 + 0.6T(t) - 0.01 T2(t) 
- 3.0 + 0.4T(t) - 0.01 T2(t) 

(B.5) 
(B.6) 

This model is used to simulate measurements, which are then used for esti
mation of black-box transition models. To make the simulation more realistic, 
with each measurement a random number is added from a normal distribution 
N(O,crm), with various crm for each measured response. 
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B.2 Dynamic Optimization of the Fermentation Process 

Suppose, one is interested in the maximal fermentation yield. It is known that 
the temperature favourable for the growing of the micro-organisms is higher 
than the temperature favourable for product forming. But it is not known, 
however, what kind of temperature profile in the batch reactor has to be 
chosen for the optimal yield of this product. 

The performance criterion J, which has to be maximized, with temperature 
T(t) as a control variable, is: 

maxJ 
T(t) 

max Pf(tF = lOh) 
T(t) 

(B.7) 

Such an optimization problem is a special kind of the following optimal 
control problem: 

maximize 
u(t) 

subject to: 

where: 

tp 
J f(x(t),u(t),t)dt + <D(x(tF)) 

4i 

dx(t)/dt 
x(4J) 
x(tp) 

= g(x(t),u(t),t) 
xO 

to be chosen optimally 

x(t) vector of state variables; 

(B.8) 

(B.9) 
(B.10) 

u(t) vector of degrees of freedom for dynamic 
optimization (vector of control variables); 

t time, t E [to, tF]; 
f function; 
g vector function with the right side of the 

differential equations (B.9) 
<D final value function. 

It can be solved by Maximum Principle of Pontryagin defining the necessary 
optimality conditions: 
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a:J{(t)!au 
d7r(t)/dt 
11"(tF) 
dx(t)/dt 

where: 

::::: 0 
= -a:J{(t )/ax 
::::: a<f>/8x(tF) 

a:J{(t)la>i. 

3{( t) Hamiltonian 
7r(t) adjoint variable vector 

(B.11) 
(B.12) 
(B.13) 
(B.14) 

The adjoint-variabl(( vector 7r(t) is used for the definition of the Hamiltonian 3-f(t): 

3-f(t) f(x(t),u(t),t) + 11"T(t}g(x(t),u(t),t) (B.15) 

It can be mentioned that the adjoint-variable vector can be interpreted as the 
sensitivity of the objective function to changes in the state vector effected 
between moments of time t and t+dt. 

7r(t) { J(x(t+dt)) + dx(t+dt)) - J(x(t))} I dx(t) (B.16) 

As presented in (B.13) the optimal choice for the final state value x(tF) can be 
obtained by imposing end-point transversality conditions on the so-called 
adjoint variable vector 7r(t). When the final values of one or more state vari
ables are prescribed, then the corresponding adjoint variables have no pres
cribed final value. 

Going back to the optimization problem of the fermentation process, one can 
see that: 

x(t) = [Mb(t), Pf(t) ] (B.17) 

u(t) = T(t) (B.18) 

f(x(t),u(t),t) = 0 (B.19) 

<P(x(tF) = Pf(tF) (B.20) 

g,(t) C1(T(t)) . Sd (B.21) 

gi(t) = Qp(T(t)) · Mb(t) (B.22) 

According to the Maximum Principle of Pontryagin, T*(t) is optimal when 
the following set of equations is satisfied: 
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0.6n1(t) - 0.02n1(t)-T*(t) - (0.4 - 0.02T*(t))-Mb(t) = 0 

nit) = -1 

dn/dt 

dMb/dt 

dPf/dt 

1t1(tF) 

Mb(O) 

Pf(O) 

= -3 +0.4T*(t) - 0.01T*2(t) 

= -8 + 0.6T*(t) - 0.01T*2(t) 

= (-3 +0.4T*(t) - 0.01T*2(t))·Mb(t) 

=O 
= 1 

0 

Through substitution according to (B.23): 

T*(t) = (0.6n 1(t) - 0.4Mb(t)) I (0.02n1(t) - 0.02Mb(t)) 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

(B.30) 

(B.31) 

one gets a system of three ordinary differential equations of n1, Mb and Pf, 
which form the so-called two.-point boundary-value problem. 
Figure B 1 shows the optimal state and control variables of the fermentation 
process found with Maximum Principle of Pontryagin. 

25 

20 

Mb I Temp 1s 

10 

time [hl 

····· Temp_opt 
- Mb_opt 
··-· Pf_opt 

40 
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Pf 

20 

Figure Bl Optimal state and control variables of the fermentation process 
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Appendix C The Use of Statistical Tests Du
ring Process Modelling 

C. l Coefficients of Determination 

The coefficient of determination R2
, with values between zero and unity, 

measures the proportion of variance in the response explained by the model. 
It is defined as follows [MON91]: 

R2 = (SSTOTAL - SSREsm) I SSTOTAL = SSREGR I SSTOTAL 

where: 

SSTOTAL 
SSREGR 
SSRESID 

Yi 
y 
)>'i 
n 

total sum of squares 
regression sum of squares 
residual sum of squares 
measured response of the ith experiment 
mean of n measured responses 
estimated response of the i1h experiment 
number of experiments 

n , 

SSRESID = L (y, - 9'i)2 

i=I 

n 

y = 1/n L: Yi 
i=l 

(C.1) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

A high value of R2 indicates a good fit, and a low value a poor fit. But it 
should be emphasized that the value of R2 increases as the number of model 
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terms is increased. Therefore, in practice a compromise is needed between a 
R2 and the number of model terms. For this purpose, the statistic R2 is adjus
ted for the number of degrees of freedom. It results in the so-called adjusted 
coefficient of determination R2

adi' defined as follows: 

R2
adj (MSTOTAL - MSREsrn) I MSTOTAL = 1 - (1-R2

) (n-c) I (n-p) (C.6) 

where: 

MSTOTAL = SSrnTAL I (n-c) 
MSREsrn SSREsm I (n-p) 
c 

p= 

total mean square (C.7) 
residual mean square (C.8) 
1 if the model contains a constant 
term, otherwise 0 
number of model terms (including 
the constant term, if present) 

Adding model terms decreases R2
adj' so together with R2

, it provides a better 
judgement. 

C.2 Significance of Model Coefficients 

To test the significance of the model coefficient pi, one has to calculate the t
value (in Table Cl, which is the same as Table 3.2, it is denoted by "T
value") [DEM87]: 

t-value = Pi I SE(PJ (C.9) 

standard error of the coefficient ~i 
(in Table Cl column 3). 

If this calculated t-value is smaller than the tabulated critical t-valuecrit• then 
the null hypothesis 

can be rejected at the taken level of confidence. As the level of confidence 
for my statistical analysis I have taken 90%. 
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A number between zero and one in the 5th column of Table Cl, denoted by 
"Signif', indicates the insignificance of the corresponding term, i.e. the risk 
that the given model estimate will be obtained when the true coefficient value 
were in fact zero. A low risk (smaller than 0.1) indicates that there is a rea
son to assume that the coefficient is not zero, so the term should be retained 
in the model; conversely a high risk (higher than 0.1) indicates that there is 
no reason to assume that the true coefficient is not zero, and so the term can 
be removed from the model. 

Table Cl Model MODI of the response Pf (see Table 3.1) 

Least Squares Coefficients, Response Pf, Model MODl 

1 Term 2 Coeff. 3 Std. Error 4 T-value 5 Signif. 6 Transformed Term 

1 1 
2 -Tb 
3 -Ts 
4 -sd 
5 -Tb*Ts 
6 -Tb*Sd 
7 -Ts*Sd 

37.313636 
-0.821250 
-1.338750 

4.393750 
-4.181250 
0.088750 

-0.086250 

1.001673 
1.174566 
1.174566 
1.174566 
1.174566 
1.174566 
1.174566 

-3.56 
-0.08 
-0.07 

0.0236 
0.9434 
0.9450 

No. cases = 11 R-sq. 0.8768 RMS Error 3.322 
Reaid. df 4 R-sq-adj. = 0.6920 Cond. No. = 1 
- indicates factors are transformed. 

((Tb-2.85e+Ol)/l.5) 
((Ts+7.5e-Ol)/2.Se-Ol) 
((Sd-ll/l.Se-01) 

For example, in Table Cl the risk of the term Tb*Ts is 0.0236, which means 
that the calculated t-value of -3.56 is significant at the level (1 
0.0236)* 100% = 97.64%; in other words, the risk of falsely removing this 
term is at most 0.0236, therefore this term should be retained in the model. 

C.3 Analysis of Variance 

The investigation of sums of squares of residuals and resulting variances is 
called ANalysis Of V Ariance (ANOVA) [BOX78]. Table C2 (the same as 
Table 3.4) gives an ANOV A example. 

As defined before in (C.2), the total sum of squares (row 1 in Table C2) is 
partitioned into a component due to the regression (row 2 in Table C2) and a 
components due to the residuals (row 5 in Table C2). If there are higher
order terms in the model (in this case the interaction term Tb*Ts ), the regres
sion sum of squares is further partitioned into a component due to the linear 
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model terms (row 3 in Table C2) and a component due to the nonlinear terms 
(row 4 in Table C2), which enables testing the non-linear effects separately. 
The F-ratio statistic is used to determine whether the non-linear terms, as a 
group, make a significant contribution to the model fit. In this case the F
ratio is 139.8628/ 7.3783 18.96. As one can see in the adjacent significan
ce column such an F-ratio would occur in about 0.48 percent of the cases if 
the true fit were a linear model. As this seems a very rare event, it appears 
likely that the quadratic model fits significantly better than a linear one. 

Table C2 The variance analysis of the model MODI_RED (see Table 3.4) 

source 

1 Total (Corr. ) 
2 Regression 
3 Linear 
4 Non-linear 
5 Residual 
6 Lack of fit 
7 Pure error 

df Sum Sq. 

10 358.3067 
4 314.0368 
3 174.1739 
1 139. 8628 
6 44.2699 
4 43.9810 
2 0.2889 

0.8764 
R- . 0.7941 

Mean Sq. 

78.5092 
58.0580 

139.8628 
7.3783 

10.9953 
0 .1444 

Model obeys hierarchy. sum of squares for linear terms 
is· computed assuming nonlinear terms are first removed. 
F(4,2) as large as 76.13 is a rare event => 

likely that significant terms are missing from model. 

F-Ratio Signif. 

10.64 0.0068 
7.87 0.0168 

18.96 0.0048 

76 .1·3 0.0130 

If there are replicated observations (i.e. two or more experiments made at an 
identical set of factors values), the residual sum of squares can be further 
partitioned into a component due to lack of fit SSLoF (row 6 in Table C2) and 
a component due to the replicated observations (pure error) SSPE (row 7 m 
Table C2): 

where: 
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pure error sum of squares 
lack of fit sum square 
kth response measurement for the jth experimental set
ting 
response mean for the jth experimental setting 
estimated response for the j1h experimental setting 
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number of different experimental settings 
number of repetitions at jth of the m different expe
rimental settings 

m rJ 

SSPE = L L (Y·k -y.)2 
j~I r-1 J J 

m 

SSwF = L rj( Yr 9/ 
j=I 

(C.11) 

(C.12) 

(C.13) 

This makes it possible to test the lack of fit between the model and the data. 
Lack of fit is a measure of the discrepancy between the model prediction and 
the average of the replicated runs made at the set of m experimental conditi
ons. 
The so-called null hypothesis 

? 

H0: ( SSwF I (m-p) ) = ( SSPE I (n-m) ) 

where: 

n 
p 

number of experiments 
number of model terms, 

whether there is lack of fit, that is whether there may be terms missing from 
the model, is tested with the F statistic. This hypothesis will be not rejected 
when the significance is larger than 0.1. If the significance is between 0.05 
and 0.1 I talk about some lack of fit. 

It should be mentioned that the pure mean square error MSPE• defined as 
follows: 

MSpE=---- (C.14) 
n- m 

gives an estimate of the variance cr2
• See row 7 of Table C2. 
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C.4 Residual Analysis 

If the model takes into account all factors that influence the response correct
ly, then the residuals for the model should show no discernible patterns (they 
should be randomly distributed). Any trends in the residuals generally indica
te that one or more additional factors are not accounted for by the model. 
Residual analysis helps to decide whether there are any other factors or sys
tematic errors influencing the response. The principal ways of plotting resi
duals are: 
1. a histogram 
2. in time sequence 
3. versus fitted values 
4. versus each factor 
5. a probability plot 

A histogram shows the frequency distribution of the residuals. In the ideal 
situation, the peak of the histogram should be at zero and it should be sym
metric. If the histogram is extremely skewed a transformation of the response 
might be necessary to ensure the regression assumption about normal distribu
tion of the random error f. 
However, with small number of cases, considerable deviations from a normal 
distribution often occur and does not necessarily imply a serious violation of 
the regression assumption. 
If some outliers, that is atypical observations with residuals lying three or 
more standard deviations from the mean, are detected, a robust regression 
method might be recommended. This method gives less weight to outliers. 

Plot of residuals in time sequence might be helpful in detecting a corre
lation between residuals, that is whether or not the residuals are dependent 
upon the time or sequence of the experiments. If the pattern of the residuals 
is not constant, that may mean that the process is "drifting", and that maybe a 
linear or higher-order term of time may improve the model. 

Plot of residuals versus fitted values gives, like a histogram, an indication 
to use weighted least square, to transform the response or to add some extra 
(e.g. constant or higher-order) terms in the model. If the model is correct and 
the regression assumptions are satisfied, this plot should not reveal any obvi
ous pattern. 

Plot of residuals versus each factor is not often used when more than two 
factors are involved, but it can also give an indication about response trans-
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formation or to add some terms to the model. Once again an overall impres
sion of a horizontal band of residuals is regarded as satisfactory. 

To sum up, for the last three types of residuals' plots abnormality would be 
indicated if: 
a) plot of residuals would look like a megaphone, what means that the 

variance of the observations increases with time or with the increasing 
magnitude of the response or of the factor; this indicates need for using 
weighted least squares; 

b) plot of residuals would look like a rising band, that is negative residu
als are mainly present in the first part of the plot and positive residuals 
in the second part; this indicates an error in analysis: a linear term in 
time or a constant should have been included in the model, or linear 
effect of a factor should have been removed; 

c) plot of residuals has would look like an arc; this indicated a model 
inadequacy: quadratic and/or cross-product terms should have been 
included in the model, or the observations should have . been transfor
med before analysis. For more discussion of transformation refer see 
e.g. [MON91]. 

A probability plot (the residuals are plotted on a cumulative normal proba
bility scale) is constructed in such a way that if the residuals are normally 
distributed, the points that follow on the graph should lie close to a straight 
line. This makes it easy to detect (positive and negative) outliers and that 
systematic effects are overlooked. In the latter case, a break in the middle of 
the plot is visible. 

C.5 Goodness of Fit for a Normal Distribution with x2 Test 

Because the residual analysis does not tell the whole story, x2 test may be 
used to check if a sample distribution fits the frequencies to be expected 
given a normal population distribution [HA Y94]. To use a sample of data to 
test the hypothesis that the population has a normal distribution, one first 
must decide on a number of class intervals of some given size and then think 
of both, the sample and the population, as divided into these class intervals. 
Next, the following value of x2 statistic should be computed: 
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K (nk - n·pk)2 
x2=I:----

k=l 

(C.15) 
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where: 

K number of distinct categories 
nk number of experiments for category k; nk ?:: 8 
n number of experiments; n = Ink 
Pk the relative frequency for category k as dictated by the 

normal distribution 
n ·Pk the expected frequency in category k. 

Given that the null hypothesis is true, the sample distribution is approximate
ly x2 with K-2-1 degrees of freedom, if the mean and the standard deviation 
of the population are not known, but they are estimated. 
If the calculated 'value (C.15) is larger than the tabulated critical value X2crit 
for the chosen level of confidence, e.g. 90%, then the null hypothesis should 
be rejected. 

C.6 PRESS-Test 

Another, often used, procedure to check a regression model is the so-called 
PRESS (PREdiction Sum of Squares), which gives a measure of the predic
tion ability of the model [BOX87]. One obtains the sum of squares of discre
pancies, defined as in (C.16), for a given model by leaving out one observati
on, fitting a given model to the rest of the data, then predicting the one left 
out and obtaining the square of the discrepancy, and then repeating this for 
all other omissions: 

n 

PRESS = L(Yi - :9'model\i 
i=l 

where: 
measured response of the ith experiment 

(C.16) 

Yi 
:9'model\i response of the ith experiment predicted by a model 

estimated without ith experiment 
n number of experiments. 

Often, in place of PRESS-value, a statistic R2 
PREss defined as in (C.17) is 

used. 

R2 PRESS = (SSTOTAL - PRESS) I SSTOTAL (C.17) 

The highest value of this statistic (the maximal value 1s 1) means the best 
prediction ability of the model. 
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Appendix D More About the Nelder-Mead 
Simplex Method 

The Nelder-Mead procedure starts with the computation of the reflected 
vertex xr as defined in Section 3.5.1. If xr gives better results than xw-t and 
worse than xb, then xr replaces xwN as a vertex in the new, N+ 11

h, simplex. 
The remaining vertices are retained. If xr gives better results than xb N' then 
the procedure tries to continue the search in the same direction by computing 
the expanded vertex xe. It should be emphasized that the expansion will also 
be accepted when xe is worse than xr. This decision is in accordance however 
with the idea of the procedure: first the simplex should enclose the optimum 
and later, by means of shrinkage, approximate the optimum. 

The operation of contraction occurs when the reflected vertex xr is a worse 
approximation to a solution than xwN· The shadow contraction is applied when 
xr is better than xwN but worse than xw_t, If the vertex after contraction of 
shadow contraction is worse than xwN' then the shrinkage operation starts. 
This operation reduces the size of the simplex by moving all vertices except 
xb towards the best vertex. 
When a new N+ J1h simplex is generated in this manner, again a triplet 
(xbN+I, xw_t+1, xwN+I) is selected from all vertices and the procedure is 
repeated until the optimum is reached. 

Because usually some constraints on recipe items are present, the presented 
method must be extended. Nelder and Mead proposed the so-called penalty 
method to handle constraints: in the case where the proposed new simplex 
vertex xe or xr is outside the allowable area, an extremely high penalty will 
be given for this point. As a consequence the questions 1 -;- 4 of Figure D 1 
will be answered with "no" and the unfeasible point will be replaced by xr or 
x°, respectively. In this manner linear as well as non-linear constraints on 
factors can be handled. Although the method is safe in the sense that the 
simplex can never leave the allowable bounded factor area, the danger is, 
however, that when proceeding in this manner, the simplex will be shrunk 
unnecessarily and the procedure will stop prematurely instead of searching 
further along the constraint. 
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for all simplex vertices (xt, x/' ... xn+t) determine J(x/'), ... , J(x/), J(x.+t); 
indicate the triplet (xt , ~-/', X:) 

l 
calculate the centroid xN 

1 
calculate x' and determine J(x') 

! 

y 

calculate x• and determine J(x') 

j 

Figure Dl 

lN 
2) J(x') ;;:>: J(~_/') ? N 

y 

5) 

3) J(x') ;;:>: J(x/) ? ----i 
oakulot< x' .l:dorenn;n, J(x") I N 

j calculate xc and determine J(x') 

,. ! " 
J(x'') ;;:>: J(~"), resp.J(x') ;;:: J(xw'') ? 

N 
N+l 

! 
N=N+J 

! i=l, ... ,n+I 

Flow diagram describing possible operations during one Nhiteration of the Nelder-Mead simplex 
method. Decision flows are presented with bold arrows. 



In the PRIS-approach, in the case xr is not feasible, I propose to use an 
additional operation, namely shadow contraction repeated maximally five 
times. The first time shadow contraction starts with o 1/2 (see Definition 
(3.47)) and next, depending whether xsc(o) is feasible or not, the procedure 
tries by enlarging or reducing this coefficient to find Ogooct• so that xsc(ogooct) 
lies in the allowable area, but as close as possible to the constraint. When no 
ogooct < 0.99 can be found, that is: no feasible point xsc can be found, the 
contraction point inside the current simplex will replace the worst vertex. 
This procedure works as follows: 

(j) set: 01ow O· 
' 

I· 
' 

0 = 112; 

(jj) if x'sc(o) feasible then 

o· 
' 

o = (o10w + o) I 2; 

else 

o (oup + o) I 2; 

endif; 

J j + 1; 

repeat (jj) until j = 5. 

(jjj) if Ogooct > 0.99, then replace xsc by xc 

else accept xsc( ogooct) endif. 

J O· 
' 

Implemented in the FRIS package, the whole Nelder - Mead simplex algo
rithm works as follows: 

!64 

(o) 

(i) 

(ii) 
(iii} 

(iv) 
(v) 

set N = O; 
h h · 1 ( N N N) c oose t e start s1mp ex x1 , •• ., x0 , X 0+1 ; 

• N N N determme J(x1 ), ••• , J(x0 ), J(x0 +1 ); 

from the simplex vertices select a triplet (xt, xw_t, Xv;N); 
compute the centroid P''V; 
if N = 0 then go to (iv),· 
else check stopping criteria and if they are satisfied exit 
endif; 
perform reflection; if xr not feasible, then apply (j) + (JjJ) endif; 
according to Figure D 1 accept expansion, reflection, contraction, 
shadow contraction or perform shrinkage; 
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if xe is not feasible, then expansion is skipped and xr is accepted 
end if; 

(vi) if shrinkage is performed, then set xt+' = ri xt + (1 - ri) xbN, i 
=l,. .. ,n+l 
else set: 

end if; 

or x.N+J 
I 

1, ... , n+l 

X·N+I = Xsc 
I 

for xt = Xw, i 1, ... , n+l 

(vii) set N N+ 1 and go to (i), unless N ~ Nmax. 

Up till now nothing has been said about the stopping criteria of the algorithm. 
The stopping criterion proposed by Nelder and Mead for function optimiza
tion (so: not for empirical optimization) can be presented as follows: 

n+J n+J 

1/n+ 1 2: ( J(xt) - 1/n+ 1 2: J(x{") )2 :S crit3 (D.1) 
i=J i=l 

where: 

crit3 > 0 i some preset value. 

Thus, Nelder and Mead proposed to stop the function optimization when the 
variance of the criterion is less than the preset value crit3. 

However, there are certain cases where the stopping criterion of Nelder Mead 
is not sufficient, even for function optimization. If all criterion values are 
close enough, then the algorithm will stop. This may also occur when the 
simplex is very large. Therefore, I use additional stopping criteria for functi
on optimization, that is: 

n+l 

1/n+ 1 I I: ( J(xiN-I) - J(xt) ) I :S crit4 (D.2) 
i=J 

where: 
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i=l, .. .,n (D.3) 

maximal, respectively minimal value of the j!h 
factor in the simplex 
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crit4 2: 0 
crit5i 2: 0 

some preset value 
some preset value, l, ... ,n. 

The second criterion (D.2) means that the mean function value of the previ
ous and the last simplex does not change more than crit4. The criterion (D.3) 
checkes for each factor whether its range in the simplex is smaller than preset 
value crit3i. 

None of these criteria individually guarantees convergence to a local opti
mum. For this reason all criteria (D.1 + D.3) must be satisfied simultaneous
ly. However, this is only true for noise-free function optimization. In the case 
of experimental optimization the criteria (D.1) and (D.2) might take an expe
rimental error into consideration too. Each criterion of the set (D.3) is inde
pendent of any response measurement and therefore our approach starts with 
checking them once after the other. Only when all criteria (D.3) are satisfied, 
the test-runs of the last simplex are repeated to estimate .the experimental 
error. After the experime11tal error is estimated the following stopping criteria 
corresponding with (D.1) and (D.2) are checked: 

~· - ~·-1/n+ 1 I ( J((x;) - l/n+ 1 I J((xJ )2 ~ crit3 + 4(~:2 
i=l i=I 

~· - ~·-+ 4~/n+ 1 I I J((x;) - l/n+ 1 I J((x;) (D.1 ') 
~I ~I 

1/n+ 1 nE ( J((x("-1
) - J((x/') ) I ~ crit4 + 2~ (D.2') 

i=l 

where: 
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J(xJ 
~ 
~ 
d 
cr 

n+l 

I 
j=l 

= 

mean of the criterion values for the vertex X; 

number corresponding to the experimental error 
$~ u I d (D.4) 
denominator of (3.26) 
standard deviation of the experimental error computed 
on the basis of replications, i.e. test-run repetitions 

cr2=------ (D.5) 

n+l 

( I r. ) - ( n + I) 
j=l J 
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ri 

Y.i llri I Yjk 
k=I 

r. 
J 

kth measurement of the response y at the f 11 

vertex of the simplex 

response mean for the j111 vertex of the simplex 

number of test-run repetitions at the f 11 vertex 
of the simplex. 

Of course, the user of the algorithm can decide to stop before all criteria 
(D.3, D. l ', D.2') are satisfied. They can be seen as a mathematical support, 
while in the practice, depending on the application, it might be meaningful to 
stop earlier, when improvement is esteemed to be satisfactory enough, and the 
expected next test runs are too costly to perform. 
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Appendix E More About Line Optimization 

The direction of steepest ascent is the direction of the gradient of the per
formance criterion and the search along this direction is called line 
optimization. This procedure searches for the step size aoPT that maximizes 
the performance criterion along the path of steepest ascent. 

In general, the line optimization procedure is based on one of two types of 
methods, which are: 
1) function comparison methods (like Golden Section, Fibonacci and 

Bisection search); 
2) polynomial interpolation methods (like quadratic or cubic interpolation) 

[SCA85]. 

The first group of methods evaluates the performance criterion at points 
within the interval containing a local optimum to narrow the interval around 
the optimum, thus enclosing the optimum ever more closely. 

The second group of methods approximates the performance criterion by a 
quadratic or cubic polynomial in an interval known to contain the optimum. 
The optimum of the polynomial is then used to predict the location of maxi
mum of the performance criterion. 

For easy of discussion of a line optimization used by the FRIS-approach, the 
performance criterion will be temporarily written as follows: 

J(a) = J(x + ap) 

where: 

x 
a 
p = VJ(x) 

varied recipe items; here optimization variables 
step size 
gradient of J; the search direction. 

(E.1) 

In the FRIS-approach the starting point for the line search is J(a1=0), which 
is the optimal point at the validity boundary of the already estimated process 
model. Next, two points on the line must be evaluated, that is two test runs 
corresponding with J(a2) and J(a3) must be performed. In the beginning of 
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the procedure one may choose 

(E.2) 

The size of these steps can be determined depending on the process situation, 
i.e. it must be worked out how far from the previous boundary test runs can 
be run. 

· Three different cases may be distinguished: 

i) if J(a1) s; J(a2) and J(a2) S: J(a3), then a further step Aa in the gradient 
direction is taken and a new test run corresponding to x + ( a 3 + Aa )p 
must be performed to determine a new 

(E.3) 

The old J(a3) and J(a2) now become J(a2) and J(a1), respectively. The 
relation between the last three test runs is evaluated again. If the pro
cess situation allows, the search interval [ a 1,a2] is shifted with a step 
size that preferably grows exponentially. If a hard boundary is reached, 
which in no case may be exceeded, x + a 3p lies on or just before the 
corresponding hard boundary and denotes the process conditions for the 
next and last test run. Then the curvature of the parabola through J(a1), 

J(a2) and J(a3) is calculated. If the curvature is negative, quadratic 
interpolation gives a 0 PT ·or else J(a3) is excepted as the line maximum. 

ii) if J(a1) < J(a2) and J(a2) > J(a3) quadratic interpolation approximates 
the optimum J(aoPT). 
We have chosen here for quadratic and not for cubic interpolation to 
keep the number of the criterion evaluations, i.e. test runs, as small as 
possible. 

iii) if neither i) and ii) is the case, a function comparison method from the 
group 1) can be applied either to the interval [a1,a2], if J(a1) > J(a3), 

or to the interval [a2,a3], if J(a1) < J(a3). 

We have chosen here the Golden Section search method. 
Golden Section is a geometrical proportion in which a line is divided, so 
that the ratio of the length of the longer line segment to the length of the 
entire line is equal to the ratio of the length of the shorter line segment to 
the length of the longer one. A Golden Section is created by the point C 
on line segment AB if AC/AB CB/AC. This ratio has the numerical 
value ""' 0.618, that is also the convergence ratio of this method. 
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The main advantage of the Golden Section search method in compari
son with Fibonacci search is that the number of iterations does not have 
to be determined in advance and the procedure can be terminated by 
the user at any moment. The Golden Section method is more rapid than 
Bisection; the convergence ratio of the latter is 0.5 only. 

When the line optimum is found, a new experiment design task may be 
defined around ( x + a 0 pr p) to estimate a new process model and the 
optimization procedure can be repeated. Also here, the user must decide when 
the improvement is satisfactory and the optimization procedure may be con
cluded. 
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Appendix F Multi-Objective Methods Based 
on a Measure of Optimality 

F.1 The Weighting Method 

This method assumes that there a set of non-negative, not all zero weights, 
co 1, co 2, ••• , cok is given which represent the relative importance of the individ
ual objectives. Then, the multi-objective optimization can be reduced to the 
following single-objective problem: 

k 

max I coi Ji(x) (F.1) 
XEX i=J 

Obviously, the solution obtained in this manner depends on the choice of the 
weighting factors, and in many situations the decision maker may not be able 
specify them a priori. This is an essential drawback of the method. 

F.2 The Lexicographic Method 

This method assumes that the individual objectives may be ranked by their 
importance, so that a sequential optimization of the ordered set of single 
criterion is possible. 

In the beginning, the decision maker has to provide a ranking of the individ
ual objectives by giving a priority list J1, J2, .•• , Jk in decreasing importance. 
Next, in the first step he optimizes the most important objective: 

(F.2) 

Furthermore he/she solves the following problem at the sth step: 

max JsCx) subject to Vx) = Si 
XEX 

(F.3) 

where: 
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~j optimal value of Ji, j = l, ... ,s-1, s = 2,. .. ,k 

The disadvantage of using this method is that the procedure can terminate 
before all, less important, objectives are optimized and, as a consequence, 
they can have unfavourable values. This disadvantage can be corrected by a 
relaxation of optimal values ~i and the sequential optimization (F.3) can be 
replaced by: 

max J,(x) subject to Ji(x) = ~i - Pi 
x EX 

J 1, ... ,s-1 (F.4) 

where: 

given number, which is the relaxation level in the 
objective Ji. 

The question remains how to choose these relaxation levels. 

F.3 Thee-Constraint Method 

This method replaces multi-objective opt1m1zation by optimizing only one 
·objective with the greatest preference, say J1. For j "# 1, real numbers, Ei, are 
given which are considered to be lower bounds for the objective Ji such that 
the decision maker does not accept any solution with a lower value than Ei in 
the objective Ji. Therefore the following single optimization problem must be 
solved: 

max J1 (x) subject to Ji(x) ~ Ei, j = 2,. .. ,k (F.5) 
XEX 

Here, if there is no feasible solution of this problem, it means that the 
bounds, or minimum requirements, Ei are too high. Consequently at least one 
of them must be relaxed. Again, the problem is how to choose them in a 
proper way. 
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Samenvatting 

In alle sectoren van de batch georienteerde procesindustrie worden processen 
meestal uitgevoerd met behulp van vaste voorschriften: recepten. Deze voor
schriften blijven soms jarenlang gelijk, terwijl de proces- en marktomstandig
heden behoorlijk kunnen veranderen. Daardoor wordt lang niet altijd efficient 

· omgegaan met grondstoffen, energie, produktietijd, etc. Het gevolg is <lat er 
verspilling optreedt, wat in lagere winst, onvoldoende produkt-kwaliteit en/of 
onnodige milieuvervuiling uitmondt. 

De sleutel om de hierboven geschetste problemen op te lossen ligt in de 
processen zelf. Er moet beter gebruik gemaakt worden van de gegevens die 
door het proces geproduceerd worden en er moet tevens voor gezorgd worden 
dat het proces meer nuttige informatie voortbrengt. 

Het onderzoek beschreven in dit proefschrift heeft zich gericht op de ontwik
keling van methoden en strategieen voor verbetering van ladingsgewijze pro
duktieprocessen. 

De benodigde informatie voor het genereren van optimale recepten, de zoge
naamde receptadaptatie-verzameling, omvat de volgende hoofdcomponenten: 
1) instelbare of ten minste meetbare receptparameters, b.v. hoeveelheden 

gedoseerde grondstoffen, procestijd, kwaliteit van de grondstoffen; 
2) procesuitgangen, b.v. produktkwaliteit of kwantiteit, hoeveelheid ge-

bruikte energie; 
3) relevante plant-, proces- en economische beperkingen; 
4) ten minste een doelfunctie; 
5) waarde van variabelen die gebruikt worden in de doelfunctie. In de 

meeste gevallen zijn dat prijzen van de grondstoffen en van de produk
ten; 

6) een nominaal procesmodel en zijn geldigheidsgebied; 
7) hulpmodelleh voor naburige procescondities; 
8) informatie die verzameld is t.b.v. batchcorrectie, met name informatie 

over de keuze van monster- en correctietijdstippen, mogelijke proces
condities geanalyseerd in het genomen monster, mogelijke correctieva
riabelen (b.v. dosering van extra ingredienten of verandering van pro
cestijd) en correctiemodellen; 

9) specificatie van de te gebruiken proces-units. 
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Doelfunctie en procesmodellen zijn typerend voor de werkwijze beschreven in 
<lit proefschrift. 

Een doelfunctie kan geformuleerd worden b.v. als winst, kosten, of gemiddel
de toegevoegde waarde van het proces. 

Procesmodellen kunnen verkregen worden door systematische variatie van de 
relevante receptparameters. De meest geschikte methoden hiervoor zijn facto
riele en optimale ontwerpen. In een zogenaamd 2n-factorieel ontwerp wordt 
aan elk van n belangrijk veronderstelde factoren, d.w.z. geselecteerde recept
parameters, twee verschillende waarden gegeven, zodat 2n combinaties, de 
zogenaamde test-runs, ontstaan. Op basis van zulke test-runs kan een tweede
orde model met interactietermen worden bepaald. Door gebruik te maken van 
meer uitgebreide factoriele methoden, b.v. ster-ontwerpen, is het mogelijk om 
hogere-orde modellen te schatten. 

In de in <lit proefschrift beschreven aanpak, genoemd FRIS-aanpak (Flexible 
Recipe-Improvement System), kunnen twee activiteitsdomeinen onderscheiden 
worden: 
1) Ontwikkeling van een receptadaptatie-verzameling met als doel het ont

wikkelen of het verbeteren van een "master-recept" <lat voor de gege
ven situatie het meest efficient is wat bijvoorbeeld gebruik van grond
stoffen, beschikbare produktietijd en energie betreft, rekening houdend 
met het milieu. Tijdens receptontwikkeling en verbetering kan de mo
del-gebaseerde of experimentele werkwijze gevolgd worden. 

2) Toepassing van een receptadaptatie-verzameling voor het monitoren of 
voor het verbeteren van een lopende batch door het genereren van een 
optimaal "control-recept". Bij het laatst genoemde toepassingsge bied 
spreekt men over batchinitialisatie, d.w.z. het corrigeren voor afwijkin
gen van de voorgeschreven begincondities bij het starten van de batch, 
of over batchcorrectie, d.w.z. het corrigeren voor afwijkingen die tij
dens de batch geconstateerd worden. 

Ter ondersteuning van de uitgewerkte FRIS-aanpak voor het definieren en 
uitvoeren van goed geplande experimenten en vervolgens voor receptontwik
keling, verbetering en aanpassing is het FRIS-pakket ontwikkeld. 

De FRIS-aanpak is toegepast op twee gesimuleerde en vijf reele processen 
met als doel economische procesoptimalisatie en/of kwaliteitsverbetering. In 
het proefschrift zijn twee case-studies behandeld. 
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De ene toepassing heeft plaatsgevonden bij Akzo-Nobel Resins in Bergen op 
Zoom. Het doel was daar driedelig: 
1) optimalisering receptuur voor procesduur 
2) receptverbetering bij gebruik van nieuwe grondstoffen 
3) procescorrectie bij afwijkingen van het gewenste zuurgraad-viscositeit 

traject. 

De andere toepassing betrof het optimaliseren van de toegevoegde waarde van 
het produktieproces en de eindeigenschappen van epoxyhars E pikote 1001. 
Hiervoor is een optimaal "master-recept" ontwikkeld, <lat vervolgens tijdens 
batchinitialisatie en correctie aangepast werd aan de waargenomen afwijkin
gen in het procesgedrag. 

De resultaten tonen aan, <lat de FRIS-aanpak succesvol toegepast kan warden 
bij de receptontwikkeling en bij de optimalisatie van winst, procestijd, pro
duktkwaliteit, kwantiteit etc. 
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Stellingen 

behorende bij bet proefschrift: 

A Practical Approach to Recipe Improvement and Optimization 
in the Batch Processing Industry 

Zofia Verwater - Lukszo, 1996 

I. De industrie heeft niet zozeer behoefte aan de een of andere nieuwe regel
technische methode, als aan een doeltreffende methodiek met bijbehorende 
training en ondersteuning door een goed gestructureerde programmatuur. 
(dit proefschrift) 

2. Bij het ontwikkelen van recepten dient men, om een zo goed mogelijk resultaat 
te verkrijgen, grondig "voor te denken" over zowel bet kiezen van een 
kwantificeerbaar doel als van een geschikt experimentontwerp. 
(dit proefschrift) 

3. De batch-terminologie die door de ISA tot standaard is verheven, introduceert 
de onpraktische term "site recipe" en verzuimt een onderscheid te maken tussen 
verschil1~nde typen van "master" en "control recipes". 
(ISA Standard, Batch Control. Models and Terminology, 1995 en dit proefschrift) 

4. Uit de literatuur blijkt, dat de meeste onderzoekers op bet gebied van multi
criteria-optimalisatie zich in de werkelijkheid bezig houden met bet zoeken naar 
een optimum van een kwantitatief criterium. De in dit proefschrift beschreven 
"triplet-choice"-methode helpt de gebruiker effectief om te gaan met meerdere, 
menigmaal tegenstrijdige wensen en voert hem op gemakkelijke wijze tot een 
optimale beslissing. 
(dit proefschrift) 

5. Bij bet reorganiseren van het wiskundeonderwijs in bet VWO is bet nodig om 
naast wiskunde in thematische kaders zoals "de wiskunde in de werkelijke 
were Id", ook puur-wiskundige vakken, zoals klassieke stereometrie of logica, die 
bet axiomatische karakter van de wiskunde en bet wiskundig redeneren duidelijk 
moeten maken, te onderwijzen. 
(Nieuwland, Nieuw Archie/ voor Wiskunde, maart 1995) 



6. Een van de verschillen tussen Nederland en Polen is dat Nederland met slechts 
circa 2% vrouwelijke hoogleraren op de voorlaatste plaats staat op de lijst van 
17 onderzochte landen in diverse werelddelen, en <lat Polen met circa 17% op 
de tweede plaats staat (zie referentie ). Hieruit kan geconcludeerd worden, <lat 
het aantal vrouwen in hogere functies bepaald wordt door de cultuur van de 
samenleving, en niet door de kenmerken van vrouwen. 
(Lie en Malik, The Gender Gap in Higher Education. World Yearbook of Education, 
1994) 

7. Gezien de situatie in grote delen van de wereld, wordt in de westerse cultuur het 
toekennen van waarde aan elk individu ten onrechte niet ervaren als het 
belangrijkste resultaat van de ontwikkeling van ethische ideeen. 

8. In het Europa van de twintigste eeuw heeft in vredestijd nog nooit zo'n 
plotselinge verslechtering van de gezondheid en zo'n grote toename van sterfte 
plaatsgevonden als in de meeste Oost-Europese landen na de val van het 
communisme in 1989 (Unicefrapport, 1995). Dat is hoofdzakelijk toe te 
schrijven aan maatschappelijke en economische veranderingen en niet aan 
degradatie van het milieu. 

9. De technische universiteiten in Nederland, zich te veel concentrerend op het 
overbrengen van kennis, onderkennen niet voldoende het belang van het 
vroegtijdig ontwikkelen van vaardigheden voor presenteren, rapporteren, 
discussieren en onderhandelen. 

10. In tegenstelling tot Duplo-Primo, <lat onlangs tot speelgoed van het jaar werd 
gekozen in de categorie "baby en peuter", zijn de nu in ontwikkeling zijnde 
lego-stenen met een micro-chip niet het antwoord op de speelbehoefte van het 
kind. 

11. Mijn stelling: "Ludwig Wittgenstein is de grootste filosoof van deze eeuw" is 
volgens Wittgenstein zelf zinloos. 
(L. Wittgenstein, Tractatus Logico-Philosophicus) 

12. De doodstraf is in alle opzichten zinloos. 



Many batch processes are operated according to 
fi xed rec ipes, in spite of the fact that production would yield more 
profit, or a better product, if it were efficiently adapted to changes 
that occur in feedstock qualities and costs, product requirements 

and prices, process and scheduling cemditions, and so on. 

The key to improving the situation is to make better 
use of the data generated by the process and to make the process 

generate more useful data. 
O ne obviously promising approach is by way of mathematical 
modelling, another is by using the process itself as a model, 

like in the Simplex-approach. 

This thesis outlines the fle xible rec ipe-approach to effic ient 
development and improvement of 

master (control) recipes by means of systematic experimentation 
and data handling, and to quick production adaptation by means 

of batch initialization at the start of a batch and 
by batch correction during process ing. 
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