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Abstract

We present a natural approach, based on minimum volume sets, for constructing non­
parametric tolerance regions for directional data. The tolerance regions have desirable
features like invariance and are asymptotically minimal under certain conditions. We es­
tablish the asymptotic correctness of our tolerance regions by using the theory of empirical
processes and generalized quantiles. The results are obtained under minimal conditions.
In case of circular data, the finite sample properties of the tolerance arcs are studied
through simulations. The method is also applied to a real data example.
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1 Introduction

Starting from the early forties many publications have appeared in the literature on toler­
ance intervals and regions (e.g., Wilks (1941), Wald (1943), Tukey (1947, 1948), Ackermann
(1983)). They dealt with both parametric and nonparametric cases and considered two types
of tolerance regions (guaranteed coverage and mean coverage in the terminology of Aitchison
and Dunsmore (1975) or ,B-content and ,B-expectation in the terminology of Guttman (1970)).
Classical tolerance intervals introduced by Wilks (1941) are intervals with order statistics as
endpoints. Since the classical procedure is based on order statistics it was troublesome to
extend it to higher dimensions. To overcome this problem "statistically equivalent blocks"
and ordering functions were introduced. Generalizing the results of Wilks (1941) and Wald
(1943), multivariate tolerance regions are constructed in Tukey (1947, 1948) for continuous
and discontinuous distributions, respectively. For an i.i.d. sample WI, ....Wn in IRk using the
ordering functions, divide IRk into disjoint random sets (the statistically equivalent blocks)
SI,"" Sn+l, with coverages Ul , ... , Un+l, (Ui = P{Si}, i = 1, ... , n + 1). It is shown in
Tukey (1947) that

1 .
JEUi = --, Z = 1, ... ,n + 1

n+1

and
r

1P{L Ui < t} = It (n - r + 1, r),
i=1

where It(n, m) = J;~~~) J~ xn - l (l - x)m- l dx is the incomplete beta function, with r de­
noting the gamma {unction. Then the t-content tolerance region S at confidence level 1 - a
is composed of r blocks, such that n - r + 1 blocks define the region S outside the tolerance
region and r is determined by the following equation

n-r+l
1P{ L Ui < 1 - t} = h-t(r, n - r + 1) = 1 - a.

i=l

The topic of this paper is the construction of tolerance regions for directional data. Such
data points occur in many applications in biology, geology, meteorology, geography, medicine
and physics. Vast data examples obtained from these areas are given in Mardia (1972),
Batschelet (1981), Fisher, Lewis and Embleton (1987), Fisher (1993), etc. Typical directional
data sources are bird or animal orientation and navigation with homing, migration or other
activity, wind and ocean directions, orientations of cross-beddings or fractures and fabric
elements in deformed rocks, micro seismic and earthquake directions in a certain region,
etc. Although there is a huge literature on directional data and tolerance regions in general,
not much seems to be known on tolerance regions for directional data. Based on the idea
of statistically equivalent blocks Ackermann (1985) constructed tolerance regions for circular
data. Suppose (it, ... ,On, 0 ::; Oi < 21f, n ~ 1 are i.i.d. circular data measured in angles. Then
each Oi can be identified with a point Zi on the unit circle. Define statistically equivalent
blocks as the arcs

Si = (Z(i-l) , Z(i)]' i = 1, ... ,n,
where the Z(i) 's are points on the circle that correspond to the order statistics O(i) of the Oi,
i = 1, ... ,n and Z(O) = Z(n)' Here and below everywhere a half open arc (A, B] is defined to
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be a set of all points on the circle that lie between A and B taking counter clockwise direction
and including point B. Trivially the closed arc [A,B] = {A} U (A,B].

Based on Tukey (1947) it is shown in Ackermann (1985) that the sum of r coverages,
L~=1 P {Sd has the beta distribution. A median direction fL, 0 :::; fL :::; 27f for the circular
density] is defined by the equation

where ](/1,) > ](fL+7f) (see e.g., Mardia (1972)). Suppose n is even. Set fl to be an estimator
of the median direction and let B(i-l) < fl :::; B(i)' Thus the block Si = (Z(i-l) , Z(i)] contains
the point on the circle corresponding to the estimator of the median direction fl. Then the
tolerance region can be defined as a union of r adjacent blocks

where rl + r2 + 1 = r :::; n. Suppose now that n is odd. Set B(i) to be the estimated median
direction, then

S = (Z((i-r2+n )(modn)) , Z((i+rl)(modn))]

is the tolerance region and rl + r2 = r :::; n. However the exact or asymptotic behavior of
the tolerance regions has not been studied in this setting, but only when the true median
direction is known.

From a statistical point of view, there is much arbitrariness in procedures based on sta­
tistically equivalent blocks, since they depend on auxiliary ordering functions. An alternative
way of constructing tolerance regions is presented in Di Bucchianico, Einmahl and Mushkudi­
ani (1998), where in contrast to the classical procedure, tolerance intervals are defined as the
shortest intervals, that contain a certain number of observations. This idea naturally extends
to higher dimensions by considering classes of sets (ellipsoids, hyperrectangles, convex sets)
and defining the tolerance region as the minimum volume set from the chosen class that again
contains a certain number of observations. The asymptotic behavior of these tolerance re­
gions is established using empirical process theory and generalized quantiles. It is also shown
that the presented tolerance regions are asymptotically minimal with respect to the chosen
indexing class and have desirable invariance properties.

Based on minimum volume sets and the techniques presented in Di Bucchianico et al.
(1998), here we propose a new way of constructing tolerance regions for circular and spherical
data. The limiting behavior for these regions is established and it is shown that they are
asymptotically minimal with respect to the indexing class.

The paper is organized as follows; Section 2 contains a formal definition of our tolerance
regions on the class of so-called caps. In Section 3 the main results are presented and finally
in Section 4 we construct a tolerance region for wind direction data and study finite sample
properties through simulations.

2 The setup

In this and the next section we will assume that our data are spherical. However the results
obtained below also hold for circular data with slight modifications, taking into account that
the analogue of the class of caps e: defined below, is the class of arcs on the circle.
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Figure 1: The cap with the center A and the boundary circle centered at B

Three dimensional directional observations can be specified in different ways. The one we
will need here is as follows. Take L = (x, y, z) E JR3 and set 0 to be the origin. Suppose
L i- 0 and let L' be the point in which the vector OL cuts the surface of the unit sphere 5(0,1)

with center in O. The direction of OL can be identified with the point L'. Hence we assume
the spherical data Xl, ... , X n , n 2: 1, to be i.i.d. random vectors with values in 85(0,1) (the
surface of 5(0,1)) defined on a probability space (0, F, IP), from a common distribution P (see
e.g., Mardia (1972), Fisher et al. (1987)). Denote the a-algebra of Borel sets on JR3 with B
and define the pseudo-metric do on B by

where B 1 , B 2 E B. Note that for any B E B, P(B) = P(B n 85(0,1))' Let Pn denote the
empirical distribution:

where IE is the indicator function of the set B.
Set It c B to be the class of caps C, defined as follows

C = {(x, y, z) : x 2+ y2 + z2 = 1 and ax + by + cz + d 2: O},

where a,b,c,d E JR (see also Ruymgaart (1989)). In other words a set C from It is the
intersection of the half-space ax + by + cz + d 2: 0 with 85(0,1)' The circle with center B,
created by the intersection will be called the boundary circle (see Figure 2). The perpendicular
line to the boundary circle at B goes through the cap at the point A. Point A will be called
the center of the cap and IABI its height, with IABI = J(X1 - x2)2 + (Y1 - Y2)2 + (Zl - z2)2
for A = (Xl, Y1, Zl), B = (X2' Y2, Z2) E JR3.

To avoid some technical inconveniences, from now on let It be the class of caps with
o < P(C) < 1. One of the properties of the elements of It is that they can be very easily
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parametrized. Any set C E ([ is uniquely determined by its center "lc and height .ec. Hence
to each C E ([ corresponds a point ("lc,.ec) E 8S(0,1) 0 (0,2). Take a sequence {Cn}n2:1
from ([, denote the sequence of the corresponding parameters by {(''In,.en)}n2:1. Since the
sequence {(''In, .en)}n2:1 is bounded there exists a subsequence {("lnk' .enk )h2: 1 that converges
coordinate-wise to some point ("l*, £*) E 8S(0,1) 0 [0,2]. Since for "lnk = (xnk ,Ynk' znk) we can
write that

where (x*, y*, z*) = "l*, it is clear that there exists a cap corresponding to ("l*,.e*) and C* E ([

unless when .e* is °or 2. It is easy to see that the following equation holds as well

lim V(Cnk 6C*) = ° a.s.,
k-+oo

(1)

where V denotes the area (Lebesgue measure) on 8S(0,1)' Similar results for ellipsoids can be
found in Nolan (1991).

Further consider the generalized empirical quantile and generalized quantile functions
introduced in Einmahl and Mason (1992) based on the class ([

Un(t) = inf {V(C): Pn(C);:: t},
CEe:

U(t) = inf {V(C): P(C);:: t}, t E (0,1);
CEe:

set U(t) = °for t :::; 0, and U(t) = limstl U(s) for t;:: 1.
In general, when the generalized quantile functions are based on some class of sets A on

JRd , d ;:: 1 one can define the minimum volume sets (MV-sets) as follows (see also Polonik
(1997)). For any t E (0,1) call A(t) E A an MV-set if V(A(t)) = U(t). Similarly define
the empirical MV-sets An(t), V(An(t)) = Un(t). In a certain sense MV-sets are higher
dimensional quantiles. If the choice of A is appropriate, using the MV-sets one can determine
various properties of the underlying distribution. When for example all level sets of the
underlying distribution are in A then the MV-sets are the level sets and can be approximated
by the empirical MV-sets.

Let us now go back to our initial notations. Suppose P is absolutely continuous with
respect to Lebesgue measure on 8S(0,1)' Define the MV-sets based on the indexing class ([ as
follows. For any fixed t E (0,1) and q E JR denote by Cn,t,q a MV-set from ([ with empirical
measure at least tn = t + -!jn, thus V(Cn,t,q) = UnUn). Set Cn,t = Cn,t,o,

Lemma 1 Suppose Xl,'" ,Xn, n;:: 1, are i.i.d. random vectors with values in 8S(0,1) from
the common distribution P, that is absolutely continuous with respect to Lebesgue measure on
8S(0,1)' Then the following hold:

(aj An MV-set Cn,t,q from ([ exists and is a.s. umque.

(b j The MV-set Cn,t,q will contain exactly Intn1 observations from Xl, ... ,Xn, with prob­
ability one.

Proof (a) We first prove the existence and a.s. uniqueness of the MV-cap Cx (MV-set from
([) that contains A' = {Xl, ... ,Xn }.

Trivially Pn (Cx) = 1. Let ([x c ([ be the class of all caps that contain A'. We will prove the
existence of Cx by using the parametrization argument described above. From the definition
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of Q: it is clear that Lx := {fe : C E Q:x} C (0,2). Set f* := inf Lx. Further take a sequence
{fn}n>l from Lx with fn .t- f*. Denote by {1]n}n>l the sequence of 1]'S corresponding to
{fn}n21. By the same argument as above there ~xists a subsequence {1]nk,fnk h2:1 that
converges to some point (1]*, f*) E 8S(0,1) (9 (0, 2), with f* = inf Lx. Then there exists C* E Q:

that corresponds to (1]*, f*) and a sequence {CnJ k2: 1 such that (1) holds. To complete the
existence proof we have to show that C* E Q:x or that X E C*. Suppose there exists Xi
with Xi rf- C* then there exists ko such that for any k > ko Cnk will not contain Xi, which is
impossible. Hence C* = Cx is a MV-cap.

Now we prove a.s. uniqueness of Cx. Note that there can be at most three observations
a.s. on any circle in 8S(0,1) and any two circles that pass through different sets of three

observations will have different radii with probability one. By Q:x denote the class of sets
that are obtained by taking convex hulls (in JR3) of the elements of Q:x. It is easy to show
that an MV-set from Q:x corresponds to Cx. Construct the polyhedron H x with n vertices
from X. Clearly each face of H x is a triangle a.s .. It can be shown by induction that for
n 2:: 4, H x will have 2n - 4 faces. Since Hx is the smallest convex set containing X, each
element of Q:,y will contain H x . There can be two kinds of polyhedra Hx, those that contain
the origin and those that do not contain it. We will treat these cases separately.

I. 0 E Hx. Then an MV-set from Q:x will also contain the origin and will have the
boundary circle with the biggest radius (in comparison to the elements of Q:x). Hence its
boundary circle will lie in the plane of one of the faces of the polyhedron and will pass
through three points from X. Assume there exist two different MV-sets C1 and C2 from Q:x.
Hence their areas are equal. Then the radii of their boundary circles are equal as well. Since
both boundary circles pass through three observations it is impossible with probability one.

II. 0 rf- H x . The polyhedron H x is the intersection of the half-spaces created by the
planes of its faces. Hence there exists at least one half-space that does not contain the
origin. Therefore an MV-set from Q:x will not contain the origin either and hence will have
the boundary circle with the smallest radius (in comparison to the elements of Q:x that do
not contain the origin). It is easy to show that the boundary circle of an MV-cap Cx will
pass through three or two points from X. However it will pass through two points only
in case it is the smallest circle in 8S(0,1) passing through these two points and if so there
will be third observation on this circle with probability zero. Suppose that C1 and C2 are
two MV-caps from Q:x, hence the radii of their boundary circles are equal. The case when
both boundary circles pass through three observations can be treated similarly as in I. Assume
that the boundary circle of C1 passes through three points {Xi!, Xiz' Xi3}' while the boundary
circle of C2 through two points {XjllXjz}. Without loss of generality we can assume that
Xl E {Xill Xiz, Xi3} \ {Xjll X jz }. If we condition on {X2 , ... ,Xn } then it is left to show that
for any r E (0,1)

.lP{X1 : R(C1 ) = r I X 2 ,··· ,Xn } = 0,

where R(C) stands for the radius of the boundary circle of the cap C. This is trivial since
R(Cd = r implies that Xl can lie only on at most two prescribed circles. The case when C1

and C2 have two points on their boundary circles can be treated analogically.
Using the same arguments as above the existence and a.s. uniqueness of the MV-cap Cn,t,q

can be proved: Clearly an MV-cap Cn,t,q should contain at least Intn1observations from X.
Since there are finitely many Intn l-element subsets of X and we can construct the MV-cap
for each subset, the existence of Cn,t,q is trivial. Now we prove uniqueness. Suppose there
exist two MV-caps Cn,t,q and C~,t,q, then the boundary circles of these caps will pass through
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two or three observations from X. However we already discussed these cases above. Hence

IP{Cn,t,q = C~,t,q} = 1.

(b) Suppose in contrary that the MV-cap Cn,t,q contains m observations

Xm := {Xill · .. , X im } C X,

where m > rntn 1· Again consider two cases: when 0 E Hx and when 0 ¢ H x .
I. Since 0 E H;r, the boundary circle of the cap Cn,t,q will pass through three observations

from Xm , say {Xi1 ,Xiz,Xi3 }. Without loss of generality we can assume that XilXiz is the
smallest side of the triangle XiI' X iz , X i3 . Let C/Yil,XiZ be the smallest cap containing XiI

and X iz . Obviously CXil,Xiz will not contain Xi3 (see Figure 2, I). Since we want to show
that there exists a cap that contains m - 1 points from X and has a smaller area than Cn,t,q,
it will be sufficient to construct a cap that contains only {XiI' ... , X im } \ {Xi3} and show that
this boundary circle has radius greater than the one of Cn,t,q. To drop the point X i3 one can
rotate the plane of the boundary circle of Cn,t,q around the axis {XiI' X iz } with some small
angle c. Call the cap obtained by the rotation CnG t q' Since X i3 ¢ Cx x one will have

, , 11' 1,2

to rotate the boundary circle of the cap Cn,t,q away from the boundary circle of CXil ,Xiz'
Therefore there exists an c > 0 small enough such that C~,t,q will contain m - 1 observations
and the radius of its boundary circle will be greater than the radius of the boundary circle of
Cn,t,q, which is impossible since Cn,t,q is the MV-cap containing at least rntn1observations
frQm X.

II.

Figure 2: The cross section of 8(0,1) cut on the plane: passing through the origin 0 and per­
pendicular to XiI X iz (I); passing through the origin 0, parallel to XiI' Xiz and perpendicular
to the boundary circle of Cn,t.q (II).

II. When 0 ¢ H x, the boundary circle of Cn,t,q will pass through either two or three
observations from X. In case when it passes through three points we can obtain a contra­
diction similarly as above. Suppose that the boundary circle of Cn,t,q passes through two
observations {XiI' Xiz}' As in I we want to construct a cap smaller than Cn,t,q that contains
only m - 1 points. Without loss of generality we can assume that these m - 1 points are
{XiI' ... , X im } \ {Xiz }' To obtain such a cap rotate the plane of the boundary circle of Cn,t,p
around the point XiI' with some angle c > 0 in the direction of away from Xiz (see Figure 2,
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II). Clearly there exists a small enough E > 0 such that the cap C;,t,q obtained by the rota­
tion will have an area smaller then Cn,t,q and will contain at least Intnl observations from X,
which gives a contradiction.

Hence we have proved that the MV-cap Cn,t,q will contain exactly Intnl observations,
which trivially implies

q q 1
to + r,;:::S; Pn(Cn t q) < to + r,;:: +-

yn " yn n

3 Main Results

a.s.. (2)

o

In this section we use the settings and the notation introduced in the previous section. Suppose
that P has a density f which is absolutely continuous with respect to Lebesgue measure on
85(0,1) and that f is strictly positive on some connected open set A C 5(0,1) (J == 0 on
5(0,1) \ A).

Theorem 1 Fix to E (0,1). If the minimum volume set Cto from It with P(Cto ) = to exists
and is unique, then for every q E JR

vn(to - P(Cn,to,q)) + q~ ZJto(1- to) (n ----t 00),

whe7'e Z is a standard normal random variable.

(3)

To prove Theorem 1 we will need the following result. Set d(C1 , C2 ) := V(C16C2 ) to be
the symmetric difference metric.

Lemma 2 Under the assumptions of Theorem 1 we have with probability one that

d(Cn,to,q, Cto) ----t 0,

and hence do(Cn,to,q, Cto) ----t 0 (n ----t 00).

For proving Lemma 2 one does not need to make any crucial changes in the proof of the
similar result in Di Bucchianico et al. (1998); however the parametrization from Section 2
could be used instead of the Blaschke Selection Principle.

Proof of Theorem 1 For each n ~ 1, define the empirical process indexed by It to be

an(C) = vn(Pn(C) - P(C)), CElt.

The process an converges weakly (in the sense of Dudley (1978)) to a bounded, mean zero
Gaussian process Bp indexed by It, since It is a Vapnik-Chervonenkis (VC) class. The
process B p is uniformly continuous on (It, do) and has covariance function P(C1 n C2) ­

P(CdP(C2 ), C 1 , C2 E It.
By the Skorohod-Dudley-Wichura representation theorem (see e.g., Ganssler (1983, p. 82)),

there exists a probability space (n, F, iF) carrying a version Bp of Bp and versions an of an,
for all n E IN, such that

sup lan(C) - Bp(C)1 ----t 0 a.s. n ----t 00.
CE~

7
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For convenience, we will drop the tildes from the notation:

sup Ivn(Pn(C) - P(C)) - Bp(C)1 -+ 0 a.s. n -+ 00.
CE([

(5)

Then by the existence and a.s. uniqueness of the MV-cap Cn,to,q in Lemma 1 we have that

Using (2) and (6) we obtain

vn(to - P(Cn,to,q)) + q - Bp(Cn,to,q) -+ 0 a.s. n -+ 00.

By Lemma 2 and the continuity of Bp we will get that

Bp(Cn,to,q) -+ Bp(Cto ) a.s. n -+ 00.

Further it trivially follows from (7) and (8) that

vn(to - P(Cn,to,q)) + q - Bp(Cto ) -+ 0 a.s. n -+ 00.

And at last using that

we obtain our result

vn(to - P(Cn,to,q)) + q ~ ZJto(1- to) n -+ 00.

(6)

(7)

(8)

o

The following limit theorems are the main results of this paper, though they immediately
follow from Theorem 1. Set qa to be the (l-a)-th quantile of the distribution of Z Jto(l - to).
Then by Theorem 1, Cn,to,q", and Cn,to are asymptotic to-guaranteed coverage tolerance regions
with confidence level 1 - a and to-mean coverage tolerance regions respectively. Theorem 2
below deals with the asymptotic behavior of guaranteed coverage tolerance regions Cn,to,q""
while in Theorem 3 results for the mean coverage tolerance regions, Cn,to can be found.

Theorem 2 Fix a E (0,1), then under the conditions of Theorem 1 we have

lim IP{P(Cn to q ) 2: to} = 1 - a.
n-+oo ' ,Q

Proof By Theorem 1, for all x E fR, we have

IP{ vn(to - P(Cn,to,qJ) + qa :S x} -+ IP{ZJto(l- to) :S x}, n -+ 00.

Hence, taking x = qa, we obtain

lim IP{P(Cn to qJ 2: to} = IP{ZJto(l- to) :S qa} = 1- a.
n-+oo ' ,

o
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(11)

Theorem 3 Under the conditions of Theorem 1

IEP(Cn,to) = to + 0(n-1/ 2), n -+ 00.

Note that for every q E JR
IEP(Cn,to,q) -+ to, n -+ 00.

Proof Let us first show that the sequence ofrandom variables yn(to - P(Cn,to)) is uniformly
integrable. However, as

IJn(to - P(Cn,to))1 < IJn(Pn(Cn,to) - P(Cn,to)) I+ IIn(to - Pn(Cn,to)) I
< sup IJn(Pn(C) - P(C))I + l/Jn a.s. ,

GEl!:

where we used (2) for q = 0, it suffices to show that

Yn := sup IIn(Pn(C) - P(C))I
GEl!:

is uniformly integrable. Hence we have to derive that for any c > °there exists a large enough
such that

suplE(YnI{Yn2':a}) < c.
n2: 1

Note that for any non-negative random variable Y it is true that

IEYI[y>a] =100

IP{YI[Y>a] > y}dy = aIP{Y > a} +100

IP{Y > y}dy. (9)

Furthermore, as ~ is a VC class, from Alexander (1984, Theorem 2.11) we obtain that for
..\;::: 8 and K 1,K2 E (0,00)

IP{sup IIn(Pn(C) - P(C))I > ..\} ::; K 1..\K2exp(_2..\2) ::; exp( _..\2), (10)
GEl[

where the last inequality holds for ..\ large enough. Then from (9) it follows that for any c > °
there exists a large enough such that:

IEYnI[Yn>a] = aIP{Yn > a} +100

IP{Yn > y}dy ::; ae-
a2 +100

e-
y2

dy < c.

Hence indeed yn(to - P(Cn,to)) is uniformly integrable.
For q = 0, Theorem 1 yields that

In(to - P(Cn,to)) ~ Z Jto(1- to), n -+ 00.

Thus as the left-hand side of (11) is uniformly integrable we obtain

IEJn(to - P(Cn,to)) ---+ IE(ZJto(1- to)) = 0, n -+ 00.

which is equivalent to the statement in the theorem. 0

Remark Notice that the assumptions under which the results are proved are very mild, in
particular, there are no smoothness conditions on the density f.

As we have already mentioned above, to-content and to-expectation tolerance regions for
n circular data can be defined as the MV-sets from the class of arcs with empirical measure
to + q~ and to, respectively.

yn

Theorem 4 Theorems 2 and 3 remain true, mutatis mutandis, for circular data and the
class of arcs.
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4 Simulation study and real data example

Here we present simulation results for tolerance arcs based on circular data. The number of
replications for the performed simulations is 1000. The distributions from which we sampled
data satisfy our conditions: the support of the density f is connected and there exists a
unique shortest arc (a,,8) with coverage J~ f(cp)dcp = to. Note that the density h defined
below (see also Figure 3) is bimodal, however our conditions are still satisfied since to is close
to 1 and this is the case of interest in practice. The tolerance region for n circular data is
the shortest arc that contains at least rntn1observations, where t n = to + ~. Note that the
finite sample behavior of our tolerance regions is very sensitive to the number of observations
included. For example 90% guaranteed coverage tolerance arcs with n = 300 simulated from
the von Mises (7r, 3) distribution had confidence levels: 80.4%, 85.1%, 88.7%, 92.9% and 95.2%
when we included 278, 279, 280, 281 and 282 points respectively, while rntn1 = 279. Since
our asymptotic results remain true if we change the number of observations in the tolerance
region within the range o(vn) and in addition the boundary of the tolerance regions has
probability zero, we have increased the number of points in the tolerance regions with the
number of points on this boundary. Thus the tolerance arcs we constructed contain rntn1+ 2
observations.

0.35

Figure 3: Linear plot of the bimodal circular distribution h.

We simulated from the following circular distributions (see e.g. Batschelet (1981)):

• von Mises distribution with parameters (7r,3) and (7r,8) respectively;

• g(cp) = 2~ + 2: sin(cp + vsincp) with parameters k = 1 and v = 7r/3, where cp E [0, 27r];

• h(cp) = eexp[kcos(cp+ttCoscp)] withe = 0.139236, k = 1 andtt = 1527r, wherecp E [0, 27r].
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distribution von Mises(n, 3) von Mises(n, 8) g(cp) h(cp)
sample size 300 1000 300 1000 300 1000 300 1000
simulated

92.9% 92.1% 94.3% 92.2% 92.1% 89.9% 90.8% 90.2%
confidence level
simulated

89.1% 89.6% 89.1% 89.5% 89.0% 89.5% 89.0% 89.4%
coverage

Table 1: simulated confidence level for 90% guaranteed coverage tolerance arcs with confidence
level 95% and simulated coverage for 90% mean coverage tolerance arcs.

In Table 1 the simulation results for the guaranteed coverage and mean coverage tolerance
arcs are presented. For the guaranteed coverage tolerance arcs we computed the empirical
confidence level: the percentage of tolerance arcs with a coverage greater than or equal to
90%. If we take into account that the coverage of the tolerance regions is extremely sensitive
to the number of points included, then the simulation results are indeed very satisfactory.

-1. S

-1. 5

,..
l'····
I'''·

1.5

Figure 4: Tolerance arc for wind directions at Pt. Conception, CA.

Next we construct a guaranteed coverage tolerance arc for wind direction data (n = 694)
obtained from the U.S. National Weather Service at weather station Pt. Conception, CA,
USA; these observations are measured in degrees (see Figure 4). Clearly the underlying
density has a connected support, is bimodal and not symmetrical in any direction. Hence
we can assume the uniqueness of MV-arc and apply our procedure to this data set. For the
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tolerance arc a coverage of 90% and a confidence level of 95% were chosen. The number of
observations to be included in the arc is equal to Intn1+ 2 = 640. Then the guaranteed
coverage tolerance arc is [X325:694 = 245°, X270:694 = 170°].

Tolerance regions for wind directions can be applied for example in architectural aero­
dynamics, the study of relationships between wind and buildings. To survey this relation
two factors, direction and speed of wind, can be observed. Knowledge of the wind speed
distribution and the most frequent wind directions is very crucial for choosing wind turbines
and locating them. Tolerance arcs for wind directions can be used for example for choosing
directions of wind turbines.
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