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Abstract
Recent experimental data by Pel has revealed the spatial and temporal structure
of the moisture content during the drying process within building materials such as
bricks. A simple model of the water motion is presented, guided by the observed
behaviour, which allows for non-linear diffusion within the brick and a mass transfer
coefficient to represent the moisture transfer between the external air current over
the brick. An approximate analytic solution to the model is developed, giving the
moisture profiles evolving with time. This gives insight into the different phases of
the process, which consists of a rapid decrease in the moisture content in a relatively
uniform manner, followed by the development of a drying front which moves with
constant speed into the brick. The analytic results compare very well to the numer
ical solution of the equations and the experimental results.

Keywords: non-linear diffusion, drying, moisture content, analytic model, porous
materials.
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1 Introduction

The drying of porous media arises in various contexts in chemical engineering, civil engi
neering and soil science. Various models have been proposed to describe moisture transport
during drying - for example, those of Philip and de Vries [20], Whitaker [27], Berger and
Pei [2]' Stanish [22] and Bear [1]. These models each handle the moisture flux in an indi
vidual way and a comparison between the various models can be found in Vafai and Sozen
[25] and Waananen et al [26].

Although all these models provide further insight into moisture transport, both mois
ture-vapour interactions and effects of hysteresis on moisture transport are still not yet fully
understood. Therefore the various input parameters must be determined experimentally,
which is very time consuming work. To overcome this constraint in engineering applica
tions, a so-called lumped model is used with the consequence that the moisture transport
is described by a non-linear diffusion equation. All transport processes both in liquid and
vapour phase are lumped together in one overall moisture diffusivity which is a function
of the moisture content. This function must be determined experimentally.

Often drying curves which describe the total mass of water asa function of time are
used to characterise the drying behaviour of materials. Such drying curves are used to
determine the diffusivity function. However in analysing the drying curves, a form for
the functional relationship between the moisture diffusivity coefficient and the moisture
content must be assumed a priori (e.g. an exponential form as D = DoebO ). Then the
parameters (Do, b) are chosen to fit the drying curve data. Therefore, this method can give
an incorrect estimate of the moisture diffusivity [22].

By measuring dynamic moisture profiles during the drying process, the moisture dif
fusivity coefficient can be determined directly. In the past, it has been very difficult to
measure these profiles non-destructively. Recently, NMR (nuclear magnetic resonance)
techniques have been shown to be an excellent technique for determining these profiles
during various transport processes [3, 10, 13, 14, 21, 23, 24].

Pel et al, [13, 14], have studied the drying of various building materials using NMR
techniques. A cylindrical sample is placed in a teflon holder, with air blown over the ex
posed upper side. This creates a one-dimensional drying process. Figure 1 illustrates the
measured moisture profiles during the drying of a fired-clay brick sample - two stages can
be clearly distinguished. During the initial stage the profiles are almost uniform and the
drying is externally limited by the mass transfer coefficient and air flow. In the second
stage a drying front develops and moves into the brick and now the drying is internally
limited. Using the profiles, the moisture diffusivity as a function of moisture content can be
determined as shown in Figure 2 for this experiment. There is a clear and deep minimum
in the moisture diffusivity, occurring at a moisture content denoted by Bm . The minimum
exists at the transition between liquid dominated moisture transport (B > Bm ) and vapour

2



1
0.25

e 0.2

0.15

0.1

0.05

00 5 10 15 20 25

x [mm] --+-

Figure 1: Typical moisture profiles with time for a fired-clay brick. The time between
subsequent profiles is 2 hours.

dominated moisture transport (e < em) [13]. By examining Figure 1 in more detail, the
drying front appears to move linearly with time. It is convenient to use em as a marker
for the position of the drying front. In Figure 3 the position of this marker is given as a
function of time for drying experiments of various building materials, not just fired-clay
brick. In all cases a linear relation is found. In [13, 14], Pel uses this constant speed of
the drying front to more accurately approximate the moisture diffusivity at low moisture
contents e <'em.

Using such an experimentally determined moisture diffusivity function, the drying mois
ture profiles can be calculated by solving numerically the non-linear diffusion equations
describing the drying proces. The resulting moisture content solutions are illustrated in
Figure 4. Clearly, the calculations approximate the experimental data very well. Such
simulations have been carried out for bricks of various dimensions and they all exhibit the
experimentally observed drying front which moves linearly with time. This confirms that
the diffusion modelling is consistent. By solving such non-linear diffusion equations with
boundary conditions relevant to this drying problem, it can be verified that if the diffu
sivity function has a deep interior minimum, then the moisture profiles always exhibit a
front which appears to move approximately linearly with time. However, if the diffusivity
function is a monotonically increasing function, no such fronts exist.

Numerical simulations provide no basic understanding of the drying process, the mois
ture profile structure or the parameter dependence of the front velocity. Only an analytic
solution can provide such an understanding, but such solutions can only be found for very
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Figure 2: Typical moisture diffusivity function as a function of moisture content. Experi
mental estimates (dots) and fitted curve (solid line) used in Figure 4.
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Figure 3: Position of the marker indicating the drying front with time for various building
materials, i.e. gypsum (0), fired-clay brick (6) and sand-lime brick (0).

4



0.25....-----,----,----------,-----,--------,

e 0.2~---_-------------j

0.15

0.1

15105 20

X [mm] -

Figure 4: A numerical calculation of the moisture profiles during drying of fired-clay brick
using the diffusivity fitting curve in Figure 2 and the hygroscopic curve in Figure 5. The
time between subsequent profiles is 2 hours.

limited types of diffusivity functions [5, 8]. As seen for the brick experiments, the mois
ture diffusivity is shown experimentally to be a very strong function of moisture content,
with a deep interior minimum. Therefore until now, numerical simulations have been the
only means of solving the non-linear diffusion equations directly, and of reproducing the
experimental profiles illustrated in Figure 1.

There are many similarities between the diffusivity function here and the ones relevant
to soils. Soil diffusivity may vary by three decades and can feature a deep minimum, [18].
Much work has been done in seeking both analytic and numerical solutions of the infiltra
tion and adsorption/desorption equations for soils. However these are most often limited
to semi-infinite domains, which is not relevant here [15, 16, 17, 18, 19]. A particular finite
domain problem has been considered, [4], but the functional form for D(O) and the bound
ary conditions appropriate to our problem do not allow that approach to be generalised.

In this paper we will determine an approximate analytic solution to the drying problem
which explains the predominant features of the experimental profiles as measured for fired
clay brick. In particular we show that the drying front movement is almost linear in time
and obtain an expression for its velocity.
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2 The mathematical model

Moisture transport in porous media for the one-dimensional isothermal problem that is
considered here can be described by a non-linear diffusion equation on a finite domain:

o() 0 ( o() )ot = ox D(O) ox ,0 < x< L ,

where () is the volumetric moisture content, D(()) the moisture diffusivity and L the length
of the sample. In this lumped model all mechanisms for moisture transport, namely liquid
flow and vapour diffusion, are combined into a single moisture diffusivity D, which is de
pendent on the actual moisture content. Here the influence of gravity has been neglected.
As can be seen from experimental data in Figure 2, the moisture diffusivity for fired-clay
brick needs to be approximated by a function with a deep interior minimum at a moisture
content denoted ()m. We will now rely on some general properties of the diffusivity function.
Later we will choose a suitable function which mimics the major features of the data, but
it is unnecessary to specify this now.

Initially the brick is assumed to have a constant moisture content ()o, so that

O(x, 0) = ()o .

We assume that ()m « ()o·

At the drying surface x = 0, air with a fixed relative humidity is blown over the brick
sample. Under isothermal conditions the flux across the boundary is then given by

(1)

where (3 is the mass transfer coefficient, ha is the relative humidity of the blown air and
hm (0) is the relative humidity of the material at the surface which is determined by the
desorption isotherm (also called hygroscopic curve). For the fired-clay brick discussed in
this paper, the desorption curve is a monotonically increasing function with hm(()o) = 1
as given in Figure 5. We further define Boo to be the moisture content which matches the
external surface air-humidity, namely

(2)

Clearly for drying we require Boo < ()o.

The minimum value of the diffusivity occurs at ()m and equals

(3)

Hence if ()oo < ()m, the diffusivity function D(()) will exhibit an interior minimum over the
range of values of B that are of interest. For comparison later, we will consider the limiting
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Figure 5: Typical hygroscopic curve (solid line) for fired clay brick, showing the linear
approximation at eoo (dashed line).

case eoo = em where the diffusivity has no interior minimum. Hence, here we assume that
eoo ::; em « eo·

At the boundary x = L there is no moisture flux, so that

Be
Bx(L,t) = o.

It should be noted in particular that the moisture content is not fixed at either of the two
boundaries.

The problem formulated here differs from many wetting or drying (adsorption or des
orption) problems often considered. The most common scenario involves the non-linear
moisture-dependent diffusion equation over a semi-infinite domain with a uniform initial
moisture content and a fixed moisture content boundary condition at the exposed end
x = O. For these problems, the Boltzmann transformation ¢ = x/Vi reduces the equations
to an ordinary differential equation such that e= e(¢), or alternatively this can be written
as ¢ = ¢(e). This is true for any D(O) form, although solutions will have to be attained
numerically, except for special class of D(e) forms [17, 18]. An important consequence of
the solution form is that the position where the moisture content equals a specified value
e= e* say, must move like Vi.

Now let us turn to finite domain problems. During the early stages in adsorption or
wetting problems, the moisture moves in at x ~ 0 and the moisture is not aware that
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the region is of finite extent, and the problem behaves as if semi-infinite in extent. Hence
during the early stages, the Boltzmann transformation is appropriate and Vi behaviour is
expected and observed [13]. Even though the Boltzmann transformation works initially,
eventually the moisture reaches towards the far boundary x = L, and the applied bound
ary condition is noticed and affects the profile shape. The behaviour will no longer be
described by Vi. Recent examples studying wetting of cereal grains show that after this
early stage the behaviour is linear in time [11, 12].

The wetting problem with the so-called porous media equations, with D((}) = (}n and
() = 0 initially, has been much studied. For infinite-domain problems, some solutions with a
front defining wet (() > 0) and dry (() = 0) regions m;ves like t 1/(2+n). As n becomes large,
the moisture profile looks more like a fiat plateau with very sharp fronts, called a mesa [9].
The finite domain version of this problem gives Vi behaviour for the initial stages until the
front hits the far boundary, and then the time behaviour switches to a linear behaviour in
t [28, 29].

Desorption or drying problems are inherently different from adsorption or wetting prob
lems, even in the early time stages. In the semi-infinite problem, if moisture is removed
from x = 0, we must always assume that there is a source of moisture at infinity, since the
moisture content far upstream always equals the initial value. (Note the important fact
that such a region can never dry.) Hence, a drying problem on a finite domain cannot be
approximated by a semi-infinite domain, even in the early stages. Therefore the Boltzmann
transformation and Vi implications to the solutions cannot be anticipated for the problem
we are considering in this paper.

Here we develop an approximate analytic solution for the moisture profiles evolving
with time. We first discuss the effect of the boundary conditions and show that this gives
two predominant time regimes in this problem, leading to the two drying stages outlined
previously. The real interest lies in the second stage when the drying front develops. We
will find that the drying front does not move with Vi behaviour.

3 Early time behaviour

The early time solution is governed by the mass transfer boundary condition at the drying
surface, namely equation (1).

For early times, when () starts at (}o and remains such that () » (}m, hm ((}) can be readily
approximated by a straight line as

hm((}) = hm((}o) + h'm((}o)((} - (}o) , (4)

where h'm((}o) > O. Then the surface resistance boundary condition (1) becomes

D((}) ~~ = fjh'm((}o)((} - (}d ,
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where here

() _ () _ hm(eo) - ha

1 - 0 h'm (eO) .

The reduction of the total moisture content in the material must balance the outward flux
through the surface x = 0, namely

:t 1£ e(x) dx = -j3h'm(eo)(e(o) - ed .

Hence for this early time stage, we can associate a time scale with the surface resistance
as L/ (j3h'm(eo)).

At the same time, diffusion processes are taking place within the brick. The corre
sponding time scale, when e is close to ()o is L2 / D(eo). To compare the diffusion time scale
to the surface resistance time scale, we form their ratio, which introduces a dimensionless
parameter A defined as

A = j3Lh'm(eo)
D(eo) .

Using the values in Table 1 for fired-clay brick, the initial diffusion time scale is very
small, while the surface resistance time scale is approximately 18 hours. Hence their ratio
A ~ 2.10-3 , so that A is much smaller than unity. In this initial time regime, () may decrease
from eo to say 0.1, so that at this e value, the diffusion time scale is then approximately
1.7 hours, still giving a very small value for A. Hence it is appropriate to consider these
equations for the small A limit, which says that the diffusion time scale is much shorter
than the surface resistance time scale. We can then expect that over the surface resistance
time scale the moisture content is in diffusive equilibrium. This is called the pseudo-steady
state solution. Hence for the early stages of the drying process, the appropriate time scale
is not the diffusion time scale but the surface resistance time scale. This means that the
early stages are externally driven by the surface boundary condition, and not internally
limited by the diffusion process. This is now explored further.

These arguments require us to scale the equations with the surface resistance time scale,
relevant to () near eo and to this end we introduce dimensionless parameters

j3h'm (eo)t
a = _-'..:..:....:--'-

L
D(e)

f(e) = D(e
o
) ,

giving the drying problem equations as

Aae = ~ (qe) ae)
aa a(, a(,

ae
f(e) a(, = )..(e - ( 1 ) at (, = 0

0<(,<1,

ae
a(, (1, a) = 0 ,

e(("O) = eo .

9

(5)

(6)

(7)



The solution to these equations can be found using a perturbation expansion in the small
parameter .\ as

Collecting together terms of like powers of .\, yields at the lowest order (namely 0(1)) the
following system:

:~ (r(~o) 8:
0

) = 0 , 0 < ~ < 1 ,

8~0 8~0
r(~o) 8~ (0, a) = 0, 8~ (1, a) = 0 ,

~o(~, 0) = eo .
The solution to the partial differential equation (8) is easily found to be

(8)

(9)

where F(a) is an arbitrary function of dimensionless time a. However from (9), the flux
must equal zero at both endpoints, hence F(a) = O. This implies that ~o must be a
function of a only and independent of ~, namely

~o = ~o(a) .

In order to determine this function of a, we need to collect together terms of 0(.\) from
equations (5)-(7). Using the fact that ~o is independent of ~, we obtain

(10)

(11)

(12)

We first integrate the differential equation to give

11 d~o d~ = d~o =11
~ (r(~o) 8~1) d~ .

o da da 0 8~ 8~

Evaluation of the right-hand side gives the difference in the known fluxes at the two end
points, namely

d~o- = e1 - ~o·
da

Integrating this and using the initial condition (12) gives
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The ~ dependence in e only appears at O(A) in the 'ljJl (~, a) term. From (10) it can be
seen that {j2'ljJdae is a known (negative) function of a and is independent of~. Hence
integration twice with respect to ~ will yield that 'ljJl is a quadratic in~. From (10)-(11) it
follows that

eo - e1 -(T ( 1 2 )
'ljJl(~, a) = r('ljJo) e ~ - 2~ + K(a) ,

where K(a) can be determined from the terms of 0(A2 ) from equations (5)-(7).

Therefore for this initial drying stage, at the lowest order in A the moisture profiles
are uniform in space and decrease exponentially with time. The O(A) perturbation to the
spatially uniform profiles is quadratic in~. This model explains the externally limited early
time behaviour of the profiles.

It is worth noting that the exact form of D(e) is irrelevant here - only the relative
size of D(eo) is important, as indicated in the parameter A. Hence this type of early time
behaviour occurs as long as A ~ 1 and is independent of whether D(e) has an internal
minimum or not, given our assumption that em ~ eo.

However, even with A~ 1, the approximations we have made are only valid when the
linear approximation (4) for hmaround eo is valid and eo > e1 . When these approximations
are no longer valid, the moisture content at the drying surface starts to decrease rapidly in
time, which gives rise to a large moisture content gradient at the surface. When this occurs,
the surface boundary condition no longer behaves like a surface resistance condition. This
is considered next.

4 Later time behaviour

For surface values of e close to the moisture content which matches the external air
humidity, a linear approximation to hm(B) around Boo is now appropriate, as seen in Figure
5. Using (2) this can be written as

It is expected that the minimum diffusivity D(Bm ), as defined in (3), is the diffusivity value
controlling the time scale of the drying process, so that the representative time scale for this
stage of the drying process will be £2/D(Bm ). We introduce the following dimensionless
parameters

~ = x
£

t::.(B) = D(e)
D(Bm ) ,

11



giving the drying equations at this stage as

aB a ( aB)
aT = a~ !:l(B) a~ ,0 < ~ < 1 ,

Be Be
'Y!:l(B) a~ = B- Boo at ~ = 0 , B~ (1, T) = 0 ,

B(~, 0) = eo, 0 < ~ < 1 .

Here we have introduced the dimensionless parameter 'Y defined as

D(Bm )

'Y = j3Lh'm(eoo ) ,

(13)

which equals the ratio of the surface resistance time scale to the diffusion time scale. From
the parameter values in Table 2, 'Y ~ 1 . 10-5 , so we are now working in a regime where
the surface resistance time scale is very small compared to the diffusion time scale, namely
'Y « 1. Hence in this stage of the problem the surface boundary condition acts like a fixed
moisture content condition. To show this formally, we write the solution as a perturbation
expansion in the small parameter 'Y as

- 2e= B+ Tlh + 'Y ¢2 + ... . (14)

Collecting together terms of like powers of 'Y, yields at the lowest order in 'Y (namely 0 (1) )
the following system:

Be B( - ae)
aT = B~ !:l(B) B~ ,0 < ~ < 1 ,

- Be
e(o, T) = Boo B~ (1, T) = 0 ,

e(~, 0) = eo .

(15)

(16)

It should be noted that in going from (13) to (16), we must ensure that the value of
'Y!:l(Boo ) = 'YD(eoo)jD(em ) « 1. This is indeed the case here. '

Since 'Y « 1, the lowest order term in the expansion (14), namely e, provides an
excellent approximation to e. We are now required to find solutions to this new problem,
one with a fixed moisture content condition at one end, and a no-flux condition at the
other end. Clearly the moisture content e(l, T) decreases with time, and the equilibrium
solution is e-7 eoo over all ~ values.

5 Asymptotic analysis

As discussed above, the later time behaviour for the drying problem reduces to the system
(15)-(16). In this section, we will show how a steady state approximation is the key to
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(17)

obtaining an understanding of the moisture profiles.

Experimental evidence for the drying process has established that the moisture dif
fusivity is a highly non-linear function as illustrated in Figure 2. This means that the
scaled diffusivity ~(O) will change by two orders of magnitude over the moisture content
range. Hence, certainly for any 0 value not close to Bm , ~(O) » 1. Over the time scale
we are studying, the left-hand side of (15) is 0(1) while the size of ~(O) implies that the
right-hand side of (15) is much larger. Hence, relative to the right-hand side, the left-hand
side can be approximated to zero. (We can make this formal by using a regular pertur
bation expansion.) This implies that the system is effectively in diffusive equilibrium at
every value of time T. This behaviour is known as the pseudo-steady state, because the
solution is still a function of time but satisfies the diffusive equilibrium equations. Similar
considerations have been used in a wetting problem on a finite domain [11, 12] . These
arguments will help motivate the analysis below.

Notice that if we neglect the time dependent derivative in (15) and satisfy (16), then
the pseudo-steady state solution is in fact the final equilibrium solution 0 = Boo- Therefore
in order to consider the pseudo-steady state conditions for any particular time, we need to
recall that the moisture can only leave the brick at the drying boundary e= o. We denote
this, as yet, undetermined flux by

80
G(T) = ~ (Boo) 8e (0, T) .

To determine the outward flux G(T) we consider the reduction to the total moisture content.
Using (15) and the flux values at the endpoints (16) and (17) gives

~ t 0 de = 11

80 d~ =11

~ (~(O) (0) de = -G(T) . (18)
dT io 0 8T 0 8e 8~

Motivated by our previous arguments, we now formulate the appropriate pseudo-steady
state problem and let 'lj; be its solution, namely

8 ( 8'lj;)8~ ~('lj;) 8~ = 0 , 0 < ~ < 1,.

8'lj;
'lj;(0, T) = Boo ~('lj;) 8~ = G(T) at ~ = 0 .

If we introduce the Kirchoff transformation, [6], and define a function V('lj;) as

v('lj; ) = {7/J ~ (e/» de/> ,io",
then the differential equation (19) reduces to the Laplace equation

8 ( 8'lj;) 8
2
V('lj;)

8~ ~ ('lj;) 8~ = 8e = 0 .

13
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Using the boundary conditions at ~ = 0, this equation simply integrates to

V(?jJ) = G(7)~ - U ,

where

(21)

since 000 ~ Om. In general to obtain the solution ?jJ, we must invert the function V to give

?jJ = V-l(G(7)~ - U) . (22)

We wish to rewrite the equation determining the surface flux in terms of the pseudo-steady
state solution?jJ. Equation (18) can be written as

11 fJ?jJ d~ = -G(7) +11
fJ(7/J - e) d~ .

o fJ7 0 fJ7

We assume here that

(23)

(24)

(25)

This integral term can be interpreted as the time rate of change of the difference in the
total moisture content of the pseudo-steady state solution 7/J and the full drying solution e.

Assuming we can neglect the integral term on the right-hand side of (23) compared to
G(7), we obtain the approximation

11 fJ?jJ
- d~ = -G(7).

o fJ7

Given the solution ?jJ given in (22), we will establish that G(7) can be determined suffi
ciently accurately from (25). Consequently, a good approximation for the defining features
of the drying problem can be deduced.

We will show that the approximation is good even though the diffusive flux for ?jJ is
0(7) across the whole ~ range, while the flux of eis not spatially uniform - it is 0(7) at
the drying end and equal to zero at ~ = 1.

The integral term in (25) is equivalent to d~ fo1
?jJ d~, which is the rate of change of the

total moisture content in the pseudo-steady state brick. Later when we actually evaluate
this equation, it turns out to be more convenient to have the form of the integral as ex
pressed in (25).

Next we will choose particular forms for the diffusivity D(0) . This will allow the
determination of 0(7), from the equation (22) for ?jJ as a function of 0(7). We will

14



apply the pseudo-steady state approximations to two typical diffusivity functions used for
drying problems. We will consider two forms of the diffusion coefficient, both exponentially
growing for larger values of moisture content but one will have an interior minimum and
the other will not have an interior minimum. We will see that the presence of an interior
minimum ensures the existence a drying front and the deeper the interior minimum the
sharper the front.

6 Application to a diffusivity function with an interior. .mInImum

As previously discussed, NMR experimental data strongly defines a diffusivity function
with an internal minimum, which we denote as Om' Given data as in Figure 2, we could fit
a functional form as

where AI, A2 , bl and b2 are positive constants. However with this functional form, the
function 11 is not invertible. Therefore an explicit expression for 'ljJ is not possible, mak
ing integration of (25) not possible. In order to proceed analytically and obtain explicit
expressions for 'ljJ, we use the simpler functional form which has similar features

(26)

where the constants are chosen such that D is continuous at Om' With the values given
in Table 2, the approximation is shown in Figure 6. Although the fit for °< Om is not
good, the essential feature of the diffusivity function, namely the deep internal minimum,
is captured in our simple function (26).

In terms of the fitting constants introduced above, Om is defined as

Om = hI ~ b
2

In (1:) .
Typically the diffusivity changes by orders of magnitude, so bI and b2 are assumed to be
large. The formulation (26) can be rewritten more conveniently as

(27)
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Figure 6: Simple exponential diffusivity given by (26) with :Table 2 parameter values (solid
line) and the experimental estimates (dots).

Hence explicit expression for 7jJ can be determined from (22) as

(28)

In Figure 7 typical pseudo-steady state moisture profiles for decreasing values of G (7)
are illustrated. Notice that the slope of the moisture profiles at first increases, reaches a
maximum at 7jJ = f)m, where there is an inflection point, and then decreases for 7jJ > f)m'

The slope is given by

o7jJ G(7)
of, 1:1(7jJ) ,

(29)

where 1:1(7jJ) , being the scaled diffusivity function (27), is initially a decreasing and then an
increasing function. This shape for 7jJ(f" 7) as a function of f, produces a so-called drying
front, and we see that it moves into the material. We point out that at this stage the
evolution of G with 7 has not been determined. On physical grounds we expect it to be a
positive decreasing function.

We can determine the position of this drying front as it moves into the brick. As noted,
the slope of 7jJ is a maximum when 7jJ = f)m, and we choose this as a marker for the front
position. If we denote this moving position as 6(7), it is then defined by

(30)
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Figure 7: The moisture profile 'lj;(C T) for D(e) given by (26) with Table 2 parameter
values. Here G(T) = l/(b l g(T)) has values 2,1,0.5,0.25,0.125 and 0.0625.

This definition together with (28) implies that

1 - blU + bI G(T)<5(T) = 1 , 1 + b2U - b2G(T)b(T) = 1 . (31)

6.1 Determination of an equation for G(7) and 0(7)

We now need to determine the flux G(T) so that the time evolution of the moisture profiles
and drying front can be uniquely calculated. To do this, the time derivative of 'lj;(E;, T) given
by (28) is required for the integral expression (25). To evaluate the integral, we subdivide
it in the following way:

11 a'lj; dE; = l"(T) a'lj; dE; +11

a'ljJ dE; = -G(T) . (32)
o aT 0 aT "(T) fh

We note from (30) that when eoo ~ 'lj; < em, 0 ~ E; < <5, and when 'lj; > em then <5 < E; < 1.
Therefore, using (28) and (31), evaluation of each of these integrals yields

t a'lj; dE; = t G'(T)E; dE;
i"(T) aT i"(T) 1 - b1U + b1G(T)E; (33)

G' (T ) [ 1 - b1U ]
= b

i
G(T) 1 - <5 (T) - b

i
G(T) In (1 - bi U + bi G(T))

rJ(T) a'lj; r"(T) G'(T)E;
io aT dt; = io 1 + b2U - b2G(T)E; dE;

G'(T) [1 + b2U] (34)
= b

2
G(T) b

2
G(T) In(l + b2 U) - <5(T) .
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It will be convenient to introduce the function

1
g(T) = b1G(T)

and to write the position of the front in terms of g(T) from (31) as

U
6(T) = G(T) = b1U9(T).

By introducing the constants

b1
d = b

2
' K 1 K1(b1U) = 1 - b1U,

K 2 K 2(b1U, d) = d2 (1 + b~U) In (1 + b~U) - b1U(1 + d) ,

the equations (32)-(34) combine to give the differential equation

dg
AI(g) dT = 1 ,

(35)

(36)

(37)

where we have introduced the function M(g) defined as

M(g) = 1 - K1g In ( K 1 + ~) + K2g .

Thus l\!f is also a function of the two constants b1U andd, through the constants K 1 and K 2 •

There are restrictions to the values of g. After the early time period discussed in Section
3, at the initial time for this current stage, assigned with no loss of generality as T = 0,
the out-flux G(T) will be finite, but may be relatively large. Consequently, g(O) > 0 and
6(0) > o. We denote g(O) = go. Note that if the drying process was governed by the
surface boundary condition 0(0, T) = 000 from the start when O(f" 0) = 00, the flux G(O)
would be infinite, and hence 90 = 6(0) = o. There is an upper bound on the value of 9
because the scaled distance must satisfy 0 < 8 < 1. Hence combining these two bounds
implies that 9 must fulfil 0 ::; go < 9 < bj1U.

We now briefly discuss the properties of M(g). With some algebra, it can be shown
that

M(O) = 1 ,

M' (g) --t f{1 (1 + In 9) + K 2 as 9 --t 0 ,

18



Hence, we can deduce the following. If blU > 1, then K I < °and M(g) increases, reaches
a maximum, and then decreases. Its value at the end of its range satisfies M(bjIU) > 1
if K2 > 0; otherwise if K2 < 0, then 0 < M(bjIU) < 1. Alternatively, if blU ::; 1, then
K I 2: 0 and K 2 < 0 and consequently M(g) monotonically decreases to a nonnegative
value. Hence for all choices of blU and d, the function M(g) > °for °< 9 < bjlU" For the
parameter values appropriate to our study, we have found that bl U > 1 and d < 1. The
positivity of M is expected, since then *> 0, and hence the surface flux G(7) will be a
decreasing function of time.

The equation (37) can be integrated to give

N (g (7 )) = T + N (go) ,

where

(38)

(39)

Here an integration constant N(go) has been introduced. Again we note that N is a
function of the two constants blU and d, through the constants K I and K 2 . Since the
function 1\11(g) > 0, its integral function N(g) must also be a positive function.

6.2 Estimates of behaviour of g(7) and 5(7)

Determining 9 as a function of 7 from (38) must be done numerically. By plotting function
N for various parameter values, it appears linear over much of the domain of interest, as
shown in Figure 8. From (38) we expect g(7) to also appear linear over much of its range,
as illustrated in Figure 9. Only during the initial stages does the slope appear to change.

Clearly, since the front position is determined by 15 (7), this will also appear to move at
a constant rate in time. This is exactly the type of behaviour extracted from the experi
mental results, and confirmed by numerical simulations.

It would be convenient to have an accurate estimate of the front position, without having
to solve the non-linear equation (38) each time. Three approaches to estimating dg/d7 and
hence g(7) and 15(7) are given here - each has certain advantages and disadvantages.
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Figure 8: The function N(g) for D(B) given by (26) with Table 2 parameter values.
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Figure 9: The function g(7) which solves (38)-(39) for D(B) given by (26) with Table 2
parameter values. The straight line approximations Approach 2 (42) with go = 0 (dashed
line) and Approach 3 (43) with gl = 0 and 9r = 2b~U (dotted line) are shown.

20



0.7

0.6

0.5

0.02 0.04 0.06 0.08 0.1

(40)

Figure 10: The function l/M(g) for D(B) given by (26) with Table 2 parameter values.

Approach 1

It is instructive to rewrite (37) as

dg 1
dr 1I1(g)'

Now we consider the graph of l/M(g) in Figure 10. Denote 9 = gm to be the turning
point of 1/111(g). Hence gm satisfies

M' (gm) = K 1 In (K gm ) + K K 1 + K2 = 0 .
19m + 1 19m + 1

Then a linear approximation for g(r) near gm is

Since the function 1/M (g) is fairly flat near gm, the slope is quite accurate over a significant
interval for g.

Approach 2

This time we expand the integrated function N(g) about 9 = gm' Since gm is defined in
(40), it is the inflection point of N (g). From the definitions of N (g), M (g) and Nfl (gm) =
11;[' (gm) = 0, the Taylor series expansion gives

(41)
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where R(g) is a remainder term which can be estimated from

IR(g)1 ~ ~max Id;; I (g - gm)3 .

By combining (38) and (41), we obtain the approximation

T N(go) - N(gm)
g(T) ~ l\1(gm) + gm + M(gm) , (42)

(43)

where we have ignored the non-linear remainder term R(g)/M(gm). In Figure 9, this
straight line approximation is compared to the correct g(T). Estimates of the size of the
remainder show that it is small compared to the linear terms.

Approach 2 is a more sophisticated version of Approach 1. However both these ap
proaches still involve solving a non-linear equation (40) each time. Next we describe a
third and final approach - it is an averaging technique which only involves function eval
uation.

Approach 3

This time an average value of the slope dg / dT is calculated. Since it is too difficult to
integrate 1/1'v1 (g) over a range of values of g, we invert the expression as

dT
-d = 1\1(g).

,g

Then define an average slope over an interval g/ < 9 < gT) where we are free to choose
appropriate values of g/ and gr' For example, gr can be equal to some fraction of bllU' or
gm, although then a root of a non-linear equation must again be found. The advantage of
choosing gr in terms of bllU is that only function evaluations are needed. The natural value
for g/ is go. The average is defined to be

Av [dT] ~ 1 j9r

M(g) dg = N(gr) - N(g/) .
dg gr - g/ 91 gr - g/

Then an estimate for g(T) can be made using this average slope as

gr - g/
9(T) ~ go + N (gr) _ N (gl) T .

Various choices of g/ and gr can be explored. In Figure 9 the straight line approximation
(43) with g/ = 0 and gr = 2b~U is displayed.

These three approaches all give similar estimates for the slope of a straight line fit to
g(T). The position of the front is just a multiple of g(T) given by (36), and from the analysis
here we have that its speed is

d6 bl U or d6 ~ b
l
U gr - g/

dT ~ 1\1(gm) dT N(gr) - N(gl)
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Both Approach 1 and Approach 2 yield the first of these estimates, while Approach 3 yields
the second. It is clear that the position of the front looks linear as it moves through a
major fraction of the brick length.

More generally using (21) and (35), contours of constant values of 1/J are given by

Again there are constraints on the range of g(7) applicable, because 0 < ~ < 1. Since g(7)
is well approximated by a linear function of 7, each of these contours moves linearly into
the brick for a fraction of the domain length.

6.3 Correction to solution e> em
As noted previously, this analysis gives an approximation (28) to the solution that has a
constant flux G (7 ). In particular this implies that at the physically insulated end ~ = 1,
this approximation has a nonzero value of ~~ (1, 7). From (28), we obtain

while the required solution satisfies ~~(1, 7) = O. For 0 < 9 < bl
l
U' we obtain

. 1 fJ1/J 1
mm(bl'U) < fJ~(1,7) < max(bl'U),

Since the value of bI is large, while U is small (U ~ 0.11 and blU > 1 for Table 2 parameter
values), the bounds of the slope of the approximate solution are small, so that the error
in the slope is small. However, we still need to investigate the errors in the corresponding
moisture profiles.

In Figure 11 a typical pseudo-steady state moisture profile 1/J(~, 7) is plotted together
with a numerically generated solution (j(~, 7) for the same value of 7. In comparing these
two, we see that the general shape of the curves is identical, except for ~ near unity, where
the difference is anticipated due to the flux discrepancy. We note that the difference in the
two solutions is linear for () > ()ml and is negligible for () < ()m, as shown in Figure 11. We
will show that this difference has little affect on the speed of the drying front.

These observations suggest that we write down a corrected approximate solution de
noted by 1/Jc, defined as

01. (I': ) = 01.(1': ) _ { E(7) [G(7)~ - UJ ,
'Pc <",7 'P <",7 0, ~::; 6(7),

showing the subtraction of a linear term in ~ for 1/J ~ ()m' The coefficient E(7) will be
chosen so that the corrected solution satisfies a no-flux condition at ~ = 1. However, the
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Figure 11: The moisture profile VJ(~, r) (dashed line) and iJ(C r) (solid line) for D(O) given
by (26) with Table 2 parameter values, both for r = 0.03. The difference VJ(~, r) - iJ(~, r)
is also illustrated (dotted line).

position i5 will be slightly different for uncorrected and corrected approximate solutions, as
we shall see. To determine i5 from (36), we again need to determine the time behaviour of
G(r) using the corrected approximation.

We have introduced this corrected approximation in order to satisfy the no-flux bound
ary condition at ~ = 1, hence it follows that we choose E(r) as

. 1
E( r) = -1------:b-

1
U=-=--+-bC:-1-=G-'--;-(r-:-)

1

Using this corrected approximation VJc instead of VJ in (32), we again obtain a differential
equation, which we write in the form

dg
Mc(g) dr = 1 ,

where the function Mc(g) is a modification to the previous function M(g) as

9 (1 2)Mc(g) = M(g) - 2K
1

(1 + K
1
g)2 - (1 - Kd .

(44)

The function A1c (g) has the same qualitative behaviour as 1I1(g) , so that it is a positive
function with
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Figure 12: The functions Nc(g) (solid line) and N(g) (dashed line) for D(O) given by (26)
with Table 2 parameter values.

This behaviour again implies that g(7) will be a increasing function of time. The equation
(44) can be integrated to give

(45)

(46)

where

19

A1c (J) df

N( ) __1_ [In(l + K ) _ K 1g _ Kf(1 - Kd 2
g

2
]

9 2K{ 19 1 + K 1g 2

where Nc(go) is the integration constant. Nc is a positive function of the two constants
b1U and d, through the constants K 1 and K 2 (see Figure 12).

Determining g(7) and 6(7) proceeds in the same way as previously, where now the
functions M and N are replaced by their corrected versions M c and N c • Again accurate es
timates of these functions can be made using the similar methods as outlined in Approach
1 to 3. These are shown in Figure 13.

The true front position together with our approximations described in Section 6.1 and
the corrected one outlined here are illustrated in Figure 14. It is clear that both approx
imations are excellent until the front is half-way through the brick. However the front
position from the corrected approximation is closer to the true front position for a longer
time (until the front is around 80% through the material). Consequently, the front speed
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Figure 13: The function g(T) which solves (45)-(46) for D(O) given by (26) with Table 2
parameter values. The straight line approximations Approach 2 with go = 0 (dashed line)
and Approach 3 with gl = 0 and gr = 2b~U (dotted line) are shown.

obtained from the corrected approximation is a more accurate estimate of the true front
speed. Hence, to obtain more accurate moisture profiles, it is necessary to use the corrected
approximation provided by 'l/Jc(~, T).

In Figure 15 the approximations 'l/J and 'l/Je are compared with the numerically calculated
8. It can be concluded that 'l/Je and 8 match very well. Similar comparisons with other
fitting parameters indicate that 'l/Je is a good approximation of 8 for moisture diffusivities
with a clear and deep minimum.

Since the corrected function 'l/Je is an excellent approximation to the numerical solution
which represents 8, the validity of the assumption (24) can now be checked. Essentially,
since 8 - 'l/Jc ~ 0, we have

III a('l/J - 8) d~1 ~ III a('l/J - 'l/Jc) d~1 « G(T) .
o aT 0 aT .

It follows from the definitions of 'l/Je and Me that

11 a('l/Je - 'l/J) g'(T)
o aT d~ = b

1
g(T) (M(g(T)) - Me(g(T))) ,

and therefore (47) comes down to the inequality

1

1I1(g) - 1I1e (g) I

M(g) « 1 .

(47)
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Figure 14: Position of the front as defined by B(~, r) = Om (solid line) and the original
(dotted line) as well as corrected (dashed line) 6(r) for D(O) given by (26) with Table 2
parameter values.
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Figure 15: The moisture profiles B(~, r) (solid line), 'ljJ(~, r) (dotted line) and 'ljJc(~, r)
(dashed line) for D(O) given by (26) with Table 2 parameter values. Here r has values
0.03, 0.06, 0.09 and 0.12.
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Figure 16: The function (M(g) - Mc(g))/M(g) for D(e) given by (26) with Table 2 pa
rameter values.

The left-hand side of this inequality is plotted in Figure 16. It can be observed that a
maximum of 0.22 is obtained.

It is also interesting to investigate the value of 'l/Jc at the internal no-flux boundary,
namely

As illustrated in Figure 17, the shape of this internal moisture content has essentially the
same shape as the numerically calculated 0(1, T).

7 A pplication to a diffusivity function with no interior. .mInImum

As discussed earlier, often drying problems were assumed to be governed by a simple
growing exponential diffusivity. Consequently we consider here

(48)

For this case the minimum value of D corresponds to the moisture content at the drying
end, so that em = eoo ' This identification in (26) reproduces this single exponential. Typi
cally the diffusivity changes by orders of magnitude, so b1 is assumed to be large. For this
case, the analysis of the previous example remains the same, acknowledging that there is
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Figure 17: The moisture profiles 7/Jc(1,7) (dashed line) and 0(1,7) (solid line) for D(B)
given by (26) with Table 2 parameter values.

no region where e < em = eocn while now U = 0 and <5 = O. Again we point out that at
this stage the evolution of G(7) with 7 has not been determined. On physical grounds we
expect it to be a positive decreasing function.

To determine the differential equation for G(7) or equivalently g(7), we consider (44)
and (45) with U = 0, K 1 = 1, and K 2 = O. Everything goes through smoothly to give

dg
P(g) d7 = 1 ,

where

P(g) = 1-gIn (1 + ~) - ( 9 )2'
9 2 1 + 9

which on integration yields

Q(g) = 7 + Q(go) ,

where

Q(g) = r P(J) df = ~ [g - lIn (1 + ~) + -g-]h 2 9 l+g

It is easy to verify that the function Q(g) is a monotonically increasing function for all
values of g. Numerical solution of these equations provides g(7) as shown in Figure 18.
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Figure 18: The function g(7) for D((}) given by (48) with Table 2 parameter values and
go = o.

Asymptotics on the function Q for small values of 9 show that g(7) rv 7. However, un
like the previous example, Figure 18 shows that this linearity is restricted to a very local
region near 7 = 0 only. Asymptotics on the function Q for larger values of 9 give g(7) rv e2T .

The corrected approximate moisture profile 'l/Jc can again be compared with the nu
merically generated 0 (see Figure 19). Notice now that the slope of the moisture profiles
decreases as ~ increases and that there is no inflection point. Unlike the previous case,
when the diffusivity had an interior minimum, clearly nothing resembling a front exists
now. Hcan be seen that 'l/Jc has the same qualitative behaviour as 0. However, the match
is not so good as in the case of a diffusivity function with an interior minimum. We do
not pursue trying to improve the approximation, since we are not interested in the details
of this case. The object here was to demonsrate that no drying front exists for this type
of diffusivity function, and that the moisture profiles have a completely different shape.

Contours of constant values of 'l/Jc are given by

and since g(7) behaves exponentially (except for very small values of 7 where it behaves
linearly), this behaviour is quite different from the previous example with a minimum in
the diffusivity function.
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Figure 19: The moisture profiles 7/Jc(~, T) (dashed line) and (j(~, T) (solid line) for D(O)
given by (48) with Table 2 parameter values. Here T has values 0.03, 0.06, 0.09 and 0.12.

8 Discussion and conclusions

We have presented a simple model of the drying of a porous material. By comparing the
relative time scales in the process, asymptotic analysis has shown that there are two dis
tinct phases in the drying behaviour of bricks. In the first short stage the brick offers no
resistance to the water motion. The behaviour is governed by the surface resistance and
the moisture content is relatively uniform.

After this initial stage the boundary condition acts like a fixed moisture content con
dition. The drying behaviour is governed by non-linear diffusion. These equations can
be solved numerically for the case when the diffusivity function contains a deep interior
minimum. The results show that there is a drying front moving with an almost constant
speed into the material.

In order to seek a greater understanding of the features of the numerical solutions, and
the speed of the drying fronts, some asymptotic techniques have been used to explore the
nature of the moisture profiles and front position. We have obtained a explicit expression
for the moisture profiles in terms of the flux function G(T). A differential equation is used
to describe the evolution of this function with time.

By examining the effects of a diffusivity function with and without an interior minimum,
we have shown that the presence of an interior minimum determines the existence of a
drying front travelling into the brick. The position of the drying front is given implicitely
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in terms of a nonlinear equation. However we have shown that the speed of the drying
front is well approximated by a constant given by b1U/ Mc(gm) in dimensionless units. This
translates to an approximate speed of

(49)

The integral term is the area under the exponentially decreasing part of the diffusivity
function, from the equilibrium moisture content to the value corresponding to the mini
mum diffusivity. Hence there are two important parts which contribute to the front speed
- one is the exponent of the growing exponential b1 and the other is the area under the
exponentially decreasing part of the diffusivity function, as described here. Hence, both the
decreasing and increasing branches of the diffusivity function contribute to the front speed.

This result gives an estimate of the time for drying a fraction f of the total sample
length £ as approximately

1I1c(gm) £2 f .
b1 J:~' D(O) dO

Notice that this implies that the time taken is proportional to £2 f. This is quite different
from the usual square-root time behaviour for diffusive processes, where the time is pro
portional to £2 p.

The fitting parameters in Table 2 lead to v = 0.04 mm S-I. This is slower than the
experimentally measured speed of 0.06 mm S-1 (see Figure 3). This discrepancy is because
our fitted diffusivity function is not an accurate enough approximation to the data for
small Ovalues (see Figure 6). If A2 and b2 are chosen to give a more rapid decrease in the
diffusivity at low 0 values (e.g. A2 = 1.0.10-2 mm2 S-1 and b2 = 250) then the approximate
speed in (49) matches the experimentally observed front speed. It should be noted that
our estimate of the speed is an accurate approximation of the front speed obtained for the
numerically calculated profiles 8.

Moreover, we see that the moisture content solutions are a function of the variable
G(T)~ - U or written another way, of ~ - b1Ug(T). Hence not only is the drying front
travelling with a constant speed, but the solution behaves like a similarity solution, that
it is stretched linearly in time..

It can be concluded that our analysis of the moisture content has the same qualitative
features as the experimentally observed behaviour. Moreover, numerically generated solu
tions with our choice of diffusivity with a deep minimum can be approximated well with
our asymptotically calculated corrected approximation 'ljJc(~, T). Furthermore, an accurate
expression for the front velocity can be obtained in terms of the parameters in the problem.
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Table 1. Typical data values for fired clay brick

symbol
L
00

Om
000

f3
ha

hm(Oo)
h'm(Oo)
h'm (000 )

D(Oo)
D(O.l)
D(Om)
D(Ooo)

value
25

0.25
0.01 - 0.02
9.14· 10-4

6.36.10-4

0.61
1

0.61
1.45· 103

5.41
rv 0.1

rv 3 . 10-4

rv 0.01

unit
mm

mm2 S-l

mm2 S-l

mm2 S-l

mm2 S-l

Table 2. Typical fitting parameters for diffusivity function

symbol value
5.0· 10 5

5.0.10-3

80
150

unit
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