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Symbolic Solutions for a Class of Partial Differential
Equations
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An algorithm to generate solutions for members of a class of completely integrable partial
differential equations has been derived from a constructive proof of Frobenius’ Theorem.
The algorithm is implemented as a procedure in the computer algebra system Maple.
Because the implementation uses the facilities of Maple for solving sets of ordinary
differential equations and for sets of nonlinear equations, and these facilities are limited,
the problems that actually can be solved are restricted in size and complexity. Several
examples, some derived from industrial practice, are presented to illustrate the use of the
algorithm and to demonstrate the advantages and shortcomings of the implementation.

c© 1996 Academic Press Limited

1. Introduction

Solving systems of differential equations is a difficult problem, except for some special
classes. General purpose CAS (computer algebra systems) do not provide facilities that
can be applied generally. Maple’s command dsolve, for instance, will provide full so-
lutions only to a restricted class of ODE’s (ordinary differential equations). The same
holds for other CAS.

A facility provided by Maple is the liesym package that computes Lie point symmetries
of differential equations. This package is not integrated in the dsolve command. Most
other CAS provide equivalent facilities. For ODE’s these Lie point symmetries, or if
desired other symmetries, can be used to reduce the order of the ODE. The following
example is taken from Stephani (1989, p. 30).

Consider the second order differential equation

y′′ = (x− y)(y′)3.

By considering the Lie point symmetry

x̃ = x+ ε(x− y), ỹ = y
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we arrive at a change of coordinates

t = y, s = ln(x− y)

which transforms the ODE into

s′′ + (s′)2 + 1 = 0.

So, we have reduced the order by 1, because this is a first order ODE in s′.
In general the following holds. If we have an ODE of order n, and there are n Lie point

symmetries, we can reduce the problem to order 0, provided that the Lie group generated
by the symmetries is solvable.

For PDE’s (partial differential equations) the situation is different. Here, Lie point
symmetries cannot be used to lower the order of the differential equation. Instead, they
might be used to reduce the number of independent variables, and thus gain access to
special classes of solutions. Eventually this might even lead to an ODE. In Stephani
(1989), for example, it is shown how the wave equation

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− ∂2u

∂t2
= 0

can be reduced to the ODE

σ
d2w

dσ2
+

dw
dσ

= 0, σ =
x2 + y2

t2 − z2
, w = u

using symmetries. However, in general the problem of finding Lie point symmetries for
PDE’s is of equal difficulty to solving the differential equation.

Having demonstrated the procedure to use symmetries in solving (partial) differential
equations, the question arises if this technique has any practical value. As answers to this
question several different points of view have been encountered in the literature. Stephani
is rather pessimistic. In his book (Stephani, 1989) it is noted that Lie symmetries have
hardly ever any value for obtaining explicit solutions for ODE’s or PDE’s. However, since
the publication of Stephani’s book, a number of articles appeared using certain kinds of
symmetries in finding exact solutions of PDE’s. In MacCallum (1995) it is remarked that
Lie symmetries are at least an ordering principle for obtaining solutions, and results of
a computer algebra program are summarized that could solve a large part of a set of
reference ODE’s using Lie symmetries. Also, Schwarz and Wolf (MacCallum, 1995) use
Lie symmetries as an integral part of their programs to compute explicit solutions of
ODE’s and PDE’s. A lot of other work in this area has been performed. Furthermore,
Lie’s symmetry method is the method that is generally applicable to generate exact
solutions, so it certainly has its value.

We do not delve into this further, but conclude that other approaches than Lie sym-
metries to solve certain classes of PDE’s are worthwhile avenues, so other ways to obtain
solutions have to be searched for. This comes down, in most cases, to restrict the class
of PDE’s one wants to consider, and to develop rather specific methods for this class.

For special types of PDE’s, as the ones to be considered here, the method of character-
istics is an alternative, because it is particularly well suited for coupled systems of first
order (Kevorkian, 1993; Sneddon, 1957). In this paper, however, yet another method,
based on a constructive proof of Frobenius’ Theorem, is discussed. The method is suit-
able for sets of first order PDE’s that are completely integrable, or, in other words, for
which a certain distribution is involutive, as stated by Frobenius’ Theorem. Note that
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this type of PDE is frequently encountered in, at least, nonlinear system theory in a dif-
ferential geometry setting, and has therefore great practical significance. For applications
in this area we are content with finding a single closed form solution, but without user
intervention.

2. Frobenius’ Theorem

This section and the next one draws from Isidori (1989). Starting with sets of first
order PDE’s of the following form

∂h(x)
∂x

[
f1(x) · · · fd(x)

]
=
[

0 · · · 0
]

(2.1)

with x ∈ Rn, ∂h(x)
∂x the row vector [ ∂h∂x1

· · · ∂h∂xn ], and fi a smooth vector field (i = 1, . . . , d),
we want n− d independent solutions h(x) of this set of PDE’s. This is equivalent to the
complete integrability of the distribution ∆(x) spanned by the columns fi, i = 1, . . . , d,
with ∆ assumed to be nonsingular. Frobenius’ Theorem now states

A nonsingular distribution ∆ is completely integrable if and only if it is involutive.

The constructive proof of the sufficiency part of this Theorem in Isidori (1989, pp. 26–
30) is used to solve the PDE’s.

3. Algorithm

The solution algorithm used can be described by the following steps.

1. Test the involutiveness of the distribution ∆(x) = span{f1(x), . . . , fd(x)}.
2. Extend the distribution ∆ with vector fields fd+1, . . . , fn such that the n vector

fields f1, . . . , fn span Rn.
3. Compute the flows Φfit (x◦) for the vector fields fi, i = n, . . . , 1. The flow x(t) =

Φft (x◦) of a vector field f is by definition the solution of the initial value problem
dx
dt = f with initial condition x(0) = x◦.

4. Determine the mapping F : Rn 7→ Rn defined by composing the flows:

F (z1, . . . , zn) = Φf1
z1 ◦ · · · ◦ Φfnzn(x◦).

Here ◦ denotes composition with respect to x. So

Φfn−1
zn−1

◦ Φfnzn(x◦) = Φfn−1
zn−1

(Φfnzn(x◦))

etc.
5. The last n − d components of the inverse mapping F−1 are independent solutions

of the PDE’s.

4. Implementation

The steps of the solution algorithm are implemented in the new procedure psolve as
follows.
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1. The involutiveness of the distribution is tested by checking if the rank of the ma-
trices [

f1 · · · fd [fi, fj ]
]

for 1 ≤ i < j ≤ d, where [fi, fj ] = ∂fj
∂x fi −

∂fi
∂x fj denotes the Lie bracket of fi

and fj , does not increase and is still equal to rank [ f1 · · · fd ] = d.

2. The extension is performed iteratively, by augmenting the matrix [ f1 · · · fd ] with a
single unit column (the simplest vector field), testing the rank, if the rank increases
this column is kept and the next unit column is added until the rank is n.

3. The flow of the vector fields is computed with the dsolve procedure.

4. The construction of the mapping F , i.e., the composition of the flows, is performed
by backward substitution of the computed flows.

5. The inverse mapping F−1 (the solution of a set of nonlinear algebraic equations)
is computed with the solve procedure and the solution of the PDE’s is extracted
from this mapping.

Several checks are built in to test if the input data is correct, e.g., if the distribution ∆
is nonsingular, to test if the computations are performed without errors, and finally to
test the solution h(x). The rank determination in the input check and in steps 1 and 2
is done with Gauss elimination techniques and thus gives a generic rank, i.e., for a lower
dimensional subset in Rn the rank may drop.

We remark that the solution for (2.1) may not be unique. In general, psolve will only
compute a single closed form solution, which is all we require in our use of this procedure,
that may not be the most simple or insightful one. This is illustrated in the examples.

It is also evident from this sketch of psolve that critical parts in the implementation
are the dsolve and solve procedures that should perform some of the hard work. The
dsolve function is (partly) based on an implementation of the Risch integration algo-
rithm (Geddes et al., 1992). The main reasons to set up the implementation in this way
are (1) ample use is made of existing code, (2) any improvement made to the dsolve
and solve procedures will also improve psolve.

The procedures dsolve and solve sometimes fail to give an appropriate answer. The
capabilities and limitations of the dsolve procedure are, for instance, discussed in Postel
and Zimmermann (1996). This review also shows that, although not perfect, the dsolve
procedure of Maple is reasonably powerful compared with the facilities of other CAS.
The limitation of the solve procedure to solve conveniently sets of nonlinear equations
is illustrated in example 5 in the next section.

5. Examples

This section presents five examples. Four for which an explicit solution can be found,
and a last one for which an explicit solution is known to exist but cannot be computed
directly by psolve. The first and last example are computed with Maple V Release 3,
the other examples with Maple V. For all examples it is straightforward to check the
answers by hand.
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Example 1. The single PDE that has to be solved for a nontrivial h = h(x1, x2)
is (Isidori, 1989, Example 1.4.1)

∂h(x)
∂x

[
ex2

1

]
= 0. (5.1)

Note that the partial differential equation is linear in h(x) but the coefficients of the
derivatives are not all polynomial in x. The solution h(x) is computed by Maple as
follows.

> n := 2:
> x := array(1..n):
> f := array(1..n,1..1,[ [exp(x[2])], [1] ]):
> xinit := {seq (x[‘i‘]=0,i=1..n)}:
> psolve(f,x,xinit);

[ x[1] - exp(x[2]) + 1 ]

Note that the command psolve needs a description of the differential equation in f,
the name of the independent variable x in x, and the initial condition x◦ in xinit. The
last line of the output contains the desired solution,

h(x) = x1 − ex2 , (5.2)

where the constant 1 can be neglected. The correctness of the solution can be verified
directly by substitution of (5.2) in the differential equation (5.1).

Example 2. The set of PDE’s is (Isidori, 1989, Example 1.4.3)

∂h(x)
∂x

2x3 −x1

−1 −2x2

0 x3

 =
[
0 0

]
. (5.3)

The solution h(x) is computed by psolve as follows.

> n := 3:
> x := array(1..n):
> f := array(1..n,1..2,[[2*x[3], -x[1]], [-1, -2*x[2]], [0, x[3]]]):
> xinit := {seq (x[‘i‘]=0,i=1..n-1), x[n]=1}:
> psolve(f,x,xinit);

2
[ x[1] x[3] + 2 x[3] x[2] ]

The solution generated is correct, as can be checked by substitution in (5.3) of the
solution h(x) = x1x3 + 2x2x

2
3.

For arbitrary initial conditions, generated by

> xinit := {seq (x[‘i‘]=x0[‘i‘],i=1..n)}:

the computed solution becomes

2 2
x[1] x[3] + 2 x[3] x[2] - 2 x0[3] x0[2] - x0[3] x0[1]

[ ------------------------------------------------------- ]
x0[3]
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which shows that for x◦3 = 0 this solution is not valid.
If in the set xinit the condition for x◦3 is set to 0 the following error results.

Warning, (in psolve) MAPLE failed in testing the inverse mapping of F,

[ locz3 exp(- locz2), - locz1, 0 ], for component, 1, 2, 3

although this inverse was computed by solve.

This is a limitation of the implementation, that does not account for restrictions on the
initial conditions. It is easy to see that in fact a unique inverse does not exist, because
the Jacobian of the mapping F is singular for x◦3 = 0.

Example 3. The problem considered stems from the analysis of the exact linearizability
by state feedback and coordinate change of the dynamics of a DC motor driving a load
with moment of inertia J . The relevant set of PDE’s is given by

∂h(x)
∂x

1/Ls Rs/L
2
s

0 Kx3/Lr
0 −Kx2/J

 =
[
0 0

]
that has to be solved for h(x). The indexed L, R, and the constant K are the inductance,
resistance, and motor constant respectively. The motor inertia is lumped with the load
inertia J . The indices s and r stand for stator and rotor. The components of the state x
are stator and rotor currents and rotor speed. The solution can be computed by psolve
according to the following session log.

> n := 3:
> x := array(1..n):
> f := array(1..n,1..2,[[1/Ls, Rs/Ls^2], [0, K*x[3]/Lr], [0, -K*x[2]/J]]):
> xinit := {seq (x[‘i‘]=0,i=1..n)}:
> psolve(f,x,xinit);

2 2 1/2
(J x[3] + Lr x[2] )

[ ------------------------ ]
1/2

J

It is easy to see that, e.g., h(x) = Lrx
2
2 + Jx2

3, an energy type function, is also a
solution, so the “simplest” form for h is not necessarily found.

Example 4. This set of PDE’s is derived from the input matrix of a model for a robot
with one translational and one rotational joint and occurs in computing the transforma-
tion to a normal form of the equations of motion of the robot.

∂h(x)
∂x

 1 0
sinx2 0

0 1

 =
[
0 0

]
.

Note that here a non-polynomial function in x is involved. Initially, a solution cannot be
computed, as shown by the following log.

> n := 3:
> x := array(1..n):
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> f := array(1..n,1..2,[[1, 0], [sin(x[2]), 0], [0, 1]]):
> xinit := {seq (x[‘i‘]=0,i=1..n)}:
> psolve(f,x,xinit);

psolve:, unable to compute coeff,

MAPLE procedure dsolve failed in solving the flow of: ,

[ 1, sin(locx2(locz1)), 0 ], continuing with extdsolve

The message is due to limitations of the dsolve procedure, used to compute the flows,
to solve sets of ODE’s. To remedy this, an extension named extdsolve was written, that
is able to solve the flow in this case (this extension was also needed to solve Example 1).
Now the following appears later on in the computation.

Warning, (in psolve) MAPLE failed in testing the inverse mapping of F,

exp(locz1) (- 1 + cos(x0[2] + locz3))
locz1+x0[1], -2 arctan(-------------------------------------), x0[3]+locz2

sin(x0[2] + locz3)

for component, 2, although this inverse was computed by solve.

(- 1 + cos(x[2])) exp(- x[1] + x0[1])
[ - x0[2] - 2 arctan(-------------------------------------) ]

sin(x[2])

The last line contains the desired answer

h(x) = 2 arctan
(

tan
x2

2
e−x1+x◦1

)
− x◦2 because

−1 + cosx2

sinx2
= − tan

x2

2
.

The warning is due to limitations in testing if the inverse mapping F−1 as computed by
the solve procedure is correct. In this case it has no consequences, but the warning has
the intention to generate some caution with respect to the correctness of the answer.

Example 5. Consider the single PDE which is a generalization of the first PDE in
Example 4

ω(x1)
∂h

∂x1
+ ψ(x2)

∂h

∂x2
= 0

i.e.,

f1(x) =
[
ω(x1)
ψ(x2)

]
.

Choose

f2(x) =
[
1
0

]
.

It is obvious that

Φf2
t =

[
t+ x◦1
x◦2

]
.
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The computation of Φf1
t (x◦) comes down to solving the two ODE’s

dx1

dt
= ω(x1) and

dx2

dt
= ψ(x2).

In both cases the variables can be separated. A first problem may arise when we try to
express ∫

1
ω(x1)

dx1 and
∫

1
ψ(x2)

dx2

in terms of elementary functions. This may not be possible, but if we are using CAS this
problem can be solved by adding the integrals of 1/ω(x1) and 1/ψ(x2) to the class of
functions we are using. So, let us assume we can find functions Ω(x1) and Ψ(x2) which
are the integrals of 1/ω(x1) and 1/ψ(x2) respectively. Let us assume furthermore that Ω
and Ψ have inverses Ω−1 and Ψ−1. Then it follows that

Φf1
t (x◦) =

[
Ω−1(t+ Ω(x◦1))
Ψ−1(t+ Ψ(x◦2))

]
.

An easy calculation, following steps 4 and 5 of the solution algorithm, yields

h(x1, x2) = Ω−1(Ω(x1)−Ψ(x2)−Ψ(x◦2))− x◦1 (5.4)

and the problem seems to be solved.
However, if we take ω(x1) = 1 and ψ(x2) = 1/(1 + x2

2) and use psolve we get

> n := 2:
> x := array(1..n):
> f := array(1..n,1..1,[ [1], [1/(1+x[2]**2)] ]):
> xinit := {seq (x[‘i‘]=x0[‘i‘],i=1..n)}:
> psolve(f,x,xinit);

Warning, (in psolve) MAPLE failed in testing the inverse mapping of F,
...

for component, 2, although this inverse was computed by solve.

3 2 2 3
[ RootOf(_Z + 3 _Z x0[2] + (3 + 3 x0[2] ) _Z + x0[2] + 3 x[1]

3
+ 3 x0[2] - 3 x0[1] - 3 x[2] - x[2] ) ]

The last two lines form the answer, in a kind of implicit form containing the dummy
variable _Z instead of in the desired explicit form.

It is easy to see where things go awry. The solution of

dx2

dt
=

1
1 + x2

2

, x2(0) = x◦2

is given by

1
3
x3

2 + x2 = t+
1
3

(x◦2)3 + x◦2.

To compute Ψ−1 the cubic equation

1
3
x3

2 + x2 − (t+
1
3

(x◦2)3 + x◦2) = 0
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has to be solved for x2. It has three solutions, and only one of those is real, namely

x2 =

(√
4 + 9p2 + 3p

2

)1
3

−
(√

4 + 9p2 − 3p
2

)1
3

,

where

p = t+
1
3

(x◦2)3 + x◦2.

The cubic equation for Ψ−1 leads to the cubic root in the answer generated by Maple.
The program does not choose one particular root of the equation and therefore does
not generate an explicit answer. The obstruction can be removed in this particular case.
One could add a few extra statements to select the real solution, using the allvalues
command to get the three explicit solutions. This would be an ad hoc remedy, enlarging
the class of solvable problems only slightly. Also, although the real root of the answer
given above by Maple is correct, it is more complicated than the answer, h(x1, x2) =
x1 − 1

3x
3
2 − x2 − 1

3 (x◦2)3 − x◦2 − x◦1, given by (5.4). Here too, the simplest answer is not
generated.

6. Conclusions and Recommendations

An algorithm has been devised and implemented as a procedure in Maple to solve
some partial differential equations.

The main conclusion is that rather elementary and some more involved partial differen-
tial equations can be solved, but larger and more complicated ones cannot be completely
tackled yet.

Possible approaches to remedy this situation, at least for the users of CAS, are to:

1. improve Maple’s dsolve and solve procedures;
2. investigate if other algorithms for solving the PDE’s, e.g., based on the method

of characteristics, are amenable to implementation and check if they provide more
powerful tools or are less taxing for the CAS;

3. provide a standard Maple procedure for solving as many PDE’s as possible.

After a quick look into the capabilities of some other CAS we expect that our expe-
riences and main conclusion do hold for those systems as well. Probably, they show the
same type of shortcomings and may need the same remedies as suggested for Maple. This
is also evident in Postel and Zimmermann (1996).
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