EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Handwriting recognition and verification : a hidden Markov
approach

Citation for published version (APA):

Dolfing, J. G. A. (1998). Handwriting recognition and verification : a hidden Markov approach. [Phd Thesis 2
(Research NOT TU/e / Graduation TU/e), Frits Philips Inst. Quality Management]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR517815

DOI:
10.6100/IR517815

Document status and date:
Published: 01/01/1998

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR517815
https://doi.org/10.6100/IR517815
https://research.tue.nl/en/publications/3f1f1d14-d489-40bf-8c05-7baf38b858c4

Handwriting Recognition and
Verification
A Hidden Markov Apprbach

J.G.A. Dolfing

[P [YN (R Wi orer fun pyoekice in

roadanread
computer%«\.& C4 RIeard Jo— U b the

AU O humorer [N\Qn atural Mircad practice
discardcliscad ihe AP computer | | the
| . natural cowesir

%M[QOSS% computer

humorerﬂM practice Ng
D the oliscad o o i $S S
natural (o 0t Of jc’” W’(qun discard
‘ . BRellsBIE], [discard amdwral foggi|
[ko arrive Wk arrive i (A;\Qhumorer
fossil pyeekice. humorer ;'in in aedaradd
ircans fosSil PR lth radurzad arrive discard
I e U’\Wf

. natural e '
NIRRT~ | computer U L

Vhumorer (A,\Q humorer arrive <s—e~~ natural
(Q)ﬁs/@ like xndreaf practic C4];J\D humoretfhe (N[w_

ce

th .
computerﬁézafz WJeleice U~ hcorone- humorer

Handwriting Recognition and Verification

A Hidden Markov Approach

The cover picture symbolizes the essence of the current thesis: the processing of handwrit-
ing and the investigation of how to translate handwritten text to ASCII text.

Handwriting Recognition and Verification
A Hidden Markov Approach

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van

de Rector Magnificus, prof.dr. M. Rem, voor

een commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen op vrijdag
20 november 1998 om 16.00 uur

door
Jannes Gijsbertus Arnoldus Dolfing

geboren te Amersfoort

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. E.H.L. Aarts
en
prof.dr. J. Wessels

Copromotor: dr. R. Hib-Umbach

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Dolfing, Jannes Gijsbertus Arnoldus

Handwriting Recognition and Verification: A Hidden Markov Approach

Jannes Gijsbertus Arnoldus Dolfing. -

Eindhoven: Eindhoven University of Technology

Thesis Eindhoven. - With index, ref. - With summary in Dutch

ISBN 90-74445-38-1

Subject headings: pattern recognition, handwriting recognition, signature
verification, on-line handwriting, hidden Markov model, feature extraction,
biometrics.

The work described in this thesis has been carried out at the Philips Research Labo-
ratories in Eindhoven, the Netherlands, as part of the Philips Research programme.

© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is
prohibited without the written consent of the copyright owner.

Preface

When I received my computer science degree, the question arose whether to pursue
a Ph.D. degree at the university or to join a company. This was resolved quickly
when the opportunity came to join the Philips Nat.Lab. However, the idea of getting
a Ph.D. was revived and I had the opportunity to combine the best-of-both-worlds.

Over the years, I have worked with numerous people without whom this work
would not have been possible. Therefore, I would like to express my gratitude
towards them.

First of all, I would like to thank Emile Aarts for his support and encourage-
ment in the process of doing research and writing this thesis. Our stimulating
discussions resulted in new ideas and approaches and generally learned me a lot
about the nature of research.

Next, I would like to thank Arne Duwaer. His constant support and the PAID
tablets were two important factors in the success of this work.

Further, I would like to thank Reinhold Hib-Umbach who learned me a lot
about speech recognition techniques.

I'am also grateful to the people that are or have been involved in the PAID and
ROSE project, in particular to Walter Slegers, who shared an office with me for
the past five years, and Anita, Gert-Jan, Kofi, Paul, Rudi, Pieter, Koos and Peter. I
also thank Marco van Oosterhout, for his contributions to the signature verification
work, the document examiners of the National Forensic Laboratory in Rijswijk,
the ‘Algoritmen Club’ and all persons who contributed handwriting and signature
samples.

In addition to the involved people, I would like to thank the management of
Philips Research, in particular the department NB&SP, for giving me the opportu-
nity to carry out the research described in this thesis.

Finally, I would like to thank my family and friends for their continuing support
and interest in my work.

Eindhoven, November 1998 Hans J.G.A. Dolfing

iii

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

On-line handwriting recognition and verification
Informal description of the problem
Design philosophy
Relatedwork
Thesisoutline

2 A Conceptual Model of Handwriting

21
22
2.3
2.4
25

Properties
Generation.
Reading
Acquisition
Representation

3 A Theory of Hidden Markov Models

3.1
3.2
33
34
3.5
3.6
3.7

Markov Models

Training
Advanced topics Lo
Problem Definition

4 Handwriting recognition

4.1
4.2
4.3
4.4

Representation
Models e
Algorithmicaspects
Experimental framework

5 Recognition Experiments

5.1

Data

O 3 O\ N =

vi Contents

5.3 Character recognition 95
54 Wordrecognition 111
5.5 Sentence Recognition 124
6 Signature Verification 129
6.1 Introduction 130
6.2 Representation, 137
6.3 Model 144
7 Verification Experiments 149
71 Data e 150
72 Parameters. 152
73 EBxperiments 153
7.4 Discussion 171
8 Conclusion 173
Bibliography 177
Author Index 190
Subject Index 195
Samenvatting 198

Curriculum Vitae 199

1

Introduction

This thesis is concerned with the problem of handwriting recognition and verifica-
tion based on hidden Markov models. Within the scope of improving man-machine
interfaces, we investigate the potentials of novel hardware and software features.
The general idea underlying our studies is based on the belief that man-machine
interaction can be improved by departing from a situation in which the machine
adapts to the user rather than the user to the machine.

Handwriting is only one form of communication among people. Others are
speech, sign language and non-verbal communication like facial expressions. In
comparison to handwriting, speech has a more temporary character. In this the-
sis, we focus on handwriting processing in contrast to processing typed or printed
text, which is called optical character recognition (OCR). Historically, handwriting
has been used for more than 2000 years to permanently record messages. Many
cultures have developed their own symbols and spoken words which has lead to
a situation today where handwriting is expressed in culturally dependent symbols
and writing direction. Example symbol types are shown in Figure 1.1 and include
Chinese, Kanji (Japanese), Hangul (Korean), Arabic, Cyrillic, Latin. Examples of
different writing directions are Kanji which is written top-to-bottom, Arabic which
is written right-to-left and Latin which is written left-to-right. The Egyptian hi-
eroglyphs demonstrate that a combination of left-to-right and right-to-left is also
possible.

Se ’%{T Q’:IZ” m W CREE ST WY

24

7
[

S S P
i

Qﬁ"ﬂ/ﬁi}?ﬁ?‘} (;wa\s}ﬂiuo&
) ¥—U1VO’:1"‘.‘ e s
DN IG 2) JQ_ Yf}o}vfs

Figure 1.1. Collected handwriting samples from several cultures. The text is
‘Happy New Year’ in several alphabets and languages. From left-to-right and top-
to-bottom we have Japanese, Hindi, Arabic (Maroc), Cyrillic (cursive style), Latin
(Dutch), Chinese (Xing Shu, cursive), Latin (Norwegian, cursive), Thai, Greek,
and Hebrew.

AR
Qe NIy

Handwritten signatures have been used for centuries for identifying the writer of a
letter. Most signatures are legible, but some have been transformed into an illegible
personal symbol. Nowadays, some countries, such as the US or Japan, have strict
requirements regarding signature legibility. In the case of European signatures,
however, the written name is often distorted into a symbol-like signature.

Handwriting and speech have largely complementary properties. While speech
is used for fast communication, handwriting is used for personal note-taking. This
is reflected in the types of application in which speech recognition is used in di-
alogue systems and dictation while handwriting recognition is used in electronic
agendas for instance. Signatures are used in banking to authorize checks. It is
possible to enhance automatic teller machines (ATMs) to use signatures instead of
or in combination with PIN codes for authorization. Signatures are also used in
combination with credit card transactions. The algorithms and hardware discussed
in this thesis offer a possibility to check the written signatures more accurately. An
improved signature verification procedure can be used to attack the annual $1.3
billion credit card fraud [Port, 1996].

1.1 On-line handwriting recognition and verification

On-line handwriting processing with the use of a transparent digitizer is a central
topic in this thesis. We divide the processing of on-line handwriting into handwrit-

1.1 On-line handwriting recognition and verification 3

ing recognition and verification. Handwriting recognition is loosely defined as the
task which converts handwritten text to a computer readable form like ASCII text
whereas handwriting verification denotes the task of using a piece of handwriting
to verify the identity of a writer.

We discriminate between on-line and off-line handwriting processing on the
basis of the available information about the writing process which depends on
the recording technique. In off-line handwriting processing, the handwriting is
recorded such that only the static image of the handwriting is available. In on-line
handwriting processing, not only the static image is recorded but also the temporal
and dynamic information like pressure and pen-inclination. Examples are writing
on paper which provides the input for off-line handwriting processing and writ-
ing on a special device, a digitizer, which forms the input for on-line handwriting
processing.

We discriminate between opaque and transparent digitizers. Opaque digitizers
sample the handwriting and show the image on a separate monitor. In the case
of transparent digitizers, the writing is done on the display itself. Such a setup is
sometimes referred to as electronic paper because the electronic ink appears under
the pen tip almost as with real pen and paper.

Figure 1.2. Left: writing on paper. Right: writing on transparent digitizer.

The on-line recorded handwriting contains temporal information due to regular
sampling with up to 200 points per second (pps) depending on the digitizer and
contains information about the temporal order of pen strokes. In addition, the
sampling often includes pressure and tilt information for each sampled point where
tilt or pen-inclination is the angle of the pen relative to the digitizer surface.

The digitizer will normally convert the handwriting in a regular stream of (x, y)
coordinates, which is processed by a computer. At Philips Research, a special IC
is used to digitize the handwriting in an equidistant stream of (x,y, pressure, tilt)
information [Duwaer, 1993], which enables us to explore the use of the additional
dynamic information about the writing process.

The handwriting recognition is executed by analyzing the handwriting, extract-

AR IR RN

. A . .
. . .
.
. * .
. .on .
‘. s B % K R A
.’ e 2 . L - & R .
R " : [
. J B . B k
. S e H 9 . %ee® .o ’. s i .
e Yk S ogye® 3 0% ; .®
‘et AR 00t . o0 ye® .
CPYd * on®

Figure 1.3. The word ‘welcome’ sampled equidistant in time. Larger dots in-
dicate higher pressure. Left: sampled as (x,y) coordinates. Right: sampled as
(%, y, pressure) coordinates.

.,'OO|,~

ing the information and presenting it in computer readable form. This process
highly depends on the used language and symbols. Because we know that reading
our own handwriting is often easier than reading other handwritings, we discrimi-
nate between writer-dependent and writer-independent recognition.

Since the objective is to impose few limitations on the writer’s handwriting,
we have to deal with different writing styles. In the order of increasingly difficult
recognition, we have, prior of all, boxed input style, where boxes are provided in
which the user can place the characters. This is common in the completion of
forms. In the absence of boxes, we speak of printed style, which is a sequence
of discrete characters. When the discrete characters start overlapping, we call the
style run-on. The next stage is when all the characters of a word are connected
which is known as cursive or connected handwriting. The most common type of
handwriting is a mix of printed and cursive, which is called mixed or unconstrained

style.

1.1.1 Handwriting properties

Although the purpose of handwriting is to convey written messages, this does not
mean that the handwriting interpretation is unique. Often, parts of a handwritten
text are difficult to read. An example is the infamous doctor’s prescription. The
reason for the difficult interpretation is not only an unclear handwriting but also
because handwriting is inherently variable and ambiguous.

Variability is one of the most challenging problems. No two persons will ever
write the same character exactly the same way. For any Latin character, several
different shapes are used, e.g., ‘a’ and ‘a’. These different appearances are called
allographs. In addition, personal variations change the character appearance.

Ambiguity is the problem which prevents a 100% accurate recognition of hand-
writing. Characters of the same shape may have different meanings dependent on
the context. For example, a small circle can be interpreted as a lowercase ‘0’, an
uppercase ‘O’, a degree symbol ‘°’, a dot on an ‘i’ or even a full stop.

1.1 On-line handwriting recognition and verification 5

Ligatures are connections between two characters. They are another source of
confusion because it is possible to connect two characters in such a way that the
combination resembles another character. An example is the word ‘in’, which
resembles an ‘m’ written in cursive style when the dot on the ‘i’ is omitted.

Overspecification is the problem that parts of handwriting, especially of cursive
words, may be interpreted as characters which are not a part of the word. An
example is the word ‘and’, where the vertical bar of the ‘d’ may be interpreted as
an ‘I’

Temporal information contained in the sampled handwriting is often helpful
to interpret the handwriting but causes extra problems in other cases. Temporal
information allows us to discriminate clockwise and anti-clockwise circles in on-
line handwriting. As we will see, this is useful in signature verification, but less
appropriate in handwriting recognition, where an ‘0’ remains an ‘o’ regardless of
the writing direction.

Delayed strokes are another issue. Because we know the timing, we can see
whether the dots on the ‘i’s in the word ‘minimum’ were put on the ‘i’s immediately
after writing the body of the ‘i’s or after the word was completed. In the latter case,
the dots are called ‘delayed strokes’. Other examples of potential delayed strokes
are the dot on a ‘j” or the horizontal bar of a ‘t’.

In the case of writing on paper (off-line), the delayed strokes are not important
because the image of a word does not show us the order in which the composing
strokes were put on paper. In on-line handwriting it is a problem because we ex-
pect to find the character data in one piece and not split into body parts and dots.
Therefore, delayed strokes in handwriting are a kind of discontinuity. In spoken
language, this problem does not occur since speech is continuous in time.

1.1.2 Signatures

Handwriting can be used to identify individuals and verify claimed identities. In
this study, we concentrate on signature verification because signatures have been
an accepted mean of identification for hundreds of years, as demonstrated by the
examples in Figure 1.4 from a book by Martinet [1790].

Identification means that one of several possible identities is chosen as the cor-
rect one. Verification is the process in which we examine a given identity as result
of which the identity is either accepted or rejected. Abraham, Dolan, Double &
Stevens [1991] explained that verification is possible based on knowledge, posses-
sion of a key or a characteristic. There is a whole set of personal characteristics,
often defined as biometrics, which can be used for the purpose of identification or
verification. This includes fingerprints, eye-retina, DNA but also handwriting and
specifically signatures [Miller, 1994]. Therefore, it is no coincidence that these
characteristics are used in forensic science in attempts to solve criminal cases.

Table 1.1. Qualities of the different biometrics.

Biometric Reliability | Acceptability | Cost
Fingerprint 4 3 2
Hand geometry 3 4 3
Eye retina 5 2 1
Iris 5 2 2
Face 3 4 3
Voice 3 5 3
Handwriting 2 4 4
Keystroke 1 4 5
Signature 3 5 4

Table 1.1 presents an attempt to relate a number of biometric properties on a five
point scale. To obtain these figures, we used the discussions by Miller [1994]
and Fairhurst, Cowley & Sweeney [1994] in combination with our opinion about
the biometric properties under consideration. The reliability scores the robustness
against fraud. Acceptability is a (psychological) score to indicate the willingness
of general public to accept the use of such a biometric property. The best score
for reliability and acceptability is five. Cost indicates the manufacturing cost based
on the components where five indicates low cost. Although storage of biometric
templates is another design criterion, it has not been included in Table 1.1 because
the used techniques and algorithms heavily effect the storage requirements.

- ’H-,rl‘ CRT A
{ = w
//a/

"/

Figure 1.4. Ancient signatures. Left: M. de Ruijter (1613). Right: J.van Olde-
barneveld (1599).

1.2 Informal description of the problem

We concentrate on on-line handwriting recognition and verification which are two
related aspects of on-line handwriting processing. Both on-line recognition and
verification use the same input, i.e., digitized handwriting. Although the input is
the same, on-line recognition and verification are two different types of pattern
recognition problems which is why we derive two problem descriptions.

With respect to on-line handwriting recognition, we concentrate on the recog-

1.3 Design philosophy 7

nition of Latin character sequences resulting in ASCII text. An example is the
Dutch version of ‘Happy new year” in Figure 1.1. We do not impose constraints on
the writing style which is why the use of context is essential in this approach.

First, we aim at the minimization of the writer-independent error rate for un-
constrained handwriting recognition. We emphasize writer-independent recogni-
tion because it has more practical importance than writer-dependent recognition.
Further, we concentrate on recognition performance rather than speed since a poor
recognition performance cannot be compensated by speed.

Next, we require the on-line handwriting recognition system to be generic and
scalable. Generic in the sense that we want to recognize characters, words and
sentences with a single system. Scalable in the sense that the size of the written
text should have no effect on its recognition.

These objectives lead to the following problem description: given a set of Latin
character models, context and a sampled handwriting as a sequence of x and y co-
ordinates, how do we compute the sequence of characters, words, sentences which
is the most likely interpretation independent of writer, size and style?

With respect to on-line handwriting verification, we concentrate on signature
verification because signatures are a widely accepted biometric property useful for
identification and verification.

First, we aim at making the verification system secure against impostors. We
assume that there is a given identity which has to be checked against the written
signature. Second, signature verification is used for different purposes with differ-
ent security measurements. Therefore, we have to balance the security requirement
against the rejection of genuine signatures because users don’t like to be refused
access without obvious reason.

These objectives lead to the following description of the signature verification
problem: given a sampled handwritten signature as a stream of (x, y, pressure, tilt)
coordinates, how do we exploit the extra dynamic data to minimize the vulnerabil-
ity with respect to accidental and deliberate, professional forgers, i.e., to minimize
the risk of false acceptance and false rejection?

1.3 Design philosophy

To solve the problems described in the previous section, we employ stochastic clas-
sification techniques. Our approach uses the Bayesian decision rule for minimum
error rate, discussed in Chapter 3, and is implemented with the hidden Markov
model (HMM) as a model for both handwriting recognition and verification.
There are a number of reasons to use hidden Markov models. First, these mod-
els are very suitable to recognize input signals with varying time-flow. Second,
hidden Markov models are the most common and successful techniques in (con-

tinuous) speech recognition. Because handwriting and speech signals are compa-
rable in the sense that they are both mostly continuous in time, we can most likely
employ the hidden Markov models with similar success as in speech recognition.
Based on the same argument and the fact that hidden Markov models have also
proven their feasibility for speech verification, we expect that we can employ hid-
den Markov models also successfully in signature verification. Third, the use of
hidden Markov models to classify handwriting and speech input opens an opportu-
nity to combine both handwriting and speech processing in one classifier system.
Finally, the use of the Bayesian decision rule implemented with the hidden Markov
model allows us to simultaneously combine all knowledge sources, especially the
handwriting models and context knowledge, into the classification process.

The above reasons are important because we have learned in the past that suc-
cessful handwriting recognition emphasizes the use of context in handling ambi-
guities, avoids preliminary segmentations and controls the inherent ambiguity of
handwriting by delaying the decision on the interpretation for as long as possible.
Similar lessons have been learned in speech recognition. Therefore, we employ
speech recognition techniques also in handwriting recognition including the use of
a robust, statistical model with data-driven training and implicit segmentations.

We propose a system architecture as shown in Figure 1.5 which contains several
independent parts that are handwriting representation, model, classification and
context.

Input

Output

Figure 1.5. System architecture.

Representation. The interface between the sampled handwriting and the hidden
Markov model is the representation, which has to catch the handwriting’s char-
acteristics in order to achieve successful processing. It is obvious that different
characteristics are important for recognition and verification. Since the recognition
should be writer-independent, the representation is designed to discard irrelevant

1.4 Related work 9

personal differences. In contrast, the verification process exploits personal vari-
ations which have to be modeled in the representation. Nevertheless, the model
and the search algorithm should be able to handle both representation types. The
handwriting characteristics are discussed in detail in Chapter 2.

Model. The hidden Markov model should be able to describe parts of handwrit-
ing such as characters and signatures. Although a signature can probably be treated
in one piece, a handwritten text is a sequence of characters of unknown length.
Therefore, we have to choose the unit to be modeled, e.g., character part, character
or word.

Classification. The classification involves the construction of a problem space
which is searched for the best solution. An effective search algorithm is important
because the number of handwriting interpretations may be huge. This is because
handwriting is highly ambiguous as already explained above. A sequence of am-
biguous characters forbids any preliminary interpretation. The decision regarding
the identity of the handwriting is delayed until we have enough information to be
reasonably sure. The consequence of this approach of delayed decision is to con-
sider many interpretations (hypotheses) at the same time.

Real-time recognition is also useful. This means that the recognition results
should be available as soon as the writing stops. Since it is not possible to say
in advance when the writing will stop, the classification will have to maintain hy-
potheses during each step of the writing process.

Context. Context is the information which provides clues for the correct inter-
pretation of handwriting in addition to the handwriting itself. Typical contexts are
a dictionary and grammar. A dictionary contains all character sequences which
make up a legal word while a grammar tells us which word sequences are allowed
or likely. Such information is essential because it limits the possible number of
interpretations and guides the search process to a correct solution.

1.4 Related work

We start this section with an outline of the handwriting recognition field by pre-
senting a number of overview articles of handwriting recognition, together with
related techniques like digitizers and language modeling. Then we concentrate on
the literature of handwriting recognition in general in Subsection 1.4.1 followed
by handwriting recognition based on hidden Markov models in Subsection 1.4.2.
We conclude with Subsection 1.4.3 which contains literature related to signature
verification based on hidden Markov models.

First of all, Tappert, Suen & Wakahara [1990] give an excellent overview of

10

the state-of-the-art in handwriting recognition technology. Plamondon & Lorette
[1989] and Leclerc & Plamondon [1994] give similar reviews of the state-of-the-
art in signature verification technology. Suen, Berthod & Mori [1980] and Mori,
Yamamoto & Yasuda [1984] concentrate on the state-of-the-art in character recog-
nition. Finally, Mori, Suen & Yamamoto [1992] give a survey of the related field
of optical character recognition.

The hardware used in on-line handwriting recognition to digitize the handwrit-
ing is very important. Ward & Schultz [1993] and Quinnell [1995] discuss the
properties and techniques used in a digitizer. Tappert, Fox, Kim, Levy & Zimmer-
man [1986] discuss general hardware requirements for handwriting recognition on
transparent tablets. A recent development is that a number of handwriting recogni-
tion approaches have learned from speech recognition techniques especially those
based on hidden Markov models. Rabiner & Juang [1993] and Lee [1989] discuss
in depth speech recognition technology based on hidden Markov models.

Language models are used to exploit the language structure as recognition con-
text in order to minimize ambiguity. The original study of Shannon [1951] studied
the information content of the English language. One of the results of this study
is that the English language contains lots of redundant information. Estimated is
50% redundant, i.e., that a sequence of characters reduces the information context
of the next character by 50%. The study by Witten & Bell [1990] is an excellent ex-
ample of a study on the information content of character and word-based language
models.

In the past, baseline studies on human reading performance have been con-
ducted to find out what kind of performance is realistic for handwriting recognition
systems. Edelman, Flash & Ullman [1990] studied human reading performance
without context as described in the following quote

“In comparison, people recognize correctly 96.8% of handprinted
characters [Neisser and Weene 1960], 95.6% of discretized handwrit-
ing [Suen 1983] and about 72% of cursive strings (see [Edelman 1988]
appendix 1)”.

1.4.1 Handwriting Recognition

During the last decades, numerous techniques and models have been developed
to recognize handwritten text. These techniques can be compared on basis of the
following issues: image type (on-line or off-line), data type (characters, words or
sentences), style (boxed input, printed, cursive or mixed), culture (Latin, Kanji,
Chinese, etc) and context (character context, language models).

Although we concentrate on on-line recognition, it is useful to compare this
with off-line recognition techniques as discussed in Senior [1994]. Specific ex-

1.4 Related work . 11

amples are presented by Simon [1992], Bozinovic & Srihari [1989], Guberman
& Rozentsveig [1976], and Kovalevsky [1980]. Simon [1992] discusses off-line
word recognition based on regular and singular features where the shortest path
from left to right through the handwritten word, i.e., the axis, is the regular part
while the singular parts constitute of the complementary parts. Bozinovic & Sri-
hari [1989] discuss an off-line handwriting recognition system based on hierar-
chical techniques and heuristics including the detection of segmentation points to
split a word in its composing characters. Guberman & Rozentsveig [1976] dis-
cuss heuristics to retrieve the order of pen-strokes from the image of handwritten
text. Kovalevsky [1980] discusses dynamic programming [Bellman, 1957] and
correlation techniques to recognize isolated typed characters, isolated handprinted
characters and sequences of typed characters.

Handwriting is used for producing text, but also other symbols. While Ru-
bine [1991] explores the recognition of handwriting gestures, Leedham [1990] dis-
cusses the recognition of shorthand symbols. Wolman [1992] and Sicard [1992]
give examples of the recognition of handwritten and printed music recognition,
respectively. Winkler & Lang [1996] explore an approach to the recognition of
handwritten, mathematical symbol expressions based on hidden Markov models.

Both statistical and structural approaches are explored for character recogni-
tion. Guyon, Albrecht, LeCun, Denker & Hubbard [1991], Le Cun [1990], and
Le Cun [1993] discuss character recognition based on statistical pattern recog-
nition like neural networks. Guyon, Vapnik, Boser, Bottou & Solla [1992] ex-
plore the use of structural risk minimization for character recognition. Examples
of structural pattern recognition approaches to handwriting recognition are given
by Ali & Pavlidis [1977], who demonstrate a digit recognizer, and Stallings [1977]
who explores the use of a formal model of the picture of a Chinese character.

Word-based recognition approaches for discrete type handwriting is discussed
by Fujisaki, Chefalas, Kim, Tappert & Wolf [1991] and Fujisaki, Beigi, Tappert,
Ukelson & Wolf [1992], who use elastic matching for basic character recognition.
Weissman, Schenkel, Guyon, Nohl & Henderson [1994] discuss the recognition
of handprinted words and use a time delay neural network (TDNN) for character
matching. Seni, Srihari & Nasrabadi [1994] demonstrate another TDNN-based ap-
proach to on-line, cursive word recognition. Schomaker [1993], Boes, Fogaroli,
Maslin, Keil & Whitrow [1990], and Wright [1990] present examples of the recog-
nition of cursive, mixed or unconstrained handwriting. Other approaches based on
hidden Markov models and neural networks are discussed later.

An example of statistical language modeling for handwriting recognition is
given by Guyon & Pereira [1995], who explore a character-based language model
with variable context size. A different approach to context modeling is demon-
strated by Evett, Wells, Keenan, Rose & Whitrow [1992].

12

1.4.2 Recognition based on hidden Markov models

Starting with the work of Jelinek [1976] and Bahl, Jelinek & Mercer [1983], hid-
den Markov models are well established in speech recognition and have recently
gained attention in handwriting recognition. An early example of work in this field
is presented by Nag, Wong & Fallside [1986]. A unified system for speech and
handwriting recognition is described by Kaltenmeier, Class, Regel-Brietzmann,
Caesar, Gloger & Mandler [1993], where hidden Markov models are used to rec-
ognize speech and off-line, handwritten words on postcards. Bose & Kuo [1992]
describes the use of hidden Markov models in an OCR system. Winkler [1996]
discusses the recognition of handwritten mathematical symbols. On the hardware
side, Glinski [1987] discusses a dedicated processor for pattern recognition based
on hidden Markov models.

Bellegarda, Nathan, Nahamoo & Bellegarda [1993] and Bellegarda, Belle-
garda, Nahamoo & Nathan [1994] discuss on-line character recognition based on
hidden Markov models. They use continuous hidden Markov models to model
characters. One or more states per character are used to tradeoff performance and
speed. Kim & Park [1996] show an example of off-line, Korean character recogni-
tion.

Unconstrained, on-line word recognition based on hidden Markov models are
reported by Nathan, Beigi, Subrahmonia, Clary & Maruyama [1995] and Dolfing
& Haeb-Umbach [1997]. While Nathan et al. [1995] use a two-stage search where
the first stage reduces dictionary size, Dolfing and Haeb-Umbach [1997] employ
a one-stage search. Starner, Makhoul, Schwartz & Chou [1994] discuss on-line,
handwritten sentence recognition with a speech recognition system.

Similar recognition systems for word recognition based on speech recogni-
tion techniques and time delay neural networks are discussed by Manke & Boden-
hausen [1994], Manke, Finke & Waibel [1995] and Schenkel, Guyon & Henderson
[1994]. Seiler, Schenkel & Eggimann [1996] explore different representations on
the same data to compare off-line and on-line handwriting recognition.

Off-line recognition systems based on hidden Markov models are discussed by
Cho, Lee & Kim [1995], Bunke, Roth & Schukat-Talamazinni [1995], and Oh, Ha
& Kim [1995]. Cho et al. [1995] emphasize the use of ligature models in the word
model and achieves up to 71% correct words with a dictionary containing 10,000
words. Bunke et al. [1995] explore off-line recognition with cooperative writers
and a small vocabulary of 150 words and achieved 98% correct answers. Other
off-line word recognition work has been done by Kundu, He & Bahl [1989], Chen,
Kundu & Zhou [1992], He, Chen & Kundu [1992], and Kundu & Bahl [1988].

Various recent publications discuss details of on-line handwriting recognition
with hidden Markov models. Ratzlaff et al. [1996] and Manke et al. [1996] dis-

1.4 Related work 13

cuss improvements on efficient search techniques. Beigi et al. [1994] and Dolfing
& Haeb-Umbach [1997] discuss size normalization in a hidden Markov model con-
text. Bellegarda et al. [1995] explore modeling issues like the difference between
discrete and continuous hidden Markov models while Senior, Nathan & Subrah-
monia [1996] explore duration modeling. Instead of a writer-independent system
as discussed by Nathan et al. [1995], Subrahmonia et al. [1996] discuss a writer-
dependent recognition system. Finally, Dolfing [1998] compares the benefits of
ligature models and contextual character models in a writer-independent hidden
Markov model context while Kosmala, Rottland & Rigoll [1997] investigate con-
textual character models in a writer-dependent experiment.

1.4.3 Signature Verification

There are only few studies of signature verification based on hidden Markov mod-
els. Among these we mention the studies by Yang [1995], Yang, Widjaja & Prasad
[1995], and Paulik & Mohankrishnan [1993]. More general statistical models for
signature verification are explored by Hastie, Kishon, Clark & Fan [1991] and also
Clark, Hastie & Kishon [1990)].

In contrast to the few studies of hidden Markov model based signature verifica-
tion, there is a fair amount of literature on speaker verification with hidden Markov
models. Naik [1990] and also Naik [1994] give overviews of speaker verification.
Jacobs & Setlur [1994] and Naik, Netsch & Doddington [1989] demonstrate spe-
cific studies on speaker verification with hidden Markov models. These studies
include comparisons of dynamic time warping (DTW) and approaches based on
hidden Markov models.

1.4.4 Consequences

The previous sections have demonstrated that a number of handwriting recognition
and verification systems based on hidden Markov models have been investigated.
However, the character and word error rates of on-line handwriting recognition
for mixed-style and unconstrained handwriting input using a very large vocabu-
lary is still not satisfactory. Therefore, this thesis concentrates on minimizing the
character and word error rates in the context of the recognition of handwritten
characters, words and sentences. The approach is to integrate additional context
and handwriting-specific knowledge into the representation and model. In partic-
ular, we extend the representation with ‘contextual features’, investigate the com-
bination with delta features, and investigate and compare size-independent with
size-dependent representations.

The previous sections also showed that there are few studies on signature verifi-
cation based on hidden Markov models. In this thesis, the minimization of the veri-
fication error rate is most important. Our signature verification study demonstrates

14

that even professional forgers can hardly break the system. The study contributes
a robust, time-normalized scoring technique, investigates a novel way of determin-
ing writer-specific thresholds, and investigates the use of pen-tilt, pressure, and
contextual features in the representation.

1.5 Thesis outline

The main objective of the present thesis is to study the recognition and verifica-
tion of on-line handwriting by employing hidden Markov models. This leads to
an approach where we study handwriting recognition with the goal of including
handwriting-specific and contextual knowledge to improve recognition and verifi-
cation. Therefore, we discuss the properties of handwriting in Chapter 2, followed
by a corresponding mathematical framework presented in Chapter 3. Chapter 4
discusses techniques to integrate knowledge of handwriting into representation and
model using the novel framework of ‘contextual features’, the common contextual
hidden Markov models and other techniques. The use of handwriting for verifi-
cation purposes is explored in Chapter 6. The issue of ‘vulnerability to forgers’
is explored and novel hardware and software is exploited to attack this problem.
The approach is based on digitizing hardware, which accurately samples not only
position and pressure but also pen-tilt, and hidden Markov models using contextual
features. The experimental results of recognition and verification are discussed in
Chapter 5 and 7, respectively. Finally, we present our conclusions in Chapter 8.

2

A Conceptual Model of Handwriting

This chapter discusses the properties and models of the reading and writing pro-
cess of handwriting in the context of man-machine interaction. The reason for
accumulating background knowledge about properties, concepts and models of
handwriting generation and reading is that successful handwriting processing is
only possible if the input, i.e., the handwriting, is thoroughly understood. In the
context of speech recognition, this is also recognized by Lee [1988] who identifies
four problems which hampered early speech recognition systems and which are
also relevant to handwriting processing. This chapter addresses two of the prob-
lems in particular which are the lack of knowledge of the invariants and properties
of speech and the lack of a good speech unit to model. These problems do not only
apply to speech recognition but also to handwriting processing.

At first, we present a number of basic handwriting properties in Section 2.1.
These properties originate in the process of handwriting generation which models
are discussed in Section 2.2. Next, we present a number of models for the human
reading process in Section 2.3. Because this thesis is concerned with on-line hand-
writing processing, we discuss the acquisition of handwriting with a digitizer de-
vice in Section 2.4 where the digitizer properties determine our perspective on the
handwriting. Finally, we discuss the representation of handwriting in Section 2.5
which provides a link to the mathematical model in Chapter 3.

15

16

2.1 Properties

This section discusses properties of handwriting in general in Subsection 2.1.1 and
signatures in particular in Subsection 2.1.2 which are exploited in a recognition or
verification task.

2.1.1 Handwriting properties

In elementary school, we have learned how to write. Depending on the country
and the amount of training, handwriting develops differently from person to per-
son because we start customizing our handwriting. Despite the variations, we can
read other people’s handwriting because the basic characteristics are the same. In-
tuitively, we can identify the following general properties:

e The handwriting of each individual is unique.

Although every handwriting is unique, we are able to read the majority of other
people’s handwriting written with the same character set. Because each individual
is unique, an individual’s neural and muscle system is also unique which makes
the handwriting generated by that individual unique. In addition, each individual
has a different history and experience which also affects the handwriting style.
Handwriting examples which show this variability are shown in Figure 2.1.

Ceadp SRfCe =]

CroftC Cza%%&?
cott

(I C T o FC(QQE

va\](f c

Figure 2.1. Inter-person handwriting variability.

2.1 Properties 17

e The handwriting of each individual is not consistent.

The handwriting of an individual varies in time. All written characters are some-
what different. Apart from small differences, some persons use several styles for
the same characters, e.g., a mix of cursive and discrete style. The fact that it is
not possible to exactly reproduce a piece of handwriting is an important feature in
signature verification. If a signature is exactly the same as another original, some
form of artificial reproduction has occurred.

Handwriting also varies as a result of writing speed. A rule of thumb is: the
faster the writing, the less readable it is. In extreme cases, the handwritten scribbles
are legible only to the writer himself because he is the only one who knows the
context necessary to decipher the scribbles.

o The type of handwriting depends on nationality.

Although the Latin character set is used to write in a lot of different countries, the
handwriting techniques and styles taught at elementary school are not always the
same. An example is given in Figure 2.2, in which a common Dutch and a French
‘8> are compared. The different starting and end points are clearly visible.

Figure 2.2. The digit ‘8’. Left: Dutch style ‘8”. Right: French style ‘8’.

® The shape of handwriting depends on the neighboring characters.

Besides different nationalities as a source of character shape variation of isolated
characters, the character shapes also depend on the neighboring characters and the
ligatures between characters in a character sequence. This is especially true in the
case of cursive handwriting. Some countries tried to standardize these effects as
occurred in the Netherlands by introducing the standard NEN2296 [1958].
Because ligatures are absent between words, the inter-words contextual effects
on handwriting are minimal. This is an important difference with respect to speech
where the effect of co-articulation changes word boundaries between words.

¢ Handwriting is overspecified.

Given a piece of handwriting, especially cursive handwriting, a handwriting recog-
nition system is not always able to find the characters composing the word without
a-priori knowledge of the word content. In fact, random parts of a written word
without context can be interpreted in many ways.

18

Figure 2.3 shows an example of the handwritten word ‘and’. The complete word
has a unique interpretation. Most individuals recognize this word as ‘and’ without
problems. However, a recognition system which analyzes the word step-by-step
will test many parts of this word. Because these word parts are taken out of their
context, their interpretation is ambiguous. Figure 2.3 shows that certain parts of
‘and’ can be interpreted as an ‘i’ or ‘1’ character. The phenomenon that a word with
given interpretation and constituting characters can be interpreted in other ways and
other character sequences by splitting the word in a sequence of handwritten parts,
which are ambiguous if taken out of their context, is called overspecification.

Figure 2.3. Overspecified handwriting: ‘and” which also contains an ‘i’ and ‘I’
character.

2.1.2 Signatures

Signatures have been used for centuries as a mean of authentication on official
documents, and for signing papers and cheques. This subsection briefly discusses
a number of a-priori properties, in particular legibility and variability.

Legibility. The legibility and status of signatures is effected by a country and
its legal system. In North America, the law demands a signature to be a readable
version of the name. In Europe a personal symbol is often used for a signature,
but the fast writing of one’s name is also used. The personal symbol is usually
a symbolization of the name. Figure 2.4 shows an example of a European style
signature. Since a symbolic representation of a person’s name is often shorter than
the full name, the number of strokes and writing time is on the average shorter.

Sato & Kogure [1982] and Yoshimura, Kato, Matsuda & Yashimura [1991]
mention that Japanese and Chinese people are not used to writing a signature since
this is not part of their identification system. If necessary, they sign by writing their
name written in Kanji or Chinese characters, respectively. Illiterate people have a
problem when they are asked to write a signature, but they are sometimes allowed
to sign with a number of crosses.

Variability. [Plamondon & Lorette, 1990] discuss a number of reasons why a
signature shows inconsistencies. The age of an individual is important. Young

2.2 Generation 19

Figure 2.4. An illegible ‘European style’ signature.

people develop their own signature and the shape changes considerably over time.
In contrast, the signature of an adult undergo few changes. Fairhurst, Cowley &
Sweeney [1994] showed that the time of day influences the quality of a signature.
The mental state of an individual can modify the appearance of signatures and in-
crease their variability. It is known that some persons develop several different
versions of their own signature. If, for example they have to place their signature
often, they may use an abbreviated version of the signature or the initials only.
Physical conditions like illness, a broken arm, extreme fatigue, flue, alcohol, and
medication affect the writing process. A right-handed individual with a broken
right arm will have to sign left-handed, which results in a wriggly signature. Prac-
tical conditions like the writing position, the kind of pen and the writing surface
can affect a signature. The friction of the surface determines the pressure used for
writing. Marriage is another factor. Some women change their signature after mar-
riage from a signature based on their maiden name to one based on their husband’s
name, or to a combination of both.

2.2 Generation

After discussing basic properties and making some observations on handwriting,
we continue with a discussion of some current views and models on how hand-
writing is generated. This information provides valuable hints about the units of
writing. It may be possible to use a compact description of these units as repre-
sentation. The model of handwriting generation covers the whole process from
‘planning to write’ to ‘generate an ink trace’.

Handwriting is a learned process and not a trick that people can perform by in-
stinct. The motor program that controls handwriting is trained in years of intensive
practice at elementary and secondary schools. Handwriting is a sequence of pen
strokes accumulating to a sequence of scribbles, characters and words.

These strokes and scribbles are either pen-down or pen-up movements. A pen-
down movement is defined as the pen movement where the pen is placed on the
paper to generate an ink trace. This is in contrast to a pen-up movement, where the

20

pen moves above the paper. We assume that writing starts with a pen-down move-
ment followed by an alternating sequence of pen-up and pen-down movements.

In the literature, the term ‘stroke’ is often ambiguous because it is used to
describe both elementary writing units and complete pen-down movements. In this
thesis, we assume that a stroke is an elementary pen-down movement (to be defined
later in this section) and a scribble is equivalent to a complete pen-down movement
bounded by two pen-up movements. Therefore, a sequence of pen-down strokes
constitute a scribble. A sequence of scribbles accumulates to meaningful units such
as characters and words.

The term ‘unit’ is used to indicate a piece of handwriting like a stroke, scrib-
ble, character, or even word. The differences between these types of units is the
duration and boundary conditions of the handwriting movement.

Handwriting cannot be generated infinitely fast. In the past, Tappert, Suen &
Wakahara [1990] measured an average writing speed of about 1.5-2.5 English char-
acters per second and a peak rate of 5-10 characters per second for simple shapes.
Another result is that the down strokes of characters are more invariant than other
strokes. Thomassen & Van Galen [1996] measured about 100-150ms per basic
stroke which leads to 6-10 strokes per second. This corresponds with frequency
components of 3-5 Hz in handwriting. Indeed, a frequency analysis over a large
database of handwritings shows a small peak at SHz. The study by Worthington,
Chainer, Wilford & Gundersen [1985] on signatures finds a range of 2-12Hz con-
taining most action. Schomaker [1993] and Worthington et al. [1985] find that the
highest frequencies in handwriting are about 20Hz-30Hz. This bandwidth limita-
tion makes it possible to estimate a minimum sample frequency of 60pps, which is
an absolute minimum. Tappert et al. [1986] suggests at least 100pps as sampling
rate.

2.2.1 Motor models

Teulings & Schomaker [1992] consider fast handwriting as a ballistic movement
of the pen-tip, which is defined in general terms as a movement without any in-
stantaneous position feedback. Such movements are planned in advance and are
not interrupted once started. This means that the movement trajectory is defined at
the beginning of a stroke. Since planning such a movement requires a certain skill,
only a trained motor program can generate these movements. Other examples of
ballistic movements are piano playing, fast typewriting and riding on a bicycle.

There are several theories about the structure of a motor program. These motor
models fall into two categories, the top-down models and the bottom-up models
[Plamondon & Maarse, 1989].

According to Plamondon & Maarse [1989], the top-down approach is devel-
oped as a conceptual model for studying the application of the motor program to,

2.2 Generation 21

e.g., training and producing movement sequences. A black box contains the neural
actions and muscle and limb movements. In contrast, the bottom-up approach in-
cludes physical or mathematical models which explain and predict the production
of handwriting, i.e., the trajectory of the pen-tip.

The goals of the different motor models are the same because they try to ex-
plain how a ‘thought’ is translated into a spatial ink trace. This explanation should
include limits to the timing of strokes implying certain constraints on the velocity.

Plamondon & Maarse [1989] and Plamondon, Alimi, Yergeau & Leclerc
[1993] argue that bottom-up models can explain a number of handwriting char-
acteristics. Note that the bottom-up models are normally divided in two categories
[Plamondon & Maarse, 1989] which are dynamic models and kinematic models,
respectively.

While the dynamic models assume that there is a direct relation between the
writing trajectory and the properties of the neural and muscle systems, the kine-
matic models explain writing as a planned sequence of movements executed by the
muscle system of the hand. An interesting aspect of the kinematic models is that
they also explain why humans can write with their feet (after practice) or can write
with chalk on a blackboard.

The difference between these two models becomes obvious if we take a view
at the role of the muscles and limbs in the generation of handwriting. The dynamic
models assume that muscles and limbs cause the shape of handwriting while kine-
matic models assume that muscles and limbs are only a means or implementation
to produce handwriting. Below we discuss both models in more detail.

Dynamic models. The dynamic models include the classic example studied by
Hollerbach [1981], who models handwriting with a combined, orthogonal muscle
oscillation. Given the combined oscillation in x and y direction, a steady displace-
ment in x direction and frequency and phase differences, the handwriting shape
is modeled. The amplitude of the oscillations models the size of the handwriting,
This model is sometimes referred to as the oscillation model.

Another dynamic model is a hierarchical model for handwriting generation
which is discussed by Schomaker [1993] and Thomassen & Van Galen [1996]. In
short, it assumes that handwriting generation process includes

e the translation of a thought into a grammatical and lexical message;
e the translation of this message into a sequence of allographs;
e the conversion of allographs into commands for muscles and limbs.

The model proposed by Schomaker [1993] considers handwriting as a sequence of
basic strokes or segments and not as an oscillation. Evidence against an oscillation

22

model includes the fact that simple repeated patterns like ‘elele’ are difficult to
produce without errors for more than two seconds.

Kinematic models. Kinematic models have the convenient property that they
are invariant to starting point, inclination and size [Plamondon, Alimi, Yergeau &
Leclerc, 1993]. The kinematic models include the Delta LogNormal model [Guer-
fali & Plamondon, 1995], and the earlier LogNormal model [Plamondon, Alimi,
Yergeau & Leclerc, 1993]. The Deltal.ogNormal model describes handwriting as a
sequence of overlapping basic strokes. These basic strokes are modeled with only
four parameters which are start direction, relative length to previous stroke, cur-
vature and relative starting time. The basic strokes are similar to the stroke units
proposed by Schomaker [1993], except that the strokes in the study of Guerfali &
Plamondon [1995] are allowed to overlap. The Delta LogNormal explains not only
the shape of handwriting, but also the velocity profile of the pen-tip movement.

2.2.2 Consequences

Plamondon & Maarse [1989] concluded that velocity is an important parameter to
control the motor model in order to achieve the desired spatial output. They regard
handwriting as a sequence of basic strokes with minor activity at the beginning and
end of a stroke. The strokes are a natural unit-of-writing.

Little activity at stroke boundaries fits nicely with the proposal of Schomaker
[1993] and Teulings & Schomaker [1992] to take the zero crossings of the y veloc-
ity as basic stroke boundaries. Hollerbach [1981] notes that the point of y velocity
inversion is important because shape and amplitude manipulation at that point give
different corner shapes. Therefore, the points of y velocity inversion provide a
natural segmentation of handwriting into segments which is used to define a repre-
sentation in Section 2.5.

The fact that signatures are considered ‘fast handwriting” [Herbst & Liu, 1977]
is also important. In the context of motor models, this suggests that a signature is a
sequence of ballistic movements which is produced by a specifically trained motor
model. If such a highly trained motor model is necessary to produce a signature
then it will be very writer-dependent and hard to simulate.

2.3 Reading

Although the human reading process has been studied for more than 100 years,
there is no conclusive theory about how the recognition of words during the reading
process works exactly. Originally, two extreme views have dominated the research:
analytical theories which assume that the letters in a word induce a word image
which results in a recognized word and global theories that suggest that entire
words are recognized as a unit. There is evidence supporting both models [Taylor

2.4 Acquisition 23

& Taylor, 1983; Bouwhuis, 1979] which has led to the development of hybrid
models. A summary of views on off-line recognition is given by Senior [1994].

There is less controversy about the clues which are important in the reading
process. Basically, they are the visual clues derived from character and word shape
together with contextual clues. Bouma [1971] studied visual features in character
recognition and confusion. Taylor & Taylor [1983] indicate that the recognition of
complete words in reading is more important than that of single characters. They
even describe the reading process as a three-step process:

e complete words are processed in about 50-100ms;

e amore detailed analysis about 50ms after word presentation on a letter basis,
working from word boundaries towards the center of the word;

o a slow but complete one-by-one character scan.

Lexical and other contextual knowledge play an important role in the reading
process. More familiar words are recognized more easily than unknown words.
Bouwhuis [1979] extensively discusses word recognition theories, including some
models in which visual and contextual input is combined to recognize a word.

We conclude that context is of prime importance in correctly interpreting the
visual input during reading. The visual input of handwriting parts only is easily
confused.

2.4 Acquisition

This section discusses the conversion of handwriting into electronic signals. To
this end we discuss the properties of the employed digitizer and the nature of the
resulting handwriting signals.

24.1 Digitizer

Writing on paper results in an image. This image contains static information about
handwriting. The dynamic information such as pressure, tilt, and timing is lost.
However, forensic document examiners and document analysis software can derive
some timing information from the image only as explained by Doermann [1993]
and Guberman & Rozentsveig [1976]. This involves microscopic analysis of the
ink trace and knowledge about the usual order of pen strokes. If we write on
paper using a special instrumented stylus, both static and dynamic information
becomes available. An example by Crane & Ostrem [1983] shows the use of a
pen with displacement meters to measure the acceleration of the writing. Another
possibility is to use a digitizer tablet as a writing surface in order to collect the
dynamic information as explained in Section 1.1.

24

We employ a transparent digitizer for on-line handwriting processing. Our study
on handwriting recognition assumes that the digitizer samples a sequence of (x, y)
coordinates for all pen-down movements. The signature verification study ex-
plores the benefits of additional, writer-specific information like pressure and pen-
tilt. We assume that the input for the signature verification task is a sequence of
(x,y, pressure, tilt) coordinates for both pen-up and pen-down movements.

The transparent digitizer employed in this thesis is called PAID (Philips Ad-
vanced Interactive Display), which is a Philips proprietary tablet platform for cap-
turing handwriting and signatures [Duwaer, 1993]. PAID consists of an LCD plus
orthogonal sensors for pen and finger input sampling (x, y, pressure, tilt) with up to
200 pps and optional filtering. Pressure and tilt in x and y directions are measured
in 64 levels. Tilt measurements are only available for the pen input. This function-
ality is implemented with a sensor plate plus dedicated IC (UCA1000) [Quinnell,
1995], which translates pen and finger measurements into coordinates on the se-
rial bus. The tablet is connected via RS-232 port to a PC or workstation with
(Pen)Windows or Unix/X-Windows.

The spatial resolution of the PAID is 4096 times 4096 coordinates independent
of the actual tablet size. While the resolution indicates the minimum distance the
pen-tip has to move in order to generate a new coordinate, the accuracy denotes
the absolute difference between measured and actual position. Spatial accuracy on
an example transparent digitizer is 250um while the resolution is 4Qum.

The measured pressure is the axial pen force (APF) while the exerted pressure
is the normal pen force (NPF) as shown in Figure 2.5. If the pen is held horizontally
and the normal pen force is larger than zero then the axial pen force equals zero. If
the pen is held vertically then we measure the condition APF = NPF. We measure
the inclination or pen-tilt as two independent signals in x and y direction as shown
in Figure 2.5.

The sampled coordinate stream is equidistant in time and consists of tuples
(x,¥, p» 6%,6,) which contain the following data:

e x(t) the x-coordinate sampled at time ;

y(t) the y-coordinate sampled at time ;

p(t) the axial pen force at time ;

0.(¢) the pen-tilt mapped in the X-Z plane at time #;

0,(¢) the pen-tilt mapped in the Y-Z plane at time ¢.

It is possible to compute the first and second differentials of the (x,y) stream re-
sulting in velocity, acceleration, delta pressure and delta tilt measurements.

2.4 Acquisition 25

N

[

i < : - Pen

.................................

Figure 2.5. Left: Pen-pressure decomposition. Right: Pen-tilt decomposition.

2.42 Handwriting signals

A digitizer tablet enables us to collect different aspects of handwriting compared
with pen-and-paper handwriting only. Instead of the static image on paper, we can
measure a coordinate stream from which we can derive an approximation of the
usual static image. In addition, we can measure handwriting properties which are
normally not or hardly visible.

We briefly discuss the perception of handwriting through the eye of a trans-
parent digitizer. The digitizer perceives a number of measurable signals illustrated
with help of the handwritten word ‘and’.

Electronic Ink. The handwriting is sampled as a sequence of pairs of x and y
coordinates and appears on the display as ‘electronic ink’. Figure 2.6 shows the
written word in the form of the sampled coordinates only. The sample rate is about
120 pps. The usual static image of the word is obtained by interpolating between
the sampled points.

Figure 2.6. The sampled signal representing ‘and’.

26

Pen-up. One of the differences with respect to writing on paper is that the PAID
tablet samples continuously in time not only on the writing surface but also above
it. Therefore, not only the ink ‘on the paper’ is measured but also the movements
in an adjustable area of about 1 cm above the tablet are measured. The pen move-
ments which generate ink are called pen-down movements in contrast to the pen-up
movements above the tablet. An example is given in Figure 2.7 where the left im-
age shows only the points at which the pressure exceeded a certain threshold value.
This corresponds to the behavior of a normal pen which generates ink only if the
pressure is sufficiently high. The right image in Figure 2.7 also shows the move-
ment above the tablet. The pen-down scribbles are drawn in solid while the pen-up
part is dotted.

This type of measurement is used to find the ‘delayed-strokes’ as discussed
in Subsection 1.1.1. If these movements in the air are stable, they are a potential
source of extra information in a signature verification system.

Figure 2.7. The pen-up signal of the word ‘and’. Left: without pen-up samples.
Right: with pen-up samples.

Velocity. The velocity signal is obtained as the first derivative of the (x,y) signal.
Because the (x,y) sampling introduces quantization errors and spatial filters are
used to smooth the (x,y) signal, noise is introduced into the velocity signal, which
is smoothed with the aid of extra filters.

The velocity signal of the example word ‘and’ is plotted in Figure 2.8. The
velocity during the pen-up signal has been set to zero. The speed units on the
vertical axis in Figure 2.8 are [coordinates/sec] while the horizontal axis denotes
the sample numbers. To convert this speed to [cm/sec], the absolute dimensions of
the tablet are needed.

There is an obvious relation between long and short strokes with high and
low velocity, respectively. Also note that points of high curvature correspond to
points of low velocity. Important are the velocity inversions in the y direction. As
already mentioned in Section 2.2, the timing of these significant points inside the
handwriting signal is robust and can be used to obtain a natural segmentation of

2.4 Acquisition 27

Velocity —

0 20 40 60 80 100 120 140
Figure 2.8. The unfiltered velocity signal of ‘and’.

the handwriting [Schomaker, 1990]. Also remember that ballistic movements are
difficult to imitate, i.e., the velocity signal is difficult to imitate.

Pressure. The pressure signal of the example word is given in Figure 2.9 where
the pressure is plotted on the vertical axis and the sample number on the horizontal
axis. Pressure is measured in 64 levels which are linearly divided over a pressure
range of 200 gram. Alternatively, logarithmic pressure mapping is used.

60 ' ' ' ' Pressure
55
50
45
40
35
30 +
25
20
15 +
10
5 L
0

0 20 40 60 80 100 120 140

Figure 2.9. The unfiltered pressure signal of ‘and’.

When the pressure drops below an adjustable threshold, no ink is generated and
we assume that the pen is being lifted from the writing surface. This allows us to
differentiate pen-down and pen-up strokes.

Tilt. Figure 2.10 shows the signals for the pen-tilt in x and y direction. Basically,
pen-tilt or pen-inclination is the angle the pen makes with respect to the digitizer
surface as a result of the way the pen is held in the hand. The digitizer employed
in our experiments interleaves the sampling of tilt in x and y direction, which is the

28

reason that these two signals represent only half the (x,y) sampling speed. Tilt in x
and y direction have a range of [-90;90] degrees divided into 64 levels, where zero
corresponds to —90° and 63 to +90°.

Left- and right-handed people can easily be distinguished on the basis of this
information. If the tilt in x direction is in the range [0;31] we assume that the
writer is left-handed. In other cases, a right-handed writer is assumed. Since every
individual has a specific way of holding a pen, this is writer-dependent information
which is useful in the signature verification system.

- ' ' ‘ ‘ "Tiltx -]
gg - Tilty —— |
50 | '
45 M_
a0t)
35 [T e 0

30 f
25
20 |
15
10
5_
0

0 2 40 60 s 100 120 140
Figure 2.10. The unfiltered tilt signal of ‘and’.

2.5 Representation

The properties and models of handwriting presented in this chapter provide a
wealth of clues for successful handwriting recognition. In order to bridge the gap
between the conceptual model and the formal hidden Markov model that is pre-
sented in the next chapter, the handwriting is split into a sequence of units (see
Section 2.2) which are processed by the hidden Markov model. The representation
determines how the unit is defined.

The representation has to exploit a number of lessons learned in the previous
sections. Firstly, the statistical model processes a sequence of handwriting units.
Secondly, overspecification prevents early decisions on the identity of characters
and words. The final decision on the interpretation is postponed until all the rele-
vant information is available for interpretation. Thirdly, it is not possible to decide
beforehand, based on local handwriting clues, which characters are in the hand-
writing scribble sequence.

In the literature, the term segmentation is often used to describe the explicit
process of splitting the handwriting into a sequence of characters. In a recognition
system based on hidden Markov models, the segmentation is an implicit process of

2.5 Representation 29

the recognition where a time-alignment of the input data gives the assignment of
data parts to characters.

The preprocessing maps the sampled handwriting input to the actual represen-
tation in two steps: grouping or blocking followed by feature extraction. Overall,
this results in a sequence of units described by feature vectors O = 01, 02,..., 07,
which are processed by the hidden Markov model.

1. A sequence of adjacent samples is grouped into a processable unit. This pro-
cess is called grouping or blocking. A more general term for a handwriting
unit is an item.

2. To describe the set of grouped samples, a set of features is computed which
results in a feature extraction step which results in a feature vector represent-
ing a part of the handwriting.

Because the grouping process is similar for both recognition and verification, sev-
eral options are discussed here. In contrast to that, the feature extraction process
differs for recognition and verification which is why they are discussed separately
in the relevant chapters.

2.5.1 Grouping

The basic issues in selecting the most appropriate unit of writing as discussed in
Section 2.2 are resolution, information content, and invariance. The unit of hand-
writing is chosen depending on the application.

First, the number of samples in a unit is a result of a tradeoff between infor-
mation content and resolution. If we group only one or two samples in a unit then
the resolution is high and only few features are needed to accurately describe the
unit. If all data is grouped into one unit then the resolution is very low and all in-
formation is contained in one unit. An alternative way to improve the resolution is
to allow an overlap in time or space of the handwriting unit. A 50% spatial overlap
effectively doubles the resolution.

Second, it is important to realize that the grouping is influenced not only by the
number of samples per unit but also by the choice of the boundary points. Example
choices are a fixed number of points per unit or invariant boundary points according
to the velocity criteria in Subsection 2.2.2. Below we give a list of unit options with
increasing resolution and decreasing complexity.

e All handwriting samples are grouped and processed together. In the context
of signature verification, this is sometimes called the parametric approach.
A large number of features is necessary to describe the handwriting part
because the information content is high.

30

All samples of a pen-down or pen-up scribble are grouped together. For
some problems like signature verification this is a natural grouping. A disad-
vantage is that a pen-down scribble may be as large as a complete signature
which means that some scribbles represent most of the handwriting while
others are small and irrelevant.

All samples of pen-down or pen-up strokes are grouped together. This natu-
ral segmentation has been explained in Subsection 2.2.1. Strokes are smaller
than scribbles. They are also invariant and equally distributed over the whole
handwriting. Therefore, the number of features required to describe a stroke
is smaller compared to a scribble.

Alternatively, we can decide to group a fixed number of samples in a unit.
Such a unit is called a frame. If the sampling is continuous in time then the
unit covers a fixed time window. If the sampling is continuous in space then
the frames covers a fixed length of the handwriting.

If each unit contains only one sample then only few features are required to
describe the units. In the context of signature verification, the approach is
referred to as the functional approach.

3

A Theory of Hidden Markov Models

Pattern recognition is a classification process which assigns labels or categories
to objects of interest. These objects are generally called patterns. A decision
rule determines the label of a given input pattern. In some applications, the input
patterns come from a well-structured space whereas in other cases the input is
noisy and ambiguous. While humans perform a number of pattern classifications
(like handwriting recognition) almost effortless, machines often encounter serious
difficulties.

There are two fundamentally different approaches to pattern recognition: struc-
tural recognition and statistical recognition. The structural or syntactic approach
exploits the structure of an input pattern by building a model of its primitive parts,
e.g., an annotated tree or graph. In contrast, statistical or stochastic models de-
scribe the input patterns by a number of features. The model is built directly from
example data (data-driven learning) and results in a set of estimated probability
distributions describing the input patterns. The classification or labeling is a selec-
tion of the most likely model.

In this thesis we focus on statistical pattern recognition. A sequence of input
items X represent an input pattern and each item X is described with a set of L
features X = (x1,...,x7) that is often called a feature vector. The output consists
of one label from a set Q = {wy,..., ®;,...,0c} of C labels or categories, where

31

32

each output label ; is described by a model A;. Therefore, the classification is a
function f: IRL — Q.

We assume that there is a prior probability P(w;) of each label. In addition,
there is a class-conditional distribution P(X|w;) which describes the conditional
probability of an item X given a label ;. In case of continuous values of X we use
the probability densities p(X) and p(X|w;) instead of the probabilities P(X) and
P(X|0;). To establish a decision on the identity of an item X, we use the Bayesian
decision rule for minimizing the error rate.

Definition 3.1 (Bayesian decision rule). Given are an input item X and a set Q of
C possible labels. Then the decision with minimum error rate is called the Bayesian
decision rule which is

® = argmax,P(m;|X).
O

This rule is the central element in the classification system that we develop in
this thesis. Bayes’ rule on conditional probabilities is used as implementation and
defines how to combine prior probabilities to a posterior probability P(w;|X).

Theorem 3.1 (Bayes’ rule). Given an input item X, a number of possible labels
o;, the class-conditional distributions P(X|w;), and the prior probability P(X) of
an input item X. Then the conditional probabilities are related by
P(X|a;) - P(0%;)
P(o|X) = ———~——".
O

We employ Bayes’ rule and implement the Bayesian decision rule as & =
argmax , P(X| ;) P(;) because the probability P(X) is independent of &. Because
the posterior probabilities P(;|X) depend on the unknown quantities P(®;) and
P(X|w;), we have to estimate these quantities. The amount of available informa-
tion determines the difficulty of this estimation. We call the estimation process
training and estimate P(;) and P(X|®;) on the basis of example data. We use
Maximum Likelihood (ML) training to implement the training. The process which
evaluates the posterior probabilities P(w;]|X) is called evaluation.

Depending on the knowledge about the class-conditional distributions, we use
a parametric Or a non-parametric estimation technique. [Huang, Ariki & Jack,
1990]. If the form of the class-conditional densities P(X|®;) is known then a para-
metric technique is used, e.g., a single Gaussian density. Alternatively, we use a
mixture of densities with known structure to model P(X|w;) because such a mix-
ture can model arbitrary functions.

3.1 Markov Models 33

Unlike Rabiner & Juang [1993] and Lee [1988], the evaluation algorithms for sin-
gle labels and label sequences are presented in a uniform notation to provide a bet-
ter understanding of differences and improvements. The presentation of training
techniques includes the discussion of both Forward-Backward and Viterbi training
in relation to discrete and continuous hidden Markov models.

3.1 Markov Models

A Markov Model (MM) is a stochastic model which describes the probability of
a state based on the probabilities of previous states. In a discrete time Markov
model at time ¢, where ¢ is the time index, we observe a state g,. The order of
the model describes how many previous states contribute to the state transition
probability. From here, we assume that each Markov model is a first-order Markov
model which has a state transition probability a;; = P(q; = S;|g—1 = S;).

Definition 3.2 (Markov model). A Markov model is a 3-tuple A = (4, T,S) with
the following properties

e Sis a set of states S = {S1,52,-..,Sy}, where N is the number of states. The
state at time ¢ is called g;;

e A is a state transition matrix [a]yxy Which contains the transition probabil-
ities a;; and i = 1...N, j = 1..N. The transition probability from state S; to
state S; is called a;; = P(q; = Sj|q—1 = S;), while the self transition prob-
ability is denoted as a;. The sum of the outgoing transition probabilities is
> a=1;

e mis the set of initial probabilities 1= {m;|i = 1,...,N} where ; = P(q; = S;);

e P(g|A) is the probability of an observed state sequence g of length T for a
given model A which is computed as

T—1
P(g|\) = my, H Qg -
=1
O

An example Markov model A = (A, 7, S) with three states and state transition matrix

0.1 08 0.1
A=102 02 06
0.1 04 0.5

is given in Figure 3.1.
Markov models are often used to describe chains of events where every event
corresponds to a clearly observable state in the model. An example is a 26-state

34

Figure 3.1. An example of a 3-state Markov model.

character transition model with states {a,...,z} [Huang et al., 1990] where the tran-
sition probabilities are determined by a given vocabulary.

3.2 Hidden Markov Models

A hidden Markov model (HMM) is a stochastic model used to classify an input
pattern. In context of the hidden Markov model, we refer to items X observed at
time ¢ as observations o;. In the experiments in Chapter 4 to 7, we assume a contin-
uous type of observations, i.e., the observations are feature vectors with dimension
L from IRE. In contrast to a Markov model where each observation corresponds
to a physical event, a hidden Markov model associates each observation with a
probability density function. This probability density function models a hidden
stochastic process, hence the name hidden Markov Model. We assume a first-order
model. In this thesis, we discuss a first-order hidden Markov model as a stochastic
model for handwriting recognition and verification.

Assumption 3.1 (The output independency). It is assumed that the probabil-
ity or probability density of an observation in the current state depends
only on the current and not on the previous states and observations, I.e.,

P(04]01—15+, 0131, Gi—15-,q1) = P(04|qr) and p(040i—15ey 0131, Go—15er q1) =

plodq.). O
Definition 3.3 (Observation signal). The sampled observation signal O is a se-
quence of feature vectors as in O = {01, 02,...,07}. O

An informal definition of the goal of the classification system is to map the signal
O onto a piece of text or a binary decision.

3.3 Model Structure 35

Definition 3.4 (Hidden Markov model). A hidden Markov model is a 4-tuple
A= (A, B,r,S) with the following properties

e Sisthe set of states S = {S1,52,...,Sx}, where N is the number of states. The
state at time ¢ is called g; € S;

e A is a transition matrix [a] yxy Which contains the transition probabilities a;;
and i= 1..N, j = L..N. The transition probability from state S; to state S; is
called a;; = P(q; = Sj|g:—1 = S;) and the constraints are Vi, j : 0 < a;; < 1
andVi: Y jaij = 1. The self transition probability is notated as a;;

e Bis the set of probability density functions {b;(o;)} which models for each
state the probability density of o, in that state denoted as b;(or) = p(o;|g; =
S;) with the constraint f b;(o;)do; =1,1< j< N;

e 7 is the set of initial probabilities T = {m;|i = 1,..., N} where 7t; = P(q1 = S;)
and the constraint Vi: ¥, m; = 1;

e p(O,q|A) is the probability density of a state sequence g and observation
sequence O for a given model A where p(O, g|A) is computed as

T—1 T
p(07 qp\’) =Tg, " H Ag,qi41 ° Hqu(ot)'
=1 t=1
O

The application of a hidden Markov model in a classifier introduces three basic
questions [Rabiner & Juang, 1993] which are discussed in detail in Section 3.4.
Given an observation sequence O of length 7' and a hidden Markov model A we
want to answer the following problems {Lee, 1988]:

1. Evaluation: ~ How do we compute the probability density p(O|A)?

2. Explanation: How do we compute a corresponding state sequence ¢
of length T which explains the observations O in some
optimal way?

3. Training: How do we compute the parameters of the model A to
maximize p(O|A)?

3.3 Model Structure

In order to refine the hidden Markov model structure, a number of variations of
the transition matrix and emission probability density function are specified. More
specific structure variations like tied transitions, tied states, and state duration are
discussed elsewhere, e.g., by Rabiner & Juang [1993].

36

3.3.1 Transitions

The transition matrix A in the hidden Markov model A defines the possible paths
through the model. As an example, the next figure shows a fully connected (er-
godic), five-state hidden Markov model compared with a partly connected hidden
Markov model.

L, weese.

Figure 3.2. Left: fully connected hidden Markov model. Right: left-to-right
hidden Markov model.

The partly connected hidden Markov model has a special structure which reflects
the time-flow while the data is being processed. This model type is also called lefi-
to-right model or Bakis model. Every state has three outgoing transitions called the
self, next and skip transition which results in the following transition matrix A for
the five-state example. The next transition will usually be the most likely transition
to reflect time-flow.

air app a3 0 0

0 ax a3 ay 0
A=1 0 0 a3 a3 ass
0 0 0 Q44 Ags
0 0 0 0 ass

Examples of the use of left-to-right models in the context of speech recognition,
handwriting recognition and signature verification are given by Ney et al. [1994],
Nathan et al. [1995] and Yang [1995], respectively. Other transition structures
for speech and handwriting recognition are used by Lee [1988] and Bunke et al.
[1995], respectively.

3.3.2 Emission probability densities

In this thesis, we assume a continuous type of hidden Markov model with con-
tinuous observations and probability density function b j(0;). The term ‘hidden
Markov model’ is used as a synonym for ‘continuous hidden Markov model’. The
probability density function gives the probability density p(o;|q; = S;) = bj(o;)

3.3 Model Structure 37

of an observed feature vector o, at time t in state S;. Example density functions
used to model b;(o;) are Gaussian density functions, a mixture of Gaussian den-
sity functions [Rabiner & Juang, 1993] or a mixture of Laplacian density func-
tions [Ney et al., 1994]. An example with a mixture of K Gaussian densities is
bi(o:) = plodq) = S5 wiG(os,pux, Ur) where G represents the Gaussian density
specified by mean g of the k& density and covariance matrix Uy of the k' density.
The factor wy is a weighting factor which models the contributions of the individual
densities to the mixture density with constraint Y&, w; = 1.

The advantage of a continuous model for b;(o;), specifically the mixture of
Gaussian densities, is that we can model arbitrary probability distributions. The
disadvantage of the continuous model is that it contains many parameters like
mean, covariance and mixture weights which have to be estimated accurately.
Models can be simplified with assumptions like a diagonal covariance. Basically,
the use of enough training material to estimate all model parameters assures the
correct modeling and behavior of the continuous models. Possible consequences
of the lack of enough training data [Lee, 1988] include a singular covariance ma-
trix, variance estimation errors, and zero variance.

Note that the different clusters of densities can be seen as cluster of allophones
or allographs, i.e., the same phoneme or character but pronounced or written dif-
ferently. Loosely speaking, a mixture of densities is the natural way of modeling
these allophones and allographs.

Alternatively, a quantized version of b;(o;) in Definition 3.4 is used. Such a
hidden Markov model with a quantized emission probability is called a discrete
hidden Markov model [Lee, 1988; Rabiner & Juang, 1993]. While the discrete
model uses a probability distribution b'j(vk) and computes the probability P(O|\),
the continuous model uses a probability density function b j(0;) and computes a
probability density p(O|A).

Definition 3.5 (Discrete hidden Markov model). Given the definition of a hid-
den Markov model in Definition 3.4. Then a discrete hidden Markov model
is a 5-tuple A = (A,B,™,S,V) where B = {b'j(vk)}, V a set of K output sym-
bols or prototype vectors {vi,..., vk}, a quantized emission probability function
b'j(vk*) = P(k* = argmin,d(o;, vi)|q: = S;), the function d(x,y) a distance function
and the constraint ¥, b'j(vk) =1 O

Figure 3.3 shows a graphical representation of the probability space for both dis-
crete and continuous hidden Markov models. For a given observation o;, we com-
pute the nearest prototype vector vy (each indicated by a cross in Figure 3.3) to
compute the emission probability b'j(vk) . Because each prototype vector has an
associated probability, the nearest prototype vector vy directly determines the emis-
sion probability blj(vk). Typically, 256 prototype vectors v; are used to model a

38

state. The advantage of discrete modeling is that the evaluation is fast because the
model of B is essentially a table of N states times K output symbols. Disadvantage

is that the modeling is coarse due to quantization.
Figure 3.3. Hidden Markov model state space. Left: discrete model where each

‘+’ indicates a prototype vector. Right: continuous model with a number of Gaus-
sian densities.

In handwriting recognition, Bellegarda et al. [1995] compare continuous and dis-
crete hidden Markov models in a character recognition task. The performance is
similar but the discrete hidden Markov model uses 15-20 times less processing
time. Nathan et al. [1995], Chen et al. [1993], and Bellegarda et al. [1993] explore
continuous hidden Markov models. Huang, Ariki & Jack [1990] and Rabiner &
Juang [1993] discuss hybrid models.

3.4 Evaluation

This section discusses the algorithms involved in the evaluation and explanation of
a hidden Markov model. These are two of three basic problems in the theory of
hidden Markov models defined in Section 3.2.

The basic question in evaluation is how to compute the probability density
p(O|1) for a given observation sequence O and model A. Subsection 3.4.1 dis-
cusses an exact algorithm while Subsection 3.4.2 discusses an approximate algo-
rithm. Both solutions involve the use of state sequences.

Definition 3.6 (State sequence). Given a hidden Markov model A and an ob-
servation signal O containing T observations o,. Then a sequence of T states
q = (q1,---,qr) is called a state sequence which describes for each observation
o; € O the corresponding state g, at time ¢. a

To represent the process graphically, the hidden Markov model states and the time
steps are combined in a lattice representation as in Figure 3.4. An arbitrary path
through the lattice corresponds with a state sequence gq.

Definition 3.7 (Observation sequence probability density). Given a hidden
Markov model A and an observation sequence O. Then the probability density of

3.4 Evaluation 39

1
S
States S3
(N=5)
S4
S5
__._._.—>

Timesteps (T=9)

Figure 3.4. One path through the lattice of hidden Markov model classification.

the observation sequence O is defined as P = p(O|A) which is the sum of p(O, g|\)
over all possible state sequences g in A. 0O

For a given observation sequence O and a hidden Markov model A this accumulates
to

p(OIy) =3,p(0,qN)
>, P(0lg, M) P(q]))
= 3, [ng, TS agig.e] - [TT=1 b, (00)]-

Because the number of possible paths through the lattice is N7, a straightforward
computation is prohibitively complex. Therefore, smarter search algorithms are
needed to compute p(O|A).

While the exact solution to p(O|A) computes the joint probability density over
all paths g, the approximate solution aims at the computation of the best path g*
where the best path is defined as the most likely state sequence g given O and A.

Formally, this means that the exact algorithm computes

p(OIN) = p(0,4[)),
q

while the approximate algorithm computes
P(OIN) = p(O,'[N) = max p(O; q|1),

where ¢* = argmax 4 denotes the best and most likely possible state sequence. The
approximate solution is often called the maximum approximation.

Efficient computation of the exact and approximate solution is possible if we
extract a recurrency relation and apply dynamic programming (DP) [Bellman,
1957; Rabiner & Juang, 1993].

40

3.41 The Forward Algorithm

The Forward scoring algorithm [Lee, 1988; Rabiner & Juang, 1993] is an algorithm
to solve the exact computation of p(O|A) for a generic hidden Markov model with
N states and a given observation sequence O of length 7. The auxiliary variable
o (j) = p(o1.--0r,9: = Sj|A) is introduced to specify the probability density of a
path of ¢ observations ending in state S; and having observed O = oy,..., 0;.

$1
S2
S3 Sj
84
SN
t-1 t
01 (i) o4(j)

Figure 3.5. Graphical representation of auxiliary variable c.

The variable o,() allows us to define a recurrency relation which describes the new
value of o as a combination of all paths from previous states S; to the new state S;.
This is represented graphically in Figure 3.5 and formally in the recurrency relat1on
in Definition 3.8.

Definition 3.8 (Forward recurrency relation). Given a hidden Markov model A,
with transition matrix A and emission probability densities B, and an observation
sequence O. Then oy(j) is computed at time ¢ from all states S; at time ¢ — 1 with
the Forward recurrency relation as

= [Z o—1(3) - a;j] - bj(0r)-
O

The Forward algorithm is formalized in Figure 3.6. The core of the algorithm is
the recurrency relation in Definition 3.8. The recurrency is initialized in a first
step in Figure 3.6 with the initial state probabilities times the emission probability
densities of 01. After processing all observations oy, the algorithm terminates. The
final step is to add the probability densities oir(j) in every state. This sum gives
the total probability density p(O|A).

3.4 Evaluation 41

Step 1. Initialization
o1(j) =m;bj(01)
where 1< j <N
Step 2. Recurrency

N
() = [; 0-1(9) - @] - bj(or)

where 1< j<Nand2<(<T
Step 3. Termination

N
P=p(OI\) = Y, ar(j)
=1

Figure 3.6. The Forward algorithm.

A counterpart of the Forward recurrency relation and algorithm is the Backward
recurrency relation and algorithm. The probability density of the tail of O start-
ing in state S; is B:(j) = p(or41,---,0r|ge = S}, A) which is efficiently computed
based on Definition 3.9. Note that the initial condition of the Backward algorithm
is Br(j) = 1. This Backward probability density is not used in any evaluation
algorithm but is used in Section 3.5 to train a hidden Markov model.

Definition 3.9 (Backward recurrency relation). Given a hidden Markov model
A, with transition matrix A, emission probability densities B, and an observation
sequence O. Then B,(i) is computed with a recurrency relation called the Backward
recurrency relation from all states S; at time £+ 1 as

N
Bi()) =D aij- bj(os1) - Bea1 ().
=1

3.4.2 The Viterbi Algorithm

In contrast to the exact solution for p(O|A), we can also compute an approximate
solution. The probability density of the best path, i.e., the most probable path,
through the lattice in Figure 3.4 is computed for a generic hidden Markov model
with N states and a given observation sequence O of length T. An auxiliary variable
o (j) = H}aX_IP(Ol---Ota¢I1-~-CIt—1aQt = S;|A)
is introduced which specifies the path with maximum probability of ¢ observations
ending in state S; and leading through the states gz,...,q;. Note that we use the
same variable o () as in the discussion of the Forward algorithm. The reason is

42

that we want to emphasize the similarities of the Forward and Viterbi algorithms.

The recurrency relation which defines o(j) in Definition 3.10 expresses the
new value of o based on the best path from all previous states S; to the new state
S;j. Compared with the Forward recurrency in Definition 3.8, only the summation
is changed to a maximum operation. Hence the alternative description maximum
approximation for this relation. In the context of a time-synchronous algorithm
which computes a best-path approximation to p(O|A) where all paths end at time
¢, this is called the Viterbi algorithm as explored by Forney [1973] and shown in
Figure 3.7.

Definition 3.10 (Viterbi recurrency relation). Given a hidden Markov model A,
with transition matrix A, emission probability densities B, and an observation se-
quence O. Then o,(j) is computed with a recurrency relation called the Viterbi
recurrency relation from all states S; at time £ — 1 as

o (j) = [maX o—1(2) - ai] - bj(oy).
O

The Viterbi algorithm is formalized in Figure 3.7. The core of the algorithm is the
recurrency relation in Definition 3.10. The recurrency is initialized in step 1 in Fig-
ure 3.7 with the initial state probabilities times the emission probability densities
of 0;. This is identical to the Forward algorithm in Figure 3.6. After processing
all observations oy, the algorithm terminates. The final step is to select the state S i
which gives the maximum of the probability densities P* = max =y 07 (). This
maximum P* approximates the probability density p(O|A).

Step 1. Initialization
o1(j) =m;bj(o1)
where 1< j< N
Step 2. Recurrency
o()) = [max 0y—1(2) - a;j] - bj(or)

where 1< j<Nand2<¢<T
Step 3. Termination

= (041N = max oz())

ax
N

Figure 3.7. The Viterbi algorithm.

To extract the actual best state sequence g*, i.c., to solve the explanation problem
(see Section 3.2), the algorithm is extended with an array v per timestep which
keeps track of the best states for every timestep ¢. These extensions are added to
the Viterbi algorithm of Figure 3.7 resulting in the Viterbi algorithm with backtrace

3.4 Evaluation 43

administration of Figure 3.8. One extra step is needed to obtain the best state
sequence g* from the best-path administration v,(j). The extra step is step 4 in
Figure 3.8. After the most likely state at time T is found, the time-indices ¢ are
traversed backwards to complete the best state sequence g*.

Step 1. Initialization
a1(j) = mjbj(01)
vi(j)=0

where 1< j <N
Step 2. Recurrency
0u(j) = [max o4-1(2) - @] - bj(0r)

v(j) = argmax,__yloe—1(0)- ;]

where 1< j<Nand2<t<T
Step 3. Termination

P = or(j
max, r(J)

qr = argmax;—;_yor(j)

Step 4. Backtrace
d; = vi(giy1)

where 1<r<T—-1

Figure 3.8. The Viterbi algorithm plus backtrace administration.

3.4.3 Evaluation enhancements

Two important notes have to be made about the previously discussed algorithms.
First, the presented Forward and Viterbi algorithms are suited for a hidden Markov
model with a generic structure. If the structure of the hidden Markov model is
known beforehand, we can speed up the algorithm by exploiting its structure.

If the structure is a left-to-right model with three previous states as explained
in Subsection 3.3.1, then the recurrency relation of the Viterbi algorithm changes
to allow only the transitions from three previous states to the current state and
assumes the following form

=

ou(j) = ['r%af(zat“]({) -az;]- bj(o;) where i’ = max(1, j— i) and j = 1..N.

Additionally, the left-to-right model implies the additional constraints that the start-
state is g; = 1 and the end-state is g7 = Sw.

Second, the continuous multiplication of probabilities can result in a floating
point underflow. Therefore, the probability density P is often replaced with the

44

loglikelihood P = —log(P). Additional advantage is that all multiplications be-
come additions. This leads to Figure 3.9 which shows the Viterbi algorithm from
Figure 3.8 plus the adaptations for a left-to-right model and loglikelihood compu-
tation.

Step 1. Initialization)
6u(j) =+ bj(o1)

vi(j)=0
where 1 < j < N and
P 0 ifj=1
T7 e ifj#£1

Step 2. Recurrency

G, (j) = [min_G—1(#) +]+ bj(0r)

ve(j) = argmin,_q ; 5[04—1 (') + @z]
where 1 < j<Nand2<¢<T and? = max(1,j—i)
Step 3. Termination)
P* = a7 (N)
gr=N
Step 4. Backtrace
g = Vt(‘]fﬂ)
where 1<¢r<T—-1

Figure 3.9. The Viterbi algorithm for left-to-right models using loglikelihood.

3.5 Training

Reliable training of the hidden Markov model is the most difficult of the three
basic hidden Markov model problems [Lee, 1988]. Goal of the training is to derive
a hidden Markov model which describes the temporal and spectral characteristics
of the input signal. This is achieved with a model which maximizes the probability
density p(O|A) given an observation sequence. The difficulty of training is due to
the fact that there is no exact solution but only an iterative solution to maximize
P(O|X). The iterative training is the Maximum Likelihood (ML) training for which
the theoretical framework was laid by Baum [1972]. More recent discussions of
hidden Markov model training are given by Rabiner & Juang [1993] and Levinson,
Rabiner & Sondhi [1983] and Lee [1988].

3.5 Training 45

First, we outline a training system for hidden Markov models in Subsection 3.5.1
to place all components in context. Subsection 3.5.2 summarizes the reestimation
of the hidden Markov model. Subsection 3.5.3 and Subsection 3.5.4 provide an
exact and approximate solution to the training problem, respectively, similar to
the Forward and Viterbi evaluation algorithms. A sketchy proof of the training
convergence is given in Subsection 3.5.6.

3.5.1 Training overview

The training process of a hidden Markov model is an iterative process that pro-
ceeds along the lines of the Estimation-Maximization (EM) training shown in Fig-
ure 3.10. After an initialization of the hidden Markov model, the two step process
of

e time-alignment of observations O with the states of S,

e reestimation of model parameters based on the data distribution over the
model states,

is repeated until some stop-criterion is met. The training converges to a local opti-
mum. Since the training is data-driven, a database is needed that contains enough
samples of each label. In an example by Picone [1990], three to nine iterations were
enough to capture most information in the database. Guyon, Makhoul, Schwartz
& Vapnik [1996] give a reasonably accurate estimation of the size of training and
test database, together with a confidence estimate of the recognizer performance.

First, the hidden Markov model parameters are initialized. Although the train-
ing convergence is guaranteed (see Subsection 3.5.6), the training converges to a
local optimum only. Therefore, the initial choice of the parameters is important. A
reasonable choice is to use a linear time-alignment of the observation sequence O
with the states S of model A [Ney et al., 1994].

Second, the supervised training consisting of time-alignment and parameter
reestimation is executed. Subsection 3.5.3 and Subsection 3.5.4 discuss the use of
the Forward-Backward and Viterbi algorithm for time-alignment in combination
with reestimation for discrete and continuous type hidden Markov model. Subsec-
tion 3.5.5 discusses the adaptations to the training, based on the Viterbi algorithm,
of the continuous hidden Markov model in order to use mixture densities to model
the emission probability densities.

Some authors suggest an optional third step which is corrective training [Pi-
cone, 1990; Rabiner & Juang, 1993; Bahl, Brown, De Souza & Mercer, 1988].
Corrective training aims at improving the recognition accuracy by reducing the
probability of incorrect hypotheses and increasing the probability of the correct
hypotheses.

46

_______ -

Figure 3.10. Estimation-Maximization training.

3.5.2 Reestimation

The reestimation goal of the training is to reestimate a model A leading to an im-
proved, more likely model A. The iterative Estimation-Maximization procedure
reestimates the hidden Markov model parameters of A on each iteration and is
formally described as f : O,A — A where P = p(O[A) > p(O|A) = P and p(O|N)
is maximized. This is one of the three fundamental problems introduced in Sec-
tion 3.2.

To achieve the above objective, we have to reestimate the hidden Markov model
parameters of the model A based on the observation sequence O. Generalization to
a set of observation sequences is straightforward. We have to reestimate for every
state in A the following parameters.

e The transition probability a;; which describes the probability for a transition
from state S; to state S B

® The emission probability density b;(o;) which describes the probability den-
sity of the observation oy in state ;.

e The initial state probability m; which describes the probability that the first
state of the best state sequence g* is state S;.

We distinguish between two types of time-alignments: an exact way and an approx-
imate way. This is similar to our discussion of the probability evaluation where the

3.5 Training , 47

Forward algorithm provides the exact solution and the Viterbi algorithm gives an
approximate one. Likewise, we can use the Forward-Backward (FB) algorithm
or Baum-Welch algorithm for exact reestimation and the Viterbi algorithm for the

approximate approach.

Because there are two time-alignments (Viterbi and Forward-Backward) and
two types of hidden Markov model (discrete and continuous), four possible train-
ing combinations are considered. The combination of Viterbi time-alignment with
the continuous type hidden Markov model will be used later for recognition and
verification.

3.5.3 Forward-Backward training

The following set of auxiliary variables helps to define the reestimation [Levinson,
Rabiner & Sondhi, 1983].

Definition 3.11 (Auxiliary functions Forward-Backward training). Given a
hidden Markov model A = (A, B,T,S), an observation sequence O of length T,
the probability density P = p(O|A), and the auxiliary variables o (i) and B,+1(}).
Then we define the following functions.

1. The function r;;(S) denotes the expected number of transitions from state S;
to state S; for a given O and A and is given by

17-1
n;j(S) = P Y ou(i)aijbi(0m1) Bera(f)-

=1
2. The function 7;(S) denotes the expected number of outgoing transitions from
state S; for a given O and A and is given by

N
ni(S) = Z] nij(S).

3. The function 8(o;) is only used in the reestimation of discrete hidden
Markov models (Definition 3.5) where Vi = {0/|V jd(v,0;) < d(v},0,)} and

_f1 ifo eV
8k(ot)"—{o 1f0t¢‘/k
|

This leads to the following definitions of Forward-Backward reestimation formu-
las.

Definition 3.12 (Forward-Backward reestimation of a;;). Given a hidden
Markov model A and the auxiliary variables from Definition 3.11. Then the

48

transition probability is reestimated as
- _ expected number of transitions from state S; to state S
Y expected number of outgoing transitions from state S;
— nj(s)

— (S

O

Definition 3.13 (Forward-Backward reestimation of ;). Given a hidden
Markov model A and the auxiliary variables from Definition 3.11. Then the initial
probability of state S; is reestimated as

7; = expected probability of state S; at time ¢t = 1

= pou()Ba(i)-

O

We distinguish between two separate reestimation procedures for b;(o;) and b'j(vk) ,
respectively, because the internal structures of discrete and continuous hidden
Markov models are slightly different. The reestimation of discrete hidden Markov
models involves the counting of output symbols o, € V;. For the continuous case
we assume that the emission probability density is modeled using one Gaussian
density b;(o;) = G(o,uj,U;) where and U are the mean and covariance, respec-
tively, of the density to be reestimated.

Definition 3.14 (Forward-Backward reestimation of b/j(vk) (discrete)). Given
a discrete hidden Markov model A and an observation sequence O. Then the
emission probability distribution b'j(vk) of state S; is reestimated as

B(v) = expected number of times in state S; observing o, € V; given O
K= expected number of times in state S; given O

— Zilvgz(j)ﬁr(j)ﬁk(m)
PR

O

Definition 3.15 (Forward-Backward reestimation of b i(0¢) (continuous)).
Given a continuous hidden Markov model A with one Gaussian density and an
observation sequence O. Then the emission probability density function b i(os) of
state S is reestimated as

_- = T —. Zz:latjﬁtj
bj(ot) = g(otnu]:U]) where - ST o)B) (ot (o)
J S e B)

3.5 Training 49

3.5.4 Viterbi training

Viterbi training is simpler and more efficient than the exact Forward-Backward
training presented in the previous subsection. We can take advantage of the fact
that the Viterbi algorithm produces a best state sequence ¢* with maximum like-
lihood as presented in Figure 3.9. Because ¢* is a time-alignment of O with the
states S, g tells us exactly which observation o, is assigned to which state qr=S;j
and which transitions are taken. This reduces the training procedure to efficient
administration and counting. The following set of variables helps to explain the
Viterbi reestimation [Levinson et al., 1983].

Definition 3.16 (Auxiliary functions Viterbi training). Given a hidden Markov
model A = (A, B, T,S), an observation sequence O of length T' and a state sequence
g of length T which contains the observed states g, = S; for every o,. Then we
define the following functions.

1. The function n;;(S) denotes the number of transitions from state S; to state
§; for a given O and A.

2. The function n;(S) = ¥, n;;(S) denotes the number of outgoing transitions
from state S; for a given O and A.

3. The function m(S) denotes the number of observations o; in state S -
4. The function r;(S) equals 1 in the initial state g1 = S; and otherwise 0.

O

Definition 3.17 (Viterbi reestimation of a; 7). Given a hidden Markov model A,
an observation sequence O, a state sequence g of length 7 which contains the ob-
served states g; = S; for every oy, and the auxiliary functions from Definition 3.16.
Then the transition probability is reestimated as

observed number of transitions from state S; to state S j

observed number of outgoing transitions from state S;

_ nij(s)
- n; S)

d,‘j =

O

Definition 3.18 (Viterbi reestimation of 7t;). Given a hidden Markov model A, an
observation sequence O, a state sequence g of length T which contains the observed
states g; = §; for every o;, and the auxiliary variables from Definition 3.16. Then
the initial probability of state S; is reestimated as

7; = expected probability of state S; at time t = 1

7i(S)
X rdS)”

50

Again, we distinguish between the reestimation of b;(o,) for a discrete and contin-
uous hidden Markov model.

Definition 3.19 (Viterbi reestimation of b'j(vk) (discrete)). Given a discrete hid-
den Markov model A, an observation sequence O, a state sequence g of length T
which contains the observed states g; = S for every oy, and the function &(o;) from
Definition 3.11. Then the emission probability b’j(vk) of state S; is reestimated as

<1) = observed number of times in state S; and observing observation o, € Vj
VK= observed number of times in state S

= ﬁj%ij ZtT=1 8k(Ot)-
O

For the continuous case, one Gaussian density b;(o;) = G(o,u;,U;) is assumed
where u and U are the mean and covariance, respectively, of the density to be
reestimated.

Definition 3.20 (Viterbi reestimation of b;(o;) (continuous)). Given a continu-
ous hidden Markov model A with one Gaussian density, an observation sequence
O, and a state sequence g of length T which contains the observed states g, = S;
for every o;. Then the emission probability density function b;(o;) of state S; is
reestimated as

1 ET
mj(8) Su=1M{g:=s;}
(5] Zeingg=s,} (0 =)0~)

!

i i ;=
bj(Ot) ZG(Ot,ﬂj,Uj) where { N

Uj=

[l

3.5.5 Mixture densities

In this thesis we will use the Viterbi algorithm for both training and recognition.
Because hidden Markov model states often model several aspects of the data, e.g.,
allophones and allographs, one Gaussian density is only a crude approximation
of the real distribution of observations in state S;. Therefore, we employ mixture
densities. The emission probability density function b;(o;) is modeled as a mixture
of K Gaussian functions b;(0;) = X wiG(0s,fjk, Ujr) with Ypwj = 1. In the
context of the Viterbi algorithm, we use

bj(o) = max witG (0, jioy U i)

as the maximum approximation.

To train this mixture density, we have to refine the Viterbi reestimation. While
the time-alignment remains the same, the estimation of b;(o;) needs a clustering
step to determine K clusters to be modeled with Gaussian densities [Rabiner &
Juang, 1993] [Ney et al., 1994]. The k-Means clustering algorithm [Duda & Hart,

3.5 Training 51

1973] is often employed to determine the cluster centroids. The mixture gains w ji
are estimated by counting the number of elements in each cluster and computing
the relative contribution.

Given a clustering of the observations o, into K sets Oy and the auxiliary func-
tion m (S) which denotes the number of observations o, in density & of state S;
where m j(S) = X mjx(S), this leads to the following reestimation of the emission
probability density.

Definition 3.21 (Viterbi mixture density reestimation of b;(o;) (continuous)).
Given a continuous hidden Markov model A, a mixture of Gaussian densities
describing the emission probability densities b;(o;), an observation sequence O,
and a state sequence g. Then the emission probability density function b;(o;) in
state S; is reestimated as

bj(or) = maxe wik-G(oritjn, Uj)

S
where k=" @ ztzl/\{éh=5j}/\{o,€(’)k} Oy

1 - - !

U= @ Timinfg=snoco (0 =) (0= t) -

O

3.5.6 Training convergence

In this subsection, we outline a ‘proof-of-convergence’ of the hidden Markov

model training and reestimation process. The original proof is from Baum [1972].

Here, we follow the proof as explained by Levinson, Rabiner & Sondhi [1983].
Given is a model A = (4,B,n,S) with probability density P = p(O|}) for a

given observation sequence O. Then the reestimated model is A = (4, B, &, S) with

probability density P = p(O|A). Our goal is to prove that the condition

p(OI%) > p(O]A)
holds.

First, we define a set of auxiliary variables.

Definition 3.22 (Convergence proof auxiliary variables). Given a hidden
Markov model A, a reestimated model A, an observation sequence O, and a state
sequence g. Then we define the following variables.

1. u;= p(O,q|\), where u, denotes the probability of the path g and an obser-
vation sequence O for a given model A.

2. v;=p(O,q A), where v, is similar to u, except that it is the probability given
the model A.

3. ¥ u,=Pand ¥, v, = P as explained in Subsection 3.5.2.

52

Next, we present two lemmas as formulated by Levinson, Rabiner & Sondhi [1983]
which are needed to rewrite and reformulate the problem. Lemma 3.1 is also known
as Jensen’s inequality and is based on the concavity of the log function.

Lemma 3.1 (Log Lemma). Let u, be positive real numbers and vy be non-
negative real numbers such that 3., v, > 0. Then from the concavity of the log
function it follows that

10g(§v4> Z [Z uglogvy — uglogug)].
q¥q

q

Lemma 3.2 (Maximum). If ¢; > 0 holds, where i = 1,...,N, then subject to the
constraint Y ;x; = 1, the function

X)= zci logx;
i
attains its unique global maximum when
G
X; = .
2iCi

Then the proof starts with rewriting our problem p(O|A) > p(O|A) to

NEOR

The problem is now in a form that allows the application of Lemma 3.1 and the
problem is rewritten to

p(ON)
1og(p(0m)> S(or 10— 00. 1)

where the auxiliary function Q equals Q(A,A) = Yqtqlogvg.

If we can show that Q(A,A) — Q(A, Q) is always positive then the property is
proven. Because we cannot prove directly Q(2, %) Q(A,A) > 0, we reshape this
problem to a search for the maximum of the auxiliary function Q. If we can prove
that Q(A, k) has a maximum and we can compute this maximum then the proof is
complete. This is the step where Lemma 3.2 is used. Lemma 3.2 tells us that Q has
a unique maximum. Rewriting Q in three independent terms, which describe the
initial, the transition, and the emission probability densities, and the application
of Lemma 3.2 results in three expressions which describe the global maximum
of Q. These three expressions correspond with the reestimation formula’s of , b

3.6 Advanced topics 53

and a of the Forward-Backward training algorithm discussed in Subsection 3.5.3.
Because the reestimation is a maximization, Q(A, 5\,) eventually reaches its unique
maximum. Further improvement of the model parameters A is not possible and the
training stops.

3.6 Advanced topics

In the previous sections, we discussed the fundamental properties and algorithms in
pattern recognition based on hidden Markov models. This section discusses some
advanced techniques to improve and extend the classification. The topics to im-
prove classification performance are the integration of relevant context knowledge
into the hidden Markov models and language models. We extend the classification
techniques with beam search which elaborates on the Viterbi algorithm.

First, we model the contextual effects of handwriting with contextual hidden
Markov models in Subsection 3.6.1. Language structure is modeled with a statis-
tical language model in Subsection 3.6.2. We present an efficient search process
which integrates the knowledge sources of hidden Markov model and language
model to recognize labels and label sequences in Subsection 3.6.3.

3.6.1 Contextual models

In the previous sections, we have discussed how to train and recognize hidden
Markov models. All models represent one specific class of labels which are insen-
sitive to their context. In this subsection, we introduce context-dependent models.

As shown in the previous chapter, the data to model is sometimes context de-
pendent, e.g., the shape of written characters depends on the shape of the neigh-
boring characters. Therefore, it is useful to make a specialized model for a pattern
given its context. These context-dependent models, as opposed to the previously
discussed context-independent models, provide more accurate models.

Definition 3.23 (Context-independent models). Given a hidden Markov model
A and a label ¢. Then a context-independent or context-free model is a model A,
that depends only on the items representing label c. g

Definition 3.24 (Context-dependent models). Given a hidden Markov model A,
a label ¢ and two additional labels / and r. Then a context-dependent or contextual
model is a model A{;3.(,} that depends on the items representing label ¢ given the
context of the labels / and r where / is a left context label and » a right context
label. If a left or right context is missing then we obtain the models Msyefry and
A{1c{s} Tespectively. Note that Aggye(sy = Ae. 0

In the context of speech and handwriting recognition, we refer to models Mae{r
as triphones and trigraphs, respectively. Models with left or right context only are

54

referred to as biphones and bigraphs.

Since the early work on triphones in speech recognition by Schwartz, Chow,
Roucos, Krasner & Makhoul [1984], the use of triphones is well established now
[Lee, 1988; Ney et al., 1994]. Schwartz et al. [1984] demonstrated that the use of
contextual models can lead to a decrease in word error rate (WER) of up to 50%
over context-independent models. The use of trigraphs in handwriting recognition
based on hidden Markov models is much less explored. One of the few works on
this topic is the study by Starner, Makhoul, Schwartz & Chou [1994].

An example of the difference between context-independent and contextual
models for the word ‘there’ is given in Table 3.1.

Table 3.1. The word ‘there’ modeled with different types of models.

Model type Model implementation

Context independent | As, Ay, Aey Ay A

Right context A(she(nts Msyr{el Mshe(r} Mshr{e}» Mshe(s)
Left context As)efsh Mapn(sps Maye(sp Mepr{sh Mrye(s}
Left and right context | A{syfn}, Man{ers Mate(r}s Mepr{eps Mryefs}

The use of contextual models introduces an important tradeoff. The more models
we use to describe the items, the less data will be available to train the models
because the data has to be divided over many classes. So, if we have a large number
of models, they cannot be trained accurately because of a lack of data. Given
an alphabet with 26 symbols, the number of possible contextual models is 26° =
17576 but, in practice, it will be possible to train only a fraction of the models
due to the aforementioned tradeoff. The number of contextual models that can be
effectively handled is usually between 100 and 1000. One approach is to train each
model with at least 50 observations.

So far, we have defined the context of a contextual model in terms of labels
from an alphabet. Alternatively, context categories or label classes can be explored.
An example is a model with category of labels as in Me()3ef g(r)} Where g is a func-
tion g : Q@ — Q' with Q' C Q. Other approaches include the automatic clustering
of contextual models.

3.6.2 Language Model

The purpose of language modeling is to exploit language structure in order to mini-
mize the ambiguity inherent in spoken and written text. In other words, a language
model maximizes the available contextual knowledge and therefore most likely will
improve the recognition performance. In case of a small-vocabulary recognition
system, this can be achieved with a dialog structure. In the context of this thesis, a
large-vocabulary recognition system will rely on a statistical language model and
not on a formal grammar. The reason for this is that the statistical language model

3.6 Advanced topics 55

is easily integrated with the hidden Markov model and the search algorithms. In the
remainder of this subsection, we discuss the structure of such a statistical language
model.

Definition 3.25 (Statistical language model). Given a word sequence W =
(wl,...,wQ) of length Q and the history w;_1...w; of every word w;. Then a sta-
tistical language model contains the probabilities P(w;|w;—1...w1) for every word
w; and computes the probability of the word sequence W as

Q
P(W) = Hp(wilwi—l"'wl)-
" O

Because infinite-length word histories are impractical, we limit the length of the
history w;—1...w1 of word w; to M. Such an approximate statistical language model
is called an M-gram language model. The terms unigram, bigram and trigram are
used to determine M-gram models where M is 1,2, and 3, respectively. A zerogram
model uses word probabilities which are all the same, i.e., P(w;) = é A unigram
model assumes that P(w;) = P(w;|wi—1...w1).

Definition 3.26 (M-gram language model). Given a word sequence
W = (wi,-..,wp) of length Q where each word w; has a history of M — 1
words with M > 2. Then an M-gram language model contains the probabilities
P(WiWi1.--Wiax(1,i—m+1)) for every word w; and computes the probability of a
word sequence W as

Q
P(W) = [[PWil Wit Wnax(,i-pr41))-
=1
O

So far, we assumed that a text sequence is a sequence of words. Although this
remains correct through this thesis, we can also assume that a text sequence is a
sequence of characters. Both views are valid and constitute the same word se-
quence W. However, the probability of a character and word sequence is different
which leads to a different probability P(W). Therefore, we introduce word and
character-based language models.

Definition 3.27 (Language model type). Given a word sequence W =
(Wiyersy Wiseerywg,) of length Q,, where each word w; = (c1,.ryc;) is a se-
quence of /; characters, a total number of characters in the text which equals
0.= zinwl l;, a history size M — 1 where M > 2 for each word w;. Then an M-gram,
word-based language model contains the probabilities P(Wilwi—l-“wmax(l,i— M—H))

56

for every word w; and computes the probability of a word sequence W as

Qw
P(W) = [[P(WilWi-1- Wax(1,i-ps+1))
=1
while an M-gram, character-based language model contains the probabilities
P(ci|Ci—1--Cmax(1,i—m+1)) for every character ¢; and computes the probability of
a word sequence W as

Oc
P(W) = [TP(cil cimte-Comax(1,impr+1)) -
i=1
O

In a large text corpus, word sequences are counted and used to estimate probabili-
ties as in ()
/ F Wi,W
P(wi{W') = TFWY
where the word sequence history equals W’ = (w;_1...w;_y+1) and the function F
denotes the word sequence frequency.

The actual process of estimating the probabilities is more complex because
some word frequencies are about zero. More details are given by Ney et al. [1994]
for word-based language modeling while Guyon & Pereira [1995] present a vari-
able length character-based language model.

The complexity of a language model is quantified in terms of entropy and per-
plexity. In general terms, the information content of a message is described by
its entropy and is computed as demonstrated by Shannon [1951], Witten & Bell
[1990] and Rabiner & Juang [1993]. The entropy is also the average number of
bits to describe a label such as a character or word.

Definition 3.28 (Entropy). Given a word sequence W = (wy,..., wQ) of length QO
and the probability of every word w; given by a statistical language model. Then
we compute the entropy of a sequence of words W as

H =~ 3 P(w) log, P(w)
=1

while an approximation is computed as

1 &)
é) > log, P(w;)
=1

for a typical long text sample. u

H=—(

The perplexity can be interpreted as the average number of possible words follow-
ing the current word. This can be formalized as follows.

3.6 Advanced topics 57

Definition 3.29 (Perplexity). Given a word sequence W = (wy,..., wg) of length
Q and a language model which defines the probability of the word sequence P(W).
Then the perplexity PP of a sequence of words W is defined as

PP=P(W)¢.
O

Perplexity and entropy of a text source are related as PP = 2/, We combine Defi-
nition 3.26 with the conditional probability P(w;) = P(Wi|Wi—1.-Wmax(1,i—pm+1)) t0
compute the perplexity and entropy of a word sequence W using an M-gram lan-
guage model as H = log, PP = — é ZiQ=1 logy P(Wi Wi—1-+-Wiax(1,i—ar+1)) -

In the study of Witten & Bell [1990], the entropy and perplexity of the English
language are discussed on the basis of the example of the Brown corpus. This
corpus contains about one million words from 500 sources. It is written using 94
character symbols and a vocabulary of about 100,000 unique words. The entropy
H and perplexity PP for some language models based on characters and words are
given in Table 3.2.

Table 3.2. Entropies and perplexities of language models based on characters and

words, respectively, of the Brown corpus for various M-gram models according to
Witten & Bell 1990.

Language model M-gram
type Measure |- 1 2 3 (4
Character H 6.55 | 4.47 3.59 292233
PP 94 22.16 12.88 | 7.57 | 5.03
Word H 16.61 | 11.47 6.06 |2.01 |-
PP 100K | 2836.70 | 66.71 | 4.03 | -

To put this into perspective, a handwriting recognition task based on a trigram
character model has a perplexity of 7.57, i.e., given a current character, there is
on average a choice of 7.57 characters for the character to follow. In case of the
trigram word model, there are only 4.03 word candidates that can follow the cur-
rent word, which is a significant reduction compared to the 100,000 possibilities
for the zero-gram model which assumes equal probabilities for all words. Wit-
ten & Bell [1990] also note that the character based entropy for the same trigram
word model is only 0.34, which corresponds to a character-based perplexity of
1.27 compared with 7.57 for the purely character-based model. This clearly shows
that a word-based language model outperforms a character-based model at the cost
of fixed vocabulary. A smaller perplexity typically leads to a better recognition
performance. Therefore, a language model with low perplexity is preferable.

58

3.6.3 Beam search

The Viterbi algorithm described in Figure 3.9 handles the evaluation of a sequence
of items representing one label given one model which results in p(O|A). This
has to be generalized to a multi class isolated and connected class classification
problem. For this we need the following definitions.

Definition 3.30 (Isolated class classification). Given a sequence of items O =
(01.--,0r) and a set of N hidden Markov models A = {A;,...,Ax} represent-
ing M labels Q = {w;,..., 0y}, determine the most likely label o* = w where
i* = argmax;p(O|\;). O

Definition 3.31 (Connected class classification). Given a sequence of items O =
(01,---;0r) and a set of N hidden Markov models A = {A;,..., Ay} representing M
labels Q = {®y,..., Wy}, determine the most likely label sequence @* = (@ ..., 0y)
of unknown length L. O

The straightforward approach to isolated class classification is to handle all the
models one by one to determine the best matching model. Although perfectly
feasible, this is not the most efficient solution. For example, the number of states
that have to be evaluated per timestep for a vocabulary of 20,000 words containing
50 states each is O(10°). For both isolated and connected word recognition, the
one-stage beam search algorithm as proposed by Ney [1984] is an effective and
efficient solution.

The approach with a one-stage beam search has a number of desirable proper-
ties. First, it enables us to handle input of arbitrary length representing either one
or more labels. In handwriting recognition, this corresponds to the ability to rec-
ognize characters, words, and sentences using the same algorithm. Secondly, the
beam search algorithm computes the best possible solution over all models while
evaluating only a fraction of all states. Thirdly, a time-synchronous evaluation is
possible, i.e., the approach is suitable for real-time recognition where the search
proceeds every time new data becomes available. Fourthly, no explicit segmenta-
tion into characters is required. On the contrary, the segmentation of words and
sentences into characters is a side-effect of the recognition. The process is illus-
trated in Figure 3.11.

It should be noted that beam search is a generic technique which is applied not
only in speech or handwriting recognition but also in scheduling [Ow & Morton,
1988]. Alternative search algorithms include the best-first A* search as presented
by Paul [1991] and Level-Building as presented by Rabiner & Juang [1993], which
is compared with one-stage beamsearch by Ney [1984]. Compared to three other
algorithms, the one-stage beamsearch requires less storage and fewer computa-
tional resources [Ney, 1984].

3.6 Advanced topics ; 59

Words

| Word 2 \ Word 3 IWordN

Word 1

I 1 |
I I I

0 1 2

Observations

Figure 3.11. One-stage beam search.

Other search algorithms in connected handwriting recognition are often two-stage
approaches like the algorithms presented by Weissman et al. [1994] and Schenkel
et al. [1994] who construct a labeled graph where the labels are characters detected
by a time delay neural network. The graph is searched with the aid of the Viterbi
algorithm. Similarly, Manke & Bodenhausen [1994] compute the best path over
the outputs of a time delay neural network using the Viterbi algorithm. A two-
stage search where the first stage is a preselection of labels is presented by Nathan
et al. [1995].

Isolated class recognition

Based on Definition 3.30 and the Viterbi algorithm in Figure 3.9, a beam search
algorithm is defined for a set of Q words W = {w,..., W,..., wp} where each word
wy contains Ny states. States and transitions are assumed to be word-specific. The
best score in a timestep ¢ in word k is denoted as o (j, k) where k is a word index
and j a state index. The width of the beam is determined by the threshold t. All
states with scores lower than o _, (j, k) + T are active at time ¢ and expanded, while
all other states are pruned. Because the pruning threshold depends on the best
values in the beam at time ¢, the beam is self-focusing. The recognized word has
index k*. Left-to-right hidden Markov models are assumed.

The above algorithm suggests that we compute loglikelihoods for all states
of all words at every timestep ¢. The obvious improvement is to compute new
loglikelihood values only for the active states (whose score is smaller than infinity)

60

Step 1. Initialization

, —log(bjx(o ifj=1
ou(J,k)={ oo bor) ifj';él
where 1 <k<Qand 1< j< N,
Step 2. Recurrency

.) v=[miny o;_1(7, k) —logay ;] —logh #(0,) ifv<o ,+71
Vt,],kocz(.lak):{ v:L r a0 1) = logar] = logbi(o) 1fv;g§* L+

where i/ = {max(1, j), max(1, j— 1),max(1,j—2)} and2< ¢t < T
Step 3. Termination P* = min ot (Ni, k) and k* = argmingoir (N, k)

Figure 3.12. The beam search algorithm for isolated class recognition using left-
to-right models and loglikelihood computation.

and the states that can be reached from the active states.

Another improvement is to detect duplicate states and compute a new value
only once for every state. All words are character strings modeled with a sequence
of character models and states. Such a search space layout is called a linear dic-
tionary as opposed to a tree dictionary which efficiently reduces the number of
duplicate states by sharing the prefixes of dictionary words.

Connected class recognition

Based on Definition 3.31 and the Viterbi algorithm in Figure 3.9, we design an-
other variation of beam search which is also applicable to the recognition of label
sequences. This approach needs a number of extensions compared to the algorithm
of Figure 3.12.

First, one extra state is used at the beginning of each word. This language state
is initialized at every time step with the probability of the language model for the
word in question. Next, we have to track the best word hypothesis k*(¢) in addition
to the best state hypothesis o (j, k). The best word at time ¢ serves as a reference
for the language model. Finally, the best word at time ¢ is tracked and stored in
a traceback array, together with a pointer to its predecessor and the current time
¢. This allows the tracking of the best recognized word sequence at any time ¢. In
algorithmic form this leads to the algorithm in Figure 3.13, where all likelihoods
are again expressed in —log(P). Note that we assumed a bigram language model
and included only the essential scoring but not the traceback administration for
word sequence recovery [Ney, 1984].

3.7 Problem Definition 61

Step 1. Initialization
. 0 ifj=0
(Xl(fak) = { oo if;# 0
where 1< k< Qand0< j< Ny
Step 2. Recurrency

o (0,k) = —log p(w|we (1)
Vt, j,k) v = [miny 0,1 (7, k) — logay ji] —logb (o) ifv<ol ,+1
%(j>k) y=oo ifv>of +71
= t—1

where /' = {max(0, j), max(0, j— 1), max(0, j—2) and2< t < T and 0< j <
Nk
Step 3. Termination P* = miny 0ir(Ng, k) and k* = argmin,our (Ni, k)

Figure 3.13. The beam search algorithm for connected class recognition.

3.7 Problem Definition

In the previous section, we have presented the theoretical framework of handwrit-
ing recognition and verification on the basis of hidden Markov models using a
transformation of input patterns, represented by items, to class labels. This section
defines the exact type of labels that are used and we also formally define the prob-
lem of handwriting recognition and verification. For this we need the following
definitions.

Definition 3.32 (Alphabet). An alphabet A is a subset of ASCII symbols. The
most frequently used alphabets are

o Agigis = {0, 1,...,9}

e Alower = {a, b,...,z}

o Aupper ={4,B,...,Z}
A text T is defined as a sequence of alphabet symbols 7 € AT where A repre-
sents the label sequences of non-zero length. |

Definition 3.33 (Binary decision). A binary decision results in a ‘yes’ or ‘no’ an-
swer represented by b € B = {0,1}. O

Based on these label definitions, we define the recognition and verification of input
items.

Definition 3.34 (Handwriting recognition). Given an alphabet A represented by
a set of C labels ® = {wy,..., ¢} where w; € A and each label with model A;, and

62

a sequence of input items X = xy,x»,...,x7. Then we define handwriting recogni-
tion as the classification ®* of X where @* is the most likely label sequence a* =
(a1,...,a;) of length [with variable /, given by a* = argmax p(®|X) = (a1,...,a;)
where a* € AT and p(a*|X) is maximal. O

Note that the definition of handwriting recognition covers both isolated and con-
nected class recognition. The recognition of a label string of length one is an
isolated class recognition problem. In contrast, the recognition of a label string
with length more than one is a connected class recognition problem. Finally, we
define the problem of handwriting verification as follows.

Definition 3.35 (Handwriting verification). Given an individual i, a piece of
handwriting described with a model A;, a threshold 1;, a binary decision which
is either ‘reject’ or ‘accept’, and a sequence of input items X = xy,xp,...,x7. Then
we define handwriting verification as a binary decision problem where the input is
accepted if the condition — log p(X|A;) < 7; holds. O

4

Handwriting recognition

In this chapter we discuss solution strategies for the handwriting recognition prob-
lem presented in Definition 3.34 where we defined handwriting recognition as a
stochastic classification problem which transforms a sequence of items to one or
more labels. To transform the formal definition into a handwriting recognition sys-
tem, we have to make the labels, model and items more concrete. In the following
chapters, we assume that labels correspond with characters. As defined in Defini-
tion 3.32, these characters are part of an alphabet A. The recognition of isolated
characters concentrates on digit, uppercase and lowercase labels. The recognition
of label strings, such as words and sentences, concentrates on strings of lowercase
characters.

In the context of hidden Markov models, we refer to the items in Definition 3.34
as observations which are represented by feature vectors. We study the struc-
ture of the representation in Section 4.1 with special attention on how to integrate
handwriting-specific and contextual knowledge. A hidden Markov model is chosen
as a model for each character. Several model structures and handwriting-specific
modifications are discussed in Section 4.2. The algorithmic framework which per-
forms the transformation of feature vectors to characters and character sequences is
explained in Section 4.3. We conclude the chapter which the experimental frame-
work in Section 4.4.

63

64

4.1 Representation

A crucial part of a hidden Markov model classifier is the representation which is
the subject of discussion in this section. To start with, the determination of hand-
writing parts to compute feature vectors from is explained in Subsection 4.1.1 and
Subsection 4.1.2. This is followed by the writing size (in)dependence of the hand-
writing parts. Next, we discuss the features of the baseline representation in Sub-
section 4.1.3. The remainder of the section discusses the modeling framework of
handwriting-specific knowledge with additional features in Subsection 4.1.4, the
realization of a number of contextual features in Subsection 4.1.5 and the applica-
tion of linear discriminant analysis in Subsection 4.1.6.

4.1.1 Handwriting variability

In Chapter 2 we argued that handwriting cannot be reproduced 100%. The vari-
ability of handwriting signals depends on the writer and the digitizer and has to be
compensated either through normalization or by means of a model. In this subsec-
tion, we discuss the alternatives and choices.

In the beginning of this chapter, we made Definition 3.34 more concrete and
have chosen to model characters. Apart from the various character shapes, which
are modeled by the hidden Markov model, the three main sources of variability in
handwriting signals are writing speed, writing size, and, sampling rate.

Because a hidden Markov model is known to compensate the variability of a
single variable well if the data source obeys the properties of a Markov process
[Levinson & Roe, 1990], at least two of the three variability sources have to be
compensated. Careful normalization is important because coarse heuristics can
introduce errors which cannot be compensated for by the hidden Markov model.
Note that speech recognition systems based on hidden Markov models model the
acoustic variability plus the speaking speed.

To find a normalization approach which is best suited to work with a hand-
writing recognition system based on hidden Markov models, we take a look at
some example approaches in the literature. In the context of character recogni-
tion, Guyon, Albrecht, LeCun, Denker & Hubbard [1991] found a considerable
degree of writing speed variation, which they normalized using a spatially equidis-
tant representation that left only the writing size as variability source. Schomaker
& Plamondon [1990] segment the handwriting on the basis of velocity inversion
points, which result in pieces of handwriting independent of any of the three vari-
ability sources. In the context of word recognition, Bellegarda, Nathan, Nahamoo
& Bellegarda [1993] use spatial subsampling to obtain a representation indepen-
dent of writing speed and tablet speed. Beigi et al. [1994] and Schenkel et al.
[1995] show how to compensate writing size for handwritten words.

4.1 Representation 65

Given the example normalizations from the literature, this thesis investigates two
promising normalization approaches. The first approach uses spatial subsampling
to normalize the writing speed and sample rate of the handwriting. This leaves the
writing size to be normalized. The second approach uses velocity inversion points
which eliminates all three variability sources.

41.2 Frames and segments

Before we discuss the features in a feature vector, we have to define how to group
sampled coordinates into blocks that we use to compute a feature vector. We define
two alternative approaches.

In the case of segments, the block boundaries are defined by the condition that
the vertical handwriting speed is zero (v, = 0). This block definition corresponds to
the stroke definition introduced in Section 2.2. In Subsection 2.2.2, it is argued that
the location of these boundary points within a character is invariant with respect
to the handwriting size. In combination with features which are independent of
writing size, this results in a complete representation independent of writing size.
In contrast, a frame consists of a fixed number of consecutive, spatially resampled
points. The pen trajectory has to be resampled to obtain equidistant points and thus
compensate for writing speed variations.

Note that the segments improve the scalability of the handwriting which makes
an explicit size normalization, as demonstrated by Nathan et al. [1995] , Weissman
et al. [1994] and Schenkel et al. [1995] redundant. The explicit size normaliza-
tion is often based on the detection of the bounding box of the written word fol-
lowed by a computation to derive the word body. This explicit size normalization
is very suitable for isolated word recognition tasks in which all input is available
before normalization and recognition is done after writing. For sentence recogni-
tion where writing and recognition take place simultaneously to achieve real-time
recognition, the explicit size normalization is less suitable. As an alternative we
investigate size-independent segments for character and word type input.

A slightly different definition of frames is used in the context of character
recognition. This variation is called ‘size-independent frames’ or ‘si-frames’ to
distinguish them from the standard frames. The difference is that we compute the
stepsize between equidistant points in single characters to obtain 100 points per
characters. This approach leads to a fixed number of frames per character regard-
less of its size.

4.1.3 Feature selection

In the previous subsection we discussed alternatives to the grouping of coordinates,
L.e., the sizes and boundaries of parts of handwriting. The next question is how to
transform the parts of handwriting into features.

66

The easiest way of transforming the digitizer coordinate stream to a feature vec-
tor stream is producing one feature vector per sample as proposed by Seni, Srihari
& Nasrabadi [1994] and Starner, Makhoul, Schwartz & Chou [1994]. Seni et al.
[1994] used four features per vector while Starner et al. [1994] used only two
features containing the angles relative to previous samples. Feature vector exam-
ples with more components for larger pieces of handwriting pieces are given by
Schomaker [1990] and Guyon, Albrecht, LeCun, Denker & Hubbard [1991].

Based on the studies by Schomaker [1990], Guyon et al. [1991] and Seni et al.
[1994], we select a set of 13 features which we use to describe the frames and
segments. The basic set of features comprises aspect ratio, curvature, start and end
angle relative to the x-axis, three intermediate angles at equidistant points along
the segment, and a pen-down feature. Note that all the angles with respect to the
x-axis are denoted as 0 while the intermediated angles based on three points in the
piece of handwriting are denoted as ¢. This accumulates to a feature vector for a
single observation as shown in Figure 4.1 while Figure 4.2 clearly demonstrates
the computed features.

(ra(t) \
(1)
sin Ogart (¢)
€08 Ogtart (2)
sin ¢1(¢)
fo cos O1(¢)
0p = : = sind;(2)
o cos (1)
sin¢3(?)
cos ¢3(?)
$in Benq(7)
Cos eend (t)
pa(?)

Figure 4.1. Symbolic description of Figure 4.2. Graphical description of
the basic feature vector. the basic feature vector.

There are five angles for representing a segment or frame. They are computed as
described by Guyon et al. [1991] who takes advantage of the fact that the segment
consists of a sequence of discrete samples where every three adjacent samples are
used to measure an angle. Because each angle is represented by two components,
sin and cos, this adds up to 10 angular features.

In addition to the 10 angular features in the feature vector in Figure 4.1, we

4.1 Representation 67

have three more features which are pen-down, curvature, and aspect ratio which
are described at time ¢ with the functions p4(#), c(t), and r,(¢), respectively. The
pen-down feature is defined as

1 if the pen-pressure is > 0
= t) = .
fua = palt) 0 otherwise

Figure 4.2 shows that dx and dy describe the width and height of the piece of
handwriting. This leads to a definition of the aspect ratio equal to

dx
Jo = ro(t) = dx-l—dy'

The curvature is defined as the relation between the path lengths of the sam-
ples of the piece of handwriting and the distance between the beginning and
end point. The path length is defined as the sum of the distances between
each adjacent coordinate pair in the piece of handwriting. For an observation
o, with N samples, we denote the path length of o, with the function pi(z) =
SNIe(i) — x(i— 1))2+ (i) — y(i — 1))2]0'5. The distance between start and end
point is denoted as d(r) = [(x(N) —x(1))%+ (y(N) — y(l))Z]O'S. This leads to a
definition of the curvature of o; equal to

d(r)
According to this definition, the real values of the features have a range of [0;1],
except for the angles where the range is [-1;1].

Because not all digitizers support sampling above the tablet during a pen-up
movement, it is possible that we do not have coordinates for the pen-up scribble
to compute the angular and curvature features. Therefore, we decided to model all
pen-up scribbles with a linear approximation based on the end point of the previous
and the beginning of the next frame or segment which are pen-down movements
per definition. Because start and end angles in the feature vector are the same, only
the start angle is computed while the other angular components are zero. In case
of a pen-up scribble, we assume that the curvature ¢(¢) is one and the pen-down
feature py(t) is zero.

4.1.4 Aggregate features

In the previous subsection, we introduced a basic feature vector in Figure 4.1 which
represents the data in a frame or segment. Such a feature vector o, is computed at
every timestep ¢. Because it is known that feature events that describe consistent
trends in handwriting over several points can improve recognition accuracy, we
discuss some common techniques that compute additional features used to augment

68

the feature vector. In addition, we introduce a novel framework to describe the
consistent trends in the handwriting.

The easiest technique is to splice several simple feature vectors into a larger
feature vector. This is demonstrated in handwriting recognition by Bellegarda et al.
[1994] and Starner et al. [1994]. Similar approaches are used in speech recognition
[Rabiner & Juang, 1993; Lee, 1988] .

The addition of structural handwriting knowledge to a representation is not
new. Manke & Bodenhausen [1994] and Kosmala, Rottland & Rigoll [1997] both
use a 3x3 context bitmap which is a scaled-down version of an N X N bitmap
containing an image of the environment of a feature vector. Seiler, Schenkel &
Eggimann [1996] add features to describe structures in the handwriting, which are
similar to loops. Schenkel et al. [1995] use the hat-feature to describe diacriti-
cal marks in the handwriting. A recent study by Liu, Liu & Dai [1996] explores
multi-resolution features in an off-line, handwritten digit recognition task using a
multilayer perceptron. Multi-resolution features are obtained from an image which
is low-pass filtered and sampled at several different scales. The authors found an
improvement over the baseline representation due to the new features.

In general, it is necessary to describe and integrate not only information which
is local to one frame or segment, or global information spanning a complete word,
but handwriting-specific information spanning several feature vectors.

This thesis explores a new framework to include structural knowledge into the
representation of the hidden Markov model in Subsection 4.1.5 which bridges the
gap between local information only and a global description of handwriting.

Delta features

One way to describe the dynamics of the signal is the use of delta features. This
approach is adopted from speech recognition approaches [Rabiner & Juang, 1993;
Lee, 1988]. Delta features are approximations to the derivatives of the observation
vector with respect to time. One realization of delta features are straightforward,
first-order differences of o, with respect to other feature vectors. This leads to the

: (t)

Such a transformation doubles the size of the feature vector. If more feature vec-
tors are combined then the feature vector size becomes three or more times as
large. Usually, augmented delta features are computed from feature vectors in the
range [t-2; t+2] but this also depends on the number of observations per second.
It is impractical to compute delta features from more feature vectors due to high
dimensionality of the combined feature vector.

4.1 Representation 7 69

Contextual features

In order to augment the feature vector with extra features describing the spatial
dynamics of the handwriting signal, we developed the concept of contextual fea-
tures. Instead of a mere combination of features as explained earlier, we employ
functions on a variable set of previous and future feature vectors, and the corre-
sponding original pieces of handwriting. As a consequence, delta features are a
subclass of contextual features. Given a maximum time displacement d and a fea-
ture vector oy this leads to an augmented feature vector o} with 13 basic features
and K extra contextual features represented as fi to fx.

/ Ofl \

0113
fl(ot—dr-', Ofgeeey 0t+d)

i

/
0y

\ fK(Ot—d;-~-,0t7---,0t+d))
In contrast to the delta features, where the time displacements are often limited
to [-2;2], the time displacement in this approach may be longer to catch longer-
term structural relations. We assume that a positive time displacement d relates the
current feature vector o, to previous feature vectors up to 0,4 and future feature
vectors up to o,44. Disadvantage of a relation with future feature vectors 04 is a
possible interference with real-time recognition.

In this thesis, we use positive time displacements and relate the current feature
vector to previous feature vectors only. Hence, we refer to the time displacement
d as ‘delay’. More precisely, we compute the contextual features from feature
vectors in the range [0;g,...,0;] and refer to a feature vector o,y as ‘delayed’
feature vector.

At the boundaries of the scribble sequence, the contextual features
fi(0t—ds---,0:) are not computed but replaced with 0. An alternative is a ‘modulo’
computation on the observation number ¢ — d which guarantees that the index t — d
always refers to a valid observation. The approach is flexible and allows the inclu-
sion of longer-term information while limiting the feature vector size compared to
delta features.

4.1.5 Realizations of contextual features

In the previous section, we introduced the concept of contextual features. These
features are a mean to quantify structural relations, which may span several obser-
vations, in features of the representation of a hidden Markov model. In this section,
we compute several types of contextual features on the basis of the framework pre-

70

sented in the previous section. In particular, we compute positional, size, overlap,
and contour features which are used to augment the feature vector in Figure 4.1.

Positional features

The computation of angles based on the lines between adjacent samples is a com-
mon way of describing handwriting scribbles [Guyon et al., 1991; Seni et al., 1994;
Schomaker, 1990; Yang, 1995]. In contrast, the angles of the lines between the
center-of-gravities (cog) of successive frames or segments and the x-axis is struc-
tural knowledge which is a novel way to express spatial relationships between dif-
ferent observations. In comparison with delta features, this approach presents the
available spatial information more explicitly. The approach is applicable to both
segments and frames.

To compute the angle of the line between the centers-of-gravity of two feature
vectors and the x-axis, we need a number of auxiliary variables. In particular, we
need the definition of a ‘center-of-gravity’, the displacement between two centers-
of-gravity and the distance between two centers-of-gravity.

For a feature vector o; derived from a frame or segment composed of N; coor-
dinates (x,y), we compute the center-of-gravity (Xcogs Yeog) Of the frame or segment
as

X% 2iYi
xcog(t) = Nl—t’ J’cog(t) - Z&t .
The displacement between the centers-of-gravity of the current feature vector o,

and the delayed vector o,—, is expressed as

Axco‘g(l‘, d) = xcog(t) - xcog(t - d)7 AYCog(ta d) = YCog(t) _YCog(t - d)'
The distance between the centers-of-gravity of the current vector o; and delayed
vector 0;—4 is

deog (,d) = 1/ (Axeog(t, @)+ (Ayeog s,)2
For each delay d, we compute the vector from the center-of-gravity of the current
feature vector o, towards the center-of-gravity of the delayed feature vector. We
compute the angle of this vector with the x-axis. The computed angle is split into
a sin and cos component which provide two positional or angular features fpy and
/p, that express the location of a frame or segment relative to another frame or
segment. We compute fp; (the sin component) and f,,, (the cos component) as

Aycog(t, d)
deog(2,d)

Axcog(t, d)

Jo(t:d) = deog(t,)

fpz(tad) =

4.1 Representation 71

Figure 4.3 shows an example of these angular features for the character h’ contain-
ing four segments. We assume the existence of three delays d which values are 1, 2
and 3. We compute a center-of-gravity for each segment. Figure 4.3(A1) shows the
position of these centers-of-gravity. For each of the three delays, we draw a vector
from the (assumed) current segment number 4 to the delayed center-of-gravity as
shown in Figure 4.3(A2). The sin and cos of the angle of these three vectors with
the x-axis form a total six angular features.

e
F'\i
U S, S, S

(B1)

\
~—— N —
\
o

e N
-
A9 [\S]
-

X

4
(A1) (A2)

Figure 4.3. Examples of positional and size features.

Size features

In addition to the positional features discussed in the previous section, the use of
size relations provides extra information. The size relations are useful only for
segments because all frames contain the same number of samples, and the distance
between samples is equal because of the spatial subsampling.

The idea is to relate the path lengths of current segments to previous segments
in order to collect information about writing size changes in the representation.
This approach partially compensates for the loss of size information resulting from
the definition of segments which are size-independent.

For each delay d, the relative size of the current feature vector o; is computed
from a segment composed of N; samples. This is implemented by computing the
path length of every segment and comparing the path lengths. The path length of a
segment composed of N; samples is given by

N,
=3, V) = x(i— D)2+ () — y(i— 1))?

72

The path length of the current feature vector o is compared with the path length of
a delayed feature vector 0,4 with delay d as

pi(t—ad)
6d) = ey =)
where f; is the feature which expresses the size relation. The range of the feature
value is [0;1]. If there is more than one delay then we compute the size feature for
all delays and augment the feature vector with the resulting features.

An example is given in Figure 4.3(B1). The handwritten character ‘h’ has been
split into four segments. We assume that the current segment number is four. We
also assume that there are two delays d which are 1 and 3. In this situation, the
feature vector o4 can be augmented with two size features which are f(4,3) and
f5(4,1) resulting in two extra features.

Overlap features

Contextual features enable the computation of overlap relations similar to the hat-
feature described by Weissman, Schenkel, Guyon, Nohl & Henderson [1994]. This
allows us to express spatial relationships like a dot on an ‘i’ or a bar in a ‘t’ or
‘> and add this structural information to the representation of the hidden Markov
model. For example, a handwritten ‘i’ consists of two segments, a dot and a body
segment. We know that one of the segments is placed above the body. If we are
able to mark that segment then we have an extra feature which discriminates the
dot from other segments. Note that we use the example of segment grouping, but
the discussion in this section holds also for frames.

While the approach proposed by Weissman et al. [1994] detects and removes
diacritical scribbles (like the dot on the ’i’), after which the data beneath the re-
moved scribble is marked with the hat-feature, we employ the more general strat-
egy of computing the overlap in x direction between subsequent feature vectors.
The width of segments is used to determine the occurrence of an overlap and the
relative overlap. The advantage of our approach is that this overlap provides data
not only for diacritical marks but for all characters. The disadvantage is that the
overlap of the ‘i’ dot with the ‘i’ body is stored in the dot itself, which is sometimes
delayed.

To express the overlap relations, we need three auxiliary variables which de-
scribe the physical width of a segment, the actual overlap in x direction of segments
and a boolean variable which indicates that an overlap takes place.

Given the current feature vector o, which is computed from a segment contain-
ing N; coordinates (x,y). We assume that xpy, is the leftmost x coordinate in the
segment of feature vector o; and Xpay, is the rightmost coordinate. Then we can
describe the physical width in x direction of the segment as w(z) = (Xmax; — Xmine)-

4.1 Representation 73

Now that we know the width of the segment used to compute o,, we can detect
overlaps in x direction between segments. If two segments occur at identical x-
positions with identical width then the overlap is 100%. The auxiliary variable

w(t —d)
w(t) +w(t—d)
indicates the amount of overlap between two segments with a value in the range
[0;1]. An additional variable o(z, d) holds a boolean value which indicates whether
an overlap between o, and 0,_, occurs.

r(t,d) =

overlap in x direction.

0 otherwise.
The combination of w(t), r(t,d), and o(t,d) enables us to express the overlap rela-

tion in a feature f,. For a given delay d this leads to

1 if the frames or segments at time ¢ and ¢ — d
oft,d) =

t—1
fo(tad) = :ﬁ . 2 O(t, i) -r(t, i).

i=t—d
This single feature indicates if an overlap of segments occurs for a given delay d
and all feature vectors o,_4 to o;. The feature also quantifies the amount of overlap.
No overlap means f,(¢) = 0 while 100% overlap results in f,(f) = 1. The single
feature f,(¢) can be used to augment each feature vector o,. To summarize, the
overlap relation expresses an average overlap of the current frame or segment at
time ¢ with the previous d observed feature vectors.

Contour features

Several authors have shown the advantages of the contour information of a word
in word recognition or pre-selection of viable word alternatives. Disadvantage of
most approaches is that the complete word is needed before processing. Here,
we present an on-the-fly computation of contour information based on contextual
features.

Ho, Hull & Srihari [1992] explored a recognition algorithm for typed or printed
words based on contour information only. Seni, Srihari & Nasrabadi [1994] used
contour information based on ascenders and descenders to reduce the size of a
dictionary as a pre-processing step for a large-vocabulary, cursive word recognition
system. A similar approach is presented by Madhvanath & Srihari [1996] for off-
line data. Caesar, Gloger & Mandler [1995] used contour information to estimate
the baseline of off-line handwritten words. Similarly, Seiler, Schenkel & Eggimann
[1996] used contour information to determine the word height for an explicit, size
normalization step.

74

e

Figure 4.4. Handwritten word ‘urgent’.

To add contour knowledge to the framework based on hidden Markov models,
we need to find a way to compute a contour score which is continuously updated
during the left-to-right processing of the input word.

The first option is to explicitly detect characters, determine the bounding boxes
of the characters and score the relation between the size of the bounding boxes
as contour transitions. This leads to a separate stream of features besides the ba-
sic feature vector developed above. As a consequence, a second hidden Markov
model is needed and the recognition and training process involves the simultane-
ous processing on two different hidden Markov models for characters and contours,
respectively.

The second option is to compute contour transitions on-the-fly and integrate
the features describing the transition into the representation. This eliminates the
need for a second stream of feature vectors and the training and the recognition
process remains unchanged. In the example in Figure 4.5 the contour information
is determined for the feature vector representing the left-most part of the ‘g’ in
‘urgent’.

Figure 4.5. Left: segmentation point ‘x’ for the top contour and ‘o’ for the bottom
contour. Right: regression line estimation based on segmentation points.

The contour features are computed for the segment representation only because
the segmentation points indicated in Figure 4.5 are a natural mean for following
the top and bottom contours. These segmentation points are the boundary points
of the segments. The top and bottom contours are approximated with a regression
line as shown in Figure 4.5.

The slope estimation is based on the boundary points of the previous d seg-

4.1 Representation 75

ments. We denote the slope of the top contour at time # as s;, while the slope of the
bottom contour is s5,. Given the current feature vector o; and a delay d, we describe
the slope of the estimated top and bottom contour with two features fcmp(t, d) and
Fevottom (£, d). Therefore, each feature vector o, is augmented with two additional
features with range [-1;1].

fctop(ta d) = %ny(:tt)i’ fcbottom(t’ d) = W
The minimum delay d is six segments which provides three points to compute the
top and bottom contour where we define contour as the Least Mean Square (LMS)
estimated or linear regression line through the top and bottom segmentation points.
The more points we have to compute the regression line, the better the estimate. A
delay of 10 segments seems reasonable.

A large delay d limits the use of the contour estimation to word and sentence
recognition. Note that the delay is typically longer than one character. There-
fore, there are contextual effects which means that the value of the two features
fetop(t;d) and fepoom (,d) depends on the current character but also on the previ-
ous character(s).

Figure 4.6 shows an example of the contour signal for both top and bottom
contour of the word ‘urgent’ in Figure 4.4. The delay d is 10 which means that the
previous 10 segments are used to compute the contour features. The feature values
for the top and bottom contour are plotted at each timestep .

0.5

T
Top contour —+—
Bottom contour ---s----

0.4
0.3 /
=X
o2 Ay 7
s e |/
g o b i
=)] /3‘
o
o
0 v +
* | / /
-0.1 4 ,7(S
0.2 4
Je-mX
-0.3
0 5 10 15 20 25
Segment nr.

Figure 4.6. Contour signal for the word ‘urgent’.

76

4.1.6 Linear Discriminant Analysis

The previous sections discussed the features in an observation o,. We introduced
techniques to augment feature vectors with additional features describing structural
relations in handwriting. Because this can result in a high-dimensional feature
vector, this section discusses a technique for reducing the size of the feature vector.

Linear discriminant analysis (LDA) [Fukunaga, 1990] is a well known sta-
tistical technique which is frequently used in statistical pattern classification for
compressing the information contents, with respect to classification, of a feature
vector by a linear transformation. This is especially important in combination with
the augmented feature vectors presented above. In contrast to Principal component
analysis (PCA), LDA takes into account that data originates from different classes.

Given a feature vector x € IRL and a number of class labels {®1,-...,0c}, then
we search a linear transformation f : IRL — IRP where D < L which results in a
transformed feature vector ¥ with dimension D. To find the transformation, we have
to compute the mean u; of all data in a class w;, the within-class covariance matrix
Uy, the between-class covariance matrix Up and the total covariance matrix U;. In
the following, we only use the within-class covariance U,, and the total covariance
U;.

In the situation where we train a classifier, the class labels are classes in the
LDA sense, i.e., we take all feature vectors of the training data and divide the
feature vectors into several classes. For example, if we assume that each state of a
hidden Markov model is a class m; then we use all feature vectors which occur in a
state i to compute a mean y; and a within-class covariance matrix U,,.

To compute the means u; and covariance matrices U,, and Uy, we do two passes
over the training data. We assume that the training data contains C classes with
a total of N feature vectors and that each class ®; contains N; feature vectors. In
the first pass, we compute the average feature vector for each class i as u; and the
average of the complete data set u;.

1

Hi= N Z Xjy M= Nzxj
i {ijCOi} J

In the second pass, we compute the covariance matrices U,, and U,.

_z 2 —Hi (x] /f‘l): Ut:NZ(xj_ﬂt)(xj—ﬂt)’

t— H{xjew} j
Now that we have the within-class and total covariance matrices U,, and Uy, respec-

tively, we define a performance index for the class separation as J = tr(U,, 'U,).
The larger the performance index J, the better the class separability [Duda & Hart,

4.1 Representation 77

1973]. The trace elements of U,, 'U; indicate the discriminative value of the corre-
sponding features in the feature vector before LDA transformation.

From the training data, we compute the LDA transformation matrix W with
dimension L X D and D < L. This is done by solving the eigenvalue problem
U, U@ = ®A [Fukunaga, 1990] which results in a matrix W containing the eigen-
vectors which are sorted according to their eigenvalues. The matrix W containing
the D eigenvectors with the largest eigenvalues is the LDA transformation matrix.
The eigenvalues indicate the discriminative value of the transformed features.

Now that we have the LDA transformation matrix W, we use it to transform the
feature vectors. LDA is a feature extraction process which transforms the feature
vector x € IR* according to = Wx. This is a transformation of the form x € IR” to
%€ IRP where D < L. The LDA transform matrix W is the matrix which maximizes
the performance index J.

The result of the LDA transformation is a feature vector # = Wx which is decor-
related, ordered, and maximally compact. The first property is advantageous, be-
cause in our hidden Markov models we employ diagonal covariance matrices as
discussed in Section 4.2. The second property means that the features are ordered
according to decreasing eigenvalues. The first features, i.e., those with the largest
eigenvalues, contribute most to class separability. Finally, the third property states
that for any subset of features 1 to D the sum of the eigenvalues is maximum. More
specifically this means that no other subset of the same number of D features or
linear combinations thereof has a larger sum.

LDA has been employed in the training and recognition process similar to that
described by Haeb-Umbach & Ney [1992] for speech recognition. Training is
carried out in three steps:

e first an ordinary training is carried out. This results in a time-alignment, i.e.,
a class label for each feature vector. Note that we define the classes in the
LDA sense to be hidden Markov model states;

e next, the within and total class scatter matrices are computed and from them
the LDA transformation is obtained by solving an eigenvalue problem [Fuku-
naga, 1990];

e finally, a completely new training is conducted on the LDA-transformed fea-
ture vectors. The dimension of the transformed feature vector can optionally
be reduced by discarding the least important rows of the LDA transformation
matrix.

LDA is preferred over Principal component analysis [Bellegarda et al., 1994] be-
cause LDA takes into account that the items originate not from one but from several
classes. Although LDA is routinely applied in speech recognition [Haeb-Umbach

78

& Ney, 1992] , there are only few examples of the application of LDA in hand-
writing recognition based on hidden Markov models. An example is the work
by Stampa, Caesar, Gloger, Kaltenmeier & Mandler [1996] who apply LDA to
off-line, isolated, handwritten digit recognition and who report 91% correctly rec-
ognized ZIP codes. PCA is used by Kassel [1995] and Bellegarda et al. [1994]
for character recognition based on hidden Markov models and by Cho, Lee & Kim
[1995] for word recognition based on hidden Markov models.

Lindwurm, Breuer & Kreuzer [1996] employ discriminant analysis in the con-
text of an off-line, multi-expert, handprinted recognition system leading to 79.1%
correct for alphanumerics and 95.2%, 91% and 87.3% for digits, upper and lower-
case data, respectively.

Except for Haeb-Umbach & Ney [1992], who quote a 18% relative improve-
ment for a specific test due to LDA, the above studies do not give the relative
improvement due to LDA or PCA.

In the context of this thesis, a state of a hidden Markov model is used as class
definition for LDA. Hence, the LDA tries to transform the data in order to ease the
separation of the hidden Markov model states. Chapter 5 will quantify the benefits
of LDA in the context of handwriting recognition on the basis of hidden Markov
model.

4.2 Models

In the previous chapter, we presented several hidden Markov model structures and
gave a formal definition of the handwriting recognition in Definition 3.34. In the
beginning of this chapter, we made the problem definition more concrete and chose
hidden Markov models to model characters. This section discusses how to exploit
handwriting-specific knowledge in combination with hidden Markov models.

The section starts with a discussion of the basic structure of a hidden Markov
model in Subsection 4.2.1. This is followed by a discussion on the modifications
to the hidden Markov model in Subsection 4.2.2 and Subsection 4.2.3 in order to
accommodate for different styles of handwriting input. Language models in the
context of handwriting recognition are discussed in Subsection 4.2.4.

4.2.1 Structure

The basic theory of hidden Markov models has been discussed in Chapter 3. This
subsection discusses the parameter choices resulting in a model which serves as an
experimental basis for the experiments of Chapter 5. The general objective is to
obtain a robust hidden Markov model which allows the integration of handwriting-
specific knowledge into representation or model structure. The objective is not to
tune the model structure to specific characters or circumstances.

4.2 Models 79

The basic model is a left-to-right (Bakis) model with loop, forward and skip transi-
tions between the states. The number of states depends on the expected number of
observations. All the allographs are modeled in a single model which means that
there is one hidden Markov model per character of the alphabet that is considered.
The transition matrix of each hidden Markov model is estimated during the train-
ing. The observation probability densities are continuous mixtures of Gaussian
densities with density-specific, diagonal covariance matrices. The diagonal covari-
ance components have a lower bound of 0.25 times the state-specific covariance to
prevent estimation errors due to lack of data.

4.2.2 Model improvements

In the previous sections, a left-to-right hidden Markov model was assumed as a
character model and a word model is obtained by concatenation of character hid-
den Markov models. This basic approach remains the same. Nevertheless, we
know that it is possible to integrate handwriting-specific knowledge into the model
structure to obtain a more accurate character model. An example is the state dura-
tion modeling by Senior [1994], the ‘backspace’ state by Starner et al. [1994], and
the ligature model by Cho et al. [1995]. Our study concentrates on ligature and
backspace modeling.

First, the difference between discrete and mixed-style handwriting is used to
modify the structure of the hidden Markov model describing a word. It can be
argued that the main difference is that discrete handwriting does not contain liga-
tures. All the characters are separated by a pen-up movement. In contrast, cursive
style implies a pen-down ligature.

It is possible to extend a handwritten word model, based on a sequence of
character models, by ‘pause’ models between the characters. This is shown in
Figure 4.7. In the case of discrete input, the pause model is a one-state model which
is used to exclusively model pen-up ligatures. In the case of pure cursive input,
the pause model contains only pen-down ligatures. In the case of mixed input,
either case is possible. We will use the notation /pause/ to refer to the handwriting
realization instead of the abstract model.

O OO0 O

Figure 4.7. A hidden Markov model of a word which includes an intermediate
‘pause’ model which is colored black.

Like trigraph modeling, which is explained in Subsection 4.2.3, a pause model
is an attempt to isolate the variability of character transitions. Consequently, the

80

context-free character models will contain fewer variable shapes.

Cho, Lee & Kim [1995] also use pauses in off-line word recognition and
showed that the recognition accuracy improved by 20% to 45%, depending on
the dictionary size. Their approach is to use a number of pause models describing
categories of character transitions depending on the neighboring characters. This
approach can be described as the use of a ‘contextual pause model’. In contrast to
their approach, we model all ligatures with the same pause model. This is based
on the assumption that the number of ligature types is limited. Pen-up ligatures are
approximated with a single linear line. Pen-down ligatures will normally contain
one or two segments, depending on whether they are diagonal or horizontal. The
number of frames per pen-down ligature is variable.

Second, diacriticals sometimes disturb the handwriting when part of the dia-
critical is delayed and written at the end of a word. We can model this effect of
diacritical marks if we assume that diacriticals occur immediately after the char-
acter body (which is correct) or at the end of the word (in a delayed case). An
additional state at the end of a word models this behavior. In this thesis, we chose
the pause state to be this extra state at the end of a word. A similar approach is
used by Starner et al. [1994], who introduced the term ‘backspace state’ to refer
to the extra state at the end of a word. However, the benefit of this state was not
compared with a situation without backspace model.

4.2.3 Contextual models

An examination of the example word in Figure 4.4 immediately shows that the
shape of a character like an ‘r’ or ‘¢’ is affected by the shape of the neighbor
characters. This was already discussed in Section 2.1. To model these effects, N-
graphs can be used which are allographs given a certain context. We define the
context as a number of characters written previously or after the character under
examination. An N-graph with N equal to 2 is referred to as bigraph. Such a model
is a character model with one left or right context character. A trigraph is a model
which spans three characters, i.e., both a left and right contextual character are
given.

Starner, Makhoul, Schwartz & Chou [1994] and Kosmala, Rottland & Rigoll
[1997] demonstrated that a trigraph based recognition system works fine in a
writer-dependent test. The use of triphones (or recently even quinphones) is com-
mon in speech recognition as presented by Rabiner & Juang [1993], Ney et al.
[1994], Lee [1988], and Schwartz et al. [1984]. An alternative approach is to use
ligature models as discussed in the previous subsection.

In this study, we limit the contextual models to bigraph (left-context) and
trigraph models. The example word in Figure 4.4 is modeled with context-

4.2 Models : 81

independent models as

[ul\/rl5/8],]el,/nl, /1]

With trigraphs, this results in

{#/u/{ry {u}/r/{g}.{r}//{e}: {8}/ e/ {n}, {e}/n/{t}, {n}/1/{$},

where # and § are the markers for word start and word end, respectively. The mid-
dle character of the example trigraphs in /c/ notation refers to the context-dependent
models while the other characters, indicated with {x}, provide context. This also
implies that a dictionary on basis of contextual models is different compared to a
context-free dictionary.

The set of bigraphs and trigraphs used to model the handwritten characters is
computed on the basis of the labels of the training data, the expected labels in an
application domain, and the number of training examples. Contextual models are
calculated on the condition that enough observations are given for a model. In
practice, that means that sufficient training data is required for every contextual
model [Kosmala et al., 1997; Lee, 1988]. We used a minimum of 30 samples to
train a model.

The algorithm to select trigraphs and bigraphs is simple. First, we parse all
the training text and calculate the number of occurrences of characters, bigraphs
and trigraphs. Next, we parse the training text again and add contextual models if
certain conditions are met. We add a given trigraph to the set of models if its count
exceeds a threshold. Bigraphs are added if their count exceeds the same threshold
and if the bigraph is not part of another trigraph.

4.2.4 Language models

A language model as defined in Subsection 3.6.2 is an extra context source and
therefore has the potential to improve recognition performance. In this thesis we
concentrate on two types of language models which are character and word-based
as defined in Definition 3.27. Word-based language models are routinely used
in speech recognition for dictation or other tasks. The application of word-based
language models to handwriting recognition is straightforward.

Character-based models have been used in handwriting recognition but there
are few studies of such a language model in the context of hidden Markov models.
The current study compares unigram with bigram language models and character
with word-based language models.

Character-based language models are easier to train than word-based language
models because the number of classes is smaller. Their advantage is that they allow
handwriting recognition with an unlimited vocabulary. Their fundamental flaw is
that a character unit provides less context than a word unit. An example comparison

82

of a character and word-based language model is given in Subsection 3.6.2.
This implies that a word-based language model is more accurate than a
character-based model. However, a word-based language model fails if a sentence
contains an unknown word which is not in the dictionary. A character-based lan-
guage model handles any sentence or text as long as the basic characters are known.
As an example, the probability of the sentence part ‘a fistful of” is computed
for some language models in Table 4.1, where ‘4’ indicates the beginning of the
sentence.
Table 4.1. Computation of a sentence probability given some language models.
Unigram | Word | P(W) = P(a) - P(fist ful) - (1)
Bigram | Word | P(W) = P(al#) - P(fist ful|a) - P(of| fist ful)
Unigram | Char | P(W) = P(a) - P(f) - P(i) - P(s) - P(¢)...
Bigram | Char | P(W) = P(al#) - P(f|a) - P(i] f) - P(s]i) - P(t]s)-..

Il

I

An excellent example of a word-based grammar in handwriting recognition based
on hidden Markov models is given by Starner, Makhoul, Schwartz & Chou [1994]
who achieve a word error rate of 3%-5% for writer-dependent recognition with a
25,000 words vocabulary.

There are few examples of earlier applications of character-based, statistical
language models. Guyon & Pereira [1995] study a character-based language model
with a variable context size of up to six characters. Unfortunately, no recognition
experiments are done. Kassel [1995] uses both unigram and bigram grammars
based on characters with perplexities of 36.0 and 11.3, respectively, and achieved
a 27% error reduction for a 62 class recognition task. Kundu, He & Bahl [1989]
use both first and second-order hidden Markov models in off-line, handwritten
word recognition and measure 92.5% correct words. An example of an analyti-
cal language model, comprising plain M-grams, in a non hidden Markov model
environment is given by Hull & Srihari [1982].

4.3 Algorithmic aspects

In order to combine the abstract definition of handwriting recognition in Defini-
tion 3.34 with the previously discussed representations and models into a working
classifier, a number of processing techniques and algorithms are needed. First, we
discuss the transformation of handwriting samples to feature vectors in Subsec-
tion 4.3.1. The next step is to employ the feature vectors in a training algorithm
in Subsection 4.3.2 to compute the hidden Markov models for each character. The
recognition uses the computed character models to transform the feature vectors
into computer readable text in Subsection 4.3.3.

4.3 Algorithmic aspects 83

43.1 Preprocessing

The on-line handwriting is sampled as a time-equidistant signal at a speed between
100pps and 200pps. Currently, only the x and y components of the sampled signal
are used to determine the feature vectors whose components are normalized to the
values in the range [-1;1] for angles and [0;1] otherwise. An averaging filter with
window size five is applied to smooth the signal. To obtain frame-based feature
vectors, the handwriting is resampled to a spatially equidistant signal after which
sequences of adjacent points are used to compute feature vectors. Segment feature
vectors are obtained without spatial resampling. Only velocity inversions are com-
puted and used as segment boundaries. The scribbles associated with both frames
and segments overlap 50% spatially. Note that pen-down and pen-up samples are
processed differently. While the pen-down data is handled as explained above, the
pen-up data always results in one frame or segment. The procedure is summarized
in Figure 4.8.

Handwritten input

(x,y) seq

Feature vectors

Figure 4.8. Handwriting signal preprocessing.

Handwriting has some properties which are considered to be unwanted distortions
in a handwriting recognition task. Although some handwriting preprocessors ex-

84

plicitly compensate these distortions, the preprocessor presented here ignores them
and models the variations with the hidden Markov model.

First, the handwriting is not necessarily written horizontally. The correspond-
ing slope can be detected and compensated, as demonstrated by Senior [1994] and
Caesar, Gloger & Mandler [1995] . Secondly, the writing is possibly slanted which
means that the basic strokes are not vertical. A left slant is often observed in the
case of left-handed writers and a right slant in the case of right-handed persons.
It is possible to detect and compensate the slant, as explained by Bozinovic &
Srihari [1989] . However, the technique is not robust. Thirdly, writing size is a
factor which is sometimes handled by the preprocessor, especially in character and
word recognition in which the complete input is available before recognition starts.
Various techniques can be used as demonstrated by Beigi, Nathan, Clary & Sub-
rahmonia [1994] and Seiler et al. [1996] . Fourthly, diacriticals can be handled by
the preprocessor. If a dot on an ‘i’ or bar of a ‘t’ is delayed until the end of a word
then this data is optionally removed and converted to a feature. This approach is
presented by Schenkel et al. [1995] and Nathan et al. [1995] .

43.2 Training

In Section 3.5 we concentrated on the theory of training hidden Markov models.
The current section focuses on the implementation of the theory. We employ the
maximum likelihood criterion and apply the Viterbi approximation [Rabiner &
Juang, 1993] in the training algorithm to estimate the parameters of a continu-
ous hidden Markov model. All likelihood computations are log-scaled to prevent
underflow. Gaussian densities are used to model the probability density in states.

Initially, the training creates 26 context-independent, lowercase character mod-
els. Alternatively, 26 uppercase or 10 digits or any combination of character classes
is possible. All allographs of a character are mapped to a single character model.
An additional pause model is created to model pen-up parts between adjacent char-
acters and ligatures as explained in Subsection 4.2.2.

The training procedure is outlined in Figure 4.9. Characters, words or sen-
tences are processed. All text is modeled as a sequence of character models, with an
optional pause model between the characters, resulting in a linear state sequence.
Except for the first iteration, in which observations and states are aligned linearly,
the Viterbi approximation is used to align the observations from the preprocessor
with the state sequence. We constrain the first observation to the first state and the
last observation to the last state. This is achieved by assigning a probability of one
to 71 and zero to the m; for i > 0.

The training algorithm presented in Figure 4.9 is slightly different compared
to approaches in the literature. Although the path-estimation is identical to the
approach in Ney et al. [1994], the computation of the mixture densities is different.

4.3 Algorithmic aspects 85

Iteration=1 Iteration>1

Figure 4.9. Training process of a hidden Markov model.

86

We do not increase the maximum number of mixture densities per iteration but fix
the maximum number of densities per state, e.g. 32, and use up to this maximum
number of densities in every iteration.

In addition to the context-independent (CI) training, a training with LDA trans-
formation and/or contextual character models is possible. The training of the
context-dependent (CD) models is similar to the LDA training explained in Sub-
section 4.1.6. The contextual models are initialized with the context-independent
models. Next, the Viterbi training is again applied and the first iteration uses the
same time-alignment as the last iteration with context-independent training. The
stacking of training procedures is summarized in Figure 4.10.

Handwriting

Cl -Models

CI-LDA-Models CD-LDA-Models CD-Models

Figure 4.10. The combination of various training processes for hidden Markov
models.

4.3.3 Recognition

The basic algorithms for handwriting recognition based on hidden Markov models
have been discussed in Section 3.4 and Subsection 3.6.3. This subsection considers
some implementation oriented aspects.

Recognition is based on the one-stage beam search algorithm discussed by
Ney [1984] and Ney et al. [1994] . All knowledge sources, i.e., the pen signal, the
dictionary, and, for some experiments, a language model, are applied simultaneous,
thus avoiding premature decisions. Hypotheses pruning is applied for efficiency.

4.3 Algorithmic aspects 87

For each timestep, the log(b(o;)) computations are carried out in a preprocessing
step.

In the context of speech recognition, the one-stage beam stage is often called
‘time-synchronous’ because of the time-equidistant sampling. In handwriting
recognition based on hidden Markov models, it makes sense to call the one-stage
beam search a frame of segment synchronous approach. For every newly gener-
ated frame or segment, a new observation or feature vector is computed and tested
against the state array formed by the dictionary. A writing speed of two characters
per second and an average of 10 frames per character results in about 20 observa-
tions per second for frames. In case of segments, we assume an average of five
segments per characters which results in about 10 observations per second.

Words

I Word 2 I Word 3 IWordN

Word 1

Observations

Figure 4.11. Schematic beam search for word recognition based on hidden
Markov models.

The state space is schematically represented in Figure 4.11, identical to Fig-
ure 3.11, where a linear word dictionary forms a state array on the y-axis. On
every timestep on the x-axis, one observation is processed for all relevant states.

The context information provided by a dictionary is always mapped on the
state array on the y-axis. However, there are several possibilities. The simplest
is a linear dictionary where the states of all characters of all words are placed in
the state array. A more efficient approach is to share common word parts in a
tree-organized dictionary [Haeb-Umbach & Ney, 1994].

Additionally, we can choose whether we compute only the active states or all
states. Examples of such fast search techniques are given by Manke et al. [1996]

88

and Ratzlaff et al. [1996], where character duration modeling is used as additional
pruning constraint.

If no new data is generated then we select the most likely terminal state with
the lowest loglikelihood score. Sentence recognition involves the tracking of se-
quences of best words as explained by Ney [1984]. There is no difference between
character and word-based language models other than that a character-based lan-
guage model requires a vocabulary of only 26 words representing the lowercase
characters.

The next chapter discusses character and word recognition experiments with a
tree-organized dictionary and a state-cache of active states. The sentence recogni-
tion experiments are done with a linear dictionary.

4.4 Experimental framework

Although the empirical results are discussed in Chapter 5, two issues are briefly
discussed here because they relate to the recognition system in general. These
issues are error counting in Subsection 4.4.1 and coding in Subsection 4.4.2.

4.4.1 Error counting

It is easy to compute character and word error rates which is just a matter of count-
ing recognition errors and dividing with the total number of tested labels. However,
two important issues related to scoring have to be resolved.

The first is the scoring of sentence recognition results. In contrast to the scoring
of word and character recognition results, sentence level scoring is complicated by
occurrence of ‘insert” and ‘delete’ errors in addition to ‘substitution’ errors. Some
authors have argued that insertions are no errors, but merely undesired.

In this thesis, we compute the Levenshtein distance [Sankoff & Kruskal, 1983]
between the original and recognized text and use it as the number of errors in a
sentence. The Levenshtein distance is a common metric to compare strings and
corresponds with the minimum sum of substitute, insertion, and deletion actions
to transform the recognized text into the original text. A dynamic programming
algorithm computes the Levenshtein distance on the basis of a comparison between
the word sequence of the recognition result and the word sequence of the expected,
correct sentence. Similar error rate definitions are used by Lee [1988] and Kassel
[1995].

LevenshteinDistance
CorrectSentenceLength

ErrorRate = E =

The accuracy is defined as
WordAccuracy = 100- (1 — E).

4.4 Experimental framework 89

The second issue is the significance of recognition results. In word recognition,
the test set is clearly defined and obtained from 10 individuals. This means that we
can compute 10 individual, mean word error rates and compute a between-writer
standard deviation G.

No standard deviation is computed for character recognition tasks. Instead, the
framework of Guyon, Makhoul, Schwartz & Vapnik [1996] provides a qualitative
guideline for testing whether enough test samples are available in relation to the
empirical error rate. The reason for this is that the size of the test set should be
inversely proportional to the measured error rate E. For a test set of statistically
independent samples it can be guaranteed with a confidence level of 95% that the
real error rate £ will not be worse than 1.25E where E is the measured, mean error
rate. A guideline is to use a test set size n = %9. This means that a test set of
10,000 independent samples is enough to test a recognizer with measured error
rate £ = 0.01.

4.4.2 Code description

The implementation of the recognition system is split into two parts. A first module
is the preprocessor which reads Unipen datafiles [Guyon et al., 1994] and trans-
forms them into preprocessed datafiles. All handwriting data, including any on-
site collected datafiles, are stored in Unipen format. The preprocessor is written in
ANSI-C and is built from 11,000 lines of code of which 4,000 lines are Unipen-
uplib code.

Second, the training and recognition module reads the preprocessed files and
transforms them into either handwriting models or a recognized output text. This
software has been built in C++ [Stroustrup, 1991; Stroustrup, 1994], may be com-
piled with several compilers (g++, CC/MipsPro, VC++) and works on several plat-
forms such as HP-UX, SGI/Irix, Linux and WinNT. The size of the complete Sys-
tem is 32,000 lines of code containing 64 classes resulting in an executable of
approximately 350 KByte for Intel CPU and roughly 700-1000 KByte for HP-PA-
Risc and SGI/Mips R10000 depending on CPU, options and inlining.

Eight different types of recognition (Linear and Tree dictionary, Word and Sen-
tence recognition) are modeled using a state array containing a beam of hypothe-
ses. These classes all inherit from ‘Beam’. There are nine iterators through beams
and observation containers. ‘Word’ and ‘Character’ are classes which inherit from
‘Ink’. The components of a hidden Markov model (‘State’, ‘Pdf*) are separate
classes. ‘Frame’ and ‘Segment” are classes which inherit from ‘Observation’. All
preprocessed data is contained in an ‘ObservationRepository’. ‘Dictionary’ is a
base class for two different types of dictionary trees.

S

Recognition Experiments

This chapter discusses the empirical results obtained by applying the theoretical
framework of Chapter 4 to an extensive handwriting recognition study. Section 5.1
discusses the employed datasets. Section 5.2 presents the parameters of the hidden
Markov model. Sections 5.3 to 5.5 present results for different representations and
models in handwritten character, word and sentence recognition tasks.

5.1 Data

Over the past 20 years, research on proprietary datasets often resulted in high
recognition rates which could not be reproduced in the field. Real progress has been
made in the algorithmic aspects, which has allowed more robust processing of more
complex and variable input. Over the years, datasets have become larger and more
diverse, culminating in the Unipen database as discussed by Guyon, Schomaker,
Plamondon, Liberman & Janet [1994], which contains handwriting samples from
more than 2700 writers resulting in more than five million handwritten characters.
The present study explores a general approach to handwriting recognition. We test
the algorithms and models not only on characters, words, and sentences but also
on different styles of handwriting.

Parameter selection is based on datasets not employed in the recognition phase.
While most data was collected at Philips sites, we also used some data from release

91

92

7 of the Unipen training data [Guyon et al., 1994]. Unipen development or test data
was not available for experiments. Part of the character recognition tests were car-
ried out using data from the Unipen training data section 1[abc], which was split
randomly into 70:30 parts to enable recognition tests. The word training data set
contains 7000 mixed style words collected on-site and about 3000 words from sec-
tion 6 of the Unipen data. The dataset properties used in this study are summarized
in Table 5.1 which also shows how datasets were split into non-overlapping training
and recognition parts.

Important dataset parameters are set size, alphabet size, digitizer and sample
rate and number of writers. Basically, the more writers, nationalities and digitizers,
the more difficult the recognition task. All recognition results are expressed in
character error rate (CHER) and word error rate (WER).

Table 5.1. The datasets used in the recognition experiments. We use the following
abbreviations: P=Philips, U=Unipen, D=Discrete data, M=Mixed-style data.

Dataset #Writers | #Symbols Sample Data Tl'aifl Test‘

Name rate (pps) | Source | set size | set size
Character data

Digits1 >50 10 60-170 P 1301 555

Digits2 566 10 60-200 U 10515 | 4506

Upper 1355 26 60-200 U 17945 | 7691

Lower 2082 26 60-200 U 42280 | 18120

Lower2 10 26 160 P - 1040

Word data

Mixed1 10 26 160 P - 500

Mixed2 10 26 160 P - 2483

Mixed.train | >50 26 60-200 P/U 10357 | -

Sentence data
Sentencel | 10 26(D) 160 P - 500
Sentence2 | 10 26(M) 160 P - 500

It is important to note that the sets Lower2, Mixedl, and Sentence2 were written
by the same 10 writers. This enabled us to test and compare the performance for
a fixed set of writers with character, word, and sentence data. Mixed2 contains
the hand-segmented words from the sentences in Sentence2 which enables us to
compare the word error rates for word against sentence context.

The average length of the handwritten words in MixedI and Mixed?2 is 6.5 and
4.7 characters, respectively. Based on this data, we conduct two recognition experi-
ments for each dataset using vocabularies with 200 and 20,000 words, respectively.
The 200 words dictionary of Mixedl, which uniformly covers all the characters in

5.2 Parameter selection 93

the alphabet, has an average word length of 6.5 characters while the 20,000 words
vocabulary has an average word length of 8.1 characters. The dictionaries which
include all words of Mixed2 have an average word length of 5.0 and 8.1 characters
for the 200 and 20,000 words dictionary, respectively

The texts of Sentencel and Sentence2 are adapted titles from the ‘New Scien-
tist” journal with an average length of five words. Figure 5.1 shows samples from
Mixedl and Mixed?2.

The Unipen character data shows much variation as a result of the different
sources, digitizers, and writer nationalities. The dataset Lower2 contains lowercase
data from a less variable source and serves as comparison.

Figure 5.1. Data samples from test set Mixed] and Mixed?.

5.2 Parameter selection

To tune the hidden Markov models of the recognition system we must choose ap-
propriate values for the parameters that are introduced in the models. Some pa-
rameters are chosen based on a-priori knowledge while others are chosen based on
preliminary experiments.

Chosen parameters refer to filtering, transition estimation, frame width, spatial
overlap, and diagonal covariance lower bound. Filtering of the handwriting sig-
nals is done with a moving average filter using a window width of five samples.
This is done to remove quantization noise. We estimate the transition probabilities
of the hidden Markov model during the training. The frame representation uses
frames of 20 spatially equidistant points and aims at an average of nine frames per
character. The number of segments of course depends on the data. Both frames
and segments overlap spatially by 50%. Reason for this is to generate more feature
vectors per character. This is especially beneficial for the segments because the
number of segments per character is limited. To ensure the robust estimation of the
density-specific diagonal covariance, we compute the covariance of both densities

94

and states and use 0.25 times the state-specific covariance as a lower threshold for
the density-specific covariance.

Preliminary experiments determine the number of states per character and the
number of densities per state. As a start, we determine the number of states for
each label as #states = 0.75 - #observations. This leads to a first estimate of seven
and three states per character for frame and segment blocking, respectively. Note
that the hidden Markov model topology, i.e., the number of states and the allowed
transitions, determines a minimum number of observations to traverse the model.
This minimum number of observations is floor(#states/2) + 1.

First, we determine the parameters for character recognition. The number of
states and densities for both frames and segments is determined using dataset Dig-
its]. We use size-independent frames, i.e., the size dependency of the frames is
eliminated by rescaling each character (see Subsection 4.1.2). We compute three
positional features with time delays one, two and four as explained in Subsec-
tion 4.1.5. Diagonal covariance is assumed. The test results are presented in Ta-
ble 5.2. As a result, we choose 6 states and 32 densities for character recognition
tasks on the basis of a representation with size-independent frames. We use the
same number of states for each character.

Table 5.2. The character error rate [%] of a digit recognition test with size-

independent frames.
Densities
States 5 g %6l
1 150 | 83 |49 | 4.1
3 86 |41 34136
6 52 312732
9 47 13636 3.6

Table 5.3 shows the results of a similar experiment based on a representation using
segments. A maximum of 32 densities per state is used. As result of this test, the
length of the hidden Markov model is chosen equal to three states in a character
recognition task. Note that the result of the hidden Markov model with four states
suffers of the problem described above of not sufficient observations to process the
model.

Next, we fixed the word recognition parameters at seven and five states for the
representations based on frames and segments, respectively. This means that the
hidden Markov models for word recognition are longer compared to the models
used in character recognition. Reason is that we expect comparatively more obser-
vations due to the ligatures in cursive or mixed-style words. The same number of
states is used for each character with a maximum of 32 densities per state.

5.3 Character recognition 95

Table 5.3. The character error rate [%] of a digit recognition test with representa-
tion based on segments and a maximum of 32 densities per state.

States | Densities
1 9.0
2 9.9
3 9.0
4 21.3

5.3 Character recognition

Subsections 5.3.1 to 5.3.7 explore the effect of various improvements of the rep-
resentation and model. The objective is not to build the ultimate character recog-
nition system but to test the benefits of representation and model enhancements in
the context of character (and later word) recognition. The experiments start with
the baseline representation of Subsection 4.1.3 and end with a recognition test on
an alphanumeric task with 62 label classes using a full-fledged representation of
up to 42 features.

5.3.1 Comparison of the basic representation

In the baseline experiment we employ size-independent frames, as discussed in
Subsection 4.1.2, in order to obtain almost exactly 100 spatially equidistant points
per character, resulting in nine overlapping frames. This eliminates variations due
to a different number of observations per character, and should result in the best
possible performance. The number of segments depends on the character com-
plexity. This setup allow us to derive baseline results for three types of data, which
serve as references for the other experiments.

Table 5.4. Baseline performance (in [%] character errors) for representations
based on size-independent frames and segments.

Representation | Data | Baseline

Set 13 features
si-frames Digit2 | 5.7

Upper | 19.8

Lower | 22.3
segments Digit2 | 14.4

Upper | 44.1

Lower | 45.2

96

The results of Table 5.4 show that the size-independent frames (si-frames) perform
much better than the representation based on segments. The difference in character
error rate is a factor of 2-3 for all the datasets.

Next, the baseline feature vector is augmented in two ways using delta and
contextual features, as explained in Subsection 4.1.4. Because we have not yet
determined the ‘optimal’ set of contextual features, a working set of three angular
features with delays 1,2, and 4 is used.

Compared to the baseline representation, which uses local information to com-
pute the feature vectors, both delta and contextual features model information span-
ning several observations. Because of the inclusion of extra information, the use of
augmented feature vectors results in a higher performance.

Table 5.5. Comparison of augmented feature vectors for si-frames and segments

in [%] character error rate.

Representation | Data | Delta Contextual (1,2,4)
set 26 features | 19 features
si-frames Digit2 | 4.1 4.2
Upper | 12.7 11.2
Lower | 15.2 14.9
segments Digit2 | 9.3 8.5
Upper | 35.8 28.9
Lower | 37.0 30.9

Given the result of the augmented representations, we conclude that both represen-
tations with delta and contextual features are superior to the baseline representa-
tion. Compared to the baseline, the relative reduction of the character error rate is
25%-40% for the representation based on contextual features. The results for the
representation with contextual features are slightly better compared to the results
of the representation with delta features.

5.3.2 Size-independent versus average scale frames

The tests discussed in the previous subsections were executed with size-
independent frames, i.e., the size dependency of the frames is eliminated by rescal-
ing each written character. In the context of a word or sentence recognizer this is
not possible because we do not know where the characters are in the data. There-
fore, the results of the previous section are compared with frames scaled to the file-
specific, average size of the training data in order to determine their performance
difference. The tests are carried out for data set Digiz2 only. A lower performance
is expected because the preprocessing uses less information about the handwritten
input.

5.3 Character recognition 97

Table 5.6. Size-independent frames versus average scale frames. Results in [%]
character error rate.

Representation | Baseline
13 features
si-frames 5.7

frames 21.2

Table 5.6 shows that the average frame representation results in almost four times
more errors for dataset Digit2. A closer look at the errors and data reveals the cause
of the problem. Basically, the scaling to average size results in few feature vectors
for simple digits like a ‘1°, which is often written as a vertical bar. In some cases,
only three frames are produced. As explained in Subsection 4.1.2, these are not
enough frames to process the hidden Markov model. It turns out that about 25%
of the errors of Table 5.6 are caused by this problem. Because the same problem
occurs with uppercase and lowercase data, these tests were skipped.

5.3.3 Covariance

While the previous tests concentrated on representation improvements, the current
experiment compares three variations of Gaussian densities. So far, we assumed
that the covariance matrix of the hidden Markov model is modeled as a diagonal
and density-specific vector. Given N densities and feature vectors of dimension L,
this results in a hidden Markov model with 2NL parameters.

The potential benefit of a full covariance model is that a more exact model will
lead to better results if sufficient training data is available. The drawback is that
such a model has much more parameters to be estimated compared to the diagonal
covariance. Instead of 2NL parameters, a density-specific, full-covariance model
contains NL + NL? parameters.

As an alternative, fied covariance is a way to reduce the model size. A tied
covariance model uses a single covariance matrix or vector for all states and densi-
ties. A tied, diagonal covariance model contains only (N + 1)L parameters whereas
a diagonal, density-specific covariance model uses 2NL parameters. The advantage
of the tied covariance model is that its size is smaller at the cost of lower perfor-
mance. Because of the fewer parameters, there is always sufficient data to reliably
estimate the (co)variance of the tied covariance model.

The purpose of this experiment is to quantify the performance difference for
the three types of models. It is expected that the most accurate model, i.e., full-
covariance, performs best as long as we provide sufficient training data.

We compute all results with a baseline representation augmented with six con-
textual features (angular features with delays 1,2, and 4) using size-independent

98

frames. We use six states per character and 32 densities for each hidden Markov
model.

Table 5.7. A comparison of three Gaussian (co)variance implementations. Results
are given as [%] character error rate.

| Data set | Diagonal | Full | Tied diagonal
Digiz | 42 42 (51
Upper | 11.2 10.1 | 15.4
Lower 14.9 13.9 | 17.5

The results in Table 5.7 show that the best results for all datasets are obtained using
the density-specific, full covariance model. This model yields an improvement
of the character error rate of 0%-10% compared to the diagonal density-specific
covariance model. However, it was explained above that this model contains much
more parameters. The tied covariance model leads to an increase in character error
rate of 17.5%-37.5%, which is a relatively high increase. Therefore, the remaining
tests are carried out with the diagonal, density-specific covariance as this seems to
be the best balance between performance and model size.

5.3.4 LDA transformation

In Subsection 4.1.6 we discussed the theoretical foundation of Linear Discriminant
Analysis (LDA) and its application to handwriting recognition. This subsection
presents two experiments to explore the use of LDA to reduce the character error
rates and to investigate the relation between feature vector size after LDA transfor-
mation and character error rate.

In the first experiment, the performance improvement is measured while the
size of the transformed feature vector remains the same before and after the trans-
formation. The LDA transformation matrix is dataset specific. The results are
summarized in Table 5.8.

Table 5.8. Recognition results with si-frames and LDA transformation in char-
acter error rate [%]. The relative improvement of the character error rate [%]
compared with the untransformed data is given between brackets.

Baseline Delta Contextual (1,2,4)
13 features | 26 features | 19 features

Digit2 | 4.7 (17.5) 3.5(14.6) 3.1(26.2)

Upper 19.0 (4.0) 14.0 (—10.2) | 9.8 (12.5)

Lower | 18.7(16.1) | 13.6 (10.5) 12.5 (16.1)

Dataset

Table 5.8 shows that the improvement of the character error rate over the original

5.3 Character recognition 99

results presented in Subsection 5.3.1 is independent of the representation and is
highest for digits, followed by lowercase and uppercase data. The character error
rate decreases in all cases except for uppercase data in combination with delta
representation. The average decrease in character error rate due to LDA is 19.4%
for digits and 15.0% for lowercase data. The results obtained for the uppercase
data seem to be different, which has to be investigated.

In a second experiment, the feature vector size is reduced by the LDA transfor-
mation to find out how much relevant information is contained in the transformed
features. Therefore, the feature vector with contextual features is chosen as a start
representation from which transformed features are stepwise removed. Table 5.9
summarizes the result with size-independent frames using the feature vector aug-
mented with contextual features. It is assumed that a similar effect is possible for
the other representations.

Table 5.9. Recognition results with si-frames and LDA transformation for feature
vectors of different sizes. Results in character error rate [%].

Number of features
19 16 12 8 2 0
Digits2 | 3.1 |31 |31 |31 |21.7] 90
Upper 98 |86 |92 |11.4] 46.4] 96.2
Lower | 12.5 | 11.8 | 11.9 | 13.9 | 49.4 | 96.2

Dataset

Table 5.9 shows that the feature vector size can be halved with no or only a slight
increase of the character error rate. The table also shows that the character error
rates for lowercase (5% relative decrease) and uppercase data (12% relative de-
crease) reach a minimum using 16 features. The error rate reduction is similar to
the reduction achieved in the word recognition experiments by Dolfing & Haeb-
Umbach [1997].

Additionally, Table 5.9 shows that a representation of only two features leads
to roughly 80% correctly recognized digits and almost 50% correctly recognized
characters. This is a surprising observation because the number of features is quite
small. In contrast, the last column of Table 5.9 contains the character error rate for
guessing (random selection), which is a lot worse.

5.3.5 LDA feature analysis

In contrast to the previous subsection which used the LDA transformation to
achieve performance improvement, this subsection will concentrate on the use of
LDA to compare the relative importance of features with special attention for con-
textual features.

So far, we only used feature vectors which are augmented with three angular

100

features for the delays 1,2, and 4. However, there are more types of contextual
features which are useful in character recognition.

In the experiment discussed below, we determine which contextual features
have a high discriminative value. The representation based on size-independent
frames is augmented with 16 contextual features based on the delays d with value
one to eight and angular features. The trace elements of the matrix U,, 1y,, used
to compute the LDA transformation matrix as discussed in Subsection 4.1.6, are
used to rank the features according to their discriminative value. The segment rep-
resentation is similarly augmented with 15 extra features derived from the delays
d with value one to five and using angular and size features. This results in 16
and 15 additional features for frames and segments, respectively. Other contextual
features are useful for word and sentence recognition only and are discussed later.

The experiment is conducted with the datasets Digir2 and Lower and two rep-
resentations. The frame-based results are presented in Table 5.10 and the segment-
based results in Table 5.11. For the sake of clarity, the baseline features as dis-
cussed in Subsection 4.1.3 are printed in italics.

Based on the results presented in Table 5.3.1, which show that a representation
containing contextual features significantly decreases the character error rate, we
expect that the discriminative value of the contextual features is large compared
to the baseline features. Additionally, a representation based on a selection of the
most discriminative features is tested.

In the case of size-independent frames, Table 5.10 clearly shows that delayed
features have a higher discriminative value compared to the 13 baseline features.
A close look at the results of the segment-based representation reveals that the
angles of delay one and two, together with the length score, are most useful for
discrimination.

After we have measured the discriminative values of the feature components,
we select a subset of contextual features for an additional experiment. In Table 5.5
and Table 5.8, we used the three delays with value 1,2, and 4. If we choose a sub-
set of contextual features with a similar number of delays, but selected on basis of
their large discriminative values, then we should be able to improve the recognition
results compared to Subsection 5.3.1 because more appropriate contextual features
are used. We choose the delays 1,3,6 and 7 for size-independent frames and com-
pute angular features. We choose the delays 1,2, and 4 for segments with angular
and size relations.

New models are built and recognition tests are carried out using the contex-
tual features chosen above. The results are summarized in Table 5.12. This table
shows that the results without LDA are slightly better compared to Table 5.5. The
results with LDA transformation for size-independent frames are poorer compared
to Table 5.8. This indicates that a LDA transformation of angular features with

5.3 Character recognition

Table 5.10. Ranked feature set for size-independent frames.

Digit2 Lower
Value Feature name Value Feature name
291233 | DelayedAngle-7-sin | 2.46595 | DelayedAngle-1-cos
2.80732 | DelayedAngle-6-cos | 2.05793 | DelayedAngle-6-cos
2.33747 | DelayedAngle-1-cos | 1.9298 | DelayedAngle-7-sin
221584 | DelayedAngle-3-cos | 1.89103 | DelayedAngle-2-cos
2.1182 | DelayedAngle-6-sin | 1.85207 | DelayedAngle-7-cos
1.84113 | DelayedAngle-4-sin | 1.58909 | DelayedAngle-3-cos
1.79766 | DelayedAngle-7-cos | 1.58061 | DelayedAngle-6-sin
1.71249 | DelayedAngle-4-cos | 1.56904 | EndAngle-cos
1.65836 | EndAngle-sin 1.52141 | DelayedAngle-4-cos
1.56414 | Phil-sin 1.49844 | EndAngle-sin
1.49045 | DelayedAngle-1-sin | 1.44179 | DelayedAngle-1-sin
1.48935 | DelayedAngle-2-cos | 1.42977 | DelayedAngle-8-cos
1.48438 | Phi3-sin 1.41653 | Curvature
1.48393 | Curvature 1.40783 | StartAngle-cos
1.45034 | DelayedAngle-5-cos | 1.39527 | DelayedAngle-5-cos
1.44033 | EndAngle-cos 1.36884 | AspectRatio
1.43737 | DelayedAngle-3-sin | 1.34754 | Phi3-sin
1.3696 | StartAngle-cos 1.3261 | Phil-sin
1.32947 | AspectRatio 1.29071 | DelayedAngle-4-sin
1.23635 | StartAngle-sin 1.2857 | DelayedAngle-3-sin
1.22629 | DelayedAngle-8-sin | 1.27067 | DelayedAngle-8-sin
1.20388 | DelayedAngle-2-sin | 1.24001 | DelayedAngle-5-sin
1.20132 | DelayedAngle-5-sin | 1.18124 | PenDown
1.16272 | Phi2-sin 1.17912 | DelayedAngle-2-sin
1.10006 | PenDown 1.15014 | StartAngle-sin
1.08633 | Phi2-cos 1.12472 | Phi2-cos
1.01717 | Phi3-cos 1.09036 | Phil-cos
1.01456 | Phil-cos 1.08317 | Phi3-cos
=1 DelayedAngle-8-cos | 1.06337 | Phi2-sin

101

102

Table 5.11. Ranked feature set for segments.

Digit2 Lower
Value Feature name Value Feature name
1.83667 | DelayedLength-1 2.77742 | DelayedLength-1
1.47304 | DelayedLength-2 2.00185 | DelayedAngle-1-cos
1.42182 | DelayedAngle-2-cos | 1.78699 | DelayedLength-2
1.3895 | DelayedLength-4 1.40618 | DelayedAngle-2-cos
1.37518 | Phi3-sin 1.3682 | EndAngle-cos
1.27913 | DelayedAngle-1-sin | 1.35018 | DelayedAngle-2-sin
1.27674 | DelayedAngle-4-sin | 1.34301 | DelayedAngle-1-sin
1.22026 | Phil-sin 1.33331 | Phi2-sin
1.21226 | Curvature 1.25331 | Phi3-sin
1.21188 | EndAngle-cos 1.2409 | DelayedLength-3
1.15227 | DelayedAngle-1-cos | 1.24068 | Phil-sin
1.14375 | Phi2-sin 1.23484 | AspectRatio
1.13711 | StartAngle-cos 1.21158 | Curvature
1.12317 | DelayedLength-3 1.18632 | StartAngle-cos
1.12082 | DelayedAngle-4-cos | 1.18056 | DelayedLength-4
1.1124 | DelayedLength-5 1.17757 | DelayedAngle-3-sin
1.1 DelayedAngle-5-sin | 1.14821 | DelayedAngle-3-cos
1.09646 | Phil-cos 1.13185 | Phi2-cos
1.08627 | Phi2-cos 1.11566 | StartAngle-sin
1.08516 | StartAngle-sin 1.11258 | Phi3-cos
1.08293 | DelayedAngle-5-cos | 1.11105 | PenDown
1.0781 | DelayedAngle-3-sin | 1.07263 | EndAngle-sin
1.07462 | EndAngle-sin 1.07231 | DelayedAngle-4-cos
1.04457 | DelayedAngle-3-cos | 1.06611 | DelayedAngle-4-sin
1.03733 | AspectRatio 1.0544 | Phil-cos
1.02739 | PenDown 1.01587 | DelayedLength-5
1.01433 | Phi3-cos 1.0142 | DelayedAngle-5-cos
~1 DelayedAngle-2-sin | 1.0037 | DelayedAngle-5-sin

5.3 Character recognition 103

Table 5.12. Recognition results of representations augmented with a subset of the
most discriminative contextual features. Results are given with and without LDA
in character error rate [%].

Dataset si-frames segments

No LDA | LDA | No LDA | LDA
Digit2 | 4.7 3.2 7.7 7.2
Upper 10.7 10.0 | 27.8 27.7
Lower | 14.3 153 | 28.9 26.1

size-independent frames with delays 1,2, and 4 produces better recognition results
compared to a LDA transformation of angular features with delays 1,3,6 and 7.

5.3.6 Combined delta and contextual features

In Subsection 5.3.1, we investigated the effect of delta and contextual features. In
Subsection 5.3.4, we explored the benefits of the LDA transformation. The ques-
tion remains whether the effect of these improvements can be stacked to achieve
an even better recognition system. Therefore, the subject of this subsection is to
combine delta and contextual features with an optional LDA transformation. The
representation based on size-independent frames is used together with in combina-
tion with four delays (1,3,6,7) and angular features resulting in a feature vector of
2-(13+4-2) = 42 features.

The information modeled with delta and contextual features is different. While
the contextual features capture explicit, structural knowledge, the delta features
model information using derivatives of the observations. Because of the different
information content, combination is useful to achieve a further reduction of the
character error rate.

Table 5.13. Results for combined delta and contextual features with and without

LDA transform in [%] character error rate. The relative character error rate im-

provement of the LDA transformed feature vector with only 30 features compared

to the untransformed vector in column one is given between brackets.

Dataset si-frames

42 features | 42 feat. + LDA | 30 feat.+ LDA
Digit2 3.1 3.1 2.8(9.7%)
Upper 8.4 8.9 7.9 (6.0%)
Lower 12.2 11.7 10.8 (11.5%)

A comparison of the experimental results of Table 5.13 with the results in Table 5.5
for size-independent frames and contextual features shows that stacking the delta

104

and contextual features reduces the character error rate by 18% - 25%. Those cases
where the original and transformed number of features remain the same do not
yield an improvement, e.g, the second column in Table 5.13. However, Table 5.13
shows that the use of an LDA transformation to reduce the feature vector size does
result in an improvement for all datasets. With an LDA transformed feature vector
of 30 components, an average of 9% improvement is achieved compared to the
full-size, untransformed representation of column one of Table 5.13.

Table 5.13 is based on the best scored characters. Because the correctness of
the best hypothesis of a classifier is only part of its characteristic, we extend the
description with the correctness of one of n best hypotheses. Figure 5.2 plots the
top-n scores for the size-independent frames in combination with the LDA trans-
formation and a feature vector size of 30 features after transformation. Figure 5.2
shows that the performance of the classifier rapidly approaches more than 98%
correct if more than the four best hypotheses are taken into account. This means
that, in combination with extra context sources, we can substantially improve the
effectiveness of the classifier.

Finally, the confusion matrices for each of the tested datasets are given in the
Tables 5.14, 5.15, and 5.16. The confusion matrix compares the expected, correct
recognition result with the best hypothesis of the classifier. We concentrate on the
incorrect classifications, i.e., we have removed the correct classifications from the
diagonals of Table 5.14, 5.15, and 5.16.

9] &
_ % e Bigitz +—
8 97 £ A Upper_++—
8 96 ol WEL 8
8 95 trti
: o
2]
15 92
8 91
Lo
& 88
2 87
‘.
=
g 84
g 83
< 82
81
80

1 2 3 4 5 6 7 8 9 10
The number ‘n’ of included, best hypotheses.

Figure 5.2. Top-n character score [%] versus the number of n best hypotheses.
The Results are given for the LDA transformed representation (30 features) based
on the combined delta and contextual features.

5.3.7 Alphanumeric recognition

In the previous subsections, representations and modeling issues have been studied
based on the results for three separate datasets. This subsection discusses what hap-

5.3 Character recognition 105

Table 5.14. Digit confusion matrix. Correct labels vertically, recognized labels
horizontally. Dark areas indicate entries with high confusion. The text of the entry
with the highest confusion is inverted.

0(1/23

O 0NN RN RO

pens if these three datasets have to be recognized simultaneously, which increases
the number of label classes to 10+26+26=62. The increase in label classes also
leads to an increase of potential confusions because similar or identical allographs
are sometimes used for different symbols!

We estimate the expected extra confusion based on our a-priori knowledge of
character allographs. At least two characters have the same allograph with three
different meanings. These are the allographs /o/ and /I/ which are used for three
labels each that are (0,0,0) and (1,1,1), respectively. In other words, without context
knowledge, the correct classification of these characters is extremely difficult or
impossible.

There are 12 other allographs (/c/, /k/, Im/, In/, pl, Is/, lul, v/, Iwl, x], Iyl Iz]) for
which uppercase and lowercase allographs can be identical. Under the assumption
that for 50% of all allographs there exists a form that might introduce confusion,
and that 50% of these lead to a failure in recognition, we expect a character error
rate of at least .

1
((2-3)+ (z)23 _ 1510
In other words, the writer-independent character error rate is at least 12%. This is a
rough estimate but indicates that writer-independent, alphanumeric recognition is
far from trivial.

In the experiment reported in Table 5.17, the representation with delta plus
contextual features used in Table 5.13 is applied to the alphanumeric recognition
task. The hidden Markov models of 62 characters are used simultaneously in the

106

Table 5.15. Uppercase confusion matrix. Correct labels vertically, recognized
labels horizontally. Dark areas indicate entries with high confusion. The text of
the entry with the highest confusion is inverted.

N X E<CHURROTOZErNR—«=~TITQonmounwm>

—_ AR

5.3 Character recognition 107

Table 5.16. Lowercase confusion matrix. Correct labels vertically, recognized
labels horizontally. Dark areas indicate entries with high confusion. The text of
the entry with the highest confusion is inverted.

a flg|h|i s V| w|x
a 214(8/[1 1 i1(3]4
b 311174 4 1
c|1 1 6 2 3
d|4 1)1 2 1
el3 4 9] 7| 12
f 2151
g 1 1 11
h1|tt 2 6 41
i1 j17| [1]1]1 14051 |1]2]1
i 211 113
k 1 |3 6|5 2
1 211315 6 1l |22
m 1 3
n 2| 2 12
0 1 111 416
p 1 312 7
q|
r 4 5
S ""zz';'
t 1
u 1
v 111 1
wil 1 2
x|1 1 1
y
zZ

108

alphanumeric classifier. The classifier is applied to three separate datasets. The
corresponding results are shown in Table 5.17. The average performance over all
three datasets is reported in the ‘combined’ row. Note that the LDA transformation
matrix is computed based on data from all 62 classes.

Table 5.17. Results for the alphanumeric recognizer with combined delta and

contextual features.
si-frames
Datasel < T.DA | LDA, 30 feat.
Digit2 19.3 16.3
Upper 24.4 24.9
Lower 29.3 24.1
Combined 26.6 23.1

Table 5.17 shows an average character error rate of 26.6% without LDA, and 23.1%
with LDA. This can be compared with the character error rate reported by Kassel
[1995], who found character error rates between 22.8% and 19.0% for a similar,
62 class problem using a hidden Markov model classifier.

Our results have been obtained on a part of the Unipen dataset while Kassel
[1995] uses an on-site collected dataset. Because one of the prime objectives of the
Unipen dataset is to collect data from various writers, sources and nationalities, it
is likely that the Unipen dataset is more diverse.

100 .

o8 ._
9 e Combined ——
...... Digit2 -

9% y Upper Fw
92 LOWe. 4ot

Lo To) 4 —
88 i
86 /

84 4
s/

/i
78 Iff
76 ¥
74
72
70

Accumulated Top-n correct %)

I
1 2 3 4 5 6 7 8 9 10

The number of ‘n’ included, best hypotheses.

Figure 5.3. Top-n alphanumerics correct [%] versus number of character hypothe-
ses.

Table 5.17 characterizes the hidden Markov model classifier with the correctness of
the most likely hypothesis. We extend the characterization of the classifier with the
top-n results on each dataset presented in Figure 5.3. This figure shows the number
of times that the correct classification is part of the # most likely hypotheses.

5.3 Character recognition 109

5.3.8 Discussion

After the extensive testing discussed in the previous subsections, the remaining
question is how the measured performance compares with the performance of clas-
sifier systems reported in the literature. To this end, we first summarize the human
performance and our best results. The second part of this subsection is somewhat
speculative and discusses our results in relation with other character recognition
results.

LaLomia [1994] studied the character error rate that humans find acceptable for
a computer recognizing handwriting and found an upperbound of 3% error rate. In
Section 1.4, a quote from the literature referred to a human character error rate
of 4.4% - 3.2% for handprinted, discretized characters. Kassel [1995] measured a
human character error rate of 18.3%-15.9% (in word context) and 23.5% -21.1%
(without context) on a 62 class, alphanumeric recognition task.

We assess the significance of the achieved recognition results on basis of the
arguments in Subsection 4.4.1. Character error rates between 2.8% and roughly
30% are obtained for different tests. Given the properties of the training and test
data as explained in Section 5.1, we can argue that even the best results (2.8%)
with smallest test set (4506 digits) yield reliable results.

Table 5.18. On-line character recognition results from the literature. All re-

sults given in character error rate (CHER). The following abbreviations are used:

D=Digits, L=Lowercase, U=Uppercase, S=Special symbols, MS=Microsoft,

WI=Writer-independent, WD=Writer-dependent. (*)= 2.3% for digits only.

Author(s) Classes Type | #Writers | CHER

Kassel [1995] 62 (DUL) WI 150 19.0-22.8
Bellegarda et al. [1994] | 81 (DULS) WI 8+4 22.7

Guyon et al. [1991] 36 (DU) WI 250 3.4 (%)

Chang et al. [1994] 26 (L) WI 16 9 (MS), 5 (CIC)
Yang [1995] 10 (D), 26(L) | WD | 3 6.7 (D), 8.5 (L)
Tappert [1991] 44 (DUS) WD |9 2.8

Our results have been obtained using a part of the Unipen training dataset, which
contains diverse data from different nationalities, digitizers and persons. Although
no direct results are available for comparison, we expect higher error rates com-
pared to experiments reported in the literature because of the highly diverse data.
The best writer-independent character recognition results obtained for the data of
500 to 2000 writers achieved in our study show a character error rate of 2.8% for
the digit data, 7.9% for the uppercase data, 10.8% for the lowercase data (all Ta-
ble 5.13), and 23.1% for all data using the combined, alphanumeric recognizer in
Table 5.17. A character error rate result of 9.8% was achieved on Lower2. In

110

future, results on the Unipen development and test data will become available en-
abling meaningful comparisons.

The comparison of recognition results with results from the literature as shown
in Table 5.18 is a hazardous task because of differences in data, digitizers and other
factors. Therefore, the next paragraphs are somewhat speculative.

The obtained error rates on alphanumeric data are a bit higher than those re-
ported by Kassel [1995] and Bellegarda, Bellegarda, Nahamoo & Nathan [1994].
We tested with 62 classes whereas Bellegarda et al. [1994] used 81 character
classes. It should be noted that the used training and test data originates from 10 to
100 times more different writers. Compared to Guyon, Albrecht, LeCun, Denker
& Hubbard [1991], the error rate on digit data is slightly worse. It is interesting
that our results for uppercase data (7.9%) is far worse than the reported 3.4% they
reported for digits plus uppercase data. Fujisaki, Beigi, Tappert, Ukelson & Wolf
[1992] reported writer-independent results for discrete handwriting, obtained with
a dedicated handprint recognizer, where the character error rate ranges from 2.8%
for digits to 9.3% in an 82 class recognition task. They found that 50% of the er-
rors are due to case and shape confusions. While the digit error rate of our generic
system compares fine, the alphanumeric results are worse.

Because the number of writers in our experiments is 10 to 100 times larger
than reported in other tests, it is likely that the number of character allographs has
also increased. If we assume an increase proportional to v/#writers, than we have
3 to 10 times more different character allographs to recognize. The number of
potential confusable characters increases accordingly. Even if the number of ad-
ditional character allographs is overestimated, the number of character confusions
increases. This effect of an enlarged train and test set raises the question whether
this is a good way of testing a classifier. The minor character error rate difference
between the diverse Lower dataset and the more homogeneous Lower2 dataset is
an indication that adding more training data might not improve the classifier per-
formance. Without additional experiments, we can only speculate on the cause of
this problem, i.e., too much similar allographs, a failing representation or other
causes. A pragmatic approach would be to cluster the training and test data, e.g.,
according to country.

The character recognition results have been obtained with a hidden Markov
model classifier and data-driven training. No special heuristics are tuned to the data
for optimal recognition. Additionally, the classifier is the same, though trained on
different data, compared to the classifier for hidden Markov model word recogni-
tion in the next section. In this light, it is remarkable that such a classifier achieves
recognition results comparable or slightly worse to literature results.

5.4 Word recognition 111

5.4 Word recognition

This section explores representation and model improvements for handwritten
word recognition. Without lack of generality, we may concentrate on the recog-
nition of mixed-style words. This writing style is the most difficult to decipher.
The objectives are to employ handwriting-specific knowledge into representation
and modeling, to compare different techniques and to improve recognition results.

First, we explore an alternative approach to explicit scaling of handwritten
words in Subsection 5.4.1. Next, representation improvements are introduced in
Subsection 5.4.2 to Subsection 5.4.5. These improvements include the use of delta
and contextual features similar to those in the character recognition studies. How-
ever, the modeling on the basis of contextual features is extended to take advantage
of the larger word context. Finally, the hidden Markov model structure and models
are modified in order to take advantage of prior handwriting knowledge. This is
discussed in Subsection 5.4.6 and Subsection 5.4.7.

54.1 Scalability

Next to writing speed and sampling rate, writing size is often explicitly normal-
ized as demonstrated by Nathan, Beigi, Subrahmonia, Clary & Maruyama [1995],
Beigi, Nathan, Clary & Subrahmonia [1994] and Weissman, Schenkel, Guyon,
Nohl & Henderson [1994]. A bounding box of a handwritten word or word body
is determined and used to normalize the writing size. This approach is very suit-
able for isolated word recognition tasks in which all the input is available before
normalization, but it is less suitable for sentence recognition in which writing and
recognition take place simultaneously. As an alternative to the normalization of
writing size, we investigated size-independent representations.

As explained in Subsection 4.1.3, the feature vectors for frames and segments
contain 13 low-level, size-independent features. In addition, contextual features are
employed. We use four angular features, which are explained in Subsection 4.1.5,
obtained with different delays for frames and segments. We expect the segment
representation to be writing size invariant because the boundary points of the seg-
ments, i.e., points based on velocity inversions, are invariant to handwriting size
(see Section 2.2).

In order to investigate writing size dependence, we asked 10 writers to write
a set of 50 words in four different sizes with scales 0.5, 1, 2, and 4 where scale 1
corresponds with normal writing size for most writers. The other scales indicate
relative multiplication factors. Note that the test set Mixedl contains the scale 1
data. Writers were instructed to write in lowercase but unconstrained otherwise.
The resulting set of four times 500 words is represented by either frames or seg-
ments. The experiments are done with both a 200 and 20,000 word vocabulary.

112

The hidden Markov models for characters contain six and five states for frames
and segments representation, respectively.

Table 5.19. Comparison of frames and segments for four different writing sizes.
The table shows the word error rate in [%]. Left: the experiment with a 200 word
dictionary. Right: the experiment with a 20,000 word dictionary.

Writing size Writing size
05 | 1 2 4 0.5 1 2 4
Frame 179 | 1.0 | 31.2 | 97.3 || Frame 445 | 9.8 | 66.3 | 100.0
Segment | 3.2 | 3.2 | 2.0 | 29 || Segment | 17.5 | 16.7 | 14.7 | 18.2

Repr. Repr.

The results presented in Table 5.19 clearly show that the segments are essentially
independent of the writing size while frames show a better peak performance, i.e.,
only 1% word error rate (WER) for the normal size data. The peak performance
difference is noticeable. Table 5.19 only shows the mean word error rate over all
written words and writers. If we compute the word error rate for each writer, then
we find that the standard deviation of the writer-specific error rates with segment-
based representation is roughly 2% for the 200 word vocabulary experiment and
10% for the experiment with a 20,000 word vocabulary.

Next, the data in Table 5.19 can be used to infer the requirements for a frame-
based, explicit size normalization intended to outperform the segment represen-
tation. We can draw two graphs on the basis of the results of Table 5.19 for the
experiment with 20,000 word vocabulary. These graphs show the relation between
writing size and word error rate for frames and segments, respectively. This allows
the determination of the two intersection points of the frames and segments graphs.
The intersection points will indicate a word error rate of approximately 17%. With
linear interpolation, we derive the corresponding writing sizes which are 0.9 and
1.13. In other words, if we can guarantee that the explicit size normalization scales
the word to a size x in the range 0.9 <x < 1.13, then the frame-based representation
will work better compared to the segment-based representation for the 20,000 word
vocabulary experiment in Table 5.19. Because we do not have such a technique,
most experiments discussed in the next sections use a segment-based representa-
tion.

Finally, Table 5.19 shows that the word error rate for frames becomes 100% if
the writing size becomes four times the normal size. This is not surprising since
there was no such data in the training set.

5.4.2 Delta and contextual features

In Subsection 5.3.1, we studied the advantages of delta and contextual features for
character recognition tasks. This subsection explores the advantages of contex-
tual features in a word recognition task. It is expected that the augmented feature

5.4 Word recognition 113

vectors outperforms the baseline representation also in a word context.
Based on the Mixedl data, the word error rate of a baseline representation with
13 components is compared to feature vectors which included delta features (base-
line + 13 deltas) and contextual features (baseline + 6 angular features), respec-
tively. The six angular features are constructed as explained in Subsection 4.1.5
from three angles with the delays 1,2, and 4, representing positional relations.
Table 5.20. The word error rates in [%] for segment type of feature vectors for

a 200 word and a 20,000 word dictionaries. The mean error rate is indicated as u
while the between-writer standard deviation is indicated as G.

Number of features in representation

Vocabulary 13 13+6 Contextual | 13+13 Delta
size Baseline =19 =26
U c u c U c
200 W 75 | 70 | 24 2.3 2.7 2.0
20,000 W | 280 | 17.1 | 13.3 10.7 18.1 | 11.7

Table 5.20 shows that the augmented feature vector clearly outperforms the base-
line representation, and that contextual features perform better than delta features.
In the case of the contextual features, fewer additional vector components are re-
quired to attain the performance improvement. The relative word error rate reduc-
tion for the 20,000 word vocabulary test is 52.5% for the contextual features and
35.4% for the delta features. This means that the additional six contextual features
halved the word error rate!

Compared to the character-based experiment in Subsection 5.3.1, the relative
error rate reduction is higher. The measured word error rate with a 20,000 word vo-
cabulary compares well with the literature results by Manke et al. [1995], Schenkel
et al. [1995] and Nathan et al. [1995]. We measured a between-writer standard de-
viation of o = 10.7. This also compares well to the experiment of Schenkel et al.
[1995] where word error rates between 5% and 40% were reported.

5.4.3 Linear Discriminant Analysis

We investigated two aspects of the LDA transformation. First, the performance im-
provement due to the LDA transformation is investigated while the feature vector
size before and after transformation remains the same. A similar improvement as in
the character recognition experiment with LDA transformation (Subsection 5.3.4)
is expected. Second, the error rate as a function of the feature vector size after
transformation is investigated.

First, Table 5.21 summarizes recognition results with LDA in an otherwise
unchanged experiment. Comparison of the results in this table with the results

114

without LDA in Table 5.20 reveals a clear improvement.

Table 5.21. The word error rates [%] for segment type of LDA transformed
feature vector for a 200 word and a 20,000 word dictionary. The mean error rate is
indicated as u while the between-writer standard deviation is indicated as o. Full
dimension of LDA transformed feature vector.

Number of features before LDA
Vocabulary 13 13+6 Contextual | 13+13 Delta
size Baseline =19 =26
u c U c u c
200 W 37 1 31 | 22 1.6 2.6 2.1
20,000 W | 19.0 | 13.8 | 12.7 8.5 13.7 | 10.2

Second, Figure 5.4 shows the relation between the number of features remaining
after transformation and the word error rate. For both delta and contextual features,
a minimum word error rate is reached after about four features have been dropped
which corresponded to 10%-20% of the feature vector. This result is similar to
Table 5.9 for character recognition with the LDA transformation. The best result
corresponds to a 11.2% word error rate for the transformed feature vector with
contextual features.

A relative reduction in word error rate of 12% is achieved compared to the LDA
transformed result with full feature vector. Compared to the result before transfor-
mation, the total gain obtained by LDA in case of the representation with contex-
tual features is a word error rate reduction from 13.3% to 11.2% (16% relative
reduction) which compares well with a similar experiment in speech recognition
[Haeb-Umbach & Ney, 1992].

20 20 ‘
X 18 oy 18 i
g k]
[16 [16
i N .
<] o
@ 14 N\ R 14
k< N1 8
(] <} AN
2 12 £ 12
N—t
10 10 i |
5 10 15 20 25 2 4 6 8 10 12 14 16 18 20
Feature vector size Feature vector size

Figure 5.4. Word error rate [%] versus feature vector size after the LDA. A 20,000
words vocabulary is used. Left: delta features prior to LDA. Right: contextual
features prior to LDA.

5.4 Word recognition 115

5.4.4 Contextual features analysis

After the determination of the performance benefits due to LDA, we use LDA to
test the discriminative information of contextual features as explained in Subsec-
tion 4.1.6. We earlier used the same procedure in Subsection 5.3.5 to rank the
features in a character recognition context and found that the contextual features
have a higher discriminative value compared to the baseline features.

In addition to the earlier positional or angular features, we model size, contour,
and overlap relations on basis of the contextual features, and integrate them into
the representation. Both frame and segment-based representations are augmented
with additional features.

The experiment is conducted for both frames and segments. All contextual fea-
tures discussed in Subsection 4.1.5 are used to train a model based on the Mixed-
train training data. The theory of LDA is used to compare the discriminative infor-
mation of each feature using the hidden Markov model states as class definition.
As explained in the previous chapter and by Fukunaga [1990], the trace elements
of the matrix U, 1U,, are used as an indication of discriminative value.

In the frame-based representation, we use eight delays to augment the repre-
sentation with angular (8x2) and overlap (1) features resulting in 17 extra features.
This gives a feature vector of 13 + 17 = 30 features. The size feature is omit-
ted since the length of all frames is by definition the same. The segment-based
representation is augmented with 6 delays resulting in angular (6x2), size (6x1),
contour (2), and overlap (1) features. This results in a feature vector of 13 + 21 =
34 features. The maximum delay is chosen just longer than the number of states
of a character. Hence, the features also model contextual effects. We refer to these
feature vector realizations as the All-delay representations.

The experiments result in a feature ranking based on their discriminative value
presented in Table 5.22. The baseline features as discussed in Subsection 4.1.3 are
printed in italics. First, we observe that the contextual features generally have a
higher discriminatory value than the 13 baseline features. Second, the most dis-
criminative contextual features are the angular/positional features which relate the
relative positions of the center-of-gravities of feature vectors. Third, the PenDown
feature is scored best in both representations based on frames and segments. This
is in contrast to the similar experiment in character recognition context in Subsec-
tion 5.3.5. The difference is attributable to the fact that we have a lot of discrete-
style, handwritten words in the training set. Fourth, the example of the segment
representation shows that the contextual size features are roughly equally discrimi-
native compared to the angular features. Unfortunately, the more complex contour
and overlap features have only moderate discriminative value.

The results of a recognition test in which the All-delay representation is used

116

Table 5.22. Significance of (contextual) features in the original space based on

the LDA transformation matrix.

Segments Frames
Value Feature name Value Feature name
1.47475 | PenDown 1.74517 | PenDown
1.38932 | DelayedAngle-1-cos | 1.5935 | DelayedAngle-2-cos
1.36003 | DelayedLength-1 1.57086 | DelayedAngle-1-cos
1.29699 | DelayedLength-2 1.42215 | DelayedAngle-1-sin
1.27216 | DelayedAngle-1-sin | 1.39946 | EndAngle-cos
1.25464 | EndAngle-cos 1.34718 | DelayedAngle-8-cos
1.25082 | DelayedAngle-2-cos | 1.32532 | DelayedAngle-3-sin
1.24088 | DelayedAngle-4-cos | 1.3162 | DelayedAngle-3-cos
1.21928 | DelayedAngle-4-sin | 1.31514 | EndAngle-sin
1.21493 | DelayedLength-3 1.31064 | Overlap
1.21254 | Phi3-sin 1.30495 | Curvature
1.20445 | Overlap 1.28736 | DelayedAngle-8-sin
1.17843 | DelayedAngle-3-cos | 1.27246 | DelayedAngle-5-sin
1.17494 | Contour-top 1.26926 | DelayedAngle-4-cos
1.17031 | DelayedAngle-3-sin | 1.25112 | DelayedAngle-6-cos
1.16256 | DelayedAngle-6-cos | 1.21134 | DelayedAngle-5-cos
1.15904 | DelayedAngle-5-sin | 1.2007 | DelayedAngle-4-sin
1.15631 | DelayedAngle-2-sin | 1.19738 | Phi3-sin
1.14972 | Curvature 1.1784 | Phil-sin
1.12948 | DelayedAngle-6-sin | 1.14727 | DelayedAngle-6-sin
1.12732 | Phil-sin 1.14544 | DelayedAngle-7-cos
1.10453 | DelayedLength-4 1.1427 | AspectRatio
1.09407 | DelayedAngle-5-cos | 1.14119 | DelayedAngle-2-sin
1.08201 | StartAngle-cos 1.11643 | DelayedAngle-7-sin
1.07813 | AspectRatio 1.10391 | StartAngle-cos
1.07111 | EndAngle-sin 1.08495 | StartAngle-sin
1.06999 | Phi2-sin 1.06843 | Phi2-sin
1.06907 | DelayedLength-6 1.00046 | Phi3-cos
1.0666 | DelayedLength-5 ~1 Phi2-cos
1.05701 | Phil-cos 1 Phil-cos
1.05231 | Contour-bottom
1.04627 | Phi2-cos
1.02937 | Phi3-cos
1.02907 | StartAngle-sin

5.4 Word recognition 117

with both frames and segments on the Mixed]! test set are presented in Table 5.23.
Although these results are comparable with Subsection 5.4.2 where we used fewer
delayed features, this comparison is of limited value. The comparison shows a
word error rate for frames that is somewhat higher than before and a word error
rate for segments which is a little better. This is most likely due to the increased
number of features which complicates the training process. More training iterations
probably have to be carried out until the training converges.

Table 5.23. Results in word error rate [%] with a representation based on all the

contextual features. The results are obtained with both frames and segments using

test set Mixedl. The mean error rate is indicated as u while the between-writer
standard deviation is indicated as ©.

Vocabulary size
Representation 200 20,000
u | o |u o
Frames 1.6 | 1.5 | 10.0 | 9.6
Segments 2426|147 | 89

5.4.5 Word recognition with delta and contextual features

The previous subsections investigated whether a feature vector augmented with ei-
ther delta or contextual features improves the recognition of handwritten words.
This subsection investigates whether the combination of delta and contextual fea-
tures brings an additional improvement in a word recognition context similar to
Subsection 5.3.6 in a character context.

After checking the discriminative values of all features, the segment repre-
sentation is augmented with not only angular features but also with size features
for the delays 1,2, and 4. This representation is called Contextual-Angle-Length-
(1,2,4) and contains a total of 22 features. In an additional experiment, this repre-
sentation is combined with delta features to investigate whether the improvement
due to delta and contextual features can be stacked. This representation contains
44 features and is called Delta-Contextual-Angle-Length-(1,2,4). Finally, an addi-
tional training with the LDA transformation is carried out to obtain an additional
improvement. The results with augmented representations are summarized in Ta-
ble 5.24.

First, we observe that the Contextual-Angle-Length-(1,2,4) representation does
not give an improvement over Contextual-Angle-(1,2,4). Only the standard devia-
tion is smaller. Second, the stacked delta plus contextual representation leads to an
improvement of the word error rate from 13.3% to 12.5%. The LDA transforma-
tion combined with the removal of 10%-20% of the features (see Subsection 5.4.3)

118

Table 5.24. Recognition results in word error rates {%] with segments for various,
augmented representations. All the tests are carried out with the MixedI test set
and vocabularies of 200 and 20,000 words. The mean error rate is indicated as
4 while the between-writer standard deviation is indicated as 6. Abbreviations:
CAL = Contextual-Angle-Length. DCAL = Delta-Contextual-Angle-Length.

Vocabulary size and LDA

Representation | 200, no LDA | 20K, no LDA 20K, LDA

U c U c u c
Baseline 7.5 7.0 28.0 | 17.1 | 19.0 (13 feat) | 13.8
CA-(1,2,4) 2.4 2.3 13.3 | 10.7 | 12.7 (19 feat) | 8.5

11.2 (15 feat)

Delta 2.7 2.0 18.1 | 11.7 | 13.7 (26 feat) | 10.2
All-delay 2.4 2.6 14.7 8.9 - -
CAL-(1,2,4) 2.7 2.3 13.3 8.2 - -
DCAL-~(1,2,4) 2.0 2.2 12.5 9.3 11.8 (32 feat) | 6.7

further improves the word error rate from 12.5% to 11.8%. This is almost as good
as the word error rate of 11.2% obtained for Contextual-Angle-(1,2,4) with LDA
and 15 features. Third, it is interesting that the combined, untransformed DCAL-
(1,2,4) performs better than Contextual-Angle-(1,2,4) but the situation is reversed
after using the LDA transformation and feature vector size reduction. The most
likely explanation of this behavior is that 32 is not the optimal number of features
for the LDA transformed DCAL-(1,2,4) representation. It is likely that, instead of
removing 10%-20% of the features based on earlier experimental results, a more
complete evaluation of the relation between error rate and number of features after
the LDA transformation could find an even lower error rate.

In summary, we showed that representation improvements in a word recogni-
tion test using a vocabulary of 20,000 words yield a total improvement of the word
error rate from 28.0% to 11.2% which is a 60% error-rate reduction.

5.4.6 Pause and backspace

In the previous subsections, we did not pay attention to the exact structure of the
hidden Markov model. We have been using a left-to-right model where concate-
nated character models form a word model. However, a simple concatenation of
hidden Markov models is only a coarse model of a handwritten, mixed-style word.
Possible improvements have been discussed in Subsection 4.2.2.

This subsection investigates the effect of the ‘pause’ and ‘backspace’ models
in combination with the data sets Mixed! and Mixed2. The vocabulary sizes in the
recognition experiments range from 200 to 20,000 words. We use a segment-based

5.4 Word recognition 119

representation with angular features and the delays 1,2, and 4. It is expected that the
‘pause’ model reduces the overall word error rate as argued by Cho et al. [1995].
The effect of the ‘backspace’ model is not predictable due to lack of reference
material.

Table 5.25. Recognition results in word error rate[%] using models extended with
a pause and/or backspace (BS) model. The mean error rate is indicated as u while
the between-writer standard deviation is indicated as ¢. Top: The results for the
Mixed] test set. Bottom: the results for the Mixed2 data set.

Vocabulary size
Model 200 20,000
No BS BS No BS BS
u c |u c |u o u o
Nopause | 2.7 |27 |35 [3.1]16.5 | 11.2] 19.0 | 145
Pause 2.0 1.8 |24 1.9 1 139 | 10.2 | 151 | 104

Vocabulary size
200 20,000
No BS BS No BS BS
U c U o |u o U c
No pause | 11.0 | 6.7 | 16.6 | 7.5 | 26.9 | 11.7 | 34.0 | 12.3
Pause 87 |55 141 |67 |232|11.6 | 31.3 | 12.7

Model

The results of the experiment are summarized in Table 5.25. The model configu-
ration ‘pause-no-backspace’ always produces the best results. This is exactly the
configuration used in the experiments throughout the previous subsections. The
relative reduction in word error rate compared to ‘no-pause-no-backspace’ models
is 20%-25% for a 200 word vocabulary and around 15% for a 20,000 word vocab-
ulary. This result is in line with Cho et al. [1995] although we measure a lower
improvement in word error rate.

The use of a ‘pause’ but no ‘backspace’ model yields the best recognition re-
sults. The interpretation of this result is that the ligature shapes vary strongly. If the
ligatures are trained together with the character models, the ligatures add an extra
source of variation to the character shapes, i.e., the character models get ‘polluted’
with ligature noise. The /pause/ model separates the ligature shape variations from
the character shape variations. This leads to more accurate character models and a
more accurate recognition. Another way of separating the ligature variations from
the character variations is the use of trigraphs as discussed in the next subsection.

The use of the ‘backspace’ model always results in a performance degradation.
If we compare the results of the ‘pause-no-backspace’ configuration with ‘pause-

120

backspace’, the relative increase of the word error rate is 20%-60% for a 200 word
vocabulary and 10%-35% for the 20,000 word vocabulary.

There are a number of possible reasons for the failure of the ‘backspace’ model.
First, our assumption to use /pause/ also for /backspace/ is a potential oversimpli-
fication because ligatures might have different shapes compared to the dots and
horizontal bars of diacriticals at the end of a word. Second, we have used the
‘backspace’ model at the end of every word. The use of a ‘backspace’ model only
at the end of words which contain a diacritical mark will probably give better re-
sults. These topics are beyond the scope of this thesis but are recommended for
further study.

Finally, we observe that the recognition of the dataset Mixed?2 is generally less
good compared to Mixedl. This is due to the average word length in the datasets.
A short word simply provides less context compared to longer words and the more
context, the better the recognition result. A similar effect was observed by Schenkel
et al. [1995].

5.4.7 Contextual models

It is known from previous work presented in Chapter 2 that the shape of characters
and ligatures depends on the neighbor characters. Therefore, it makes sense to
model the contextual differences in order to gain accuracy. Preferably, complete
word models should be trained but this is not practical due to lack of training data
and the shear number of resulting models which scales linearly with dictionary
size. An alternative is to train contextual character models.

In speech recognition, it is common to train triphone models. Example stud-
ies like Lee [1988] show that the use of triphones reduces the error rate in user-
independent sentence recognition up to 50%. Starner, Makhoul, Schwartz & Chou
[1994] employ the handwriting equivalent of triphones, trigraphs, in a writer-
dependent study on the recognition of on-line, handwritten sentences. Excellent
results are achieved. However, the study does not compare contextual with context-
free models and therefore, the benefit due to contextual models remains unclear.
More recently, Kosmala, Rottland & Rigoll [1997] applied trigraphs to a writer-
dependent, on-line handwritten word recognition task and achieved an error-rate
reduction of 50% and 35% with 1000 and 30,000 words vocabularies, respectively.

In the context of this thesis, we compare context-free and contextual trigraph
models in a user-independent recognition task. A segment-based representation is
used which employs angular features with three delays 1,2, and 4. There are no
‘pause’ models between characters. The training procedure starts with 10 reesti-
mation iterations using a context-free, ‘no-pause-no-backspace’ model of 26 char-
acters obtained in Subsection 5.4.6. After that, training continues with another 10
iterations and a varying number of contextual models. The set of contextual models

5.4 Word recognition 121

includes both trigraphs and bigraphs. The bigraphs depend only on the left char-
acter. A specific contextual model is included if we have more than a threshold
number of examples in the training set as summarized in Table 5.26. For exam-
ple, the set of 147 contextual models includes 18 trigraphs, 100 bigraphs and 26
unigraphs or context-free models. In addition, we have start-word and end-word
markers as discussed in Subsection 4.2.3 and do not use a pause model. Both
datasets Mixedl and Mixed?2 are used as a test set.

Table 5.26. The minimum number of training samples for each model and the
corresponding number of contextual models.

Number of Number of
training samples models

- 26
300 66

200 147
100 284
60 476

30 878

Table 5.27. Effect on word error rate [%] of an increasing number of contextual
models. Results are obtained with 200 and 20,000 word vocabulary and two data
sets.

Models Dataset and vocabulary size

.. Mixed1 Mixed2
#models | #densities 00 120K 200 T 20K
26 3009 27 1165 | 11.0 | 26.9
26 3946 29 | 13781 | 237
66 8979 20 [13558 | 213
147 17394 1.8 [114 | 6.5 | 20.7
284 25763 22 | 135168 |21.1
476 31964 31 (188 |73 |23.0
878 35314 43 | 21.7 | 87 | 278

First, it is observed that the additional 10 training iterations reduce the word error
rate even with a constant number of models. This is shown in Table 5.27 as the
difference between the first and second line of results with 26 models.

Second, the table shows that the word error rate does not decrease
monotonously with the number of models but instead reaches a minimum word
error rate and increases again. This effect is expected and caused due to the bal-

122

ance between more specific models and available training data per model. Lee
[1988] called this the ‘trainability versus specificity’ issue. Kosmala, Rottland &
Rigoll [1997] observed a similar effect with a lowest word error rate at 25 trigraph
models. The between-writer standard deviation with dataset Mixed! for a 200 and
20,000 word vocabulary is 6 = 2.0 and 6 = 7.7, respectively. The best result is
reached with the use of 147 contextual models. The between-writer standard devi-
ation of the results with dataset Mixed2 and 147 contextual models is ¢ = 4.0 and
6 = 9.3, respectively, with a 200 and 20,000 word vocabulary.

The error-reduction in the experiment with 147 contextual models and a 20,000
word vocabulary is 16.8% and 12.7% for the data sets Mixed] and Mixed2, respec-
tively. The experiment with a 200 word vocabulary achieves an error-rate reduction
of 38% and 19.2% with Mixed] and Mixed2, respectively.

5.4.8 Discussion

As in character recognition, the question is how to interpret the achieved results.
The results of the conducted experiments are compared with similar experiments
in the literature and human performance measured on similar recognition tasks.

The first indication of human performance is given in Section 1.4 where 72%
correctly recognized cursive words are quoted in absence of context. In a small ex-
periment, Schomaker [1994] employs up to 20 humans to judge handwritten words
which results in two conclusions. First, neatly handprinted words are recognized
well (98%). Second, cursive style words are much more difficult to recognize.
Recognition rates between 88% and 54% correct words are measured without any
vocabulary knowledge. The 88% correct words is measured for neat cursive hand-
written words while the 54% is measured for sloppy, fast cursive words. These
results give a reasonable indication on what to expect of a computer recognizing
handwriting.

Comparing the recognition results with results from the literature is a hazardous
task because of different data sets, writers and other factors. The presented recog-
nition results in Table 5.28 on off-line handwritten data provide background in-
formation while the on-line results serve as comparison material. Main result is
that the techniques employed in this thesis lead to a state-of-the-art handwriting
recognition engine. We obtained all results with a hidden Markov model classifier,
data-driven training and one-stage beam search. No special heuristics are used to
tune the data for optimal recognition.

A word error rate of 10%-20% with a 20,000 word vocabulary is standard for
a mixed-style word recognition system. However, the between-writer standard de-
viation is large. In our case, the between-writer standard deviation is ¢ = 8.5 for
a word error rate of 11.2%. This is also observed by Schenkel et al. [1994] who
reported word error rates between 5% and 40% for nice and sloppy writing, respec-

5.4 Word recognition 123

Table 5.28. On-line word recognition results in word error rates (WER) [%]
from literature with cursive and unconstrained handwritten data (most lower-
case). Abbreviations: WI=Writer-independent, WD=Writer-dependent, Off=Off-
line recognition, On=0On-line recognition, and Voc.=Vocabulary.

Author(s) Voc. | Type #Writers | WER
Cho et al. [1995] 10K | WI/Oft/HMM | ? 29
Seni and Cohen [1994] 21K | WI/Off/TDNN | 9 37.6
WD/Off/TDNN | 20 8.4
Bunke et al. [1995] 150 | WD/Off/ HMM | 5 2
Nathan et al. [1995] 21K | WI/Oo/HMM | 25 18.9
Schenkel et al. [1994] 20K | WI/On/TDNN | 59 20
Manke et al. [1995] 20K | WI/On/TDNN | 80 8.6
Dolfing and Haeb-Umbach [1997] | 20K | WI/On/HMM 10 11.2

tively. A similar variation is caused by the word length of the handwritten words.
With a vocabulary of 20,000 words, a word error rate of 11.2% is measured on
dataset Mixedl and a word error rate of 20.7% is measured for the short, sloppy
words of Mixed2. Even the results on this worst case dataset compare fine with
Table 5.28.

More results on comparable problems include the work by Schomaker & Teul-
ings [1992] who reported a 88% character recognition rate for a writer-independent
system with neat, cursive handwriting without vocabulary. Tappert [1982] presents
an early result for a writer-dependent, cursive recognizer which achieved 95% cor-
rect characters based on a dynamic programming technique.

An interesting observation is that the employed techniques in Nathan et al.
[1995], Schenkel et al. [1994], Manke et al. [1995], and Dolfing & Haeb-Umbach
[1997] are complementary to a certain extent. We could speculate that the introduc-
tion of contextual features to the systems of Nathan et al. [1995], Schenkel et al.
[1994], Manke et al. [1995] gives an improved error rate while duration modeling,
allograph clustering and other techniques can improve the system of Dolfing &
Haeb-Umbach [1997].

Looking forward to the next section, we can already conclude that only the
use of more context knowledge in whatever form will boost the recognition to an
acceptable level with a vocabulary of 20,000 words. At the same time, research
should focus on a more robust recognition or fast user adaptation to reduce both
word error rate and deviation in a writer-dependent situation. The empirical pre-
diction of the recognition performance presented by Cortes [1995] provides an ap-
proach for a meta-search to find the best combination of representation and model.

124

5.5 Sentence Recognition

This section explores techniques for sentence recognition. We model each charac-
ter with a hidden Markov model. In the previous sections, we used beam search
for isolated word recognition. The current section uses connected class recogni-
tion, i.e., we do not recognize one label from a dictionary but a character or word
sequence. The classification is based on a one-stage beam as presented in Fig-
ure 3.13. The beam search determines the optimal label sequence and is guided by
the hidden Markov models and a language model. Note that the segmentation of
a sentence into words or characters is implicit rather than explicit as in the system
used by Mahadevan & Srihari [1996].

As explained in the previous sector, the language model is the context source
which limits the number of interpretations. Therefore the effect of several language
models is explored. The three main objectives can be summarized as follows:

e Investigate the use of an M-gram, character-based language model for un-
limited vocabulary recognition.

e Test and compare character and word-based language models.

e Investigate the effect of language models on different types of handwritten
sentences.

5.5.1 Character-based language models

The objective of this experiment is to investigate the effect of an M-gram statistical
language model on sentence recognition. We concentrate on a character-based lan-
guage model which models a handwritten text as a sequence of characters rather
than words. This perspective enables the recognition of handwritten text with un-
limited vocabulary. A disadvantage is that we loose the information about word
boundaries.

The experiment compares zerogram (M=0), unigram (M=1) and bigram (M=2)
models on handwritten sentences in discrete style, represented by frames and seg-
ments, respectively. The test set is Sentencel. Although a character-based recogni-
tion of sentences is possible without language model, the language model improves
the recognition accuracy. An exact prediction is difficult because there is not much
comparable material. Kassel [1995] found an improvement from 71.7% to 79.3%
correct characters for a handwritten sentence recognition task with a bigram model
(PP=11.3) and 62 character models. This corresponds to a reduction in error rate
with more than 25%.

Given the Sentencel data set as described in Section 5.1, representations based
on segments and frames are used to represent the sentences. The frame-based
representation uses eight delays with angular and overlap features. Because this
is identical to the representation in Subsection 5.4.4, the hidden Markov models

5.5 Sentence Recognition 125

computed in that task are used for recognition. The segment representation em-
ploys three delays (1,2,4), and angular features as discussed in Subsection 5.4.2.
Only 26 lowercase characters are modeled. Note that the models are trained on
mixed-style words while the test material consists of discrete-style data.

Two character-based language models are computed using the Linux HOWTO
material which contains about 7.0- 10° characters. We used 4.2- 10 lowercase
characters to compute unigram probabilities and 3.9- 10° bigram examples to com-
pute a set of bigram probabilities.

The experimental results are summarized in Table 5.29. The use of the bigram
model produces the best recognition results. Compared to the recognition without
language model, the reduction of the error rate is around 15%. The between-writer
standard deviation is roughly 8%-10%. It is not clear why the unigram result for
frames is better when compared to the bigram result.

Table 5.29. The effect of character-based language models in sentence recogni-
tion. Results are in character error rates [%].

Representation M-gram

0 (PP=26) | 1 (PP=18.1) | 2 (PP=12.3)
Frames 25.2 20.1 20.9
Segments 24.1 22.3 20.7

The difference in relative error reduction between our results and those reported
by [Kassel, 1995] can be explained from the difference in perplexity (Subsec-
tion 3.6.2). While Kassel [1995] achieved about 25% error reduction when com-
paring the recognition results with zero-gram (PP=63) and bigram (PP=11.3) lan-
guage model, we achieve an error rate reduction of 15% while reducing the per-
plexity from 26 to 12.3 for the experiments with zero-gram and bigram language
model, respectively.

Although the character-based recognition performance improves due to the lan-
guage model, the achieved performance as shown in Table 5.30 is not good enough
for practical use. These results can be improved by adding more context informa-
tion.

Table 5.30. Example results of character-based sentence recognition using a bi-
gram language model. The observed character error rate is about 20%.

Recognition Result ‘ Expected Result

afictfuloffarcinatingfacts
amatvralwaywixhweecls
africnwiddoysfeawcats
althefvncfxhefestival

afistfuloffascinatingfacts
anaturalwaywithweeds
africanwilddogsfearcats
allthefunofthefestival

126

5.5.2 Character-based versus word-based language models

In Subsection 3.6.2, we concluded that a word-based, M-gram language model pro-
vides more context than a character-based model of the same order M. Therefore,
we compare the effect of the use of a character and word-based language model.
In contrast to the previous subsection, a word-based unigram and bigram language
model is employed in the recognition of the Sentencel test data.

The use of a word-based language model is standard practice in speech recog-
nition but not in handwriting recognition. Starner, Makhoul, Schwartz & Chou
[1994] use a bigram language model with vocabulary size of 25.595 words in the
recognition of handwritten sentences. These handwritten sentences are taken from
the Wall Street Journal corpus used in continuous speech recognition and discussed
by Paul & Baker [1992]. The written sentences are purely cursive, not uncon-
strained, and the hidden Markov models are writer-dependent. In contrast, all our
tests are writer-independent.

Compared to Starner et al. [1994], the scope of the current experiment is lim-
ited. Although the vocabulary size goes up to 20,000 words, the language model
is dedicated to the expected sentences in the test set. The derived language models
have a very low perplexity which can be useful in restricted domains like check
reading. Therefore, the word error rate derived in the current experiment is merely
an indication or lower-bound on the expected sentence recognition error rates.

The handwritten data is represented with the same segment representation as in
the previous subsection. The hidden Markov models for lowercase characters are
again trained on mixed-style word data.

Table 5.31. Sentence recognition results using a character and word-based lan-

guage model (M-gram) with perplexity PP and different vocabulary sizes. Results

in character error rate (CHER) [%] and word error rate (WER) [%].

Vocabulary size and language model.
Error rate 26 200 20,000
M-gram 0 1 2 1 2 1 2
PP 26 185 | 12.5 | 88.0 | 4.1 | 88.0 | 4.1
CHER 72 16|72 |24
WER 24.1 | 2231 207 17.7 | 2.6 | 17.7 | 4.1

First, we observe that the character error rates of the experiment with a bigram,
word-based language model (1.6% and 2.4%) is roughly a factor ten smaller com-
pared to the character error rate of the bigram, character-based language model
(20.7%). The reason for this large improvement is that the word-based language
model describes the sentence text very accurately due to its closed vocabulary, i.c.,
the word-based language model is a better context model than the character-based

5.5 Sentence Recognition 127

language model. However, the price for this improvement is that only words from
a dictionary are recognized while the character-based language model allows the
recognition of an unlimited vocabulary.

Second, we learn that the word error rate for a 20,000 word vocabulary and bi-
gram grammar has dropped to 4.1%. The word error rate with a unigram language
model is 17.7%. The difference between these word error rates is caused by the
improved context modeling of the bigram language model.

Table 5.32. Effect of a bigram language model with a 20,000 word vocabulary and

both context-free and contextual hidden Markov models with the between-writer

standard deviation o in brackets.

Model type
Error rate Context-free | Contextual
CHER 2.4 1.8
WER 4.1(3.9) 2.6 (2.9)

Finally, the previous test with bigram language model and a 20,000 word vocabu-
lary is repeated. We exchanged the used hidden Markov models for the contextual
models (147 models) as tested in Table 5.27. This results in an additional improve-
ment of the word error rate of 25%-35% with otherwise unchanged parameters.
The resulting word error rate of 2.6% can be roughly read as 1-out-of-40 written
words incorrect. The between-writer standard deviation is 6 & 2.9% for the con-
textual results. This error rate is very low but remember that the language model is
estimated on the sentences in the test set.

Table 5.33. Examples of sentence recognition results with a word-based language

model. The observed word error rate is about 2.6%.

Expected Result

Recognition Result

a fistful of fit situations
a natural way with weeds
african wild dogs fear cats

a fistful of fascinating facts
a natural way with weeds
african wild dogs fear cats

all the fun of the festival all the fun of the festival

5.5.3 Discrete versus mixed-style input

The sentence recognition experiments in the previous subsections use handwrit-
ten, discrete-style sentences. The recognition of the sentences is based on hidden
Markov models for 26 lowercase characters trained on mixed-style data. Because
handwritten sentences are normally written unconstrained, we compare the pre-
vious results with results on an extra, more ambiguous test set Sentence2 which
contains the same text as before but written mixed-style by different writers.

128

The experiment is conducted with a segment representation and a vocabulary size
of 20,000 words. We employ 26 hidden Markov models, i.e., one for each low-
ercase character, and an additional pause model [Dolfing, 1998]. The bigram lan-
guage model is the same as in the previous subsection, i.c., estimated on the text of
the sentences in the test set.
Table 5.34. Sentence recognition results in word error rate {%)] using unigram and
bigram language model with 20,000 vocabulary and context-free and contextual
models, respectively. Between-writer standard deviation in brackets.

Model type
Data set Context-free Contextual
M-gram 1(PP=88.0) | 2(PP=4.1) | 2(PP=4.1)
Sentencel (discrete) 17.7 (13.9) 4.1(3.9) 2.6 (2.9)
Sentence2 (unconstrained) | 17.3 (12.8) 3.6(3.5) 0.6 (0.6)

Although the word error rates for the unconstrained sentences are somewhat lower
compared to the discrete data, there is no significant difference. For this exper-
iment, the best observed writer-independent, sentence recognition result with a
20,000 word vocabulary is a word error rate of 0.6%. Again, this is with a dedi-
cated language model.

Compared to the word error rate of 20.7% in Table 5.25 on the handsegmented,
unconstrained data Mixed2 of the same sentences using the same contextual hidden
Markov models, the word error rate of 0.6% is an improvement with a factor 34.5
despite the additional ambiguity of unknown word boundaries in the sentences.

6

Signature Verification

In this chapter we discuss on-line signature verification based on hidden Markov
models. In Definition 3.35, we defined handwriting verification as a stochastic clas-
sification problem. To transform the formal definition into a signature verification
system, we have to make the type of handwriting, labels, model and items more
concrete. In this chapter, we concentrate on signatures as a subclass of all possible
handwritings and on signature verification as a subclass of the handwriting verifica-
tion in Definition 3.35. The formal Definition 3.35 uses two possible labels which
correspond with a ‘reject’ and ‘accept’ decision on the handwritten signature. In
the context of hidden Markov models, we refer to the items in Definition 3.35 as
observations which are represented by feature vectors.

In Section 6.1, we give a brief discussion of important issues in signature ver-
ification such as a system overview, forgery types, algorithms, and approaches
presented in the literature. We study the representation in Section 6.2 with special
attention on how to exploit the novel digitizer hardware and handwriting-specific
knowledge. A hidden Markov model is chosen as a model for each signature.
Several model structures and modifications are discussed in Section 6.3 where we
concentrate on the differences with the hidden Markov models used in handwriting
recognition. The experimental results are discussed in Chapter 7.

129

130

6.1 Introduction

In this section, we start with an overview of the signature verification system in
Subsection 6.1.1 which is based on Definition 3.35. Afterwards, we introduce the
type of forgeries which are used in this thesis and the literature in Subsection 6.1.2.
This is followed by a forensic perspective on genuine and forged signatures in Sub-
section 6.1.3. Next, we summarize a number of common models and algorithms
in on-line signature verification in Subsection 6.1.4. Finally, Subsection 6.1.5 uses
the information of the previous sections to summarize and comment on a number
of important results presented in the literature.

6.1.1 System overview

Figure 6.1 presents an overview of the process of signature verification on the basis
of hidden Markov models. First, an individual writes a signature on a digitizer. The
properties of this digitizer are discussed in Subsection 2.4.1. This digitizer samples
the signature at equidistant points in time. At each timestep ¢, the digitizer samples
the x and y coordinates, the pressure p, the tilt 6, in x direction and the tilt 6, in
y direction. Because of the equidistant sampling in time, we can use the x and y
coordinates to derive a velocity v and acceleration a signal. Writing and sampling
of the signature is done simultaneously. The sampling of the signature results in a
stream of coordinates (x,y, p, 6y,0y).

Preprocessor

Verification

Identity + Signature model

Accepted Rejected
Figure 6.1. Overview signature verification system.

The sampled signature is processed by the preprocessor which transforms the
stream of coordinates (x,y, p, 0y, 6,) into a stream of feature vectors. These fea-
ture vectors are the input to the verification process. Because we assume that we
know which individual writes the signature, we compare the stream of feature vec-
tors with a hidden Markov model of the signature of this individual. The verifica-

6.1 Introduction 131

tion process results in a binary decision where the written signature is accepted as
genuine or rejected as a forgery.

The signature preprocessing is very similar to the handwriting preprocessing in
Section 4.3. Main difference is that the digitizer samples a stream of (x, y, p, 6,,6,)
coordinates [Dolfing & Van Oosterhout, 1996; Dolfing, Van Qosterhout & Aarts,
1998] instead of (x,y) coordinates as used in handwriting recognition. Because we
also derive velocity and acceleration signals, this implies some additional filtering
of speed, acceleration and pressure signals.

An important choice in signature preprocessing is the choice of the repre-
sentation. This involves the choice of a grouping procedure and feature vector.
The grouping or blocking of coordinates presented in Subsection 2.5.1 determines
which sequence of coordinates is used to compute a feature vector. Here, we
choose to divide signatures into segments as discussed in Subsection 4.1.2 and
Figure 4.8. This grouping choice corresponds exactly with the size-independent
segments used in handwriting recognition in Chapter 4. While the grouping is
discussed in Section 6.2, the choice of the feature vector is discussed in Chapter 7.

Furthermore, we choose to model a signature with a left-to-right hidden
Markov model. This model is trained from several example signatures in the same
way as a word or character model is trained. The verification is a simplified recog-
nition because we rely on a given identity and compare the written signature with
only one hidden Markov model. The comparison is implemented with the Viterbi
algorithm as presented in Figure 3.9 and results in a computed loglikelihood which
is compared with a threshold value to complete the verification.

6.1.2 Forgeries

The quality of the forgeries has a large effect on the false acceptance (FA), false
rejection (FR) and equal-error (EE) rates, where the equal-error rate is found at the
threshold where FA equals FR. Therefore, the type of forgeries used in the experi-
ments should be specified. It is known that the difference in false acceptance rate
between simple and skilled forgeries can be an order of magnitude. In this thesis,
we discriminate between four types of forgeries. These are zero-effort, home-
improved, over-the-shoulder and professional forgeries. The difference between
these forgery types is that they show an increasing similarity with the original sig-
nature because the forger has access to an increasing amount of information about
the genuine signature. The professional forgeries look the most like the genuine
signatures. Next, we take a closer look at each forgery type.

Zero-effort forgery. A zero-effort forgery is not really a forgery but a random
scribble or signature of another individual. Given a database of signatures and an
individual whose identity is verified based on a signature, we exploit the signatures

132

of all other individuals in the database as ‘forgeries’. This experimental setup
is a test to determine whether the signature verification system can reject more
or less random scribbles. Compared to the use of home-improved or over-the-
shoulder forgeries, the measured equal-error rate with zero-effort forgeries should
be significantly lower.

Home-improved forgery. The category of home-improved forgeries includes
forgeries which are made when a forger has a paper copy of the genuine signa-
ture and has ample opportunity to practice the signature at home. After a lot of
practice, a forger might be able to produce a forged signature which is reasonably
similar to the genuine signature. It is important to note that the imitation is based
only on the static image of the original signature.

Over-the-shoulder forgery. The category of over-the-shoulder forgeries con-
tains the forgeries where the forger is present while the genuine signature is written.
The forger learns not only the spatial image but also the dynamic properties of the
signature by observation of the signing process. The knowledge of both spatial
and dynamic characteristics allows a forger to forge a signature which is very sim-
ilar to the genuine signature. Both the over-the-shoulder and the home-improved
forgery are examples of amateur forgeries. In the literature, over-the-shoulder and
home-improved forgeries are not distinguished. Instead, they are all referred to as
amateur, semi-skilled or even skilled forgeries [Plamondon & Lorette, 1989].

Professional forgery. Finally, there exist forgeries which are produced by indi-
viduals who have professional expertise in handwriting analysis. Normally, these
professionals have no more experience than other individuals with copying the dy-
namic signature information. Examples are document examiners or forensic scien-
tists. Because of their experience, they know how to discriminate between genuine
and forged signatures. Hence, they are able to circumvent obvious problems and
exploit their knowledge to produce high quality, spatial forgeries. These forgeries
are named professional forgeries.

After this overview of forgery types, we present a number of approaches from the
literature which use the discussed forgery types. Yang, Widjaja & Prasad [1995]
describe a signature verification system based on hidden Markov models where the
error rate is measured using zero-effort forgeries. Crane & Ostrem [1983], Lee,
Berger & Aviczer [1996], Sato & Kogure [1982], Worthington, Chainer, Wilford
& Gundersen [1985] and Yoshimura, Kato, Matsuda & Yashimura [1991] all use
skilled forgeries mainly based on an image of the original signature. Although
the verification system employs dynamic and spatial information, the forgeries are
based on spatial information only.

6.1 Introduction v 133

There are few approaches where dynamic information is provided to the forgers.
Lee et al. [1996] provides the forgers with the average writing time of a genuine
signature to indicate the writing speed. Crane and Ostrem [1983] provides the
forgers with a video tape of the original signing process. Plamondon [1994a] uses
acoustic feedback of the genuine signature, generated by the pen while writing, to
convey dynamic information to forgers.

The available forgeries do not only effect the classifier testing but also classifier
design as demonstrated by Lee et al. [1996] who conclude that forgeries are not
essential but helpful to improve performance.

6.1.3 Forensic perspective

In Chapter 4 and Chapter 5 we have learned that more context knowledge in the
representation, trigraphs and language model improves the recognition accuracy.
The same principle applies to signature verification. The more relevant informa-
tion is extracted from the signature and employed in representation and model, the
better the verification works. Because the digitizer in an on-line signature verifica-
tion system extracts additional data signals, see Section 1.1 and Subsection 2.4.1,
on-line signature verification generally leads to better results compared to off-line
verification [Plamondon & Lorette, 1989]. Bromley, Bentz, Bottou, Guyon, Le-
Cun, Moore, Sackinger & Shah [1993] show that there are situations where com-
puterized on-line verification systems can outperform unskilled humans on skilled
forgeries.

Traditionally, we use signatures as an authentication mean, e.g., in banking af-
fairs on cheques and in business on documents. While expert document examiners
judge whether the signature is genuine or forged based on given related writing
material, the check reading at a bank counter normally depends on an employee
untrained for detecting signature forgeries. Wilkinson, Pender & Goodman [1991]
argue that this is no problem since most forgeries are ‘casual’ forgeries. Neverthe-
less, the question of human performance on signature verification compared to an
off-line signature verification system is raised.

Found & Rogers [1995] compared three forensic examiners with a computer
system to verify off-line signatures. The task was to classify signatures into one of
three complexity classes which are easy, moderately easy and complex. Computers
and experts agreed on 73.5% of the classifications. Plamondon & Lorette [1989]
comment on the relation between document examiners and off-line signature veri-
fication systems as follows

“According to evaluation by expert document analysts, skilled forgery
detection would not be efficient with off-line systems, as long as dy-
namic and static features are not exhaustively extracted from a written
specimen.”

134

Because the digitizer employed in this thesis extracts both spatial and dynamic
characteristics of a written signature, we conclude that this is a viable starting point
for on-line signature verification and allows the detection of skilled forgeries.

6.1.4 Algorithms

A variety of algorithms is used for signature verification of which a subset is com-
pared by Parizeau & Plamondon [1990]. Common to all algorithms is the existence
of one or more reference models which are compared against a written signature.
Important is the difference between a linear and non-linear comparison of a written
signature with the model.

Simple models use exactly one signature as reference, use a linear align-
ment and compute the Euclidean distance between reference and written signa-
ture. Other approaches average a number of signatures to derive a reference model
and combine this with a Euclidean distance as demonstrated by Crane & Ostrem
[1983]. Advantage of this approach is the processing speed but disadvantage is that
a linear comparison between reference and input signature is a simplification.

A more sophisticated approach is dynamic time warping (DTW) which is a
dynamic programming algorithm to achieve a non-linear alignment between ref-
erence and written signature. This approach was first used in speech recognition
[Sakoe & Chiba, 1978] and later introduced into signature verification [Sato &
Kogure, 1982; Wirtz, 1995].

The distance between reference and input signature is typically computed with
the Viterbi algorithm as discussed in Subsection 3.4.2. Signature verification Sys-
tems discussed by Wirtz [1995] and Yashimura & Yoshimura [1992] use dynamic
time warping with not only x and y signals. While Wirtz [1995] demonstrates dy-
namic time warping over x, y and pressure signals, Yashimura & Yoshimura [1992]
include the velocity signal in dynamic time warping.

Compared to the simple models which use one or an average of genuine sig-
natures as reference model, a statistical model is more sophisticated. Examples
are given by Hastie, Kishon, Clark & Fan [1992], Nelson, Turin & Hastie [1994]
and Clark, Hastie & Kishon [1990]. Based on a number of genuine signatures, the
mean and variance of the signature are computed. Schmidt & Olschewski [1995]
show an example of a Kohonen type neural network in signature verification with a
false rejection rate of 15% and a false acceptance rate of 17.5%. Doux & Milgram
[1995] briefly describe an on-line signature verification system based on dynamic
time warping and a neural network where the best result is a false acceptance rate
of 18% and a false rejection rate of 3.3% achieved with skilled forgeries. Leclerc
& Plamondon [1994] summarize other approaches using neural networks for both
static and dynamic signature verification.

Another type of statistical model is the hidden Markov model of which the

6.1 Introduction _ 135

application to signature verification is explored in this thesis and by Dolfing, Van
Oosterhout & Aarts [1998]. Two similar approaches are discussed by Mohankr-
ishnan, Paulik & Khalil [1993a] and Yang, Widjaja & Prasad [1995]. Although
hidden Markov models are rarely used in signature verification, they are regularly
employed in speaker or voice verification with good results [Naik, Netsch & Dod-
dington, 1989; Naik, 1990; Naik, 1994].

6.1.5 Literature

In general, the comparison of signature verification approaches is difficult due to
the different equipment, algorithms, models and databases. There is no standard-
ized benchmark or database. Additionally, the type and quality of forgeries used
to estimate the verification accuracy is different for every approach. This leads to
false acceptance, false rejection and equal-error rates which make no sense without
information about other system parameters.

Signature variability is discussed by Plamondon & Lorette [1990] and
Fairhurst, Cowley & Sweeney [1994] who discuss inconsistencies and changes
which depend on time and situation. Factors which affect a signature shape are
age, mental and physical condition, practical conditions and time-of-day. We also
know that people in Japan and China are not used to write a signature [Sato &
Kogure, 1982; Yoshimura, Kato, Matsuda & Yashimura, 1991] and simply use
their name if necessary. Additionally, we have indications that the writing time of
a European signature is shorter compared to an American signature because Amer-
ican signatures are required to be legible.

A classic overview of signature verification approaches is given by Plamondon
& Lorette [1989] and is updated by Leclerc & Plamondon [1994]. Because we
have already discussed the equipment used in this thesis, the signature verification
system, forgery types and typical algorithms found in the literature, we can now
give a brief overview of relevant results reported in the literature in Table 6.1 which
gives a general idea of state-of-the-art performance and the kind of databases and
algorithms used.

The column ‘Reference’ in Table 6.1 indicates the information sources in the
literature. ‘Database size’ indicates the number of genuine and forged signatures
in the database used for testing. The column ‘Distance’ indicates the algorithm to
compare the written signature with the reference(s) model. The multistage algo-
rithm implements the binary decision of Definition 3.35 in a sequence of several
stages. The idea is that the verification ends as soon as one of the stages can make
a reliable decision.

The column “Threshold’ shows the type of threshold and corresponding imple-
mentation. Different threshold types are fixed, factor and personal. Some verifi-
cation systems use one fixed threshold for all signatures. Because there is a wide

136

Table 6.1. Overview of signature verification results reported in the literature.

_ Reference Database size | Distance Threshold | Error rate

Crane and Ostrem [1983] 5800 | Euclidean Personal EE 1.5%

Fairhurst et al. [1994] 8500 | Euclidean Personal FR 0.85% (per Session)
FR 1.8% (per Signature)

Hastie et al. [1992] 100 | Statistical model Personal -

Lee et al. [1996] 10,000 | Euclidean Fixed EE 2.5%

Plamondon [1994a] 460 | Multistage Personal EE 0.5%

Sato and Kogure [1982] 440 | DTW Personal FR 1.8% FA 0%

Taguchi et al. [1989] 200 | Multistage Factor FR 6.7% FA 0%

Worthington et al. [1985] 28,000 | Regional correlation | Personal FR 0.19% FA 0.56% (per Session)
FR 1.77% FA 0.28% (per Signature)

Yang et al. [1995] 500 | hidden Markov model | Personal FR 4.44% FA 1.78%

Yoshimura et al. [1991] 2200 | DTW Factor EE 1%

6.2 Representation 137

variety of signatures, this does not always work. Other possibilities are to compute
a personal threshold either automatically or ‘by hand’. An intermediate solution is
to relate the signature model to unseen test signatures via a multiplication factor
or additional offset [Yoshimura, Kato, Matsuda & Yashimura, 1991; Liu, 1978].
Thresholds in the context of hidden Markov model signature verification are dis-
cussed in Subsection 6.3.2.

The experiment of Worthington et al. [1985] provides a landmark because of
the large number of involved signatures, the fact that these results were obtained in
a field test similar to Crane & Ostrem [1983], and the low error rates. Despite the
fact that forgers who wrote accepted forgeries got a financial reward, the session
error rate, i.e., the error rate after a number of trials of the individual to make
a successful signature, is very low. However, in this thesis we concentrate on
signature error rates and do not compute session error rates.

6.2 Representation

In Chapter 4, we discussed the representation for handwriting recognition based on
hidden Markov models. This resulted in a representation which describes spatial
information in handwriting, i.e., the shape of handwriting parts. Therefore, the
representation is a feature vector which contains spatial information. A number
of writer and digitizer dependent variables like writing speed or sample rate are
normalized before feature extraction.

In comparison with that, signature verification depends on writer-dependent
information. The writer-dependent information includes not only the shape of the
signature but also the dynamics of the signing process. Examples are writing speed
and the exerted pressure while writing. Therefore, the representation has to include
not only spatial information but also dynamic information.

In order to design a representation for signature verification based on hidden
Markov models, we discuss grouping and feature extraction. The grouping is dis-
cussed in Subsection 6.2.1. The process of feature extraction is basically the same
as discussed for handwriting recognition in Subsection 4.3.1. The difference is that
signature verification uses additional features describing the handwriting dynamics
which are discussed in Subsection 6.2.2. The framework of contextual features is
applied to the dynamic features in Subsection 6.2.3. In addition to that, the LDA
transformation (see Subsection 4.1.6) is exploited in the context of signature veri-
fication in Subsection 6.2.4.

6.2.1 Grouping

The purpose of grouping is already discussed in Subsection 2.5.1. In the context of
on-line signature verification, we have to define sequences of coordinates, sampled

138

equidistant in time by the digitizer, which are used to compute feature vectors. Typ-
ically, the number of coordinates for each group is chosen to balance resolution and
information content. We present the grouping choice used for the signature verifi-
cation experiments in this thesis after we have discussed a number of approaches
presented in the literature.

Traditionally, on-line signature verification approaches have been classified
into two categories based on their grouping approach [Plamondon & Lorette,
1989]: the functional and the parametric approach. While the functional ap-
proaches compares the sampled signals with a reference signal set, the paramet-
ric approach extracts a set of features from the sampled signature and matches the
features against a reference model.

The parametric approach is demonstrated by Plamondon & Lorette [1989] and
handles the signature in one piece. A set of features is extracted to describe the
signature. Other examples are given by Crane & Ostrem [1983], Beatson [1985],
Taguchi, Kiriyama, Tanaka & Fujii [1989], Mital, Hin & Long [1987], Fairhurst &
Brittan [1994], and Lee, Berger & Aviczer [1996].

An alternative approach is a scribble-based segmentation which splits the sig-
nature in scribbles before processing. A number of features is computed for each
pen-up or pen-down scribble [Dimauro, Impedovo & Pirlo, 1992]. Instead of scrib-
bles, we can group coordinates into strokes as defined in Subsection 2.2.1 This is
demonstrated by Plamondon [1994a] and provides a more fine-grain signature de-
scription. Compared to the scribble-based approach, this approach will generate
more feature vectors to describe the signature because a scribble can contain sev-
eral strokes.

The functional approach computes features for every coordinate. Comparison
of a written signature with a reference model is possible with techniques like dy-
namic time warping. Worthington, Chainer, Wilford & Gundersen [1985] and Zim-
mermann & Varady [1985] present examples of this approach. To normalize the
number of coordinates per signature, a resampling is often performed as demon-
strated by Sato & Kogure [1982], Lam & Kamins [1989], Yashimura & Yoshimura
[1992], and Yang, Widjaja & Prasad [1995].

As mentioned in Section 6.1, the grouping procedure in this thesis for on-line
signature verification is based on elementary strokes bounded by the condition that
the velocity in y direction is zero. This corresponds with the segments of Sub-
section 4.1.2. The objective of this grouping choice is a writing size independent
representation which is also insensitive to writing speed and sample rate variations.
Additionally, the study by Dolfing & Haeb-Umbach [1997] demonstrates that the
choice of segments produces good results in on-line handwriting recognition with
hidden Markov models, i.e., the use of segments leads to feature vectors which
contain information relevant to the recognition of characters and words. Because

6.2 Representation 139

signatures can be compared with fast handwritten words [Herbst & Liu, 1977],
we assume that the same grouping as in on-line handwriting recognition is a valid
starting point for our studies.

6.2.2 Features

Subsection 4.1.3 discussed a set of spatial features which accurately describes the
spatial image of a segment. Because a signature contains both spatial and dynamic
information as discussed in Chapter 2, extra features are necessary to capture the
dynamic information. We concentrate on the use of pen-up data, velocity, pressure
and pen-inclination or pen-tilt information. Based on the digitizer specification and
the sampled signals, a baseline representation for dynamic information is chosen
and described in Subsection 7.3.1. The dynamic features are normalized to the
interval [0;1] by either linear scaling, a cut-off function with fixed threshold or a
soft-threshold with an atan function. Linear scaling is applied to pressure and tilt
which have 64 levels. Because we use segments and the features are writing size
independent, the complete representation is writing size independent.

Pen-up

One of the differences of on-line signature verification with off-line verification is
that the PAID tablet samples continuously in time not only on the writing surface
but also above it. Therefore, not only the ink ‘on the paper’ is measured but also
the movements in an adjustable area of about 1 cm above the tablet. An example
containing both pen-up and pen-down strokes is given in Figure 6.2 where the pen-
up and pen-down movements are drawn dotted and solid, respectively.

iy

Figure 6.2. Pen-up information in signature.

The comparison of the original signatures in Figure 6.2 with the home-improved
and over-the-shoulder forgeries in Figure 6.3 shows significant differences. First,
the loop of pen-up coordinates before the original ‘D’ character is missing in the
forgeries. Second, the dot on the ‘i’ is originally made immediately after the ‘i’
body while the forgers place the dot after the ‘n and at the end of the word, re-
spectively.

Because these examples (and others) show that the pen-up data is writer-
dependent, we do not strip the pen-up samples from the signature but model them
just like the pen-down data. This is in contrast to our handwriting recognition
approach where the pen-up samples are removed from the signal.

140

190008004 -5

Figure 6.3. Pen-up information in two types of forgeries. Top: home-improved
forgeries. Bottom: over-the-shoulder forgeries.

Velocity

Velocity is an important parameter in handwriting generation and verification. This
is supported by numerous studies by, e.g., Plamondon, Alimi, Yergeau & Leclerc
[1993], Plamondon [1993], and Schomaker & Plamondon [1990]. Figure 6.4 illus-
trates the fact that the velocity profile is writer-dependent and hard to reproduce.
The image of the genuine signature which results in this velocity profile looks like
an ‘o’ plus extra horizontal movement. Although the spatial image of the signa-
ture is simple, a forgery looks different in the velocity domain [Van Galen & Van
Gemmert, 1995]. Especially the peak velocity is important in this example.

100 120

0 Gehuine — 110 ForgF —
A 7 P s R i
%70,,/ / \ / \ l \ | T | // \\
e inaraT I
S 50 W/ R 570 A] 1\] I
20 [T/ VU 2% SRV
Sl I T AT A1 N
® 20 \/ Wy ' SN ZAREAN T U]
10 J o Y V1V
0 10 e e © 5 10 615 ﬁ%:[gasm_mgsol—ss*zzo 7550

Figure 6.4. Velocity profile of genuine and forged signature. Left: genuine signa-
ture. Right: forged signature.

For each segment, we compute the features Vbegin Vends Vmax and Vaye. These fea-
tures represent the velocity at a segment begin, at segment end, the maximum ve-
locity in the segment and the average velocity of the segment. Because of the
segment definition where the boundaries are defined by the condition vy = 0, the
features Vpegin and veng only model the velocity v, at the segment borders. A cut-
off function with threshold vinreshord is used to normalize the velocity features. The
threshold vipresholq 1S determined with a histogram of all velocities v in the signature
database for which holds v < viyeshold for 95% of all velocities. This leads to the

6.2 Representation 141

feature

Vbegin . <
Foeo = { Viireshold If Vbegin = Vthreshold
s if Vpegin > Vihreshold
and similar for the other velocity features.

Pressure

The availability of pressure measurements is a fundamental difference between on-
line and off-line signature verification. It is known from studies by Plamondon &
Lorette [1989] and Schomaker [1990] that there are basically three groups of peo-
ple with repeatable, more or less repeatable and not repeatable pressure profiles.
Studies by Wirtz [1995], Zimmermann & Varady [1985], Sato & Kogure [1982]
and Schmidt & Olschewski [1995] employ pressure in signature verification. Fig-

ure 6.5 illustrates the pressure profile for the signature in Figure 6.2.
60 60

Nally T A0l T
il | {ILJ HV

’ V
/

S
=]

IS
=)
—

Pressure [0..63]
w
=]

n

(=3

Pressure [0..63]
w
(=]

N
=]

=)
=)

0

1002 0500 700800 Bl —

Sampie nr. 0 San?pl?a or. 800 7000 00

Figure 6.5. Pressure profile of a genuine and forged signature. Left: genuine
signature. Right: forged signature.

Similar to velocity features, we compute the features Dbeginy Pends Pmaxs Pavg and
some combined features. All pressure features are normalized by a division with
64 to obtain a feature with range [0; 1].

Tilt
Pen-tilt or pen-inclination describes the angle of the pen with respect to the digitizer
surface as explained in Figure 2.5. This angle is caused by the way the writer holds
the pen. Left and right handed people are easily discriminated based on this infor-
mation. Because every individual has a different pen-grip, this is writer-dependent
information which is useful in signature verification. Taguchi, Kiriyama, Tanaka
& Fujii [1989] study pen-tilt and conclude that it is an important characteristic. In
contrast to Taguchi et al. [1989] who only study the pen-angle with the writing sur-
face, the current study explores the benefits of independent tilt in x and y direction
with a state-of-the-art digitizer.

Figure 6.6 illustrates the tilt profile for the example signature in Figure 6.2. For
the genuine signature, we measure a pen-tilt of approximately 45 and 35 in x and

142

Genuing x-tift — I Forged.x-ilt —
60 Genuing.y-tit = 60 Forged.y-tilt —
50 v 50 g .
© \umn_rt.ﬂm-l v UJLJH a0 [y m [me ,val\';““ "‘-dh"' M\-—’\J
T o A | B e Ve
S350 Ly 230
E F
20 20
10 10
| i
0 | 0 |
100 200 300 400 500 600 100 200 300 400 500 600
Sample nr. Sample nr.

Figure 6.6. Tilt profile of a genuine and forged signature. Left: genuine signature.
Right: forged signature.

Yy direction, respectively. The tilt of the forged signature is approximately 40 and
55 for x and y direction, respectively. These pen-tilt levels remain almost constant
during the writing process of the signature.

Similar to pressure and velocity, we compute the features Obegins Oends Omax; Oavg
independent for x and y direction. Al tilt features are normalized by a division
with 64, because there are 64 tilt levels, to obtain a feature in the range [0;1].

6.2.3 Aggregate features

Subsection 4.1.4 discussed how to augment a feature vector with delta and con-
textual features in order to capture long-term trends in handwriting to improve
handwriting recognition. Except for the feature set, the difference between hidden
Markov model based handwriting recognition and signature verification is small.
Therefore, we apply the augmenting techniques also to signature verification.

The framework of contextual features allows us to define new features which
capture the longer term trends of dynamic information. For example, Figure 6.4
shows the velocity profiles of a genuine and a forged signature where the velocity
peaks are the main difference. Since the peak velocity vy (k) is already computed
for every segment £, a contextual feature

Vmax(k —1)
Vimax (k) + Viax(k— 1)
for current segment & and delay ¢ is easily defined. Such a feature is similar to the
size feature in Subsection 4.1.5. In the same way, contextual features for pressure,
acceleration and tilt relations can be modeled based on average, maximum and
other features.

Finally, we have to realize that both the spatial and dynamic information in a
signature play an important role. The combination of a spatial feature vector (Sub-
section 4.1.3) with the previously discussed dynamic features allows simultaneous

J delayedVelocity =

6.2 Representation 143

modeling of all properties. Combined with the framework of delta and contextual
features to model long term trends, a powerful signature representation in the con-
text of hidden Markov models is possible. The merits of individual features are
studied in Chapter 7.

6.2.4 Signature verification with LDA

The theory and application of linear discriminant analysis in handwriting recogni-
tion has been discussed earlier in Subsection 4.1.6. This subsection discusses how
to employ LDA in the context of signature verification.

First, the objective is to use LDA for easier discrimination between genuine and
forged signatures. Second, the objective is to exploit the statistics of a signature
and its hidden Markov model to compare and automatically select features. Third,
the objective of LDA is to improve the feature vector compactness.

The first objective is achieved with the naive approach of a class definition in
the LDA sense of ‘genuine’ and “forgery” signatures. This means that a represen-
tative set of forgeries is needed for each genuine signature. An LDA transforma-
tion is subsequently used to transform the input for optimal class discrimination.
Approaches based on a model of the forgeries (without LDA) are described by
Plamondon [1994b] and include examples of the use of neural networks in sig-
nature verification by Bromley, Bentz, Bottou, Guyon, LeCun, Moore, Sackinger
& Shah [1993]. An approach based on synthetic discriminant functions (SDF) is
demonstrated by Wilkinson, Pender & Goodman [1991].

The fundamental flaw of all signature verification approaches with a two class
approach (genuine and forged) and on basis of a complete forgery model is the lack
of realistic forgeries during training. It is not practical to enroll forgeries for every
individual at the same time as the genuine signature. Neither can we guarantee that
sufficient forgeries have been enrolled to estimate the class of forged signatures
reliably.

As a solution, we adopt an approach where LDA is based only on original
signature data. This is achieved with a different class definition, i.e., we adopt
every state of the signature model as a different class. This is the same approach as
in Subsection 4.1.6 for handwriting recognition. The rationale behind this approach
is that the LDA transformation produces a more specific model with an improved
state discrimination. This simply means that a forgery has to be more accurate to
be falsely accepted. Note that this approach emphasizes the fit of observations in
the hidden Markov model states, i.e., the probability distribution function b(o;).

The second objective is achieved by removing features from the feature vec-
tor. This is possible because after the LDA transformation, the features are ordered
according to their eigenvalues. Those with a large eigenvalue contribute most to
class discrimination. Because the LDA transformation is computed from the gen-

144

uine signatures from one writer, the transform is writer-dependent and the selected
features are automatically the most discriminative, personalized features.

In contrast to the approach by Crane & Ostrem [1983] or Lee, Berger & Aviczer
[1996] who search the original feature space to find the best feature set, we use an
approach based on LDA to automatically select features in the transformed feature
space. However, the objective of Crane & Ostrem [1983] is to directly minimize
the false acceptance and false rejection rate while the objective of the LDA feature
selection approach is to enable better class discrimination. Based on our experience
with LDA and handwriting recognition from Subsection 4.1.6, it is expected that
LDA also reduces the false acceptance and false rejection rates.

6.3 Model

In the introduction of this chapter and the system overview of Section 6.1, it is al-
ready mentioned that a left-to-right hidden Markov model is used to model a signa-
ture. This is similar to Subsection 4.2.1 where the hidden Markov model structure
for characters in handwriting recognition is explained. The exact structure of the
hidden Markov model for signature verification is discussed in Subsection 6.3.1.
In addition to handwriting recognition based on hidden Markov models, signature
verification requires the use of a threshold to implement the binary decision of
Definition 3.35. We discuss the threshold alternatives in Subsection 6.3.2. Sig-
nature verification also requires the comparison of one written signature with one
signature model. This is normally done with the Viterbi algorithm. A normaliza-
tion of the computed loglikelihood with respect to signature length is discussed in
Subsection 6.3.3.

6.3.1 Structure

We choose to model each signature with a single hidden Markov model and con-
centrate on the model structure and the number of parameters. The basic structure
of the hidden Markov model is identical to the hidden Markov model used for a
character as presented in Subsection 4.2.1. The number of states depends on the
number of observation vectors per signature. No explicit normalization of the input
signal [Sato & Kogure, 1982; Lee, Berger & Aviczer, 1996] is necessary.

Once the hidden Markov model structure is defined then the reference model
is computed based on a number of example signatures and the techniques in Sub-
section 4.3.2. The simplicity of the hidden Markov model is that reference model
construction is automatic and data-driven. A possible disadvantage is that suffi-
cient data is needed to compute a valid model.

Because the signature is never the same, we have to model several variations
which can include extra underlines, dots or other variations. Instead of using sev-

6.3 Model | 145

eral reference signatures, i.e., several hidden Markov models, we use a hidden
Markov model which allows more than one density per state. If the individual in-
deed uses several types of signatures then the training procedure for hidden Markov
models will automatically use up to four densities per state to model these varia-
tions.

In contrast to that, the construction of a reference model in other approaches
is often more complicated. Yoshimura, Kato, Matsuda & Yashimura [1991] select
two or three representative signatures from a set of genuine signatures and pro-
pose a clustering techniques to achieve this. Liu [1978] also selects a group of
representative signatures.

The size of the hidden Markov model in number of parameters is computed as

sO)=N-(K-2)-L+14+3-N

where N is the number of states, L is the feature vector dimension and K the number
of densities per state. The factor two is because of the density-specific covariance.
For example, an individual who writes his or her name with an assumed number
of 15 characters where each character generates about three segments (Chapter 2)
with a maximum number of four densities and 13 features will generate 15-3-2 =
90 segments. The additional factor 2 is because of the assumption that segments
spatially overlap for 50% which leads to twice the number of segments. In a worst
case scenario, this leads to a model with 90 states with a total size of s(A) = 90-
(4-2)- 13414 3-90 = 9631 parameters.

If the first objective is not performance but model size then the model size is
easily reduced with techniques from Chapter 4. The use of tied covariances reduces
the number of parameters with almost a factor two but causes a performance loss
as discussed in Subsection 5.3.3. An LDA transformation reduces the number of
features. In an extreme case, the number of states is fixed to one state, which works
well in character recognition [Bellegarda, Bellegarda, Nahamoo & Nathan, 1994],
and the model size is reduced with a factor N.

6.3.2 Thresholds

In Chapter 3, we formally defined the hidden Markov model. This was followed
by a definition of signature verification in Definition 3.35. Because the main differ-
ence between handwriting recognition based on hidden Markov models and signa-
ture verification is the employed threshold, this subsection concentrates on thresh-
olds in signature verification.

The choice and the determination of a threshold 7 is essential for the perfor-
mance of the verification system. The threshold separates the genuine from the
forged signatures. In the context of this thesis, the threshold is a loglikelihood
limit. We assume that we have training, validation and test signatures for every

146

individual i in the database. For each individual, the average loglikelihood of train,
validate and test signatures is denoted Jrain, fvalidate and Ziest, respectively. Figure 6.7
explains graphically the role of a threshold T and provides a clue to automatic
threshold determination.

P

Decision
thrgshold

|
|
:
|
|
|
|
i
|
1

: 1
train lvalidate % 1 forgeries
Loglikelihood

1

Figure 6.7. Relation between the average loglikelihood of training, validation, and
forged signatures and a threshold which separates genuine and forged signatures.

Subsection 6.1.5 and Yang [1995] already mentioned the use of fixed, factorized
and personalized thresholds. Therefore, we implement the following threshold
types in signature verification with an increasing number of free parameters: uni-
form 7, adaptive 1, and adaptive personalized Tape. The threshold is used to bal-
ance the equal-error rate and to customize the verification system for either low
false acceptance or low false rejection. The effect of different thresholds is studied
in detail in Chapter 7.

The uniform threshold 1, = ¢ implements a uniform strategy for all models.
One fixed, loglikelihood value is chosen as a threshold for all individuals.

More adaptation is achieved with an adaptive threshold. Given the factor d
which is equal for all individuals, we present two examples of adaptive thresholds.
The first example is a threshold which depends on Ji;,i, and also on the standard de-
viation of the loglikelihood of the training signatures. The idea is that we should be
able to compute a more accurate threshold T,; = liyin + d - Girain, When the signature
exhibits few variations.

The second example achieves adaptation by means of additional signature
examples. The mean loglikelihood lygjigae is used. The idea is that only few
validation signatures are available. Therefore, there is not enough data to esti-
mate the standard deviation Gygjigate reliably. This leads to the adaptive threshold:
Tat = lalidate + d.

The previous adaptive threshold t,, contains a factor d constant for all individ-
uals. The objective of adaptive personalized threshold Tape 1S to adapt the thresh-
old to writer-specific variations by adapting d to an individual i. Examples are
Tapt = lirain + d; - Girain and Tapt = lyalidate + d.

6.3 Model 147

6.3.3 Signature scoring

In the previous sections, we assumed that the Viterbi algorithm computes the log-
likelihood of the preprocessed signature O given the model A which results in

7—1 T
Ita(O, 1) = —log p(O|X) = ~[logmy, + z logag,q,., + 2 logbg, (o))
=1 =1

This calculation is used in speech and handwriting recognition to score the log-
likelihood of spoken and written data and is used by Yang [1995] in the context of
hidden Markov model signature verification.

The transition probability ag,g,,, is essential in speech and handwriting recog-
nition to compensate speed and size input variations. Most of these variations orig-
inate in the requirement of writer-independent recognition. Because signatures are
inherent writer-dependent, the variation in writing time will be smaller compared to
the writing time of characters or words in a writer-independent recognition system.
Therefore, time-alignment for signature verification is less important.

In addition, the way LDA is used points to an alternative cost calculation based
on the probability distribution function only which amounts to

1 T
Lvg(O,) = -7 Y logbg, (o).
=1

Such a cost function neglects the time-alignment of input with hidden Markov
model and concentrates on the match between data and states. In other words, this
loglikelihood calculation normalizes the loglikelihood with respect to the signature
writing time. The next chapter will compare both likelihood scores experimentally.

7

Verification Experiments

This chapter discusses the empirical results of an extensive on-line, signature
verification study of which the theoretical framework is discussed in Chapter 6.

The main objectives of this chapter are to explore the benefits of new digitizer
technology in combination with a verification system based on hidden Markov
models. This includes detailed questions about the benefits of pressure and pen-
tilt measurements, linear discriminant analysis and the different contributions of
spatial and dynamic information.

Another objective is to carefully test the reliability and vulnerability of the sig-
nature verification system. This is tested by using different types of signature forg-
eries, signature properties, thresholds as defined in Definition 3.35, and a forensic
perspective. All the verification results are expressed in false acceptance (FA) and
false rejection (FR) rates. The threshold at which false acceptance and false rejec-
tion become equal results in the equal-error rate (EE).

Section 7.1 discusses the on-line signature database and digitizer settings. Sec-
tion 7.2 fixes a number of parameters of the hidden Markov model and validates the
working of the classifier on a separate dataset. Section 7.3 explores the signature
representations and models and in Section 7.4 we compare our results with results
presented in the literature.

149

150

7.1 Data

There are two reasons to collect our own signature databases. First, the lack of
standard databases, with the exception of the CADIX dataset [Yoshimura, Kato,
Matsuda & Yashimura, 1991] which includes neither pressure nor pen-tilt. Sec-
ond, we explore the benefits of the PAID hardware in combination with a signature
verification system based on hidden Markov models. The collected databases con-
tain the enrolled data ‘as is’ because extensive cleaning or exclusion of unwanted
data leads to biased results.

Table 7.1 summarizes the properties of the two data sets. Signaturel is used for
parameter testing and is collected on a digitizer with no ability to measure pen-tilt.
The data of Signature2 is used in the experiments discussed in Section 7.3 and in-
cludes tilt signals, as demonstrated in Figure 6.6. The data of Signature2 includes
tilt signals in x and y direction, respectively, which are interleaved, resulting in a
halved sample rate for the pen-tilt signals. The pressure and tilt signals include 64
levels each. The chosen digitizer settings enable us to sample the pen-tip trajectory
in an area of about one cm above the writing surface.

Table 7.1. Hardware settings of the PAID digitizer during the collection of the
two data sets. ‘pps’ means ‘points per second’.

Properties Database
Signaturel | Signature2

Dataset size 600 4770

Number of writers | 10 51

Digitizer PAID PAID

Sample rate 180 pps 120 pps

Pressure levels 64 64

Tilt levels - 64

Tilt sample rate - 60 pps

The Signaturel dataset is collected from 10 individuals who each contribute 30
signatures and 30 over-the-shoulder forgeries. This results in a database of 300
genuine and 300 forged signatures. The data is collected during two writing ses-
sions.

The data acquisition procedure involves a signer and a forger. While the signer
is seated at a table, the forger is looking over his/her shoulder to capture both
the image and the dynamic information of the written signature. Next, the forger
produces the forgeries by imitating the movements of the original signer. This
procedure is repeated with the signer and forger switching roles.

The Signature2 dataset contains data from 51 individuals who each contributed
30 genuine signatures, 30 over-the-shoulder (SH) forgeries, and 30 home-improved

7.1 Data ‘ 151

(HI) forgeries. Four forensic experts of the Rijswijk National Forensic Laboratories
each contributed 60 professional (PR) forgeries.

This large database contains a total of 1530 genuine signatures and 3000 am-
ateur forgeries, which are divided in 1470 over-the-shoulder forgeries and 1530
home-improved forgeries, and 240 professional forgeries. The genuine signatures
and amateur forgeries are collected in three to five sessions over a period of three
weeks. The individuals (45 male and 6 female) are employees of Philips Nat.Lab.
and Eindhoven University of Technology. Each individual is given a paper copy
of an unknown signature which was to be practiced at home to obtain the home-
improved forgeries. The data acquisition procedure is identical to that of Signa-
turel, except for the additional home-improved forgeries, which are written at the
end of the session.

It is important to mention that the signature database is split in parts for training
and testing purposes, respectively. For each individual, we use 15 genuine signa-
tures, drawn at random from the 30 genuine signatures, to train a hidden Markov
model. The 15 other genuine signatures are used for testing purposes. This separa-
tion between train and test data is maintained during all experiments. However, we
do not always mention this separation. The mean loglikelihood of the 15 training
signatures is denoted as ly,in While the standard deviation is denoted as Gy, (see
also Subsection 6.3.2).

Figure 7.1 shows a number of examples. The three signatures labeled (a) are
genuine signatures, the (b) column contains over-the-shoulder forgeries while the
(¢) column contains three home-improved forgeries. The genuine signatures dis-
play a natural variation which simplifies forging.

Vs mope).
Mt Mg M)

(@) (b) ©

Figure 7.1. Example signatures from the Signature2 dataset.

152

The professional forgeries are made by forensic experts specialized in document
examination. These experts normally deal with off-line data and have the expertise
to detect handwritten, forged signatures. Although it is unclear whether they are
able to invert this knowledge and produce high-quality forgeries that could be used
to test the on-line verification system, they are the most likely to produce high-
quality forgeries.

First, all signatures are classified into three complexity classes of signatures
that are easy, moderately easy and difficult to forge. Next, each expert selected
six signatures (two from each complexity group) which they would like to forge.
Because the experts knew that dynamic information is important to the verification
system, they selected signatures written in a writing style similar to their own.
Because some choose the same targets, the signatures of a total of 20 writers are
forged. After practicing for a while, ten copies of each signature are written on the
digitizer, which results in 240 professional forgeries.

7.2 Parameters

The initial set of hidden Markov model parameters is chosen on the basis of our
experience with handwriting recognition. This parameter set is tested with the
Signaturel dataset.

The chosen parameters are filtering, transition probabilities and the lower
bound of the diagonal covariance. Filtering of the handwriting signals is done
with a moving average filter and a window width of 5 samples to remove quantiza-
tion noise. The transition probabilities of the hidden Markov model are estimated
during the training. The segment representation is used without overlap. The num-
ber of segments depends on the data. Density-specific, diagonal covariance is used
with a lower bound of 0.25 times the state-specific covariance. The number of
states per signature is fixed to #states = 0.8- #observations (Section 5.2) while the
number of densities per states is limited to four. Unlike the handwriting recogni-
tion in Section 5.2, we used a multiplication factor of 0.8 to determine the number
of states per signature because a preliminary experiment indicated that this works
slightly better for signatures than 0.75.

Table 7.2. Preliminary experiment with two representations and two types of
forgeries. Results are given in equal-error rates {%].

Representation | Amateur forgeries | Zero-effort forgeries
Spatial 9.72 2.99
Dynamic(9) 1.42 0.60

In the experiment to verify the working of this parameter set with the Signaturel
dataset, we chose for each individual a random subset of 15 genuine signatures

7.3 Experiments 153

which are used to train the hidden Markov model. The other 15 signatures are
used for testing. The results of this experiment are presented in Table 7.2. The
structure of the Spatial and Dynamic(9) representations is explained later in
Subsection 7.3.1. The forgery types are discussed in Subsection 6.1.2.
100 . ; .
90 t
80 f
70 t
60
50 1
40
30 |
20
10 |
0 . R

0 2 4 6 8 10
Writer number

Error contribution [%]

Figure 7.2. Distribution of the errors of the 10 writers of dataset Signaturel
using the Dynamic(9) representation. The writers are sorted according to their
contribution to the error rate.

Next, we determine which writers contribute how many errors to the total error
rate. The Dynamic(9) representation yields an equal-error rate of 1.42% with
amateur forgeries. Figure 7.2 shows how the errors of the 10 writers of Signaturel
are distributed. The signatures of eight persons are perfectly verified which implies
that only two persons are responsible for the errors. We conclude that our initial
parameter set works fine and is a sound basis for further experiments.

7.3 Experiments

The following subsections discuss various features, representations and model im-
provements. In our formal problem definition in Definition 3.35, we used a thresh-
old to distinguish between genuine and forged signatures. In the first part of the
present section up to Subsection 7.3.6, we neglect the problem of threshold deter-
mination and manually choose a writer-specific threshold which results in a writer-
specific equal-error rate. In the second part of this section, we automatically de-
termine a single threshold, which is either personal or global, for all individuals as
part of a full-fledged signature verification system.

After the discussion of features in signature verification based on hidden
Markov models in Subsection 6.2.2, we concentrate on the structure of the fea-
ture vectors in Subsection 7.3.1. Subsection 7.3.2 compares the contribution of

154

pressure and pen-tilt in the original feature space as extension to a baseline rep-
resentation. Subsection 7.3.3 compares two representations based on spatial and
dynamic features after which Subsection 7.3.4 compares several segmentations.
Next, a comparison between two thresholds is made in Subsection 7.3.5, followed
by a comparison between scoring techniques in Subsection 7.3.6. The automatic
determination of the thresholds is studied in Subsection 7.3.7. Subsection 7.3.8
conducts a study in greater detail of the individual feature contributions. Subsec-
tion 7.3.9 explores the consequences of the writing time of a signature. Finally,
we compare a forensic perspective on signatures with the results of the on-line
verification system in Subsection 7.3.10.

7.3.1 Feature vectors

In this subsection, we summarize the used feature vectors employed in signature
verification. Only the feature vectors with dynamic features are summarized be-
cause the Spatial feature vector is discussed in Subsection 4.1.3. All the features
are normalized in the interval [0;1]. We first explain the baseline feature vector, af-
ter which we summarize the augmented feature vectors.

The baseline feature vector is called Dynamic (6) and contains the following
features, discussed in Subsection 6.2.2, where v denotes the velocity and a the
acceleration.

Vbegin

Vend

Vmax

Vavg

Omax

@min
The features vpegin and veng are the velocities at the beginning and end of the seg-
ment. The feature v, contains the maximal velocity in a segment while Vavg
contains the average velocity. The features ap,, and ami, contain the maximum
and minimum accelerations in a segment.

Next, we concentrate on the augmented feature vectors. They are used to test
the information content of the features that augment the baseline feature vector.
Table 7.3 summarizes the features added to the baseline feature vector. The
features pmax and ppi, are the maximum and minimum pressure in a segment.
In the case of a pen-up segment, both pressure features are zero. Delta pressure
is modeled by two features for each feature vector which are Apmax and Appig.
We compute the signed delta pressure as the difference between two consecutive
pressure samples, i.e., at each timestep z, we compute Ap(¢) = p(t) — p(t — 1).
After the grouping, we determine the maximum and minimum values of the part
of delta pressure signal that is used to compute the feature vector.

7.3 Experiments 155

Table 7.3. Signature verification feature vectors. All representations contain the
baseline feature vector Dynamic (6) plus the additional features described in the
table.

Representation Additional features

Dynamic(9) Pmaxs Pmins Apmax - Apmin

Dynamic(Pressure) Pmax; Pmin

Dynamic(Delta pressure) | Apmaxs APmin

Dynamic(Tilt-x) O max > O

Dynamic(Tilt-y) 0} 15 Oymin

Dynamic(Delta tilt-x) A6, . ,AO,

Dynamic(Tilt) 2 O — Oin 2 Oy — Oy

Dynamic(14) Pmaxs Pmins APmax> APmin, O
exmin: eymax? eymi.n

In addition, there is a set of tilt features where 6, is the maximal tilt value in
x direction in a segment and 6, is the corresponding minimum tilt value. The
Oy, and 0, . features are the corresponding values for tilt in y direction. Delta
tilt is modeled with the feature A@,_, which is the maximal value for delta tilt
in x direction in a segment. Similar features are computed for minimum delta
tilt. Similar to the delta pressure computation, we compute the delta tilt as the

difference between two consecutive tilt samples.

7.3.2 Pressure versus tilt

In this subsection, we explore and compare the effect of pressure and tilt in a sig-
nature verification system based on hidden Markov models. Because we know that
pressure and tilt contain writer-dependent information (Subsection 6.2.2), we aug-
ment a baseline representation with additional features describing pressure and tilt.
We expect the equal-error rate to drop when we use the augmented feature vectors.
The baseline experiment employs a baseline feature vector called Dynamic(6)
which contains only velocity and acceleration features and was introduced in Sub-
section 7.3.1. The baseline results are summarized in Figure 7.3. As explained
in Section 7.1, we use 15 genuine signatures to train a hidden Markov model A;
for each individual i. The loglikelihoods of the same 15 signatures are used to
determine the mean loglikelihood /., and standard deviation Giri,. The x-axis
models an increasing threshold value T = liain + X - Gyraiy. This threshold is writer-
dependent because iain and Girain are writer-dependent. Figure 7.3 shows that the
baseline experiment results in an equal-error rate of 12%. Note that the false ac-
ceptance curve (FA) in the figure is a combination of the false acceptance rate of
home-improved (FA-HI) and over-the-shoulder forgeries (FA-SH).

156

60 .
FA-SH
F ,,,,,,
50 b EACAL e d
\ FR
¢’//’ -
40 | P
g ,/'/
2 \\
E 30 | S
5 .

10

Threshold factor

Figure 7.3. Error rates [%] for different thresholds with the Dynamic(6) feature
vector where FA-SH is the false acceptance rate measured with only the over-the-
shoulder forgeries, FA-HI is the false acceptance rate measured with the home-
improved forgeries, and FA is measured with the combined set of forgeries.

Table 7.4. Equal-error rates [%] of the augmented signature representations where
EE-SH is the equal-error rate measured with only the over-the-shoulder forgeries,
EE-Hl is the equal-error rate measured with the home-improved forgeries, and EE
is measured with the combined set of forgeries. Improvement in EE is measured
with respect to the Dynamic (6) representation.

Bepresentation EE | EE-SH | EE-HI | Improvement
Dynamic(6) 12 15.1 8.6 0
Dynamic(Pressure) 7.8 9.3 5.7 35%
Dynamic(Delta pressure) | 10.8 | 12.4 8.7 10%
Dynamic(Tilt-x) 9.3 11.3 6.5 22%
Dynamic(Tilt-y) 9.7 11.6 7.4 19%
Dynamic(Delta tilt-x) 152 | 188 11.4 -27%
Dynamic(Tilt) 7.2 9.4 4.9 40%
Dynamic(14) 6.0 7.9 3.9 50%

7.3 Experiments 157

Table 7.4 shows the equal-error rates using the baseline and augmented represen-
tations. The representations have been explained in Subsection 7.3.1. Most feature
vectors contain eight features. The column ‘Improvement’ denotes the improve-
ment of the equal-error rate over the baseline performance.

First, we note that the addition of the pressure features reduces the error rate
by 35%. This improvement is explained by the fact that a pressure profile contains
writer-dependent pressure information and, implicitly, the timing of pen scribbles.
Another reason is the fact that a pen-up segment has zero pressure which enables
the representation to model the timing of pen-up and pen-down segments.

Second, the delta-pressure features lead to a 10% improvement which is less
than the improvement by pressure features. This indicates that delta-pressure con-
tains less useful information than pressure. The pen-up and pen-down information
encapsulated in the pressure profile is lost due to the delta operation.

Third, pen-tilt is continuously measured while the stylus is on or above the writ-
ing surface and contains information about an individual’s pen-grip and whether
the writer is left or right-handed. The tilt measurements do not include implicit
information about pen-up and pen-down segments. While the addition of a tilt-x
feature improves the performance by 22%, the tilt-y feature improves the perfor-
mance by 19%. The combination of tilt-x and tilt-y features in the Dynamic(Tilt)
feature vector is very successful. The error-rate reduction is 40%, which is al-
most the sum of the individual improvements. Because the error rate reduction due
to pressure features is 35%, which is smaller than the reduction of 40% achieved
with the tilt features, we have an indication that the combined tilt information is
more important than pressure information. We validate this result later in Subsec-
tion 7.3.8. The delta tilt-x features lead to an increase of the error rates. Therefore,
we have to assume that delta tilt does not contain useful information.

Last, the Dynamic(14) feature vector adds pressure, delta pressure, tilt-x and
tilt-y to the baseline representation which results in a 50% error-rate reduction
due to the combined features. However, this is only 10% more compared to the
reduction with Dynamic(Tilt).

Similar to Dynamic(14), the Dynamic(13) representation combines the best
features from previously used feature vectors. The Dynamic(Pressure) and the
Dynamic(Tilt) are combined and extended with a delta pressure feature, an addi-
tional velocity feature representing the maximal velocity in relation to the average
velocity and the number of samples per segment as an indication of segment size.
We have chosen to use Dynamic(13) instead of Dynamic(14) in the next sub-
sections for two reasons. First, because all feature vectors investigated in this sub-
section, except Dynamic(Delta tilt-x), resulted in an improvement of the equal-
error rate. Hence, any combination of dynamic features in a feature vector like
Dynamic(14), with either 13 or 14 features, will give a very good starting point

158

for further experiments. Second, because Dynamic(13) contains 13 features just
like the Spatial feature vector which simplifies the implementation.

(Vbegin \
Vend
Vmax
Vavg
Vmax — Vavg
Omax
Dynamic(13) = Amin
Pmax
Pmin
Apmax - Apmin
2-0, —06

Xmax Xmin

2-0, —0

Ymax Ymin

\ number of samples)

7.3.3 Spatial versus dynamic features

In this subsection, we compare the information content of features which model
the spatial and dynamic information in a signature. The spatial features in the
Spatial feature vector describe the signature in an off-line way, as discussed in
Subsection 4.1.3, and is also used in the handwriting recognition experiments in
Chapter 5. In contrast, the dynamic features in the Dynamic(13) representation,
which has been chosen in the previous subsection as feature vector containing the
dynamic information, fully exploits the dynamic signature properties.

Because we know from the literature [Plamondon & Lorette, 1989; Yoshimura
& Yoshimura, 1994] that off-line signature verification is usually less reliable than
on-line verification, we expect the verification based on the Dynamic(13) repre-
sentation to outperform the Spatial feature vector. This is also suggested by the
preliminary test in Table 7.2.

Figure 7.4 compares the verification results using the feature vectors Spatial
and Dynamic(13) based on dataset Signature2. The experiment results in equal-
error rates of 13.3% and 6.4% respectively, which shows that the use of dynamic
features results in a more accurate verification.

7.3.4 Segmentation

After the comparison of different representations in the previous subsections, we
now compare different segmentation techniques. The standard segmentation com-
putes the segment boundaries based on the velocity inversions in y direction, i.e.,
the condition v, = 0. The alternatives are segment overlap and VxVy Segmentation.
The segment overlap segmentation requires the segments to have a spatial overlap

7.3 Experiments 159

60 T T T T T
4 FR(spat) ——

FA(spat) -——
50 F % FR(dyn) -]
k! FA(dyn) ——

40

30 f

Error rate (%)

20

10 |

0 2 4 6 8 10
Threshold factor

Figure 7.4. A comparison of the Dynamic (13) and Spatial feature vector.
Error rates in [%].

of 50% which benefits include a better resolution because of the increased number
of segments as explained in Subsection 2.5.1 and Section 5.2. The vyv, segmen-
tation determines the segment boundaries based on the velocity inversions in not
only y but also x direction, i.e., the condition of either vy = 0 or vy = 0. Although
this segmentation approach increases the resolution, the drawback is that only the
position of the vy, = 0 is stable (Subsection 2.2.2) while the position of the v, = 0
points is variable and writer-dependent.

Table 7.5 shows the average number of segments of each segmentation based
on the Signature2 dataset. The combination of segment overlap and VyVy, Segmen-
tation yields twice as many segments compared to the standard segmentation.

Table 7.5. Average number of observations per segmentation.

Number of observations Segmentation
vy ViVy

Standard 26.30 | 32.04

Segment overlap 46.90 | 56.54

The question is which segmentation is the best basis for the verification system
based on hidden Markov models. In our studies on handwriting recognition, we
observed that the segment overlap improves the recognition performance. We also
know that there are a number of short signatures which are segmented into only
four or five segments when the standard segmentation is used. A larger number of
segments with the same number of states per model results in more training data
and a better signature model.

160

Table 7.6. Equal-error rates [%] for different signature segmentations. The im-
provement [%] relative to the performance of the standard segmentation is given
between brackets.

Representation Segmentation

Standard | vy, v, Overlap Vx, vy and Overlap
Dynamic(6) 12.0 8.9(25.8) | 11.0(8.3) | 8.1(32.5)
Dynamic(13) 6.4 5.8(9.4) 5.0(21.9) | 5.4(15.6)
Spatial 13.3 13.5(-1.5) | 10.8 (18.8) | 10.9 (18.0)
Avg. improvement | - (11.2) (16.3) (22.0)

In Table 7.6, we compare several segmentations techniques. We measure relative
error-rate improvements of up to 32.5%. The effect of the segmentation depends
strongly on the used representation. Because the average improvement for the com-
bined v,v, and overlap segmentation is best, we choose this combined segmentation
as the basis for further studies in this chapter.

7.3.5 Threshold

It is known from the literature that a threshold function is an important part of a sig-
nature verification system [Plamondon & Lorette, 1989; Yang, 1995]. Therefore,
we introduced the uniform, adaptive and adaptive personal thresholds in Subsec-
tion 6.3.2. The objective of this subsection is to compare the effect of an adaptive
threshold T, with an adaptive personal threshold 7,,. Additionally, we want to
measure the best possible equal-error rate based on a manually determined, per-
sonal threshold which serves as a target while developing a procedure for auto-
matic, adaptive threshold determination.

The best result with the Dynamic(13) representation is a 5.4% equal-error
rate. We used the v,v), plus additional overlap segmentation which performed best
in the previous subsection. The threshold involved is T, which is adaptive because
it uses the mean loglikelihood /i, of the training signatures of an individual as
offset, combined with the standard deviation G, times a multiplication factor x.
The threshold which minimizes the equal-error rate for all writers simultaneously
18 Tar = lyain + 5.6 Girain, With multiplication factor x = 5.6, which is plotted in
Figure 7.5 as a straight line.

Figure 7.5 plots the factor x in an adaptive personal threshold according to the
formula Typ = Lrain + X - Orain. The writers on the x-axis are sorted according to an
increasing number of segments in their signature.

We learn from Figure 7.5 that there is no clear relation between the multi-
plication factor of the standard deviation Gy, of the training signatures and the
signature length in terms of the number of segments. This also means that the

7.3 Experiments 161

14 T T T T T T T T T
adaptive personalized threshold —o—

12 adaptive threshold —-—

10 |

| Lol
TN

Threshold factor

0 L L . L A . .
1 6 11 16 21 26 31 36 41 46 51
Writer number

Figure 7.5. Comparison of the adaptive and the adaptive personal threshold.

quality of the signature models is diverse and indicates that the intra-class signa-
ture deviations are very different.
Table 7.7. Error rates [%] obtained with different thresholds.

Error rates
h
Threshold |0 A TFASH | FAI
T 54 | 5.4 94 1.4
| Tapt 136 | 1.36 | 2.18 | 0.54

Table 7.7 compares the performance of an adaptive threshold 1., where the multi-
plication factor is x = 5.6, with that of the adaptive personal threshold T,y where
x is determined such that the best personal equal-error rate is determined. The
equal-error rate with an adaptive personal threshold is 1.36% which is 75% lower
compared to the equal-error rate of 5.4% using an adaptive threshold. Note that the
false acceptance rate for over-the-shoulder forgeries is four to six times the false
acceptance rate of the home-improved forgeries.

On basis of the adaptive threshold 7., with multiplication factor x = 5.6
fixed for all individuals, we construct a procedure which automatically derives
the threshold 1, during the enrollment of a new individual. However, Table 7.7
shows that an adaptive personal threshold T, results in a good equal-error rate
of 1.36% and outperforms the automatic, adaptive threshold. Because we can not
determine the T4y, threshold automatically without the availability of forgeries for
every signature, which is impractical in a consumer application, we concentrate on
the adaptive threshold 1., of which the multiplication factor is fixed at a best value
for all signatures. Therefore, we conclude that we have to devise an algorithm for
automatically finding the best threshold t,;. This is studied in Subsection 7.3.7.

162

7.3.6 Score

We explore a number of extra techniques in attempts to achieve a better verification
performance. First, we combine the features of the Dynamic(13) and Spatial
representation with six contextual features. These are angular features with de-
lay 1,2, and 3. This results in a representation which contains 13+ 13+ 6 = 32
features called Combined(32). Our reason for doing this is that dynamic and spa-
tial features provide complementary information while the contextual features have
proven their benefits in handwriting recognition in Subsection 5.3.1. The combina-
tion of spatial and dynamic information was found to be important in a preliminary
experiment where only the Dynamic(13) representation was used and a signature
could be forged although it had no spatial similarity at all with the image of the
genuine signature, just a similarity of dynamic properties.

Next, we apply an LDA transformation to each signature where the states of the
hidden Markov model are the classes in the LDA sense. We modify the threshold
Tar 10 USE lyglidate instead of liy.;,. This is based on Figure 6.7 and explained in more
detail in the next subsection.

The objective of the experiments in this subsection is to compare two scoring
techniques. The first is the standard score y4(O, L) which we used in the previous
experiments. The second is the score l,,,(O,), which is an average score over
all states as explained in Subsection 6.3.3. This score normalizes the duration
of the signature. Both scores are compared on the basis of the Combined(32)
representation and the adaptive threshold 1, of Subsection 7.3.5.

50 50

Fi ~— 4 X FR

. Tz . \ s

35 \ 35 \ /
<3 30 \ < 30 \ / .
A \ Vv
g > L e g -
F] i § x \ / / .'n; —

5 e - \ i P

10 >O i r 10 /iﬂ"'

Y St \‘\\ 5 X(//zﬂ

e M~ \ e N]

2

4 5 6 7 8 9 o 5 10 15 20 25
Threshold factor Threshold factor

Figure 7.6. Comparison of two classifiers with the Combined(32) representa-
tion, adaptive thresholds and different scoring mechanisms. Left: the standard log-
likelihood score lyq(O, A). Right: the normalized loglikelihood score Lavg (O, 1).

Figure 7.6 shows that scoring with /iq(O, 1) and (O,) results in equal-error
rates of 10.2% and 4.9%, respectively. Therefore, the normalized score lavg(O, A)
outperforms lq(O,A) and (O,) is used throughout the rest of the chapter.

7.3 Experiments 163

7.3.7 Automatic threshold

In this subsection we compare three thresholds in a classifier based on the
Combined(32) representation, the LDA transformation and the normalized score
lvg(O,X) explained in Subsection 6.3.3. The objective is to determine which
threshold yields the lowest equal-error rate. In Subsection 7.3.5 we already showed
that an adaptive personal threshold Tape Outperforms an adaptive threshold t,, by
75%, but the adaptive personal threshold was determined manually to realize the
best possible equal-error rate for every writer.

The objective here is to use writer-specific information in combination with an
automatically determined threshold to improve the verification performance with-
out human interference during or after the enrollment. We investigate three thresh-
olds on the basis of Figure 6.7 where the factor x is a variable multiplication or
addition factor. The goal is to determine the best value for x, independent of the
writer, in the three thresholds

TAdaptiveSigma = Lvalidate + X Otrain,
TAdaptive = Lalidate + X 2,
TFixed =82+x.

The Tpixeq threshold is a fixed threshold for all the signatures. The other two thresh-
olds are based on the average likelihood Jyjigate Of five validation signatures, in ad-
dition to the 15 training signatures, plus an offset which is either fixed (TAdaptive) OF
depends on the standard deviation of the training signatures (TAdaptiveSigma)-

Note that Tagaptivesigma does not depend on the standard deviation of the valida-
tion signatures because earlier experiments showed that five validation signatures
are not sufficient for a reliable estimation of the standard deviation. The value 82
in Trixeq is based on the average loglikelihood per state, i.e., —logb(o;), as used in
the previous subsection.

Figure 7.7 plots the false acceptance and false rejection curves obtained in the
experiment to compare the thresholds TAdaptive 80d Trixeq. The equal-error rates are
1.9% and 2.2%, respectively. The earlier experiment with TAdaptiveSigma Tesults in
an equal-error rate of 4.9%, which is poorer than the results obtained with the other
thresholds. The false acceptance and false rejection curves of the TAdaptiveSigma €X-
periment are presented in the right figure of Figure 7.6. The equal-error rates of
1.9% and 2.2%, respectively, are the best results so far with a threshold which
is determined completely automatically. The difference between the equal-error
rates obtained in the experiments with Trixeq and Tagaptive is only 0.3%, which is
remarkably small. When the threshold Tadaptive i determined manually (see Sub-
section 7.3.5) for each writer with the objective of a personal equal-error rate, we
find an overall equal-error rate of 0.56%.

164

- 20
\ / / PFR —e— FR ~—
18 £t 18 FA
/ FAHI -5 FA-HI -af
/
16 FA-SH - FA-SH

Error rate [%]
5
]
~
Q.
Error rate [%]
5 ®

1) Eﬁ//\.wq_\—‘m—\.

10 15
Threshold factor

20 25 0 5 10 15
Threshold factor

Figure 7.7. Comparison of two classifiers with two different adaptive thresholds
and Combined(32)representation. Left: the classifier with the adaptive threshold
Tadaptive- Right: the classifier with the fixed threshold Trixeq.

Figure 7.7 also shows that the over-the-shoulder forgeries are better forgeries than
the home-improved forgeries which confirms Figure 7.3 where we found the same
result. Analysis of the results of the TAdaptive €Xperiment confirms that, at the equal-
error point, we have a false acceptance of 2.58% for the over-the-shoulder forg-
eries and 1.11% for the home-improved forgeries. This means that the number
of accepted over-the-shoulder forgeries is roughly twice the number of accepted
home-improved forgeries.

40

35

Error contribution [%]

0 reasssteastill
0 10 20 30 40 50

Writer Nr.

Figure 7.8. Distribution of the errors over all writers using Combined(32). The
writers are sorted according to their contribution to the error rate.

Although Figure 7.7 gives a clear overview of the error distribution for all writers, it
is not clear what the individual error contributions are. This is plotted in Figure 7.8
for the experiment with the TAdaptive threshold at the point of equal-error rate. It is
obvious that two writers are responsible for 50% of all errors and five writers are
responsible for 80% of all errors. The verification is perfect for 33 writers.

7.3 Experiments 165

The conclusion is that it is possible to use an automatic, writer-specific threshold
and that such a threshold results in an equal-error rate of 1.9%. The majority of
all errors is caused by only a small number of writers. This is investigated in
more detail in an experiment in one of the following subsections. For the sake of
completeness, we mention the result obtained with an adaptive personal threshold,
which is an equal-error rate of 0.56% with perfect verification of the signatures of
44 writers.

7.3.8 Feature analysis

Previous experiments in Subsection 7.3.2 showed that pressure and tilt features
contain information that reduce the equal-error rate with up to 50%. In this subsec-
tion, we use the LDA transformation to compare the relative importance of features.
The examined feature vector is the Combined(32) feature vector, as explained in
Subsection 7.3.6, which contains spatial, dynamic and contextual features and en-
ables a simultaneous comparison of all individual features.

The procedure employed is to compute the LDA transformation matrix for ev-
ery signature model. This results in a feature ranking based on the features’ dis-
criminative value. The ranking is averaged over all the models which results in an
average rank for each feature. The sorted list of the average feature ranks is sum-
marized in Table 7.8, which is used as a qualitative indication of feature importance
in this signature verification task.

Table 7.8. Feature ranking of all the features in the Combined(32) feature repre-

sentation. Rank 0 is best, 31 is worst. DeltaPresDiff is a description of the feature
A PresMax - A PresMin. VelDiff describes the feature VelMax — VelMin.

Feature Rank || Feature Rank || Feature Rank
Pres-min 0 PenDown 12 DelayedAngle3-cos | 2
Tilt-x 1 CosPhi-2 15 DelayedAngle3-sin | 5
Vel-max 3 AspectRatio | 16 DelayedAnglel-cos | 9
Tilt-y 4 SinPhi-2 17 DelayedAnglel-sin | 13
Nr-of-samples | 6 SinPhi-1 20 DelayedAngle2-cos | 14
Acc-min 7 Curve 22 DelayedAngle2-sin | 15
Acc-max 8 CosPhi-3 24

Vel-begin 10 CosPhi-1 25

Vel-end 11 CosPhi-4 26

VelDiff 17 SinPhi-3 27

Pres-max 21 SinPhi-4 28

Vel-avg 23 CosPhi-5 29

DeltaPresDiff | 31 SinPhi-5 30

Avg.Rank 10.9 Avg Rank 21.5 Avg.Rank 9.6

166

Table 7.8 shows that the average rank of the dynamic features is 10.9, that of the
spatial features 21.5 and that of the contextual features 9.6. According to these
figures, the dynamic features are more important than the spatial features. This is
in line with the results in Subsection 7.3.3 where we examined the importance of
features for a different type of experiment.

Because most features are computed on the basis of a segment, the features
reflect the local, short-term structure of the signature. The global, long-term struc-
ture is not modeled with features but only implicitly by the number of states. An
intermediate approach is to compute contextual features which describe signature
parts spanning several segments and are able to capture the mid-term structure of
the signature.

When we use Table 7.8 to compare the mid-term handwriting trends modeled
with the aid of contextual features with local dynamic features, then we note that
the contextual features are more important. Because it is difficult to devise features
which capture the global structure of the signature in the hidden Markov model
framework, it seems advisable to add more contextual features to describe more
accurately the spatial and dynamic structure of the signature. Examples are dis-
cussed in Subsection 4.1.5 and Subsection 6.2.3.

7.3.9 Signature duration

In Subsection 7.3.7 we found that the automatic, adaptive threshold TAdaptive Yields
an equal-error rate of 1.9% while the fixed threshold Tgixeq leads to an equal-error
rate of 2.2%. These results serve as a starting point to the main question in this
subsection, which is whether the duration of a signature affects the verification per-
formance. The hypothesis is that a short signature contains less writer-dependent
information, resulting in a greater probability of a forgery being accepted.

First, we plot the average duration of a signature of all the writers in Figure 7.9.
The maximum writing time of a signature in this dataset is six seconds. Figure 7.9
shows that there are two signatures with average durations of less than a second.
The durations of the other signatures is distributed across the interval from one to
six seconds. '

We then excluded all the signatures shorter than ¢ seconds from the verification
results. The result is plotted in Figure 7.10 for the adaptive and fixed threshold
experiments. We used the equal-error rates of 1.9% and 2.2% for the aforemen-
tioned adaptive and fixed threshold, respectively, as a starting point which defines
the total number of verification errors. Because we define the number of errors for
each person as the sum of false acceptance and false rejection errors, which are not
necessarily the same, only the results with the condition ¢ = 0 are equal-error rates.
With an increasing minimum signature duration ¢, more signatures are excluded
and the total number of errors decreases.

7.3 Experiments 167

7 T T T T T
Average signature duration ——
6 -
5 -
)
2 4
=1
2
Y -
a
2k
1 -HH
ol

10 20 30 40 50
‘Writer number

Figure 7.9. Average signature duration in seconds per writer.

When there is no correlation between signature duration and error contribution then
the graph is a straight line with a constant, negative slope s. In view of our hypoth-
esis that shorter signatures contain less information, we expect an error reduction
much steeper than s for small values of the signature duration threshold ¢.

2.5 T
Adaptive threshold -
Fixed threshold -
2l
\\\"\
AN
¥y
g 1.5 \ N
0 t
: by
w1 S
-i-«-—-—-k
X
-t
i»-—+-———&——;_+w,,,,__‘_~\
9% - 3

4
Duration threshold [sec]

Figure 7.10. Signature duration threshold in seconds versus errors[%]. All signa-
tures with a duration less than # seconds are excluded from the result.

Figure 7.10 shows that the error-rate of the adaptive threshold experiment is halved
when we exclude the three shortest signatures with a threshold ¢ > 1.25. With
the same threshold, the error-rate of the fixed threshold experiment is reduced by
25%. These results correspond to an error-rate of 0.9% for the adaptive thresh-

168

old Tadaptive- However, the error-rate does not correspond to an equal-error rate.
When the three shortest signatures with the ¢ > 1.25 condition are excluded and
the luve(O,) score and threshold TAdaptive are used, an equal-error rate is found at
x = 9.4, which corresponds to 1.0%. The corresponding FA-FR curves are plotted
in Figure 7.11.

As an alternative to the equal-error rate, we provide the points were a 0% false
acceptance or false rejection is reached in Figure 7.11. At the point of 0% false
acceptance, we achieve a false rejection of 6.7%. At the point of 0% false rejection,
we achieve a false acceptance of 7.1%.

Note that Figure 7.10 contains a signature with a duration of 3.7 seconds whose
error contribution is much greater than that of the signatures with duration 3.6 or
3.9 seconds. Although hard to explain, the original data reveal that this individual’s
signature shows a high degree of variation in shape, which will affect the quality
of the generated hidden Markov model.

18 \ / / -‘f: FAEEE;E“
s \ }‘4 ,’{ ¥ FASH —=a—
ot [
N /

\ 7
8 \ ,'i "/’

TN
2 N
0 ‘—“’yi’_\

0 5 10 15 20 25 30
Threshold factor

Error rate [%]
3

Figure 7.11. Classifier with a Tadaptive threshold. Three signatures with durations
shorter than 1.25 seconds are excluded.

On the basis of the Signature2 dataset, the hypothesis that shorter signatures con-
tain less information is confirmed. However, there are only three writers with a
signature of very short duration. The verification performance is easily improved
if the enrollment procedure includes a test on minimum signature duration. When
the duration of an enrolled signature is too short, the system could enroll a writers
full name as an alternative.

7.3.10 Forensic perspective

This subsection concentrates on two questions related to forensic science. The first
concerns the quality of professional forgeries produced by forensic handwriting
experts. The second question is related to signature complexity, judged by foren-
sic handwriting experts, in relation to the on-line verification performance with a

7.3 Experiments 169

verification system based on hidden Markov models.

The professional forgeries are produced based on three genuine, written exam-
ples of every signature to forge. A difference with respect to the home-improved
forgeries is that the amateurs used a copy of the three genuine signatures while the
forensic experts worked with the original signatures.

Table 7.9. Error rates [%] obtained for a complete dataset with the adaptive
threshold Tagaptive- The error rates are presented for each forgery type.

Representation Equal-error rates
Average | Over-the-shoulder | Home-improved
Combined(32) 1.9 2.6 1.1

As a reminder, we summarize the best results in Table 7.9 which were obtained
with the automatic, adaptive threshold in Figure 7.7. The representation with com-
bined spatial, dynamic and contextual features is used. Segmentation is done with
the combination of v,v, and overlap segmentation.

20
FR —o—
; EA.
{ | FA-HI -&--

FA-SH ——
ACPTGE e

Error rate [%]

IR

20 25

10 15
Threshold factor

Figure 7.12. Error rates [%] for the signature subset of 20 writers for which
professional forgeries are available.

Table 7.10. Equal-error rates [%] with the signature subset for which profes-
sional forgeries are available. The error rates are presented for each forgery type.
‘Average’ is the combined set of over-the-shoulder and home-improved forgeries.

Equal-error rates

Representation . Over-the- | Home-
Average | Professional .
shoulder | improved

Combined(32) 245 2.33 2.88 2.33

170

Figure 7.12 shows the false acceptance and rejection curves separately for home-
improved, over-the-shoulder and professional forgeries obtained with the same ver-
ification procedure as in Figure 7.6. The results are summarized in equal-error
rates in Table 7.10. The equal-error rate called ‘Average’ shown in Table 7.10 is the
equal-error rate determined with the combined set of home-improved and over-the-
shoulder forgeries but is based on a subset of signatures and writers. This equal-
error rate is higher than the equal-error rate on the complete signature database in
Table 7.9. The difference is due to the different characteristics of the signatures
chosen by the forensic experts.

The most important result in Table 7.10 is that there is no difference in equal-
error rate between the home-improved forgeries and the professional forgeries. The
over-the-shoulder forgeries made by amateurs on the basis of the dynamic data are
still the best type of forgery. This result is explained by the fact that the profes-
sional forgers carefully study the original signatures. Every character is thoroughly
studied and forged with great accuracy. This results in forgeries that resemble the
original shape but not the dynamic profile. The result also indicates that it is dif-
ficult to extract the dynamic information from a genuine signature on paper in a
limited time [Doermann, 1993].

These results indicate that the availability of dynamic information like writing
velocity and pen-tilt is crucial for making good forgeries. Even forensic experts
are unable to exploit genuine signatures on paper in order to ‘beat’ the on-line
signature verification.

The second part of this subsection concentrates on signature complexity. The
signatures in the Signature2 database have been classified by the forensic experts
as ‘easy’, ‘moderately easy’ or ‘difficult’ to forge. Table 7.11 summarizes the main
properties of the three groups.

Table 7.11. Properties of the complexity groups.

. Signature complexity
Properties Easy Moderately easy | Difficult Total
Nr. of signatures 18 17 16 51
Avg. duration [sec] 2.68 2.94 3.13 2.92
Min/max duration [sec] | 0.54/5.96 1.36/4.73 2.00/5.02 | 0.54/5.96

Table 7.12 shows the error rates for the signatures with different complexities. The
‘easy’ signatures have the highest equal-error rates. The decrease in equal-error
rates with increasing signature complexity as judged by the forensic experts shows
that the opinions of computer and forensic experts match well. This is supported
by the findings of Subsection 7.3.9 where the three shortest signatures, responsible
for 50% of the errors in the adaptive threshold experiment, are now classified as
‘easy’.

7.4 Discussion 171

Table 7.12. Equal error rates [%] of complexity groups versus threshold types in
the classifier. The Combined(32) representation is used.

Threshold | Best (manual) | Adaptive | Fixed
Easy 2.2 3.0 4.0
Moderate 0.39 1.2 1.3
Difficult 0 0.2 0.4

Found & Rogers [1995] provide evidence that computer and forensic experts agree
on the complexity of off-line signatures. This subsection provides a similar result
for on-line signature verification although the complexity classification of genuine
signatures was based only the signatures written on paper.

7.4 Discussion

We discuss the achieved results in relation to the performance reported in the liter-
ature which are summarized in Table 6.1. We summarize the achieved results and
then concentrate on a comparison on basis of the use of hidden Markov models,
the size of the signature database, the landmark of the best result presented in the
literature and the type of employed forgeries.

An equal-error rate of 1.9% is achieved on a database of 51 writers, 1500 gen-
uine signatures and more than 3000 skilled forgeries. With an automatic constraint
that the signature duration should be longer than 1.25 seconds, this improves to an
equal-error rate of 1.0%.

The number of approaches to signature verification based on hidden Markov
models is very limited. One of the reported approaches by Yang, Widjaja & Prasad
[1995] reports a false rejection rate of 4.44% and a false acceptance rate of 1.78%
using zero-effort forgeries. Another study on basis of hidden Markov models by
Mohankrishnan, Paulik & Khalil [1993b] reports equal-error rates of 2%-3% with
zero-effort forgeries and a database of 1600 signatures from 16 writers. In compar-
ison, we achieve an equal-error rate of 1.9% with skilled forgeries based on spatial
and dynamic information of the genuine signatures.

Our study employs 4770 signatures. Compared with the study by Lee, Berger
& Aviczer [1996] who achieved an equal-error rate of 2.5% with a larger database,
we used more forgeries based on dynamic information and achieved a lower equal-
error rate of 1.9%. However, our hidden Markov model is more complex.

The landmark study by Worthington, Chainer, Wilford & Gundersen [1985]
used an even larger signature database and achieved a false rejection rate of 1.77%
with a false acceptance of 0.28% per signature. This indicates a better result than
the 1.9% reported in our study. However, we can reach an equal-error rate of 1.0%
if the three persons with the shortest signatures (less than 1.25 sec) are excluded.

172

We can speculate that the subjects of Worthington et al. [1985] are mainly Ameri-
can. It was noted earlier that American signatures are on the average longer com-
pared to European signatures. Therefore, an experiment with our hidden Markov
model classifier and pure American signatures will probably show an improved
result.

Another important factor in a comparison with literature results is the type of
forgeries. The forgeries employed in the study by Worthington et al. [1985] are
based on signature images which corresponds with our home-improved forgeries.
If we only take home-improved forgeries into account then Figure 7.7 indicates an
equal-error rate of 1.5%. If we choose a threshold to reach an almost zero false
acceptance rate for home-improved forgeries then we find in Figure 7.7 that our
study leads to a false rejection rate of 4.1% and a false acceptance rate of 0.13%.

In addition, Crane & Ostrem [1983] reached an equal-error rate of 1.5% with
forgeries based on both spatial and dynamic data. This is slightly better than the
1.9% we achieved in this study. Yoshimura, Kato, Matsuda & Yashimura [1991]
reached an equal-error rate of 1% using static forgeries and a dataset of 2200 sig-
natures.

Conclusion

In this thesis we have discussed on-line handwriting recognition and verification
based on hidden Markov models and techniques known from speech recognition.
We have concentrated on representations and models and have demonstrated that
good results can be obtained in on-line handwriting recognition and verification.
We demonstrated large-vocabulary word recognition, character recognition and
signature verification where results comparable with or better than those reported
in the literature are achieved.

We have discussed a number of different representations in the context of hand-
writing recognition in order to address the goals of writing size independence,
integration of knowledge about handwriting structure on the basis of the frame-
work of contextual features and a robust, compact representation. We have shown
that the writing size independence implicit in segment-based representations of-
fers an attractive alternative to the usual word-based size normalization at the cost
of a small decrease in peak performance. The tested representation alternatives,
which include delta features, contextual features and LDA transformed features,
each contribute a performance improvement. The combination of delta and con-
textual features yields an additional improvement. In the tested configuration for a
segment-based recognizer with a 20,000 word vocabulary, the combined improve-
ments yield a word error-rate reduction from 28% to 11.2%, which means that the
error-rate is more than halved due to representation improvements alone.

173

174

Handwriting-specific knowledge has been integrated in the hidden Markov model
by adding pause state models for ligature modeling, a backspace model to capture
delayed strokes and contextual models to describe the effect of neighbor characters.
While pause models improve the word recognition result by 15%-25% and contex-
tual models led to a 12%-38% improvement, backspace models did not result in
any improvement.

Because even humans are not able to recognize all handwritten words without
context, an open-vocabulary recognition task will probably always be demanding,
We recommend to combine open-vocabulary recognition with sentence recogni-
tion and the context of a language model in such a way that the language model
models not only character sequences of complete words but also sequences across
word boundaries. This would circumvent the problems of a character-based, open-
vocabulary sentence recognition approach.

A suitable representation has proven to be vital for correct recognition. Al-
though we can automatically select and personalize important features with LDA,
the choice of the handwriting unit and number of samples per unit remains a man-
ual choice. It is recommended to find a way of automatically determining and
personalizing the necessary block-size and features based on the training data.

The on-line signature verification study discussed representations, features in-
cluding pen-tilt, thresholds and a forensic perspective. Starting with an equal-error
rate of 12%, the on-line signature verification based on hidden Markov models
reached an equal-error rate of 1.9% and even 1.0% with a simple constraint on sig-
nature duration. This is tested with more than 4500 genuine and forged signatures
by 51 writers. It is important to note that, in contrast to other researchers who
used only forgeries based on static data (the image) in their signature verification
studies, we provided the forgers with the opportunity to watch the signing process,
which resulted in very good forgeries.

Although all the literature results are obtained using different databases, which
complicates a meaningful comparison, our results are obtained using high-quality,
skilled forgeries based on static and dynamic information of the genuine signature.
The results indicate that we outperform other signature verification studies based
on hidden Markov models and are comparable with or better than most of the
results reported and summarized in Table 6.1.

We observed the fact that pen-tilt information is very important and compared it
with pressure and other dynamic and spatial information. We showed that the error
rate of on-line signature verification based on dynamic features outperforms that
based on spatial features by a factor two. In addition, contextual features modeling
mid-term, structural information were shown to outperform the dynamic features.
The LDA transformation was used to personalize the feature vector. It was shown
that signatures with a short duration contain little information and the exclusion

Conclusion 175

of the few shortest signatures halves the equal-error rate. An automatic threshold-
ing technique based on hidden Markov models and the average loglikelihood was
developed and its successful operation was demonstrated. We also demonstrated
that the on-line signature verification system studied cannot be broken by forgeries
made by forensic handwriting experts on basis of paper version of the genuine sig-
natures. In addition, we showed that a forensic complexity classification of the
genuine signatures into three classes (easy, moderately easy and difficult to forge)
closely matches with the computer verification results.

We conclude that the framework of contextual features has the potential for
additional improvement by modeling both short and mid-term spatial and dynamic
information. The fact that forgeries based on static plus dynamic information are
better than casual forgeries based on static information only leads to the recommen-
dation to shield the direct viewing of the signing process in a signature verification
product like a PIN code in an automatic teller machine. On the basis of the correla-
tion between signature duration and error contribution, we recommend to include
a signature duration threshold in signature verification products which excludes
signatures shorter than 1.25 seconds. This is especially important for European
signatures because in case of American signatures the legibility requirement leads
to a longer average duration. If product requirements require the signature models
to be stored in only a few bytes, the signature models are easily compressed by
reducing and balancing the number of hidden Markov model states and densities
in combination with a personalized, automatic feature selection method based on
LDA to reduce the number of features.

We recommend to investigate improved techniques to automatically determine
the writer-specific threshold because there is a gap between our current results of
1.9% equal-error rate and the best possible result of 0.56% based on a manually
determined threshold. Next, we recommend to use LDA to select a writer-specific
set of transformed features. Because of the success of the contextual features, based
on spatial information, in handwriting recognition and verification, we recommend
to introduce contextual features for dynamic information in signature verification.

Although we have not solved all the problems involved in handwriting recog-
nition or verification, we may conclude that our approach based on hidden Markov
models in combination with one-stage beamsearch provides an elegant, high-
performance solution.

Bibliography

ABRAHAM, D., G. DOLAN, G. DOUBLE, AND J. STEVENS [1991], Transaction
security system, IBM system journal 30, 206-229.

ALL F., AND T. PAVLIDIS [1977], Syntactic recognition of handwritten numerals,
IEEE Transactions on Systems, Man and Cybernetics T, 537-541.

BAHL, L.R., P.F. BROWN, P.V. DE SOUZA, AND R.L. MERCER [1988], A new
algorithm for the estimation of Hidden Markov Model Parameters, Interna-
tional Conference of Acoustics, Speech and Signal processing, IEEE, 493—
496.

BAHL, L.R., F. JELINEK, AND R.L. MERCER [1983], A Maximum Likelihood
Approach to Continuous Speech Recognition, IEEE Transactions on pattern
analysis and machine intelligence 5, 179-190.

BauMm, L.E. [1972], An inequality and associated maximization techniques in
statistical estimation for probabilistic functions of Markov processes, In-
equalities 3, 1-8.

BEATSON, R. [1985], Signature dynamics in personal identification, Congres
modial de la protection et de la securite informatique et des communica-
tions, 179-196.

BEIGI, H.S.M., K.S. NATHAN, G.J. CLARY, AND J. SUBRAHMONIA [1994],
Size normalization in on-line unconstrained handwriting recognition, Inter-
national Conference on Image Processing, 169-173.

BELLEGARDA, E.J., J.R. BELLEGARDA, D. NAHAMOO, AND K.S. NATHAN
[1994], A fast statistical mixture algorithm for on-line handwriting recog-
nition, IEEE Transactions on pattern analysis and machine intelligence 6,
1227-1233.

BELLEGARDA, E.J., J.R. BELLEGARDA, D. NAHAMOO, AND K.S. NATHAN
[1995], A discrete parameter HMM approach to on-line handwriting recog-
nition, International Conference of Acoustics, Speech and Signal process-
ing, 2631-2634.

BELLEGARDA, J.R., K.S. NATHAN, D. NAHAMOO, AND E.J. BELLEGARDA
[1993], On-line handwriting recognition using continuous parameter hidden
Markov models, International Conference of Acoustics, Speech and Signal
processing, 121-124.

177

178 Bibliography

BELLMAN, R. [1957], Dynamic programming, Princeton university press.

BOES, U., G. FOGAROLI, G. MASLIN, H. KEIL, AND R.J. WHITROW [1990],
The paper interface (ESPRIT Project 295) (Final Report ed.)., Technical
report, EC, Konstanz, Germany.

Bosg, C.B., AND S. Kuo [1992], Connected and degraded text recognition using
hidden Markov model, 11th International Conference on Pattern Recogni-
tion, IEEE, 116-119.

Bouma, H. [1971], Visual Recognition of lower case letters, Vision Research 11,
459-474,

Bouwnuis, D.G. [1979], Visual Recognition of Words, Ph.D. thesis, Institute for
Perception Research (IPO).

BOZINOVIC, R.M., AND S.N. SRIHARI [1989], Off-line cursive script word
recognition, IEEE Transactions on pattern analysis and machine intelli-
gence 11, 68-83.

BROMLEY, J., J. BENTZ, L. BoTtTOU, I. GUYON, Y. LECUN, C. MOORE,
E. SACKINGER, AND R. SHAH [1993], Signature verification using a
“siamese” time delay neural network, International Journal of Pattern
Recognition and Artificial Intelligence T, 669—688.

BUNKE, M., M ROTH, AND G. SCHUKAT-TALAMAZINNI [1995], Off-line Cur-
sive Handwriting Recognition using Hidden Markov Models, Pattern recog-
nition 28, 1399-1413.

CAESAR, T.,].M. GLOGER, AND E. MANDLER [1995], Estimating the Baseline
for written Material, 3rd International Conference on Document Analysis
and Recognition, 382-385.

CHANG, L., ET AL. [1994], A comparison of Two Handwriting Recognizers for
Pen-based Computers, CASCON, 364-371.

CHEN, M.Y., A. KUNDU, AND S.N. SRIHARI [1993], Handwritten word recog-
nition using Continuous Density Variable Duration Hidden Markov Model,
International Conference of Acoustics, Speech and Signal processing, IEEE,
V105-V108.

CHEN, M.Y., A. KUNDU, AND J. ZHOU [1992], Off-line handwritten word
recognition (HWR) using a single contextual hidden Markov model, IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
IEEE, IEEE Comput. Soc. Press, Los Alamitos, CA, USA, 669—672.

CHO, W., S.W. LEE, AND J.H. K1M [1995], Modeling and Recognition of Cur-
sive Words with Hidden Markov Models, Pattern recognition 28, 1941—
1953.

CLARK, R.M., T. HASTIE, AND E. KISHON [1990], A model for comparing sig-
natures, IEEE International Conference on Systems, Man and Cybernetics,
IEEE 1, 326-330.

Bibliography 179

CorTtESs, C. [1995], Prediction of generalization Ability in Learning Machines,
Ph.D. thesis, University of Rochester.

CRANE, H., AND J. OSTREM [1983], Automatic signature verification using a
three-axis force-sensitive pen, IEEE Transactions on Systems, Man and Cy-
bernetics 13, 329-337.

DiMAURO, G., S. IMPEDOVO, AND G. PIRLO [1992], A stroke oriented approach
to signature verification, in: S. Impedovo and J.C. Simon (eds.), From pixels
to features IIl: frontiers in handwriting recognition, Elsevier science pub-
lishers b.v., 371-384.

DOERMANN, D.S. [1993], Document Image Understanding: Integrating Recov-
ery and Interpretation, Ph.D. thesis, University of Maryland.

DOLFING, J.G.A. [1998], A comparison of ligature and contextual models for
hidden Markov models based on-line handwriting recognition, International
Conference of Acoustics, Speech and Signal processing, IEEE 2, 1073-1076.

DOLFING, J.G.A., AND R. HAEB-UMBACH [1997], Signal Representations for
Hidden Markov Model based on-line Handwriting Recognition, Interna-
tional Conference of Acoustics, Speech and Signal processing, 1EEE 4,
3385-3388.

DOLFING, J.G.A., AND J.J.G.M VAN OOSTERHOUT [1996], Analysis and Veri-
fication of on-line signatures, Proceedings of the 5th European Conference
for Police and Government handwriting experts, The Hague.

DOLFING, J.G.A., J.J.G.M VAN OOSTERHOUT, AND E.H.LL AARTS [1998], On-
line Signature Verification with Hidden Markov Models, 14th International
Conference on Pattern Recognition, 2, 1309-1312.

Doux, A., AND M. MILGRAM [1995], On-line signature verification using DTW
and Neural Networks, 7th Biennial Conference of the International Grapho-
nomics Society, International Graphonomics Society 1, 46-47.

DUuDA, R.O., AND P.E. HART [1973], Pattern Classification and Scene Analysis,
Wiley, New York.

DUWAER, A.L. [1993], Data processing system with a touch screen and a digitiz-
ing tablet, both integrated in an input device, United States Patent 5,231,381.

EDELMAN, S., T. FLASH, AND S. ULLMAN [1990], Reading cursive handwrit-
ing by alignment of letter prototypes, International Journal of Computer
Vision 5, 303-331.

EveTT, L.J., C.J. WELLS, F.G. KEENAN, T. ROSE, AND R.J. WHITROW
[1992], Using linguistic information to aid handwriting recognition, in:
S. Impedovo and J.C. Simon (eds.), From pixels to features III, Frontiers in
handwriting recognition, Elsevier Science Publisher B.V., 339-348.

FAIRHURST, M., AND P. BRITTAN [1994], An evaluation of parallel strategies
for feature vector construction in automatic signature verificaton systems,

180 Bibliography

International Journal of Pattern Recognition and Artificial Intelligence 8,
661-678.

FAIRHURST, M., K. COWLEY, AND E. SWEENEY [1994], KAPPA automatic Sig-
nature verification: Signature verification public trials and public survey on
biometrics, Technical report, British Technology group.

FORNEY, G.D. [1973], The Viterbi Algorithm, Proceedings of the IEEE 61, 268—
278.

FOUND, B., AND D. ROGERS [1995], Investigation of signature complexity for
forensic purposes, 7th Biennial Conference of the International Grapho-
nomics Society, 52-53.

Funisakl, T., H.S.M. BEIGI, C.C. TAPPERT, M. UKELSON, AND C.G. WOLF
[1992], Online recognition of unconstrained handprinting: a stroke-based
system and its evaluation, in: S. Impedovo and J.C. Simon (eds.), From
pixels to features III, Frontiers in handwriting recognition, Elsevier Science
Publisher B.V., 297-312.

Funsaki, T., T.E. CHEFALAS, J. KiM, C.C. TAPPERT, AND C.G. WOLF
[1991], On-line run-on character recognizer: design and performance, In-
ternational Journal of Pattern recognition and Artificial intelligence 5, 123~
137.

FUKUNAGA, K. [1990], Introduction to Statistical Pattern Recognition, Second
Edition, Academic Press, New York.

GALEN, G.P. VAN, AND A.W.A. VAN GEMMERT [1995], Dynamic features of
mimicking another person’s handwriting, 7th Biennial Conference of the
International Graphonomics Society, 158-159.

GLINSKI, S [1987], The graph search machine (GSM): a programmable processor
for connected word speech recognition and other applications, International
Conference of Acoustics, Speech and Signal processing, 519-522.

GUBERMAN, SH. A., AND V.V. ROZENTSVEIG [1976], Algorithm for the Recog-
nition of Handwritten Text, Avtomatika i Telemekhanika, 122—129.

GUERFALL, W., AND R. PLAMONDON [1995], The Delta LogNormal Theory
for the Generation and Modeling of Cursive Characters, 3rd International
Conference on Document Analysis and Recognition, 495-498.

GUYON, I., P. ALBRECHT, Y. LECUN, J. DENKER, AND W. HUBBARD [1991],
Design of a neural network character recognizer for a touch terminal, Pattern
recognition 24, 105-119.

GUYON, I., J. MAKHOUL, R. SCHWARTZ, AND V.N. VAPNIK [1996], What
size test set gives good error rate estimates, 5th International Workshop on
Frontiers in Handwriting Recognition, 313-316.

GUYON, I., AND F. PEREIRA [1995], Design of a linguistic postprocessor using
variable memory length Markov models, Conference handout ICDAR’95,

Bibliography : 181

GUYON, L., L. SCHOMAKER, R. PLAMONDON, M. LIBERMAN, AND S. JANET
[1994], UNIPEN project of on-line data exchange and recognizer bench-
marks, 12th International Conference on Pattern Recognition, 29-33.

GUYON, 1., V.N. VAPNIK, B. BOSER, L. BOTTOU, AND S.A. SOLLA [1992],
Structural Risk Minimization for Character Recognition, Advances in Neu-
ral Information Processing Systems, 471-479.

HAEB-UMBACH, R., AND H. NEY [1992], Linear Discriminant Analysis for Im-
proved Large Vocabulary Continuous Speech Recognition, International
Conference of Acoustics, Speech and Signal processing, 13-16.

HAEB-UMBACH, R., AND H. NEY [1994], Improvements in Beam Search
for 10,000-Word Continuous-Speech Recognition, IEEE Transactions on
Speech and Audio processing 2, 353-356.

HASTIE, T., E. KISHON, R.M. CLARK, AND J. FAN [1991], A model for sig-
nature verification, IEEE International Conference on Systems, Man and
Cybernetics, IEEE Conferences 1, 191-196.

HASTIE, T., E. KiSHON, R.M. CLARK, AND J. FAN [1992], A model for signa-
ture verification, Technical report, AT&T Bell Laboratories.

HE, Y., M. Y. CHEN, AND A. KUNDU [1992], Handwritten word recognition us-
ing HMM with adaptive length Viterbi algorithm, International Conference
of Acoustics, Speech and Signal processing, 153-156.

HERBST, N.M, AND C.N. L1U [1977], Automatic signature verification based on
accelerometry, IBM Journal Research & development 21, 245-253.

Ho, T.K., J.J. HULL, AND S.N. SRIHARI [1992], A word shape analysis ap-
proach to lexicon based word recognition, Pattern Recognition Letters 13,
821-826.

HOLLERBACH, J.M. [1981], An oscillation theory of handwriting, Biological
Cybernetics 39, 139-156.

HUANG, X.D., Y. ARIKI, AND M.A. JACK [1990], Hidden markov models for
speech recognition (First ed.)., Edinburgh information technology series,
Edinburgh university press, 22 George square, Edinburgh.

HULL, J.J., AND S.N. SRIHARI [1982], Experiments in text recognition with
binary n-gram and Viterbi algorithm, IEEE Transactions on pattern analysis
and machine intelligence 4, 521-529.

JACOBS, T., AND A. SETLUR [1994], A field study of performance improvements
in HMM-based speaker verification, IEEE workshop on interactive technol-
ogy for telecommunications applications, IEEE 1, 121-124.

JELINEK, F. [1976], Continuous Speech Recognition by Statistical Methods, Pro-
ceedings of the IEEE 64, 532-558.

KALTENMEIER, A., F. CLASS, P. REGEL-BRIETZMANN, T. CAESAR, J.M.

182 Bibliography

GLOGER, AND E. MANDLER [1993], Hidden Markov Models - A uni-
fied approach to recognition of spoken and written language, in: S.J.Poeppl
(ed.), Mustererkennung *93, Informatik aktuell, Springer verlag, 191-198.

KASSEL, R.H. [1995], A Comparison of Approaches to On-Line Handwritten
Character Recognition, Ph.D. thesis, MIT.

KiMm, W.S., AND R.H. PARK [1996], Off-line recognition of Handwritten Ko-
rean and Alphanumeric Characters using Hidden Markov Models, Pattern
recognition 29, 845-858.

KOSMALA, A., J. ROTTLAND, AND G. RIGOLL [1997], An Investigation of the
Use of Trigraphs for Large Vocabulary Cursive Handwriting Recognition,
International Conference of Acoustics, Speech and Signal processing, 3373—
3376.

KOVALEVSKY, V.A. [1980], Image Pattern Recognition, Springer-Verlag, New
York.

KUNDU, A., AND P. BAHL [1988], Recognition of handwritten script: A hid-
den Markov model based approach, International Conference of Acoustics,
Speech and Signal processing, IEEE, New York, NY USA, 928-931.

KUNDU, A., Y. HE, AND P. BAHL [1989], Recognition of handwritten word: first
and second order hidden Markov model based approach, Pattern recogni-
tion 22, 283-297.

LALOMIA, M.J. [1994], User-acceptance of handwritten recognition accuracy,
Companion proceedings of the CHI’94 conference on Human Factors in
Computing Systems, ACM, 107.

LAM, C., AND D. KAMINS [1989], Signature verification through spectral analy-
sis, Pattern recognition 22, 39-44.

LE CUN, Y. [1990], Handwritten ZIP Code Recognition with Multilayer Net-
works, 10th International Conference on Pattern Recognition, IEEE, 35-40.

LE CUN, Y. [1993], On-line handwriting recognition with Neural Networks: spa-
tial representation versus temporal representation, 6th International confer-
ence on handwriting and drawing, 1GS, 22-24.

LECLERC, F., AND R. PLAMONDON [1994], Automatic Signature Verification:
The State of the Art - 1989-1993., International Journal of Pattern Recog-
nition and Artificial Intelligence 8, 643—660.

LEE, K.F. [1988], Large-Vocabulary Speaker-Independent Continuous Speech
Recognition: The SPHINX System, Ph.D. thesis, Carnegie-Mellon Univer-
sity.

LEE, K.F. [1989], Automatic Speech recognition, Kluwer Academic Publishers.

LEE, L., T. BERGER, AND E. AVICZER [1996], Reliable on-line human signature
verification systems, IEEE Transactions on pattern analysis and machine
intelligence 18, 643-647.

Bibliography 183

LEEDHAM, C.G. [1990], Automatic recognition and transcription of Pitman’s
handwritten shorthand, in: R. Plamondon and C.G. Leedham (eds.), Com-
puter Processing of Handwriting, 235-269.

LEVINSON, S.E., L.R. RABINER, AND M.M. SONDHI [1983], An Introduction
to the Application of the Theory of Probabilistic Functions of a Markov
Process to Automatic Speech Recognition, The Bell System Technical Jour-
nal 62, 1035-1074.

LEVINSON, S.E., AND D.B. ROE [1990], A perspective on speech recognition,
IEEE Communications Magazine 28, 28-34.

LINDWURM, R., T. BREUER, AND K. KREUZER [1996], Multi Expert System
for Handprinted Recognition, S5th International Workshop on Frontiers in
Handwriting Recognition, 125-129.

Liu, C.N. [1978], Reference design procedure for signature verification, IBM
Technical Disclosure Bulletin 21, 426—427.

Liu, C.L., Y.L Liu, AND R.W. DAI [1996], Multiresolution Statistical Feature
and Structural Feature Extraction, 5th International Workshop on Frontiers
in Handwriting Recognition, 61-66.

MADHVANATH, S., AND S.N. SRIHARI [1996], Effective Reduction of Large
Lexicons for Recognition of Offline Cursive script, 5th International Work-
shop on Frontiers in Handwriting Recognition, 189-194.

MAHADEVAN, U., AND S.N. SRIHARI [1996], Hypothesis Generation for Word
Separation in Handwritten Lines, 5th International Workshop on Frontiers
in Handwriting Recognition, 453-456.

MANKE, S., AND U. BODENHAUSEN [1994], A connectionist recognizer for on-
line cursive handwriting recognition, International Conference of Acoustics,
Speech and Signal processing, 633-636.

MANKE, S., M. FINKE, AND A, WAIBEL [1995], NPen++: A writer independent,
large vocabulary on-line cursive recognition system, International Confer-
ence on Document Analysis and Recognition, 403—408.

MANKE, S., M. FINKE, AND A. WAIBEL [1996], A fast search technique
for Large Vocabulary On-line Handwriting Recognition, S5th International
Workshop on Frontiers in Handwriting Recognition, 183-188.

MARTINET, J.F [1790], Het vereenigd Nederland (Second ed.)., Amsterdam.

MILLER, B. [1994], Vital signs of identity, IEEE Spectrum 31, 22-30.

MITAL, D., C. HIN, AND W. LONG [1987], An on-line signature verification
system, IEEE International Conference on Systems, Man and Cybernetics,
IEEE 2, 837-841.

MOHANKRISHNAN, N., M. PAULIK, AND M. KHALIL [1993b], Issues pertaining
to optimal performance of an on-line autoregressive model based signature
verification system, Proceedings of the Midwest Symposium on Circuits and

184 Bibliography

Machines, IEEE 1, 677-681.

MOHANKRISHNAN, N., M. PAULIK, AND M. KHALIL [1993a], On-line signa-
ture verification using a nonstationary autoregressive model representation,
IEEE International Symposium on Circuits and Systems, 1IEEE 3, 2303—
2306.

MOoRI S., C.Y. SUEN, AND K. YAMAMOTO [1992], Historical review of OCR
research and development, Proceedings of the IEEE 80, 1029-1058.

MOoOR] S., K. YAMAMOTO, AND M. YASUDA [1984], Research on machine
recognition of handprinted characters, IEEE Transactions on pattern analy-
sis and machine intelligence 6, 386-405.

NAG, R., K.H. WONG, AND F. FALLSIDE [1986], Script recognition using Hid-
den Markov Models, International Conference of Acoustics, Speech and
Signal processing, 2071-2074.

NAIK, J.M. [1990], Speaker verification: a tutorial, IEEE Communications Mag-
azine 28, 42-48.

NAIK, J.M. [1994], Speaker verification over the telephone network: Databases,
algorithms and performance assessment, ESCA workshop on automatic
speaker recognition, identification and verification, 31-38.

NAIK, J.M., L.P. NETSCH, AND G.R DODDINGTON [1989], Speaker Verification
over long distance Telephone Lines, International Conference of Acoustics,
Speech and Signal processing 1, 524-527.

NATHAN, K.S., H.S.M. BEIGI, J. SUBRAHMONIA, G.J. CLARY, AND
H. MARUYAMA [1995], Real-time on-line unconstrained handwriting
recognition using statistical methods, International Conference of Acous-
tics, Speech and Signal processing, 2619-2622.

NELSON, W., W. TURIN, AND T. HASTIE [1994], Statistical methods for on-
line signature verification, International Journal of Pattern Recognition and
Artificial Intelligence 8, 749-770.

NEN2296 [1958], Handschrift voor het lager onderwijs: Schrijfletters en cijfers
(UDC 003.81: 372.51 ed.). Hoofdcommissie voor de normalisatie in Ned-
erland (HCNN).

NEY, H. [1984], The use of a one-stage dynamic programming algorithm for con-
nected word recognition, IEEE Transactions on Acoustics, Speech and Sig-
nal processing 32, 263-271.

NEY, H., U. ESSEN, AND R. KNESER [1994], On structuring probabilistic depen-
dences in stochastic language modelling, Computer Speech and Language,
1-38.

NEY, H., V. STEINBISS, R. HAEB-UMBACH, B.-H. TRAN, AND U. ESSEN
[1994], An overview of the Philips research system for large vocabulary
continuous speech recognition, Int. Journal of Pattern Recognition and Ar-

Bibliography 185

tificial Intelligence 8, 33-70.

On, S.C.,J.Y. HA, AND J.H. KM [1995], Context Dependent Search in intercon-
nected Hidden Markov Model for unconstrained Handwriting Recognition,
Pattern recognition 28, 1693-1704.

Ow, P.S., AND T.E. MORTON [1988], Filtered beam search in scheduling, Inter-
national Journal of Production Research 26, 35-62.

PARIZEAU, M., AND R. PLAMONDON [1990], A comparative analysis of regional
correlation, dynamic time warping, and skeletal tree matching for signature
verification, IEEE Transactions on pattern analysis and machine intelli-
gence 12, 710-717.

PAUL, D.B. [1991], Algorithms for an Optimal A* Search and Linearizing the
Search in the Stack Decoder, International Conference of Acoustics, Speech
and Signal processing, IEEE, 693-696.

PAUL, D.B., AND J.M. BAKER [1992], The Design for the Wall Street Journal-
based CSR Corpus, Speech and Natural Language Workshop, DARPA, 357—
362.

PAULIK, M., AND N. MOHANKRISHNAN [1993], A 1-d, sequence decomposition
based, autoregressive hidden markov model for dynamic signature identifi-
cation and verification, Proceedings of the Midwest Symposium on Circuits
and Machines, 1, 138-141.

PICONE, J. [1990], Continuous speech recognition using hidden Markov models,
IEEE ASSP Magazine 41, 26-41.

PLAMONDON, R. [1993], Understanding stroke generation: a global neuromuscu-
lar approach, International conference on handwriting and drawing, 1-3.

PLAMONDON, R. [1994a], The design of an on-line signature verification system:
From theory to practice, in: R. Plamondon (ed.), Progress in automatic
Signature verification, 155-172.

PLAMONDON, R. (ed.) [1994b], Progress in automatic Signature verification,
World Scientific, New York.

PLAMONDON, R., A. ALIMI, P. YERGEAU, AND F. LECLERC [1993], Model-
ing velocity profiles of rapid movements: a comparative study, Biological
Cybernetics 69, 119-128.

PLAMONDON, R., AND G. LORETTE [1989], Automatic signature verification and
writer identification - the state of the art, Pattern recognition 22, 107-131.

PLAMONDON, R., AND G. LORETTE [1990], Designing an automatic signature
verifier, Computer processing of handwriting, World Scientific, 3-20.

PLAMONDON, R., AND F. MAARSE [1989], An evaluation of motor models
of handwriting, IEEE Transactions on Systems, Man and Cybernetics 19,
1060-1072.

PORT, O. [1996], Let your finger do the charging, Business Week, June 3, pp 43.

186 Bibliography

QUINNELL, R.A. [1995], Touchscreen Technology improves and extends its op-
tions, EDN, 52-63.

RABINER, L.R., AND B.H. JUANG [1993], Fundamentals of speech recognition
(First ed.)., Prentice hall.

RATZLAFF, E.H., K.S. NATHAN, AND H. MARUYAMA [1996], Search issues
in the IBM Large Vocabulary Unconstrained Handwriting Recognizer, 5tk
International Workshop on Frontiers in Handwriting Recognition, 177-182.

RUBINE, D. [1991], The automatic recognition of gestures, Ph.D. thesis, School
of Computer Science, Carnegie Mellon University.

SAKOE, H., AND S. CHIBA [1978], Dynamic programming algorithm optimiza-
tion for spoken word recognition, IEEE Transactions on Acoustics, Speech
and Signal processing 26, 4349,

SANKOFF, D., AND J.B. KRUSKAL [1983], Time Warps, String Edits, And Macro-
molecules: The theory and practice of sequence comparison, Addison-
Wesley, Reading, Massachusetts.

SATO, Y., AND K. KOGURE [1982], Online signature verification based on shape,
motion, and writing pressure, International Conference on Pattern Recog-
nition, IEEE 2, 823-826.

SCHENKEL, M., I. GUYON, AND D. HENDERSON [1994], On-line Cursive Script
Recognition using Time-delay Neural Networks and Hidden Markov Mod-
els, International Conference of Acoustics, Speech and Signal processing,
637-640.

SCHENKEL, M., I. GUYON, AND D. HENDERSON [1995], On-line Cursive Script
Recognition using Time-delay Neural Networks and Hidden Markov Mod-
els, Machine Vision and Applications 8, 215-223.

SCHMIDT, C., AND F. OLSCHEWSKI [1995], Signature verification using a self-
organizing map - a connectionist approach based on dynamic feature of the
signature, 7th Biennial Conference of the International Graphonomics So-
ciety, 138-139.

SCHOMAKER, L. [1990], Simulation and recognition of handwriting movements,
Ph.D. thesis, Nijmegen Institute for Cognition Research and Information
Technology (NICTI).

SCHOMAKER, L. [1993], Using stroke- or character based self-organizing maps in
the recognition of on-line, connected cursive script, Pattern recognition 26,
443-450.

SCHOMAKER, L. [1994], User-interface aspects in recognizing connected-cursive
handwriting, IEE Workshop, 8/1-8/3.

SCHOMAKER, L., AND R. PLAMONDON [1990], The relation between Pen Force
and Pen-Point Kinematics in handwriting, Biological Cybernetics 63, 277
289.

Bibliography 187

SCHOMAKER, L., AND H.L. TEULINGS [1992], Stroke-versus character-based
recognition of on-line, connected cursive script, From Pixels to Features
II:Frontiers in handwriting recognition, 313-325.

SCHWARTZ, R., Y.L. CHOW, S. Roucos, R. KRASNER, AND J. MAKHOUL
[1984], Improved Hidden Markov Modeling of Phonemes for continuous
speech recognition, International Conference of Acoustics, Speech and Sig-
nal processing, IEEE, 35.6.1-35.6.4.

SEILER, R., M. SCHENKEL, AND F. EGGIMANN [1996], Cursive handwriting
recognition: off-line versus on-line recognition, 5th International Workshop
on Frontiers in Handwriting Recognition, 23-28.

SENI, G., AND E. COHEN [1994], External word segmentation of off-line hand-
written text lines, Pattern recognition 27, 41-52.

SENI, G., R.K. SRIHARI, AND N, NASRABADI [1994], Large vocabulary recog-
nition of On-line handwritten Cursive Words, IEEE Transactions on pattern
analysis and machine intelligence 18, 757-762.

SENIOR, A.W. [1994], Off-line cursive Handwriting recognition using Recurrent
neural networks, Ph.D. thesis, University of Cambridge.

SENIOR, A.W., K.S. NATHAN, AND J. SUBRAHMONIA [1996], Duration model-
ing results for an on-line handwriting recognizer, International Conference
of Acoustics, Speech and Signal processing.

SHANNON, G.E. [1951], Prediction and entropy of printed English, Bell System
Technical Journal 30, 50-64.

SICARD, E. [1992], An Efficient Method for the Recognition of Printed Music,
11th International Conference on Pattern Recognition, 573-576.

SIMON, J.C. [1992], Off-line cursive word recognition, Proceedings of the
IEEE 80, 1150-1161.

STALLINGS, W.W. [1977], Chinese Character Recognition, in: K.S. Fu (ed.), Syn-
tactic Pattern Recognition, Applications, Communication and Cybernetics,
Springer Verlag, 95-121.

STAMPA, V., T. CAESAR, J.M. GLOGER, A. KALTENMEIER, AND E. MANDLER
[1996], Recognizing Handwritten Numbers by Hidden Markov Models and
Polynomial Classifiers, 5th International Workshop on Frontiers in Hand-
writing Recognition, 41-46.

STARNER, T., J. MAKHOUL, R. SCHWARTZ, AND G. CHOU [1994], On-line
cursive handwriting recognition using speech recognition methods, Interna-
tional Conference of Acoustics, Speech and Signal processing, 125-128.

STROUSTRUP, B. [1991], The C++ programming language (Second ed.).,
Addison-Wesley, New York.

STROUSTRUP, B. [1994], The Design and Evolution of C++, Addison-Wesley,
New York.

188 Bibliography

SUBRAHMONIA, J., K.S. NATHAN, AND M.P. PERRONE [1996], Writer depen-
dent recognition of on-line unconstrained handwriting, International Con-
ference of Acoustics, Speech and Signal processing.

SUEN, C.Y., M. BERTHOD, AND S. MORI [1980], Automatic recognition of
handprinted characters - The state of the art, Proceedings of the IEEE 68,
469-487.

TAGUCHI, H., K. KIRIYAMA, E. TANAKA, AND K. FuJii [1989], On-line recog-
nition of handwritten signatures by feature extraction of pen-movements,
Systems and computers in Japan 20, 1-14.

TAPPERT, C.C. [1982], Cursive script recognition by elastic matching, IBM J.
Res. development 26, 765-771.

TAPPERT, C.C. [1991], Speed, Accuracy, and Flexibility Trade-Offs in On-line
Character Recognition, International Journal of Pattern recognition and
Artificial intelligence 5, 79-95.

TAPPERT, C.C., A.S. Fox, J. KiM, S.E. LEVY, AND L.L. ZIMMERMAN [1986],
Handwriting recognition on Transparent Tablet Over Flat Display, SID Di-
gest, 308-312.

TAPPERT, C.C., C.Y. SUEN, AND T. WAKAHARA [1990], The state of the art in
on-line handwriting recognition, IEEE Transactions on pattern analysis and
machine intelligence 12, 787-808.

TAYLOR, 1., AND M.M. TAYLOR [1983], The psychology of reading, Academic
Press, New York.

TEULINGS, H.L., AND L. SCHOMAKER [1992], Invariant properties between
stroke features in handwriting, 5th Biennial Conference of the International
Graphonomics Society.

THOMASSEN, A.J.W.M., AND G.P. VAN GALEN [1996], Temporal features of
handwriting: Challenges for forensic analysis, 5th European conference of
Government and Police Handwriting Experts.

WARD, J., AND D. SCHULTZ [1993], Digitizer Renaissance, Byte 1, 251-260.

WEISSMAN, H., M. SCHENKEL, I. GUYON, C. NOHL, AND D. HENDERSON
[1994], Recognition-based segmentation of on-line run-on handprinted
words: input vs output segmentation, Pattern recognition 27, 405—420.

WILKINSON, T., D. PENDER, AND J. GOODMAN [1991], Use of synthetic
discriminant functions for handwritten-signature verification, Applied op-
tics 30, 3345-3353.

WINKLER, H.J. [1996], HMM-based handwritten symbol recognition using on-
line and off-line features, International Conference of Acoustics, Speech and
Signal processing, 3438-3441.

WINKLER, H.J., AND M. LANG [1996], Symbol segmentation and recognition
for understanding handwritten mathematical expressions, 5th International

Bibliography 189

Workshop on Frontiers in Handwriting Recognition, 465-469.

WIRTZ, B. [1995], Stroke-based time warping for signature verification, 3rd In-
ternational Conference on Document Analysis and Recognition, 179-182.

WITTEN, 1.H., AND T.C. BELL [1990], Source models for natural language text,
Int. Journal Man-Machine Studies 32, 545-579.

WOLMAN, A. [1992], Recognition of handwritten Music Notation, International
Computer Music Conference, San Jose, 125-127.

WORTHINGTON, T., T. CHAINER, J. WILFORD, AND S. GUNDERSEN [1985],
IBM dynamic signature verification, Computer security, 129-154.

WRIGHT, P.T. [1990], On-line recognition of handwriting, GEC journal of re-
search 8, 42-48.

YANG, L. [1995], Processing and recognition of handwriting in multimedia envi-
ronments, Ph.D. thesis, Technische Universiteit Delft.

YANG, L., B. WIDJAJA, AND R. PRASAD [1995], Application of hidden Markov
models for signature verification, Pattern recognition 28, 161-170.

YASHIMURA, 1., AND M. YOSHIMURA [1992], On-line signature verification in-
corporating the direction of pen movement- An experimental examination of
the effectiveness, in: S. Impedovo and J.C. Simon (eds.), From pixels to fea-
tures III: frontiers in handwriting recognition, Elsevier science publishers
b.v., 353-361.

YOSHIMURA, I, AND M. YOSHIMURA [1994], Off-line verification of Japanese
signatures after elimination of background patterns, in: R. Plamondon (ed.),
Progress in automatic Signature verification, 53—68.

YOSHIMURA, M., Y. KATO, S. MATSUDA, AND 1. YASHIMURA [1991], On-line
signature verification incorporating the direction of pen movement, IEICE
Transactions 74, 2083-2092.

ZIMMERMANN, K., AND M. VARADY [1985], Handwriter identification from
one-bit quantized pressure patterns, Pattern recognition 18, 63-72.

Author Index

A
Aarts, E.H.L, 131, 135
Abraham, D., 5
Albrecht, P., 11, 64, 66, 70, 109, 110
Ali, F., 11
Alimi, A., 21, 22, 140
Ariki, Y., 32, 34, 38
Aviczer, E., 132, 133, 136, 138, 144,
171

B

Bahl, L.R., 12, 45

Bahl, P, 12, 82

Baker, .M., 126

Baum, L.E., 44, 51

Beatson, R., 138

Beigi, H.S.M., 11-13, 36, 38, 59, 64,
65, 84, 110, 111, 113, 123

Bell, T.C., 10, 56, 57

Bellegarda, E.J., 12, 13, 38, 64, 68,
77,78, 109, 110, 145

Bellegarda, J.R., 12, 13, 38, 64, 68,
77,78, 109, 110, 145

Bellman, R., 11, 39

Bentz, J., 133, 143

Berger, T., 132, 133, 136, 138, 144,
171

Berthod, M., 10

Bodenhausen, U., 12, 59, 68

Boes, U., 11

Bose, C.B., 12

Boser, B., 11

Bottou, L., 11, 133, 143

190

Bouma, H., 23
Bouwhuis, D.G., 22, 23
Bozinovic, R.M., 11, 84
Breuer, T., 78

Brittan, P., 138
Bromley, J., 133, 143
Brown, P.F,, 45

Bunke, M., 12, 36, 123

C

Caesar, T., 12, 73, 78, 84

Chainer, T., 20, 132, 136-138, 171,
172

Chang, L., 109

Chefalas, TE., 11

Chen, FR., 12

Chen, M.Y,, 12, 38

Chiba, S., 134

Cho, W., 12, 78-80, 119, 123

Chou, G., 12, 54, 66, 68, 79, 80, 82,
120, 126

Chow, Y.L., 54, 80

Clark, R M., 13, 134, 136

Clary, G.J., 12, 13, 36, 38, 59, 64, 65,
84,111, 113, 123

Class, F., 12

Cohen, E., 123

Cortes, C., 123

Cowley, K., 6, 19, 135, 136

Crane, H., 23, 132-134, 136-138,
144,172

D
Dai, RW.,, 68

Author Index

Denker, I., 11, 64, 66, 70, 109, 110

de Souza, P.V., 45

Dimauro, G., 138

Doddington, G.R, 13, 135

Doermann, D.S., 23, 170

Dolan, G., 5

Dolfing, J.G.A., 12, 13, 99, 123, 128,
131, 135, 138

Double, G., 5

Doux, A., 134

Duda, R.O., 50, 76

Duwaer, A.L., 3, 24

E
Edelman, S., 10
Eggimann, F., 12, 68, 73, 84
Essen, U., 36, 37, 45, 50, 54, 56, 80,
84, 86
Evett, LL.J., 11

F
Fairhurst, M., 6, 19, 135, 136, 138
Fallside, F., 12
Fan, J., 13, 134, 136
Finke, M., 12, 87, 113, 123
Flash, T., 10
Fogaroli, G., 11
Forney, G.D., 42
Found, B., 133, 170
Fox, A.S., 10, 20
Fujii, K., 136, 138, 141
Fujisaki, T., 11, 110
Fukunaga, K., 76, 77, 115

G
Glinski, S, 12
Gloger, .M., 12, 73, 78, 84
Goodman, J., 133, 143
Guberman, Sh.A., 11, 23
Guerfali, W., 22

191

Gundersen, S., 20, 132, 136-138,
171,172

Guyon, 1., 11, 12, 45, 56, 59, 64-66,
68, 70, 72, 82, 84, 89, 91,
92, 109-111, 113, 120, 122,
123, 133, 143

H

Ha, J.Y, 12

Haeb-Umbach, R., 12, 13, 36, 37, 45,
50, 54, 77, 78, 80, 84, 86,
87,99, 114, 123, 138

Hart, P.E., 50, 76

Hastie, T., 13, 134, 136

He, Y, 12, 82

Henderson, D., 11, 12, 59, 64, 65, 68,
72, 84, 111, 113, 120, 122,
123

Herbst, N.M, 22, 139

Hin, C., 138

Ho, TK., 73

Hollerbach, .M., 21, 22

Huang, X.D., 32, 34, 38

Hubbard, W., 11, 64, 66, 70, 109, 110

Hull, J.J., 73, 82

1
Impedovo, S., 138

J
Jack, M.A., 32, 34, 38
Jacobs, T., 13
Janet, S., 89, 91, 92
Jelinek, F., 12
Juang, B.H., 10, 33, 35, 3740, 44,
45, 50, 56, 58, 68, 80, 84

K
Kaltenmeier, A., 12, 78
Kamins, D., 138

192

Kassel, R.H., 78, 82, 88, 108-110,
124, 125

Kato, Y., 18, 132, 135-137, 145, 150,
172

Keenan, F.G., 11

Keil, H., 11

Khalil, M., 135, 171

Kim, J., 10, 11, 20

Kim, J.H., 12, 78-80, 119, 123

Kim, W.S., 12

Kiriyama, K., 136, 138, 141

Kishon, E., 13, 134, 136

Kneser, R., 56

Kogure, K., 18, 132, 134-136, 138,
141, 144

Kosmala, A., 13, 68, 80, 81, 120, 122

Kovalevsky, V.A., 11

Krasner, R., 54, 80

Kreuzer, K., 78

Kruskal, J.B., 88

Kundu, A., 12, 38, 82

Kuo, S., 12

L
Lal.omia, M.J., 109
Lam, C., 138
Lang, M., 11
Leclerc, F.,, 10, 21, 22, 134, 135, 140
LeCun, Y., 11, 64, 66, 70, 109, 110,
133, 143
Lee, K.F,, 10, 15, 33, 35-37, 40, 44,
54, 68, 80, 81, 88, 120, 122
Lee, L., 132, 133, 136, 138, 144, 171
Lee, S.W., 12, 78-80, 119, 123
Leedham, C.G., 11
Levinson, S.E., 44, 47, 49, 51, 52, 64
Levy, S.E., 10, 20
Liberman, M., 89, 91, 92
Lindwurm, R., 78
Liu, C.L., 68

Author Index

Liu, C.N,, 22, 137, 139, 145

Liu, Y.L, 68

Long, W., 138

Lorette, G., 10, 18, 132, 133, 135,
138, 141, 158, 160

M

Maarse, F., 20-22

Madhvanath, S., 73

Mahadevan, U., 124

Makhoul, J., 12, 45, 54, 66, 68, 79,
80, 82, 89, 120, 126

Mandler, E., 12, 73, 78, 84

Manke, S., 12, 59, 68, 87, 88, 113,
123

Martinet, J.F, 5

Maruyama, H., 12, 13, 36, 38, 59, 65,
84, 88, 111, 113, 123

Maslin, G., 11

Matsuda, S., 18, 132, 135-137, 145,
150, 172

Mercer, R.L., 12, 45

Milgram, M., 134

Miller, B., 5, 6

Mital, D., 138

Mohankrishnan, N., 13, 135, 171

Moore, C., 133, 143

Mori, S., 10

Morton, T.E., 58

N

Nag, R., 12

Nahamoo, D., 12, 13, 38, 64, 68, 77,
78, 109, 110, 145

Naik, J.M., 13, 135

Nasrabadi, N., 11, 66, 70, 73

Nathan, K.S., 12, 13, 36, 38, 59, 64,
65, 68, 77, 78, 84, 88, 109—
111, 113, 123, 145

Nelson, W., 134

Author Index

Netsch, L.P,, 13, 135

Ney, H., 36, 37, 45, 50, 54, 56, 58,
60, 77, 78, 80, 84, 86-88,
114

Nohl, C., 11, 59, 65, 72, 111

0
Oh, S.C., 12
Olschewski, F., 134, 141
Ostrem, J., 23, 132-134, 136-138,
144,172
Ow, P.S., 58

P

Parizeau, M., 134

Park, R.H., 12

Paul, D.B., 58, 126

Paulik, M., 13, 135, 171

Pavlidis, T., 11

Pender, D., 133, 143

Pereira, F., 11, 56, 82

Perrone, M.P., 13

Picone, J., 45

Pirlo, G., 138

Plamondon, R., 10, 18, 20-22, 64,
89, 91, 92, 132-136, 138,
140, 141, 143, 158, 160

Port, O., 2

Prasad, R., 13, 132, 135, 136, 138,
171

Q
Quinnell, R.A., 10, 24

R
Rabiner, L.R., 10, 33, 35, 3740, 44,
45, 47, 49-52, 56, 58, 68,
80, 84
Ratzlaff, E.H., 12, 88
Regel-Brietzmann, P., 12
Rigoll, G., 13, 68, 80, 81, 120, 122

193

Roe, D.B., 64

Rogers, D., 133, 170

Rose, T., 11

Roth, M, 12, 36, 123

Rottland, J., 13, 68, 80, 81, 120, 122
Roucos, S., 54, 80

Rozentsveig, V.V,, 11, 23

Rubine, D., 11

S

Sackinger, E., 133, 143

Sakoe, H., 134

Sankoff, D., 88

Sato, Y., 18, 132, 134-136, 138, 141,
144

Schenkel, M., 11, 12, 59, 64, 65, 68,
72, 73, 84, 111, 113, 120,
122,123

Schmidt, C., 134, 141

Schomaker, L., 11, 20-22, 27, 64,
66, 70, 89, 91, 92, 122, 123,
140, 141

Schukat-Talamazinni, G., 12, 36, 123

Schultz, D., 10

Schwartz, R., 12, 45, 54, 66, 68, 79,
80, 82, 89, 120, 126

Seiler, R., 12, 68, 73, 84

Seni, G., 11, 66, 70, 73, 123

Senior, A.W., 10, 13, 23, 79, 84

Setlur, A., 13

Shah, R., 133, 143

Shannon, G.E., 10, 56

Sicard, E., 11

Simon, J.C., 11

Solla, S.A., 11

Sondhi, M.M., 44, 47, 49, 51, 52

Srihari, R.X., 11, 66, 70, 73

Srihari, S.N., 11, 38, 73, 82, 84, 124

Stallings, W.W., 11

Stampa, V., 78

194

Starner, T., 12, 54, 66, 68, 79, 80, 82,
120, 126

Steinbiss, V., 36, 37, 45, 50, 54, 80,
84, 86

Stevens, J., 5

Stroustrup, B., 89

Subrahmonia, J., 12, 13, 36, 38, 59,
64, 65, 84, 111, 113, 123

Suen, C.Y., 9, 10, 20

Sweeney, E., 6, 19, 135, 136

T

Taguchi, H., 136, 138, 141

Tanaka, E., 136, 138, 141

Tappert, C.C., 9-11, 20, 109, 110,
123

Taylor, 1., 22, 23

Taylor, M.M.,, 22, 23

Teulings, H.L., 20, 22, 123

Thomassen, A.J.W.M., 20, 21

Tran, B.-H., 36, 37, 45, 50, 54, 80,
84, 86

Turin, W., 134

U
Ukelson, M., 11, 110
Ullman, S., 10

\"
van Galen, G.P,, 20, 21, 140
van Gemmert, A.W.A., 140
van Qosterhout, J.J.G.M, 131, 135
Vapnik, V.N,, 11, 45, 89
Varady, M., 138, 141

W
Waibel, A., 12, 87, 113, 123
Wakahara, T., 9, 20
Ward, J., 10
Weissman, H., 11, 59, 65, 72, 111
Wells, C.J., 11

Author Index

Whitrow, R.J., 11

Widjaja, B., 13, 132, 135, 136, 138,
171

Wilford, J., 20, 132, 136-138, 171,
172

Wilkinson, T., 133, 143

Winkler, H.J., 11, 12

Wirtz, B., 134, 141

Withgott, M., 12

Witten, I.H., 10, 56, 57

Wolf, C.G., 11, 110

Wolman, A., 11

Wong, K.H., 12

Worthington, T., 20, 132, 136-138,
171,172

Wright, PT., 11

Y

Yamamoto, K., 10

Yang, L., 13, 36, 70, 109, 132, 135,
136, 138, 146, 147, 160,
171

Yashimura, 1., 18, 132, 134-138,
145, 150, 172

Yasuda, M., 10

Yergeau, P, 21, 22, 140

Yoshimura, I, 158

Yoshimura, M., 18, 132, 134-138,
145, 150, 158, 172

Z
Zhou, J., 12
Zimmerman, L.L., 10, 20
Zimmermann, K., 138, 141

Subject Index

A
Allograph, 4, 21, 79, 110
Alphabet, 1, 61, 63, 79

B
Bayes
decision rule, 7, 32
theorem, 32
Beam search, 58-60, 86
Biometrics, 5, 6

C
Confusion matrix, 104
Context, 4, 8-11, 53-57, 69, 80
Context dependent units, 80, 120
trigraph, 80, 120-122
Covariance, 76, 78

D
Densities
continuous, 36
discrete, 37
mixture, 50
Digitizer, 3, 10, 23-28
sample speed, 3, 20, 64
specification, 24
Dynamic programming, 11, 39, 134
Dynamic Time Warping, 134

E
Entropy, 56
Evaluation, 32

F
Feature, 139

aggregate, 142
angular, 70
contextual, 142
contour, 73
hat, 72
overlap, 72, 159
pen-up, 139
positional, 70
pressure, 3, 27, 130, 141
selection
automatic, 144
size, 71
tilt, 3, 27, 130, 141
vector, 65
velocity, 26, 140
Feature vector, 32, 65, 131
aggregate, 67
contextual features, 69-75, 96,
103-104, 112-113, 115-
117, 142-143, 165-166
delta features, 68
spliced, 68
Forensic science, 133
Frame, 65
size-independent, 65, 95
Frames, 83

H
Handwriting, 4, 16-23
baseline, 84
diacritical, 84
generation, 19
information

196

dynamic, 3
static, 3
ligature, 17
model, 9
motor, 20-22
nationality, 17
off-line, 3, 11
on-line, 3, 11
overspecification, 18
reading, 22
recognition, 7, 10~13
unlimited vocabulary, 124
shape, 17
size, 64
slant, 84
slope, 84
speed, 20, 64
style, 4, 17
unit, 9, 19, 20, 22
variability, 4, 16, 64
verification, 7, 62
Hidden Markov model, 8, 31-62, 78
algorithm
Backward, 41
Forward, 40
Viterbi, 42
backspace state, 79, 118-120
beamsearch, 86
contextual, 53-54, 80-81, 120-
122
covariance, 78
definition, 34-35
left-to-right, 36, 78, 79, 131, 144
ligature model, 79-80, 118-120
pause state, 79-80, 118-120
recognition, 12
implementation, 86, 89
signature, 144
size, 97, 145
threshold, 145, 160

Subject Index

automatic, 163
personal, 163

training, 44-53
convergence, 51
Forward-Backward, 47
implementation, 84
Viterbi, 49

transitions, 36

trigraph, 80

Human

acceptance, 109

performance, 10, 109

reading, 22

L
Language model, 11, 54-57, 81
Lda, 76-78
Ligature, 5, 17, 79
Linear discriminant analysis, 7678,
143

M
Markov
chain, 33
model, 33-34
Motor model, 2022

P

Pen

inclination, 155

pressure, 27, 155

robustness, 141

tilt, 27, 150, 155
Perplexity, 56-57, 125, 126
Preprocessor, 83
Principal component analysis, 76

R
Recognition, 61
formulas, 11
handwriting, 10

Subject Index

music, 11

sentences, 124

shorthand, 11
Representation, 9, 28-30, 64

blocking, 29-30, 159

feature extraction, 29

frame, 30, 65

grouping, 29-30, 131, 159

Ida, 76-78

segment, 65

S
Scribble, 30
definition, 20
Search, 9
Segment, 65, 83
Segmentation, 29
signature, 159
Signature, 5, 18-19
complexity, 170
database, 135, 150
duration, 135, 144, 166
forgery
amateur, 132
home-improved, 151
over-the-shoulder, 151
professional, 132, 151, 169,
170
skilled, 132
type, 131, 135
functional approach, 138
grouping, 138
legibility, 18
length, 144
model
size, 145
structure, 144
parametric approach, 29, 138
reference, 144
reproduction, 17

197

score, 147, 162
segmentation, 159
size, 145
threshold, 137, 144, 145, 160
automatic, 163
variability, 18
verification, 13, 62, 131
features, 139
LDA, 143
writing time, 135
Speech, 10
recognition, 5, 8
verification, 13
Stroke, 22, 30
definition, 20
delayed, 5

T
Tied
covariance, 97, 145
Time alignment, 29, 49
Training, 32
Trigraph, 54, 80
Triphone, 54, 80

U
Unipen, 91

A\
Viterbi, 41, 134
Vocabulary
unlimited, 82
Voice
verification, 13

W
WER, 54, 92, 112, 123, 126, 127
Word accuracy, 88
Word error rate, 54, 92, 112, 123,
126, 127

Samenvatting

In dit proefschrift behandelen we het probleem van on-line handschriftherken-
ning en verificatie. In tegenstelling tot een off-line benadering waar alleen statis-
che informatie beschikbaar is, zoals een plaatje, gebruikt een on-line aanpak ook
dynamische handschrift informatie zoals tijd, snelheid en druk. Onze aanpak is
gebaseerd op het hidden Markov model (HMM), een statistisch model dat ook in
de continue spraakherkenning wordt gebruikt.

Het doel van de handschriftherkenning is een schrijver-onafhankelijke herken-
ning van letters, woorden en zinnen. Verschillende representaties en modellen
worden onderzocht waarbij geen extra eisen aan de schrijfstijl of layout worden
opgelegd. Daarbij is de representatie van speciaal belang om schaalbaarheid,
performance en compactheid te onderzoeken. Het concept van ,contextuele fea-
tures” wordt geintroduceerd en toegepast om naast korte- ook middellange-termijn
trends in handschriften te modelleren. Deze kenmerken kunnen het aantal herken-
ningsfouten halveren. Vergeleken met de ,delta features’ uit de spraakherken-
ning, gebruiken de ,contextuele features’ minder extra kenmerken. Schaalbaarheid
wordt onderzocht door, in tegenstelling tot de gebruikelijke methode die de
schrijfgrootte corrigeert na het schrijven van een complete letter of woord, een
grootte-onafhankelijke representatie te onderzoeken die gelijktijdig schrijven,
schalen en herkennen mogelijk maakt. Een uitgebreide numerieke studie bevat
o.a. een woord-herkennings experiment met een vocabulair van 200 woorden
(99% correcte herkenningen) en 20.000 woorden (88.8% correcte woorden) wat
vergelijkbaar is met andere state-of-the-art resultaten.

De on-line handtekening verificatie combineert een nieuwe digitalizerings
technologie (PAID = Philips Advanced Interactive Display) met het hidden Markov
model om de toegevoegde waarde van dynamische informatie te onderzoeken.
Verder worden verschillende representaties, modellen en drempelwaardes onder-
zocht. De kwetsbaarheid voor vervalste handtekeningen wordt onderzocht d.m.v.
verschillende soorten vervalsingen van zowel amateurs als professionals. Daar-
voor wordt een database met bijna 5000 handtekeningen gebruikt. Het punt van
gelijke verhouding van het percentage geaccepteerde vervalsingen en verworpen
originelen ligt tussen de 1% en 1.9%.

198

Curriculum Vitae

Hans Dolfing was born on August 20, 1966, in Amersfoort, the Netherlands. From
1985 to 1990 he studied computer science at the University of Twente in Enschede,
the Netherlands. He graduated in December 1990, on the object-oriented design
of an object allocation strategy in the distributed Sina system. His Master’s thesis
was written under the supervision of M. Aksit.

In September 1991, he joined the Philips Research Laboratories in Eindhoven.,
As a member of the PAID and ROSE project, he has been working on aspects
of on-line handwriting recognition and verification with the objective of an user-
friendly user-interface. In this work, he combines his interests in pattern recogni-
tion, object-oriented software engineering, high-performance computing, compil-
ers and algorithms. In August 1997, he joined the Man-Machine Interfaces group
at Philips Research Laboratories in Aachen, Germany, to work on speech recogni-
tion.

199

Stellingen

behorende bij het proefschrift

Handwriting Recognition and Verification
A Hidden Markov Approach

van

J.G.A. Dolfing

I

Feature vectoren in handschriftherkenning beschrijven vaak te veel ,Jocale’ informatie
en te weinig ,globale’ informatie. (Dit Proefschrift, Hoofdstuk 5)

II

In de literatuur over handschriftherkenning is het gebruik van trainingsvoorbeelden
ter verbetering van de herkennings nauwkeurigheid overschat, terwijl het gebruik van
context ondergewaardeerd is.

I

In de literatuur over handtekening verificatie is het gebruik van druk overschat terwijl
het gebruik van tilt ondergewaardeerd is. (Dit Proefschrift, pagina 156,165)

v

Handschriftherkenning is gemakkelijker voor mensen dan voor computers. Voor veri-
ficatie is dit precies andersom.

v

Het toenemend gebruik van computers bevordert de schrijfvaardigheid niet. Daardoor
zal handschriftherkenning steeds moeilijker worden.

VI

Het belang van de Open Software, zoals Linux en gcc, op software research en
ontwikkeling wordt door bedrijven onderschat. Het belang van Microsoft op software
research en ontwikkeling wordt overschat.

vl

Software engineers kunnen meer leren van ,Programming Pearls’ dan van ,program-
ming Perl’. (BENTLEY, J.L. [1986],Programming Pearls, Addison Wesley)

VIII

Er is vaak een omgekeerd-evenredig verband tussen software engineering en manag-
ment kennis. Deze mismatch kost het bedrijfsleven meer dan het Y2K probleem.

IX

In het kader van de oplopende hoeveelheid en complexiteit van landbouwquota is het
aan te bevelen de hoeveelheid landbouwgebieden te verminderen en dit te combineren
met een uitbreiding van Schiphol.

X

Spraakherkenners, handschriftherkenners en katten zijn natuurlijke vijanden van de
muis.

	Preface
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography
	Author index
	Subject index
	Samenvatting
	Curriculum Vitae
	Stellingen

