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Chapter 1 

Introduction 

Process algebra is the study of concurrent processes in an algebraic framework. The 
main algebraic technique used in process algebra is the axiomatic method, which con
sists of finding a set of axioms that will describe the behaviour of processes and their 
laws of composition. A process can be seen mainly as the behaviour of a system, where 
a system can be, for example, a computer system, an elementary particle, a vending 
machine, or a satellite communicating with the earth. 

Process algebra appeared as an answer to the many problems that arose in the search 
for formal semantics of languages involving primitives for concurrency. One of these 
problems was the insufficiency of the input-output semantics, which was very successful 
in giving semantics to sequential languages. The growth in complexity of the problems 
concerning concurrent languages, led to the isolation of some basic notion of process and 
elementary operations on these processes. Nevertheless, as the theories grew and they 
were used in applications, the many features already studied in the field of sequential 
languages had to be reconsidered in this framework. 

One application of process algebra that deserves attention is the idea of atomicity. We 
approach this problem using the idea that an atomic action will have some effect on 
its environment, as well as possibly being affected by this environment. Atomicity will 
mean in this context the property of this effect of being performed without interference 
from other components. This seems to agree with the notion of atomicity used in the 
field of distributed data bases. 

This thesis studies some of these features in the framework of process algebra. 

Chapter 2 introduces the basic notions of process algebra and the state operator, which 

7 



8 CHAPTER 1. INTRODUCTION 

are fundamental in this work. The state operator used here is a generalization of the 
one presented in [BB88]. The main difference is that we have a more symmetrica.I view 
of the state operator, and we are not only interested in the process modified by a state 
but also in the set of states produced or modified by a process. This will allow us to deal 
with the input-output behaviour of a process, which is necessary in other chapters of 
this thesis. Some new non-equational principles are introduced as well as non-standard 
models that exemplify such principles. 

Chapter 3 presents the idea of non-elementary atomic actions in process algebra. This 
concept has been the subject of much discussion and the source of many different 
models. The concept of atomicity is essential in interleaving theories of concurrency, 
and many models rest upon the fact that it is a primitive concept. We depart slightly 
from the interleaving theories in order to introduce a mechanism to prescribe that a 
process must be executed in an atomic way. The equality of atomic actions introduced 
will represent the fact that two atomic actions will act identically in any state. The 
concept of atomic action considered in this chapter combines ideas from [Bou89] and 
[BK84b] but differs from the first in the use of branching time semantics against the 
input-output semantics of [Bou89], and instead of syncronization as in [BK84b] it is 
based on multiactions. Furthermore, the concept of recoverability of an atomic action 
(i.e. if it does not terminates successfully, then the state of the system should be the 
same as it hs never been performed) is implemented using the idea that unsuccessful 
termination is a zero object ([BB90]) inside an atomic action. This improves over 
[Bou89] since it can distinguish between deadlock and livelock inside an atomic action. 

Chapter 4 is a study concerning the combination of data and processes. In the litera
ture, many different approaches were used to integrate the theories of data types and 
processes. Even when both theories are restricted to algebraic theories, some different 
combinations were used. For example in the thesis [Pon92] the data types were used 
as indexes for recursion equations, whereas in (AMR88] the processes were consider as 
a particular data type. Here, we demonstrate how certain data types can be seen as 
processes, in a very natural way. Thus, we can reduce the interaction between process 
and data to interaction between processes. Furthermore, we present a new solution 
for the use of data types, and the implementation of one data type by another, in a 
concurrent environment. 

In chapter 5 the state operator is restricted to have a finite set of states in order to study 
whether the addition of the state operator can increase the set of processes definable 
by a guarded recursive specification. 

Some results concerning the decidability of bisimulation in some of the classes defined 



in chapter 5 are introduced in chapter 6. 
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Chapter 2 

Prelimi11aries 

2.1 Process Algebra 

2.1.1 Introduction 

In this section we present a brief description of process algebra. We refer the reader to 
[BW90, BVng] for further information. 

Several systems will be used. The largest signature considered is the one of ACP 
(Algebra of Communicating Processes) with projections and renamings, to be presented 
in the next section, and the state operator (see section 2.6). The signature of ACP has: 

constants a finite set A of atomic actions and a special constant f; indicating a dead
locked process. 

unary operators given HCA the encapsulation operator OH. 

binary operators +,·,II, lL , I- + represents alternative composition, · sequential 
composition, and II parallel composition (merge). The auxiliary operators [L 
(left merge) and I (communication merge) are used to define the merge. 

The sequential composition has the highest followed by the merge and the 
auxiliary operators (left and communication merge); the alternative composition has 
the lowest precedence 

11 



12 CHAPTER 2. PRELIMINARIES 

2.1.2 Basic Process Algebra 

The theory BPA has a restricted signature with only A,+ and ·. The axioms are given 
in Table 2.1. 

One important characteristic of this set of axioms is the absence of the distributive law 
symmetric to A4. This means that the moment of choice is a distinctive characteristic 
of processes, and not only the set of possible traces. 

I Al 
A2 

I A3 
• A4 
A5 

x+y~y+x I 
x + (y + z) = (x + y) + z. 
x+x=x 
(x+y)·z 
(x·y)·z 

x·z+y·z I 
x · (y · z) 

Table 2.1: Axioms of BPA 

The constant 8, which represents a process that cannot proceed, can be-added through 
the axioms in Table 2.2. This constant is called inaction. In some works the constant 
c5 is called deadlock despite the fact that Axiom A6 states that it can be avoided if the 
process can do something else. 

The theory of BPA with the addition of the constant 8 will be called BPA8 . 

A6 x + 8 = x 
A7 O·x=b 

Table 2.2: Axioms for 8 

2.1.3 Process Algebra 

The signature of the theory PAs contains II and lL besides the elements of the signature 
of BPA0• The II represents the free merge. The additional axioms are presented in 
table 2.3 (a ranges over AU c5). 

2.1.4 Algebra of Communicating Processes 

The theory called A CP is presented. The theory is parametrized by a communication 
function I which indicates which atomic actions communicate. This function is assumed 
to be commutative and associative, and to satisfies the equation -y( 8, a) = 8 for all 
a E A. The axioms of table 2.1 and 2.2 should be extended with the axioms of table 
2.4 (a, b EAU { 6} ). 



2.1. PROCESS ALGEBRA 

Ml x II y = x lL y + y lL x 
M2 a [l_ x =a· x 
M3 a · x lL y = a · ( x II y) 
M4 (x+y) z x[l_z+y[l_z 

Table 2.3: Additional axioms of PA5 

CMl x II Y = x lL Y + Y lL x + x I Y 
CM2 all_x=a·x 
CM3 a· x lL y = a · ( x II y) 
CM4 (x + y) [l_ z = x [l_ z + y [l_ z 
CFl alb=1(a,b) 
CM5 a· x I b =(a I b) · x 
CM6 a I b · x =(a I b) · x 
CM7 a. x I b. y =(a I b). (x II y) 
CMS (.T + y) I z = x I z + y I z 
CM9 x I (y + z) = x I y + x I z 
Dl 8H(a) =a if a</. H 
D2 8H(a)=8 if a EH 
D3 OH(x + y) = OH(x) + OH(Y) 
D4 8H(x · y) = OH(x) · OH(Y) 

Table 2.4: Additional axioms of ACP 

13 



14 CHAPTER 2. PRELIM1NARIES 

2.1.5 Renamings 

A feature that can be added to the previous algebras is the possibility of renaming 
atomic actions, given a function f : A \ { 5} -+ A. The operator pf is defined in table 
2.5 (a EAU {5}). 

RNO P1(5) 8 
RNl P1(a) = f(a) if a f= 8 

'RN2 PJ(x · y) = P1(x) · PJ(Y) 
I RN3 P1(x + y) = P1(x) + PJ(Y) 

Table 2.5: Renamings 

2.1.6 Projections 

Any of the signatures defined above can be extended by an infinite set of unary operators 
11'n with n a natural number greater than or equal to 1. The intended meaning of 7rn(P) 
(in some appropriate model) is the process that behaves as P but stops after executing 
n steps. The axioms for the projection operators are given below, in table 2.6 (a EA 
or a E A U { 8} in case of a theory with 8). 

PRl 1rn(a) =a 
iPR2 7r1 (a·x) a 

PR3 11'n+i(a · x) =a· 1rn(x) 
PR4 11'n(x + y) = 11'n(x) + 11'n(Y) 

Table 2.6: Projections 

In [BW90] a different version of projection was also introduced. The n-th projection of 
a process stops after n steps but leaves an unsuccessful termination ( 8) if the process 
has not already finished. Furthermore, this projection can be defined for any n 2:: 0. 
The axioms are given in table 2.7. 

2.1. 7 Recursive definitions 

Sometimes, the processes we will consider are defined by using a set of recursive equa
tions, i.e., processes that are solutions of such a set in a suitable model. 

Definition 2.1.7.1. 
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PDl 
PD2 
PD3 
PD4 

Table 2.7: Axioms of projections with unsuccessful termination 

15 

1. A system of recursion equations (over a process theory, say BPA) is a finite set of 
the form: · 

E {X;=s;(Xa, ... ,Xn);i O, ... ,n} 

where the s;(X0 , ..• , Xn) are expressions in the required signature, and the vari· 
ables of s; are among Xo, .. . , Xn. 

2. A countably infinite system is defined similarly, but now i ranges over the set of 
natural numbers: 

E = {X; = s;(X);i EN} 

3. A solution (in a certain model) of a recursive specification is a set of processes, 
one for each variable, such that the equations become true statements when the 
variables are interpreted as the corresponding processes. We sometimes use the 
word solution for the process in that set which corresponds to the first variable 
of the specification. 

4. A specification is guarded if every occurrence of a variable in the right hand side 
of an equation is, modulo the axioms of the theory, in a term of the form a · s, 
for some atom a. Guardedness is a sufficient condition to guarantee uniqueness 
of solutions in many models. 

5. We say that a process p has head normal form if there are n and m, natural 
numbers, atomic actions a; (i < n), bi (j < m) and processes p; (i < n) such that 

p 2..:a;p; + 2..: bj 
i<n j<m 

We take as a convention that 2.::i<O p; 8. 

6. A process is definable if it is a solution of a guarded recursive specification. 

0 

Note that for each model M, we can consider the submode! of all definable processes, 
since definable processes are closed under the operations of ACP (see [BW90]). 

Lemma 2.1. 7.2. Let p be a definable process. Then 
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1. p has a head normal form, i.e. we can write p as 

I: a; . q, + E bj 
i<n i<m 

and, moreo11er, all q; are definable. 

2. For e11ery n, 7rn(P) equals a closed term. 

Proof. See [BW90] D 

2.1.8 Properties of process algebras 

In this section we state the definitions and properties of process algebra that will be 
needed. A more extensive study and the proofs of these results can be found in [BW90]. 

Definition 2.1.8.3 (Basic terms). The set B of basic terms of BPA6 is defined induc
tively as follows: 

1. A~ B; 

2. 6E B; 

3. a E A and t E B implies a · t E B; 

4. t, s E B implies t + s E B. 

D 

Theorem 2.1.8.4 (Elimination). Given any closed term t in BPA6, PA01 or ACP, 
possibly with projections and renamings, there exists a basic term t' such that (in the 
corresponding theory) t = t'. 

Definition 2.1.8.5. A partial order between processes can be defined as follows: 

p::::; q iff q q + p 

which is equivalent (see [BW90]) to 

p ::::; q iff 3z, q p + z 

D 

Definition 2.1.8.6 (Alphabet). The alphabet of a process is the subset of the set of 
atomic actions consisting of the actions that a process may perform. Given a process x 
we write a(x) to denote this set. The axioms in table 2.8 are taken from [BW90](a EA). 

When definable processes are considered the axiom in table 2.9 can be used. 

D 
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2.2 Models 

ABl 0:(8) = 0 
AB2 o:(a) ={a} 
AB3 o:( ax) = {a} U a( x) 
AB4 a(x + y) = a(x) U o:(y) 

Table 2.8: Alphabet 

AB5 o:( ax) = LlieN a( Jr;( x)) 

Table 2.9: Alphabet for definable processes 

2.2.1 Properties of models 

Some models have peculiar characteristics. One of the aims of process algebras is to 
develop a theory that can be used in different models of concurrency. The technique 
used to achieve this goal is to establish certain properties that are useful for a theory 
of concurrency, and then show that a number of well-know models satisfy them. Given 
this fact the results can be obtained modulo this property and there is no need to refer 
to a specific model. 

A very important property that one can ask is completeness of an axiomatisation with 
respect to a particular model, i.e. that if the interpretation of two terms is equal in the 
model, then they can be proved equal using the axioms of the theory and equational 
reasoning. In case the equational theory of BPA is complete with respect to a model 
M we will write it as follows: 

M !=COMP 

Completeness is a very important property as we will see in some examples, however 
it involves only closed terms. Models also have elements which are not represented by 
any closed term but they are, for example, solutions of a system of equations, or even 
not represented at all. Hence, some principles are introduced which can aid in dealing 
with models: 

Definition 2.2.1.1 (RDP). The Restricted Recursive Definition Principle (RDP-) 
says that every guarded specification has a solution. D 

Definition 2.2.1.2 (AIP). The Approximation Induction Principle (AIP) states that 
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a process is determined by its finite projections, i.e., 

x=y 

D 

Definition 2.2.1.3 (RSP). The Recursive Specification Principle (RSP) states that 
every guarded recursive specification has at most one solution. This principle is a 
consequence of AIP (see [BW90]). D 

Another concept that will be useful in the following is that of finite projections. 

Definition 2.2.1.4. We write M J= FINPROJ meaning that all processes in M have 
finite projections, i.e., their projections equals a closed term. 0 

By Lemma 2.1.7.2, we have 

Corollary 2.2.1.5. M J= DEF implies that M J= FINPROJ. 

Definition 2.2.1.6 (FAP). Another principle that is used implicitly in many works 
on process algebra is the Fresh Atom Principle (FAP} which says that we can use fresh 
atomic actions in proofs. This principle was formalized in [BG87] in the following way: 
Suppose we have a set of atomic actions A and a communication function (if present in 
the signature) 1 · Given an atomic action a ¢ A and an extension 1* of 1 to A U {a}, 
FAP says that any equation p q over the smaller signature (with parameters A, 1) 
may also be proved using A U { 8} and 1* as parameters in the proof. 0 

2.2.2 Standard models 

In the following we introduce several models. For more details we refer to [BK84a, 
BW90]. 

Example 2.2.2.7 (The initial algebra). The initial algebra (say A) is defined as usual: 
A is the set of equivalence classes of closed BPA terms modulo provability in the equa
tional theory. That is 

A J= s t ~ BPA I- s = t 

Analogously we can define an initial algebra for BPA+PR which will be ambiguously 
called A. 
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Example 2.2.2.8 (The graph models). Consider a finite set of labels, say A. A 
graph with labels from the set A is a structure consisting of a set of nodes, whith 
a distinguished node called root, and a set of edges labeled with elements of A. In 
general, we write s t meaning that there is an edge with label a from the node s to 
the node t. If g is a graph, root(g) is the root of g. We call G00 the class of all graphs 
with labels belonging to A. 

Definition 2.2.2.9 (Bisimulation). Let g, h E G00
• A bisimulation is a binary relation 

R between the nodes of g and h such that, for all a E A: 

1. root(g) R root(h); 

2. sRt /\ s ~ s1 :::} 3t'.t ~ t' /\ s' Rt'; 

3. sRt /\ t ~ t' :::} .s ~ s' /\ s' Rt'. 

If such a relation exists we say that g and h are bisimilar and we write g +--+ h. D 

We take from [BW90] the root unwinding map, p : G00 --+ G00
, which, given a graph, 

obtains a new one that is bisimilar to the original, and has no incoming edge in the 
root. The (total) unwinding map, tree : G'"° --+ G00

, obtains a new graph which is 
bisimilar to the given one, where the root has no incoming edge, and the other nodes 
have at most one incoming edge. 

We define an interpretation in G00 for the BPA+PR operations. From now on, we 
use superindication of the model's name in order to represent the interpretation of an 
operator in such a model: 

1. For each a E A, aG"° is the graph having only two nodes with an edge between 
them labelled by a. The source node is the root. 

2. Given g, h E G00
, we define g +G°" h by first unwinding the roots of g and h 

(making p(g) and p(h)), and then identifying the new roots. 

3. g .G°" his defined by identifying every node in g having no outgoing edge with the 
root of h. 

4. In order to define 7r;?00

(g), first unwind g to a tree (make tree(g)), then remove 
all edges leaving from a node at depth n. 

Now, we have: 

Theorem 2.2.2.10. G00 
/ H f= BPA +PR. Moreover BPA+PR is a complete 

axiomatization J or G00 
/ !::::!:. • 

In addition, there are other models that are completely axiomatized by BPA+PR, which 
are obtained by considering subsets of G00

: 
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1. the model of finitely branching graphs ( G / _t::t ), 

2. the model of finite or regular graphs ( R/ +-+ ), 

3. the model of finite acyclic graphs ( F / _t::t ). 

Example 2.2.2.11 (The term model). The set P of process expressions is defined 
by the terms in the signature of BPA+PR and a new constant < XIE > for every 
recursive specification E and any variable X occurring in E. The expression < tlE > 
denotes the term t with all variables in t replaced by their corresponding constants (in 
E). Abusing notation we sometimes write X for < XIE > and t for < tlX >. We 
define the behaviour of a process in P according to the action relations defined by the 
rules in the Plotkin 's style [Plo81] given in Table 2.10. 

tx~P 
--a - if X :::; tx E E x --tp 

p~p' 

Table 2.10: Operational rules for BPA+PR 

A relation holds between terms t, s, t ~ s, if and only if it can be derived using 
the rules in table 2.10. Analogously for the predicate~ ,./for a term t, t ,./. 

Now, we define: 

Definition 2.2.2.12 (Bisimulation ). A bisimulation is a relation R ~ P x P such 
that, for all a E A, pRq implies: 

1. p ~ p' => 3q'.q ~ q' /\ p' Rq'; 

p' /\ p' Rq'; 

3. p ~ v {::::==? q ~ v; 
We say that p and q are bisimilar (notation p +-+ q) if there exists a bisimulation R such 
that pRq. o 
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The set of operations on P is defined pointwise (BW90]). Then, we have: 

Theorem 2.2.2.13. P/ ,__, I= BPA +PR. Moreover BPA+PR is a complete axiom
atization for P / .tz. . 

Example 2.2.2.14 (The projective models). Let n > 0 be a natural number. Let 
An= {11'n(x)lx EA}. WedefineequalityonAnasexpected. Operations are interpreted 
as follows: 

aA" a x y 1rn(x+y) 
'lr!"(x) = 11'n(11'm(x)) X·Any=7rn(x·y) 

Now, we have: 

Theorem 2.2.2.15. For all n > 0, An I= BPA +PR. 

However, for any n, A"~ COMP, since 

but a" f:. a"+I in the initial algebra. 

Example 2.2.2.16 (The projective limit model). Let t, E A (i > 0). A sequence 
ti, t 2 , •.• of closed terms is called projective if for all i, t; = 7r;( t;+t)· Note that if ti, t 2 , •.• 

is a projective sequence, then tn E An. The set A 00 of all projective sequences is the 
projective limit of A"' ( n > 0). We define the operations component-wise, according to 
those defined in Example 2.2.2.14. Now, we have: 

Theorem 2.2.2.17. A00 I= BPA +PR. Moreover BPA+PR is a complete axiomati
zation for A 00

• 

Definition 2.2.2.18. Let M be a model of BPA. We define a relation 
in the following way: 

p__::_.q {::::::::?- M FP p+a·q 

or equivalently 
p__::_.q {::::::::?- M l=a·q:s.;p 

Analogously, we define the relation ---+ ,,/ f;; M x A, by 

or equivalently 

MxAxM 

D 
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The definition above extends the notion of transition to all BPA models, and so, the 
notion of bisimulation given in Definition 2.2.2.12 can also be extended to all models 
in the expected way. Thus, we have fact 2.2.2.22. 

Definition 2.2.2.19. Given a (possibly empty) sequence of atomic actions <1 EA* we 
define the relation --+* inductively as follows (we use E for the empty sequence): 

< * X--+ X 
a * x Y*X- y 

q * T * * x--+ yVy--+ z*x z 

D 

Definition 2.2.2.20 (Action graph). Given a closed term tits action graph will have 
as nodes the set of equivalence classes (modulo provability in BPA) of closed terms 
{ sl3<1 E A*, t ~ * s} and a special termination node ..j. The edges will be given by 
the action relations. D 

Proposition 2.2.2.21. Two closed terms s, t are provably equal (EPA f- s = t) if <md 
only if they have isomprphic action graphs. 

Fact 2.2.2.22. Let M be a model for BPA. Then, for all p, q EM, we have 

M l=p=q*p.t:tq 

0 

As we will see further on in this chapter, in general, it is not true that bisimilarity 
implies equality in a model. However, the following lemma states that it holds for the 
subset of closed terms in a complete model [BW90]: 

Lemma 2.2.2.23. Let M be a BPA model such that M I= COMP. For all processes 
p, q E ;\.1 which can be represented by a closed BPA term, 

Ml=p q~p,,_..q 

2.3 Left Cancellation of Atomic Actions 

A useful property, both from a theoretical and applied point of view, is the left cancel
lation of atomic actions. The general left cancellation property 

x·y=x·z*z y 

is of course not true in the standard models, since when we take a perpetual process 
x (i.e. there exists no sequence of atomic actions <1 such that x ~ * ..j) the equation 
in the antecedent holds for any y, z. As we will see, the left cancellation of atomic 
actions is useful in defining equivalence of states in a context where the state operator 
is present. 
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2.3.1 Left cancellation of atomic actions 

One property which was barely touched on in process algebra is the left cancellation of 
atomic actions. We express this property using the following conditional axiom: 

CANC a · x =,a· y => x = y 

This property seems to be true in most of the (interleaving) models that appeared in 
the literature. It is useful when one works in contexts with the state operator (see 
section 2.6.4). 

One can state a stronger version of this property. 

CAN c+ a · x 5. a · y => x = y 

At first sight it looks too strong, but it only means that a process of the form a · x can 
only do an a-action into x. It is an obvious fact that CANC+ => CANC. Later we will 
exhibit a model that satisfies CAN C but not CAN c+. Another trivial implication of 
CANc+ is that 

a·p5.a·q ~ a·q5.a·p 

2.3.2 Properties 

Theorem 2.3.2.1. Let M be a model for BPA +PR satisfying COMP,AIP and 
FINPROJ. Then M I= CANC+. 

Proof. For closed terms it is straightforward, since two basic terms are equal if and 
only if they have the same set of summands modulo Al, A2, A3. But if 

a·p'5:a·q 

since a · q has only one summand, then 

a·p=a·q 

using only Al, A2, A3. It follows from the completeness of the axiomatization with 
respect to M that p = q. 

Take two processes p and q such that 

Then, it follows by AIP that there exists n such that 

From the first part of the proof and given that 7rn(P) and 11'n(q) are closed terms, it 
follows that 
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or equivalently 

or 

and then, 
a·q=fa·p+a·q 

or equivalently 

D 

Corollary 2.3.2.2. If M I= COMP, AIP, DEF then M I= CANc+ 

As an immediate corollary, we have that a complete model satisfying AIP and FINPROJ 
(or definability) also satisfies (non-strong) cancellation. 

Corollary 2.3.2.3. Let M be a model where the state operator is present. Then if 

MI= COMP,AIP,DEF 

then for any pair of states s, t it holds that 

Example 2.6.4.14 shows that completeness is essential for corollary 2.3.2.3. 

We know that the initial algebra A of BPA is complete and satisfies AIP, and so does 
the projective limite model A 00

• · In addition, all of them satisfy FINPROJ. 

The term model P / +-+ or the graph model G00 
/ +-+ , which are isomorphic, do not 

satisfy AIP but they satisfy CANC+. If a graph a· g is bisimilar to a graph a· h via R 
it is immediate from the definition of bisimulation and of sequential composition, that 
R must relate the roots of g and h as well. Thus, we have that: 

Theorem 2.3.2.4. The following models satisfy CANCand CANC+: 

• the initial algebra A, 

• the graph model G00 I ~ ' and its submodels GI ~ ' R/ ~ and FI H 

• the term model P / +-+ , 

• the projective limit model A 00
• 
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2.4 Bisimulation in an Arbitrary Model 

Given a model, we use the semantic action 

x y {::::::> x a·y+x 

to define bisimulation equivalence. In some models it coincides with its intrinsic equality, 
but in others it is coarser and in some it is not even a congruence. 

As in the previous section we find conditions on the model that ensure that the bisim
ulation equivalence coincides with the equality of the model. 

2.4.1 Bisimulation and models 

From Definitions 2.2.2.18 and 2.2.2.9 we can easily prove that equality in a model M 
implies bisimulation, i.e. 

Ml=p=q:::}pHq 

Moreover, = is a bisimulation. Nevertheless, the converse does not hold in general (see 
Section 5.5. 7.22). If a model M satisfies certain properties it holds that p H q :::} M I= 
p = q . In order to show that we will need the following technical lemma: 

Lemma 2.4.1.1. Let p and q be two closed processes in head normal form, i.e. 

P = Lai · Pi + L bj 
I J 

q = L Ck . q,. + L d1 
K L 

then p q if and only if for any i E I there exists a k E [( such that a; · p; = Ck • qk 
and for any j E J there exists a l E L such that bj = d1 and the same with the roles 
of p and q exchanged. In other words, if they have the same set of summands modulo 
EPA equality. 

Proof. In [BW90] the following rewriting system is defined. 

(x·y)·z x · (y · z) 

(x + y) · z --t x · z + y · z 

This rewriting system is confluent modulo Al, A2, A3, i.e. two normal forms could 
be proved equal using these three axioms, and strongly normalizing. It is immediate 
by simple inspection, that the three axioms preserve the set of summands of a normal 
form (modulo Al, A2, A3). This means that ifs is a summand of a normal form x, 
and y is a normal form such that x y then there is a summand t of y such that 
AI,A2,A3 I- s = t. 
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It is enough to show now that a term in head normal form has the same set of summands 
(modulo BPA equality) as its normal form. However, this is a consequence of the 
definition of the rewriting system, since (2::: 1 a; · p; + LJ bj) -----+ p' if and only if there 
exist io, r such that Pio -----+ r and p' LJ-{io} a;· Pi+ a;0 • r + bj. This implies that 
all the intermediate terms in any reduction p -----+* p' have the same set of summands. 

D 

Theorem 2.4.1.2. Let M be a model of BPA, such that M is complete, satisfies AIP 
and every process in it is definable. Then two processes in M are equal if and only if 
they are bisimilar. 

Proof. By the definition of the action relation it is obvious that two equal processes 
are bisimilar. 

Take two processes p, q such that p H q. 

If p and q are closed terms then they are bisimilar if and only if they have the same 
action graph, if and only if they can be proved equal by the axioms, if and only if they 
are equal in a complete model. 

Now, suppose that p and q are definable, and assume that pH q. We want to show 
that for any n, 1rn(P) = 1rn(q). The desired result follows by AIP. Since 1rn(P) and 1rn(q) 
are closed terms, by the first half of the proof it is enough to prove that for any n, 
1rn(P) ~ 1rn( q). 
In order to show this, take R: p ~ q and define S = {(7rn(p), 1rn(q))jpRq} Now, using 
the lemma above, it is easy to prove that S is indeed a bisimulation. D 

We say that a model M satisfies bisimilarity (Notation M I= BISIM) iff M and M/ ~ 
are isomorphic. Thus, the previous theorem states a sufficient condition for a model to 
satisfy bisimilarity. 

Hence, the models that satisfy completeness, AIP and definability, satisfy both the 
left cancellative property and bisimilarity as well. However, bisimulation and left
cancellation seem to be unrelated. 

2.5 Non-Standard Models 

In this section we introduce some models that do not satisfy some of the properties 
presented above. All these models are complete and some satisfy AIP as well. All 
the models are constructed from a BPA model that satisfies AIP, completeness and 
definability. Moreover, the original model can be embedded in the new one. An axiom
atization for these models is also given using an extra operator. 

A non-complete model that already appears in the literature is also shown which satisfies 
bisimulation, but not the weakest version of the cancellation property. 
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In all the other examples a couple of complementary operators are introduced. The 
operator j indicates a divergence or failure. The exact interpretation of it depends on 
the model under consideration. The operator l is the complement of the previous one, 
and it is supposed to represent the state of "normality" for a given process. 

2.5.1 The models An 

These models were introduced in [BK87]. It is clear that they satisfy bisimulation, but 
the following example shows that they do not satisfy the cancellation property. 

Example 2.5.1.1. We have that all the finite projective models An, which are not 
complete, do not satisfy CANC. Consider, for instance, the following example: 

however, 

D 

2.5.2 Processes with root divergence 

Let M be model for BPA satisfying AIPand COMP. We define the set Mf as the union 
Ml UMj, where 

Ml= {pl IP EM} 

Mi= {pj IP EM} 

The sets M l and M i are disjoint, i.e. pl= q l ~ p q i ~ p = q while 
plf qj. We take the following interpretation for the BPA operations: 

aMi =al 
Pl +Mfql= (p +M q)l 
pl +Mfqj= pj +Mf ql= pj +Mfqj= (p +M q)j 

Pl ,Mfql= Pl .Mfqj= (p .M q)l 
pj ,Mfql= pj .MTqj= (p .M q)i 

Ml 
'lrn 

1 (pl) 1r:i(p )l 
Ml 

1rn 
1 (pi) = 1r:i(p) j 

Intuitively, the symbol l may be understood as "root convergence", and, conversely, j 
may be interpreted as "root divergence". The expression p j can be read as 'p may 
diverge in its first step'. 

It is clear that the submodel Ml of Mf is isomorphic to M. 
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Theorem 2.5.2.2 (Soundness). Mf I= BPA. 

Proof. As usual, it is proved by showing that each axiom holds for every element of 
Mf according to the interpretation above. We only prove A4 which seems to be more 
difficult than the others. In order to do this we consider separately the cases of l and 
j, but when they are not relevant, we will write 1-
(pl +Miql) .Mir 1 = (p +M q)l ·Mfr 1 

((p +M q) .M r)l 
(p .M r +M q .M r )l (A4 holds on M) 

= (p .M r)l +Mf (q .M r)l 

Pl .Mfr 1 +Mf q l .Mfr 1 
(p +M q)i .Mt r 1 

= ((p +M q) .M r)i 
(p .Mr +M q .Mr) l (A4 holds on M) 
(p .M r)i +Mt (q .Mr) 1 

t ! ! pj .M1r 1+M1q1·M1r1 

The case for pl and qj follows quite similarly. 0 

Theorem 2.5.2.3 (Completeness). Let s, t be two closed BPA terms. Then Mf I= 
s =tiff BPA I- s = t. 

t 
Proof. Note that for closed terms s, sM1 sM l- Thus the result follows from 
Mf I= pl= ql ¢=} MI= p q, since M f= COMP. o 

Theorem 2.5.2.4. Mf I= AIP. 

M! Mt 
Proof. Take pl and q l, and suppose that for all n, 7rn 1 (p l) = 'lrn 1 (q l). By 

! 
definition of 7r:;11 we have that 7r;;:1(p) 7r:;1(q) L. Because M f= AIP, we have that 
7r;;:1(p) 7r;;:1(q) implies p = q, and hence pl= ql. 
If we take p j and q j, the proof follows similarly. 

Mt Mt 
For all p,q we have that 7rn 1 (pl) 7r;;:1(p) l:f: 7r;;:1(q) j:::: 7rn 1 (q l), and so it never 

Mt Mt 
holds that 7rn 1 (pl} 'lrn 1 (qi}. 0 

Proposition 2.5.2.5. Mf F CANC. 

Proof. It can be easily proved by considering this example: 

al .Mf bl= (a.Mb) al .Mfbj 

but b Li= b j by definition. 

In this case, we have that b j is not a definable process. 0 
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Proposition .2.5.2.6. Mf ~ BISIM. 

Proof. We show that for any p EM it holds that p! ±::!.PT· In order to do that, we 
show that 

From this fact it is immediate that pl ±::!. p T 

and also 

p q 1 {::::::} 

al ·q 1$ Pl{::::::} 
a. q!$ P! {::::::} 

pl= a· ql +Pl{::::::} 
pl= (a· q + p)l {::::::} 

p=(a·q+p) 

P T _;i_, q 1 {::::::} 

al ·q !$PT {::::::} 
a · q l:::.; P i {::::::} 

pj= a· q l +pj {::::::} 

pj= (a. q + p)i {::::::} 

p (a·q+p) 

The quotient of Mf modulo bisimulation is isomorphic to M. 

0 

We can extend BPA+PR in order to obtain anew equational theory (write BPA +-PR+ T) 
which includes the unarf operator r. In this way, terms having no i are interpreted as 
elements having l in M 1 . Additional axioms are given in Table 2.11. 

It is not difficult to prove that the related term rewriting system, where the rules are 
the axioms written from left to right, is strongly normalizing. Moreover, if t is a basic 
BPA+PR term, then t and t j are basic BPA +PR+ T terms. Now the following 
theorem can be easily proved: 

Theorem 2.5.2.7. Mf I= BPA +PR+ j. Moreover, BPA +PR+ j is a complete 
axiomatization for Mf. 

Similar equational theories can be stated for models in the following sections. 
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D1 xi +y ( x + y )i 
D2 x + y ( x + y )i 
D3 xj·y=(x·y)i 
D4 x · y x · y 
D5 11'n(xi) = 11'n(x)i 

Table 2.11: Additional axioms for BPA +PR+ j 

2.5.3 Processes that may eventually fail 

Now, we define the model M~ starting from M, a model for BPA satisfying AIPan 
COMP. We define this exactly as before, except that we give a new interpretation for 
the sequential composition: 

pl .MJql= (p .M q)l 
pl .MJqj= pj .MJql= pj .MJqj= (p .M q)i 

Now, the symbol r may be understood as "may eventually fail"' and L as "never fail". 

Theorem 2.5.3.8 (Soundness). M~ f= BPA. 

Proof. This follows like in 2.5.2.2 D 

Theorem 2.5.3.9 (Completeness). Let s,t two closed BPA terms. Then Mi f= s = 
tiff BPA ~ s = t. 

Proof. As in the case of theorem 2.5.2.3, this follows from Mi f= p q l ¢==> M f= 
p = q, since M f= COMP. D 

Theorem 2.5.3.10. M~ f= AIP. 

Proof. This follows exactly as Theorem 2.5.2.4. D 

Theorem 2.5.3.11. M I= CANC implies Mi I= CANC. 

Proof. As we know, the only possible interpretation of a in Mi is a l. For any 
p,q E Mt assume al .MJp =al .MJq. 

Now, let us consider that there is a p' E M such that p' l= p. Hence, al .Mip = 
t (a.Mp') l. Suppose that q = q' j for some q' E M. Then, al .M2q (a .M q') j 

which contradicts our assumption. So q = q' ! for some q' E M. But (a.Mp') != 
(a .M q') l ¢==> (a.Mp') = (a .M q'). Because M f= CANC, p' = q', which implies 
p p' l= q' l= q. 
Case of p = p' j for some p' E M is proved similarly. D 
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Lemma 2.5.3.12. M~ ~ CANc+. 

Proof. For any process p it holds that p !~ p j, since p ! +p 
a! ·p!:::: (a· p) !~(a· p)i= a! ·pj but P!=F pj. 

p j. In particular 
0 

We can modify this model obtaining a new one that does not satisfy AIP, say M~notAIP· 
In order to do so, we redefine the 7r,,, operator in the following way: 

Ml Mt 
1rn 2no1AIP(p!):::: 1rn 2no1AIP(pj):::: 7r;:1(p)! 

Hence, M~notAIP is a complete model for BPA that satisfies CANC but not AIP. 

2.5.4 Other models 

We define two other models, M~ and Ml, such that the sequential composition is 
defined as in Mf and M~ respectively but the sum is defined for both as follows: 

pj +Ma,4qj= (p +M q)j 
P! +Ma,4qj= pj +M3,4q !=Pl +Ma,4q (p +M q) ! 

The intuitive interpretation is now as follows. In Mt pj means that p must diverge in 
the first step, while in Ml, it means that p must diverge eventually. 

We study here only M~. 

Proposition 2.5.4.13. M~ ~ CANC 

Proof. as in fact 2.5.2.5 0 

Proposition 2.5.4.14. M~ ~ BISIM> furthermore> bisimulation is not a congruence 
. Mt 
in 3· 

Proof. First note that a divergent process cannot perform an action, 

pj~q ~ 

a·q~pj~ 

a·q+pj==pj~ 

al ·q+pj=pj ~ 

(a·q+p)!==pj 

And also, that the last equality cannot be true. It follows that all divergent processes 
are bisimilar. If we then take p =F q, 

a·pj==(a·p)! 

a·q (a·q)! 

they are obviously not equal and therefore non bisimilar. 0 
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2.6 The State Operator 

2.6.1 Introduction 

The state operator in process algebra is introduced as a generalization of the renaming 
operators. This new operator represents the fact that the execution of a process can be 
influenced by the environment. This is achieved by taking a set S whose elements will 
be considered as states and two functions: 

+- : A x S -+ A U { 6} 
-+ : A x S -+ 'P(S) 

These functions will be used to describe the interaction between the states and the 
atomic actions. In the original presentation of the state operator {see [BB88]) it was 
called ,\ and the functions here named act and e.IJ respectively, but where the codomain 
of the second function was S instead of 'P(S). However, this first approach is not 
enough to describe the input-output behaviour of a process, since a nondeterministic 
choice could produce more than one output. The set obtained by the application of the 
effect function to a process and a state will consist of all states that can be reached, in 
at least one of the possible executions of the process, beginning in the given initial state. 
The change of the name of the operator is intended to reflect the more symmetrical 
view of the action and effect function in this thesis. 

2.6.2 Axioms for the State Operator 

We extend both functions to deal with processes: 

+- : P x 'P(S) -+ P 
-+ : P x 'P(S) -+ 'P(S) 

by means of the axioms in table 2.12 where a E A, s E S and S, T ~ S. We sometimes 
write s for the singleton { s}. 

SAl x+-0 = {j SE! x-+0 = 0 
SA2 x+-{ 8} x+-s SE2 x-+{ s} = x-+s 
SA3 x+-(S UT)= x+-S + x+-T SE3 x-+(S u T) x-+SUx-+T 

SA4 8+-s {j SE4 6-+s 0 
SA5 a· x+-s = (a+-s) · (x+-(a-+s)) SE5 a · x-+s = x-+( a-+s) 
SA6 (x + y)+-s = x+-s + y+-s SE6 (x + y)-+s = x-+s U y-+s 

Table 2.12: Axioms for the state operator 
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A state /is called inert if for all actions a,a'i-/ = a and a-+/ = I. We assume the 
that every state space will have an inert state. 

We also assume the presence in each state space of a blocked state called 0 such that 
for any atomic action a, a'i- 0 ii and a-+ 0 0. This blocked state will not be of 
much use in BPAs but we introduce it here for completeness. The blocked state will be 
needed in contexts where 8 is not present and we want to block actions using the NIL 
process. 

An alternative way to introduce these two special states could be through the axioms 
in table 2.13. Since both axioms are satisfied for all definable processes, most of the 
models would still be consistent with these new axioms. 

SAS X'i-/ = x 
SA9 X'i-0 = ii 

SES x-+I I 
SE9 x-+O 0 

Table 2.13: Axioms for the special states /, 0 

In order to be able to infer input/output properties for non-closed processes we intro
duce the following principle. It says that a state will belong to the output set of a 
process if and only if a successfully terminated trace leads to it from an initial state. 

Definition 2.6.2.1. We say that a process satisfies the principle of Terminated Traces 
if the following equality holds: 

x-+s = LJ(1rf(x)-+s) 
i<w 

D 

2.6.3 Properties of the state operator 

Lemma 2.6.3.2. For every definable process p, state s and n > 0 

11"n(p'i-s) = 1rn(P)'i-s 

Proof. Straightforward, by induction on n. D 

Definition 2.6.3.3. Given a state operator we define the alphabet of a particular 
state by: 

a(s) ={a EA: a'i-s #a V a-+s # s} 

0 
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Definition 2.6.3.4. Given a state operator, a state s and a set of atomic actions B 
we define: 

.'As(B) {b<1-s: b EB} 

Lemma 2.6.3.5. Lets, t be two states such that the following conditions hold 

then for any definable process p 

a(s) n a(t) 0 

>..(a(s)) n a(t) = 0 

>-1(a(t)) n a(s) 0 

0 

Proof. Straightforward. 0 

Definition 2.6.3.6. If for any pair of states s, t it holds that 

a(s) n a(t) 0 

,\, (a( s)) n a( t) = 0 

and (J = { s1 , ••• , s,,J is any multiset of states we can define, in view of the previous 
lemma, 

as the order is not important. 0 

Definition 2.6.3. 7. Let <1- and -+ define a state operator over S . The state operator 
can be extended to work over S x S in the following way: 

a+- < s, t >= a<1-s<1-t 

a-+< s,t >=< a-+s,(a<1-s)-+t) > 

D 

Note that < I, I > is an inert state and < O, 0 > is a blocked state. Moreover, the 
original state operator can be embedded into one whose state space is S x S. 

Lemma 2.6.3.8. For all definable processes p, states s, t 
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Proof. 

(i) For closed terms. This is straightforward, by structural induction. For example, if 
p a · q and we have proven the lemma for q, then 

p+-<s,t> = (a·q)+-<s,t> 

= a+-< s,t > ·q+-(a-+ < s,t >) 
= a+- < s, t > ·q+-( < a-+s, ( a+-s )-+t >) 
= a+-s+-t · q+-(a-+s)+-((a+-s)-+t) 

= ( a+-s · q+-( a-+s ))+-t 

= (a· q)+-s+-t 

= p+-s+-t 

(ii) For definable processes. Using AIP, lemma 2.1.7.2 and lemma 2.6.3.2. 

1Tn(P+- < s, t >) = 1Tn(p)+- < s, t > 
'll'n(p)+-s+-t 

= 'll'n(p+-s+-t) 

0 

Definition 2.6.3.9. In a similar way, the state operator can be extended to act on 
finite sequences of states in the following way: 

a+-s1 ... Sn a+-s1 +- · · · +-Sn 

a-+s1 ... Sn ( a-+s1)( ( a+-s1)-+s2) ... ( ( a+-s1 ... Sn-d-+sn) 

where given two sets of sequences of states T, R we define TR = {tr It E T, r E R}. 0 

2.6.4 Equivalence of states 

For some applications of the state operator we want to identify states that cannot 
be distinguished by any process. We define in this section two different notions that 
coincide in a wide class of processes. 

Definition 2.6.4.10 (State Bisimulation). A state bisimulation is a relation R <;;;; S x S 
such that if sRt then the following two clauses hold: 

• Va E A.a+-s = a+-t 

• Va E A.a-+sRa-+t 
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where R extends canonically to sets of states. 

We say that two states are bisimilar if there exists a state bisimulation which relates 
them. We write this down as 

R: 8 Ht 

D 

Definition 2.6.4.11. Given a model M of process algebra we define an equivalence 
of states in the following way: Let s, t E S. We say that s is equivalent to t if and only 
if for any process p E M it holds that 

p+-s = p+-t 

and we write it as s ,...., t. 
0 

The following property was studied also in section 2.3. 

Definition 2.6.4.12 (Left cancellation). A model satisfies the left cancellation prop
erty (of atomic actions) if the following conditional equation is true in such a model for 
any a E A, x, y processes in the model: 

a·x a·y=}x=y 

0 

Lemma 2.6.4.13. If a model M satisfies the left cancellation property then two 
equivalent states are bisimilar as well, in other words: 

S"'t=}s+-+t 

Proof. We want to show that the relation ,..., is a state bisimulation. Take two states 
s, t such that s ,..., t, and an atomic action a. We must verify that both conditions hold. 
The first is immediate from the definition. For the second we need the left cancellation 
property. We want to show that (note that we extend,...... to set of states) 

a-+s ,...... a-+t 

or equivalently 
\-/p E M.p+-(a-+s) p+-(a-+t) 

We know, by definition of"', that 

a · p+-s a · p+-t 

and this is equivalent to 

a+-s · (p+-(a-+s)) a+-t · (p+-(a-+t)) 

since, again by definition of rv, a+-s 
the cancellation property. 

a+-t we obtain the required equality applying 
D 



2.6. THE STATE OPERATOR 37 

We will show an example of a model that does not satisfy the left cancellation property 
in which two states are equivalent but not bisimilar (example 2.6.4.14). 

Example 2.6.4.14. For any model An we define a state operator such that there 
exist two states equivalent in the model that are not bisimilar. Take as a state space 
the following set: 

{s;,tili: o ... n} 
and define the action function +- for any atomic action a and i : 0 ... n 1 as 

a+-s; = a+-t; = a 

and take given different actions c and d, 

a+-tn = d 

The effect function is defined, for every i : 0 ... n l, as follows: 

It is immediate that s0 and t 0 are not bisimilar but they cannot be distinguished by 
any process in the model An, and therefore they are equivalent. D 

Lemma 2.6.4.15. In any model consisting only of definable processes and satisfying 
AIP, two bisimilar states are equivalent 

Proof. We need to prove it only for dosed terms, since the more general result follows 
immediately from AIP and lemma 2.6.3.2. 

We use induction on the structure of basic processes, since, using the elimination lemma, 
any dosed term is equal to a basic term. 

Let s f--t t. For atomic actions and li it is immediate that 

a+-s = a+-t 

Let p be a dosed process which can be written in normal form as follows: 

It follows that 

P = La; · Pi + L bi 

p+-.s = l:a;+-s · (p;+-(a;-t.s)) + Lbi+-s 

= l:a;+-t · (p;+-(a;-+t)) + Lbi+-t 

p+-t 

The second equality follows from the induction hypothesis and the fact that, by defini
tion, a-+s .=!:. a-+t. 

D 
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Chapter 3 

Atomic actions in process algebra 

3.1 Introduction 

One of the most important methods used to give semantics to a sequential program is 
to describe its input-output behaviour. This approach proved to be insufficient when 
programs were composed in parallel. An important problem of the input-output equiv
alence is that it is not a congruence with respect to parallel composition. This led to the 
introduction of reactive systems, which are systems that interact with the environment 
in a more general way than through input-output. 

Nevertheless, for some problems it is still useful to identify systems with an equivalent 
input-output behaviour. To define such behaviour we begin by taking a set of states 
and interpreting the atomic actions according to their ability to modify states. This 
approach was studied in [Bou89, KP87a] among others, and in [BK84b] in the context 
of process algebra. 

In this chapter we study these facts in the framework proposed by process algebra 
[BW90]. In addition to notions of atomic action and process, we consider multiactions 
and critical sections. 

A multiaction [BB93J is a multiset of actions that can be regarded as "one step" of the 
execution of a process [Mil83]. We present two different ways to observe multiactions 
both extending step bisimulation, i.e. bisimulation in which a multiset of atomic actions 
can be executed in one step. 

A critical section is an activity that cannot be interrupted while it is executing. We 
distinguish two important properties of such activities [Bou89]: 

- recoverability, that is, an activity should either complete or not do anything; and 

- non-interference: it can be observed as "locking" of the global state. An activity 
is not interfered with if along its execution no other action accesses the global 
state. 

Here, we call an activity a critical section whenever it satisfies at least the recoverability 

39 
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property. If a critical section is not interfered with while executing, we say that it is 
atomic. 

After studying several kinds of actions, we extend the state operator [BB88] in order to 
deal with them. Thus, we obtain an operator for studying the input-output behaviour 
of a parallel system. 

3.2 Critical Sections 

An atomic action cannot be interrupted by a process running in parallel with it. This 
property is shared by critical sections as proposed in [BK84b]. In this section we study 
the equationa.l theory and two different models. 

Some improvements over [BK84b] are the following: 

• A correct definition of basic terms, both for the system with and without tight 
multiplication. 

• The addition of axioms CS3' and CS4', which are necessary to obtain the basic 
terms of the system without tight multiplication. 

• An operational semantics with two different kind of transitions depending on 
whether the transition belongs to a critical section. This semantics was suggested 
in [BK84b) and a similar version for a related system appeared in [OL87]. 

• An operational semantics inspired by [Bou89] where any process can be a label 
for a transition. 

3.2.1 AMP: Process algebra with mutual exclusion of critical 
sections 

We define the algebra AMP parametrized by a set of constants A. The signature is 
given in Table 3.1. This is an algebra extending PA. 

The intended behaviour of the operators (in some appropriate model) is as follows: 

- atomic actions give the idea of a simple and indivisible event; 

- (p) behaves like p but the execution cannot be interrupted by any other 
activity. That is, (p) must be seen as an indivisible activity; 

ef>(p) makes the execution of p interruptible. In fact, ¢ is the inverse 
operation of (-); 

- ·,+,II, IL as in PA. 
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Al 
A2 
A3 
A4 
A5 

Ml 
M2 
M3 
LMCl 
LMC2 
M4 

Constants 
a( E A) atomic actions 

Unary operators 
(-) critical section 
ef>(-) 

Binary operators 

+ 
II 
IL 

sequential composition 
alternative composition 
parallel composition {free merge) 
left merge 

Table 3.1: Signature of AMP 

x+y=y+x CSl (a}= a 
x + (y + z) = ( x + y) + z CS2 ((x})=(x} 
x+x x CS3' ((x) · y) = (x · y} 
(x+y)·z=x·z+y·z CS4' (x · (y}} = (x · y} 
( x . y) . z = x . (y . z) CS5 (x + y) = (x) + (y} 

xlly=xlLy+ylLx 
alLx=a·x ef>l </;(a) a 
a·xlLy=a·(xllY) 4>2 </>((x}) = <f>(x) 
(x} IL y"" (x} · y </>3 </>( x . y) = <P( x) . </>(y) 
(x) · y IL z"" (x} · (vllz) 4>4 </>( x + y) = </>( x) + </>(y) 
(x+y)ILz xlLz+ylLz 

Table 3.2: Axioms of AMP 
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The equational theory of AMP is given in Table 3.2 

Axioms LMCl and LMC2 illustrate the property of indivisibility. In [BK84b] axioms 
CS3' and CS4' were missing, but they were derivable in the more general setting of 
AMP with tight multiplication Remark 3.2.4.17). 

Axiom CS5 seems to be more problematic. We can consider the atomic actions as a. 
subsort of the sort of processes (with its corresponding coercion). In this case, the right 
hand side of CS5 will have the wrong sort. Theoretically this is not a problem, since, 
after using the implicit coercion (i.e. the injection of the atomic actions into the set of 
processes) , we can say that the sort of the equation is process instead of atomic action. 

Definition 3.2.1.1 (Basic Term). We define the set of basic terms in two steps, first 
without the critical sections, and then allowing at most one level of nesting of it. The 
set B. of simple basic terms is defined inductively as follows: 

1. A~ B.; 

2. a E A and t E B. implies a· t E B.; 

3. t, s E B. implies t + s E B •. 

Using B. we define the set B of basic terms in AMP as follows 

1. A~ B; 

2. t E Bs implies (t} EB. 

3. a E A and t E B implies a · t E B; 

4. t E Bs and t' E B implies (t) · t1 E B; 

5. t, s E B implies t + s E B. 

0 

Theorem 3.2.1.2 (Elimination). Given any AMP-term t there exists a basic term t' 
such that, in the theory of AMP, t t' can be deduced. Moreover, for any term t there 
exists a simple basic term (without the critical section operator) such that <f;(t) = t'. 

Proof. 

It is routine to prove that, when read from left to right, axioms A4-5, Ml-4, LMCl-2, 
<f;l-4, TMl-4, CS1-2,CS'3-4, CS5, define a convergent (modulo Al, A2, A3) rewriting 
system whose normal forms are basic terms. 

0 
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3.2.2 Models 

In this section we will introduce action rules for the operators of AMP. These rules can 
be used to define models of AMP. The first obvious model is the set of finite graphs 
generated by the terms. More interesting models can be obtained by the introduction 
of recursive specification and the standard unfolding rule for the operational semantics. 
This procedure is fairly standard, but some care is required to redefine notions such as 
guardedness for the new operators. We prefer to leave this matter for further research. 

Two different sets of action rules are introduced, the first one keeps "at the same level" 
the activity inside or outside a critical section, whereas the second sees the critical 
sections as atomic actions, in the precise sense that they can be seen as labels of the 
action relations. 

The tight-actions model 

In this model we define three different relations 

i. ---+v<;;;;TxA 

2. T x A x T, and 

3. ___:__.<;;;; T x A x T 

The meaning of these relations can be understood as follows: 

1. x ~ ,.,/ means that x can terminate by performing an a-step 

2. x ~ x' means that x can evolve into x' by performing an a-step. 

3. x ~ x' means that while evolving to x', the process x is executing a critical region 
and therefore any parallel component must wait until this section is completed. 

Also, merely to shorten the presentation, we collapsed the last two relations into one 
by extending the set of labels to AU A: were A:= {a: la EA}. The rules are given in 
table 3.3. We write x ~ x' to indicate that either x ~ x' or x ~ x' 

Definition 3.2.2.3 (Bisimulation). We say that R <;;;; T x Tis a bisimulation if, xRy 
implies, for all a E A, m E AU A, 

1. x ~ x' ==> 3y' E T.y y' and x'Ry'; 

2. y y' ==> 3x' E T.x x' and x' Ry'; and 

3. x ~ v -¢:=::? y v 
We say that x and y are bisimilar (notation x <--+ y) if there exists a bisimulation which 
relates them. D 
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x~x' 

(x) ~ (x') 
<f>(x)----":.._, </>(x') 

x----":.._, x' 

xllY----":.._, x'llY 
Yllx----":.._, Yllx' 

xll_y----":.._,x'llY 

x~x' 

x+y ~ x' 
y+x ~ x' 

a* I x·y--+x ·y 

(x)----":.._, V 
</>(x)----":.._, V 

x~x' 

xllY ~ x'll_y 
Yllx ~ x'll_ Y 

x JL y ~ x' JL y 

x+y----":.._, V 
y+x----":.._, V 

a x·y--+y 

x!IY----":.._, Y 
Yllx----":.._, Y 

xll_y----":.._,y 

Table 3.3: Operational semantics for AMP( a E A) 

The non-elementary action model 

This model represents the idea that a critical section can be seen as an atomic action. 
Axioms CSl-4' say that it makes no sense to talk of atomicity inside an action that is 
already atomic. This will be reflected in the operational semantics, by the fact that 
we will use simple processes (i.e. without critical sections) as possible labels of the 
transitions. Moreover, axiom CS5 suggests that the initial choices of a critical region 
can be done before this section is actually entered. We choose to follow this idea in the 
operational semantics. 

We will work in the remaining of this section within the model whose elements are 
closed terms modulo some appropriate equivalence. Given a set of atomic actions A, 
the set of non-elementary actions AN is defined as the set of terms of the form a · x 
without any occurrence of the critical section operator. The action relations 

l. --+ V ~ T x AN, and 

2. --+~ T x AN x T. 

are given in table 3.4, where a E A and z E AN. 

We want to identify atomic actions that have the same behaviour. In the case of this 
model this is easy to do since no critical section appears in the terms used as labels. 
We use then bisimulation equivalence to identify atomic actions. Two processes will be 
equal when they are bisimilar modulo equivalence of atomic actions. More precisely, 
when there exists a non-elementary bisimulation as defined below. 
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¢(x) ~ ¢(x') 

(x) a~) v' 

x ----=--. x 1 z ~ v' 
¢(x) ~ ¢(x1

) 

x --=-+ x' 

xi IY ___:__. x'llY 
YI Ix ___:__. YI Ix' 

x [L y ___:__. x'l IY 

x --=-+ x' 
x + y --=-+ x 1 

y+x x 1 

x·y x'·y 

</>(x) ~ V 
(x) ~v 

z x __. 

<f>(x) 

z~z1 

z' 

xllY ___:__. Y 
Yllx Y 

x lL y y 

x 

x + y ---=--. v' 
y +x v' 

z x·y--+y 

z' · ¢(x1
) 

Table 3.4: Operational semantics for AMP with non-elementary actions 
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Definition 3.2.2.4 (Non-elementary Bisimulation). We say that R :;;;; T x T is a 
non-elementary bisimulation if, xRy implies, for all z E AN, 

1. x x' ==> 3y' E T.3z1 E AN·Y y' and x1 Ry1 and z +-+ z1
; 

2. y ---=--. y' 3x1 E T.3z' E AN.X x 1 and x1 Ry' and z .!:±. z'; 

3. x J and z +-+ z'; and 

J and z +-+ z1
; 

In this definition, +-+ represents elementary bisimulation (see definition 2.2.2.12), 
when only elements of A can occur as transition labels. We say that x and y are 
non-elementary bisimilar (notation x ::;,y) if there exists a non-elementary bisimulation 
which relates them. D 

3.2.3 Comparison between the different models 

Many different models can be constructed from the operational semantics given above, 
according to the choice of a different universe of processes. In this section we establish 
a relation between both operational semantics. 
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Ilemark 3.2.3.5. 

We write 
TA f= x x' 

to indicate that the proposition x ~ x' is derivable using the rules of table 3.3. 
Analogously, we notate with 

NEA f=x ~x' 

the fact that x ~ x' is derivable using the rules of table 3.4. 0 

Definition 3.2.3.6. The set of BP A-terms is defined as the set of terms that are equal 
to a term without any occurrence of the tight region operator. 

The set of tight terms is defined as the terms equal to a term of the form (t) for any 
term t. D 

Ilemark 3.2.3.7. Note that if tis a tight term, then (t) = t. D 

Ilemark 3.2.3.8. Note that the term (ab) · (cd) is neither a BPA nor a tight term. 

Lemma 3.2.3.9. For closed terms t it holds that {</i(t)) = {t) 

Proof. Straightforward structural induction on basic terms. 

Lemma 3.2.3.10. If there are terms t, t' and an atomic action a such that 

TA f= t t' 

then there exists a term t" and tight term u such that t1 = u · t". 

Proof. By straightforward induction on the derivation of t t' 

Lemma 3.2.3.11. 

• for any term t, a E A 

NEA f= t t' iff TA I= t ~ t' 

• For any terms t, t', tight term u and atomic action a it holds that 

NEA I= t 

NEA I= t 

t' iff TA 'p= t u. t' 

J iff TA f= t ~ u 

D 

D 

0 
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Proof. By induction on the proof of the transition. We show only the more complicated 
cases. 

First we take as hypothesis that the transition is obtained in N EA and find the proof 
in TA. 

• Suppose that the last rule applied was 

then, by induction hypothesis we obtain that 

TA F= qS( t) ~ qS( u) 

and applying the corresponding rule we obtain that 

TA f= (qS(t)) ~ (ef>(u)) 

or equivalently 
TA F (t} ~ u 

• Suppose that the last rule applied was 

ta~) t' a· </>(u) ~ </>(u) 

<P( x) cf>( u) . cf>(t1) 

we get by induction hypothesis that 

TAf=t~u·t' 

and applying the corresponding rule we obtain that 

TA f= ef>(t) ~ <P(u · t1) 

• Suppose that the last rule applied was 

ta~t1 

tllv t'l Iv 
By induction hypothesis we obtain 

TAf=t~u-t1 

and applying the rule for left merge we obtain 

TAf=tllv (u·t')[Lv 

and since u is a tight term, it equals (by axiom LMCl) 

TA f= tllv ~ u · (t'llv) 
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Now we suppose we have a transition in TA and we obtain the corresponding one in 
NBA. 

• Suppose that the last rule applied was 

t ~t' 

(t) ~ (t') 

by induction hypothesis we have that 

NBA f=t~t' 

and applying the corresponding rules we obtain 

and this is equal to 

NBA f= ¢(t) ~ (t') 

NBA F (t) a~) ..j 

• Suppose that the last rule applied was 

t ~t' 

{t) (t') 

by induction hypothesis we have that 

now, given the fact that a· ¢(t') ~ ¢(t') we can apply the corresponding rule 
and derive 

N EA f= ¢(t) </>(t') 

and from this 
NEAf=(t)~..j 

0 

Proposition 3.2.3.12. If N EA f= ta~ t', then there exists a tight terrn u such that 
</>(v) = <f>(u) 

Proof. Take, for example, u {v). D 

Fact 3.2.3.13. The following facts can be proved by simple inspection of the rules. 
Let u.u' be tight terms, then in N EA the following properties hold: 
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• if u ....:::..., v then v is also a tight term. 

• if u is a dosed term then there exists a sequence er E (A :)*A, i.e. every action 
except the last is tight, such that u J. 

• u · t ....:::..., z if and only if :Ju', u....:::..., u' and z = u' · t. 

• u. t z if and only if u v' and z = t. 

D 

Lemma 3.2.3.14. if u, u' are tight terms, then in the model of tight actions it holds 
for any pair of terms t, t' that 

u H u' /\ t H t' {::} u · t .t:t. u' · t' 

Proof. It is immediate that u H u1 
/\ t H t' => u · t - u' · t'. 

To prove the other implication we take a bisimulation 

R : u · t - u' · t' 

We first show that tRt1
• Take a (tight) term v, a sequence of tight actions er and an 

action a, such that 
u. t v. t t 

then, there exist z, z' such that 

u1 ·t' ~z ~ z' 

and ( v · t)Rz and tRz1
• 

Applying successively the last two items of the previous fact we obtain that there exists 
a (tight) term w such that z = w · t' and z' t', and thus tRt'. 
In order to show that u H u' we construct another bisimulation S in the following way: 

S {(v, v')l(v · t)R(v' · t')} 

It is immediate that uSu'. It remains to show that Sis indeed a bisimulation. Suppose 
that v ~ w, then v · t w · t. There exists z such that v' · t' z and (w · t)Rz, 
since R is a bisimulation. From the previous fact it follows that there is a term w such 
that z = w 1 

• t' and then by definition of S we obtain that wSw'. 

The easier case of v ~ v' is left to the reader. 

D 

Theorem 3.2.3.15. Two closed terms are non-elementary bisimilar (using the system 
N EA) if and only if they are bisimilar using the rules of TA. 
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Proof. Suppose that R : t ::::,t'. We construct a bisimulation in TA beginning with R 
in the following way: If t a~) s and t' a~) s1 then take a bisimulation S such that 
</>(u)S</>(u') and add the set of pairs of tight terms 

{(v · s, v1 
• s')l</>(v)S</>(v')} 

The converse is easier, since we can restrict the bisimulation to the smaller set of terms 
reachable with transitions generated by N EA and use the previous lemma to prove 
that the non-elementary labels are bisimilar. 

D 

3.2.4 AMP with tight multiplication 

In this section we add the tight multiplication operator introduced in [BK84b]. The 
meaning of the new operator is a non-interruptible sequential composition; that is, 
x : y is a process that first executes x, and upon completion of x, executes y with 
the additional requirement that immediately after the execution of x, one of the initial 
actions of y must be executed without any other interleaved action (coming from some 
parallel component). 

The tight multiplication operator seems to be more primitive than the critical section. 
The reasons in favour of this claim are the fact that the critical section operator is 
definable in terms of the tight multiplication for closed terms, and the simplicity of 
the tight multiplication. Moreover, we will see in this chapter that when we add new 
operations to the algebras, the presence of the tight multiplication becomes more and 
more important in order to obtain simple axiomatizations and action rules. We choose 
to introduce the critical sections first because they are more intuitive and they admit, 
unlike tight multiplication, the model of non-elementary actions. 

The axioms for AMP(:) are given in Table 3.5. 

Remark 3.2.4.16. We assume in this thesis that the operators ·and : bind stronger 
that !, II, and IL. D 

Remark 3.2.4.17. The axioms CS3' and CS4' are derivable from the axioms of table 
3.5. For example: 

((x) · y) ((x)): (y) = (x): (y) (x · y) 

D 

Definition 3.2.4.18 (Basic terms). The set B of basic terms is defined inductively as 
follows 

1. A~ B; 
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Al x+y=y+x TMl ( x : y) : z = x : (y : z) 
A2 x + (y + z) = (x + y) + z TM2 (x: y) · z = x: (y · z) 
A3 x+x=x TM3 ( x . y) : z = x . (y : z) 
A4 (x + y) · z = x · z + y · z TM4 (x+y):z x:z+y:z 
A5 ( x . y) . z = x . (y . z) 

Ml xlly=xll_y+yll_x CSl (a) a 
M2 a[Lx=a·x CS2 ((x}) = (x) 
M3 a· x lL y =a· (xllY) CS3 (x · y) = (x) : (y) 
LMTl a:xll_y=a:(xll_y) CS4 (x : y) = (x) : (y) 
M4 (x + y) lL z = x lL z + y lL z CS5 (x + y) (x} + (y) 

</>1 ef>(a) =a </>3 ef>(x. y) ef>(x). ef>(y) 
</>2 <P( x : y) = <P( x) . ef>(y) </>4 4>( x + y) = <P( x) + <f>(y) 

Table 3.5: Axioms of AMP(:) 

2. a E A and t E B implies a · t E B; 

3. a E A and t E B implies a : t E B; 

4. t,sEBimpliest+sEB. 

Two subsets of B will be defined: 

- The set B. of simple basic terms defined using the same set of rules as B except 
rule 3, 

The set Bt of tight basic terms defined using the same set of rules as B except 
rule 2. 

Theorem 3.2.4.19 (Elimination). Given any AMP(:) term t it follows that: 

1. 3t' E B such that AMP(:) I- t = t' 
2. 3t' EB. such that AMP(:) f- </>(t) = t' 
9. 3t' E Bt such that AMP(:) f- (t) = t' 

D 

Proof. It is routine to prove that, when read from left to right, axioms A4-5, Ml-4, 
LMTl, <f>l-4, TMI-4, CSl-5, define a convergent (modulo Al, A2, A3) rewriting system 
whose normal forms are basic terms. Furthermore, it is immediate that the normal 
form of ef>(t) contains no tight multiplication and the normal form of (t) no sequential 
composition. D 
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The tight-actions model 

The operational rules for AMP(:) are defined by the rules given in Table 3.3 plus the 
new rules given in Table 3.6 

x~x' 

x: y ~ x': y a: x:y--+y 

Table 3.6: Operational semantics for AMP(:) 

Remark 3.2.4.20. Not every term of AMP(:) is equivalent to one in AMP. This fact 
rules out the model of non elementary actions, as the following example illustrates: 

a:(b·c+d·e) 

after action a is performed the process is in a critical region in which it executes either 
b or d and complete this critical activity, but the choice between them is not made until 
a is performed. D 

3.3 Multiactions and Critical Sections 

In the previous section we claimed that one can see the algebras with a critical section 
operator as a two sorted algebra with one sort of processes and one of atomic actions. 
In simpler algebras like BPA this division into two different sorts is implicit and the 
only operation for atomic actions is the inclusion into the set of processes. 

Introducing communication in a context with critical sections seems to have some prob
lems. It is not clear what should be the result of a communication between an atomic 
action and a critical section. This problem was studied in [BK84b, GMM90, Old87], 
where different synchronization mechanisms were used. We choose here to avoid all 
these problems by not using synchronous communication. We take from [Bou89] the 
idea that communication can be defined in terms of simpler principles such as shared 
variables and non-interruptible processes. It seems that the best way to describe this 
idea is through the notion of multiactions. A multiaction is a set (or, strictly speaking, 
a multiset) of actions that is executed "during the same period of time". The intuition 
behind the idea of multiaction becomes more difficult to grasp because here we cannot 
assume that atomic actions take no time to execute (since a complex process can be 
seen as an atomic action). When the atomic actions are timeless, then a multiaction 
can be seen as something very close to a communication, at least from an algebraic 
point of view. Here, we will present two different approaches, trying to keep in each 
one a different aspect of the timeless multiactions. The system AMMP will preserve 
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the idea of step usually associated with multiactions paying the price of not preserving 
totally the branching structure inside a multiaction; whereas AMBP(:) will preserve 
this structure but it is not possible anymore to preserve an idea of steps of multisets of 
timeless actions. 

Both algebras will share the following signature: We consider a new sort: the sort 
of multiactions M. All constants belonging to the set A will be considered now as 
multiactions. Furthermore, the sort M will be considered as a subsort of the sort P of 
processes. The new operators are: 

() :P-tM 
I :MxM-tM 

+,·,II, lL, I : P x P -t P 
¢ :P-tP 

The coercion from multiactions to processes is used implicitly. The new operator I is 
used to define a multiaction. It will have two different interpretations in AMMP and 
in AMBP(:). When used between processes it will denote a parallel composition where 
the first action will be a multiaction. 

3.3.l Critical sections in multiactions interpreted as steps 

The axioms for AMMP are axioms Al-A5, CS1-CS5 and ¢1-¢4 given in Table 3.2 and 
those given in Table 3.7. 

CMl xlly = x lL y + y lL x + xjy MAl (m) =m 

LMl m[Lx=m·x LM3 (x + y) [L z = x [L z + y [L z 
LM2 m · x [Ly= m · (xjjy) 

MMl mln·x=(mln)·x MAl mjn=nlm 
MM2 m·xln=(mln)·x MA2 ajb""' (a· b + b ·a) 
MM3 m · xln · y ={min)· (xlly) MA3 (a· m)lb =(a· (mjb) + b ·a· m) 
MM4 (x + y)jz = xlz + yjz MA4 (a· m)j(b · n) 
MM5 xj(y + z) xjy + xjz =(a· (mj(b · n)) + b ·((a· m)!n)) 

Table 3. 7: Axioms of AMMP (a, b E A, m, n E M) 

Axiom MA2 (and MA3-4) expresses that one can identify multiactions that behave in 
the same way. 

The theory AMMP preserves the distributivity of the multiaction merge with respect to 
the choice. This idea is present in most of the works on process algebra; most of them 
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regard a synchronization (or a multiaction) as a bag of simple actions that is also called 
"step" (see, for instance, [Mil83, BB93]). In this context it implies that the choices are 
done at the same time inside a multiaction as the following example shows: 

al(b + c) =(a· b) +(a· c) + (b ·a)+ (c ·a) 

This means that when the process executes a the choice whether b or c will be the next 
(sub )action is already done. 

3.3.2 Process algebra with multiactions and tight multiplica
tion 

As before, we extend AMMP with a tight multiplication operator. The axioms for 
AMMP(:) are given by axioms Al-A5, TM1-TM4, CS1-CS4, </>1-</>4 in Table 3.5 and 
the ones in Table 3.8 

Some axioms require explanation. For example axiom CTM4 says that if one side of 
a multiaction terminates, then the other side must proceed until termination. Axiom 
CTM9 could be written as well as 

a· xlb · y =a: b · (xllY) + b: a· (xllY) 

what means that if both sides can terminate, then they can do it in any order. 

Ml xllY = x lL Y + Y lL x + xly MAl (m) = m 

CTMl alb= a : b + b : a 
LMl all_x=a·x CTM2 alb: x =a: (b: x) + b: (alx) 
LM2 a·xll_y=a·(xllY) CTM3 a: xlb =a: (xlb) + b: (a: x) 
LMT2 a: x lL y =a: (x lL y) CTM4 a: xlb · y =a: (xlb · y) + b: (a: x lL y) 
LM3 (x + y) lL z = x lL z + y lL z CTM5 a: xlb: y =a: (xlb: y) + b: (a: xly) 

CTM6 alb· x =a: (b · x) + b: (a lL x) 
CTM7 a·xlb=a: (bll_x)+b: (a·x) 

CM4 (x + y)lz = xlz + ylz CTM8 a· xlb: y =a: (b: y lL x) + b: (a· xly) 
CM5 xl(Y + z) = xly + xlz CTM9 a· xlb · y = a : (b · y lL x) + b: (a· x lL y 

Table 3.8: Axioms of AMMP(:) (a, b EA) 

Remark 3.3.2.1. Axioms MA2-4 are derivable in AMMP(:). For example 

(a· m)lb a: (m)lb =a: mlb =a: (mlb) + b: (a: m) = 

a: ((mlb)) + b: (a· m) =(a· (mlb) + b ·a· m) 

D 
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Theorem 3.3,2.2 (Elimination). Given any AMMP(:) term tit follows that: 

1. 3t' EB such that AMMP(:) I- t = t' 
2. 3t' EB, such that AMMP(:) I- ef>(t) t' 

3. 3t' E Bt such that AMMP(:) I- (t) t' 

with B,B, and Et as defined in 3.2.4.18. 

3.3.3 The tight-action model 

The operational rules for AMMP(:) are those given in Table 3.3 +Table 3.6 +Table 3.9. 

x--.::.+ x'y ~y' 
xllv ~ b·y'ILx' 
Yllx ~ b·y'ILx' 
xly ~ b · y' IL x' 
ylx ~ b·y'ILx' 

a· b x .--'..t x 1 y --+ y' 

xllv~x'lb·y' 
yllx ·~ b · y'lx' 
xly ~ x'lb · y' 
ylx ~ b · y'jx' 

x-!:.+Jy~y' 
xljy ~ b· Y1 

vllx~ b·y' 
xjy ~ b·y' 
yix ~ b· y' 

x x' y y' 

xllY ~ b: y' IL x' 
vllx ~ b: v' IL x' 
xiv ~ b : y' IL x' 
vlx b : y' IL x' 

a· b· 
X .--'..t XI Y __:_, y1 

xllv ~ x'lb: y' 
yjjx ~ b: y'jx' 
xiy ~ x'jb: y' 
ylx ~ b : y'lx' 

x-!:.+Jy y' 

xjly ~ b: Y1 

vllx b : y' 
xly b: y' 
vlx ~ b:y' 

x-!:.+x'y~J 
x!IY ~ blLx' 
Yllx ~ blL x' 
xiv~ blL x' 
vlx ~ blLx' 

a· b 
x .--'..t x' y --+ J 

xllY ~ x'lb 
vllx ~ bjx' 
xly ~ x'lb 
vlx bjx' 

x-4 Jy ~ J 
xllv~b 
yjjx~b 

xly ~ b 
yjx ~ b 

Table 3.9: Operational semantics for AMMP(:) 

Remark 3.3.3.3. The rule that says that: 

a b· x --+ x' y .-....:..+ y' 

xjy ~ b: y' IL x' 

is more difficult to present in a context without tight multiplication (this rule is still nec
essary in AMMP), and requires the introduction of auxiliary operators. It is remarkable 
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that the tight multiplication is not strictly needed in the axiomatization. This mismatch 
appears owing to the fact that the rules should solve the choices. Therefore, we need 
to know the initial actions of the other components of a multiaction. D 

The parallel composition introduced here is not associative, as the following easy ex
ample shows. 

Example 3.3.3.4. In AMMP it cannot be proved that the following two terms are 
equal 

nor even the following two 

all( bl le) 

(allb)llc 

al(blc) 

(alb)lc 

We leave the proof to the reader (see also example 3.3.4.8). 0 

3.3.4 Another look at tight multiplication and process alge
bras 

The system AMMP has some drawbacks which are a consequence of the fact that it 
does not preserve the branching structure inside the multiactions. One of the most 
obvious drawbacks is the complexity of the operational semantics and of the graph 
model (not defined here). Another problem is that it is not easy to extend AMMP with 
new operators, like deadlock or non-interruptible critical sections, as we will see later. 

In order to solve these problems we introduce a new system in which the branching 
structure is preserved inside the multiactions. The price that we pay is that axioms 
CM4 and CM5 are no longer valid. This does not seem unreasonable if we think of the 
operator I as a multiaction merge. We lost the notion of step as it is intended in step 
bisimulation. This new axiomatization does not extend ACP of [BB93]. 

We add a new auxiliary operator L to axiomatize the multiaction merge (it can be 
called left multiaction merge) 

The axioms set for AMBP(:) is given by axioms Al-A5, TM1-TM4, CS1-CS4 and 
</>l-</>4 given in Table 3.5 and those in Table 3.10. 

Theorem 3.3.4.5 (Elimination). Given any AMBP(:) term t it follows that: 

1. 3t' EB such that AMBP(:) f- t = t' 
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Ml xllY = x lL y + y lL x + x!y 
CM Bl x!y = x Ly+ y L x 

LMl all_x=a·x CMB2 alx=a:x 
LM2 a· x lL y =a· (xl!Y) CMB3 a: x LY= a: (xly) 
LMT2 a:x[Ly=a:(x[Ly) CMB4 a·xly=a:(yll_x) 
LM3 (x+y)ll_z=xll_z+yll_z CMB5 (x+y)Lz=xlz+ylz 

Table 3.10: Axioms of AMBP(:) (a, b EA) 

2. 3t' E Bs such that AMBP(:) I- </>(t) = t' 
3. 3t' E Bt such that AMBP(:) I- (t) = t' 

Remark 3.3.4.6. Axioms CTMl-9 are derivable in AMBP(: ). For example 

a : xlb · y = a : x L b · y + b · y La : x 

= a:(xlb·y)+b:(a:x[Ly) 
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D 

Proposition 3.3.4.7. The theories of AMMP(:) and AMBP(:) are incomparable, i.e. 
there is an equality valid in AMMP(:) but not in AMBP(:) and vice versa. · 

Proof. The respective equalities are 

(a+ b)jc =ale+ blc 

and 
(a+ b)!c =a: e + b: e + e: (a+ b) 

D 

The system AMBP(:) does not satisfy all the axioms of standard concurrency. In 
particular, the merge is not associative, as the following example demonstrates: 

Example 3.3.4.8. 

all(blle) = a lL (bile)+ (bile) lL a+ al(bilc) 
= a·(bllc)+(b[Le)[La+(c[Lb)l]_a+(ble)[La+al(blic)+(blle)La 
= a·(blic)+(b·e)ll_a+(c·b)l]_a+(blc) a 

+ (e Lb) lL a+ a: (bile)+ (b lL e) La+ (e lL b) La+ (blc) La 
= a· (bile)+ b · (cila) + e · (blla) + b: c ·a 

+ e: b ·a+ a: (bile)+ (b · e) La+ (c · b) La+ b: e: a+ c: b: a 

a· (bile)+ b · (ejia) + e · (blla) + b: c ·a 

+ e: b ·a+ a: (bile)+ b: a· e + e: a· b + b: e: a+ c: b: a 
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in the same way we can deduce that 

(allb)llc c · (blla) + b · (clla) +a· (bile)+ b: a· c 

+ a: b · c + c: (bl la)+ b: c ·a+ a: c · b + b: a: c +a: b: c 

and it is immediate that a : (bl le) is a summand of the first term but not of the second. 
D 

3.3.5 The tight-action model 

The operational rules for AMBP(:) are those given in Table 3.3 +Table 3.6 +Table 3.11. 

x~x' 

xlly ~ y l1_ x' 
yllx ~ y l1_ x' 
xly ~ y l1_ x' 
ylx ~ y l1_ x' 

x LY~ y l1_ x' 

xlly ~ x'ly 
yllx ~ ylx' 
xly ~ x'ly 
ylx ~ ylx' 

xly ~ x'IY 

xlly~y 
yllx~y 
xly ~ y 
ylx ~ y 
xly~y 

Table 3.11: Operational semantics for AMBP (:) 

Both, AMBP(:) and AMMP(:) have as a drawback that the parallel composition is 
not associative. A possible solution for this problem is outlined in the conclusions of 
this chapter. The system AMBP(:) preserves completely the branching structure of the 
critical regions but the price that it has to pay for that is the non-distributivity of the 
multiaction merge with respect to the choice. This last property holds in ACP. 

3.4 Multiactions, Critical Sections and Atomicity 

3.4.1 Multiactions, critical sections and atomic processes 

We add a new operator which makes a process atomic: [ ]. This new operator would 
behave in the same way as ( ) in a context without multiactions. This can be seen 
from the axioms for AMBP(:)+At presented in Table 3.12 in addition to the axioms 
of AMBP(:) (Table 3.10). The difference arises precisely in the absence of the axioms 
equivalent to CSl-5 of table 3.2 for the new operator. This means that a process of the 
form [x] cannot be decomposed any further, even in a multiaction context. This models 
the idea of non-interference of an atomic section. 

Definition 3.4.1.1 (Basic Term). The set B, of simple basic terms is defined as in 
3.2.4.18. We define the set B of basic terms in AMBP(:)+At as follows: 
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[] :P-M 

APl [a] a 
AP2 [[x]] = [x] 
AP3 [x + y] = [x] + [y] 

AP4 [x : y] = [x · y] 
AP5 [[x] · y] = [x · y] 
AP6 [x · [y]] = [x · y] 

Table 3.12: Additional axioms for AMBP(:)+At (a EA) 

1. As;;; B; 

2. if t E Bs then [t] E B; 

3. a E A, t E Bs and t' E B implies a· t', a: t', [t] · t', [t] : t' E B; 

4. t,s EB implies t+s EB. 
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D 

Remark 3.4.1.2. The atomic section operator introduces some problems when added 
to the theory AMMP(:). If we add its axioms to AMMP(:) we get the following equality 
which shows that part of the branching structure is lost: 

a:e+b:e+e:(a+b) = [a+b]:e+e:[a+b] 

= [a+b]le 
= ([a]+ [b])le 

[a]ic+ [b]ic 
= a:e+c:a+b:e+c:b 

D 

Remark 3.4.1.3. The difference between (x) and [x] is in the fact that when composed 
in parallel the second does not admit any interleaving from other parallel components. 
For example: 

(ab) I le (ab) ll_ e +ell_ (ab) + (ab) le (ab)e + e(ab) + (a( be+ eb)) + c(ab) 

[abJllc =[ab] ll_ e + e[ab][ab:llc = [ab]e + e[ab] + [ab]e + e[ab] 

Note that in the second case, the trace aeb is missing. D 
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3.4.2 The tightwactions model 

We add a new transition relation: 

TxAxT 

x ~ x' means that besides evolving to x', the process x is executing an atomic action 
and therefore any parallel component including actions in the same "step" (that 
other actions in the same multiaction) must wait until the completion of the atomic 
process. 

Additional rules for AMBP(:)+At are given in table 3.13. 

x x' x~x' x~x' 

[x] [x1] xllY ~ x1 IL Y xllY ~ x1LY 
Yllx xi IL Y Yllx~x1 LY 

a 
x1Ly~x1 1Ly xly ~x1 Ly x--+ 

[x] v Ylx ~x1 LY 
xly ~ x1Ly 

Table 3.13: Operational semantics for AMBP(:)+At 

Remark 3.4.2.4. The addition of the atomic section operator to the theory AMMP(:) 
will introduce some equalities that do not respect the branching structure like the 
following: 

a: c + b: c + c: (a+ b) = [a+ b] : c + c: [a+ b] 

= [a+ b]!c 
= ([a]+ [b])lc 
= [a]ic+ [b]lc 

a:c+b:c+c:a+c:b 

3.4.3 Adding the deadlock process 

0 

ln order to use the state operator we need to be able to express that an action is 
blocked in some states. The way to do this is to add the constant h, which represents 
a deadlocked process. 

Axioms for h are given in Table 3.14 

Remark 3.4.3.5. Axiom TM5, TM5' are new, and TM5 is derivable from TM5', since 

ti : x (ti . x) = (ti) = ti 
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A6 x + 8 = x 
A7 8 · x = 8 

TM5 8: x = {j 
TM5' (8} = {j 

Table 3.14: Axioms for deadlock process 
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D 

Remark 3.4.3.6. In the framework of AMBP(:) with 8 the following equality holds; 

alo a : 8 + 6 : a = a : 8 

Therefore, in the case that a : 8 -:/: 8, the constant 8 does not act as a zero for the 
multiaction merge. D 

We claimed in the introduction of this chapter that atomic actions should have the 
property of recoverability. In our present setting this is not yet achieved. In the next 
section we will introduce an idea of input-output behaviour that has this property, as 
already showed in [Bou89]. An interesting way to have this property in the branching 
semantics and at the same time solve the problem presented in the previous remark, 
is to take {j as a zero element with respect to tight multiplication. This can be done 
through the addition of the axiom in table 3.15. 

TM6 a: 8 =Ii 

Table 3.15: Axiom for deadlock process as a (:)zero element 

3.4.4 Operational semantics with li as a zero object for tight 
multiplication (:) 

The operational semantics has to be modified in order to take axiom TM6 into account. 
This modification is comparable to those necessary when a zero element for sequential 
composition is introduced (see [BB90]). Every rule concerning tight actions should have 
an additional premise saying that the target of a transition is not Ii. This can be done 
using operational rules with predicates. In our framework the predicates are not strictly 
needed since we have only one process that cannot perform any action, namely Ii. 

Thus, our objective can be achieved by replacing the rules in table 3.6 by the ones in 
table 3.16. 

In the case of AMMP(:) there is no need to change anything except adding the rules 
in table 3.16. In AMBP(:) we replace the rules in table 3.11 by the ones in table 
3.17, which are almost the same but for the extra premise that ensures that the other 
component is not Ii. 
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x x' x 

x: y x': y 

a: a: 
x:y--+y x:y--+y 

Table 3.16: Operational semantics with ii 

x~x'y~y' 

xllY ~ Y llx' 
Yllx~yllx' 
xly~yllx' 
ylx~yllx' 
xly~yllx' 

x ~ x' y _!:__, .j 

xllY~Yllx' 
vllx ~ y lL x' 
xly ~ y lL x' 
yjx ~ y lL x' 

xly ~ yllx' 

x x' y y' 

xllY ~ x'ly 
vllx ylx' 
xly x'ly 
ylx ~ yix' 

x LY x'IY 

vllx ~ ylx' 
xly x'jy 
ylx ylx' 

xLv ~ x'lv 

a I b* I X--+yy--+y 

xllY~Y 
Yilx~y 
xly~y 
ylx~y 
xly~y 

x~.jy_!:_,.j 

xlly~y 
vll;~y 
xly~y 
vlx~y 

x y~y 

Table 3.17: Operational semantics for AMBP(:) with ii 
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3.5 The State Operator 

3.5.1 Axioms for the State Operator 

We add the axioms needed for the state operator to interact with the new operators in 
table 3.18. 

SA6 (a: x)+-s = (a+-s): (x+-(a-+s)) SE6 (a: x)-+s = x-+(a-+s) 

SAS (x)+-s = (x+-s) SES (x)-+s x-+s 

SA9 [x]+-s = [x+-s] SE9 [x]-+s = x-+s 

Table 3.18: Axioms for the state operator with critical sections and atomicity 

3.5.2 Models 

Any algebra which could be used as a model of this more general state operator should 
have an extra sort of sets of states (with the operations of empty set and union). We will 
now introduce a model of atomic actions based in [Bou89] as a model of AMBPs(:)+At 
with the state operator. The model is adapted to the slightly different set of operators of 
the algebras treated in this thesis. Given the action relation between processes defined 
above, we define the following relation between states called operation relation: 

SxPxS 

as the inductive set defined by the following rules 

Table 3.19: Operational semantics for the operation of processes on states 

We can now define the interpretation of the operator -+ as 

x-+s = { s'ls A s'} 

x-+S = LJ x-+s 
sES 

This model is complete for closed terms, and moreover the set of states obtained by 
applying the operator to a process that can be infinite is determined by the set of of 
its terminated traces, in other words, this model satisfies the principle of terminated 
traces introduces in chapter 2. 
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3.5.3 Examples 

Example 3.5.3.1 (Synchronization). 

One of the applications of the theories introduced in [Bou89, BC88J was the implemen
tation of synchronization in terms of shared variables and atomic actions. The idea is 
to use two boolean semaphores s and s1 and Dijkstra's operations 

P(s) =whens dos:= false 

V( s) when -.s do s := true 

which are considered atomic. Using these operations we define: 

S = (P(s) · V(s')) P(s): V(s') 

R = (P(s') · V(s)) P(s'): V(s) 

We want that, in a certain state, S II R can only proceed through synchronization. 

First, we define formally Dijkstra's operation. 

Let 
s = { (tt, tt'), (tt, f !'), (! f, tt'), (! f, f !')} 

be the state space that keeps the value of both semaphores. Define (v, w booleans). 

s-(ff,v) = 8 s'-(v,ff') = 8 
:s-(tt,v) = 8 :s'-(v,tt') = 8 
asst(s)-t(v,w) = (tt,w) asst(s')-t(v,w) = (v,tt) 
ass1(s)-+(v,w) = (ff,w) ass1(s')-t(v,w) (v,ff) 

The atomic actions s and s' are tests for true and :s, s' are tests for false. 

Now define 

and P(s'), V(s') analogously. 

It can be shown easily that 

P(s) = (s · asst(s)J 

V(s) = [:S • asst(s)] 

P(s)-(tt,w) = P(s) 
P(s)-t(tt, w) = (f f,w) 

P(s)-(ff,w) = 6 

P(s')-(v, tt) P(s') 

P(s')-+(v, tt) = (v,f f') 
P( s')-( v, ff) = 8 
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V(s)+-(ff,w) = V(s) 
V(s)-(f J, w) = (tt,w) 
V(s)+-(tt, w) = 8 

V(s')+-(v,f J') V(s 1
) 

V( s')-( v, J J') (v, te) 
V(s')+-(v, tt') 8 

When both semaphores are true neither S nor R can proceed independently. For 
example: 

S+-(tt, tt') P(s) : V(s')+-(tt, tt1
) 

On the other hand we have that: 

= P(s): (V(s')+-(f f,tt')) 
= P(s): 8 

8 

SllR+-(tt, tt') P(s): V(s')llP(s'): V(s)+-(tt, tt1
) 

= (P(s): V(s') lL P(s'): V(s) + P(s'): V(s) lL P(s): V(s') 
+ P(s): V(s')IP(s'): V(s))+-(tt, tt') 

(P(s): V(s') · P(s'): V(s) + P(s1
): V(s) · P(s): V(i) 

+ P(s): V(s')IP(s1): V(s))+-(tt, tt') 
P(s): V(s')IP(s'): V(s)+-(tt,tt') 

In AMBP(:)+At we have that this equals (we leave the details to the reader). 

P(s): (P(s1
): (V(s): V(s') + V(s'): V(s)) + V(s'): P(s'): V(s))+-(tt.tt') 

+ P(s'): (P(s): (V(s'): V(s) + V(s): V(s')) + V(s): P(s): V(s'))+-(tt,tt') 
P(s): (P(s'): (V(s): V(s') + V(s'): V(s)) 

+ P(s'): (P(s): (V(s'): V(s) + V(s): V(s')) 

Example 3.5.3.2 (Coupling Buffers). 

One can specify a buffer with input port 1 and output port 2 as follows (see [BW90]): 
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Note that we omit the data in order to reduce communication to synchronization as 
presented in the previous example. The general case is slightly more complicated. 

We can implement a buffer with capacity 2, using two buffers with capacity one by 
coupling the output of one with the input of the other. Suppose we have in addition 
to the buffer above, another one with input port 2 and output port 3. If we ask for 
synchronization between s2 and r2 resulting in an atomic action c2 and we disallow 
the independent occurrence of these two actions, then we the required buffer (see 
[BW90] for the details). I.e., defining 

X = a{s2,r2}(B12llB23) 

we can derive the following equations for X: 

X = r1 · Cz · X' 

X' = B3 · X + ri · s3 • c2 · X' 

Now we want to implement this in our framework without a primitive for communica
tion. We define then: 

C = ri · S · C 

D = R·s3 ·D 

where R and S are as defined above. Now we calculate the following process 

CllD+-(tt, tt') = c lL D+-(tt, tt') + D lL C+-(tt, tt') + CID+-(tt, tt') 

= c lL D+-(tt, tt') + D lL C+-(tt, tt') + c L D+-(tt, tt') + D L C+-(tt, tt') 

First we show that the last three summands are equal to Ii (we leave the last one to the 
reader). 

D l C+-(tt, tt') R · (B3 · DllC)+-(tt, tt') 

R+-(tt, tt') · (B3 · DllC+-(R-+(tt, tt'))) 

= Ii· (s3 · DllC+-(R-+(tt, tt'))) 
6 

(CL D)+-(tt, tt') (r1 · S ·CL D)+-(tt, tt') 
(r1 : (D [L P(s): V(s') · C))+-(tt, tt1) 

r1 : R · (s3 · DllP(s) : V(s') · C)+-(tt, tt') 

r1: (R+-(tt, tt')) · ((s3 · D!!P(s): V(s') · C)+-(R-+(tt,tt'))) 

= r1: 8 · ((s3 · DllP(s): V(s') · C)+-(R-+(tt, tt'))) 
= 8 
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We know then that: 

CllD+-(tt, tt1
) C [L D+-(tt, tt') = ri · (S · CllD+-(tt, tt1

)) 

We calculate then 

S · CllD+-(tt, tt1
) S · C [L D+-(tt, tt') + D lL S · C+-(tt, tt') + S · CID+-(tt, tt1

) 

= S · (CllD)+-(tt, tt') + R · (s3 · DllS · C)+-(tt, tt') 
+ s. CID+-(tt, tt') 
= s. CID+-(tt, tt') . 

(P(8): V(81
) • CIP(8'): V(8 1

) • 83 · D)+-(tt, tt') 
= (P(8): V(81

) ·CL P(s'): V(s') · 83 · D)+-(tt,tt') 
+ (P(s'): V(s') · 83 · D L P(s): V(81

) • C)+-(tt, tt') 

\Ve calculate now the first summand leaving the second one to the reader. 

(P(s): V(s') ·CL P(8'): V(81
) • s3 · D)+-(tt, tt') 

= (P(s): (V(s') · CIP(s'): V(s') · 83 · D))+-(tt, tt') 
= P(8): ((V(s') ·CL P(s'): V(s') ·s3 · D)+-(ff,tt') 
+ P(s'): V(s') · S3 · D L V(s') · C)+-(f f,tt') 
= P(8): (P(81

): (V(81
) • 83 · DIV(s') · C))+-(Jf,tt') 

+ P(8): P(81
): ((V(8 1

) • 83 · DIV(8') · C)+-(Jf,ff') 
P(8): P(8'): (V(8): V(81

) • ((83 · DllC)+-(tt,tt')) 
+ V(81

): V(8) · ((83 · DllC)+-(tt,tt'))) 
= (P(8) L P(s')): (V(s)IV(s1)) · ((s3 · DllC)+-(tt, tt')) 

In a similar way we can calculate the equations for 

(s3 · DllC)+-(tt, tt') 
= 83 · (Dl!C)+-(tt, tt') + r1·83 · (DllC)+-(tt, tt') + (r1l83) · (DllC)+-(tt, tt') 

Using the following abbreviations: 

B ( Cl!D)+-( tt, tt') 
B" (S · CllD)+-(tt, tt') 
B' (s3 · DllC)+-(tt, tt') 

we obtain the following recursive specification: 

B r 1 ·B" 

B" (P(8)1P(s')): (V(s)IV(s')) · B' 
B' = S3·B+r1·s3·B"+(r1ls3)·B11 
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3.6 Concluding Remarks 

The systems introduced in this chapter were inspired from mainly two sources: the 
work concerning tight regions in [BK84b] (and the related works of [GMM90, OL87]) 
and the work about atomic actions in [Bou89, BC88]. 

The main difference between our approach and the one in [BK84b, GMM90, OL87] 
resides in the fact that we do not introduce synchronous communication. Instead, we 
borrow the idea from [Bou89] of implementing synchronous communication using shared 
variables represented by the state operator. On the other hand the semantics proposed 
in [Bou89] are input-output semantics whereas we propose branching semantics for our 
algebras. One of the problems of the input-output semantics appear in the version of 
implementation of communication presented in [Bou89]. In that work the following 
definition of P (and a similar one for V) was given: 

P(s) [while --.s do skip · ass1(s)] 

The parallel composition then of S and R defined with this version of semaphores 
involves a livelock, since the non-interruptible process P enters into a loop from which 
it cannot be taken out. But for the input-output semantics this implementation is 
correct, since a livelock equals a deadlock for this semantic (neither of them produce 
any output). 

The parallel composition of [GMM90] is not associative (as is the case here). In the 
conclusion of that article the authors claim that it may be the case that the loss of 
associativity is intrinsic to the hierarchical construction. A possibility suggested in that 
article as well, is to have two different parallel operators, one with normal interleaving 
semantics and another which works as an atomic transaction manager. 

One possible solution to the non-associativity could be to use complete trace equivalence 
to identify multiactions. This preserves the input output semantics. 

The different models introduced here show that it is possible in principle to use these 
algebras to describe systems at different levels of abstraction, but this possibility should 
be further investigated. Another interesting extension would be an operator of action 
refinement that works in an interleaving framework. 

3.7 Further work 

Given the intuition behind the equivalence of multiactions which represents the fact 
that two multiactions will produce the same effect on any state and the property that 
the effect depends only on the terminated traces, it is plausible to introduce a system 
in which the following equality holds: 

a:(x+y) a:x+a:y 
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This equation. contradicts the idea of branching semantics. 

In such a system the inaction process D must be a zero with respect to tight multipli
cation, as the following equality shows 

a : b = a : ( b + 8) = a : b + a : 8 

One of the advantages of this system is that the two extensions with multiactions 
coincide, at least for closed terms. 
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Chapter 4 

Data types and Processes 

4.1 Introduction 

In the thesis [Pon92] data types are introduced into the world of process algebra to play 
mainly two roles: 

l. Interpreting processes: the actions of the process have certain effect on a data 
space. In this sense the processes are interpreted in a model defined using some 
presentation of data types. 

2. Specifying processes: data types are used as a mathematical tool in order to 
define behaviours, for example as indexes of equations or as parameters of atomic 
actions. 

In many cases the two approaches appear together. When one has a model where data 
types play an important role it is sometimes desirable to have a syntactic mechanism 
to specify them; on the other hand, using data types algebraically in the language 
sometimes induces an algebraic structure on the models. 

In the literature about data types and processes there are many examples of how the 
interaction between them is achieved: 

1. Data types appear as parameters of equations or actions and some programming 
language constructs, as conditionals, are introduced in order to deal with them. 
([Pon92], lotos [Bri88], PSF [MV89], µCRL [GP90]) 

2. The processes run in a state space algebraically specified. The interaction is 
stated explicitly via functions or relations that determine the effect on such a 
state. ([KP87a], [Bou89], the state operator [BB88]) 

3. Processes are a special kind of data type ([AMR88]) 

4. Data types are processes. This approach has been used implicitly in many works 
on process algebra, including [Mil80], [BW90] 

71 
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4.2 Data Types 

4.2.1 Algebraic Specification 

We give here a summary of the notation and concepts about p~rtial many sorted alge
bras we will use. There is a wide variety of literature available on this topic, for example 
[Rei87]. 

Definition 4.2.1.1. A signature :E = (S,D) is given by a set of sort names and a 
finite set of operations provided with their functionalities. 

An I/O signature (input/output) :E[J] = (S,1,D) is a signature with a distinguished 
subset of sort names I ~ S called the input/output or visible sorts. D 

Definition 4.2.1.2. Given a signature :E = (S, D), a partial :E-algebra 

A= ({Asls E S},{aAla ED}) 

is given by a family of sets A indexed by sort names and a set of partial operations such 
that if a : s1 X · • · X Sn -+ s then the domain of aA is a subset of As1 x · · · x Asn· 

A partial :E[l]-algebra is just a partial :E-algebra with some distinguished sets. 

D 

Definition 4.2.1.3. Given (for :E = (S, D)) two :E-algebras (or :E[I]-algebras) A and 
B, a :E-homomorphism is a family 

J = {fs: As-+ Bsls ES}) 

of functions indexed by S such that the following conditions hold: 

1. if (t1, ... ,tn) is in the domain of aA, then (f(t1), ... ,f(tn)) is in the domain of 
aB. 

2. f(aA(t1, ... , tn)) = aB(J(t1), ... , f(tn)) if both sides are defined. 

D 

Definition 4.2.1.4. Let A, B be two :E[J]-algebras. A reduction is an homomorphism 
f : A -+ B such that 

1. f is surjective, 

2. f is the identity on the sorts of I, and 

3. if (f(t1), ... , f(tn)) is in the domain of aB, then (t1, ... , tn) is in the domain of 
aA. 
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D 

Definition 4.2.1.5. Two I:[/]-algebras A and B are behaviourally equivalent if there 
exist a I:[/]-algebra F and two reductions r: F-+ A and r': F-+ B. When this is the 
case we write: 

A= B( mod I) 

D 

4.2.2 Data Types as Processes 

In this section we introduce a class of algebraic data types that is suitable for being 
studied in the framework of process algebra. Such a class was defined in [AMR88] where 
the name dynamic data types, which we are going to borrow, was introduced. 

The main idea that we follow is to identify operations in the signature of the data types 
with atomic actions in the corresponding process. This introduces an idea of granularity 
into data types. 

Definition 4.2.2.6. As a definition we say that a dynamic data type is a (partial) 
data type (defined in a proper theoretical way) such that there is a distinguished sort 
called ds (dynamic sort) and its operations are required to belong to one of the following 
three sets: 

• I of initial elements, such that 

\;/(J' EI, CJ': S1 X •.. X Sn -+ ds 

• M of modification operations, such that 

VCJ' EM, CJ': s1 X ••• X Sn x ds-+ ds 

• 0 of observation operations, such that 

\;/(J' E 0, CJ': S1 X ... X Sn X ds -+ Sn+J 

where Vi : 1 ... n + 1, Si -=J ds and Si is finite. The finiteness of the non-dynamic sorts 
is not essential but allows us to work in the easier world of process algebras without 
value passing nor infinite sums. D 

Example 4.2.2.7 (Stack). Of course this should be the first example. We define in 
the framework of algebraic specifications a stack of elements over a finite set D. The 
details about the meaning of such a definition are standard and can be found in [Rei87] 
(we use o-+ to indicate that an operation is not total). 
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es: -+St 
push: D x St -+St 
pop: D x St o-+ St 

where 

es es 

pop( d,push( d,s)) = s 

Thus, here 
I= {es} 

M = {push, pop} 

The first equation means only that the empty stack is defined. 

The definition of a stack in process algebra that follows is well known in the literature 
(with variations [BW90]). We underline the atomic actions in order to distinguish 
them from the operators of the algebra. 

S¢. 

spush(d,a) 

I: push( a) . sd 
dED 

L push( e) . spush(e,push(d,o-)) +pop( d) . S.,. 
eED 

Now we draw some provisional conclusions from the previous example. 

1. The definition of the stack using the a.d.t. specifications' style is not the "stan
dard" one but the one directly related to the "standard" specification in process 
algebra. This is only a matter of style and nothing deep is hidden here. 

2. The set of equations that define the stack in process algebra is an infinite one. To 
be more precise it is a variable indexed over the sets of stacks. The meaning of 
this is not completely clear, we assume they are elements of the carrier set of the 
sort of stacks in a chosen model. 

Example 4.2.2.8 (yet another stack). In example 4.2.2.7 there are no observations. 
The intended meaning of observation operations is to obtain certain information about 
the data type without modifying it. In the tradition of a.d.t they are recognizable by 
the target sort. Here, we represent the intended meaning more directly in the following 
way: 
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In algebraic specifications: 
es: --> St 

push: D x St _,St 
pop: D x St o-+ St 
top: St o-+ D 

where 

es es 

pop( d,push( d,s)) = s 

top(push( d,s)) d 

In process algebra: 

Ses I: push(d). sd 
dED 

= L push(e) · Spush(e,push(d,u)) + pop(d) ·Su+ 
eED 

top( d) · Spush(d,u) 

Some questions still remain open after these two examples. One is: What about cre
ation operations? In this work we assume the platonic view of a.d.t's long used in the 
literature: Data types exist and will exist forever, we only need to name them. Hence, 
the creation operations have no representation at the level of atomic actions (which one 
could they have?) and appear only in the indexes of the equations. By symmetry, one 
can think of destroying data types, and this is something that cannot be formulated 
in algebraic specifications. The second question is easily answered in process algebra 
by using successful termination of a process. The former case requires the introduction 
of a mechanism for process creation (as in [BV92]). We leave these issues for further 
research. 

Definition 4.2.2.9. We are now in a position to give a general method to obtain 
recursive definitions from dynamic data types. 

Let A be an algebra for a dynamic data type specification. We write a(t1, ••• , t,,,) l iff 
(ti, ... , tn) is in the domain of aA, where u is an operation of the signature. We define 
a function du for every u E M U 0 by 

• if u E M, a : s1 x · · · x Sn x ds -t ds then 
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• if <TE 0, <T: S1 X • • • X Sn X ds -+ Sn+1 then 

Now we give a set of recursive equations indexed by the elements of the dynamic carrier 
of an algebra. Vx E Ads 

Sx L L m(t) · Sm(x) + L L Q(i) · Sx 
mEM tedm(i'.x) oEO tedo(x) 

We will assume, unless stated otherwise, that there is a distinguished initial state for 
any data type, as the empty stack in the examples above. 

D 

In the framework of process algebra there exist many well-known equivalences. For
tunately, a number of them are the same when we restrict ourselves to deterministic 
processes, which is the case for processes that are obtained from data types, as we have 
done above. Trace equivalence as well as bisimulation and all the ones in between can 
be used (see [Gla90]). 

It is quite intuitive that the equivalence induced upon the data types via the translation 
into process algebra is coarser than just isomorphism. One would expect a kind of 
behavioural equivalence. Theorem 4.2.2.12 shows that this is the case. 

Lemma 4.2.2.10. A reduction, seen as a relation between elements of the dynamic 
sort, is a bisimulation. 

Proof. We prove the lemma for the actions that come from a modifying operation, 
leaving for the reader the observing operations. 

Let f : A -+ B be a reduction. 

Let a be a state, i.e. a E Ad., such that 

what means that <rA(d1 ,. •• ,dn,a) land O'A(d1, .. .,dn,a) a'. Since f is a Z:[J]-
homomorphism, it follows that 

and this implies that <TB (db . .. , dn, f (a)) l and that 0'8 (di, . .. , dn, f( a)) = f (a') what 
means in another words that 
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Now, in the other direction, let b E Bd., such that 

Since f is surjective there exists a E Ads such that f(a) bas aB(d1 , ••• ,dn,f(a))l. 
Then, aA(d1 , ••. ,dn,a)l by 4.2.1.4, moreover 

J(aA( di,. .. , dn, a))= (J'B(d1, ... , dn, f(a)) (J'B(di, ... , dni b) = b' 

0 

Lemma 4.2.2.11. If two E[I]-algebras are bisimilar as processes, then they are be
haviourally equivalent. 

Proof. Let A and B be two bisimilar E[J]-algebras. We define the E[J]-algebra G 
having as elements the bisimulation classes and the operations defined in the obvious 
way. The facts that this is actually a E[J]-algebra and that there exist reductions 
r : A -+ G and r' : B -+ G are a consequence of the definition of bisimulation. 
Consequently, we can take the pullback of both reductions and using corollary 5.1.6. 
of [Rei87] the lemma is proven. The pullback will be in this case the algebra P whose 
elements are pairs (a, b), a E A, b E B such that a !:::!. b, with the projections onto A 
and B as reductions. D 

The immediate consequence of the two lemmas above is the following theorem which 
demonstrates the adequacy of the notions of bisimulation and behavioural equivalence 
for dynamic data types. 

Theorem 4.2.2.12. Two dynamic data types are behaviourally equivalent if and only 
if they are bisimilar. 

4.2.3 Data types and the State Operator 

One of the most direct ways to introduce data types in process algebra is via the state 
operator. In this approach the state space is specified algebraically and the actions 
will have an effect that can be expressed using the operations of the algebra. Some 
restrictions over the functions +- and -t should be sometimes imposed in order to 
disallow trivial answers to the problems that may arise. 

In [KP87b] a notion of process specification is introduced. It consists of a data speci
fication which is a standard algebraic specification together with a specification of the 
effect of atomic actions over the data type. When we take an algebra as model of the 
data type specification, we can use its carrier set (or the main one, in the case of a 
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many-sorted algebra) as a state space and interpret the effect specification as the ef
fect function of the state operator. We illustrate this with an example adapted from 
[KP87b] 

Example 4.2.3.13 (Stack). As usual, a stack with elements from a (finite) set D can 
be defined as some model of an algebraic specification as before. We take the underlying 
set of a model of the algebraic specification as a state space, and defin the the effect 
function for the atomic actions. We assume that the action function is trivial. 

push(d) -+s 

pop -+es 

pop -+push( d,s) 

push(d,s) 

0 
s 

We can now use the state operator defined in this way to describe processes that can 
interact with a stack. 

4.3 Implementing data types in a concurrent envi
ronment 

In this section different notions of implementation of data types are described. We 
consider first implementations of a state operator by another. This notion captures 
the essential ideas present in [KP87a]. This notion is defined following the tradition 
of algebraic data types as a suitable morphism. We present aft~rwards the completely 
different idea of using finite control (in the form of a regular process) and some mech
anism for interaction (state operator or communication) and abstraction in order to 
implement one data type (seen as a process) by another. 

4.3.1 Implementations as morphisms between state operators 

Given two state operator definitions (S, -t ), (S', -t') (we do not consider the action part 
here, in order to follow as closely as possibly the example presented in [KP87a]), an 
implementation of the first in terms of the second is a pair of functions: 

</>.: S--+ S' 

<!>a: A--+ M 

such that for any state s E S, any atomic action a E A and any finite multiaction 
m E M the following equation holds: 
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where we extend <Ps to sets and <Pa to multiactions in the obvious way: 

<Pa(mln) = <Pa(m)l<Pa(n) 

<Ps(S) = {<Psis E S} 

This equation requires that the implementation is preserved by any atomic action and 
that no undesirable interleavings occur which can lead to an inconsistent state. We 
illustrate this with the following example rewritten from a similar one in [KP87a]. 

Example 4.3.1.1. One of the standard implementations of a stack is obtained using 
an array and a pointer. This implementation is correct from a sequential point of view 
but it must be refined in a concurrent environment, as this example will demonstrate. 

The state space will consist of a pair formed by an array with elements taken from 
the set D and a pointer. An array is a function from the natural numbers into D. A 
distinguished element ..l is added to D in order to represent an empty cell. An algebraic 
specification of an array can be given as follows: 

ea: --t Ar 

-1-l : Ar x Nat --t D 
-[-] .- - . Ar x Nat x D ~ Ar 

where 

ea ea 

ea[n] = ..l 

(a[n] := d)[n] = cl 

(a[n] := d)[m] = a[m] if n =f:. m 

We describe first the state operator. 

ass(d) --t(a,n) (a[n] := d,n) 

inc-->(a,n) = (a,n+l) 

dee ->(a, n) if n = 0 then 0 else (a[n - l] := ..l, n - 1) 

Note that decrementing the pointer has the effect of deleting the last element of the 
array as well. We will not need to do that when we use behavioural equivalence for the 
states. This example tries to follow faithfully the one in [KP87a]. 

The function <Ps is obvious: a stack will be represented by an array with the same 
elements arranged in the same way. The value of the pointer is one more than the value 
of the cell that contains the top of the stack. The rest of the array will be empty. 
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The function <Pa is defined as follows: 

</Ja(push(d)) = (inc· ass(d)) 

</Ja(pop) 

This implementation works correctly in the sequential case, but in a concurrent envi
ronment it can produce inconsistent states, and this implies that it will not satisfy our 
definition of implementation. 

The following equations a.re satisfied: 

<Pa(push( d) )-+1 qS,( s) ¢.(push( d)-+s) 

However, the implementation is not correct, as the following example shows (we leave 
the details to the reader): 

( <ba(push( d)!push( e) )-+' qS.( es) (inc· ass( d)) l(inc ·ass( e))-+'( ea, 0) 

{inc· ass(d) ·inc· ass(e))-+'(ea, 0) 
+ {inc· inc· ass(d) · ass(e))-+'(ea,O) 

+ ·inc· ass(e) · ass(d))-+'(ea,O) 

+ (inc·ass(e) ·inc·ass(d))-+'(ea,O) 

{([d, e], 2), ([ ..L, e], 2), ([ ..L, d], 2), ([e, d], 2)} 

It is clear that the two states which have a bottom as first element of the array cannot 
be the representation of any stack. 

0 

A solution to this problem proposed in [KP87a] consist of the addition of a semaphore 
that, after an increment of the counter is performed, blocks any new increment until a 
value is assigned. 

We present only the definition and leave the details to the reader. We will study a 
similar implementation in our next example when we use equivalence of states instead 
of equality. 

Definition 4.3.1.2. 
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ass( cl) -+(a, n, b) 
inc -+(a, n, tt) 

inc -+(a, n, f !) 
dee -+(a, n, b) 

(a[n] := d, n, tt) 

(a,n+ 1,JJ) 
0 
ifn = 0 then 0 else (a[n-1] := ..l,n-1,b) 

4.3.2 Observational implementations 

D 

The intuition behind behavioural equivalence is that two states of a data type will be 
considered equal when there are no observation operations that could distinguish them. 
Since in our framework we use the atomic actions to represent the possible operations 
over a data type and the states of the data type as our state space, we will use the 
equivalence of states as criteria for behaviour equivalence. 

The equivalence of states depends on the set of atomic actions considered. In our case, 
since we intend to use the data type only through the operations of the specification, 
we use this set operation to define the equivalence of the states of the implementation. 
In order to do that we need first to define the effect of these actions over the data type 
of the implementation, however this is done through the implementation of the atomic 
actions. 

Thus, the effect function for any atomic action a belonging to the signature of the 
specification and a state s in the implementation is defined as 

a-+s = <Pa(a)-+s 

Definition 4.3.2.3. 

Given two state operator definitions (S, +--,-+ ), (S', +--', -+') a behavioural implementa
tion of the first in terms of the second is a pair of functions 

<P.: S---+ S' 

<Pa: A---+ M 

such that for any state s E S, any atomic action a E A and any finite multiaction 
m E M the following equivalence holds: 

<Pa(m)-+'</J.(s),..., <P.(m-+s) 

where the equivalence is extended to sets of states in the obvious way. 

D 
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Example 4.3.2.4. We present here another version of the implementation of a stack 
using an array, a pointer and a semaphore. Since we want to show an implementation 
where different states will be behaviourally equivalent, we need to have some atomic 
actions that observe the current state of the data type. 

We add then the atomic action top( d) with the following effect function: 

top( d) -+es = 0 
top( d) -+push( d,s) = push( d,s) 

top( d) -+push( e,s) = 0 if d-:/:- e 

In order to implement this operation we need to add an observation operation to the 
array, which, for simplicity, will have the same behaviour as the top: 

val(d) -+(ea,O) 

val(d) -+(a,n+ 1) 
-+(a, n + 1) 

Now the implementation is obvious 

0 
(a,n+l) ifa[n+l] d 

0 if a[n+ 1] -:j:. d 

Now, it is dear that the relation that relates two arrays if they are equal at least for 
the elements whose position is less than the pointer is a state bisimulation. Thus, 
the implementation of the pop can be simplified, in particular, we can simplify the 
implementation of the decrement function for the array: 

dee -+(a, n) = if n 0 then 0 else (a, n - 1) 

0 

4.4 Implementing dynamic data types 

4.4.1 Abstract process algebra 

In the following, we will need to use abstraction in process algebra. The traditional 
mechanism to introduce abstraction in process algebra is through the use of the so 
called silent step r. The idea is that r represents an internal action that cannot be 
observed by the environment. 

There exist many different theories that introduce this constant, and we refer the reader 
to [BW90] for an introduction to abstraction in process algebra. Here we present 
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only the axioms for r in so-called rooted branching bisimulation semantics, and the 
abstraction operator TJ that hides (makes silent) the atomic actions belonging to the 
set I. 

Bl TX= x 
B2 x(r(y+z)+y)=x(y+z) 

Table 4.1: Silent action 

Tll r1( a) = a if a rf. I 
Tl2 r1( a) = r if a E I 
Tl3 r1(x + y) = r1(x) + r1(y) 
TI4 r1(x · y) = r1(x) · r1(Y) 

Table 4.2: Abstraction 

4.4.2 Implementations using the state operator 

In order to define a different notion of implementation for dynamic data types we use 
the fact that they can be considered either as a space state or as processes also. The 
idea is to use the carrier set of the implementing dynamic data type as state space 
and, with the help of a regular process running inside a state operator, to produce the 
behaviour of the process that represents the data type we want to implement. 

We impose certain restrictions on the action and effect function that define the state 
operator in question. The aim of these restrictions is to preserve the level of granularity 
of the data type avoiding trivial answers for the problems that arise. Furthermore, we 
will assume that every data type has a distinguished initial element. 

Definition 4.4.2.1. As in 2.4, given any model of process algebra, a semantic action 
relation can be defined as follows: 

p ~ q iff p = p + aq 

p ~ y' iff p = p + a 

where the equality is valid in the model under consideration. 

A process p is regular if there are only a finite number of processes q; such that there 
are sequences (]'; with p ~ * q;. In [BW90] it is shown that the regular processes are 
exactly the processes obtained as solutions of linear recursive equations. D 
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Definition 4 .. 4.2.2. Let P and Q be two data types. An implementation of P in 
terms of Q is a 4-tuple 

I<= (-,-+,l,R) 

where -and -+are the functions used to define a state operator, I ~ A and R is a 
regular process. 

we write 
Q~P 

or even 
I<(Q) p 

if and only if the following equality holds: 

r · P = r · r1(R-q) 

where q is the initial element of Q. 
We impose the following restriction on the definition of the state operator involved. The 
only action and effect function considered as valid are defined in one of the following 
ways for any a E A: 

• the action a is inert, this corresponds to an independent action of the finite control 
involved, or 

• given an operation ff 

and 

a-s { 
au,l if ff( J; S )l 
6 otherwise 

Where acr l is independent of the state, it may depend only on ff and J. 
' 

0 

The intuitive meaning of such a restriction is that a state of the data type can be 
accessed only through the operations explicitly provided and in the way specified by 
them. The restriction over the - function enforces the first point and the one over -+ 
enforces the second point. 

Example 4.4.2.3. As an example of this notion of implementation we implement a. 
stack over a set of four elements in terms of a stack over a set of two. The idea behind 
such an implementation is to use two items of the stack over the smaller domain to 
represent one in the other. 

Let 4 be the set {O, 1, 2, 3} and 2 the set {O, 1 }. The following recursive specification 
defines a stack with elements in the set 4. 
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Ses = 2.: push( d) · Spush(d,es) + empty· 
dE4 

= 2.: push( e) . spush(e,push(d,o-}) + pop( d) . 
eE4 

non-empty. spush(d,u) 

85 

+ 

Moreover we specify algebraically a stack with elements in the set 2 as follows (1 is the 
type with only one element) 

es: -+St 
push: 2 x St -+St 
pop: 2 x St o-t St 

empty: St o-t 1 
non-empty: St o-t 1 

where 

es = es 

pop( d,push ( d, s)) 8 

empty( es) = empty( es) 

non-empty(push( d, s)) non-empty(push( d, s)) 

Now we want an implementation of Pin terms of Q. The regular process involved will 
be 

R (push(O) · ph(O) · ph(O) + push{l) · ph(I) · ph(O) + 

push(2) · ph(O) · ph(I) + push(3) · ph(I) · ph(l)) · S + 
empty· R 

S e· R+ne· S' 
S' pp(O) · (pp(O) ·So+ pp(I) · S1) + pp(l) · (pp(O) · S2 + pp(I) · S3) 

So = (pop(O) + push(O) · ph(O) · ph(O) +push( I)· ph(I) · ph(O) + 
push(2) · ph(O) · ph(I) + (push(3) · ph(I) · ph(l)) · S + 
non-empty · S 

and S1, S2 , S3 similar to S0 

The action and effect functions a.re defined when they a.re not trivia.I as follows (where 
i represents an internal action): 

ph(d)+-s 
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ph(d)-s = push(d, s) 

e+-s i, iff empty(s)l 

e-s = s 

ne+-s i, iff non-empty( s) l 
ne-s = s 

pp(d)+-s i, iff pop( d, s )l 

pp(d)-s pop(d, s) 

moreover the internal action is hidden 

I= {i} 

It is routine to check that the following equality holds in the theory: 

T · Ses = T · T1(R+-es) 

D 

4.4.3 Implementations using the communication function 

In the previous section the finite control interacts with a data type through a state 
operator. Here we achieve the interaction by using communication. Now we look at 
both members of the implementation relation as processes and implement a data type 
using some finite control that communicates with the other data types. Actually we do 
not need to restrict ourselves to data types since any process can be put in the relation. 
We will show that when we use data types as processes this notion and the previous 
one coincide in a sense that we make clear later. As a result, we can define a notion of 
composition of implementation in the definition with the state operator. 

Definition 4.4.3.4. Let P and Q be two processes. An implementation of P in terms 
of Q is a 4-tuple 

I<= (1,H,I,R) 

where I is a communication function, H, I ~ A, a( Q) ~ H, a( Q I R) n H = 0 and R 
is a regular process. We also assume that for any atomic action a E a(R) there is at 
most one b E a( Q) such that 1( a, b )l. 

We write 

or even 

K Q---+ p 

I<(Q) = p 

if and only if the following equality holds: 
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Although the communication function / does not appear explicitly it is used in the 
definition of the merge. D 

Example 4.4.3.5. We give the same example as before for this notion of implemen
tation. 

A stack over a set with two elements will be defined as 

Tes = Epush2(d) · Tpush(a,es) + empty2 ·Tes 
dE2 

= Epush2(e) · Tpush(e,push(d,<r}) + pop2(d) · T" + 
eE2 

non-empty2 · Tpush(d,o-J 

Now take as the process R the same as in example 4.4.2.3, the function 1 is defined as 

and b otherwise. 

1(ph( d), push2( d)) = 

/(pp( d), pop2( d)) = i 

1( e, empty2) 

1( ne, non-empty2) = 

The set H and I are defined as 

H = {push2(d),pop2(d),empty2, non-empty2,ph(d),pp(d), e, neld E 2} 

I= {i} 

It is again routine to prove that: 

r · Ses r · r1 o 8H(Tes II R) 

4.4.4 Relating different notions of implementation 

D 

One of the desirable properties of implementation is that one can compose them. In this 
framework only the so-called vertical composition is meaningful. There is no immediate 
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way to compose implementations since there could be a clash of names of the internal 
actions. One solution is to choose new names in order to avoid confusion of the internal 
names of a data type, but if one wants the composition to be associative, then these 
names should be chosen in a canonical way. It seems that this presents no theoretical 
problems but increases the bulk of definitions needed. 

Now we want to compare both notions of implementation defined above. The result is 
hardly surprising given that the intuition behind both definitions is the same. 

Theorem 4.4.4.6. Let P, Q be two data types. There is a bijective correspondence 
between implementations of P in terms of Q using the state operator and using regular 
processes. 

Proof. 

We define two mappings, S that given an implementation using regular processes gives 
one that uses the state operator and T in the opposite direction. 

T(+-,-,I,R) = ('y,H,I,R) 

where 

1( a, er( d)) = au,l 

H ={a E a(R)la is not inert} U a(Q) 

The mapping S is defined by 

S('y, H, I, R) = ( +-,-,I, R) 

where 

-{ al7r1(Qq) ifaEH 
a+-q - a if a(/_ H 

The function act is well-defined because any atomic action of R communicate at most 
with one of Q. 

er( d~ q) if a E H and 1( a, er( d) )l 
q if a(/_ H 

It is easy to see that these two maps are the inverse of each other. What remains to 
be demonstrated is that they preserve implementations, i.e. for any processes P, Q and 
implementation K, 

K(Q) = P =? S(K)(Q) = P 
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and 
I<(Q) = p => T(I<)(Q) = p 

or, in other words, 
S(I<)(Q) = I<(Q) 

and 
T(K)(Q) K(Q) 

We can prove the last two equations by using AIP. (We only show the inductive case 
of the first equality, the second one is similar.) 

1Tn+i(S(K)(Q)) = 1Tn+1(.R;t-q) 
1Tn+1 (Ea;j+-q · R1+-( a;r-+q)) 
Ea;j t-q · 1T n ( Rj +--( a;r-+q)) 

(by I.H.) = 'Ea;j+-q · 1Tn(8H(Qa,i-+q II RJ)) 
(by def. of a;j+-q) EaeH(a I bq) · 1Tn(8H(Qa-+g II Rj)) + Ea~Ha · 1Tn(8H(Qa-+q II R1)) 

1rn+i(8H(Qq I .R;)) + 'lrn+i(OH(Qq l .R;)) 
1rn+1(8H(Q II R)) 

D 
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Chapter 5 

A taxonomy of process algebra 

5.1 Introduction 

In this chapter the state operator is studied from the point of view of its defining 
power. Given the definition of the operator based on two functions over a set of states 
and a set of atomic actions, some restriction should be imposed in order to avoid a 
trivial answer to the question of whether a process is definable or not. For example, if 
every computable function is allowed then all processes with uniformly bounded non
determinism, i.e. with a constant bound for the outdegree of each node in a representing 
graph, are definable. The restriction we make is a strong one, we take only finite sets 
of atomic actions and states. 

A slighty more general version of this operator is also studied, the so-called generalized 
state operator, which already appeared in [BB88] 

We study the two systems that already appear in [BB9la]. The first consists of pro
cesses defined only by sequential and alternative composition that run in a (global) 
context. This class of processes is closely related to the graphs of pushdown automata 
[Cau90b]. The second class allows the occurrence of the state operator inside the recur
sive specification and constitutes an interesting and stable subclass (as we will show) 
of the class of processes definable in ACP. For example, it is closed under sequential 
and parallel composition. In [BB91a] some examples are presented, for instance a bag 
and a queue. In this system the power of the state operator is also used to encode any 
recursive specification as a linear specification. 

We introduce two other systems similar to the previous two but in which we use the 
generalized state operator of [BB88] instead of the state operator. The first of them, i.e. 
when the generalized state operator cannot be used inside a recursive specification, is 
shown to be equivalent to the corresponding one with only the state operator. However, 
when the generalized state operator is introduced inside the recursive specification we 
will see that some non-uniformly finitely branching processes are definable, and this 
implies that the system is more powerful than the corresponding one with the (regular) 

91 
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state operator. 

We study also the system BPP (see [Chr93]) of basic parallel processes and we introduce 
BPPA as the smallest class of processes containing BPP and BPA and closed under 
sequential and parallel composition. 

5.2 Process algebra with a NIL process 

5.2.1 Introduction 

Since most of the results of this chapter are simpler in a process algebra with only one 
mode of termination we introduce here process algebra with a NIL process. We claim 
that all results to be presented (unless explicitely stated) also hold in a setting with 
two modes of termination (viz. successful and unsuccessful termination). 

The constant NIL does not appear traditionally in process algebra. Its introduction 
complicates the axiom systems, therefore in most of the works it is avoided. We use it 
here in order to be able to work with algebras with only one mode of termination, and 
this will simplify some results in this chapter. The theory of process algebras with a 
NIL process was developed in [Mol89, BV89]. 

The signature will be the same as for ACP with the exception that 5 will be replaced 
by NIL. In this section we present the axioms for the systems studied in the previous 
one with the new signature. 

5.2.2 Basic Process Algebra 

The theory BPANIL has a restricted signature with only A, NIL,+ and " The axioms 
are given in table 5.1. We claim that all results to be presented also hold in a setting 
with both modes of termination (viz. successful and unsuccessful termination). 

Axiom A4 of BPA has been replaced by the weaker A4' (from [BV89], which is essentially 
equivalent to the following conditional axiom: 

x =fa NIL, y =fa NIL * ( x + y) · z = x · z + y · z 

In the absence of the precondition we obtain the following counterintuitive equality: 

a · b = (a+ NIL) · b = a · b + NIL · b = a · b + b 

5.2.3 Process Algebra 

The signature of the theory PANIL contains II and lL besides the elements of the signa
ture of BPANIL· The II represents the free merge. The additional axioms are presented 
in table 5.2 (a ranges over A). 
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Al x + y = y +x 
A2 x + (y + z) = (x + y) + z 
A3 x+ x x 
A4' (a· x + b · y + z)w =a· x · w + (b · y + z)w 
A5 (x·y)·z=x·(y·z) 
A6' x +NIL= x 
AS NIL· x = x 
A9 x ·NIL= x 

Table 5.1: Axioms of BPANIL 

CMl x II y = x IL y + y IL x 
CM2' NIL l x NIL 
CM3 a · x IL y = a · ( x II Y) 
CM4 (x + y) IL z = x l z + y l z 

Table 5.2: Additional axioms of PANIL 

5.2.4 Algebra of Communicating Processes 

93 

The theory called ACP is presented. The theory is parametrized by a partial commu
nication function / that indicates which atomic actions communicate. This function 
is assumed to be commutative and associative. The axioms of table 5.1 should be 
extended with the axioms of table 5.3 (a, b E A). 

5.2.5 Renamings 

A feature that can be added to the previous algebras is the possibility of renaming 
atomic actions, given a function f : A -+ AU {NIL}. The opera.tor Pi is defined in 
table 5.4 (a EA). 

5.2.6 Projections 

Any of the signatures defined above can be extended by an infinite set of unary operators 
11"n with n a natural number greater than or equal to 0. The intended meaning of 11"n(P) 
(in some appropriate model) is the process that behaves as P but stops after executing 
n steps. The axioms for the projection operators are given below in table 5.5 (a EA). 
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CMl x II y = x lL y + y lL x + x I y 
CM2' NIL[[_ x = NIL 
CM3 a · x lL y = a · ( x II y) 
CM4 (x+y)ll_z=xll_z+yll_z 
CFl a I b = 1(a,b) if 1(a,b) t 
CFl' alb=NILif1(a,b)j 
CFl" NIL I x = NIL 
CM5' a· x I b·y =(a I b) · (x II y) if 1(a,b)l 
CM5" a· x I b · y =NIL if 1(a, b) j 
CM8 (x+y)lz=xlz+ylz 
CM9 x I (y + z) = x I y + x I z 
Dl' 8H(NIL) =NIL 
Dl 8H(a·x)=NIL if a EH 
D2 8H(a·x)=a·8H(x) ifa<f.H 
D3 OH(x + y) = 8H(x) + 8H(Y) 
D4 aH(X. y) = OH(x). 8H(Y) 

Table 5.3: Additional axioms of ACPNIL 

RNO' P1(NIL) =NIL 
RN2' P1(a · y) f(a) · PJ(Y) if f(a) =J NIL 
RN2" P1(a · y) =NIL if f(a) =NIL 
RN3 P1(x + y) = P1(x) + P1(Y) 

Table 5.4: Renamings 

PRl' 1Fn(NIL) =NIL 
PR2' 1F0 (x) =NIL 
PR3 1Fn+i(a · x) =a· 1Fn(x) 
PR4 1Fn(X + y) = 1Fn(x) + 1rn{Y) 

Table 5.5: Projections 
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5.2. 7 State Operator with a NIL Process 

In a context with the process NIL instead of Ii we can adapt the definition of the state 
operator in the following way: 

SAl x+-0 =NIL SEl x-+0 = 0 
SA2 x+-{ s} = x+-s SE2 x-+{s} x-+s 
SA3 x+-(S u T) = (x+-S) + (a+-T) SE3 x-+(SU T) x-+SUx-+T 

SA4' NIL+-s =NIL SE4' NIL-+s s 
SA5 a· x+-s = (a+-s) · (x+-(a-+s)) SE5 a· x-+s x-+(a-+s) 
SA7 (x + y)+-s = x+-s + y+-s SE7 (x+y)-+s x-+s U y-+s 

Table 5.6: Axioms for the state operator with NIL 

We introduce an inert state I as before, and a blocked state 0 such that for any atomic 
action a, a+- 0 = NIL and a-+ 0 = 0. Furthermore we require that if a+-s = NIL 
then a-+s 0. 

In this chapter we restrict ourselves to the case where the effect function -+ can produce 
at most one state, and use the convention that if a-+s = 0 then a+-s = NIL. 

We can axiomatize the behaviour of these two states with the axioms in table 5. 7. As 
before, both axioms are satisfied for all definable processes. 

SA8 x+-/ = x SE8 x-+/ = I 
SA9' x+-0 NIL SE9 x-+0 = 0 

Table 5. 7; Axioms for the special states I, 0 

5.3 Preliminaries 

5.3.1 The generalized state operator 

For some applications (see for example [BB88, Vaa90]) the state operator as previously 
defined is, if not insufficient, inappropriate. A slight generalization of this operator is 
given below. We keep the original asymmetric notation since in this chapter we are 
interested only in the process obtained by an application of the operator and not in the 
set of states reachable from a certain one. 
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Definition 5.3.1.1. Given a finite set of states S, and two functions: 

Act: Ax S _____. g:i(A) 

EjJ:AxAxS S 

We assume always the presence of an inert state I and a blocked state 0 with obvious 
definitions. The generalized state operator A is defined by the axioms in table 5.8. As 
a convention we will assume 

°Ex= NIL 
iE0 

D 

GSOl' As(NIL) NIL 
GS02 A.(a·x) LbeAct(a,s)b·AEff(a,b,s)(x) 
GS03 A.(x + y) = A.(x) + A .. (y) 
GS04 A0(x) NIL 
GS05 A1(x) = x 

Table 5.8: Axioms for the generalized state operator 

It is immediate that if for any a, s, it holds that IAct(a, s )I ::;;; 1, then the generalized 
state operator can be replaced by a normal state operator. The case when !Act( a, s) I = 0 
corresponds to the case in which action a is blocked in state s. 

5.4 The systems 

5.4.1 Basic parallel processes 

The BPP specifications use alternative composition, parallel composition and action 
prefix. The general sequential composition is not allowed. In [Chr93] a normal form 
was found for specifications in BPP. Throughout this section we will assume BPP 
specification E with variables Var(E) = {X1 ... Xn}, such that each variable is defined 
as 

m; 

Xi = °E a;j · a;j 
j=l 

where a;j is a parallel composition of variables which will be identified with a multiset 
(possibly empty for the case of NIL), when it is convenient. We also assume that every 
variable appears in at least one multiset reachable from the root (otherwise it can be 
removed from the specification). 
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5.4.2 Recursive definitions with the state operator 

In this section some results of [BB9la] and [Bla92] are revised and new results are 
obtained. We keep the ..\ in the names of the classes to indicate the presence of the 
state operator. 

The concepts defined in definition 2.1.7.1 can be used also in a context with the state 
operator. However, it may not be immediate how to extend the property of linearity to 
this more general framework. If the definition above is used without modification then 
the state operator would not appear at all in a linear specification. The most obvious 
extension, the one we will adopt is to require equations of the form 

X = 2: a; · X;+-(j; 

Sometimes we will make explicit the terminating actions as 

X 2: a,· X;+-a; + 2: bj 

This includes the form given in definition 2.1.7.1 due to the possibility of having an 
inert state. 

The classes of processes considered here are: 

• BPANILrec (PANILrec, ACPrec, BPPrec,): processes defined by a guarded recur
sive specification over BPANIL (PANIL, ACP,BPP). 

• A(BPANILrec): processes obtained by an application of the state operator to a 
process in BPANILrec. 

• (BPANIL + ..\)lin: processes defined by a linear recursive specification over 
BPANIL + ..\. 

• (BPANIL + >.)rec: processes defined by a guarded recursive specification over 
BPANIL + A. 

• A(BPANILrec): processes obtained by an application of A to a process in BPAN1Lrec. 

• (BPANIL + A)lin: processes defined by a linear recursive specification over 
BPANIL + A. 

• (BPANIL + A)rec: processes defined by a guarded recursive specification over 
BPANIL + A. 

5.4.3 An inductive class of processes 

In this section we define a new class of processes that includes both BPArec and BPPrec 
but is strictly contained in PArec and also, as we shall see, in (BPANIL + ..\)lin. 

One difference with the classes defined above is that this one is not defined as the 
processes that are solutions of certain recursive specifications, but in an inductive way. 
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Definition 5.4.3.1. Given a model of process algebra we define the subclass BPPArec 
by the following inductive definition: 

1. BPANILrec ~ BPPArec 

2. BPPrec s;;; BPPArec 

3. if p, q E BPPArec, then also p · q and p II q are in BPPArec 

0 

This class will be, by definition, the smallest class containing both BPA and BPP and 
closed under parallel and sequential composition. 

5.5 Definability with the state operator 

5.5.1 A(BPAN11rec) .A(BPANI1rec) 

In this section we will show that by applying either the state operator or the generalized 
state operator to a BPA specification one obtains the same set of processes. 

Theorem 5.5.1.1. Any process definable in A(BPAN1Lrec) is definable in .A(BPANILrec) 
as well (the property FAP is required). 

Proof. Let 
k; 

X; L a;j · t;i 
j=l 

be a specification in BPANIL, here we use the head normal form property introduced in 
2.1. 7.1. Let S, Act and Effbe the set of states and the functions defining the generalized 
state operator. For any a E A,s ES enumerate Act(a,s) as follows {a!, .. . a:~}, where 
n: = !Act(a,s)I. 
Now, define the following recursive specification in which we enlarge the set of atomic 
actions by adding the actions < a, b, s >, with a E A, b E A, s E S. 

Xf = 'E 'E < a;j, b, s > ·t:j 
j,s bEAct(a;3,s) 

where t~i = ti;[X; :=XI]. 

We define the action and effect functions in the following way; 

< a,b,s > .,_s b 

< a, b, s > .,_s' is blocked if s f. s1 
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< a,b,s > -+s = Ejf(a,b,s) 

From this definition it follows that 

X'+-s = As(X) 

smce 
X 1+-s=E E b·t~i+-Ejf(aij,b,s) 

j bEAct(aij,s) 
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which is precisely the equation for A,(X), then, by RSP, they define the same process. 
D 

5.5.2 >.(BPAN1Lrec) C (BPANI1 + .\)lin 

The main result of this section is that ..X(BPANILrec) C (BPANrL + ..X)lin. As a corollary 
we have that BPANILrecC (BPANIL + >.)lin. A similar result (but for BPAs instead of 
BPANIL) appeared in [Bla92]. 

This result is also a consequence of the more general one in section 5.5.4. 

Lemma 5.5.2.2. Let X be a process in (BPANIL + ..X)lin, then for every states, X +-s 
is a process in (BPANIL + .\)lin. 

Proof. By linearity, we can write the specification for X in the form 

X =Ea;· (X;+-s;) 
i<n 

where the X; are defined also by a linear specification over (BPANIL + .\)lin, with 
s; E S for all i < n. 

We can take now S x Sas state space (as in 2.6.3.7) and define Y as: 

y '""'a·+-s · X·+- < s· s > L-L i l "' 

i<n 

It is immediate to see that X +-s is a solution of Y. D 

Using the notation of the beginning of this section we can paraphrase this lemma as 
(BPANIL + .A)lin = .\((BPANIL + .\)lin). 

The following lemma appeared in [BB91b] but the proof was not correct. This lemma is 
a consequence of lemma 5.5.4.18 as well, but the proof presented here is less complicated. 

Lemma 5.5.2.3. Let X be a process in (BPANrL +>.)rec. Then Xis in (BPANIL + ..\)lin 
(using FAP). 
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Proof. Let a recursive specification E over BPANIL be given that uses variables from 
X 1 , • .• , Xn and has X 1 as solution. Assume the specification of each X; is in restricted 
GNF, i.e. 

2: a;i · Xp,, · Xq;; + 2: b;k · Xr,k + 2: c.;1 
i k / 

Define (using another set of atomic actions) 

X 2: < a;j, i > ·(X +-p;j+-q;j) + 2: < b;k, i > ·(X +-r;k) + 2: < Cif, i > ·X 
i,j i,k i,l 

The state space Sis { init, 1, ... , n}. The functions act and efj are trivial except in the 
following cases: 

< a, i > -+m = 0 if i -:f m 
< a, i > -+init = 0 
<a, i > +-i a 
<a, i > -+i =I 

Now we claim that for each sequence n1 , ••• , nm the following equality holds 

Xn1 • • • Xnm = X+-n1+-· · · +-nm+-init 

The intuition underlying this construction is that the state operators indicate what the 
process still has to do 

We prove the claim by showing that both sides of the equality satisfy the same (infi
nite) recursive specification. We abbreviate X+-s1 • • • +-sn by X<-s1 ... sn Let a be a 
sequence of states. 

X+-i+-a<-init = 2.:aii · X+-p;j+-q;j<-l+-a+-init + 
j 

+ 2.:bik · X+-r;k+-l+-a+-init+ 2:ct1 · X<-1<-a<-init 
k I 

= 2.:a;; ·X+-p;j+-q;j+-a+-init+ 

+ 2: b;k · X +-r;k+-a+-init + 2: Cil · X <-a<-init 
k I 

(note that the process terminates when it can do a c-action into X +-init which equals 
NIL) 

It follows that if we replace X <-n1 +- · · · +-nm +-init by Xn1 • • • Xnm the equations above 
are valid. Note that when a is the empty string, then X +-init = NIL. 

Note that for this proof, reduction to restricted GNF was not necessary. A similar 
construction works for any specification in GNP. D 

We are now able to prove the main result of this section. 

Theorem 5.5.2.4. Let X be a process in >.(BPANILrec). Then Xis in (BPANrL + .\)Jin. 

Proof. Immediate from lemmas 5.5.2.2 and 5.5.2.3. D 
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5.5.3 BPP C (BPANIL + .\)lin 

In this section we show that the so called basic parallel processes can be defined by a 
linear specification using the state operator. 

Theorem 5.5.3.5. Let p be the solution of a recursive specification in BPP, then 
p E (BPANIL + .\)lin {FAP used). 

Proof. Let 
xi= Eaij. aij 

with 0 < i < n be a specification in BPP(so '\:/i,j, C¥ij is a parallel composition of 
recursion variables). We define the following specification in which we look at aii as 
a multiset. If a is a multiset of recursion variables, we denote by a' the multiset of 
indexes of the variables in a. We take this set of indexes (plus an initial state init) as 
state space, and use the notation introduced in 2.6.3.6. The set of atomic actions is 
extended with actions < a, i >,a E A, i < n. 

where 

X L < a;;, i > · X +-a:i 
,·,j 

< a,i > +-i =a 

< a,i > +-j =< a,i > if i :f:.j 

< a, i > +-init is blocked 

< a,i > -+i =I 

The definition is correct since for any state i it holds that 

a( i) = { < a, i > la E A} 

and they are disjoint for different states i,j, furthermore 

and A is disjoint with any a( i). 
Now we claim that 

.\;(a( i)) = A 

X +-i+-init = X; 

In order to prove that, we show that for any multiset a it holds that 

X +-a' +-init = a 

First we note that for any multiset (or equivalently, for any parallel composition) a of 
recursion variables the following equality holds: 

a = L a;j · (a { X;} U a;3) 
X0E01 
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This is the case since a parallel composition can perform a step if and only if one of its 
components can do it. 

Moreover, 

= L aii · X+-((a' - {i}) U {/} U a~j)+-init 
iEa1 

It follows that both are solutions of the same (infinite) recursive specification, and then 
they are equal by RSP. 

D 

5.5.4 (BPANIL + .\)rec= (BPANIL + .\)lin 

The result of this section shows that the class of processes (BPANIL + >..)lin is sta
ble, in the sense that the obvious generalization of admitting guarded recursion does 
not increase it. All the complexity of general sequential composition in the recursive 
specifications can be encoded in the state operator. This also allows us to work in 
(BPANIL + >..)!in any time we want to do it in (BPANIL + >..)rec with the obvious 
adventage in simplicity. 

The following lemma shortens some of the proofs. 

Lemma 5.5.4.6. Let E be a specification of a process in (BPANIL + >..)rec with main 
variable X. We can construct another specification with only one recursion variable Y 
such that there exist a state s for which 

(FAP needed). 

Proof. Let 
E= {X; '"""'a .. · t· ·11 < i < n} L-t 1.J 1.J - -

Define (with an extended set of atomic actions) 

x =I:< a;j, i > ·t~j 
ilj 

where 
t:i = t;i[Xi := X +-i] 

(t[X := t'] means syntactic substitution of variable X by t' in term t). 

The state space will be extended with states {1, ... , n }. The state operator is defined 
on this set by 

< a,i > +-i a 
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< a, i > -+ j = 0 if i #- j 

< a,i > -+i =I 

Now, we claim that {X+-ill Si Sn} is a solution of E. 

X +-i = 2:( < ak;, k > +-i) · (t;j+-I) 

L:aij · (t~;+-1) 

L: Uij. t:j 

but then our claim follows by definition of the t:i. 

Definition 5.5.4.7. 
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1. A term is in product normal form (pnf) if it is constructed only with recursion 
variables, sequential composition ( ·) and the state operator ( +-). 

2. A guarded recursive specification 

E = { X; = L: aii · t;j I l S i S n} 
j 

is in pnf if for all i, j, tii is in pnf. 

D 

Lemma 5.5.4.8. Let p be a solution of a recursive specification in (BPANIL + >.)rec. 
Then, there is a specification in pnf of the same process. 

Proof. Let Ebe a specification in (BPANIL + >.)rec. The right hand sides of E can 
be rewritten using axiom A4 a.s a. rewriting rule from left to right. For simplicity we 
can assume by the previous lemma that E ha.s only one recursive equation, say 

X=l:ai·P• 

For any i, if Pi is not in pnf then it can be written without loss of generality as 

where the q; is in pnf, since the state operator distributes with respect to the + and q; 
can possibly be NIL. Take then a new variable X 1 and replace p; by q; · X' and add a 
new equation 

X' p+p' 

By the previous lemma, this new specification can be rewritten again in a new one 
with only one equation and then repeat the procedure for the new specification. Since 
in p and in p' there are strictly less occurrences of the operator + the procedure will 
terminate. D 
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Definition 5.5.4.9. Given a specification in (BPANIL + >.)rec with main variable X 
we define the set T of terms inductively as follows: 

• NILE T, 

• if (3 E T, (3 ::f NIL then for any state s, f3+-s E T, and 

• if (3 E T then for any state s, ((3 · X +-s) E T 

0 

The following definition generalizes the Greibach Normal Form of BPA for the case 
where the state operator can occur inside a specification. 

Definition 5.5.4.10. A specification in (BPANIL + ,\)rec is in GNF if it has the 
following form: 

X=Lai·P; 
i 

where for all i, it holds that Pi E T. Note that lemma 5.5.4.6 allows us to restrict this 
definition to the case where there is only one variable without losing generality. 

0 

Theorem 5.5.4.11. Given a specification in (BPANIL + >.)rec another specification 
can be written in GNF which specifies the same process. 

Proof. Take a specification in pnf 

X = I:a;·p; 

The general form of the p; will be 

Pi ( · · · ( ( X +-s; ·Pi )+-s1 
• P7)+-s2 ···Pi )+-sn 

This form is general enough given that a finite sequence of states can be encoded as a 
state as in 2.6.3.9 without losing the condition of finiteness of the state space. 

Now, for any i,j if p1, is not a variable possibly modified by some states, then replace 
it by a new variable X;j. Add then a new equation 

for all the new variables. We write the new equation for X as 
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This new specification is then compressed into a specification with only one variable 
and the process is repeated. The process will terminate since 

and after unfolding all the occurrences of the state operator it is equal to the following 
term: 

where all the q; are strictly simpler than the Pi· D 

A specification in GNF can easily be encoded in (BPANIL + .\)lin since it has the 
property that every occurence of the state operator in it has one of the following two 
properties: 

• It modifies only one occurrence of the main variable as in X +-s, or 

• it modifies all the previous occurrences of the main variable, ass in (X +- t· X +- u)+- s. 

A state operator will never modify more than one but not all of the previous occurences 
of the main variable like s in 

X +-t · (X +-u · X +-v )+-s 

The intuition behind our encoding is that any occurrence of a state will be understood 
as modifying all variables occurring before it, and the case when it only modifies one 
variable will be solved by a new set of states. 

Definition 5.5.4.12. Given the state space Sit can be extended with a disjoint copy 
of itself s_ defined in the following way: 

s_ = fais ES} 

Definition 5.5.4.13. We define a function 

inductively over T 

[NIL] = E (the empty sequence) 

[,8+-s)I = [,B]s 
[/3 · X +-s] = [,Bfa 

D 

D 
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Remark 5.5.4.14. Note that a non empty sequence in Im([-]) (the image of[_]]) will 
always begin with a state of the form .§.. D 

Definition 5.5.4.15. We define a function e: (J_(S u (]_)* --+ T in the following way: 

0(€) 

e(as) = 

0(a..?.) 

NIL 

e(a)+-s 

0(a) · X+-s 

Lemma 5.5.4.16. The function 0 is the inverse of [-JJ. 

0 

Proof. Straightforward infuction on T and on the length of the sequences over (i(S U 
(]_)*. 0 

Definition 5.5.4.17. Given a specification 

X L:ai ·Pi 
i 

in GNF, we define the following specification: We define the following specification 

Y = :E ai · Y +-[pi]] 

The state space is the set S U (J_ and the action and effect function are extended in the 
following way: 

g_+-.§. = a+-s 

g_-.s = 0 

a+-.§.= a 

a-..§. s 

0 

Theorem 5.5.4.18. The class of processes (BPANrL +>.)rec is included in (BPANrL + >.)Iin. 
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Proof. Let X and Y be as defined in 5.5.4.17. Obviously, Y E (BPANIL + .A)lin. 
Then, the theorem follows once we have shown that for any state s E S it holds that 

In order to show that we construct an infinite specification and show that a solution of 
either side of the equation would satisfy this specification. The result then follows by 
RSP. 

We define the system Z" where a E fi.(S U fl.). 

Z, NIL 

Z!l.;, L a,+-sa · Z(p,)(a;-+s") 
iEl 

First, we will show that 
Y+-a = Zu 

for any a E Im([-]). 

When a is empty both sides of the equation equal NIL. 

Y+-§.a =· l:a;+-~a· Y·+-[p;~+-(a;-+:1<1) 

= L a;+-sa · Y +-[p;]+-( a;-+sa) . 

Now, we will show that for any u E fi.(S U fl.) the process 0(a) is a solution of Z" as 
well. In particular we will obtain that · 

We show by induction that 0(a) satisfy the specification for Z". 

• 0(e) =NIL 

• 
e(as) = e(u)+-s 

l:[a;+-u · 0([p,]l(a;-+u))+-s 

= l:a;+-us · 0([p;])+-(a;-+a))+-(a;+-u) 

l:a;+-us · 0([p;])+-(a;-+u)(a;+-u)) 

= l:a;+-us · 0([p;]}+-(a;-+us)) 

• a = a' s Left to the reader 
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• (J' where 0"
1 #NIL, say a'= xua". 

0(0') 

= 
= 

(IH) = 
= 

== 

0( O"',~.t) 
(0(0'') · X+-s)+-t 
(0(x,,o-11

) • X +-s)+-t 
(La;+-ucr" · (6([p;]ai-ua-") · X+-s))+-t 

L a;+-ua"t · ( 6([p;]a;-ua")X +-s )+-( a+-ua")-t 

L a;+-ua"t · 0([p,;]( a;-ua").2.( ( a+-uo-")-t) 

L a;+-uo-"t · 0([p;]( a;-u0'"11§.t) 

5.5.5 BPPA C (BPAN11 + .\)lin 

D 

An immediate corollary of the results of the previous section is the fact that the system 
(BPANIL + >.)lin is closed under sequential composition. Hence, if we can prove that it 
is closed under parallel composition we obtain the result announced in the title of this 
section, since we already know that the set of processes definable in BPA and BPP is 
contained in (BPANIL + ,\)lin, and BPPA is the smallest set containing it. 

Theorem 5.5.5.19. (BPANIL + ,\)lin is closed under parallel composition (FAP 
used). 

Proof. Let X +-s and Y +-t be two processes in (BPANIL + ,\)lin where X and Y are 
solutions of the following recursive specifications: 

X ==Ea;· (X+-s;) 

y E bj . (Y +-tj) 

We define the following specification 

Z Eaf · (Z+--sf) + l::bf · (Z+-t]) 
j 

with the state operator defined over the set formed by two disjoints copies of S and an 
initial element: 

where 

SXY SX U Sy U {init} 

sx {sxls ES} 

sY {syls ES} 
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by: 

ax +-sx = ( a+-s )x 
ax-+sx = (a-+s)x 
by +-ty = (b+-tt 
by -+ty = (b-+tt 

ax +-init a 
by +-init = b 

We want to prove that for any sequence O" E (SXY)* the following equation holds: 

Z+-u+-init :::= X+-uxllY+--uy 

where ux is sequence in S* defined as 

fX :::= f 

( y ') I s u x = ux 
(sxu')x =sax 

whose elements are in sx component of the elements and analogously for aY. 
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First we state the following proposition (and its symmetric version): For any sequence 
a E (S x S)* and atomic action a 

where 

ax+-u = (a+-(ax))x 

ax-+O" = r 

Ty= O'y 

The proof is a straightforward induction on the length of a. 

Now we show that for any sequence O' the following two processes 

Z+-a+-init 

X +-ux llY +-ay 

satisfy the same recursive specification. 

Z+-a+-init = [(L)af +-a)· (Z+-sf+--(af-+a)) 

+ L:(bf +-a)· (Z+-tf +-(b] -+a))]+-init 

=' (L:(a;+-ax)x · (Z+-sf (af-+a)) 

+ L(bj+-O'y) · (Z+-tj(b]-+a))+-init 

L:ai+-O'x · Z+-sf (af-+a)+-init 

+ L bj+-O"x · Z +-tj( bf -+u )+-init 
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X +-crx 1 IY +-oy X crx lL Y cry+ Y crx lL X cry 

= :L(a;+-crx) · [(X+-s;+-(a;-+crx))ll(Y+-cry)] 

+ L:(bj+-cry) · [(Y+-tj+-(bj-+cry))ll(X+-crx)] 

The desired results follows since: 

(sf (af-+cr))x = s;+-(a;-+crx) 

(sf ( af-+cr))y = (af-+cr)y =cry 

5.5.6 (BPANI1 + A)lin # (BPAN11 + .\)lin 

0 

The following example shows that there exist processes definable in (BPANIL + A)lin 
that are not uniformly finitely branching. In [BB9la] it is shown that all processes in 
(BPANIL + >.)lin are uniformly finitely branching. Given the fact already proven that 
A(BPANrLrec) = >.(BPANILrec), this result comes as a surprise. 

Example 5.5.6.20. 

where the generalized state operator is defined by (i = 1, 2): 

Lemma 5.5.6.21. 

Act(c;,i) = {d;} 

Act(c;, 2 - i) = 0 
Eff ( c;, i, d;) = I 

Act( a, 1) = Act(b, 1) ={a, b} 

Eff(a, l, a)= Eff(b, l, a)= 1 

Eff(a, l, b) = Eff(b, l, b) = 2 

1. Let cr,T E {1,2}*. If cr =J T, then Au(X) =J Ar(X). 

2. For any n the process A1n(X) has outdegree greater or equal than 2n. 

Proof. 

0 
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1. It is immediate that for any u E {1,2}* there exist a trace in {di,d2 }* that 
distinguishes A,,.(X). 

2. We show by induction on n that 

Ain(X) = L (a· Al<T(X) + b · A2u(X)) +di· Ai(n-2J(X) 
uE{l,2}" 

When n = 2 

Ai(X) L d • AEff(a,l,d)(Ai(X)) + L d · AEff(b,l,dJ(A2(X)) + d1 · X 
dEAct(a,1) dEAct(b,1} 

=a· Au(X) + b · A21(X) +a· A12{X) + b · A22(X) +di· X 

When n = m+2 

Ai(A1m(X)) = A1( L (a· A1<>"{X) + b · A2<>"(X)) +di· A1( ... -2J(X)) 
<>"E{t,z}m 

= L d • AEff(a,l,d)(A1a(X)) + L d • AEff(f,I,d)(A2a(X)) + d1 • Aim(X) 
dEAct(a,1) deAct(b,1) 

= L (a· Ana(X) + b · A21u(X) +a· Ai2u(X) + b · A:;i2.,.(X)) + d1 · Atm(X) 
ae{1,2}m 

= L (a· Afo(X) + b · Az,,.(X)) +di· Ain(X) 
aE{l,2}n 

0 

The next and last result of this section shows that the application of a state operator 
outside of a BPANIL specification adds to the expressive power of PANIL· The converse 
of this, i.e. that there exist processes definable in PANIL and not in >.(BPANILrec) (even 
not in (BPANIL + >.)lin), was already answered affirmatively in [BB91a]. 
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Example 5.5.7.22. Consider the following (infinite) recursive specification (i ::'.:'. 0). 

Xo = p· X1 +a 

X;+i = p · X;+z + m · X; + a · D; 

Do d 

D;+i = d·D; 

The intuitive meaning of this process is a counter that once in its existence can do an 
a-action and then do as many d-actions as the current value of the counter.A similar 
example appears in (Cau90b}. Note that if the a-actions and the D; are removed then 
the usual counter is obtained. 

We see that this process is definable in .A(BPANILrec) as follows. 

Let S = {l, 2} and 

and trivial otherwise. Now 

where 

a+-1 

p+-1,m+-l 

a-+2 

d 

are blocked. 

1 

Xo =C+-2 

C p·T·C+a 

T p·T·T+m+a 

If the a-action is removed in both equations, then C defines a counter. 

We show that C+-2 = X 0 by RSP. 

C+-1 (p · T · C)+-1 + a+-1 

NIL+d 

= d 

(Tn+l · C)+-1 = (p · T · p+i · C)+-1 + 

(m · Tn · C)+-1 +(a· Tn · C)+-1 

= NIL+ NIL+ d · (Tn · C)+-1 

= d · (Tn · C)+-1 



5.5. DEFINABILITY WITH THE STATE OPERATOR 

X,,, (T"' · C)+-2: 

C+-2 = (p · T · C)+-2 + a+-2 

= p · (T · C)+-2 +a 

(T"+i · C)+-2 (p · T · T"+l · C)+-2 + 
(m · T" · C}+-2 +(a· T" · C}+-2 

= p · (T"+2 · C)+-2 + m · (T" · C)+-2 +a· (T" · C)+-1 
= p. (T"'+2 

• C)+-2 + m · (T" · C)+-2 +a· D,,, 

Lemma 5.5. 7.23. The counter of 5.5. 7.22 cannot be finitely defined in PANIL· 
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D 

Proof. We will now prove that this process is not definable in PANIL looking at the 
term model (or isomorphically at the graph model, see [BW90]). 

The following definitions are adaptations of some appearing in [Vaa91]. 

Definition 5.5. 7.24. 

1. Let s be a term in PAs. An occurrence of a subterm t of s is sleeping in s if it 
occurs in r in a subterm of s of the form r' [Lr or r' · r. 

2. A subterm t of s is sleeping in s if every occurrence of t in s is sleeping. 

3. A subterm that is not sleeping is called awake. 

4. A subterm t of s is dead if for every s' such that s s' t is sleeping in s' 

5. Let E be a recursive specification. A term s is dead in E if it is dead in every 
right hand side of E. 

0 

Fact 5.5.7.25. If a term tis dead in a recursive specification E with root X, then X 
is bisimilar to X', where X' is the root of the specification E' which equals E except 
that every occurrence oft is replaced fort' (t' any term). D 

Fact 5.5. 7 .26. If p II q d"' d E A then 3m, p such that p am' q = dP and n p+m 
D 

As a consequence of fact 5.5.7.26, if p II q = d:' then p II q = f> · ij where x is x where all 
II and lL are replaced by ·. 
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Proposition 5.5.7.27. Let E be a specification over PAs with root X. Then there 
exists a specification E 1 with root X 1 such that X = X' and all occurrences of [L appear 
inside the scope of a II· 

Proof. Rewrite every p lL q that is outside the scope of a II into 

where I: a; · t; + E bj is the head normal form of p. 0 

Theorem 5.5. 7.28. Let Ebe a specification with root X of the process X0 of exam
ple 5.5.1.22 over PANIL, then there exists a specification E' of the same process over 
BP As. 

Proof. Let E' be E where all II and lL are replaced by ·. 

Let p II q be a subterm of (a right hand side of) E not in the scope of a II or a lL . We 
will show that P 11 q is dead or equal to an for some n. 

Suppose X t and p II q is a subterm of t that is awake and not equal to dn for any 
n. Since t cannot be d!' for some n, t should be able to perform an a-action. 

Asp II q is awake then 
t = (p 11 q). r + s 

where possibly r is missing or s = 8. Suppose that p p1 or p ____".___, .J. Then 
t ____".___, p' II q or t q, in any case q should be able to do a d-action. Since in this 
t would be able to perform a d-action followed an a-action, which is impossible, we 
conclude that the a-action is done bys. However, in this case pis able to do a p-action 
or am-action. In both cases t ~ p' II q · r or t q · r. Now, p1 II q or q should be 
able to do an a-action and the same argument as before applies. 0 

Now, Lemma 5.5.7.23 follows since the process of 5.5.7.22 is not definable in BPA0 (see 
[Cau90b]). 

D 

As an immediate consequence we have the.following theorem: 

Theorem 5.5.7.29. There is a process in >.(BPANILrec) that is not definable in PANIL· 

5.5.8 (BPANIL + A)lin C ACPNIL 

The main result of this section is the fact that all processes of (BPANIL + A)lin are 
definable in ACPNrL with renamings. 
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Definition 5.5.8.30. Let A be the set of atomic actions parametrizing the signature 
of ACP. Let p be a process definable in such a theory. The alphabet of p is the set of 
atomic actions that P can perform (FAP used). 0 

Definition 5.5.8.31. Let S, Act, Effbe the parameters for a generalized state operator 
and let s E S. Let A1 be the set of atomic actions. and /t a communication function 
over A1. Then we define an operator"'" over ACPNIL with a larger set of atomic actions 
A (i.e. A1 C A) and using a communication function/ that extends /t by 

Ks(X) = P! O 8H(X II Ps) 

Here 

• A={< a,b >s la E A1,s E S,b E Act(a,s)} U {a'la E A1} U Ai 

• 1(a,< a,b>s) = b' 

• f(a') =a 

• H = {< a,b >s la E Ai,s E S,b E Act(a,s)}UA1 

• Ps = LaeA LbeAct(a,s) < a, b > • . pEJJ(a,b,s) 

D 

Note that given a process p definable in ACPNIL with a set A of atomic actions and a 
state operator, then the alphabet of 11:,,(p) will still be a subset of A. 

Lemma 5.5.8.32. Let p be a definable process over ACPN1L, then 

Proof. 

(i) For closed terms. 

p= NIL 

11:,(NIL) Pf 0 8H(NIL II p.) 

= P! o 8H(Ps) 
= NIL 

= A.(NIL) 
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P =a· q 

11,.(a·q) = PJOOH(a·qllp.) 

p q + r straightforward. 

Pl o OH( a· q I Ps) since a E Ai 

L b ·Pf 0 OH(q II PEJJ(a,b,s)) 
bEAct(a,s) 

L b · AEff(a,b,s)(q) 
bEAct(a,s) 

A.(a·q) 

(ii) For definable processes. Let q be a definable process. q has a head normal form 
I: a; · q;. We prove by induction over n that 

Now we use lemma 2.1. 7.2. 

bEAct(a;,s) 

bEAct(a;,s) 

= L b·'ll'n(A.(q;)) 
bEAct(a;,s) 

'll'n+1( L b·A.(q;)) 
bEAct(a;,s) 

'll'n+t (A.( q)) 

0 

5.6 Summary 

The next picture illustrates all the (proper) inclusions among the different systems. 
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(BPA + A)lin 

(BPA + .\)lin 
(BPA +.\)rec 

.\(BPArec) 

BPArec 
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ACPrec 

PArec 

BPPA 

BP Pree 
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Chapter 6 

Some results on decidability of 
bisimulation 

6.1 Introduction 

In this chapter we use some techniques introduced in the previous one, in order to solve 
some of the decidability problems of bisimulation. Since the publication of the work 
[BBK87b], which showed that for an important subset of the context free process bisim
ulation equivalence is decidable, many extensions have appeared. When a new class of 
processes is presented it is now a natural question whether in this class bisimulation is 
still decidable or not. The results in this chapter are far from complete: we show that 
bisimulation is decidable in the union of {normed) BPA and BPP, and undecidable in 
the class (BPANIL + ,\)lin. 

6.2 Decidability results 

6.2.1 Introduction 

There exist algorithms for deciding bisimulation equivalence in BPP (Ba.sic Parallel 
Processes) and in BPA {Basic Process Algebra) (see [BBK93, Cau90a, Chr93, HS91]). 
An interesting question is whether one can decide if a BPP process is bisimilar to a 
BPA process. 

In both cases an important subset for which the problem of deciding bisimulation is 
easier, is the set of normed processes. A process graph is normed if from any node, there 
exists a finite sequence of steps to a termination state. In this chapter the previously 
mentioned problem for normed processes is solved. The strategy to solve the problem is 
the following: given a normed BPP process we can decide if it is also a BPA process, in 
which case we can construct a BPA specification for it and therefore use the algorithm 
to decide bisimulation in BPA. 

119 
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Also, given a normed BPP process, we can decide whether it is a .A(BPA) process. 

We list now some results about .A(BPA) graphs from [Cau90b, MS85]. 

Definition 6.2.1.1. The norm of a process pis the length of the shortest sequence cr 
such that p ~ y' (if there is such a sequence). Analogously, given a process graph the 
norm of a vertex of the graph is the length of the shortest path from it to a termination 
n~~ D 

Definition 6.2.1.2. Let P be a normed ,\(BPA) graph. For any vertex v with norm 
Iv I we define P( v) as the connected component containing v in the subgraph of P whose 
vertices are the vertices of P with norm greater or equal than !vi and the edges are 
those of P whose source and target have norm greater that or equal to Iv!. 
The vertices of P( v) with norm equal to lvl are called frontier points 0 

Definition 6.2.1.3. An end-isomorphism is a label preserving graph isomorphism 
that maps frontier points onto frontier points 0 

Theorem 6.2.1.4. Let P be a normed .A(BPA} process. The set 

{P(v)lv is a vertex of P} 

has only finitely many isomorphism classes under end-isomorphism. 

Corollary 6.2.1.5. Given a normed .A(BPANILrec) process, for any n, the number of 
frontier points of norm n is bounded. 

6.2.2 Basic Parallel Processes 

We reformulate here the definition of BPP presented in the previous chapter. The BPP 
specifications use alternative composition, parallel composition and action prefix. The 
general sequential composition is not allowed. In [Chr93] a normal form was found 
for specifications in BPP. Throughout this section we will assume BPP specification E 
with variables Var(E) {X1 ... X,1,}, such that each variable is defined as 

m; 

xi = 2: a;j . O:ij 
j=l 

where CX;j is a parallel composition of variables which will be identified with a multiset 
(eventually empty), when it is convenient. The graph associated to a BPP specification 
will have multisets of variables as labels on the nodes. We also assume that every 
variable appears in at least one multiset reachable from the root (otherwise it can be 
removed from the specification). 
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Definition 6.2.2.6. The following relation on Var(E) is defined: 

Xi - Xk iff there exists an <Xij with Xk E a;j 

Furthermore, we define the set 

R(X) = {YE Var(E) : X Y} 

0 

Definition 6.2.2.7. 

• A variable X is bounded if there exists a number n such that in any state of the 
graph of E the multiplicity of X is at most n. 

• a variable is unbounded if it is not bounded. 

0 

Fact 6.2.2.8. An infinite state BPP process has at least one unbounded variable. D 

Example 6.2.2.9. A normed counter ca.n be defined in BPP a.s follows: 

C=m+p·CllC 

This process has an infinite number of states (Clln for any n), 

0 

The following theorem will be useful in finding a necessary condition for a BPP process 
to belong to ,X.(BPA). 

Proposition 6.2.2.10. Let Y be an unbounded variable. If XE R(Y), then X is also 
unbounded 

Proof. If Y is unbounded, then for any n there is a state that contains ylln (in 
particular, since every variable is normed, the state ylln belongs to the graph). Since 
XE R(Y), then there is a sequence u such that ylln Xlln, then, for any n, Xlln is 
also a state of the graph. D 

Remark 6.2.2.11. We use yllk to indicate Y II Y II ... II Y (k- times) and yk for 
y.y ... y, 0 

Lemma 6.2.2.12. Given a specification E, a variable Y is unbounded if and only if 
at least one of the fallowing properties holds: 
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1. there is another unbounded variable X such that YE R(X); 

2. Y ~ * yn, n ~ 2; 

3. there exist a variable X and a path X ~ * X 11 Y. 

Proof. It is clear that if one of the conditions holds then Y is unbounded. Now, 
suppose that Y is unbounded and that the first two conditions are not true. Since Y is 
unbounded, there is an infinite path 

a1 * II yllk1 a2 * Un * II yllkn-1 Un+1 * a1 -'-t ct2 -'-t · · · -'-t ltn -'-t · · · 

where for all i, k; < k;+1 and Y ¢ a;. 

Moreover, since condition 1 is not true we can assume that for all i, all variables in a; 

are bounded. Otherwise we can take another infinite path where we take out all the 
unbounded variables from the a;. Note that we can do this because every variable is 
normed. 

For cardinality reasons we know then that there exist a, CJ" such that a II yllk ~ * 
a II yllk+r, r > 0. We can assume that r = 1 since Y is normed. From the fact that 
condition 2 is not true it follows that there exists CJ" such that a~• a II Y, because Y 
cannot reduce to a variable in a since they are all normed. Again we can assume that 
all variables of a are used. 

Assume that for any X E a, X ~ * /3;, such that U /3; = a U {Y}. This can be done 
because one can split the computation CJ" according to the variable in a from which 
each step originates. If some of the /3; is empty, then we can remove the variable from 
a (again because it is normed). If one of the /3; = { Y}, say X ~ * Y then there is 

another variable X' such that X' ~ * X. Then we can get rid of the X. In this way 
we can reduce the a until we have a variable X such that X ~· X' II Y. Since all 
other variables reduce through their correspondent CJ"j to exactly one variable in a, then 
it follows that X E R(X'), since X must be also in a, and in consequence condition 3 
holds. 0 

6.2.3 BPP n .\(BPA) 

Definition 6.2.3.13. The canonical graph of a specification is the graph in which two 
nodes are bisimilar if and only if they are the same (see [BW90]). D 

Theorem 6.2.3.14. Let E be a canonical BPP specification and X, Y two variables 
from E such that in the graph defined by E there is an infinite number of p's and of q's 
such that XllP II yllq is the label of a node. Then there is no specification in >. (BPA) of 
the same process. 
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Proof. Assume that the norms of X and Y are given by 

then, it is immediate that for any p, q 

IXl=m 

IYI n 
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Since all variables are normed then XllP II yllq is the label of a node for any p, q. 
Moreover there is always a path from Xll(P+Pl) II yll(q+qt) to XllP II yllq for any pl, ql. 
This implies that if we take only the nodes which norm is greater than a constant, then 
two nodes of this form will belong to the same connected component. Now we will show 
that the number of frontier points is unbounded. 

For any number k the number of nodes with norm equal to kmn is at least k + 1, and 
l<i<n 

IXllknl = IXll(Jc-t)n II yllml 

= IXll(k-i)n II ylliml = 

= w111cm1 = 

= kmn 

D 

Finally, the following theorem illustrates that this condition is not only necessary, but 
sufficient as well. 

Theorem 6.2.3.15. A BPP process that does not have a pair of unbounded variables 
as in theorem 6.2.3.14 is also a >..(BPA} process. 

Proof. We prove it for the case where there is only one unbounded variable. The 
general case is similar. Let 

Note that /3i can only contain the variable Y, since this is the only unbounded variable. 

Define #x(a) as the multiplicity of X in the multiset a. Assume Y is the unbound 
variable and for all i let mi be the bound corresponding to X;. Now define 

B = L:l:)i,a;i)·B1*Y("'•1l.B+ L: bi·B'#y(f3;l-1 .B+ 
i j #y(/31)~1 

L: (bj · G + b'J) 
#y(/31)=0 
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B' = L ~] i, a;j) · B'#y( O/;; )+l + L b1 · B'#y(f3, l + 
i j #y({3j)?_1 

E +b1 
#y(f3;)=0 

C = L L (i,a;j). B'#y(a•1)-1. B + 
#y(lllij)?.1 

E E (i,llij)'·C+ 

E E (i,ll;i)
11 

• c + E (. )Ill 
i, a;j 

a'tj=0 

The state space is defined as 

The intuitive idea behind this construction is that the state ( k1 , ..• , kn) will represent 
the multiplicity of the bounded variables and the recursion variables defined above will 
represent the multiplicity of the unbounded variable. 

The functions act and eff are defined as follows: 

• (i,a,3)+-(k1, .. .,kn)= 8, if k; = 0. 

• (i,a;3) 11+-(ki, ... ,kn) = 8, if k; = 1 and for all j =I i,kj = 0. It is allowed only 
when it is not the last action before termination. 

• (i,a;j)"'+-(k1 , ••. , kn)= 8, if k;-:/= 1 or there exist a j-:/= i such that kj 2 0. It is 
allowed only when it is the last action before. termination. 

• (i, a;j) 11+-(k1 , ••• , kn) = a;j, if k; > 1 or when both k; = 1 and there exist a j =/: i 
such that ki 2 0. 



6.2. DECIDABILITY RESULTS 125 

• II;+-( ki, .. . , k,,.) = 6, if for all j f. i, ki = 0. It is allowed only in a state with some 
bounded variable. 

• b'j+-(k1 , ••• , kn) = 6, if there exist a j f. i such that kj ~ 0. It is allowed only in 
states where there are not unbounded variables. 

• bj+-( ki, ... , kn) = bii if there exist a i such that k; 2:: 0. 

• b'j+-(ki, ... ,k,,.) = bj, if for a.ll i,ki = 0. 

• (i, a;j)-(ki, ... , kn) = (k1 +(#x1 (a;;)), ... , (k;+(#x,(a;j)-1), ... , (k,.+( #x,.(a;i))) 

• (i, a;j}'-(ki, ... , kn) = (k1 +( #x1 (a;;)), ... , (k;+(#xi(a;; )-1), ... , (k,.+( #xn( a;j ))) 

• ( i, a;;)"-( k1, ... , kn) = ( k1 +( # X1 ( O';j)), · · ·, (k;+( #Xi ( O'ij )-1 ), · · ·,(kn+( #xn ( O'i.i )) ) 

Accordingly, using RSP for infinite sets of equations, it is easy to prove that 

and 
Bir. B-(k1,. .. ' kn)= xllki II ... II X!"' II yllr+I 

For example the first equality when it holds that Li k; > 1, i.e. when there are at least 
two recursion variables in the multiset. 

c-(ki, ... 'kn) = (~= L (i, a;;). B'#y(CYij)-l • B + 
i #Y("ij);::t 

LL (i,a;j)'·C+L: L (i,a,;)")-(ki, .. .,kn) 
i #y(a;;)=O i #y(<>ij)=O 

= L L a;;. (B'#y(a;;)-1 . B) 

-(k1 + (#x1 (a;;)), ... , (k; + ( #x,(a;;) - 1), ... , (kn+ ( #x,.(a;j))) + 
L L i,a;j·C 

k;>O #y(<>ij)=O 

+-(k1 + ( #x1 (a;j )), ... , (k; + (#x,(a;;) - 1), ... , (kn+ ( #xn(a;j))) + 
L L a;j · C +-( ki, ... , k; 1, ... , kn) 
k;>Oa;j)=0 
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xP1 II · .. II x~kn = 2:::>w Xl1k1 II · · · llXJ1
k;-l II··· II x~k" llo:ij 

k;,00 

E aw xllk1+(#x1(°'ij}) II .. · II 
k;,00 

xr•+C#x,(a;,)}-111 · .. II x~k .. +(#xnC°'•illl!Yc#y(a;j)) 

E a;;. (X!lk1+(#x1(a;1}) II·.· II 
k;,00,#y(a;;)=O 

xl'k,+(#x, <"•ill-1 I I · .. II x~kn+(#x,. (a•ill + 
E a;j. (X!lk1+(#x,(a1j)) II·.· II 

k;,00,#y(Olij )?:1 

xl'k•+(#x,c,,.,n-111 · .. II x~kn+(#x,.<"'•J>>11y#y(a•1> 

The result then follows dividing the first summatory in the last term of the equation in 
the two possible cases (o:ii empty or not). 

D 

6.2.4 BPA 

Some results concerning BPA processes are recalled in this section. 

Definition 6.2.4.16. Given a graph of a process, a vertex s is a multiple start for a 
vertex t, if there exist two paths from s to t such that their only common vertices are 
sand t. D 

The following proposition is taken from [ Cau90b]. 

Proposition 6.2.4.17. The set of multiple starts for any state of a BPA graph is 
finite. 

Theorem 6.2.4.18. Let E specify a process in BPP n BPA with an unbounded variable 
Y. Then Y cannot appear an infinite number of times in a state with another variable. 

Proof. Suppose that Y appears an infinite number of times beside X. Given that the 
process is normed we know then that X II YllP is a state for any natural number p. 
There exists a path 

x yllr 

where r ;:::: 0 and all O:i are different than yll• for any s. (This is easy, take the first 
state of the form yllr in a path from X to the termination state or take r 0 if no Y 
is encountered) Now the set 

{ x II ylli : i > r} 
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is a set of multiple starts for yr. We can take the path from X II ylli to X and then 
from there to yllr or take the path from X II ylli to ylli+r and then reduce it in j steps 
to yll•. It is clear that the paths satisfy the properties of a multiple start. (Note that 
because Y cannot do a step to another variable and it is normed, then it must be able 
to terminate in just one step.) D 

Corollary 6.2.4.19. Given an infinite process in BPP n BPA with an unbound 
variable Y, there is no variable X (different than Y) such that X ~ * X 11 Y. 

Corollary 6.2.4.20. An unbounded variable cannot appear with a different variable 
in a state at all. 

Proof. From corollary 6.2.4.19, the only possibility for Y to be unbound is that it can 
do a step to yllk with k ~ 2. Yet, if there is a state of the form X JI Y then there is 
also a X II ylli for any j. 0 

Finally, all this gives us an algorithm to decide whether a BPP process is bisimilar to 
a BPA process. 

Theorem 6.2.4.21. Given a BPP specification we can decide if the process defined 
belongs to BPA, in which case we can construct a BPA specification for it. 

Proof. Using the algorithm in [Chr93] for normed processes based on unique decom
position, we can find a specification of the canonical graph of that process. One can 
easily calculate whether a variable is unbounded using lemma 6.2.2.12. If more than 
one unbounded variable appears together, then the process does not belong to BPA. 
Otherwise we know that it already belongs to >.(BPA). If it is the case that for every 
unbounded variable Y no other variable X can perform a sequence of actions to X II Y, 
then the process is in BPA. To obtain a specification in BPA for this process, first find 
a linear specification (as in [BW90]) for the regular process obtained by removing all 
occurrences of the unbounded variables. For every unbounded variable Y, if a variable 
in the original BPP specification has a summand of the form a · yllr, then add a sum
mand a · yllr to the corresponding variable in the new specification. Finally, add an 
equation for every unbouded variable where all II are replaced by · . D 

Example 6.2.4.22. The BPP specification 

X =a· (Z II W) + b · (Y II Y II Y) + b · Y
1 

y = c. (Y II Y) + d 

y1 = c' . (Y' II y1 II Y') + d' 

Z=e·Z+f 
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is transformed into 

W=g 

A = a · B + b · Y · Y · Y + b · Y' 

B=e·B+J·D+g·C 

C=e·C+f 

D =g 

Y=c·Y·Y+d 

Y' = c' · (Y' · Y' · Y') + d' 

6.3 Undecidable classes 

6.3.1 Bisimulation is undecidable rn (BPANIL + .\)lin 

D 

The problem of whether bisimulation equivalence is decidable for certain classes of 
processes has received many partial answers. It is well known that bisimulation is 
decidable for BPA (see [BBK87a, Cau90b, SCS92]). On the other hand, bisimulation is 
undecidable for ACP (see [BK84a]) and therefore for all systems containing it. For PA 
it is still an open problem (some work in that direction is [Chr92]). One of the most 
interesting open problems, that is also related with the decidability of deterministic 
languages, is whether bisimulation is decidable for processes in .A(BPANILrec). Theorem 
6.3.1.1 shows that if we move to (BPANIL + .A)lin then the problem of decidability of 
bisimulation has a negative answer. The construction is based on one in [BK84a]. 

Theorem 6.3.1.1. Given two processes in (BPANIL + .A)lin there is no algorithm 
which decides if they are bisimilar. 

Proof. Let K be a r.e. set that is not recursive. In [HU79] it is proven that K can 
be recognized by a three counter machine. Such a machine has three counters a, b, c 
(ranged over by a metavariable a) and a sequence of instructions. The instructions 
have one of the following forms, 

i a :=a+ 1; goto j 

ii a:= a_:.._1; goto j 

iii if a = 0 then goto j else goto j' 

iv stop 
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The meaning of each instruction is obvious · means subtract except if it is zero) 
The sequence of instructions is numbered and it is assumed that the labels of the goto 
instructions are among these numbers. 

Now, let P be a program that recognizes K, i.e. P(n,0,0) ---->stop iff n E ]{,where 
P(x,y,z) means that x,y, and z are the initial values of the counters. We will give a. 
recursive specification with main variable X 1 in (BPANIL + >.)lin such that X 1 +-an+-s 
can do an infinite number of actions if and only if the machine P does not finish. 

The state space will be 
S {a, b,c,s} 

First we translate each instruction Ii into a linear equation in the following way (fol
lowing the pattern above) 

i X; = b· Xi+-a 

ii X; = (O" +Pa)· Xj 

iv x, = 8 

The state operator will model the state of the counters of the machine. An expression 
of the form X;+-o-+-s where a E {a, b, c, I}* means that the machine is executing 
instruction i and that counter a has value #0t(u), that is the number of occurrences of 
am a. 

The action and effect functions a.re trivial except in the following cases 

• Oor+-a =NIL (the counter has a positive value) 

• Oa+-s b (the counter is empty) 

• Pa+-a = b (the counter has a positive value) 

• p.,,-+a =I (decrease the counter) 

• p.,,+-s = NIL (don't decrease an empty counter) 

Given B defined by B = b · B, then B is hisimilar to X 1 +-a+-s if and only if P( n, 0, 0) 
diverges. 0 
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Chapter 7 

Concluding Remarks 

In this thesis it has been shown that the state operator is a powerful tool for process 
algebra, both from a theoretical and applied point of view. It has been used in an 
essential way to introduce different classes of processes definable by recursive specifica
tions. Since the operator is defined axiomatically this classification is not restricted to 
a specific model. For applied research, this classification is useful as well since the dif
ferent classes have different properties, such as decidability of bisimulation equivalence, 
uniformly finite branching, etc, which can be used to simplify the analysis of a process 
that belong to a some of these classes. 

In previous works on the state operator (e.g. [BB88, BB9la]), it has been considered 
essentially as an operator that modifies processes, but little or no attention has been 
paid to how processes modify the states in their turn. We extended slightly this operator 
in order to cope with this idea, giving more symmetric roles to states and processes. 

A new notion of atomicity for complex processes was introduced, where communication 
has been replaced by (complex) multiactions. The state operator is of crucial impor
tance here to implement patterns of communication. Furthermore, it has been used to 
introduce input-output semantics in a concurrent environment, in order to define a new 
version of implementation of data types. 

The introduction of new classes of processes opens new decidability problems. One of 
the problems that has been open for a long time is the decidability of bisimulation for 
the class PArec. The class BPPA introduces in this thesis is contained in PArec and 
contains BPPrec and BPArec. This properties make it an interesting candidate for 
the decidability problem. Its main difference with PArec is that all its processes have 
uniformly finite branching. 
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Samenvatting 
ProcesaJgebra is de studie van concurrente processen op algebaische wijze. De belan
grijkste algebra1sche techniek die in de procesalgebra wordt gebruikt is de axiomatische 
methode. Deze methode behelst het vormen van een verzameling axioma's die het 
gedrag van processen en hun compositiewetten beschrijft. Een proces kan voornamelijk 
beschouwd worden als het gedrag van een systeem, waarbij een systeem bijvoorbeeld 
een computer systeem, een elementair deeltje, een verkoopautomaat, of een satelliet die 
communiceert met de aarde kan zijn. 

Procesalgebra verscheen als een antwoord op de vele problemen die opdoken bij de 
zoektocht naar formele semantieken van talen met primitieven voor concurrente pro
cessen. Een van deze problemen was het tekort schieten van invoer /uitvoer semantieken, 
die zeer succesvol waren gebleken bij het geven van semantiek aan sequentieele talen. 
De complexiteitsgroei van de problemen aangaande concurrente talen leidde tot het 
vaststellen van een zeker basisbegrip "proces" en de elementaire operaties op deze pro
cessen. Desalniettemin moesten, naarmate de theorieen groeiden en gebruikt werden 
in toepassingen, de vele eigenschappen die reeds bestudeerd waren op het gebied van 
sequentieele talen ook binnen dit kader bescbouwd worden. 

Een toepassing van procesalgebra die de aandacht verdient is bet begrip "atomairiteit". 
We benaderen dit probleem vanuit de gedachte dat een atomaire actie een zeker effect 
zal hebben op zijn omgeving, en wellicht ook door deze omgeving beinvloed kan worden. 
Atomairiteit behelst in deze de eigenscbap van uitgevoerd worden zonder wisselwerking 
van andere componenten. Dit lijkt overeen te komen met bet atomairiteitsbegrip dat 
gebruik wordt in bet vakgebied van gedistribueerde databases. 

Dit proefschrift behandelt enkele van deze eigenschappen, in een procesalgebraisch 
kader. 

In Hoofdstuk 2 worden de basisbegrippen van de procesalgebra en de toestandsoperator 
gelntroduceerd, die ten grondslag liggen aan dit werk. De toestandsoperator die hier 
gebruikt wordt is een generalisatie van die die behandeld wordt in [BB88]. Het belan
grijkste verschil is dat we de toestandsoperator meer symmetrisch beschouwen, en dat 
we niet alleen gei:nteresseerd zijn in het proces <lat gewijzigd wordt door een toestand, 
maar ook in de verzameling toestanden die voortgebracht of gewijzigd wordt door een 
proces. Hierdoor zijn we in staat om te gaan met het invoer-uitvoer gedrag van een 
proces, hetgeen noodzakelijk is in de overige hoofdstukken van dit proefschrift. We 
introduceren enkele niet-equationele principes, alsmede enkele niet-standaard modellen 
om deze principes te verduidelijken. 

Hoofdstuk 3 behandelt het principe van niet-elementaire atomaire acties in de proce
salgebra. Dit concept is het onderwerp geweest van veel discussie, en de bron van veel 
verschillende modellen. Het concept atomairiteit is essentieel bij interleaving theorieen 
van concurrency, en veel modellen berusten op het feit dat dit een primitief concept is. 
We wijken enigszins af van interleaving theorieen teneinde een mechanisme te introduc-
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eren om een proces te beschrijven <lat op atomaire wijze uitgevoerd client te worden. De 
gelijkheid op atomaire acties die we invoeren zal weergeven <lat twee atomaire acties zich 
identiek zullen gedragen in iedere toestand. Het concept van atomaire actie dat in <lit 
hoofdstuk beschouwd wordt combineert ideeen van [Bou89] en [BK84b], maar wijkt af 
van eerstegenoemde in het gebruik van branching time semantiek in tegenstelling tot de 
invoer-uitvoer semantiek van [Bou89], en is in plaats van synchronisatie als in [BK84b] 
gebaseerd op multi-acties. Verder is het principe van herstelbaarheid van een atomaire 
actie ( d.w.z. als de actie niet succesvol termineert, dan behoort de toestand van het sys
teem hetzelfde blijven, alsof de actie nooit was uitgevoerd) geimplementeerd op grond 
van het idee dat een onsuccesvolle terminatie een nul-object ([BB90]) binnen een atom
aire actie is. Dit is een verbetering ten opzichte van [Bou89], aangezien er onderscheid 
gemaakt kan worden tussen deadlock en livelock binnen een atomaire actie. 

Hoofdstuk 4 behandelt het combineren van data en processen. In de literatuur zijn 
veel verschillende aanpakken gebruikt om de theorieen van datatypes en processen te 
integreren. Zelfs wanneer beide theorieen beperkt werden tot algebralsche theorieen, 
werden verschillende combinaties gebruikt. In het proefschrift van Ponse [Pon92] bi
jvoorbeeld, worden datatypes gebruikt als indices voor recursie-vergelijkingen, terwijl 
in [AMR88] de processen zelf als een datatype worden beschouwd. Hier laten we zien 
hoe bepaalde datatypes op een hele natuurlijk manier gezien kunnen worden als pro
ces. Op die manier kunnen we interactie tussen processen en data vereenvoudigen tot 
interactie tussen processen onderling. Bovendien geven we een nieuwe oplossing voor 
het gebruik van datatypes, en de implementatie van een datatype door middel van een 
antler datatype, in een concurrente omgeving. 

In Hoofdstuk 5 beperken we de toestandsoperator tot een eindige verzameling van 
toestanden, om te bestuderen of de toevoeging van een dergelijke toestandsoperator 
al clan niet de verzameling van met een guarded recursieve specificatie definieerbare 
processen kan vergroten. 

Enkele resultaten betreffende de beslisbaarheid van bisimulatie op enkele klasses gedefinieer 
in Hoofdstuk 5 worden geintroduceerd in Hoofdstuk 6. 
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l. One of the advantages of process algebra that is often cited (for example [BW90]) is 
the ability to obtain results that a.re independent of the choice of a particular model. 
However, some properties that are interesting both from a theoretical and applied 
point of view ( c.g left-cancellation property of atomic actions, agreement between 
the equality in the model and bisimulation) a.re not valid in many reasonable models. 
Given any class of models a new class can be constructed for which these properties 
are valid, viz. the class of submodels of definable processes of the models of the 
original class. These models only contain processes that are solutions of guarded 
systems of recursive equations. 

2. Depending on the operations used, the set of definable processes of a given model can 
vary. This provides the means to classify a set of processes according to a number 
of notions of complexity without explicit reference to the model. In this thesis, some 
results are obtained concerning the inclusions and overlappings among the different 
classes. The procedure that wa.s implicitly used in most of these results was to convert 
a recursive specification which satisfies certain restrictions into another that satisfies 
a different set of restrictions, with a different set of operations in some cases. Further 
could be done by making all these algorithms explicit and using them as part of a. 
transformational approach to the design of concurrent systems. 

3. The tight sequential composition (:) introduced in [BK84] and elabora~ in this 
thesis, has the property of non-interruption. For example the process (a: b)llx must 
perform b immediately after a is performed, even if x is able to perform some action. 
Furthermore, it satisfies a property of recoverability that can be expressed with the 
equality a : Ii = /), which means that if a process reaches a deadlock while trying 
to complete a tight sequential composition, it must recover the state of the system 
before this tight sequential composition is started. An interesting question is whether 
the following recursive definition must have a unique solution 

X a:X 

Intuitively, a solution to this equation is a process with a livelock, but the deadlocked 
process Ii is a solution to this equation a.s well. 

4. In many works on data types and processes in which the processes act on the data. 
types, there was some redundancy in the sense that the data type is defined in 
an algebraic way, which implies that there is a fixed set of operations for the data. 
type. Moreover, a subset of the set of atomic actions was chosen to represent these 
operations at the level of the processes. The state operator suggests the simpler 
natural way to define data types as a set of atomic actions and a set of states where 
the definition of the operations of the data type is given as the state function of the 
state operator. Also, there is no need for new concepts to deal with the case of partial 
data types, since any atomic action could be blocked (=undefined) in a given state. 



5. Scientific activity, at least in computing science, bas become a self-referent activity. 
However, it is hard to find serious reflections on its own methods and goals. I think 
the only hope to achieve a. living science lies beyond the self-imposed boundaries of 
the scientific status quo, consisting in a movement towards an understanding of the 
fact that science is meaningful from a social and political point of view and a.s a 
creative and pleasurable activity. 

6. Bertolt Brecht was confronted with an Aristotelian theatre whose methods had be
come sterile. After Stanislavski, whose work is nonetheless admirable, it seemed that 
there was no other choice for the actor than to incarnate the character. He had to 
work on his own feelings in order to achieve the "magic" that was, and sometimes 
still is, equated with quality in theater. Brecht's epic theatre however, proposed 
plays that were not directed to the empathy of the spectators but to their critical 
capacity. The actor showed the contradictions between himself and his character, 
thus producing an effect of alienation from the social conditions in which everyone 
lives. Epic theatre also has a didactic effect, mainly showing that history is made by 
men and it is therefore changeable by men. 

7. Some words which are used to objectively describe some facts are often used in 
a derogatory way. An example that is impressively widespread is the use of words 
related to language like, for example, dialect and accent. In languages that have many 
different dialects spoken in one area, the word dialect is used too frequently to denote 
a dialect different from the official dialect. Analogously, some people claim that they 
speak without an accent (which is technically impossible) meaning that they speak 
with the accent some particular region or social class. Even if this phenomenon is not 
new, it is more anachronic than ever nowadays, considering the advances in linguistic 
knowledge achieved during the last century. 

8. Some contemporary thinkers have remarked, and correctly in my view, that in con
tradiction with a common prejudice, the modern forms of power are not mainly of 
a repressive nature. Rather, their most evident mechanisms are the production of 
discourses, even certain forms of knowledge. Perhaps one of the strongest forms of 
oppression today is the obligation to say, to define. 
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