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1 Introduction

A cOlllmon problem in the simulation of electric circuits for RF (Radio Fre­
C[ll<~ncy) applications is finding a periodic steady-state (PSS) of such a circuit.
Spwral approaches exist for solving this problem. For non-autonomous cir­
cuits, i.e. circuits that are driven by an input source with an a priori known
period T, many methods exist (see [1], [5], [7]). However, when dealing with
autonolllous circuits, the situation is less satisfactory. For an autonomous cir­
mit, the period T becomes an additional unknown, which makes the resulting
system under-determined. A common solution method is harmonic balance, a
frequency-domain method (see [3], [8]). Harmonic balance performs well if the
waveform to be computed contains mostly low harmonics, but it becomes very
expensive if a large number of harmonics is present. Therefore, there has been
much interest in hybrid (see [4]) and pure time-domain methods (see [3]), such
as shooting or finite difference. However, convergence of these methods is often
problematic; typically there is only convergence when the initial guess for the
l)(~riod Tn is already very close to the actual solution T*.

In this paper, two novel methods will be presented. The first, called Poin­
C;\j'(~-lllap method, has very strong convergence properties, but converges only
linearl~' for many real-world circuits. The second, the accelerated Poincare­
map method, converges super-linearly when the Poincare-map method converges
linearly, but has somewhat weaker convergence properties. Some numerical
results comparing both methods will be presented.

The algorithms discussed in this paper are described in more detail in the
upcoming paper [2]. This paper also contains more numerical experiments and
a discussion of how differential-algebraic equations (DAE) can be handled. In
this paper, we restrict ourselves to ordinary differential equations (ODE).
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2 Periodic steady-state

Definition 1. Consider an autonomous ordinary differential equation (ODE)
of the form:

dxdi = f(x), x ERn. (1)

A function x : R -+ Rn is called a periodic steady-state (PSS) of (1) ~l:

1. x is a solution to (1).

2. x is periodic, i. e. there is aT> a such that for all t E R, x(t) = x(t +T).

Note that according to this definition, a stationary solution, i.e. a solution
of the form x(t) == Xo, is also a PSS.

Definition 2. The limit cycle C(x) of a PSS x is the range of the function
x(t), i.e.

C(x) = {x(t) It E R}. (2)

A set C is called a limit cycle of (1) if there is a PSS x of (1) so that C = C(x).

Definition 3. A periodic steady-state x is called stable l if ther'e is a is > a so
that the following holds: For every solution x* to (1) which has the property
that

there exists a 72 > a so that

lim Ilx*(t)(O) - x(t + 72)11 = a
t---+oo

(3)

(4)

A limit cycle is called stable when one of its periodic steady-states is stable; fOT

an ODE of the form (1), this implies that all of its periodic steady-statcs an~

stable.

In this paper, we will concentrate on methods for finding a stable periodic
steady-state. Periodic steady-states that are not stable are not interesting for
the Ie designer, since they do not correspond to any physical behaviour of the
modelled circuit. In fact, we want to actively avoid non-stable periodic steady­
states for this reason.

3 A utonomous oscillating circuits

The circuits in which we are interested are so-called autonomous or free-r"lI:n:n.ing
oscillators. Such oscillators have the property that they do not have any time­
dependent input signals. This implies that they can be mathematically de­
scribed by an av.tonom07J.s ordinary differential equation or differential-algebraic
equation. In this paper, we restrict ourselves to circuits that can be described
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Figure 1: The LC-ring is a very simple free-running oscillator. It consists of a
capacitor and an inductor.

with an autonomous ODE of the form (1). An example of such an oscillator is
given in figure 1. The equations describing this particular circuit are:

dv 1 .
dt = ?/'

di -1
-=-v.
dt L

(5)

(6a)

(6b)

l'\ote that these equations are linear. For initial conditions v(O) = Vo, i(O) = io,
tile solution to (5) is given by:

vet) = Vo coswt + [!jiosinwt,

.(). (C.
1, t = to coswt - Vy;vo SlIlwt,

where w = l/VCL. For this problem, it isn't difficult to find a PSS, since every
solution x of (5) is periodic and hence a PSS. However, none of these PSS is
stable.

A nonlinear example of a free-running oscillator is given by the following
e<111ations:

~~ =y+h(Jx2 +y2)x,

~~ = -x + h( Jx'2 + y2)y,

The function 11. is chosen so that:

1. 11. continuous and differentiable.

2. 11(0) > O.

(7a)

(7b)

3. there are several points rk > 0 so that h(rk) = O.

Possible choices of h include her) = cosr, and her) = c(1- r).
The problem (7) has the following properties:

1. It has at least one PSS solution, namely the stationary state with x = O.
However, this solution is unstable.

1some authors prefer the term strongly stable
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2. For every rk > 0 with h(rk) = 0, we have that the circle described by
x2 + y2 = r~ is a limit cycle. Moreover, if hI (rd < 0, then the limit cycle
is stable.

3. As hl(rk) -+ 0 from below, the limit cycle x 2 + y2 = r~ becomes a ,veaker
and weaker attractor for nearby solutions of (5).

As we will see later, finding a stable PSS becomes more difficult when the PSS
behaves only as a weak attractor, i.e. convergence towards the PSS is very slow.

4 The Poincare-map method

The Poincare-map method is based on the following observation: starting suf­
ficiently close to a stable limit cycle C, a transient simulation will eventually
converge towards C. After all, this is implied in the definition of a stable limit
cycle. There are, however, two disadvantages to this approach:

1. We have to find a way to detect if we have approached the PSS close
enough. If T is known, a "running window" can be used, i.e. the value
x(t) at the current integration time t is compared to the value at x(t-T).
However, T is an unknown in the autonomous case.

2. Convergence will be linear at best, which means that excessive computing
time is needed to arrive at the solution.

The first problem will be addressed in this section, leading to the (unacceleratell)
Poincare-map method. The second problem will be addressed in the next section
when considering the Accelerated Poincare-map method.

The length of the period can be estimated by looking for periodic recurring
features in the computed circuit behaviour. A possible recurring feature is the
point at which a specific condition (the so-called switch condition) is satisfied.
This is equivalent to carrying out a Poincare-map iteration. The switch confli­
tion has to be chosen in such a way that the solution becomes locally unique.
Moreover, the switch condition has to be satisfied at some point during the peri­
odic steady state. In [2], some heuristics for finding a suitable switch condition
are given.

The unaccelerated Poincare-map method can now be described as follows.

Algorithm 1. Provide the algorithm with the following inputs: an initial state
xo, a switch condition of the form (v, x(t)) = a, and a tolemnce E: > O. The
algorithm will itemtively produce approximations for the pe7'iod T and fOT a point
on the periodic waveform x* .

1. Set i +- 0 and to +- O.

2. Starting with t = ti, x(t;)
d(v,x(t))jdt > O.

3. Set Xi+l +- x(t) and ti+l +- t.

Xi, integmte (1) until (v,x(t)) a a/nil
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(V,x) = a
I
I
I

Figure 2: The trajectory of a solution x(t) to the Initial Value Problem. The
points X n are chosen so that they satisfy (x, v) = a, for some given v
and a.

4· Compute 6i := Ilxi+! - xiii. If 6i > c, set i +- i + 1 and proceed to step 2.
If 6i :::; c, proceed to step 5.

5. Set T +- ti+l - ti and x· +- Xi+l. Done.

This method seems promising for two reasons:

1. It has rather good convergence properties.

2. It is simple to implement in an existing simulator, since it can essentially be
considered as a post-processing step to an ordinary transient simulation.

5 The accelerated Poincare-map method

The Poincare-map method essentially leads us to find the fixed point of a func­
tiOll F : R" ----t Rn, This function F can be formally defined as:

F(xo) := x(T), (8)

where x(t) is the solution of (1) with x(O) = Xo, and T is the smallest t > 0
such that (v,x(t)) = a and d(v,x(t))/dt > O. Given xo, the vector F(x) can
effectively be computed by using Algorithm 1, i.e. by applying the ordinary
Poincare-map method.
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Figure 3: log(error) after each iteration for the Poincare-map method applied
to (7) with h(r) := c(l- r),E = 3 .10-2 .

The successive approximations of the Poincare-map method satisfy the re­
cursion:

Xn+l = F(xn ) (9)

Note that the n-th iteration X n does not include the period T. Suppose that this
sequence converges linearly to some fixed point x* of F. As said in the previous
section, convergence might be slow. Hence we are interested in accelerating
convergence using an acceleration method.

An acceleration method operates on the first k vectors of a sequence {x n },

and produces an approximation y to the limit of {x n }. This approximation
can then be used to restart (9) and generate the beginning of a new sequence
Yo, Yl, Y2, . ... Again, the acceleration method can be applied to this new se­
quence, resulting in a new approximation z of the limit. The idea is that the
sequence x, Y, z, ... converges much faster to the limit of {xn } than the sequence
{xn } itself. Typically, if {xn } converges linearly, then {x,y,z, ... } converges
super-linearly.

We applied the accelerated Poincare-map method based on the well-known
minimal polynomial extrapolation (MPE) method. Rather than describing
MPE here in detail, the reader is referred to [6]. With MPE, we obtain a super­
linear converging sequence, provided that the original sequence produced has
in the limit linear convergence. This is typically the case for periodic circuits,
and it is in particular the case for our test problems.

6 Numerical results

In this section we compare the ordinary Poincare-map method and the acceler­
ated Poincare-map method. They have been applied to problem (7), where 11,
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Figul'(~ 4: log(error) after each outer loop iteration for the accelerated Poincare­
map method applied to (7) with h(r) := E(l-r'),E = 3.10-2 .

was chosen as h(r) := E(1- r). A switch condition of the form y = 0 was taken.
For all E > 0, the resulting problem has exactly one stable limit cycle, namely
the unit circle. The parameter E > 0 affects the speed of convergence towards
the limit cycle; as E approaches 0, speed of convergence also goes to O.

The number of iterations needed for decreasing values of E is shown in Table
1. From this .. it is easy to see that the unaccelerated Poincare-map method

I E

Unaccel. Poincare
Accel. Poincare

1.10 2

Table 1: The numbers of iterations (i.e. the number of evaluations of F) needed
by both methods for decreasing values of E

becomes impractical when E approaches O. On the other hand, the accelerated
Poincare-map method performs well even for very small values of E.

For E = 3 . 10-2 , the errors after each iteration for both methods have been
plotted in Figures 3 and 4. Note that in Figure 4, only the error after each
outer loop iteration has been plotted, whereas the number in Table 1 indicates
the total number of iterations.

From Figures 3 and 4, it is clear that the unaccelerated Poincare-map method
gives linear convergence, whereas accelerated Poincare gives super-linear con­
vprgellce for this test problem.
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7 Conclusions

The following conclusions can be drawn:

1. Unaccelerated Poincare is impractical for finding the PSS, because of its
slow convergence.

2. Unaccelerated Poincare probably is a good way to generate an initial ap­
proximation. After that, we might switch to the accelerated Poincare
method.

3. Accelerated Poincare gives super-linear convergence towards the solution
in all the test cases.

4. Both methods are simple to implement in existing simulators, since they
can be implemented as a post-processing step to an ordinary transient
simulation. Implementation details for both methods are given in [2]_
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