

Transition control based on grey, neural states

Citation for published version (APA):
Mazák, J. (1996). Transition control based on grey, neural states. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR469087

DOI:
10.6100/IR469087

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR469087
https://doi.org/10.6100/IR469087
https://research.tue.nl/en/publications/55717eca-27c9-4e10-8740-1ba6dbf2574a

Transition Control Based
on

Grey, Neural States

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof. dr. M. Rem,
voor een commissie aangewezen door het College van

Dekanen in het openbaar te verdedigen op
maandag 25 november 1996 om 16.00 uur

door

JozefMazak

geboren te Trnava

Dit proefschrift is goedgekeurd door de promotoren:
prof.dr.ir. A.C.P.M. Backx
en
prof.dr.ir. P.P.J. van den Bosch

Copromotor: dr.ir. A.A.H. Darnen

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Mazak, Jozef

Transition control based on grey, neural states I by
Jozef Mazak. - Eindhoven: Technische Universiteit
Eindhoven, 1996. - XIV, 160 p.
Proefschrift. - ISBN 90-386-0210-3
NUGI 832
Trefw.: neurale netwerken I intelligente regelsystemen I
toestandsruimte-analyse.
Subject headings: neural nets I process control!
state-space methods.

Preface

This thesis completes four and a half years of research in the area of using neural
networks for transition control of partly-known nonlinear dynarnic systems. This
research was done at the Eindhoven University of Technology, Faculty of Electrical
Engineering, at the Measurement and Control Section of the Measurement and
Control Systems Department.

It was a great pleasure for me to work in the Measurement and Control Group
for more than four years. It was also a great opportunity for me to experience
work at a Western university and to experience life in the Netherlands.

I would like to thank to many people who supported me during this research.
First of all, I would like to express my gratitude to Ton Backx, Ad Darnen, and
Siep Weiland for their valuable discussions, suggestions and comments concerning
all parts of my research. My very special thanks go to Ad Darnen for his extra
encouragement and help not only in my research but also in my personal life.
Next, I would like to thank to Ton Backx who enabled me to meet several people
at the AspenTech/IPCOS company to obtain the necessary information concerning
modelling of the polymerization reactor.

Several individuals have read the manuscript and their comments have helped
me to improve the accuracy and clarity of the text. I arn pleased to acknowledge the
assistance of all members of the Promotion Committee, especially the assistance of
my promotors prof. Ton Backx, prof. Paul van den Bosch and dr. Ad Darnen and
also the assistance of of prof. Joos Vandewalle from the Katholieke Universiteit
Leuven, prof. H. Verbruggen from Delft University of Technology, prof. dr. ir. W.
M. G. v. Bokhoven, prof. dr. ing. H. A. Preisig, TUE, dr. ir. P. J. M. Cluitmans
and S. Weiland.

I wish to express my thanks to all my colleagues. I would like to thank to my
room-mate Leon Ariaans who was willing to answer my questions at any time and
help with all kinds of problems. Further, I wish to thank Robert Jan Gorter, Heinz
Falkus and Yvo Boers for having me as a friend. I would like to thank to Udo
Bartzke for the computing support and many restarts of the windows manager on
my "Alpha" station, and Wim Beckers for his help in making me acquainted with
the VMS operating system. I would like to thank to my students J.F. Balseiro
who did a lot of work concerning of rigorous modelling of the polymer reactor and
Marcel van Garderen who wrote the software for solving nonlinear optimal control
problems.

I also wish to thank Barbara Cornelissen for proofreading some parts of the
English text, for her valuable advice addressed to my wife in taking care of our
baby and helping my family during the period of last two years of my research.

iv

Finally, I am grateful to my wife Diana, not only for giving me a son but also
for her patience and understanding during the time I devoted to my research. I
am also grateful to my parents and my sister Renata supporting me for the last
six years while I was abroad.

Eindhoven, October 14, 1996

Abstract

This thesis is devoted to studying the use of neural networks for the design of
controllers which steer the process state between different operating points. The
advantage of our approach is that by means of a single nonlinear controller we cover
a broad range of the process operating conditions. For a practical application this
means a speed up of transitions of the process state between different operating
points while maintaining a good level of optimality.

Our approach covers all phases of a practical controller design. We consider: (1)
process modelling issues in a form of nonlinear grey-box state-space neural models,
(2) process state estimation issues by means of design of a nonlinear neural state
observer and finally (3) control issues related to a nonlinear neural state feedback
tracking controller. The design takes into account process constraints, process
disturbances and measurement noise.

As a mathematical model of the process we consider a nonlinear state-space
model parametrized by a combination of an a priori known analytical part and a
black box neural network part. In the state vector of the model we distinguish
between white, physically well defined states and black or hidden states. The model
is estimated as a simulation model of the process to obtain a good simulation of the
process output over a long time horizon. The neural net of the model is trained,
in output error set-up, on measured process input/output data. The choice of
a state-space parametrization of the model enables inclusion of a priori process
knowledge into the model in a conceptually easy way. It also enables us, later on,
to define proper reference signals for the controller.

The simulation model of the process is then supplemented with a nonlinear
filter gain, parametrized by a static neural network, to improve the state pre
dictions obtained by the previously estimated simulation model due to process
disturbances. Various options for the filter gain parametrization are also consid
ered in this thesis. The filter gain neural network is trained using the measured
process data, independently of the simulation model parametrization, completing
the second step of the proposed controller design.

The transition controller is a nonlinear static state feedback parametrized also
by a neural network. The controller neural network is trained on the simulation
model of the process such that the model states follow prescribed reference trajec
tories. A discussion of various choices of the state reference signals, including an
optimal choice, is also given in the thesis. In order to remove final tracking errors
an integral action is introduced into the closed loop. The process constraints are
handled by proper speCification of reference signals, which is done by means of the
white-box part of the model and then by choosing of weighting factors in a control
criterion.

vi

All nonlinear functions being estimated at different steps of our algorithm are
parametrized by sigmoidal feedforward neural networks. To train the neural net
work we distinguish between gradient-based deterministic optimization and sto
chastic optimization. A number of methods are reviewed in the thesis in order to
obtain an effective combination of these two optimization techniques which is then
used for neural network training.

There are a number of examples given in this thesis demonstrating both mod
elling issues and control issues involved in the topic of this thesis. The most impor
tant examples include: (1) a gantry crane process to demonstrate the state-space
modelling procedure of a nonlinear process and (2) a fluidized bed polymeriza
tion process is used to demonstrate both modelling and transition control issues.
A nonlinear state feedback controller is considered for a swing-up problem of a
multi-link inverted pendulum.

Contents

Glossary

1 Introduction
1.1 Motivations
1.2 Neural networks ..
1.3 Thesis contributions
1.4 Chapter overview . .

2 Framework and Problem Statement
2.1 System descriptions
2.2 The transition control problem
2.3 Neural control paradigms ...

2.3.1 Direct inverse control
2.3.2 Model reference control
2.3.3 Adaptive neural control
2.3.4 Internal model control .
2.3.5 Model-based predictive control

2.4 The proposed control strategy.
2.5 Approximation the.ory
2.6 Summary

3 On Neural Networks
3.1 Multilayer feedforward network
3.2 Recurrent feedforward network
3.3 Iterative MLP learning algorithms
3.4 Gradient optimization ...

3.4.1 The method of steepest descent.
3.4.2 Conjugate gradient optimization methods
3.4.3 Second-order gradient optimization methods
3.4.4 Optimization by optimal filtering techniques
3.4.5 Other gradient optimization methods

3.5 Stochastic optimization
3.5.1 Controlled random search
3.5.2 Simulated annealing

3.6 Summary and conclusions

xi

1

4
6
7

9
9

11
14
15
15
15
18
18
18
20
21

23
23
29
30
31
31
33
34
35
36
39
40
41
43

viii

4 Grey-Box Neural Network Models
4.1 Black-box modelling

4.1.1 I/O models
4.1.2 Gradient computations ..
4.1.3 Black-box state-space models
4.1.4 Gradient computations - structured model
4.1.5 Gradient computations - unstructured model
4.1.6 Model complexity
4.1.7 Model validity
4.1.8 Prediction or simulation - an example
4.1.9 I/O models versus state-space models

4.2 Grey-box modelling
4.2.1 A priori information in process modelling
4.2.2 State partitioning
4.2.3 Grey-box state-space models
4.2.4 Gradient computations - fixed output map
4.2.5 Computational costs
4.2.6 Initial state condition estimation ..

4.3 Nonlinear neural state observers
4.3.1 A single-stage ahead state predictor
4.3.2 Current-stage state filter.
4.3.3 Discussion
4.3.4 Gradient computations

4.4 Linear MIMO state-space identification
4.5 Gantry crane identification - A case study

4.5.1 Equations of motion ..
4.5.2 Identification experiment
4.5.3 Discussion.

4.6 Summary

5 Neural State Transition Control
5.1 Operating point changing
5.2 General considerations
5.3 Example: A multi-link inverted pendulum
5.4 Controller design considerations.

5.4.1 Process model ..
5.4.2 Controller objective
5.4.3 Constraints
5.4.4 Reference signal ..
5.4.5 The feedback structure.

5.5 Controller synthesis
5.6 Gradient computation
5.7 Numerical example
5.8 Summary

45
45
46
49
51
53
54
54
56
57
62
63
63
66
66
67
67
68
69
70
71
71
73
74
76
76
78
81
84

87
87
88
89
97
97
98
99

100
102
102
104
106
108

6 Transition Control of a Polymerization Reactor
6.1 Process simulation model
6.2 The control problem
6.3 Identification

6.3.1 The data
6.3.2 The grey-box model prametrization
6.3.3 Model parameter optimization

6.4 State estimation
6.5 Controller design and validation.
6.6 Summary

7 Conclusions and Recommendations
7,1 Conclusions, ...
7.2 Recommendations .,

A System Transformations

B Simulation Model of the FBPR

Bibliography

Samenvatting

Curriculum Vitae

ix

111
111
116
118
118
120
121
126
128
130

139
139
141

143

147

156

157

159

Glossary

Symbols

x
u
y
w
v
r

n
m
p
q
s
El
B;

X
'Y
NL
NNi

D
N(m,tJ)

£{. }
c=
C2

IR
IR n

Z
z+
T

Ts

state vector
control or input
output
process disturbance
measurement noise
reference signal
state dimension
control dimension
output dimension
system disturbance dimension
reference dimension
parameter vector
ith component of (J

neural network input
neural network output
number of processing layers of a neural network
number of hidden nodes in the ith hidden layer
data set
normal distribution with a mean value m and a standard
deviation tJ
expectation operator
set of differentiable functions of any order
set of two times differentiable functions
set of real numbers
set of column vectors of dimension n
set of integers
set of positive integers inclusive zero
integration step size
process sampling time

xii

Notational conventions

x{t)
8J[x(k), u(k)]

8x(k)

:J!(k)

Abbreviations

MLP
I/O
p.d.f.
FBPR
CPU

transposition of a vector a
estimated value of a
absolute value of x
squared Euclidean norm of a vector x E IRn

Ilxll~ = xTx
time shift operator: z-lx(k) = x(k - 1)

. d' .. () dx() time envatlve: x t = dt t

partial derivative of a function f with respect to x eval
uated at (x(k), u(k)):

8f[x(k),u(k)] '= af [x uJI
ax(k) . ax ' x=x(k),u=u(k)

Jacobian matrix of a function f E IRm with respect to
x E IRn evaluated at x(k),u(k):

:J!(k) :=
(

!!.h..[X u]
£1:tl)

1J.I..m.[:x uJ
8~C1 1

multilayer percept ron
input/output

fu[x U J) 8x n '

1J.I..m. xu
ex. [, 1 x=x(k),u=u(k)

probability density function
fluidized bed polymerization reactor
central processing unit

1 Introduction

One of the most challenging problems of the system theory is the problem of non
linear control of nonlinear dynamic systems. This challenge is interesting not only
from a theoretical point of view where new theories can be developed but also
from practical point of view as the majority of technological processes show com
plex nonlinear behaviour within present operating conditions. A typical example
of an industrial control problem is a transition of process operating conditions from
one operating point to another. This type of control will also be a general topic of
this thesis. In the following section we explain why this problem is so interesting
and put forward problems to be solved.

1.1 Motivations

Taking a linear approximation of the process behaviour restricts the control quality
up to a certain leveL It is quite logical to realize that an increase of the quality of
the process control can be reached by abandoning the linearity assumptions about
the process dynamics and trying to treat the control problem in a full nonlinear
set-up. However, the nonlinearities in the process behaviour and the process di
mensionality might be so high that we will still have to approximate the process
dynamics with a less complex model but this time on a higher qualitative level
than using linear models. The linear control theory was brought in the past to
a very high level by mathematical proofs of optimality and global convergence.
A tremendous step forward was done in the robustification of linear methods. In
the nonlinear framework we are faced qualitatively with completely new problems
which do not exist in the linear framework. These include multiple equilibrium
points of the system, bifurcations of equilibrium points, periodic solutions, chaos,
strange attractors and so on. The available analytical methods do not provide uS
with a practically computational methodology. In practice we have often experi
enced that the nonlinear dynamics of a given process can be much more complex
than those assumed by existing analytical methods. These are complexities like
nonlinear time-delayed feedbacks, general nonlinear dependence of the dynamics
on observed and unobserved inputs, high or infinite state dimensionality.

Another important aspect concerning recent control systems is that the number

2 Chapter 1. Introduction

of control tasks provided by these systems is still increasing. The market demands
are pushing manufacturers into producing a wider range of products and there
fore into periodically switching the process production between different operating
points. A pragmatic solution adopted by large industries at the present moment
is a control strategy based on a set of linear controllers designed for each oper
ating point. The transition from one operating point to another is realized by a
sequence of manual control actions. It is clear that manual control is not optimal
as it is done by an operator using only his process knowledge without doing any
optimizations at all. Optimization and consequent automation of this operation
might result in an improvement of a production performance, for instance, just
by speeding up the transition. Note that the products made during the transition
are usually of wide speCifications type as they do not meet prescribed the high
specifications.

To make our research motivations more clear we present at this point an exam
ple of a nonlinear dynamic control process, namely a fluidized bed polymerization
reactor (FBPR) widely used in petrochemical industries, for example for an ethy
lene polymerization. This type of reactors can also be found in biotechnological
and coal industries. The process itself is schematically depicted in Figure 1.1.
This process will be discussed in detail later on in Chapter 6 when we will demon
strate our control algorithms. The process consists of a reactor, a heat exchanger
and primary controllers. The reactor is fed at the bottom with monomer and co
monomer masses in gas form. These polymerize in the reactor with the help of a
catalyst. The mass in the reactor is composed of solid particles of polymer through
which bubbles of gas rise. Recycled, un-reacted gases are cooled down in the heat
exchanger and then added to the incoming gas flow. The temperature of the cool
ing water Twin the heat exchanger is controlled by a primary PID controller to
stabilize the process dynamic. The mass input flows are manipulated by a pres
sure controller which keeps a constant pressure at the top of the reactor through
compensation of fast process disturbances. The final product is withdrawn from
the reactor at a rate Qo.

The dynamics of the FBPR are quite complex, and as we stated at the begin
ning of this section, this is often the case. A rigorous modelling of this process
is based on a set of simplifying assumptions. Basically we take here the mass
and energy balances to build up a mathematical model which is then of restricted
fidelity. We assume, for example an average size of solid particles and gas bubbles
in the reactor. This might not be such a bad assumption, but if it is not properly
chosen, the overall mathematical model might be wrong [14]. This and similar
model simplifications limit the performance of the control system being designed
using these models. If the performance of a control system has to be further opti
mized we have to consider first the process modelling issue and try to build up a
more accurate mathematical model of the process dynamic. This would enable us
to increase both robustness and performance of the control system.

A practical operation of technological processes is often complicated by the fact
that the process behaviour is influenced by disturbances. For instance, in the case
of the polymerization reactor, it can be a fouling of the heat exchanger, impurities

1.1. Motivations

Gascap

Catalyst-polymer
,arbcle

Fluidized
Bed

... , '

Recycle
loop

Outlet cooling water

Heat

exch.

Q

Product
withdrawal

Pressure
control

Figure 1.1: Fluidized bed polymerization rector diagram

3

4 Chapter 1. Introduction

in the input mass flows or the catalyst activity fluctuations in the reactor. The
main difficulty is not in determining the stochastic characteristics of disturbances,
these can be estimated rather well, but in their nonlinear effect to the process
outputs. Existing theories of nonlinear stochastic systems assume additive distur
bances either at the process state or at the process output. If we could model also
the effect of disturbances to controlled outputs we could then further improve the
quality of control.

Along with the problem of a complex nonlinear process behaviour and process
disturbance we are also faced with the problem of high process dimensionality.
By this we mean that the process dynamics are described by a large number of
differential equations whose order can also be rather high. Often these equations
contain also partial derivatives which further complicate the process description.
For instance, a heat exchanger is described basically by partial differential equa
tions, but to translate these equations to ordinary differential equations we have to
consider a rather large number of equations. For such a high-dimensional nonlinear
dynamic system it is very cumbersome to use analytical techniques.

In practice, we often have a good prior knowledge about the process we are
going to control. The first principal dynamic relations concerning some of the
process variables are usually also known. In the case of the FBPR these are for
example the concentrations of the monomer and the co-monomer, as we know how
they relate to the pressure. This also means that the dynamics of the process
is partly known and the known part of the process dynamics can be explicitly
brought into the model parametrization.

From the previous discussion it is clear that for the controller design a good
mathematical model of the process dynamics and disturbance effects will be un
avoidable. A good model should not be too complex, as it will be used later on
in the further optimization of the controller, and it should not oversimplify the
process dynamics. In general, it should be a nonlinear model. The controller, in
general, should be nonlinear as well. In our design we have chosen a state-space
realization of the controller. Our motivations for this choice are: (1) having a
possibility of an easy way of including a prior process knowledge about the pro
cess into the model; (2) to be able to parametrize approximated nonlinearities by
static nonlinear functions; (3) to be able to model the effect of disturbances at
the process output; (4) the controller is a static state feedback. The state of the
process is, in general, not measured directly and has to be estimated.

Therefore an immediate problem arising at this point is how to parametrize the
nonlinear functions of all the components of the controller, which will be designed.

1.2 Neural networks

Let us turn Our attention for a while to biological systems, e.g. the human body. In
daily practice we perform a number of control tasks without noticing any problems
there unless we are in a good health. Presumably, these are optimal and efficient.
But do we know how are we really solving these tasks? Isn't it also possible to

1.2. Neural networks 5

mimic this approach in industrial process control? A human body is also a com
plex nonlinear dynamic system. The decisions and movements we make represent
similar problems we meet in the fields of pattern recognition and control. We know
that all these decisions and pulses leading to control actions are being determined
in our brain. We also know, that our brain is a complex system of neurons, building
up perhaps the most complex, most efficient system consisting of nonlinear maps
performing different tasks and storing millions of bits of information. Therefore a
question can be asked whether a similar artificial neural network can be used for
modelling of the process behaviour and solving control tasks.

Studies of neural networks, attempts of understanding their functionality and
the build up of their artificial equivalents are quite old. The use of linear threshold
units as a basic unit in neural networks was pioneered by Rosenblatt [54). The
neural network mechanism proposed by Rosenblatt is called the perceptron. Re
search on the general architecture by Rosenblatt and others continued into the
late 1960s. During this period, Minsky and Papert [43J published a mathemati
cal analysis of the perceptron showing its limitations, since the perceptron's basic
computational element is a linear threshold unit. Therefore the perceptron can
only discriminate between linearly separable classes. The fact that a large pro
portion of interesting classes of patterns are not linearly separable means that the
capabilities of the perceptron are very limited. After this criticism the neural net
works lost some of the attention until new learning rules were discovered. That
enabled using nonlinear threshold units in the perceptron replacing the original
linear units. It was also proven that such a structure can approximate any non
linear map, and this became immediately attractive not only for control engineers
but also for statisticians, computer scientists and others.

Neural network structures, used in the context of this thesis, will be discussed
in more detail in a specially devoted chapter. But basically a neural network can be
seen as a high dimensional nonlinear static/dynamic black-box system with many
inputs and many outputs while the behaviour of this box can be adjusted freely by
tuning weighted interconnections inside the network. This looks very much like a
modelling problem of an unknown complex system with many inputs and outputs
indicated in the previous section. If we can use measured data of process inputs
and outputs, we can try to teach a neural network the process dynamics from
these data. However, the process dynamics can be so complex, that by trying to
model it by a black-box neural network we might end up with a not very feasible
problem. In such cases we can try to combine a black-box neural network with an
available a priori knowledge about the process. A way of doing it will be explained
in Chapter 4.

6 Chapter 1. Introduction

1.3 Thesis contributions

The main contributions of this thesis are summarized as follows:

• We have proposed a complete procedure for the design of a nonlinear tran
sition controller for a partly-known multivariable nonlinear process which
brings the process state from one operating point to another, while taking
into the account process disturbances and process constraints. The design
was verified by a large number of simulation experiments done on a rigorous
simulation model of a fluidized bed ethylene polymerization reactor [37, 38]
as well as on an academic example [39].

The controller uses neural networks to parametrize unknown nonlinearities.
The design is carried out in state-space domain and the design is model
based. The model of the process is a prior knowledge based state-space
simulation model, where a black-box part is parametrized by a static neural
network. The process state is estimated by means of a design of a state
observer, similar to the Kalman design, but this time is the filter gain a
nonlinear function parametrized by a neural network. The controller is then
a nonlinear static state feedback parametrized by a neural network.

• In this thesis we have elaborated on a concept of nonlinear state observers
based On the available prior process knowledge and using neural networks as
nonlinearities approximators. A state observer is a composition of a dynamic
simulation model of the process and a static nonlinear filter. The model
incorporates our prior process knowledge. For this purpose we have divided
the process state vector into two parts:

1. The physically known part of the state vector represents those states of
the process, which physical meaning is well defined.

2. The hidden part represents the complementary part of the state vector
containing those states of the process which are unknown.

With this respect we divided the model into an analytically known part and
into a black-box part parametrized by a static neural network. The filter
gain is also parametrized by a static neural network.

• The state observer is being designed in two steps:

1. An output-error simulation model of the process is estimated using the
measured process data and a prior process knowledge;

2. A nonlinear filter gain is estimated to improve the state estimates from
the previously estimated simulation model. In this step are the weights
of the model neural network set to fixed values and the weights of the
filter neural network are tuned independently of them.

1.4. Chapter overview 7

• It is shown in this thesis that the state-space approach for modelling partly
known nonlinear dynamic processes provides us with better conceptual and
algorithmic properties than similar nonlinear dynamic I/O models, mainly
in terms of an easier way of incorporating different types of prior knowledge
about the process dynamics at the modelling stage.

• In this thesis we have also paid attention to the training of neural networks,
as it is a problem to be solved at every stage of our controller design algo
rithm. Neural network training is a non~convex, high dimensional minimiza
tion problem. To deal with this problem efficiently we have investigated and
tested a couple of function minimization algorithms. We have also proposed
a novel training algorithm based on weighted past gradients. To balance the
time spent in the minimization and the risk of getting trapped in a local
minimum we have proposed a combined stochastic and deterministic opti
mization procedure, supplemented by a number of restarts from different
initial points.

• In this thesis we have also considered the computational cost and mem
ory requirements for different problems involving a neural network training
procedure. These considerations are very seldom reported in the literature
though they are Significant.

• We have elaborated on a simulation model of the FBPR reactor [37], which
was used to test the proposed controller design algorithm.

1.4 Chapter overview

In Chapter 2 we discuss the general framework of this thesis. We define here a
general concept of a nonlin~ar dynamic system as it will be looked at throughout
this thesis. Then we state a control problem which will be the main topic of this
thesis. This control problem will be concerned with a real industrial process what
will then, in fact, dictate the proposed solution. As one of our ideas is to use neural
networks we review the most important existing control techniques for control of
nonlinear systems based on neural networks. After this we describe, in general
terms, our approach. At the end of this section we review a nonlinear function
approximation problem.

In Chapter 3 we describe the class of neural networks, which we use for the
approximation of unknown nonlinear functions. We address both static and recur
rent feedforward neural networks. As these are structures with many parameters
to optimize we investigate in this chapter some of the function minimization tech
niques, both deterministic and stochastic and we conclude this chapter with a
suggestion of a combined deterministic stochastic minimization algorithm.

Chapter 4 is devoted to a discussion concerning modelling issues related to
estimation of a mathematical model of the controlled process. In this chapter we
treat both prediction models and simulation models, both in I/O configuration and

8 Chapter 1. Introduction

state-space configuration. A state-space model is treated as a simulation model of
the process and later on it is supplemented with a nonlinear filter gain resulting in a
neural process state observer. In this chapter we also demonstrate, using a simple
numerical example, why simulation models are to be preferred with respect to
prediction models. In this chapter we also give another, more practical, numerical
example and that is an identification of a grey-box state-space simulation model
of a gantry crane process.

In Chapter 5 we discuss the transition control problem. We start by an intro
duction of a nonlinear state feedback. We then give an example of the control of
a multi-link inverted pendulum using a neural network to parametrize the state
feedback. Next we discuss all issues related to the state feedback design for a tran
sition controller. These issues include: the process model, the controller objective,
the choice of a reference signal and the state feedback structure. At the end of
this chapter a simple numerical example demonstrating the whole controller design
procedure is given.

In Chapter 6 we give a simulation example of a transition controller design for
the fluidized bed ethylene polymerization reactor. First of all, we introduce the
process itself and we specify the transition control problem precisely. Then we
discuss the identification experiments together with the process data simUlations.
Next we discuss the state observer design and finally, we describe the controUer
state feedback design. A validation of the controller using the original simulation
model of the process is also given.

2 Framework and Problem
Statement

In this chapter we discuss a general framework for the type of problems we want to
address in this thesis and are essential for our global goal: Design of a tmnsition
controller for a partly known nonlinear dynamic system. First of all, we specify
mathematical descriptions of dynamical system which will be used as general mod
els of real processes. We will treat these concepts in state-space domain, both in
continuous-time domain and in discrete-time domain. A general formalism of sys
tem theory, directly related to this framework, can be found in [75, 72]. After this,
we state a general problem of this thesis: The transition control problem. Next we
review the most important control schemes based on neural networks and propose
a scheme which will be worked out in this thesis. We conclude this chapter.by a
general framework for function approximation problems.

2.1 System descriptions

A broad class of nonlinear dynamic state-space systems L. can be described in
continuous time t E JR, t > 0 by the following set of equations

x(t)

y(t)

fc[x(t), u(t), w(t)]

hc[x(t), u(t), v(tl]

(2.la)

(2.lb)

Both Ie and h are assumed to be smooth, nonlinear, multivariate functions of their
arguments given by

(

fe.dx , u, w l)
le[X,u,W] = :

Ic,n[x, u, w]
(

hI [x, u, Vl)
h[x,u,w] = :

hp[x, u, v]

where we omitted the time arguments for time signals. The equation (2.1a) is
called the state equation and describes the time evolution of the state x E JRn
of the system assuming that x(O) = Xo is the initial condition of the state at the
time t = O. The other two arguments of the function I belong to the input space

10 Chapter 2. Framework and Problem Statement

of the system: u E IRm is an observed system input and is called the control
input or simply control, W E IRq is a non-observed system input and is called
the process disturbance or simply disturbance. The equation (2.1b) describes the
measurement system, attached to the system evolution, and therefore we often call
this equation a measurement equation. The measurements are denoted by a vector
y E IRP. The variable v E IR' is another non-observable input signal which stands
for the measurement noise. It is quite usual to assume that the measurement noi~e
is additive to the output and then the dimension of the measurement noise is equal
to the dimension of the output vector, or T = p.

Similarly to (2.1), a linear time-invariant state-space dynamic system can be
described as follows

x(t) = Ax(t) + Bu(t) + Gw(t)

y(t) Cx(t) + Du(t) + Hv(t)

(2.2a)

(2.2b)

where A,B,C,D,G,H are, in this case, constant matrices. The system (2.2) is a
special case of a system described by (2.1). An advantage of considering the system
description (2.2) is, for instance, that this description satisfies the supperpossition
principle and the differential equations (2.2a) are readily solved. However, the
real-world systems are nonlinear and the system description (2.2) is only valid for
limited ranges of system variables.

Let a sampled version of the system ~s is described in the discrete-time domain
by

x(k + 1)
y(k)

fd[X(k), u(k), w(k)]

hd[X(k), u(k), v(kl]

(2.3a)

(2.3b)

where k E Z+ stands for the time index or time step and the meaning of other
variables is similar to those in (2.1). The state in this description evolves at equal
discrete-time moments also called sampling moments. The time interval between
two successive samples is the sampling time and will be denoted by T •.

A transformation of a continuous-time system given by (2.1) to its equivalent
description a discrete-time system (2.3) and vice-versa is not trivial for a gen
eral nonlinear system. In this thesis we will require only transformations from
continuous-time to discrete-time domain. The reason is that the first principles of
real process behaviours provide us with mathematical laws of type (2.1) while e.g.
for a numerical optimization of controllers using a digital computer descriptions
of type (2.3) are more convenient. In a lack of an analytical solution to a general
problem of transformation of (2.1) to (2.3) we often take an approximation of this
transformation. As there are many ways of constructing such an approximation
and these were used later on in this thesis in different simulation examples we
review some of them in Appendix A.

We know that the representation ofthe process given either by equations (2.1)
or by equations (2.3) is unique up to modulo any state transformation of type

i = a[x] (2.4)

2.2. The transition control problem 11

where 0: : IRn -+ IRn is a smooth and invertible function and x is the state, either
continuous or discrete. This ambiguity of the state-space representation can be
avoided by choosing a certain structure for Ie, he or /d, hd . The importance ofthis
restriction is given by preserving the physical meaning of states under study.

Let us consider the continuous time nonlinear dynamic system ~s described by
(2.1). We call a triple j.I. = (xo,uo,wo) an equilibrium point of this system (2.1) if

(2.5)

Similarly, an equilibrium point of a discrete-time dynamic system (2.3) is defined
by

(2.6)

In the following we will consider only those equilibrium points, either defined by
(2.5) or by (2.6) for which Wo = O. We will call Xo an equilibrium state and 1.10 an
equilibrium control.

The disturbances w entering the state equation, either in (2.1) or in (2.3) can be
deterministic or stochastic or combination of these two. In this thesis we consider
mainly stochastic disturbances of white noise type. Strictly speaking, one can not
simulate a white noise sequence in continuous time over its full frequency range.
Therefore it is often replaced in the literature (see e.g. [40]) by dw, which is then
a Wiener process. This delicate problem will be overcome, when we will consider
a discrete-time process description.

By restricting ourselves in this section to a specific class of nonlinear dynamic
systems we are ready to state a control problem related to these systems.

2.2 The transition control problem

The control problem stated in this section will be studied in this thesis. We use
the continuous time domain for its statement as this is more natural when having
in mind a physical process. However, the actual implementation of the solution,
we will propose later on, will be done in the discrete-time domain as a digital
computer is going to be used in the place of a control device.

The next definition defines a control function of the system (2.1): A measurable
function u E IRm defined on an interval (to,t,) is said to be a control on (to,tf) if
there exists a function x(t) E Coo defined on (to, tf) such that

1. x(t) E IRn for all t E (to, t f)

2. x{t) = I[x(t),u(t),w(t)] on (to,t,) for any measurable w(t).

This definition says that u(t) is any measurable function for which the system of
differential equations (2.1a) has a solution provided an initial condition Xo E IRn
is given. The function x{t} is called a state trajectory corresponding to u{t) called
a control trajectory.

12 Chapter 2. Framework and Problem Statement

Let us consider now a nonlinear closed-loop dynamic system according to Figure
2.1. The variables u, y, w, v denote the already introduced control, output, process
disturbance and measurement noise signals. Let the control system or simply
controller be represented by a nonlinear dynamic system I:~, similarly to (2.1).
A general task of any controller is to ensure a certain specific behaviour of the
controlled system. To do this the controller takes the process output y and an
external signal r E JRs as its inputs and computes a control signal u offered to the
system input. The signal r is called a reference signal. The behaviour of the closed
loop is judged by the controller via a new output signal Z E JRn, which represents
an optimized output and is defined as follows

q(t) = d[x(t) , u(t), r(t), w(t), v(t)] (2.7)

where d is a nonlinear function, for simplicity assumed to be smooth.

w,v q

Nonlinear

----->
System

- y

u
- Control ------r System

Figure 2.1: Feedback control loop

Let us assume two different equilibrium points of the controlled system I: s , fio and
fif. Then the transition control problem can be stated as follows:

Problem 2.1. Find a controller I:~, which steers a nonlinear dynamic system
(2.1) from a neighbourhood of one equilibrium point 11-0 to a neighbourhood of
another equilibrium point I1-f in an optimal way to be defined.

This problem can be mathematically described as follows: Minimize a cost
functional

t/

J=W[q(t,),tf]+ J L[q(t),tJdt (2.8)

to

where \li[q(t,),t,J E C 2 is defined on IRn, x JR is the final-time penalty put on
q(t), L[q(t), tJ E C 2 is a Lebesgue integrable function on JRn, x (to, tf)' subject to:

2.2. The transition control problem 13

a) the differential system equations (2.1) describing the controlled system dy
namics;

b) the initial state of the system given by

x(to) ~ 0(1'0) (2.9)

where 0 stands for a neighbourhood of 1'0;

c) the final state condition defined by

cf[x(tf), 1'" tf] :::; 0 (2.10)

where cf E Goo;

d) the control inequality constraints

Cu[u(t), t] :::; 0 (2.11)

where c" E Coo;

e) the inequality constraints expressing the forbidden region of the state space

c,,(x(t), t] :::; 0 (2.12)

where Cx E Goo.

Discussion

• The above stated problem is a free final-time optimal nonlinear control prob
lem with mixed state and control constraints.

• All process variables, u(t), yet), x(t), q(t), are stochastic processes due to the
presence of random process disturbances and measurement noise. To be
precise in the above problem formulation all these variables should be re
placed by their expected values. As the problem is nonlinear, an analytical
determination of expected values of these variables is, in general, not trivial.

• An initial state condition x(to) of the controlled system is assumed to be
known only approximately. This is expressed by the constraint (2.9). It tells
us that the initial state of the system can be found in a neighbourhood of the
initial equilibrium point /1-0, It is more likely that the initial state is closer
to /1-0 than far away. Therefore the neighbourhood of the initial equilibrium
0(/1-0) can be probabilistically described by a normal distribution N (1'0, a 1'0)'

• A similar reasoning as the one for the initial state of the system applies also
for the final state of the system. As the process is subject to disturbances
the requirement of reachability of the final equilibrium /1-f exactly is relaxed
to other conditions, namely that the final state of the system x(t f) should
be suffiCiently close to J.Lj. This problem can be also handled by the "tail"
ifJ[q(tf), tf] of the cost functional (2.8) by penalizing large deviations of the
final state value from /J.f.

14 Chapter 2. Framework and Problem Statement

• In practice, all process variables have physically defined ranges of operational
values. These values can not be exceeded, mainly due to safety reasons.
Often also time changes of manipulated variables can not exceed certain
limits. The same holds also for process states and outputs. For example, in
the case of the polymerization reactor introduced in Chapter 1 (see Figure
1.1), a fast increase of the temperature can cause melting of solid particles
and consequent collapse of the fluidized bed. The constraints put on process
variables does not have to be only simple bounds put on magnitudes of these
signals but and can be considered as a general nonlinear constraints.

• We have required in this transition control problem definition that all con
straints are smooth functions. This requirement could be in fact relaxed, as
the later on used numerical optimization methods require only continuity of
first derivatives, that is {c/,c",cx } E C2 might suffice.

• In practice, there is always an existing control system present in the process,
e.g. primary controllers, and we can assume that there are present also
some steady-state controllers designed for specific equilibrium points. A
transition from one operating point to another can possibly start by swi tching
from a steady-state controller to a nonlinear transition controller (design of
which is studied in this thesis). The transition controller changes the process
operating conditions to the new ones which are in the neighbourhood of the
final operating point. Finally, we can let a new steady-state controller to
take over. The transition controller is in principle nonlinear as it controls
the process over nonlinear regions. The steady-state controllers are linear
because they control the process only close to an equilibrium.

2.3 Neural control paradigms

Before we describe the approach presented in this thesis to approximation of a
solution of the above stated control problem we review the most important control
techniques based on neural networks as our approach is closely related to them. We
assume, that the reader has already got a general knowledge about neural networks,
so we give the following discussion without going into the details concerning neural
networks as to this discussion is devoted the Chapter 4.

In the past decade a large number of, prevailing model~based control algorithms
has been proposed to achieve better control quality and robust controllers. All
these techniques rely strongly on the availability of a mathematical model that is
a good representation of the process dynamics. However, most of these models are
empirical, first principal models or linear estimates of the true process dynamics.
The neural networks methodology offers an alternative for the derivation of proper
dynamic models of the system. In addition, it is possible to take advantage of the
potential of neural networks to device new control strategies that are impossible
with conventional methods.

2.3. Neural control paradigms 15

2.3.1 Direct inverse control

The most appealing feature of neural networks is the ability of the inversion of
complex dynamic systems. The inverse system model can be generated from in
put/output process data and then cascaded with the controlled process such that
the composed system results in an identity mapping between the desired response
and the controlled process output. Clearly, the quality of such a control will be
determined by the accuracy of the process inverse model. The other problem is
the lack of the feedback. This affects the robustness of the direct inverse design
with respect to the process disturbances or inverse model discrepancies. Provided
that the process dynamics are non-minimum phase, an inverse of the process will
be unstable and the control loop will be internally unstable.

A more appropriate structure of the direct inverse control is shown in Figure
2.2. This structure is in the literature usually addressed as a specialized learning
[51J. The neural controller is trained to find the process input u that drives the
process output y to the desired reference value r. The drawback of this procedure
lies in the requirement of knowledge of the process Jacobian (ay/au). As this is
in general not available heuristics and different approximations are used at this
place.

The learning algorithm represents here a quasi-feedback which, if implemented
on line, can contribute to the robustness, however the speed of the neural controller
parameter adjustment might be too slow for compensation of fast disturbances.

2.3.2 Model reference control

The structure of this control scheme is shown in Figure 2.3. The desired perfor
mance of the closed-loop is specified by through a stable reference model which
output is compared with the process output and the error signal e is then used to
adjust the neural network controller. Again, the Jacobian of the process might be
required in the adaptation mechanism when minimizing the squared error signal
by a gradient descent. In the case when the reference model is chosen as an identity
mapping the model reference control coincides with the direct inverse control.

An advantage of this structure is in better robustness and the possibility
of adaptation when the neural controller is trained on-line. However, the non
convexity of the adaptation mechanism might be of a real practical limitation
here.

2.3.3 Adaptive neural control

This type of control is meant for processes with time variable or changing dynamics
and is suitable also for an on-line implementation. It consists of a recursive process
parameter identification to track the process environmental conditions or parame
ters and a procedure to adjust the control parameters (see Figure 2.4). The process
parameters are in fact the weights of a neural network which are being adapted.

16 Chapter 2. Framework and Problem Statement

1w
-

r Neural u
~ Controller

Process

t

Learning
Algorithm

Figure 2.2: Specialized learning architecture

Reference
Model

1w
yr

-
r Neural u

~ Controller
Process

t

Adaptation e

Mechanism

Figure 2.3: Model reference control block diagram

2.3. Neural control para.digms 17

1 I
~

Adjustment - Parameter I--Mechanism Estimation

\ 1w
T

Neural u y

Controller
Process

,------.

Figure 2.4: Adaptive control

1w

~ Neural u y

Controller
Process

-

Neural +
L-...., Process 8

Model

'---- Filter

Figure 2.5: Internal model control

18 Chapter 2. Framework and Problem Statement

The estimated neural process model is then used for a neural controller parameter
adjustment.

The problems of this scheme are similar to the problems arising in a "clas
sical" linear set-up, like stability and persistent excitation of the identification
algorithm. The biggest problem is a guaranteed convergence of this scheme as all
being recurSively solved subproblems are hard non-convex optimizations.

2.3.4 Internal model control

The internal model control structure (IMC) is illustrated in Figure 2.5. A neural
model of the process is connected in parallel with the process and the difference
of the process and model outputs is used for feedback. The neural controller is
then related to the process inverse and therefore is this structure limited to open
loop stable minimum-phase systems. The filter in the feedback is introduced due
to the practically imperfect process model and measurement noise to improve the
sensitivity characteristics of the closed loop.

As the IMC structure is theoretically well understood and theoretically sup
ported by stability and robustness proves at least in a linear set-up it is a good
candidate for a general scheme of a controller for our control problem.

2.3.5 Model-based predictive control

This type of control became very popular in recent years due mainly to its ability
to handle process constraints effectively. This strategy includes an optimization
routine which is used to determine the optimal sequence of future controls to min
imize an objective function. The receding horizon control approach is a principal
concept applied here. The optimizer computes a range of future controls to min
imize the cost function based on predicted future process outputs f)(k + d) over
a long-range time horizon d = 1, ... ,Ly • However, only the first control value of
the sequence is applied at the process input and the whole procedure is repeated.
The structure of this structure is shown in Figure 2.6.

If the controller and predictor are assumed to be multilayer neural networks
parametrized nonlinearly with respect to their outputs than the optimization prob
lem is a non-convex one. The only way out seems to be using linear parametriza
tions like radial basis neural networks.

2.4 The proposed control strategy

Our approach to the controller design is a model-based design. The model serves
as a simulator of the process dynamics. This is then used to optimize a state
feedback controller. Our general idea is that if the model can be improved, e.g.
with respect to existing models, we can possibly achieve better robustness and

2.4. The proposed control strategy 19

fj(k + d)

I

----+ Optimization - Neural
I--Predictor

~
lw

T

Neural u y

Controller Process
,------+

Figure 2.6: Model-based predictive control

better performance of the closed loop. A major improvement is expected from
using neural networks to parametrize both the model and the controller.

A general strategy of the controller synthesis adopted in this thesis is described
by these three stages:

1. Using measured process data we estimate a nonlinear, a priori knowledge
based dynamic state-s>pace simulation model of the process which captures
the control relevant dynamic relations between manipulated variables and
controlled variables. The a priori knowledge is brought into the model by
means of combination of known analytical part with a black-box neural net
work part. This allows us to give a physical meaning to a part of the esti
mated state vector and later on define reference signals for required transi
tions.

2. At the second stage we compute a static nonlinear filter gain to build up a
state observer reconstructing the process state in a disturbed environment.
An important point to stress here is that the filter gain is going to be com
puted for a fixed model preserving its simulation capabilities.

3. At the last stage we compute a nonlinear, in principle static, state feedback
controller which steers the process from one operating point to another. The
reference signal is defined basically in the model state-space domain but is
partly physically related to the physical process states. The feedback gain is
optimized such that the tracking errors are minimized.

20

r

Neural
Controller

Chapter 2. Framework and Problem Statement

u

Neural
State-Space

Model

w

Process

+ + Neural
Filter

Figure 2.7: Proposed control structure

y

With respect to this strategy the controller will be a complex nonlinear dynamic
system composed of two main blocks and two sub-blocks as shown in Figure 2.7.
The main blocks are the state observer and the neural controller. The state ob
server is composed of two sub-blocks, which are the process simulation model and
the filter gain. The block h represents a part of the process prior knowledge.

By means of this internal structuring of the controller we hope that we will gain,
with respect to black-box strategies, in a better insight into the controller design
problem, in an easier analysis of results and it will allow us doing the modifications
of the controller in an easy way if the controller requirements changes.

2.5 Approximation theory

Later on we will see that in the vast majority of problems of a controller design
appears a subproblem of approximation of an unknown nonlinear function from ex
amples. The problem offunction approximation has been treated quite extensively
in literature, see e.g. [6]. For our needs the following formulation suffices:

Problem 2.2. Let <J>(X) be a real-valued continuous function defined on a set IRn
,

and let ~ (X, 8) be a real-valued approximating function depending continuously on
X and on no parameters, 8. Given a distance function p, determine the parameters

2.6. Summary 21

8* E IRn, such that

(2.13)

for all 8 E IRn •.

The distance measure p is a measure of the goodness of approximation and is
usually given as the LP norm of the distance ;)(x, 8) - <I> (X) , called also error, and
is defined as follows

p~l (2.14)

In practice, mainly p = 1, p = 2 and p = 00 is used. In the first case we have to
find such a e that the median of the approximation error is minimal. This type
of approximation typically allows occasionally big approximation errors. In case
p = 2, the distance measure (2.14) translates to the usual Euclidean vector norm.
An approximation done using this distance measure allows only for small errors
and gives minimum error variance. The case p = 00 is the so called worst case
because it minimizes a worst approximation error. The most interesting case is
the choice of p = 2 as this leads to a differentiable optimization problem which can
be solved numerically by available gradient optimization methods. As the original
function <I> is not known the actual approximation is done on a set of test data
produced by this function and the integral in (2.14) is replaced by a sum.

In the context of neural networks, which will be introduced in the next chapter,
;j;(X, 8) is parameterized by a neural network and 8 is a vector of network's weights
and biases.

2.6 Summary

In this chapter we defined a general framework necessary for the type of control
problems we will be dealing with later on. We have also defined a control problem
which will be the main subject of this thesis.

We have chose state-space descriptions of nonlinear dynamic systems, consid
ered either in continuous time domain or in discrete-time domain. The main rea
son why we have chosen state-space descriptions is that in the MIMO case (m > 1
and/or p > I) the other forms are not simpler to work with than the state-space
form. Besides of this, in practice, we always can point to some variables, which do
not belong to the output space of the process. These variables can be usually re
constructed from measurements and then used for feedback. This already suggests
the use of an estimated process state for the feedback.

The type of control problem we are going to study include the operating point
changing type of control. We use neural networks as a tool for approximations
of unknown nonlinear functions. We have reviewed the most important neural
control techniques using neural networks and then proposed a scheme which should
be suitable for a practical application.

22 Chapter 2. Framework and Problem Statement

At the end of this chapter we addressed a problem of approximation of nonlinear
functions as this problem relates to the problem of neural network training.

3 On Neural Networks

In this chapter we discus the concept of a neural network as we apply it in pro-
cess modelling and process control. Neural networks are in our context considered
purely from a mathematical point of view as universal approximators of nonlinear
functions and not as biological systems. However, many notions related to bio
logical networks are inherently used also here like "neuron" instead of a special
nonlinear function and also "learning" or "training" instead of parameter estima
tion or mathematical optimization. Our mathematical neural networks, as will
be understood later, share a lot of properties with biological neural networks, for
instance a massive parallelism, hierarchy and multitasking. All these properties
make the neural networks attractive in modelling and control of complex nonlinear
dynamic processes.

There are multitudes of different types of neural network architectures. To list
them here would be outside of the scope of this chapter. According to our expe
rience there are well over hundreds different neural networks proposed by many
researchers, but only few of them became really popular for modelling problems [1].
This is mainly because of a strong mathematical support of these popular struc
tures. These networks include the so called multilayer feedforward neural networks
[55], radial-basis functions neural networks [44, 48] and recently also wavelet net
works [2]. We will concentrate in this thesis only on multilayer feedforward neural
networks called also multilayer perceptrons.

3.1 Multilayer feedforward network

The basic element of a neural network is a simple computational or processing unit
that is characterized by

1. Bw E IRn,w - a vector of weights

2. Bb E IR - a bias or offset

3. s: 1R ---+ 1R - an activation function

If z E IRn, is an input vector, fed to the processing unit, the activation function
computes s(B~z + (h) and this value is then taken as output of the unit. If we

24 Chapter 3. On Neural Networks

connect a finite number of such units in parallel into a layer and subsequently
connect a finite number of such unit-layers in series only by feedforward connection
we end up with an architecture called multilayer feedforward neural network or a
multilayer perceptron (MLP), schematically depicted in Figure 3.1.

input layer
1=0

hidden layer
1=1

• • •

1

output layer
I=NL

Figure 8.1: The multilayer perceptron (MLP) structure

An MLP can therefore be considered as a function

which maps an input space of a vector dimension ni into an output space of a
vector dimension no. The input of the MLP is denoted by X E IRn , and the
output of the MLP is denoted by l' E 1R"'·. Let the ith node in the lth layer of
the network compute its output z; according to

NNI_l

ul. , L o I 1-1 0 1
WijZj + bi (3.1a)

j=l

zi , s{uD (3.lb)

where 1 = 1,2, ... ,NL stands for the hidden layer number, i = 1,2, ... ,Nm is the
node index of the Ith layer, OwL is a weighting factor of the connection between

the jth node of the (1- l)th layer and ith node of the lth layer and O&~ is the bias
of the ith node of the Ith layer. The input of the processing function of the ith
node in the lth layer is denoted by u~ and the corresponding node output is then
denoted by z;.

3.1. Multilayer feedforward network 25

The input layer, 1= 0, is a special layer because it provides only the distribution
of inputs ~i, for i = 1, ... ,ni, among the nodes of the first hidden layer, I = 1.
Mathematically it can be seen as

for i = 1,2, ... ,ni

The variable u~ is sometimes called an activation of the node and serves as an
input of the node activation function stu). This function is usually chosen as

1
stu) = -- (3.2)

1 +e-U

or

1- e-2u

stu) = tanh(u) = 2
1 + e- U

(3.3)

For the last hidden layer we often chose a linear processing function

stu) = u (3.4)

to allow any range for the MLP outputs zf"L. The radial basis neural networks
use as a processing function

(3.5)

where Um is a mean value and au is a standard deviation, both chosen in advance.
A family of functions F that can be realized by an MLP is characterized by

1. The number of inputs and outputs ni, no;

2. The number of layers NL , inclusive the output layer;

3. The number of nodes in hidden layers NNI, I = 1,2, ... , NL - 1;

4. The set of weights eW~,j and biases (h~j

5. The processing function s(u).

We will use a notation FNN1 ,NN2,,,.,NNNL-l for an MLP with NN1, NN2, ... ,

NN NL -1 nodes in consecutive hidden layers. We include the weights and biases of
a MLP into a long vector 8 E IRn , in the following order

k:= 1
for I := 1 12 NL do

for i := 1 12 NN/ do
8 k = Ob;
k:= k + 1
for j := 1 12 NN1-l do

8 k := OwL
k:= k + 1

26 Chapter 3. On Neural Networks

The question is now, that if we can choose N L, NN/, I = 1,2, ... ,NL - 1 and
8 freely, what kind of functions can be represented by this neural network. The
answer is well known and shortly it is that a multilayer neural network can approx
imate arbitrarily well any continuous function on any compact set provided that
the network contains sufficiently many hidden nodes and the activation function
stu) is continuous, bounded and non-constant. This is a well known result proven
by many authors [13, 16, 20, 24, 23, 29], as already indicated in Section 2.5.

A special class of MLPs is an MLP with only one hidden layer or a two layer
perceptron N L = 2. It was shown in the literature [13, 16] that such a neural
network is sufficient to approximate any continuous function. There is always a
question whether it is better to use a MLP with only one hidden layer or with
more hidden layers for a particular approximation problem. This question was
also noticed in [32]. One can think that by using more hidden layers we might
possibly need less nodes to approximate a complex nonlinearity. But, in general,
it is difficult to say which structure is better as we also do not know a priori how
many nodes do we have to put into the MLP to obtain a certain approximation
accuracy.

If we look back to the approximation problem we see that the approximation
is generally done by means of a set of training examples or simply by data

D = {(X(I), ,(1)), (X(2), ,(2)), ... ,(X(N), ,(N)))

computed by the true function '}'(k) = <I>[X(k)] for k = 1,2, ... ,N and N denotes
then the length of the data set D. The pair (X(k), ,(k)) will be also called a
pattern, X(k) is the input pattern and ,(k) is the output pattern. Let us assume
that the test inputs X(k) are for the moment chosen freely, e.g. at random. A
suitable set of weights and biases of the MLP which approximates this function is
then found by the so called supervised learning of the neural network. This means,
that the output of the network zNL(k), which also represents the approximated
value i'(k) of the desired output ')'(k) evaluated for a certain input pattern x(k),
is compared to the data and the error

~(k) = ,(k) -i'(k) (3.6)

is then used to adjust the weights and biases. More precisely, we define a cost
function or an error measure to measures the goodness of the approximation as
in Problem 2.2. Let this measure be chosen as a sum of squares of errors (3.6) as
follows

N 1 N
J(8) = L J(k, 8) = 2N L c(k)T ~(k)

k=l k=l

(3.7)

where J(k, 8) = ~(k)T ~(k). The function (3.7) is then minimized with respect to
the network parameters e, inclusive the number of layers NL and the number of
nodes NNI in each layer l. Let us assume that the network complexity, in terms

3.1. Multilayer feedforward network 27

of NL and NNI, was chosen in advance. A natural way of weights adjustment is
the direction of the negative gradient of the error function (3.7), that is

8(. 1) 8(.) 8J(8)
- J + = - J ~ Pj 88(j) (3.8)

where j is the iteration index, ~~\~? is the gradient of the cost function with respect
to the weights and Pj > 0 is a step size taken at the jth iteration. We usually start
the iteration process (3.8) from an initial guess S(O) which is generated randomly.
In principle, we have two options how to perform the update (3.8):

1. either we perform the update after each single pattern using as an update
direction gradient

8J(k,8)
88(k)

2. or we perform the update after collecting errors of a number of patterns, let
us say M, computing the gradient as follows

where c = 0, 1, ... ,M ~ 1

c+M 8J(k,8)

L 88(k)
k=c+l

An update of weights according to the second option is also called a batch learning.
If the order of patterns in the data set does not play any role we can be choosing
patterns in these two cases at random. As it will become clear later on, this is
not always the case, for instance when the data are being produced by a dynamic
system and we are interested in a simulation model of the process. Then we have
to do the batch learning, often having chosen M = N. The weight update (3.8)
is iteratively repeated until a sufficient minimum of the cost function is found,
usually checked by using testing data, different from training data.

To do be able to perform the iteration process (3.8) efficiently we need analytical
expressions of gradients of (3.7) with respect to the weights of the MLP. These are
defined as follows

where

Let use denote

Be(k) 8c(k) 8ul(k)

80w L = 8ui(k) 80wL

,sl(k) = 8c(k)
, 8u\(k)

(3.9)

(3.10)

(3.11)

28 Chapter 3. On Neural Networks

and observing from (3.la) that

the equation (3.10) can be written in the following form

Using the chain rule the expression (3.11) can be rewritten as follows

(3.12)

where Sl (u) is the derivative of the processing function with respect to its argument.
It can be easily verified that for (3.2) holds

SI(U) = s(u)(l- stu)) (3.13)

and for (3.3) holds

SI(U) = 1 - S(u)2 (3.14)

For an output layer composed of linear units we have

SI(U) = 1

and

For an output layer composed of nonlinear units, let us assume stu) given by (3.2),
we have

z{h = S(U;VL) and o;VL(k) = -s(u)(l- stu))

Observing, that for the lth hidden layer of the MLP, I < N L , holds

we can compute (3.12) recursively as follows

NNI+l

8;(k) = s'{u\(k)) L Wl(k)w~tl
j=l

(3.15)

(3.16)

3.2. Recurrent feedforward network 29

where I is iterated backwards from I = NL - 1 untill = 1.
The gradient of the cost function with respect to the MLP's biases is determined

in the same way as for weights. We can assume in (3.1a) for the moment that the
bias /hl is represented by a weight Owj,Q while defining zb = 1 and letting the sum
in (3.1aa) to run from j = O. Then the gradient of the cost function according to
the bias is given by

~ =ol(k)
BOb: '

(3.17)

The variable oj(k) represents the error sensitivity of the ith unit in the Ith hid
den layer for the kth data point. The equation (3.16) defines the back-propagation
of this error sensitivity through the network starting at the output layer, and there
fore is the algorithm (3.9)-(3.17) called backpropagation.

An important issue to keep in mind is that due to the finiteness of the set of
training examples is the original function 'Y = cli[X] tested only on a limited range of
the input space of the function <J>, that means X E X C JRn, , which is then mapped
into a bounded subset of the output space Y = hE JRno : 'Y = <J>[x]' X E X}. As
we assume <J> to be a general nonlinear function the extrapolation ability of the
MLP can be very poor or, in general, it will be meaningless. With this respect
the approximation will always show increasing errors towards the boundary of the
input space X, depending on the distribution of X within this set and the number
of weights of the neural network.

3.2 Recurrent feedforward network

By a recurrent feedforward neural network we mean a structure based on a MLP in
which some of the outputs are fed back to the input of the network, usually through
a number of delays. We do not assume in this structure any recurrent connections
inside of the MLP, e.g. between hidden layers. That means that all recurrent
connections appear outside of the MLP. Such a recurrent MLP, though it is still
static, represents a nonlinear dynamic map which can be used to approximate
nonlinear dynamic system, e.g. given by (2.3). How is this done exactly, will be
treated in detail in the next chapter. At this moment it is important to realize
that training of a recurrent MLP from input/output examples by a minimization
of criterion (3.7) becomes more complicated because the error (3.6) does not only
depend on the MLP weights e but also on those inputs, which stand for past MLP
outputs, as these are also a function of e.

Therefore the backpropagation algorithm has to be revised. This revision is
incorporated through a correction term added to the backpropagation formula
(3.10) as follows

(3.18)

30 Chapter 3. OD Neural Networks

where the index j runs through those inputs, which are function of the past network
outputs. The last term has to be determined with respect to the actual recurrent
feedback configurations. To compute

8E.(k)
8Xj(k)

we can still use the backpropagation algorithm. Observe that X == zO so that from
(3.15) we can see that by performing one extra backpropagation step we obtain
required partial derivatives.

3.3 Iterative MLP learning algorithms

In the previous section we have seen that training of a MLP is in fact a minimiza
tion of criterion (3.7). This is nothing else then a general unconstrained nonlinear
optimization problem. As it is not a trivial to solve problem we will pay in the
following more attention to it.

First of all, we have to notice, that the minimization of (3.7) with respect to
the weights of a MLP can not be done analytically. Therefore it must be done by
an iterative numerical procedure. Actually, we have already introduced one such
an iterative procedure and that was the backpropagation algorithm (3.9)-(3.17)
together with the weights update (3.8).

A neural network learning problem is in fact nothing else than a nonlinear
optimization problem which can be stated as follows

Problem 3.1. Given a real-valued function J : 1R'" -t IR defined on a set IRn.
and a bounded subset C C IRn., by the optimization problem

minimize J (8)

subject to 8 E C

we mean a problem of finding an element 8* E C such that

J(8*) :$ J(8), for all 8 E C

(3.19)

(3.20)

Such a 8* we call a globally optimal solution or simply a global minimum.
The existence of such an element is in fact guaranteed by the boundedness of C.
When C is not finite then existence of a minimizing point is only guaranteed if
J: IRn• -t lR is a continuous function, C = lRn" and J(8) -t +00 if 11811 -t +00.

Necessary and sufficient conditions for optimality are readily available when J
is a differentiable function on lRn• and C is a convex subset of lRn•. Then we
have 'V J(8*)T (8 - 8*) ~ 0, for all e E C where 'V J(8*) is the gradient of J
evaluated at e*

3.4. Gradient optimization 31

In case C = JRn. (unconstrained case) this is equivalent with V' J(8*) = O. When
J is in addition twice continuously differentiable and C = JRn., an additional
necessary condition is that the Hessian matrix \72 J(8*) be positive definite at
8*. If J is a non-convex function of 8, i.e. the condition J(a8 1 + (1 - a)82J ::;
oJ(8d + (1 - 0)J(8 2) is not satisfied for every 81, 8 2 E C and every scalar
0, 0 ::; 0 ::; 1 then the above stated conditions of optimality have only local
character for some neighbourhood of 8* .

When the function J is defined by the MLP it becomes non-convex. This
creates a serious obstacle to finding a global solution of the optimization problem
Problem 3.1. The parameter dimension is usually in the order of a few tens or
even hundreds what further complicates the problem.

A method of finding a minimizer 8' of the function J is then called an opti
mization method. These methods perform a certain iteration process on 8, similar
to (3.8). Such an iteration process can be based either on a gradient of the opti
mized function or the updates can be generated randomly. In the following sections
we will discuss both of these approaches.

3.4 Gradient optimization

In the following we consider search methods which use the gradient of the mini
mized function as well as the function values. We will concentrate on a feasibility
of using these methods for neural network training.

3.4.1 The method of steepest descent

One of the reasons, why neural networks became so popular was the promotion of
the backpropagation trainin~ algorithm [74, 55, 21]. Purely seen from the mathe
matical point of view it is an algorithm of analytical evaluation of gradients of the
MLP error function with respect to weights and then application of this gradient
in a steepest descent minimization procedure for an iterative update of weights.

The negative gradient - \7 J(8{j)) in (3.8) shows the direction ofthe most rapid
decrease of the function at the point 8{j). This is where the name of this method,
steepest descent, comes from. The step size Pj determines the speed of convergence
of this method or in another words the learning rate of the network. Under certain
conditions this is a globally convergent method converging to a local minimum of
the cost function J. If Pj is too small the method converges very slowly. On the
other hand, if Pi is too big, the method starts to oscillate. The choice of a constant
Pl == P causes also oscillations of the method near a local minimum. Often is (3.8)
combined with a one dimensional search or line optimization as follows

P~ = argmin J(8U) - pj V'J(8U)))
J Pi

(3.21)

with respect to Pj E JR. The actual update (3.8) uses then a value pj obtained
as a result of this optimization problem. An analysis shows, that we then iterate

32 Chapter 3. On Neural Networks

our search along orthogonal increments. This feature, in fact, makes the steepest
descent method slow and computationally inefficient. This inefficiency becomes
even more obvious if the dimensionality of 8 becomes very large which is the case
of neural network training.

Many suggestions are reported in the literature of speeding up the backprop
agation training algorithm. All these improvements are based on some heuristics
which are closely related to the application and therefore it is hardly possible to
generalize these results. However, they can be found useful for large problems
being solved on small machines with a limited memory when the steepest descent
algorithm is the only one applicable.

A most common improvement of (3.8) concerns the extension of this recurrence
in an extra, so called, momentum term [55] giving us the following iteration process

8(1) = 8(0) - Po V J(8(0))

S(j + 1) = 8(j) - pjV J(8(j)) + (3j(8(j) - 8(j - 1)), j 2 1

A complete mathematical proof of a global convergence of this interesting algo
rithm together with conditions put on Pi and (3) can be found in [42, 49]. Intu
itively, the benefit of this method lies in a sort of filtering out zigzag changes of
the gradient along steep valleys. It can potentially also escape from shallow local
minimum, because when VJ(8(j)) becomes zero, 8(j) - 8(j - 1) probably was
not. The main drawback of this method lies in a reliable choice of steps Pi and (3J
which could provide a good convergence speed.

Other improvements of the algorithm (3.8) concerns an adaptive choice of the
step size Pi during the learning process by monitoring the speed of the descent
progress [59, 52, 26, 73]. Our experience and tests of some of these methods show
that the error functions formed by neural networks together with data are much
too complex that we could benefit out of these methods. Another weak point of
all these proposals is that they were not tested on mOre examples and compared
to other methods, for instance on the same data.

Another often seen modification of the backpropagation algorithm is an exten
sion of the basic cost function into a term penalizing superfluous weights [30, 60].
This is expressed by an Euclidean norm put on weights resulting in the following
criterion

(3.23)

where {! E JR, (! > 0 is a so called regularization parameter. We can immediately
notice, that in this way we penalize also nonzero weights and therefore we introduce
here some bias with respect to the optimal solution. The gradient of (3.23) is
readily available as a combination of the backpropagation gradient and an extra
term as follows

VJ(8) = VJ(8) + {!8

3A. Gradient optimization 33

We have found this method useful for early stages of any optimization to penalize
weights with very big values which might cause node saturations and consequently
numerical problems in optimization. The regularization term in fact pre-conditions
the Hessian of the cost function and in this way makes the optimization easier.

3.4.2 Conjugate gradient optimization methods

A method which outperforms the steepest descent algorithm and has a precise
mathematical interpretation is the method of conjugate gradients proposed orig
inally in [22J and then reconsidered for a non-convex optimization in [15]. This
method is already close to the second order gradient optimization techniques which
are subject of the next section. The algorithm assumes that the optimized func
tion is quadratic and implicitly uses the Hessian matrix in its derivation. In the
iteration process is this matrix actually not updated and therefore this method is
also called as memoryless quasi-Newton.

The search direction p(k) is in this method generated as follows

p(k) = -\7 J(8(k)) + f3(k)p(k - 1)

where f3(k) is computed by different formulas (see e.g. [56])

\7 J(8CkW\7 J(8(k))
f3(k) = \7 J(8(k - 1))T\7 J(8(k - 1))

or

f3(k) = (\7J(8(k -1)) - \7J(8(k)))T\7J(8(k))
\7J(8(k -1))T\7J(8(k -1))

For quadratic functions this method finds the minimum in a finite number of steps.
When this method is used for optimization of non-quadratic functions the search
direction is periodically re-initialized to the steepest descent direction by choosing
f3(k) = 0 for k = 0, no, 2no, We have experienced that when using this method
for neural network training, after a few iterations the method gets stuck and as
a consequence the conjugate direction generation has to be restarted more often
than after every ne iterations. To explain this assume that 8(k + 1) ~ 8(k).
As for this method holds that p(k)~ \7 J(8(k + 1)) and \7 J(8(k + 1))~ \7 J(8(k)),
we can easily verify, that the search direction becomes almost orthogonal to the
gradient direction, where marginal improvement can be expected. For this reason
at least the second formula for f3(k) should be used, which automatically "resets"
the search direction to the steepest descent one when this occurs. But then we
often proceed the optimization mainly in the inefficient steepest descent steps.

Some modification of the basic algorithm of conjugate gradients are discussed
in [46]' [57J. Mainly the problem of inexact line searches addressed in [571 could
be of particular interest here, as the line search is very crucial for maintaining the
mutual conjugacy of the search directions. As we are dealing with complex non
linear functions benefits of these improvements might be masked by the problem
complexity.

34 Chapter 3. On Neural Networks

3.4.3 Second~order gradient optimization methods

It turns out, that for some applications, mainly concerning pattern recognition
problems, is the backpropagation learning method sufficient. For system identifi
cation for control purposes, where accurate approximations are natural this is not
enough at all. It is well known, that for quadratic functions is the steepest descent
not the best search direction. This is due to the curvature of the cost function,
which is not taken into the account or in other words the steepest descent does
not considers the successive gradient changes of the cost function. These changes
can be brought into the optimization implicitly or explicitly. In both approaches
we relay on a strictly quadratic landscape of the optimized function with respect
to optimized parameters, in our case these are the weights of the neural network
8. Then we reach the global minimum within at most n steps if n is the searched
space dimension. The error landscapes produced by neural networks, even they
are quadratic in terms of the error €, are very complicated in shape. They are
non-convex functions of its parameters 8 and often resulting in an ill-conditioned
optimization problem. By ill-conditioning we mean, that the spectrum of eigen
values of the Hessian can be very wide at different points of J(8).

The current state-of-the-art in non-convex optimization based on quadratic
approximation of the optimized function is the well known Broyden-Fletcher
Goldfalb-Shanno (BFGS) quasi-Newton method [58]. This method starts with
an initial guess 8(0) and initial positive definite matrix Qo and iterates:

• a line search (3.21) in Pj > 0 for

• and an update

Q(. + 1) = Q(.)_ Q(j)p(j)d(jjT + d(j)p(j)T Q(j)
J J d(j)T p(j)

+ (1 + p(j)TQ(j)p(j)) d(j)d(j)T
d(j)Tp(j) d(j)Tp(j)

where d(j) = 8(j + 1) - 8(j) and prj) = \lJ(8(j + 1)) - \lJ(8(j)).

Similar method to BFGS is an older method of Davidon-Fletcher-Powell (DFP)
method [7]. This method updates Q-1 and therefore gives the search direction
directly while the BFGS must solve a linear system of equations. But test examples
shows that the DFP method has a tendency to produce a sequence of matrices Qj
which are not positive definite because of computer round-off errors. The numerical
stability of BFGS method is usually further increased by updating Cholesky factors
of the approximated Hessian Q j .

The main advantage of quasi-Newton methods is in their fast convergence close
to the minimum. When used for non-quadratic functions they still show superlinear
rate of convergence in a neighbourhood of a non-singular minimum point. The

3.4. Gradient optimization 35

main drawback of these methods is in the need to store and update an no x
no matrix Qj which can be significant for large sets of optimized parameters.
Basically, these methods do not handle situations when the true Hessian matrix
of J becomes singular or negative definite. In such a situations we have to switch
to other optimization methods.

A method specifically designed for minimizing a sum-of-squares error is the
Levenberg-Marquardt algorithm. This method balances a Newton update and a
standard gradient descent. However, our tests did not show a clear superiority of
this method with respect to the quasi-Newton method.

3.4.4 Optimization by optimal filtering techniques

The problem of weights adjustment can be transformed into a problem of the state
estimation of a nonlinear dynamic system from noisy data using optimal filtering
techniques. The estimate can be done by the extended Kalman filter [31, 61].

Let the weights of the neural network constitute a state of the following discrete
time nonlinear dynamic system

elk + 1)

,(k)
elk)
~(x(k), elk)) + v(k)

(3.24a)

(3.24b)

where "((k) is the given output pattern and .y(k) = ~(X(k), elk)) is the output of
the neural network at time instant k and e is the neural network input pattern.
The vector v(k) E !Rna is assumed to be a Gaussian white noise. Let

£{v(k)}
[{ V(k)V(j)T}

where Okj is the Dirac function, [{.} denotes the expectation operation and Rk is
a positive definite covariance matrix of the noises v(k).

To apply the extended Kalman filter on the nonlinear dynamic system (3.24),
we linearize the nonlinearity in the output equation (3.24b) around the current
estimate of the state vector, which is in fact the current estimate of weights of the
neural network. Then the filter equations are

where

e(k + 1)

P(k + 1)

K(k)

elk) + K(k)[,(k) - ~(X(k), elk))]

P(k) - K(k) H(k) P(k)

P(k) H(k)T [R(k) + H(k) P(k) H(k)T]-l

H(k) = 8~(X(k), elk)) I
8x(k) e(k)=e{k)

(3.25a)

(3.25b)

(3.25c)

36 Chapter 3. On Neural Networks

The equation (3.25a) defines the weights update and the equation (3.25b) defines
the weights covariance matrix P(k) update, both are being updated after present
ing a single input pattern X(k) of the data to the neural network input. Notice,
that P(k) E IRn • x IRn • is a square matrix of dimension of e and to compute
the Kalman gain K(k) we have to invert a matrix of dimension no, which is the
number of neural network outputs.

This method was tested on simulated data from the following system

(k 1) = Yd(k)Yd(k - 1)(1- u(k - 1)) + u(k)
Yd + 1 + Yd(k - 1)2 + Yd(k - 2)2

y(k) = Yd(k) + elk) elk) ~ N(O, 0.01)

Using as an input u(k) a sequence of uniformly distributed random samples from
an interval (-1,1) we generated a sequence of 500 output points y(k) produced by
this system. A neural network was then let to approxiIl}ate the nonlinearity of this
process. To construct an approximation problem, we defined the neural network
input as follows

X(k) = (u(k - 1), u(k - 2), y(k - 1), y(k - 2)?

The neural network was a MLP with one hidden layer with 10 nodes, 4 inputs
and 1 output computing i. The true output pattern 'Y(k) was represented by the
simulated system output y(k), 'Y(k) = y(k). This example was taken from another
study where we were comparing prediction and simulation models. At this point we
want to demonstrate the performance of the extended Kalman filter used for neural
network training regardless obtaining a biased estimate of the system transfer
function. In Figure 3.2 is shown the cost function value against the iteration
number. We can immediately recognize the superiority of the EKF against the
backpropagation. The slow convergence of the backpropagation algorithm is quite
remarkable. As the EKF is computationally more involved its advantage in cost
reduction speed is weakened by this problem. However, the overall CPU time
spent in 5000 iterations of the backpropagation was 3799 seconds and reached cost
function value was 0.241, while 200 iterations of the EKF took 2354 seconds of
CPU and the reached cost function value was 0.0255.

3.4.5 Other gradient optimization methods

When we have tested the quasi-Newton optimization method for its suitability for
neural network training we have observed a couple of convergence difficulties. The
main convergence difficulty was related to a situation when the Hessian matrix of
the optimized function has negative eigenvalues or is almost singular. The land
scape of the optimized function has there eccentric curved valleys or fiat ravines.
Since the method uses a quadratic approximation of the optimized function, which
can happened to be very poor resulting in slow convergence rate of the optimiza
tion. To overcome these problems we have tested different optimization methods.

3.4. Gradient optimization

10'

8ackpropagation

Extended Kalman filter

,
.....

--

lO-lL-_~~ __ ~""""" __ ~~~~~""""'.,--_~ __ ~~---.J

1~ 1~ 1~ 1~
iteration number

Figure 3.2: EKF versus backpropagation neural network training

37

In the following we give a review of some of these methods as they can be used in
combination with the quasi-Newton optimization.

Except the quasi-Newton method, these methods are usually not included in
currently available software packages and must be programmed separately.

Optimization by weighted past gradients

In this section we discuss an optimization method which we proposed when tackling
the problem of following steep, curved, high dimensional valleys of J(0). The
steepest descent method will be getting stuck in such a valley after a few iterations
by taking small orthogonal steps and the quasi-Newton method will be affected
by not strictly positive definite Hessian of J(O). In these cases the optimization is
proceeded by small orthogonal increments resulting in jumping from side to side
of a multidimensional valley.

The defined by the following formulas

0(k+ 1) 0(k)+Q(k,>.*)
k

Q(k, >. *) L >'i\7J(0(i))
l..=k-q

where k is the iteration number, Q(k,)..') is a weighted sum of past q gradients

38 Chapter 3. On Neural Networks

inclusive the current one and .* E lR5+ 1
• The weighting factors .\; are chosen at

each iteration by solving the following optimization problem

.* = argmin J(8(k) + Q(k,.\))
>.

The last optimization problem can be easily solved by a quasi-Newton algorithm.
Compared to the quasi-Newton method used to minimize J(8), The convergence
rate of this method was only better than the convergence rate of the quasi-Newton
method only in the earlier stages of the optimization. It seems that the dimension
ality of the valley can be so high that it is impossible to follow the valley curvature
only by using a few past gradients.

However, the main advantage of this method remains in the reduction of the
searched parameter space dimension compared to the quasi-Newton optimization
method as q « no.

Optimization along curved lines

The reason to investigate the "curved search methods" for training of the neural
network is their potential improvement of convergence on error landscapes featured
by curved valleys. The method derived in [3] performs a one dimensional search
along a quadratic curve

(3.26)

where q(k) is the steepest descent direction and p(k) is the quasi-Newton direction.
We have experienced occasionally a faster convergence using this type of methods
but in longer terms these methods did not outperform the quasi-Newton method.
The reason for this may be that the curvature of the valley is so complex that the
quadratic curve can only fit this curvature in a very small neighbourhood of the
current point. In fact, our implementation of this method was not optimal as the
Hessian matrix was only estimated numerically.

Optimization by nonlinear coordinates transformation

Another class of gradient methods which considers non-quadratic shape of op
timized cost function are described in [53, 41]. As we have already mentioned,
using second order gradient optimization methods, like the quasi-Newton, usually
results in a poor performance because the supposed quadratic approximation of
the optimized function does not describe the behaviour of the optimized function
accurately, e.g. when the Hessian matrix of J(8) has negative eigenvalues. In such
cases it is interesting to use a nonlinear transformation of coordinates 8 = 1/J(8).
The Hessian matrix in the transformed coordinates is given by

n.
\J2J(1/J(8)) = \J1/JT (8)\J 2J(8)\J1/J(8) + L\J21/Ji(8)\JJ(8) (3.27)

i=l

3.5. Stochastic optimization 39

and can be made positive definite. This means that in transformed coordinates the
approximation of the optimized function by some quadratic form is more accurate
than in the original coordinates.

For the nonlinear transformation of coordinates we took the form proposed in
[53J. We implemented this method using numerical estimation of required gra
dients and Hessian matrix components. The problem with this method is that
to construct a suitable coordinate transformation function we have to know the
sensitivity of the eigenvalues of the Hessian matrix with respect to optimized pa
rameters and that requires determination of third derivatives. Just for curiosity,
this method finds the minimum of the well known Rosenbrock's "banana" function
in the second iteration.

3.5 Stochastic optimization

This broad class of optimization techniques is very well suited for non-convex opti
mization problems with many local minima. We can distinguish deterministic and
stochastic global optimization methods. The deterministic optimization methods
try to locate all local minima and then choose the best one as a global minimum.
However, there is no test available for a general non-convex function to verify
whether there exists another local minimum other than already found. There
fore methods like [I1J won't work in practice unless we can exploit the optimized
function analytically. Even if our problem is a global optimization problem on a
bounded set the covering methods [71], working with certain grids, are not inter
esting for us because of very large grid points to be considered even for problems of
moderate dimensions. On top of this, these methods assume limited rate of change
of the optimized function given by the Lipschitz constant which is in practice also
very hard to find.

Later on we rather concentrate on stochastic methods which seem to give better
results [70J. These methods usually guarantee a convergence to a global minimum
in a probabilistic sense as the number of trials increases

Pr{ lim 8(k) = eO} = 1
k-too

(3,28)

where e* is a global optimizer and Pr is the probability operator. However,
in practice we do sacrifice the possibility of global convergence otherwise such a
method would be found lacking efficiency. At the same time we are loosing the
reliability of these methods and therefore some trade-off between these two issues
is always necessary.

A basic algorithm describing this class of methods is as follows

1. Choose an initial point eo, step size ao, set k '=' 0, and 8(0) = eo·

2. Generate a search trial p(k) E lRn • at random

3. If J(8(k) + akP(k)) < J(8(k)) update e(k + 1) = e(k) + O'.kP(k)

40 Chapter 3. On Neural Networks

4. set k = k + 1 and go to step 2.

Different methods differ namely in steps 2 and 3 of this scheme, that is how to
generate a search trial and how to perform the update or to choose the step size
Ok. To satisfy (3.28) Ok must obey the following conditions

00

(ii) L ok < 00

k=O

(iii) lim Ok = 0
k~oo

These are simple conditions to fulfill theoretically, e.g. by a choice Ok = t. An
obvious problem here is that computationally we can perform only a finite number
of iterations. However, for simple functions of modest dimension of 8, say ng < 10,
which can be evaluated in a relatively short time and we usually can perform
a sufficient number of iterations, these conditions are practically satisfied. For
functions of high dimensionality, say ng > 50, this is a real limitation. In the next
part we will review those stochastic search methods ~which we were found very
useful for neural network training and which also showed better effiCiency than
the basic method discussed just above.

3.5.1 Controlled random search

Controlled random search methods are characterized by controlling some of the
parameters of the generating probability density function (p.d.f.) of search trials
p(k). Most of the time, a trial is chosen from a Normal p.d.f. which variance is
controlled with respect to the progress in optimization. The method proposed by
[27] was used by many researchers in different modifications. For instance, in [63]
is in the case of success the variance increased by a constant ratio and in the case of
failure decreased by a constant ratio. In [69] is proposed a controlled random search
strategy which belongs to a class of reinforcement search algorithms. It means that
a successful trial is used also in the future to adjust the search parameters as there
is a good chance that the same trial will also appear in the future.

The algorithm of [69] generates trials 8 by

8(k) = 8(k) + p(k) (3.29)

where p(k) E IRn8 is a vector of stochastic increments which are chosen from an
uniform distribution on an interval (-ak, ak), ak E IRn •. If a trial is successful,
that is J(8(k)) < J(8(k)), we perform the following update

8(k + 1) 8(k)
1

ak+l = oak + (1- o)
2P

a Ip(k)1

(3.30a)

(3.30b)

where Po. is a user defined parameter specifying the probability of success. If a
trial is not successful, that is J(8(k)} 2: J(8(k)), we perform the following update

8(k + 1) 8(k)

O<a<l
(3.31)

(3.32)

3.5. Stochastic optimization 41

The decay factor a defines the speed of the algorithm convergence and typical
values of this factor are 0.9, 0.99. The coefficient Pa defines expected probability
of a successful trial. A typical value for Po. is from interval (0.1, 0.01). It is claimed
in [69] that the parameter ranges will stabilize to effective values. Actually, this
will only happen when an expectation of a successful trial will approach value
Po· As this is seldom the case, unless we choose a very small value for Pa, the
searched parameter ranges converge exponentially to zero. We have used this
method mainly due to its simplicity and almost no computational overhead.

3.5.2 Simulated annealing

Simulated annealing is a stochastic optimization technique that can optimize any
cost function possessing arbitrary degree of nonlinearity, discontinuities or stochas
ticity, including arbitrary constraints imposed on these cost functions. From the
statistical point of view it guarantees finding a globally optimal solution. Simu
lated annealing is an optimization procedure which probabilistically samples dif·
ferent points of the function landscape, called also energy function. This method
maintains a parameter called the temperature. As the temperature is reduced the
likelihood that lower local minima are sampled rather than higher ones increases.
Finally, when the temperature is at zero the global minimum is found.

The method of simulated annealing consists of three functional relationships:

1. The generating probability density function fatS) of the parameter space.

2. The probability function Pa for acceptance of a new cost function given just
the previOUS value.

3. A schedule T(k) of annealing the temperature T in annealing-time steps k.

Basically, the method generates random trials with a probability density function
fatS) and successful trials represent new points. The key feature of the simulated
annealing optimization is that a not successful trial is treated probabilistically:
the probability that this trial is accepted is Po.. The standard simulated annealing
optimization, generally specified as Boltzman annealing, uses as the acceptance
probability a function, which is based on changes in the cost function value in two
successive trials,

Pa (b,.J) = exp(- b,.J IT) (3.33)

where b,.J represents the difference between the present and previous values of the
cost function, i.e. b,.J = J(k + 1) - J(k).

As a generating function fatS), the Boltzman annealing uses a Gaussian p.d.£.

(3.34)

where b,.ei = ei(k + 1) -' ei(k) is a single parameter deviation of S(k + 1) from
the currently accepted point 0(k) and T represents the temperature in the sys
tem. In [18J has been shown that for the Boltzman annealing with the generating

42 Chapter 3. On Neural Networks

function (3.34) the optimization procedure can find a global minimum of J(8) if
the annealing temperature is reduced at the rate of

T(k) = ~
Ink

or slower. As we can see from the last equation, the logarithmic decrease of the
temperature will in general lead to a very slow optimization.

A faster annealing schedule can be obtained using a Cauchy distribution as
the generating probability density function of the parameter space (see [67]). The
Cauchy distribution given by

(3.35)

has a fatter tail than the Gaussian distribution of the Boltzman annealing and this
permits easier access to test local minima in the coarse of the search. To guarantee
that the system will statistically find the global minimum, the annealing schedule
for Cauchy distribution is

T(k) = ~o.

Both the Boltzman annealing and the Cauchy annealing have the distribution
functions, which sample infinite ranges and there is no provision for considering
different annealing schedules for different parameters. It would be also convenient
to sample a bounded search space rather than an infinite space. Also, there is
no quick algorithm for calculating a no-dimensional Cauchy random generator.
One might choose a no-product of one-dimensional Cauchy distributions for which
a few quick algorithms exists. This could also permit different To's to take into
account different parameter sensitivities. The required annealing schedule looks in
this case as

To
Ti(k) = kIln

which, although faster than Boltzman annealing, is still quite slow. This sort of
annealing was proposed in [25]. Though this is a very sophisticated version of
simulated annealing, it introduces relatively high computational overhead which
may not allow us to perform sufficient number of cost function evaluations within
a reasonable time.

Less computational overhead is introduced in the simulated annealing of [12].
This method uses (3.33) as the acceptance probability function and an uniform
probability density function of the parameter space. During the optimization
are the ranges of parameters adaptively adjusted for each parameter dimension
independently such that the averaged percentage of accepted moves is about one
half of the total moves. Basically, the parameter range is extended if the success
rate is too high or decreased if the success rate is too small.

3.6. Summary and conclusions 43

3.6 Summary and conclusions

While the problem of a neural network training belongs to the class of non-convex
optimization problems we have to consider it as a global optimization problem.

In principle, we have two options for a choice of an optimization method and
that is either a deterministic or a stochastic optimization method. The deter
ministic methods try to solve this problem by locating all local minima. No such
method, however, can guarantee that all local minima will be found for a general
non-convex function. Far better results - both theoretically and computationally
- are obtained by stochastic methods. We have seen that these methods are re
liable under mild conditions, that is they converge almost certainly to the global
minimum. However, a strictly global method is usually found lacking in efficiency.
Therefore we do sacrifice the possibility of an absolute guarantee of the global
minimum and we only expect to find a good minimum.

The advantages and disadvantages of local and global optimization algorithms
are judged mainly by the number of iterations needed to solve the problem and
computer time needed to complete this task. Some methods are very sophisticated
and may need fewer iterations than simpler methods. On the other hand, more
complex methods need more computer time per iteration but after all, the practice
shows that increased computational costs are always compensated by substantially
fewer number of iterations required than for simple methods. This is the case of
the quasi-Newton method compared to conjugate gradients of Fletcher-Reeves or
weighted past gradients proposed in this chapter. Local optimizations methods
usually converge very fast but only to a local minimum and are very sensitive to
the shape of the energy function. Global optimization methods are insensitive
to the shape of the energy function and converge to a global minimum but very
slowly and theoretically in infinite time. As in many practical problems, a trade-off
between complexity and renability of overall optimization will take place.

Our approach to neural network training is based on a combination of deter
ministic and stochastic methods resulting in the following algorithm:

for j := 1 iQ Ne do
set 8j(0) to either random or user-specified values
call stochastic search routine
call quasi-Newton routine

whrere 8 j (0) is a starting point of the optimization. That means that we iterate a
stochastic search followed by a quasi-Newton optimization for a number of starting
points Ne until sufficient performance is obtained which is judged manUally. The
stochastic search is either the controlled random search algorithm using formulas
(3.30) or a Boltzman simulated annealing of [12]. The quasi-Newton routine starts
then from the best point found by the stochastic search. The returned minimum
is stored and later on, after a whole batch of Ne optimizations was completed we
decide either to restart them, possibly with replacement of worst solutions with

44 Chapter 3. On Neural Networks

new random guesses, or we accept the best solution. This decision process was not
automated yet and was done manually. The number of iterations performed either
by a stochastic search or by the quasi-Newton search are specified in advance as
input parameters.

A C code of the simulated annealing of [25] we obtained from the author himself.
A FORTRAN code of the simulated annealing of [12], which is publicly available on
the INTERNET computer network, was re-programmed in C. The other stochastic
search routines were programmed in C. As a quasi-Newton routine we were using
FORTRAN routines E04KBF. E04JBF, E04UCF of the NAG library [47].

4 Grey-Box Neural Network
Models

This chapter deals with the modelling issues involved in the controller design pro
cedure discussed in the next chapter. Provided, that there is ·available a math
ematical simulation model of the process we can test different control strategies
and synthesize such a strategy which is the best with respect to our requirements.
Therefore, to have a feasible simulation model of the process is of importance.
We consider only parametric models which means that the model is a mathemat
ical function of a finite number of tunable parameters which allow the model to
compute a specific function.

Neural networks offer an excellent approximation possibility and are recently
often used to approximate functions that define the plant input/output dynamics.
The main feature of our approach is that the process dynamics is modeled by
embedding as much available a priori knowledge about the process dynamics into
the neural network model as possible.

4.1 Black-box modelling

The general idea behind black-box modelling is to assume measured input/output
data of the given system, usually assumed in a form of multivariate time series

D={[u(k),y(k)], uEIRm, yEIW, k:=I,2, ... ,N} (4.1)

where u is the input and y is the output and to approximate the output of the
system y(k) by a relationship y(k) :::= j(r/>, 8) where r/> is the usual regression vector
and 8 denotes the parameters of the model. In our context, the function j is in our
context approximated by an MLP and the regression vector is typically composed
from either past inputs and past outputs. The values of parameters 8 are then
typically obtained by minimizing a summed squared error between the true system
outputs y(k) and the modelled output Y(k).

In the following we will be treating two classes of dynamic black-box models:
input/output models and state-space models. Each of these models will implicitely
assume a certain structure of the modeled system.

46 Chapter 4. Grey-Box Neural Network Models

4.1.1 110 models

Consider the following prediction form of a nonlinear input/output dynamic system
in the discrete-time domain

y(k) = Jp[y(k -1), ... ,y(k - ny),u(k), ... ,u(k - null + elk) (4.2)

where u(k) E IR m and y(k) E IRP are observed inputs and outputs, respectively,
k E Z+ is the discrete-time index and elk) E lRP is a noise sequence of mutually
independent identically distributed random samples which are independent of in
puts u(k) and outputs y(k). The order of this system is defined by the number
of output delays ny E IRm and by the number of input delays n" E IRP. Let the
measured I/O data of this system be denoted by Dp and let a model of this system
be parameterized as follows

y(k) == ip[y(k - 1), ... , y(k - r!;;), u(k), .. . ,u(k - 11,;), €l jJ (4.3)

In (4.3) the arguments of the approximation function ip are the delayed true
process outputs y(k) and process inputs u(k), 11;; and n,; define the model order
similarly to the definition ofthe given system order in (4.2). The parameter vector
€l jp is a finite dimensional vector of unknown parameters. Let the approximating

function ip be a member of a family of approximation functions Fnl ,n" ... ,nNL'

i.e. ip E F n" n2 •..• nN" represented by a multilayer perceptron consisting of hidden
layers of nI, n2, ... ,nNL hidden nodes. The parameter vector €ljp E !Rn

, then
contains all network's weights and biases and no denotes the dimension of the
vector e jp' The prediction error elk) is defined by

e(k) = y(k) - f)(k), for k = 1, ... ,N (4.4)

The model (4.3) is in the literature called a nonlinear auto-regressive model with
an exogenous signal or NARX [8, 9]. If the noise sequence elk) does not satisfy
the previously required assumptions we have to consider a generalization of (4.2),
namely

y(k) = J;[Y(k - 1), ... ,y(k - ny), u(k), ... , u(k - nul,

e(k - 1), '" ,e(k - nell + elk)
(4.5)

where elk) E IRP is a white noise sequence. A model of this system is then
parameterized as follows

y(k) = i;[y(k - 1), ... ,y(k - 11;;), u(k), ... ,u(k - 11,;),

e(k - 1), ... , e(k - f!;), €l j;]
(4.6)

where elk) are the prediction errors computed by (4.4), 1; E F n, •n ' nN, is a
neural network and e j. are its weights. Compared to the NARX model (4.3),

p

4.1. Black-box modelling 47

the model (4.6) is extended in a moving average part of the order n; and is often
called as N ARMAX model [8].

Another way of modelling a nonlinear dynamic I/O system is to consider a
model described by the following equation

fj(k) = is[Y(k - 1), ... , fj(k - n;)' u(k), ... , u(k - il,;), e iJ (4.7)

Here, as the arguments of the approximation function i" is E F n1 ,n2, .. ,nNL ' we
have used past values of the model output y(k) and the past values of the process
input u(k). The free parameters e i. contain the neural network weights and
biases. This model assumes that a data generating system being described by

ys(k)

y(k)

fs[Ys(k - 1), ... , ys(k - ny), u(kl, ... , u(k - nul]

ys(k) + elk)

(4.8al

(4.8b)

where elk) is an output noise or measurement noise assumed to be un correlated
with past inputs and with past outputs. Let us denote the measured input/output
data of this system by Do.

Although both models (4.3) and (4.7) predict the next value of the process
output y(k) and they are quite similar in their structure, they state different as
sumptions and they have also different mathematical properties. These properties
become more obvious if the prior assumptions, in this case (4.2) and (4.8), are
violated, e.g. in practice.

The first of these two models, (4.3) or (4.6), is called a prediction error model
or an equation error model. The second model (4.7) is called a simulation model or
an output error model. The first type of model is usually optimized towards a best
prediction of the next process output value given past system outputs and inputs,
while the second one is optimized for longer time predictions which are based
exclusively on past system inputs. A schematic diagram of both of these two
models is depicted in Figure 4.1. We frequently use a subscript "p" when talking
about a prediction model and a subscript "s" when talking about a simulation
model.

The question is now how to choose the unknown parameters of the above
proposed models. Typically, an estimate of either e i. or e i. is obtained by
minimizing the following criterion

(4.9)

where 11·112 is the usual Euclidean vector norm, i stands either for ip or is, the
model orders n;;, n; and possibly n; are chosen beforehand together with the size
of the neural network. As y(k) is parametrized nonlinearly it is not in general
possible to minimize (4.9) analytically. Moreover, this criterion defines a non
convex function of parameters e j' The minimized value of J(e i) gives us some

48 Chapter 4. Grey-Box Neural Network Models

le(k) le(k)

u(k) Nonlinear y(k) u(k) Nonlinear y(k)

System

I
System

T · T · D · Neural · L Network iJ(k)
'--r-'

T r----
jp · D ·

D · Neural
L · Network -

T r---- i)(k)

· js D ·
L · r---- L r-..:..

'-- '--

(a) Prediction model (b) Simulation model

d(k) d(k-l) d{k-2) d(k-n+l) d(k-n)

(e) Taped delay line (TDL)

Figure 4.1: Input/output model parametrizations

idea about the accuracy of the estimated model. It is convenient to compute an
index

N

L Ily(k) - y(k, e J)II~
19 = k=l . 100%

N
(4.10)

Z Ily(k)ll~
k=l

relating the approximation error magnitudes to the magnitudes of the true pro
cess output. The accuracy of the approximation is determined by many factors.
Basically, we have to distinguish between an approximation accuracy of process
nonlinearities and an approximation accuracy of the process dynamics. These two
aspects have to be treated together as their separation is complicated by the non
linearity of the problem. The most important factors influencing the approximation
accuracy are discussed bellow:

• First of all, it is the value of the criterion (4.9) we find during its minimiza
tion. Since we are dealing with a non-convex problem it is hard to access

4.1. Black-box modelling 49

this issue. We rely here on the optimization routine used to minimize the
cost function. Usually a priori knowledge about the physical nature of the
problem and a noise level in the system might help us to reject poor solutions
and continue the optimization procedure trying to find better ones.

• The accuracy of process nonlinearities approximation will depend not only
on the smallest value of the criterion we find in the criterion (4.9) but also on
how densely the observation points fill the input space of the approximated
transfer function. That implies that the length of the data set will grow
very fast with the input dimension if one wants to maintain a certain level
of accuracy. This might badly affect the optimization process which will be
slowed down due to the increased computational costs.

• As the approximation is concerned with dynamic systems, the bandwidth
of the system, understood as a frequency range between the smallest and
highest eigen frequency of the system, will also influence the accuracy of
approximation. In general, the process bandwidth limits the maximum sam
pling T., used to sample the process inputs and outputs and also the length
N of the used set. If the process dynamics are stiff, that is the bandwidth is
very broad, the data set can be quite long. The longer the data set the more
time is required for minimization of the criterion (4.9). Besides of the choice
of a proper data set the accuracy of approximation of the system dynamics
will be given by the choice of model orders n;; and n;;.

• The accuracy of the approximation will also be determined by the complexity
of approximated nonlinearities and the size of the neural network we chose.
If the complexity of the neural network is too small than the approximation
will be, in general, poor. If the complexity of the neural network is too high
one run into overparametrization problems.

• The process noise e(k) can not be omitted from the approximation accuracy
discussion. If the noise level in the system is significant, we can expect poor
models. As the minimization of (4.9) is a non-convex problem, in general, it
might become very hard to separate the effect of input signal u(k) from the
effect of the noise signal e(k) in the output signal y(k).

To minimize (4.9) we will use an iterative numerical procedure proposed in Chapter
3, which was a combination of stochastic search (e.g. simulated anneling) and
a quasi-Newton search. For an effective quaSi-Newton optimization we have to
provide the software computer routines with analytical expressions of gradients.
These are given in the next sections, both for prediction and simulation I/O models.

4.1.2 Gradient computations

To perform an efficient numerical optimization of the criterion (4.9) we need to
evaluate the gradients of this cost function with respect to the network weights,

50 Chapter 4. Grey-Box Neural Network Models

preferably analytically. These gradients are in general defined by

(4.11)

where

for i = 1,2, . .. ,no (4.12)

For the criterion (4.9) then holds

1 N ()T 8Y(k,0·)
g(().)=~-~ y(k)~iJ(k0.) f

Ii N ~ , I of)·
k=l Ii

(4.13)

In the following we will distinguish two situations. The first situation is concerned
with the prediction error model and the second one is concerned with the output
error model.

Prediction model

If the process is modeled by a prediction model (4.3) then the past input and past
output arguments of the transfer function are independent of parameters 8 i i and
therefore in this case holds

(4.14)

The partial derivatives of the approximation function jp with respect to 8 i i pa
rameters are computed by the backpropagation algorithm (3.9-3.17).

Simulation model

The situation is quite different in case of the simulation model. Because this model
takes as arguments, besides the past inputs, the past model outputs rather than
the past true process outputs these arguments become dependent on parameters
() i i through the recursive evaluation of the model transfer function. Therefore we
differentiate the modeled output with respect to 0 i. as follows

(4.15)

The last expression is in fact includes the expression (4.14) plus a dynamic sum
mation term, whicl1 stands for the network weights dependency on part of the
network inputs.

4.1. Black-box modelling 51

The first term in the equation (4.15) is a static term computed by the back
propagation algorithm (3.9-3.17) as in case of (4.14) and the second term is a
dynamic term where

a/.[.J
af)(k - j)

has to be still evaluated. This expression represents a differentiation of the neural
network output with respect to part of its inputs. This operation can be performed
by the backpropagation algorithm as already shown in Section 3.2. The formula
(4.15) together with the backpropagation algorithm (3.9-3.17) is called dynamic
backpropagation as proposed in [45].

The equation (4.15) is a recurrent equation evaluation of which may be quite
cumbersome for a digital computer. This is determined by four factors:

1. n; - the number of estimated output delays,

2. p - the output dimension,

3. ne - the total dimension of the parameter vector e j,'
4. N - the length of the data set.

The approximate number of memory locations pen;; + 1)ne, required by a computer
program, computing the equation (4.15), can be quite high. The same holds also
for the number of arithmetic operations involved in this computation. We have to
consider also the length of the data set. These kinds of issues have to be taken
into account when formulating this type of modelling problems, otherwise the
computing time can be rather high when using a small computer machine.

4.1.3 Black-box state-space models

Let us assume a sampled dynamic system described by

x(k + 1)

y(k)

f[x(k), u(k), w(k)]

h[x(k) , u(k)] + v(k)

(4.16a)

(4.16b)

Here w(k) is the process disturbance and v(k) is the measurement noise. Assume,
that w(k) is a sequence of mutually independent random samples which are not
correlated to either x(k) or u(k). The measurement noise v(k) is assumed to be
white.

Then a modelling problem can be stated as follows: Given a data set V of type
(4.1), generated by the system (4.16), find a discrete-time state-space model

i(k + 1)

y(k)

/[i(k), u(k), e j]
h[i(k), u(k), 8 hl

(4.17a)

(4.17b)

52 Chapter 4. Grey-Box Neural Network Models

approximating the true system. The unknown nonlinear functions of the true
system (4.16), f and h, are parametrized by MLPs with weights 8 j and 8 h,
respectively. The dimension of the state of this model irk) is assumed to be ii,
that means that it should be estimated as well unless it is assumed to be known.

If we compare the formulas of the proposed model (4.17) with the formulas of
the assumed system dynamics (4.16) we can see that the model does not include
a disturbance input w(k). As this signal is not assumed to be available for the
observation, the model (4.17) approximates only that part of fin (4.16a) which is
a function of x(k) and u(k). The model (4.17) does not use the true system output
y(k) either. It is using only the system input u(k) and the internal state x(k) to
compute its output fj(k) and therefore belongs to the class of simulation models.
A prediction form of a state-space model of a nonlinear process will be discussed
later on when we will talk about neural state observers (Section 4.3).

We can see, that both equations (4.17a) and (4.17b) take the same arguments
and therefore we can combine these two equations intq one equation as follows

[
X(k+l)] = [![X(k),U(k),8,1] =:it[x(k),u(k),8,,]

fj(k) h[!i;(k) , u{k), 8hl
(418)

The nonlinear map it is now parametrized by a single MLP with weights 8 j, .
The model parametrization (4.18) is a good option for a black-box model. If we

have some knowledge about f and/or h maps of the original system (4.16), which
can be brought into the model, then the model parametrization will be probably
closer to the structure of (4.17). This will be discussed and explained in Section
4.2.

The structures of both neural state-space models (4.17) and (4.18) are depicted
in Figure 4.2. The neural network i of the model (4.17) is a recurrent neural
network as its full output is fed back through a one step delay to its input. The
h neural network is an ordinary static MLP. Also the it neural network belongs
to the class of recurrent neural networks as a part of its output is fed back to
the input. The neural network weights are in all cases obtained by minimizing
a criterion (4.9) in which 8 j is replaced either by a concatenation of e j and
8i\. or by 8 j,' What concerns the approximation accuracy of the model and
minimization of the criterion (4.9)' the same discussion as the one on page 48
holds also here. The gradient evaluation of the above proposed state-space models
for the computer optimization routines is done using similar rules as those we have
used in case of I/O models. However, algorithmically the gradient evaluation for
state-space models is easier. For completeness of our discussion, we give these
gradient formulas in the next two sections.

4.1. Black-box modelling 53

u(k) Nonlinear y(k) u(k) Nonlinear y(k)
System System

.----. Neural y(k)
Network y(k)

,--. h ----0

Neural
Network

r----- Neural x(k + 1)
Network

j, x(k + 1) -----
r--- i

,-I ,-1

(a) Structured model (b) Unstructured model

Figure 4.2: State-space model parametrizations

4.1.4 Gradient computations - structured model

Let the :1/ (k) E IRnxn be the Jacobian matrix of the neural network j given by

:Ji (k) = &j[x(k), u(k), 8 fJ
x &x(k)

(4.19)

and .:rfrk) E IRmxn be the Jacobian matrix of the neural network it given by

.:rhk) = &h[x(k),u(k),8h l
x ax(k)

(4.20)

where both Jacobians are evaluated for values of x(k) and u(k) at the time instance
k. Then the gradient of the error function with respect to weights is given by

&J(8 i ,8h)

&Oi;

&J(8i ,8,,)

&OiL;

~ ~ t (y(k) ~ y(k))T (.:ri'(k) &!~))
= ~~ t (Y(k) ~Y{k)f&h[X(k~0~(k),8hl
. k=l hJ

(4.21)

(4.22)

where 0 ii and 01,j are components of the neural network's weights 8 i' 8", respec
tively, with indexes i and j running through all weights in corresponding neural

54 Chapter 4. Grey-Box Neural Network Models

networks. The partial derivative of irk) with respect to () J i weights has to be
computed recursively by

8i(k) _ 8J[i(k-l),u(k-lJ,8/1 I 8.i(k-l)
~ - 8(). +:Jx(k-l) 8()'

J, fi fi
(4.23)

The first term in the last expression is being evaluated by the backpropagation
algorithm (3.~3.17). The same algorithm is used to evaluate the Jacobian matrix

:1/ (k - 1) which is necessary for evaluation of the second term of (4.23). The last
formula is a recurrent relation which has to be evaluated recursively in time.

4.1.5 Gradient computations - unstructured model

The parameter gradient computation of the cost (4.9) for the model (4.18) is similar
to the one shown in the previous section. By the backpropagation algorithm we
compute the partial derivatives of it with respect to weights and a Jacobian matrix

.1/' (k) = 8ft[i(k),u(k), 8 f ,]
x 8X(k)

(4.24)

Now we partition this matrix row-wise with respect to the vector dimensions of
y(k) and i(k + 1), respectively. Let the upper part, corresponding to differenti-

ation of y(k) outputs, be denoted by :Jl"y and the lower part, corresponding to

differentiation of i(k + 1) outputs, be denoted by .1l',x. Then it holds

8i(k + 1) = ait"[x(k), u(k), 8 J,l + .:.TI.,x (k) ax(k)
8() lti 8(}i'i x 8(} iti

and li denotes that part of the neural network it which outputs compute iJ(k)
and similarly, it denotes that part of it which outputs compute i(k + 1).

4.1.6 Model complexity

The minimization procedure, which we usually perform on the sum-squared out
put error cost function (4.9) to find suitable weights and biases for different neural

4.1. Black-box modelling 55

networks, does not provide us with optimal structure (or size) of the neural net
work. It neither tells us the correct model orders. It is clear that the complexity
of the model has a strong impact on its performance in a particular application.

When talking about the model complexity we have to distinguish between the
order of the dynamics and the complexity of the neural network. These determine
the complexity of the model. The order of the model dynamics is defined as follows:

1. In case of an I/O model it is the number of delayed system inputs and
delayed outputs, either measured or produced by the model, and possibly
also the number of delayed prediction errors (in the case ofNARMAX model)
specified by

2. In case of a state-space model it is the number of model states specified by

The complexity of the neural network, used for the parametrization of the transfer
function in the case of an I/O model is specified by the number of hidden layers
and the number of nodes in each hidden layer, that is by numbers

In the case of a state-space model we have to consider either one or two neu
ral networks, depends whether we consider either the paramterization (4.17) or
the parametrization (4.18). Then we have to consider either two or one set of
parameters, like N L, N N 1, ... , N N NL to define the neural network complexity.

The above definition of, the complexity of the neural network includes only
parameters which are free to choose. There are, in fact, other two parameters
which might be also included into the neural network complexity consideration,
namely the number of neural network inputs and the number of neural network
outputs. However,. these two parameters are defined by the dimension of system
inputs m and the dimension of system outputs p and the order of the model.

It is very hard to say a priori, what the neural network complexity should be
and in practice it is estimated from data and using the prior knowledge about the
process. A pragmatic approach to the neural network complexity optimization is
to train different neural networks of different complexities and by checking out
their performance on validation data we decide about optimal complexity. To do
such a search systematically, we can consider, for instance, a set of neural networks
with only one hidden layer and to vary the number of hidden nodes NN1' Thus,
we have to train a set of neural networks having a range of values for N Nl and
finally we select one which gives the best validation results. This approach requires
tremendous computational effort, is extremely time consuming and yet we often
search only through a very small set of neural network complexities. If we try
to extend the searched set of neural networks, e.g. for neural networks with two

56 Chapter 4. Grey-Box Neural Network Models

hidden layers, then we soon find out that we do not have enough computational
reSOurces to complete our search. And even if we keep the set of neural network
sizes small enough we still have to put a lot of computational effort to train a
particular neural network. As training of a neural network is a non-convex problem,
the comparison of performance of different neural networks might not be that
informative. It means, that we can not say, that one complexity is a better choice
than the other, as we can not be sure, that the minimum we have found, in case
of the worse neural network is a good one. A partial way out of this problem is
to train the same neural network for couple of times, by means of starting the
training from different initial starting points and check the similarity of solutions.

The choice of the model order will be in this thesis based on ,the available prior
process knowledge. Otherwise, we would have to vary during the neural network
training not only its complexity but also the model order.

4.1. 7 Model validity

If a model of a system is adequate then the residues or predictor errors should
be unpredictable from past inputs and past outputs. This statement is equivalent
to a saying that the prediction errors should be uncorrelated with all linear and
nonlinear combinations of past inputs and past outputs. Checking of model va
lidity in a framework of nonlinear systems is complicated because of the system
nonlinearity. That means, that the validity of the model should be considered in
two directions:

1. accuracy of approximation of the system nonlinearities;

2. the order of the model.

The validity of the estimated model is often being verified by examining the
residuals. These are computed both for an estimation data set and for a validation
data set. To do this analysis we have a few options which are discussed below:

1. Plot of residues and visual judgment. This is usually the first step in a
residual analysis. Basically we can check, for instance, if the mean value of
errors is about zero, if the errors are symmetric or asymmetric with respect
to the mean value, or we can check for some abrupt behaviours of errors.

2. Plot of residual spectra. When estimating a prediction-error model, assuming
a system (4.2) and e(k) to be a white noise, a correct model should show a
fiat spectrum of residuals. If this is not the case, we have to reconsider either
the neural network complexity or the model orders.

In case of assuming a system configuration (4.8) while estimating a simulation
model the residual spectrum should be equal to the spectrum of the output
noise, provided that it is not correlated with u and y.

If the noise is not strictly additive to the output then it can be seen as a
colored noise additive to the output filtered by the process dynamic. It is

4.1. Black-box modelling 57

hard to say, in general, how the spectrum of residuals should look like, as
both prediction and simulation model will be biased.

3. Correlation tests. These tests can detect un-modeled nonlinearities by exam
ining cross-correlation functions operating on e(k) and u(k). This approach
is described in [5J. In case of the prediction-error model we basically check
for correlation of the prediction errors e(k) with the input signal u(k) and
mutual correlation of prediction errors e(k). For more proper verification of
the model validity we should follow all tests proposed in [5].

Our experience shows that on simple test examples, as the one which will be
treated bellow, the correlation and cross-correlation tests are satisfied if the esti
mated model gives similar performance also on the validation data. As the data
generating system becomes more complex, as for instance the polymerization reac
tor shown in Figure 1.1, the assumed model parametrization will not describe the
process such, that these criteria will be satisfied. However, they can be "almost"
satisfied, depending on how complex our model is. The main issue here is to de
cide, whether the model accuracy is sufficient for the particular application. If this
is not the case, we have to re-parametrize the model and repeat the estimation
phase, possibly until satisfactory results are obtained.

4.1.8 Prediction or simulation - an example

To demonstrate some aspects of the previous discussion we present at this place a
simple numerical example.

As a process we consider a system proposed in [45] but extended with a process
noise. The system was given as follows

(k) = y(k - l)y(k ~ 2)y(k - 3)u(k - 2)(y(k - 3) - 1) + u(k - 1)
y 1 + y(k - 2)2 + y(k - 3)2

(4.25)

where u(k) denotes the input sequence and y(k) denotes the output sequence.
We included into the simulation of this system a process disturbance w(k) and a
measurement noise v(k) while using a state-space description of this system. The
new given system is then given by

xI(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

y(k)

XI (k)X2 (k)X3 (k)X4(k)(X3 (k) - 1) + u(k) + WI (k)
1 + x2(k)2 + X3 (k)2

XI (k) + w2(k)

x2(k) + w3(k)

u(k) + w4(k)

xI(k) + v(k)

We simulated this system with u(k) being a combination of a sweeped sine wave
and a uniformly distributed zero-mean random signal with maximum amplitude
1, shown in the Figure 4.3, all wi(k) and v(k) were also simulated as uniformly

58

~ 0.5
;::"

~
0-

-+"
::l
o -0.5

Chapter 4. Grey-Box Neural Network Models

Figure 4.3: Estimation data set

distributed zero-mean random signals, but with maximum amplitude 0.02. We
generated two data sets D, N = 1000, of simulated I/O data points. The first one
was used for the estimation of a model and the second one for its validation.

The idea of combining a random signal with a sine wave signal is that the
random signal does not sufficiently excite the system in the nonlinear region. The
nonlinearity of this system becomes visible only when y(k) stays in magnitude
close to one for a couple of time instances otherwise the product of the last three
past samples of y(k) in the numerator of (4.25) decay to zero very fast and the
remaining term in the numerator u(k) becomes dominant.

We estimated a set of prediction models parametrized by (4.3) and a set of
simulation models parametrized by (4.7). Approximated nonlinear process maps
ip and is were parametrized by a MLP with one hidden layer. In case of the
prediction error model, the neural network input was defined as

x = [y(k - 1), y(k - 2), y(k - 3), u(k - 1), u(k - 2)f

and in the case of the simulation model, the neural network input was defined as

x = [Y(k - 1), y(k - 2), y(k - 3), u{k - 1), u(k - 2)f

This also means, that we implicitly assumed that we know the correct process
orders n;, n,;.

4.1. Black-box modelling 59

The neural network weights were in all cases optimized by minimization of the
following criterion

1 1000

J(8 j) = 22)y(k)-y(k,8j JJ 2 (4.26)
k=l

similarly to (4.9). The number of hidden nodes N Nl in the hidden layer was varied
from 8 to 19 and the total number of parameters to estimate, given by

was varying from 57 to 134. Note, that 134 is already quite a considerable num
ber of parameters to estimate. To optimize the neural network weights we first
performed lOOne simulated annealing iterations and then 50 One quasi-Newton it
erations. We restarted the optimization of each neural network configuration five
times, always from different starting point. We evaluated the model performance
on the validation data set. The results of prediction error model estimation and
its validation are summarized in Figure 4.4(aJ. In this Figure we have also shown
the value of the Akaike's criterion

A/e(ne) = -2log(J(8 jp J/N) + 2ne

as proposed in [35]. Only scaled values are shown in this graph as the actual values
of this criterion are not that important as the location of its minimum with respect
to no. The results of simulation model estimation and validation are summarized
in Figure 4.4(b).

From the Figure 4.4(a) we can see that on estimation data is the cost function
monotonically decreasing with increasing number of nodes in the neural network's
hidden layer. While testing the model performance on validation data (still in the
prediction-error set-up) we 'can find a turning point from which the cost function
value increases. We can also observe that the Akaike's criterion is consistent with
testing the model performance on validation data. In case of estimation of the sim
ulation model (Figure 4.4) we can observe similar characteristics of the estimation
process: a decreas~ of the cost function value with respect to the number of hidden
nodes on estimation data and an initial decrease of the cost on validation data and
than its increase. We can also notice from these results that optimization of a
output-error model is more difficult as decrease of the cost function on estimation
data is not that gradual as in the case of prediction-error model optimization.

In this example we actually did not succeeded to manage a monotonic decrease
of the cost function value on estimation data for neural networks with 14 and 15
nodes. It is very hard to say in this case why, but it may be due to a very complex
cost function landscape.

In both experiments, prediction model estimation and simulation model esti
mation, we have found out that a neural network with 13 hidden nodes might be a
good choice. If we compute the predictions and simulations using the true system
equations with and without the disturbance and we compute the criterion (4.26)

60 Chapter 4. Grey-Box Neural Network Models

J(0 j)

0.5
0 "" ~ testing set

"" l§ ~ learning set

.8. o ~ AlC criterion
0.4 R

"" fill
0

0.3 ill
[ijJ a ""

"" "" E!lI 0 0 t:. "" 0
/::,.

""
t:.

0.2 Ill! t:. "" rn @ I!.1l 0 0 0 0
0

frl
0
!i!I tD I!1l E!l Ill! G

0.1
4 6 8 10 12 14 16 18 nn

(a) Prediction model optimization

J(0 j J
t:.

0.5
/::,. ~ testing set

t-. l!ll ~ learning set

t-.
t:.

0.4 I!lI
t-.

III
iii!

0.3 t-.
t-.

I!ll
t-.

t-. t:.
ilII £j'j t-. t-. t-.

0.2
t:.

Il!l
Ill]

Ilil
l!ll

ill Ql m m llil

0.1
4 6 8 10 12 14 16 18 nn

(b) Simulation model optimization

Figure 4.4: I/O neural network model identification results

4.1. Black-box modelling

::i? 0.5

;;
...,
'" Po
.9

-<l.5

-,
0 '000 2000 3000 4000 5000 6000

sample index k

~ O.2r-~~--'-------.-----~-r~-----r----~-.-------,

::'S
" '-i 0.75
o
<Ll 0.1 ...,
'" fr 0.05

'" o

::i? 0.5

~
~
p,

.5
-0.5

1000 1000 3000 4000 5000 6000

sample index k

(a) increasing frequency from 0.00310 to 0.0006/0

sample index k

(b) increasing frequency from 0.00210 to 0.0006/0

Figure 4.5: Validation with a sine wave signal

61

62 Chapter 4. Grey-Box Neural Network Models

using these data we obtain cost function values 0.1703 and 0.1680, respectively.
These values are in fact reached by 13 hidden nodes neural in the neural network
both for prediction and simulation models and that is consistent with our already
made decision about the neural network complexity.

For further validation of these models we have used a sweeped sine wave sig
nal as an input. In Figure 4.5(a) we can see that the output error in case of the
prediction model is decreasing towards higher frequencies, what is to be expected,
while the output error in case of the simulation model remains small over the whole
input signal spectrum. Testing both models for even smaller frequencies, shown in
the Figure 4.5(b), the prediction model is very likely to fail in predicting the next
output sample simply by getting stuck outside of estimated region of nonlineari
ties of the true transfer function. The simulation model is still showing reliable
performance. Actually, in this particular example, the process shows most of its
nonlinearities when the input signal stays close to 1 for a couple of samples. As the
prediction model tends to predict the next output sample by using mainly previous
output samples, while underestimating the importance of inputs, its validation by
simulation often results in errors similar to the one shown in Figure 4.5(b).

To compute the results shown in Figure 4.4 we needed about one month of
computing time on the DEC 3000 computer.

4.1.9 110 models versus state-space models

When dealing with nonlinear systems it is difficult to say if it is better to model
a given process by an I/O model or a state-space model. In case of linear systems
the mathematical transformation between both models is trivial, while in the case
of nonlinear system this is a nontrivial problem.

In our work we have developed computer software to handle both I/O and
state-space models. The I/O model can be estimated either in the prediction
configuration (see Figure 4.1(a)) or in the simulation configuration (see Figure
4.1(b)). The state-space models (see Figure 4.2(a) and Figure 4.2(b)) are always
estimated as simulations models.

The decision about estimating either an I/O model or a state-space model
should be based on the particular purpose of the estimated modeL For us the model
purpose is to design a controller for a real-world process. I/O models are often
used as SISO, one step ahead predictors. Estimation of I/O multivariable models
is a much more difficult problem. The number of a neural network inputs grows
very fast with the process dimensionality and the order of the system dynamics.
If we are interested in a prediction error model the problem difficulty might be
still acceptable, but in case of estimating a simulation model we are almost always
faced with a difficult optimization problem. In case of a state-space model the
number of neural network inputs is smaller and the number of outputs is given
either by the state dimension or output dimension. This means that in case of a
MIMO system we might end up with less parameters to estimate.

The advantage of state-space models is also their simpler implementation and
handling in software programs for a digital computer where we can gain some

4.2. Grey-box modelling 63

algorithmic advantages with respect to the I/O models. These advantages concern
mainly the gradient computation where in the case of I/O simulation model the
dynamic term in the backpropagation is summed from one to the highest delay used
in tapped delay lines while in case of state-space models this sum reduces into just
one term. From a conceptual point of view the state-space model parametrization
allows us a better understanding and formulation of problems and, what is most,
important it allows us also to incorporate our a priori knowledge into the modelling
in a straightforward way.

4.2 Grey-box modelling

The grey-box modelling is characterized by the a priori available partial informa
tion about the process dynamic and structure which may be used for the model
parametrization. This knowledge can be expressed during modelling in many ways.
One way can be the choice of parameter values, another way is to elaborate the
model structure. As it was already said, the available a priori information does not
contain full dynamic description of the process. Consequently, the total dynamical
model must contain a white-box part that reflects the a priori knowledge and as
well as black-box part to model the complementary process dynamics.

In the following sections we further exploit the state-space models in such a
direction that we can effectively incorporate the available a priori process knowl
edge. Before we start to do this we classify different kinds of a priori knowledge
which is usually available.

4.2.1 A priori information in process modelling

In practice we are always de.aling with physical processes in which we are able to
point out exactly some of the process's physical states. These can be, for instance
in different type of processes, represented by following variables:

1. technological processes

temperatures, pressures, flows, volumes, levels, concentrations

2. mechanical systems

positions, angles, speeds, angular speeds, accelerations, forces, torques

3. electrical systems

voltages, currents, powers, fluxes

These variables always obey physical laws which relate them to other variables in
the process. For instance the Newton's law relates the acceleration and force in a
mechanical system, the acceleration is a time derivative of the speed. In electrical
systems, it is Ohm's law or Faraday's law which relates currents, voltages and fluxes
to each other. In chemical processes, for instance, pressures or concentrations

64 Chapter 4. Grey-Box Neural Network Models

r
Figure 4.6: Gantry crane schematic diagram

depend on the temperature also by known relations coming clearly from energy
balances in the process.

To express mathematically a combination of a white, a priori known part of
the model, and a black-box part we will now consider two situations.

Known static relations

A static relation is a relation which does not contain time derivatives or delays of
the considered variables. Such a relation can be brought into the model parame
trization simply by defining the output map h of the model (4.17). To illustrate
this case, let us consider the gantry crane process, depicted in Figure 4.6.

Without going into the details of the dynamics of this process, as it will be
given precisely later on, assume that we can measure a position of the load (Xl, Yl)
in a Cartesian coordinate system, a position Xt of the trolley, the actual length
L of the rope holding the load and an angle ¢ of the rope with respect to the
vertical direction. If we are interested in modelling the load behaviour in the load
coordinates then we can fix the output map h of the model (4.17) as follows

Xl Xt + Lsin(¢)

Yl Lcos(¢)

and the complementary system dynamics is given by a state equation

x(k+ 1) = j[x(k),u(k),8 j l

where j stands for a neural network and the state vector x is defined as

x = (Xt, ¢, L, ... f

4.2. Grey-box modelling 65

where the dots mean that we still have to fill in couple of states to model the
process dynamics properly. The first three state components have then a physical
meaning while the rest of state components will not have a physical interpretation.

Known dynamic relations

Dynamic relations are those that include time derivatives or time delays. Let us
take the gantry crane example again. It is quite straightforward to distinguish in
the process behaviour three different subsystems with approximate dynamics:

1. Pendulum dynamics
.. g
</1+ Isin(f/l) = 0 (4.27a)

2. Mass translation dynamics of trolley

(4.27b)

3. Mass lift dynamics

(4.27c)

where Fh is the hoisting force.

Assuming that these relations are known beforehand we can form the following
model of this process

i(k + 1)

y(k)
= ![i(k), u(k)] + iN[i(k) , u(k), e j]
= h[i;(k)]

where the state, control and output vectors are defined as follows

y = (~:)

/[x,u]

h[x]

(4.28a)

(4.28b)

66 Chapter 4. Grey-Box Neural Network Models

where T is the sampling time of the process. The discretization of dynamical
relations (4.27) was, in this case, done by taking a first-order Taylor series ap
proximation of their solutions and therefore the sampling time T should be kept
small.

The model (4.28) is composed of a known part represented by ! and an un
known part to be estimated, represented by a neural network iN,

4.2.2 State partitioning

In the last two sections we could see that the state vector always contained compo
nents with either an exact physical meaning or directly related to the outputs or to
other states by known relations. The other part of the state vector was composed
of states without a specific physical meaning but which are necessary for modelling
of the process dynamics. Therefore we propose the following state partitioning of
the considered system (4.16)

(4.29)

where xO E JR"o represents unknown system state components and Xl E JRn' are
known state components, physically well defined and later on they will represent
our a priori knowledge about the system dynamics.

In the hidden state component xO we can possibly further distinguish more
types of states. For instance, in case of assuming process disturbances which are
not white, x[) will also include states modelling the coloring of the disturbances.

The above discussion brings us directly to grey-box modelling problem dis
cussed in the following sections.

4.2.3 Grey-box state-space models

A grey-box state-space model in discrete time will be from now on understood as
a model of type (4.17) in which we assume:

1. that the process output map h is known exactly and set in the model by
defining h = h;

2. that part of the true system state map f can also be known and the model
state map is then a combination of an analytically known part ! and an
unknown part iN approximated by a neural network;

3. that the state vector is partitioned according to (4.29).

The resulting grey-box state-space model is then parametrized as follows

!irk + 1)

y(k)

i[x(k), u(k), e j]
h[x1 (k), u(k)]

(4.30a)

(4.30b)

4.2. Grey-box modelling 67

where the function j denotes here a combination of an analytical part 1 and a
neural network approximated part iN and Xl is the known part of the state vector
carrying our process a priori knowledge. The weights e j of the neural network j
are estimated by a minimization of a criterion (4.9) with respect to e j'

4.2.4 Gradient computations - fixed output map

The partial derivatives of the criterion (4.9) with respect to the free parameters
e j are for the model (4.30) determined in the same way as described in Section

4.1.4. The only difference is in replacement it by h, skipping (4.22), the neural
network part of j is handled by the backpropagation algorithm and the analytical
part! has to be differentiated from problem to problem independently.

4.2.5 Computational costs

The overall procedure for gradient evaluations of the cost function (4.9) may be
time consuming mainly for large values of N. In Table 4.1 we give some figures
of time needed to evaluate the cost function (4.9) by different computers. These
figures correspond to an identification problem done on the FBPR (see Figure 1.1).
The number of inputs in this experiment was m = 4, the number of outputs was
p = 4 and the length of the data set was N = 7201. The model was parametrized
by a neural state-space model of type (4.30), the order was chosen as ii = 6 and
j was parametrized by an MLP with one hidden layer containing 12 nodes. This
yields an estimation of

(10 + 1) x 12 + (12 + 1) x 6 = 210

parameters.
The first column of Tabl~ 4.1 shows the type of used computer hardware. The

second column shows an average CPU time needed for the cost function (4.9)
evaluation and the third column shows a timing for the gradient computations.
These figures demonstrate that optimization of the cost function is, in general,
a time consuming process and that it is quite essential to have a fast computer
available.

Imagine, for instance, that we want to optimize 6 different neural network
configurations, each containing one hidden layer, and we vary the number of nodes
from 10 to 15. We want to estimate also models of different orders, let's say ranging
from 5 to 8. Because we are essentially using only local optimization routines, we
want to restart every optimization let's say 5 times, what is still a very modest
number compared to the dimensionality of the parameter space. However, we
already end up with 120 optimization problems of parameter dimensionality in a
range from 176 parameters for the smallest model up to 320 parameters for the
largest model. Let us assume, that we want to perform 5000 stochastic search
iteration and that we limit the number of gradient evaluations in a gradient search
also by 5000. Then the estimated time to complete such an optimization task will

68 Chapter 4. Grey-Box Neural Network Models

Table 4.1: CPU time spent in evaluation ofthe cost function (4.9) and its gradi
ents

Hardware cost CPU time gradient CPU time
[sec] [sec]

Intel 386/25MHz 12.5 741.4
VAXstation 3100 10.3 332
VAXstation 3100-M76 4.7 165
Pentium/90MHz 0.37 30.6
DEC 3000 M300X 0.28 13.0

not be less than about 90 days, because the computation overhead of optimization
routines still has to be added.

4.2.6 Initial state condition estimation

To start a simulation of the state-space model (4.17) we have to specify the value
of the state vector i(O) at the time instance k = O. Often we choose as an
initial condition X(O) = O. In the case of a fully parametrized model (4.17) the
minimization routine will choose such a state coordinates that the transient from a
wrong initial condition will be minimal. In the case of an estimation of a grey-box
state-space model (4.30) it is possible to specify more precisely an initial condition
for the known part of the state vector xl and choose a zero initial condition for
the hidden state components £0. The initial condition can also be estimated from
the data together with the neural network weights. Then the estimation problem
could be formulated as a minimization of the following criterion

1 N
Jo(8 j ,x(0)) = 2N I)y(k) -y(k,8j,x(0))1I5

k=l

(4.31)

with respect to 8 j and X(O). If we assume a model parametrization (4.30), the
gradient of the criterion (4.31) with respect to El j is evaluated in the same way
as already shown in Section 4.2.4. The only problem is to determine the partial
derivatives of (4.31) with respect to the initial state i(O). These are computed as
follows

8Jo(Elj,i(0)) _.! ~ _ A T oy(k,Elj,5;(O))
05;,(0) - N ~(Y(k) y{k)) OXi(O) (4.32)

and

4.3. Nonlinear neural state observers 69

where .Jxh(k) is the Jacobian matrix of the output map h with respect to £(k) and
i = 1, ... , n. The partial derivatives of i; with respect to x(O) are computed by
the following recurrsive formula

a£(k} aj[£{k - 1), u(k - I)J M(k - 1)
8£;(0} = ai;(k - 1) 8£;(0)

(4.33)

for i = 1, ... , n.
The evaluation of gradients of the cost function with respect to the initial

condition requires a computation of the recursive formula {4.33}, which might
be time consuming. If we do not have enough computing power and we fix the
initial condition to a constant value we can often observe an abrupt behaviour of
simulated states during the first few simulated samples. To overcome this problem
we can skip a requirement of an optimal estimation of x(O) by minimizing (4.32)
and we can simply start the optimization from a chosen initial condition and after
a few iterations, when the state coordinates were chosen, we compute a mean value
of simulated states by

N

£(0) = N ~ Nt L x(k) (4.34)
k=N'

where N' > 1 is used to skip the transients, and use this value as an initial condition
for further optimization of (4.9). This method was experimentally proven to give
satisfactory results.

4.3 Nonlinear neural state observers

The so far discussed state-space models represented simulation models of the true
system and they used only the system input u to compute the model state £ and
output y evolutions. As the true system is also subject to a disturbance input w,
there will always be a difference in the simulated output fj and the true output
y due to the fact that the model does not take into the account the effect of the
disturbance. The purpose of treating the problem of state estimation is to improve
the state estimates i; computed by the simulation model for the disturbance effects.

Let the system be again described in the discrete-time domain by equations
(4.16). The state estimation problem is concerned with estimating a state of this
system at time k given all measurements up to the time index k. This estimate is
denoted by x(k I k). A prediction involves an estimation ofthe state at some future
time k + I, I> 0 and the corresponding estimate is then denoted by x(k + II k).

Definition 4.1. By a single-stage ahead state predictor we denote a state esti
mator estimating the value of the state at time k + 1 denoted by x(k + 1 I k) given
all measurements up to the time moment k.

Definition 4.2. By a current-stage state filter we denote a state estimator esti
mating the value of the state at time k denoted by x{k I k) given all measurements
up to and inclusive the time moment k.

70 Chapter 4. Grey-Box Neural Network Models

4.3.1 A single-stage ahead state predictor

An optimal nonlinear discrete-time single-stage predictor, in general, is required
to minimize an estimation error criterion

J = trace [{irk I k -l)i(k I k _l)T} (4.35)

The estimation error i is given by

i(k I k - 1) =: x(k) - irk I k - 1) (4.36)

where x(k) is the true system state and irk I k - 1) is its estimated value. The
main problem is now how to generate such a sequence of state estimates irk I k-l)
which would minimize (4.35).

Let us consider as a candidate for such an estimator the following system

irk + 1 I k - 1)

y(k I k - 1)

x(k + 11 k)

i(O I -1)

=: j[i(k I k - 1), u(k)]
h[j)l(k I k -l),u(k)]

irk + 11 k - 1) + g[y(k) - f)(k I k - 1)]

io is given

(4.37a)

(4.37b)

(4.37c)

where j and h represent an estimated model of the given system in a form (4.30)
and 9 is a correction to be designed. The first equation (4.37a) defines an a priori
state prediction at the time instance k based on knowledge of u(k) and a state
estimate irk I k - 1) estimated on the previous stage from data up to the time
instance k - 1. The second equation (4.37b) computes an output estimate y(k I
k - 1) based on a state estimate irk I k -1) availahle at this stage. The estimated
output is then compared to the true process output. The output prediction error,
containing information about the influence of the disturbance w(k) and the noise
v(k) and given as

e(k) =: y(k) - y(k I k - 1) (4.38)

is then used by the 9 correction term in the third equation (4.37c) to correct the a
priori state estimate for the disturbance effect. The nonlinear function 9 must be
chosen such, that (4.35) is minimal. The correction term 9 will be later referred
to also as a nonlinear static filter gain or simply filter gain.

In general, the filter gain 9 in (4.37c) is a complex nonlinear function which
analytical synthesis is a very hard problem and in fact, in general, there is no
analytical solution to this problem. Therefore we parametrize this gain by a static
neural network and estimate its weights from data. Let us denote this approxi
mation by 9f[y(k) - f)(k),8ii l and let 8 g denotes a vector of all network weights
and biases. From now on, the state estimation problem translates to a parame
ter estimation problem where a neural network parameters 8 g are estimated such
that (4.35) is minimal. However, this minimization would require knowledge of the
true process state x(k). Because of a lack of this knowledge we can minimize the

4.3. Nonlinear neural state observers 71

output error (4.38) and hope that the state estimation error will be small as welL
The parameters of the neural network 8 y are the obtained by a minimization of
the following criterion

1 N
J(89) = 2N L Ile(k)ll~

k=l

(4.39)

where e(k) is given by (4.38). This criterion coincides with the criterion (4.9), used
for the model estimation. The state estimates obtained by a minimization of the
criterion (4.39) are in fact weighted state estimates, where the weighting factor is
the output map h.

4.3.2 Current-stage state filter

An optimal nonlinear discrete-time current-stage state filter is required to minimize
an estimation error criterion

J = trace £{x(k I k)x(k I kf} (4.40)

The estimation error x is given by

x(k I k) = x(k) - x(k I k)

Let us consider a nonlinear current-stage state filter described by the following set
of equations

x(k I k)

x(k I k - 1)

fj(k I k - 1)

X(O 10)

= x(k I k - 1) + 90[y(k) - fj(k I k - 1), egJ
= j[x(k -11 k -1),u(k)]

= ' h[x1(k I k - I)J

= Xo is given

(4.41a)

(4.41b)

(4.41c)

where the nonlinear function 90 is again parametrized by a static neural network
and the vector eYe contains all its weights. An optimal set of weights is determined
similarly as in the previous Section, that is by minimization of the criterion (4.39).
The prediction error e(k) is again defined by (4.38), but fj(k I k - 1) is computed
by the system (4.41).

4.3.3 Discussion

The proposed two structures of the state observer are depicted in Figure 4.7 and in
Figure 4.8, respectively. From a comparison of these two diagrams we can see that
the predictor corrects the model state prediction before the delay and the filter
makes this correction after the delay. The choice between these two schemes should
be based on the controller implementation. When we assume, that the controller
should at the time instance k deliver a control sample u(k) to the process input,

72

u(k)

Chapter 4. Grey-Box Neural Network Models

Nonlinear
System

h

Neural
Network

j

y(klk)

Neura! 0'

)---+f,. 0 Net;Work
o oOUf

x(k+11 k-l) . + +

i(klk-l)
Z-l

u(k)

x(klk)

Figure 4.7: A single-stage state estimator diagram

Nonlinear
System

h

Neural
Network

j

y(klk)

x(k+11 k)

Neural
Network

9c

+

Figure 4.8: A current-stage state estimator diagram

4.3. Nonlinear neural state observers 73

what means that it must be computed before the time moment k using a state
estimate i(k I k - 1) we have to use the predictor schema. If the control sequence
is being computed using the filter, the control output sample u(k) will be delayed
by the computing procedure.

The parametrization of the gain 9 assumed as an input the innovation sequence
(4.38). This type of parametrization was proposed also in [64] and in fact it gains
a lot from an inspiration of a state estimation in linear dynamic systems. As we
are dealing with nonlinear systems, proper parametrization of 9 would be

g[y(k), y(k), i(k), u(k), By] (4.42a)

That means that, in general, the filter gain is also a function of the system state
I(k) and u(k) because it is very unlikely that in different regions of the system
nonlinearity an optimal gain will be locally the same. Also the values of y(k)
and y(k) should be used independently, because the output map h is in general
assumed to be a nonlinear function.

If the system nonlinearity is not too complex the gain 9 parametrization can
be considered in a simpler form. The most interesting modifications include:

1. replacement of y(k) and y(k) by their difference

g[y(k) - y(k), I(k), u(k), By] (4.42b)

2. assuming only the prediction error

g[y(k) - y(k), By] (4.42c)

3. assuming only f)(k) and y(k), but independently

g[y(kl, y(k), ey] (4.42d)

Taking a different parametrization of the gain fj we can obtaine better or worth
approximation of an optimal gain g, that means better or worth state estimates.

4.3.4 Gradient computations

In this section we give the gradient computation of the criterion (4.39) assuming
the single-stage ahead state predictor given by (4.37) and assuming that the filter
gain 9 has the form (4.42c). The gradient of the cost function (4.39) with respect
to weights ey is in this case given by

aJ(B9) = ~ t (Y(k) _ f)(k))TaY(k)
80!li N k=l aOrn

for i = 1, 2, . .. , no and

74 Chapter 4. Grey-Box Neural Network Models

where .J;(k) is again the Jacobian matrix of the output map h with respect to i.
The partial derivative of states i with respect to the weights are computed by the
following formula

.I! (k - 1) is the Jacobian matrix of the system map j with respect to the state

given by (4.19) and .11 (k) is the Jacobian matrix of the neural network 9 given by

.J}(k) = 8g[y(k) - y(k), 8 9J
Y 8fj(k)

4.4 Linear MIMO state-space identification

In this section we are concerned with identification of linear time-invariant models
for multi variable data. We again assume that a measured data set (4.1) is available
and we want to find a linear time-invariant state-space model

irk + 1)

fj(k)

Ai(k) + BU(k)

Ci(k)

(4.43a)

(4.43b)

where i(k),u(k),y(k) are the state, control, output vectors, respectively. For the
case of simplicity, we assume that the modelled system does not contain the direct
feed-through. The objective is to find such constant matrices A, B, C that the
simulated output fj will be close to the real output y in the usual least-squares sense.
Let all the unknown matrices A, B, C in the model (4.43) be fully parametrized
and let 8 L denotes a column vector of all entries of matrices A, B, c. This is
expressed by the following criterion

1 N
J = 2N L Ily(k, 8£1- y(k)ll~

k=l

(4.44)

which is then in an optimal situation minimal with respect to A, B, c. Because
of the non-quadratic dependency of the value of (4.44) on the model parameters,
there is no analytical solution to this problem and again a numerical minimization
has to be employed here.

Notice, that the linear model (4.43) can be seen as a neural state-space model
with a very simple neural network containing just an output layer of n linear nodes
(see the Figure 4.9). Then we can use the same concept of gradient computation
as the one given in Section 4.1.4. The resulting gradient computation algorithm

4.4. Linear MIMO state-space identification 75

u(k)
x{k + 1)

x(k)

fj(k)

Figure 4.9: Linear state-space identification set-up: seen as a neural network
only with one linear node

is as follows

8J((~h) = t (i)(k) _ y(k») T 8i)(k)
80L, k=l 80L;

where for the parameters of ElL corresponding to the {: matrix elements holds

i and j indices run through all elements of the C matrix and Ii is a zero column
vector of dimension of i) with unit entry on ith row. For the parameters of ElL
corresponding to the A and"B matrices components hold

where i and j indices run through all elements of the A matrix and the B matrix,
independently. The partial derivatives of states x are computed by the following
recurrent formulas, similar to the dynamic backpropagation rule (4.23)

where i and j indices run through all elements of the B matrix and

ax(k) = Iixj(k _ 1) + A 8x(k - 1)
aai,j 8ai,j

i and j indices run through all elements of the A matrix. In this scheme we have
to estimate n2 + n(m + p) parameters. From a theoretical point of view this is

76 Chapter 4. Grey-Box Neural Network Models

an overparametrized identification problem and by considering e.g. observability
canonical form we could remove n2 parameters. For detailed discussion see [34]
and references therein. Main purpose of linear identification in this thesis is to
have a kind of a reference value for the nonlinear identification. Therefore we are
mainly interested in the performance of the best least-squares linear simulation
model.

Note that the minimization of (4.44) with respect to 8 L is a non-convex opti
mization problem. For reliability of this minimization we use the same techniques
as for neural network training, that is a combination of the simulated annealing
and the quasi-Newton optimization. To start the minimization of (4.44) we have
used a random guess for .4, iJ, 6 matrices. It is clear that if this results in an
unstable system than it is not possible to evaluate the cost function. Therefore
we incorporated into the simulated annealing a simple stability test to be able to
refuse unstable trials. The optimization was started by an simulated annealing
search and then, after a sufficient optimization of the .cost function, we switched
to the quasi-Newton search.

4.5 Gantry crane identification - A case study

4.5.1 Equations of motion

To illustrate the previously described modelling issues we present here an example
of model identification of a nonlinear MIMO process. The considered process
represents a gantry crane. The gentry crane is a machine for lifting and lowering
a load and moving it horizontally, with the hoisting mechanism an integral part of
the machine. The trolley is a device which travels along the horizontal direction
and carries the hoisting mechanism. The process is schematically depicted in the
Figure 4.6. Assume the following notation: mt - the total mass of the trolley, Xt -

the position of the trolley, Ft - the driving force on the trolley, mL - the mass of
the load, L - the length of the rope, ¢ - the angle of the rope with respect to the
vertical axis measured anticlockwise.

The equation of motion are derived from kinematics laws valid for plane motions
of rigid bodies [66] and Newton's laws of motion. Referring to Figure 4.6, it holds
for the velocity and acceleration of the load in a vector notation

where eL is is the unit radial vector and e4. is the unit transverse vector. Applying
the Newton's laws we can write for the forces acting on the trolley an equation

4.5. Gantry crane identification - A case study 77

For the forces acting on the load in the radial and transverse directions hold
equations

Considering also friction forces the equations of motion of the system should be
extended for damping factors and the final equations of motion are

(4.45)

_f sin(4)) - .£Xt C08(4)) - ~t~ - !!!L~
L L L mL

(4.46)

Fh"2 dL .
gcos(¢) - - + L¢ - Xt sin(¢) - -L

mL mL
L (4.47)

where dt , dq, and dL are the damping constants. Notice, that in the equation (4.46)
and (4.47) we did not substitute for Xt the right-hand side of the equation (4.45),
for a compactness of the notation. A linearization of the process dynamics shows
two pure integrators, one in the motion of the trolley and the second one in the
lifting and lovering of the load action. To have a well posed identification problem
we prestabilized this process by a static feedback

-tXt + L sin(¢) - xref) - 2xt + 2~
14.7+4(Lcos(1» -1- Yre/)

(4.48)

(4.49)

computed by an LQ design for a linearized system around an equilibrium point
given by

Xt = 1> = it = if; = t = 0, L = 1, F t = 0, Fh = mLg (4.50)

In the feedback law (4.48)-(4.49) we fed back the load coordinates

Xl = Xt + Lsin(1)) Yl = LC08(1))

instead of the trolley position Xt and the rope length L to create reference inputs
which are directly related to the future control problem. The identification problem
can then be formulated as to estimate a dynamical relation between the load
reference position and tlre actual load position.

The above described model of a gantry crane process, used for a nonlinear
neural identification, was proposed in [19].

78 Chapter 4. Grey-Box Neural Network Models

Fh
Xt

XL
Nonlinear r- ¢ Output

~ System
r-- L Equations YL

r--

~A X Te !

~ ~
+

Static
I- -

+

Feedback I- - Yre
~

I- +
I

mL9 Lo

Figure 4.10: Gantry crane identification set-up

4.5.2 Identification experiment

The performance of the final I/O neural model was found in [19J to be unsatis
factory. This was mainly due to a difficult quasi-Newton optimization problem
resulting from minimization of an output error criterion. Here we parametrized
the estimated model in a state-space form and added the simulated annealing
optimization to the minimization algorithm.

We defined the inputs and outputs as follows

u = (Xref)
Yre!

We simulated equations (4.45)-(4.47),(4.48),(4.49) by a numerical integration using
a Merson form of the Runge-Kutta method. For the process parameters we have
chosen the following values: mt = 3.5kg, mL = 1.5kg, dt = G.INs/m, dq, =

G.GINs/rad, dL = 10Ns/m and 9 = 9.8m/s2.
As a testing input signal we have chosen a sequence of uniformly distributed

random samples with maximal amplitudes

max IYre11 = 2

followed by a zero-order hold with a sampling time of 0.2 seconds. From physical
construction of the gantry crane reference values for the vertical position of the
load above 1 do not make sense as then the physical length of the rope L would
become negative. However, as the test signal was of white noise type, it was
possible to use a higher range for Yre! to excite suffiCiently the process dynamiCS

4.5. Gantry crane identification - A case study 79

in its nonlinear regions. We simulated the process twice for 500 seconds. After
re-sampling output signals with a sampling time T8 = 0.2s we created two data
sets of 2501 data points, one used for estimation purposes and the other one for
validation purposes. The process model was parametrized by a nonlinear neural
state-space structure according to 4.2(a) where the output map h was chosen such
that the two process outputs were taken as the first two components of the state
vector, that is

giving them a physical meaning of a position of the load. The rest of the state
components was treated as a black-box part of the model. The dimension of the
state vector was chosen 6 what can be a priori assumed from the physical structure
of the process. The complexity of the neural network j, approximating the state
map of the process f, was estimated together with the network weights in a large
optimization batch job.

Initially, we have tried all optimization methods discussed in Chapter 3 to find
a proper set of weights for this process. The main problem was to capture by a
model the dynamic of the load swing as this should be later on suppressed by the
controller. As the impulse responses of the second output show faster dynamic
than the impulse responses of the first output, we think that the optimized cost
function landscape is characterized by curved valleys. This is a typical example
when gradient methods show slow convergence and stochastic search methods are
time expensive.

Finally, we have performed a number of optimization experiments on this prob
lem. Each optimization was carried out for different complexity of the network
while for each networks complexity we performed three optimizations started from
different initial points. The cost function was optimized first by by simulated an
nealing procedure to eliminjl-te local solutions with very high values of the cost
function and then followed by the quasi-Newton method. Just for curiosity the
CPU time consumed by this optimization was 144 hours 33 minutes and 36 seconds
on the DEC 3000 workstation.

The results of these experiments are shown in the Table 4.2. In this table are
shown cost function values for both the estimation data set Je and the validation
data set Jv . The number of nodes in the hidden layer of the neural network and the
corresponding number of weights is also shown in this table. For each complexity
of the neural network we performed three different minimizations. The dash"-"
symbol denotes cost function values bigger than 100, considered as very poor local
minima.

In the Figure 4.11 we show the learning curves obtained from the quasi-Newton
optimization. We can observe that the optimization is getting stuck mainly at
two different values of the cost function, either 100 or about 4. The first value
corresponds to the situation with a good fit of the second output and much worse
fit of the first one. This happens due to the fact that the impulse response of the
second output is shorter than the impulse response of the first output, as already
mentioned.

80 Chapter 4. Grey-Box Neural Network Models

Table 4.2: Neural net optimization results: NN1-number of nodes, nUj-number
of weights, N Je-a scaled value of the estimation cost function, Jv-a scaled value
of the validation cost function

NNl no; N Je N Jv

6 96 6.81 74.85 7.57 15.61 80.91 -

7 111 0.73 96.46 0.76 2.00 - 2.34

8 126 0.59 4.82 8.09 1.72 21.54 -
9 141 60.96 4.43 0.23 - - 0.75

10 156 75.39 0.15 6.91 - 0.41 47.22

11 171 5.13 7.30 3.67 - 43.55 -

12 186 3.69 0.07 0.16 - 0.18 -

13 201 3.55 0.02 0.13 - 0.11 0.69

14 216 3.72 3.55 83.56 35.97 - -
15 231 42.68 62.95 3.54 - - -

The second value, where the optimization is getting stuck corresponds to the
situation of again a very good fit of dynamics of the second output while only
slow dynamics of the first output are reasonably good fitted. At this point the
unmodelled part of the process dynamics corresponds to the load swing. As the
total power of the output is about 8, the approximation error, evaluated by (4.10)'
gets below 1 % for most of the cases. But to model properly also the load swinging
it turns out that we need to reach much better performance as the contribution of
the load swing is masked by process nonlinearities.

From the Figure 4.11 can be seen that the neural network learning procedures
with the best performances did not reach a minimum yet. We therefore continued
the minimization from the best result, that was the configuration with 13 nodes
and a cost 0.02, for an additional 500nw iterations which consumed 36 hours and
58 seconds of the CPU time. After this experiment we found the performance of
the model on estimation data 3.19e-03 and on validation data it was 1.53e-02. In
the Figure 4.12 are shown spectra of final output errors on the estimation data set.
Even these errors are very low there are still small approximation errors at low
frequencies and in case of the first output Xl the spectrum shows increased errors
around the resonance frequency of the load swinging. For a better validation of
the model we evaluated also impulse responses of the estimated model. In the
Figure 4.13 are shown only the two most interesting ones out of four possible. In
the top left plot are shown impulse responses from xref input to Xl output and in
the top right plot are shown impulse responses from YTe! input to YI output. As
the difference between the true impulse response and the model impulse response
are hardly visible, below these two plots are shown corresponding errors.

For a comparison, we estimated also a 6th order linear state-space model of

4.5. Gantry crane identification - A case study 81

the process parametrized by (A, B, C) triple. The value of the cost function we
found here was 9.18. The performance of the best linear model we found is shown
in Figure 4.14. Actually, the impulse response test does not excite the process
nonlinearities suffiCiently, and the linear model performs here quite well on this
test.

4.5.3 Discussion

The dynamics of the gantry crane process is composed of both fast dynamics,
caused by the pendulum swing and slow dynamics, caused by the movement of
the trolley. A numerical estimation of the simulation model for this process,
parametrized by a neural network, was found to be a difficult task, mainly be
cause of enormously time consuming minimization procedures. To speed-up the
minimization we have considered the following issues:

• Different optimization methods. Here we have experienced, that the opti
mization will remain difficult as we are probably dealing with error land
scapes composed of multi-dimensional valleys. These are probably caused
by the fact that the impulse response of the second output is shorter than
the impulse response of the first output and that the contribution of the load
swing to the final error is rather small.

• Initial guess of weights. We have also used as an initial guess of weights of
an estimated linear state-space model which, of course, were properly scaled
and biases adjusted such that the linear portion of the sigmoidal function
was used by the neural network. This approach led only to a marginal im
provement as the weights of the neural network stayed in the neighbourhood
of the initial guess.

• A parallel combination of a linear model with the neural network. We have
also parametrized the model as a parallel combination of a linear model
estimated around the system equilibrium point (4.50) and a neural network.
We have observed, when training the neural network, that the neural network
tried to compensate for the parallel linear model and then it tried to fit the
process dynamic.

• Non-uniform sampling time. One of the problems, why the neural network
training is time consuming, is the excessive number of data points used for
identification as the prosess dynamics have a broad range. To cope with this
problem we sampled the process inputs and outputs non-uniformly, using a
random sampling time. The sampling time intervals were chosen as uniformly
distributed random numbers from an interval (0.1,1) seconds. The state
map j was extended for an extra input and that was the sampling time.
In this way we reduced the length of the data set what led to a better
conditioned optimization problem but as we validated the estimated model
with a constant sampling time this model did not outperform the one being

82

10'

10'

(I)
;:l

~10'
.:l
.9 ...,
u

510" 4-< ...,
'" 0

0

10-'

10-'
10"

10'"

Chapter 4. Grey-Box Neural Network Models

10' 10'

Iteration number

Figure 4.11: Quasi-Newton optimization

, ,
\

\
,

\

, "
--. / \ f ~

..., 1'1
\

10"

\ r'
III/I,

\

Frequency [rad/s]

10'

Figure 4.12: Estimated output error spectra: solid line - XI, dashed line - Yl

4.5. Gantry crane identification - A case study 83

S
,i;

M5
;;;

o .
-0.05

0 ~O $0 40 10 15 20

Time [sJ Time [5J
x 10'" x 10

4

20

15

S S 10

,f:; ,,;:;;
I I
f:; ,;:;;

-5

10 20 30 40 10 15 20

Time [5J Time [sJ

Figure 4.13: Process versus estimated neural model impulse responses

S
,f:;

f:;

-0.05
0 10 20 30 40 10 15 20

Time [sJ Time [sJ
)(10""'"

8

S S
,f:; ,,;:;;
I -5 I
f:; ,;:;;

-10

10 20 30 40 10 15 20

Time [5J Time [s]

Figure 4.14: Process versus estimated linear model impulse responses

84 Chapter 4. Grey-Box Neural Network Models

estimated specially with this constant sampling time. It was also not clear,
how such a variable sampling time model could be used for the controller
design .

• Variable sampling time for states. Another solution to the problem how to
deal with broad process dynamics could be in using different sampling time
for the internal states of the model. Preliminary tests were done in [4] but
these were not completed due to the lack of computing power. The advantage
of this approach could be that a controller design for this model makes more
sense than in the previous case.

• Periodic rescaling of neural network weights. Often we could observe that
some of the nodes of the neural network saturated during the optimization
in the fiat reagion of the node activation function. This caused a slow down
of the optimization due to the bad numerical properties of the model. To
minimize these problems we have periodically monitored the inputs and out
puts of the activation function s(vj(k)) "" A\(k) of all nodes, that is for all i
and 1 and for all k. We have computed a variance of the node outputs G),;'
a minimum value of the node input!d "" min lu(kll and a maximum value of
the node input 1:'.~ = max lu(kll for all k. A node saturation was detected as
a small variance of the node output G),I and 17\ was large. Then the weights
corresponding to this node were rescaled as follows:

1. the bias of the node

2. the weights

for j = 1, ... ,NNI

3. the biases of next layer nodes

neweb;+l = eb~+l + s((V: - 1:'.\)/2)

4. the weights at the output of the node

newew~tl = ew ;jl(5(J7; - !'.;))s'((J7; - 1:'.;)/2)/8'(0)

for j = 1, ... ,NNI+l

4.6 Summary

In this chapter we discussed both black-box and grey-box neural models. Black-box
models were considered both in I/O configuration and in state-space configuration.
We proposed the state-space configuration as being a better form for including

4.6. Summary 85

a priori process knowledge into the model. Therefore the grey-box models are
considered exclusively as state-space models.

Next the state-space model of the process is completed with a nonlinear filter
gain, similarly to a Kalman gain from the linear estimation theory. This filter
stands for improved state predictions by the simulation model due to the fact that
the process is subject to non-observed disturbances and measurement noise. We
have considered both Single-stage ahead state estimates and current-stage esti
mates.

The unknown nonlinearities are parametrized by neural networks whose weights
are estimated by numerical minimization of a quadratic error function. For all
proposed modelling structures we gave formulas for the evaluation of gradients.

In this chapter we have trated two numerical examples. The first one was
intended to show a different performance obtained from an optimized prediction
model and an optimized simulation model. The second one was originally used to
test different optimization methods for their feasibility for neural network training.
It shows a typical set-up of an identification problem in a state-space domain using
neural networks.

5 Neural State Transition
Control

In this chapter we will discuss in detail our approach to the solution of the tran
sition control problem as it was stated in Chapter 2 by the Problem 2.1. In this
chapter we will tackle this control problem in a discrete-time state-space domain,
as the controller will be realized by a digital computer.

Before we start addressing all issues involved in the controlled design, we discuss
a general nonlinear state-space control problem and give an academic example of
control of a multi-link inverted pendulum. A static neural network will be used
to approximate the nonlinear state feedback. After a discussion of a transition
controller design, applicable in process control, we give a more realistic example
to illustrate some of the ideas of the transition controller design. The proposed
transition controller design algorithm will be fully demonstrated in the last chapter
of this thesis.

5.1 Operating point changing

Theoretically "operating point changing" means steering the system to another
equilibrium point. Practically that means changing values of process variables,
e.g. pressures, temperatures, flows, speeds etc., to new values such that a product
with different properties can be produced or new functionality is attributed to the
process. If the system is linear, this operation presents no problem because of a
global character of the system properties. However, in nonlinear systems, this type
of operation has many unsolved problems, which include:

• problems of capturing and exploiting process nonlinearities;

• stability of the closed loop along transition trajectories;

• level of optimality of the transition;

• robustness with respect to process disturbances;

• process conditions and constraints handling.

88 Chapter 5. Neural State Transition Control

In general, the operating point changing type of control belongs to the most
complex control problems, mainly because we have to go through nonlinear re
gions of the process dynamic. If the transition is done manually, it requires a lot
of understanding of the process functionality and behaviour. This knowledge is
usually obtained from the first physical, chemical, mechanical or other principles.
The actual operating point change is then carefully scheduled through a sequence
of intermediate equilibria by slow manipulation of process set-points and possibly
also by sequentially switching between in advance designed linear controllers com
puted using linearized process dynamic along the transition path. If we would be
able to model the process dynamics and to design a single nonlinear controller the
operating point change could possibly be done in a faster, simpler, smoother, more
reliable and effective way.

There have been many studies dealing with nonlinear system control problems,
but it seems that there is no conclusive method. To control a nonlinear system we
often use the "Optimal control theory" as a general mElthod for treating nonlinear
control problems to devise concrete algorithms for a specific control problem. Un
fortunately, a vast amount of numerical calculations is required in this approach
with many trials and errors. We will demonstrate on numerical examples that a
careful set-up of the controller synthesis procedure is important to eliminate these
problems to a certain extent.

5.2 General considerations

Let a sampled version of the controlled nonlinear dynamic system ~s be now given
by

x(k + 1)

y(k)

f[x(k), u(k), w(k)]

h[x1 (k), u(k)] + v(k)

(5.la)

(5.1b)

with a similar notation as in (2.3) on page 10 and Xl (k) denotes the known part
of the state vector as proposed in (4.29). The system (5.1) can be seen as a model
of the process for which we want to design the controller.

Let the control system attached to the system (5.1), see also Figure 2.1, be
described by the following nonlinear state-space dynamic system

z(k + 1)

u(k)

a[z(k), x(k), r{k)]

,(3[z(k), x(k), r{k)]

(5.2a)

(5.2b)

where a: and {3 are smooth nonlinear functions, z(k) E IRn z is the state of the
controller, nz is the dimension of the reference and r(k) E IRn is a reference
signal. The controlled system state x(k) and the reference signal r(k) represent
the controller input and u(k), the controller output becomes the controlled system
input. A composition of (5.1) and (5.2) is shown in Figure 5.1 and is shortly called
a dynamic state feedback. The nonlinear functions (l' and ,(3 should be chosen such
that the system state x(k) will follow r(k), preferably as good as possible.

5.3. Example: A multi-link inverted pendulum 89

w(k)

r(k)
v(k)

(n, (J)
u(k)

(f,h)
y(k)

x(k)

Figure 5.1: Dynamic state feedback

The proposed controller (5.2) includes a regular static state feedback just by
assuming in (5.2a) that z(k + 1) = z(k) for all k. But what is more important it
also includes the idea of adding integrators into the state feedback. In this case
the function a could be defined as

a[z(k), x(k), r(kl] = z(k) + (x(k) - r(k))

provided that the reference signal r(k) is a state reference signal. If the dynamics
of the controller are fixed, in other words a is fixed, only the output map of the con
troller f3 has to be designed. In such cases we consider only static neural networks
used for approximation of the controller. This also makes the controller design
easier than using a dynamic neural network for the controller parametrization.

5.3 Example: A multi-link inverted pendulum

To check the feasibility of using neural networks for a parametrization of state
feedback controllers we took as a test example a problem of swinging-up a multi
link inverted pendulum. We took a rather strong assumptions: the state of the
system is fully available for the feedback, the system dynamics are fully known
and there are no disturbances acting in the system.

The inverted pendulum is considered as a two dimensional mechanical system
of nl + 1 degrees of freedom shown in Figure 5.2. A frictionless trolley of mass
M moves in the horizontal direction under the action of a force Ft. We attached
to the trolley a series of nl ideal links each of a length 11 ,12 , •.. ,In" and a mass
ml, m2, ... , m",. Each joint is assumed to be a frictionless revolute hinge. The
system is at any moment described in terms of nl + 1 coordinates (Xt, 6, ... , ~n,)T
and their first-order time derivatives. The position of the troiley with respect to
some freely chosen reference point is denoted by Xt and ~i is an angle of the base of
the ith link against the vertical axis, measured positive in the clockwise direction.

Let us assume in the following an equal length of all links, Ii = I and and also
equal mass of all links mi = m, for i = 1, ... ,nj. Then the total energy of the

90 Chapter 5. Neural State Transition Control

7 7 7 7 777 777

Xt

Figure 5.2: Three-link inverted pendulum

system, given as a sum of the kinetic and the potential energy is according to [28]
given by the system Lagrangian as follows

L(xt,6, ... ,en"i:t'~I"" '~n,) =
1 . 2 (M + nJm) xt +
1 n,. .
"2 L ((1/3 + nj - k)ml2e~ + (1 + 2(n/ - k))ml COS(ek)(Xtek - g)) +
k~1

1 .. ,-1 n,
"2 L L (1 + 2(n/ - k))mI2 cos(ej - ek)~ik

k~l j=k+l

(5.3)

Equations of motion of the system are then given by the Lagrange method as

d (8L) 8L F
t dt 8x 8x

d (8L) 8L = 0
dt 8~k - 8ek k = 1,. .. , nj

Substituting (5.3) into the equations (5.4a) and (5.4a) yields for the Xt coordinate
an equation

1 n, ..
(M + njm) Xt + "2 L(1 + 2(nl - k))ml COS(ek)ek =

k=1

1 n,
Ft +"2 :2)1 + 2(n/ - k))mlsin(~k)~~

k=l

5.3. Example: A multi-link inverted pendulum 91

and for the coordinate ~k' k = 1, ... ,nl yields an equation

I.-I

(1/2 + nl - k)ml (COS(~k)Xt + L l COS(~k - ~j)eJ)
j=1

n,
+ (1/3 + nl - k)mz2f.k + [2m L (1/2 + nl - j) COS(~j - ~k)ej

j=p+l n,
= 12 m L (1/2 + nl - j) sin(~j - ~k)e

j=k+l
n,

- (1/2 + nl - k)m[(1 Lsin(~j - ~k)e~ - gSin(~k))
j=1

These equations are used for simulation of this system. From now on let M =
1, m = 0.1, I = 1 and 9 = 10.

A mathematical model of the above described system can be brought into a
nonlinear state-space dynamic form affine in u(t) and given as follows

i(t) = Jdx(t)] + h[x(t)]u(t) (5.5)

where x E 1R2n
,+2 is the state vector of the system consisting of the position and

speed of the trolley and angles and angle speeds of links attached to he trolley,
that is

and U E 1R is the control input representing the force Ft applied on the trolley. An
exact analytical form of both II and h becomes very complicated for systems with
more than two links, because of the necessity of inversion of a nl + 1 dimensional
matrix. To evaluate hand h in (5.5) analytically for different number of links of
the pendulum we have used the MAPLE software package for symbolic computa
tions. The final computer program code was optimized for a minimum of floating
point operations also by this package.

With respect to this system we formulate the control problem as a synthesis of
such a nonlinear state-feedback control law

uri) = ,6[x(t) , 8;3]

which satisfies

-urna", :S u(t) :S urnax

and which brings the system from a given initial equilibrium point

x(ta) = (0,0, 1r, 0, 1r, 0, .. .)T

92 Chapter 5. Neural State Transition Control

that is {i = 11" for all i and the rest of the state vector components are zero, to the
final zero equilibrium point

X(t,)=(O, ... ,O)T

in a finite time, possibly small. The controller nonlinearity (3 is approximated
by an MLP with weights Gp. As the control signal is required to be bounded
we simply define the output node of the neural network to be nonlinear, namely
U max tanh(.).

An approximate solution to the above stated control problem can be obtained
by a direct numerical minimization of the following cost functional

(5.6)

with respect to the weights of the neural network G p. The final time t f is chosen in
advance. To compute the value of the criterion (5.6) we integrated the closed-loop
system numerically using the Heun method (A.6). We estimated the controller for
a one, two and three link inverted pendulum.

After completing many optimization experiments, we have found a couple of
solutions of a swing-up of the one-link and two-link inverted pendulum. In case
of the three link inverted pendulum the computing costs became so high that we
were not able to complete the full optimization of the controller due to the lack
of computing resources. Most of the solutions were showing an irregular control
and state trajectories. The type of the solution found during the neural network
training was determined mainly by the length of the simulated state trajectory of
the closed-loop system, that is by the choice of the final time tf. The integration
step size T, used in the Heun method (A.6) to integrate the closed-loop system,
defined then the accuracy of the integration and consequently a discrete-time sys
tem for which the controller is computed. Basically, we started the optimization of
the controller with a suffiCiently large final time to be sure that a solution exists.
When we found a solution we decreased the final time by some factor, usually a
few percent, and we continued the optimization of the neural network using the
last set of weights. In this way we tried to optimize the control interval to the
minimum. We have also observed that starting the neural network training using
random initial weights and the minimal control interval did not lead to a solution.
A logical explanation is that in this case we have to find a very particular solution
while on longer control intervals there exist more solutions to this control problem
which are easier to find. Note also, that due to the non-convexity of the problem
not every initial solution on a longer time interval led to a minimal solution while
using the strategy of gradual decrease of the the final time tf. Usually, we ended
up this procedure when we found a few similar solutions showing about the same
type of behaviour and resulting in about the same minimal control interval. This
provided us with certain level of confidence in the obtained solution.

While experimenting with this control problem we propose a new criterion ex
plaining the control objective and that is a minimization of the kinetic energy of
this system with simultaneous maximization of the potential energy of the sys
tem in the final equilibrium point. Geometrically, this means the pendulum keeps

5.3. Example: A multi-link inverted pendulum 93

staying in an up-right position. Mathematically, the new control objective can be
formulated as a minimization of a modified Lagrangian of this system L, where L is
L given by (5.3) where the minus sign next to the gravity term 9 is reversed. If we
also require that the position of the trolley Xt and the control input u in the final
point must be zero, we have to solve a nonlinear constrained optimization prob
lem. To do this we used the penalty function approach converting the constrained
optimization problem to an unconstrained one. Then the control objective is given
as follows

Pk > 0, Pk ---100 (5.7)

with respect to the system dynamics (5.4).

One link inverted pendulum results

This is the easiest situation and nl "" 1. To parametrize the controller we have
chosen a neural network with one hidden layer consisting of 8 sigmoidal nodes. The
integration step-size was chosen T "" 0.01, the final time tj "" 1.6 and U max = 20.
The controller neural network was optimized by minimization of (5.7) by per
forming 40,000 simulated annealing iterations followed by 100,000 quasi-Newton
iterations. Some of these results are shown in Figure 5.3. In Figure 5.4 are shown
the final time optimized state and control trajectories. These were found by tak
ing the fourth solution from the previous experiment and gradually decreasing the
final time tf during the neural network training to its final value tj = 1.18.

Two-link inverted pendulum results

In this case is nj = 2. The complexity of the neural network was chosen as 6
nodes in one hidden layer resulting in 49 weights. The final time was chosen
t f = 2, the integration time was T = 0.005 and U max = 40. As a maximum
number of simulated annealing iterations we chose 2,000,000 and as a maximum
of quasi-Newton iterations we chose 100,000. Figure 5.5 shows five solutions of
this control problem. In the first column is shown Xt against Xt, in the second
column is shown 6 against el, in the third column is shown ~2 against ~l and in
the fourth column is shown u against the time t. These are typical solutions when
tackling this problem by a numerical unconstrained optimization of a black-box
neural network controller. The last of these solutions, shown at the bottom of
Figure 5.5, seems to give an acceptable solution to the problem and could possibly
be further optimized, to obtain a smaller final time tj.

Three-link inverted pendulum results

In this case nj = 3. The complexity of the neural network was chosen as 8 nodes
in one hidden layer. The final time was chosen tj = 2, the integration time was
T "" 0.005 and U max = 40. We have optimized in this case in total 81 weights

94 Chapter 5. Neural State Transition Control

'~.~"~ O~ .5

;:'0 'V: "V <

~ ~

_l () -10
D 0.5 1 1.5 0 0,,5 1 1.5 -4 -2 0 :.: -4 "[QJTim< ,,~T,m. ,,~:i;t

HI 10 1e)

;:! 0 ;::So ;:1 (l

~ ~ ~

~ - -(l 0.5 1 1.5 0 O.s. , IE 0 05 i I.S-
Time Time TiTIle

"VI/j "rilld "m '0 HJo 10

;3 0 ~O ;:30

- - -- - -(I 0.5 1 1.5 0 O.s 1 15 0 0.5 1 15
T!me Time Tim",

Figure 5.3: Swing-up of a one link inverted pendulum

0.6

0-<

8 0.' ~
.:l

..!::!.
-0.' VJ'

-0.4

-0.6

2
0.2 0.' 0.6 0.8 0 0.2 0.' 0.6 0.8

Time [s] Time [s]
10 20

<i5'
10

---- Z --0
«l 0

....'::;. ;l
'VJ'

-'0
-2

-4 -20
0 0.2 0.4 0.6 O.B

Xt [m/s] Time [s]

Figure 5.4: Swing-up of a one-link inverted pendulum with optimized final time
tj

5.3. Example: A multi-link inverted pendulum

~~~ ~~~:f£lJlfl\l 
-10~ -10~ ~Ol>bJ ~O~ 

-2 0 2 0 2 4 -10 0 10 0 1 2 

"~'n'~r~ ":~ ~lLJ~~ ~~llillJ{j 
-10 0 -10 ~O 

t~i ~tL3t~l~~ 
-5 2 -5 ~o 
-2 0 2 2 4 6 -10 0 10 a 1 2 

"~I 'n '1rQl "mTI "~~ ~lc:J~&J'~~1 
-10 0 -10 -40 

_2 x~ 2 a 6 2 
4 _1~O ~, 10 0 ti~e 2 

{~J ~l2J~: ,~~ 
-10 0 -10 -40 

-2 0 2 0 2 4 -10 0 10 0 1 2 
It e, ~, time 

Figure 5.5: Two-link inverted pendulum swing-up results 

95 



96 Chapter 5. Neural State Transition Control 

'" 

4 

2 

.,",' , .... 

.. ' -:- - ... . 

'-'J' 0 

.~ ..... 
. . .. ~. : . '. :. .... .. . ..• .... . ..... :: .' ... 

-2 . . . 
. -":'" - .- - " 

4 
o 2 6 

10r-----~----------, 

_10L---~--~------' 
-3 -2 -1 0 

20 

10 
.J:}. 

0 

-10 
50 

40 

20 

;:l 0 

-20 

-40 
o 

~2 
0 

IW 

o . 
-50 -20 ~l 

rl 
~ 

I,J 

Lf J 
0.5 1.5 

Time 

Figure 5.6: Three-link inverted pendulum swing-up results 

20 

by performing 100,000 simulated annealing iterations followed by 200,000 quasi
Newton iterations. The best solution we have found is shown in the Figure 5.6. We 
can see that the pendulum is approaching the final position, in this case ~l = 0, 
6 = -'if, 6 = 0, but is not yet there exactly. The penalizing factor Pk in (5.7) was 
chosen very small, just to make the problem easier, resulting in a final position 
error of the trolley. 

Comments 

In this test example we have found out that the choice of the optimized control 
cost function can be quite crucial for an easiness of solvability of this control 
problem. The minimization of an energy function of the system (5.7) led to a 
solution in less iterations than minimization of the usual quadratic function (5.6). 
Intuitively, this can be explained by a more proper match of the energy function 
to the system dynamics compared to a general quadratic function. Another reason 
of a better convergence when using the energy function may also be found in the 
fact, that when optimizing the quadratic function (5.6), we are searching for a very 
particular solution, while a minimization of the energy function allows all modulo 
2'if solutions for link angles, so that we have many more global minima. 

Notice, that all solutions we have found are valid only for a very specific state 
initial point. Validation of the controller with a slightly perturbed initial state 



5.4. Controller design considerations 97 

condition did not result in a swing-up of the pendulum in any case. To make 
the controller more robust with this respect we minimized a new cost function 
consisting of a sum of cost functions of type (5.7), but each one computed by 
starting the simulation of the closed-loop from different initial state condition, 
close to the downwards position of the pendulum. Though these results are not 
shown here, this should be a more proper way of design of a controller in this 
example. 

We did some preliminary work to implement a neural network controller for a 
real inverted pendulum. The main problems we have to deal with include: 

• The system state is not fully observable. We can only measure the angles 
and the speeds must be reconstructed from measurements. 

• The links and joints are not ideal anymore and extra dynamics have to 
be considered. These dynamics include coulomb and viscous friction terms 
which represent non-differentiable dynamics. 

• The presence of non-differentiable dynamics makes the numerical optimiza
tion of either (5.6) or (5.7) using gradient methods impossible due to the 
lack of a sufficient smoothness of the minimized function. 

5.4 Controller design considerations 

In the design of the transition controller we will assume that 

1. the process dynamics are only partiy known; 

2. the state of the process is not measured; 

3. the process is subject to process disturbances and measurement noise. 

These assumptions immediately suggests that we will have to estimate a model 
of the process dynamics. In the Chapter 4 we proposed a grey-box state-space 
modelling concept (Section 4.2 on page 63) which will be followed also in this 
chapter. The unknown state of the process will be reconstructed by a design of a 
neural state observe while following the concepts proposed in Section 4.3 on page 
69. The remaining part of the complete transition controller design consists of a 
design of the state feedback. The issues concerned with this design are discussed 
next. 

5.4.1 Process model 

The state feedback shown in the Figure 5.1 assumes direct measurements of the 
full state vector. However, in practice, the state of the controlled process is most 
of the time not measured directly, at least not the whole state vector. To deal with 
this problem we reconstruct a state of the process from measured data using the 



98 Chapter 5. Neural State Transition Control 

neural state-space observer proposed by (4.37). Again, the state-space observer is 
composed of an estimated simulation model of the process j and a filter gain g, 
both approximated by static neural networks. That is 

x(k + 1) 

y(k) 

j[x(k), u(k), ef ] + g[y(k), y(k), eg] 

h[x1(k), u(k)] 

(5.8a) 

(5.8b) 

As the design of the controller is carried on off-line, what means that y(k) is not 
available, the controller will be designed for the model (5.8) and later, on during the 
actual controller implementation, the model will be replaced by the real process. 

5.4.2 Controller objective 

In this section we will refer to the control problem state in Chapter 2 on page 11. 
Let the controlled system ~. model be given by 

x(k + 1) 

y(k) 

j[x(k), u(k), e f] 
h[x1(k),u(k)] 

(5.9a) 

(5.9b) 

Recall, that h is a known nonlinear function and j stands for a static MLP j N 

combined with an a priori known analytical part j. 
Let us assume that 

IE := {I-' E lRm +p+n
, I-' = (ue , Ye, xe) I Xe = J[xe, Un 0], Ye = h[x~, ue]} 

be a finite set of equilibrium points of the system (5.9) and x! denotes the known 
part of the equilibrium state with respect to the state partitioning proposed by 
(4.29). Let us define a set of all trajectories of the system (5.9) by 

T := {(u(k},y(k),x(k)) E lRm +p+n
, k E Z+ I (5.1) holds} 

while assuming that k evolves on a finite time interval (to, tf}. Let t denotes an 
element of T. With respect to the equilibrium set IE of the system (5.9) we denote 
by ~.j c T' those trajectories, which start at time to at an equilibrium point J1.i, 
J1.i E IE and terminate at time tf, tf > to in an equilibrium point J1.j, j.Jj E IE. 
Then T', T' c T is defined by 

T' := {Vt;,j E T, J1.i E IE, j.Jj E IE, I-'i * j.Jj} 

The trajectories t E T' will also be called transitions or state transitions. 
The controller objective was defined in Chapter 2 by a criterion (2.8) on page 

12. We will discuss now the two most interesting versions of this criterion. 

Time-optimality 

It is quite logical to require a time optimality from a transition. For instance, in 
the case of the fluidized bed polymerization reactor, the production during the 



5.4. Controller design considerations 99 

transition between different operating points is either a wide-specification product 
or off-specification product. A faster transition will also mean less losses of the 
production. This requirement can be translated into the following criterion 

J(t) = tl - to (5.10) 

where t E T' and (to, tl) is the control interval. initial time can often be considered 
zero and then the criterion (5.10) reduces to the length of the control sequence 
u(k), in discrete time. To be consistent with (2.8) on page 12 we can choose either 
iII = tl, L = 0 or iII = 0, L = 1 to obtain the criterion (5.10). 

Minimum energy 

Besides the transition time we also would like to optimize other process condi
tions. Often the transition can be a priori prescribed by reference trajectories of 
physically defined states and/or outputs ofthe process. These states should follow 
these trajectories as close as possible. Often we want to minimize also the control 
effort. In case of the polymerization reactor this can be, for instance, the amount 
of the catalyst fed into the reactor. 

All these and similar requirements can be translated into the following criterion 

tf 

J(t) = L (1Ix(k) - r(k)II~ + IIu(k)lIk) (5.11) 
k=to 

where the norms are weighted Euclidean vector norms, Q is a semi-positive definite 
matrix and R is a positive definite matrix. The criterion (5.11) is evaluated along 
a single transition t E T' on a discrete-time interval (to, t I)' In the criterion (5.11) 
we assume a reference signal r( k) E lRn , defined for all states of the model. From 
the physical point of view, the reference signal r(k) can only be defined for Xl part 
of the state vector. The choice of the reference signal for the black states XO is a 
subject of the design and will be discussed later on. 

Often we are interested in having an integral action in the state feedback to 
guarantee zero final tracking errors. Then we have to consider the following crite
rion 

tl 

J(t) = L (lIx(k) - r(k)lIb + lI~u(k)llk) (5.12) 
k=ta 

where ~u(k) = u(k) - u(k - 1) and ~u(to) '= O. 

5.4.3 Constraints 

The minimization of either (5.11) or (5.12) is subject to a set of constraints in
troduced already in (2.8) on page 12. The first obvious constraint is given by the 



IDD Chapter 5. Neural State Transition Control 

model (5.9) defining the process dynamics and therefore also the set of all possible 
trajectories of the system T. 

The initial state uncertainty constraint (2.9) on page 13 is handled by consid
ering in the control criterion different realizations of the transition each of them 
starting at different initial points close to "'0. 

The final state constraint given by (2.10) can be easily handled by including 
a penalty term 'J! into the control criterion, e.g. 'J! = lIi(t,) - ILfll~. It can also 
be handled by the criterion (5.11) or (5.12) by defining a sufficiently long control 
interval and a reference value with r(k) = ILf for k E (t', tf), where to < t' < tf. 

The state and control constraints are often considered as simple bounds, con
straining operating ranges of corresponding variables. These constraints are then 
given by 

;[ ~ x(k) ~ x 
11::; u(k) ~ U 

(5.13a) 

(5.13b) 

where ;[ E IRn , 11 E IRm are the lower bounds and x E IRn
, U E IRm are the 

upper bounds, respectively. The consideration of the constraints (5.13) is not only 
important for a proper process operations but also to define the model validity 
ranges. 

Other type of constraints, often met in practice, are the limited rates of change 
of process variables, given as follows 

,6.x ::; ,6.x(k) ::; LlX 

,6.u ~ ,6.u(k) ::; Llu 

(5.14a) 

(5.14b) 

where Llx E IRn, Llu E IRm are lower bounds and ,6.x E IRn, ,6.u E IRm are upper 
bounds, respectively. 

5.4.4 Reference signal 

The reference signal is considered either as a constant value specifying the final 
equilibrium point of the system or as a time varying signal specifying also the path 
in the state space. Notice that the model (5.9) provides us only with a part of the 
state vector irk) which has a physical interpretation and that the rest of the state 
vector is meaningless in this respect. Therefore a prior specification of a reference 
signal can be concerned from physical point of view only with Xl state components. 
In practice, an operating point of the process will be given by specific values of 
inputs tie and outputs Yeo Based on Ye we can determine the equilibrium values 
of Xl state components knowing that Ye = h[x~l and h is known. Equilibrium 
values of other states, namely x~ are given by the model equation Xe = j[xe, uel 
corresponding to (5.9a), which has to be solved for the unknown x~_ It might 
happen that there is no feasible solution for x~ as its value is bounded by the 
validity of the estimated neural network. Then a new model has to be estimated 
using either more data or different complexity of the model. 



5.4. Controller design considerations 101 

When defining the state reference path signal between two equilibrium points 
we have to consider the reachability of the state-space of the model. As the con
trolled system is being considered as a general nonlinear system it is hard to 
investigate this issue. As the estimated model is a grey-box model, with physically 
well defined part of the state vector, we can use our a priori knowledge about the 
process dynamics to define a transition path for the states xl. For the rest of the 
state components, namely xO, is the transition path obtained as a result of the 
controller optimization. 

In the following we discuss three approaches of a choice of a reference signal. 

Step signal 

Let us assume that a new operating point of the system is required to be fif 
(x" u,)T = (fij, Jii)T. A most straightforward way of defining a reference signal 
is using a step signal given by 

r(k) = fij, for k = to,··· ,tf (5.15) 

where 111 is a value of states in the final equilibrium point. 

Filtered step signal 

As an alternative to a simple step reference signal we often use a low pass filtered 
step signal, given by 

'i(k) = 110; + (Jifi - fiOi)exp(k/k;) for i = 1, ... ,ii (5.16) 

where n is the dimension of the model state vector X, k = to, ... ,tf is the discrete 
time and k; is a discrete-time constant chosen in advance. For the known part 
of the state vector Xl is this constant chosen with respect to the prior process 
knowledge. For the other states, namely xc, we can use a guess. 

Optimized state trajectory 

A better way, and also a more difficult way, to determine the reference trajectories 
is to use the optimal state, and possibly also control, trajectories, provided that we 
are able to solve the optimal control problem (2.1) in function space. That means 
that if we would be able to find an optimal control input u*(k) as a time function 
resulting in an optimal state x*(k) trajectory, this trajectory could be used as a 
reference signal for a later on design of a state-feedback controller. 

For this purpose, we have developed in [17] numerical techniques for solving 
nonlinear optimal control problems with control and/or state constraints. 



102 Chapter 5. Neural State Transition Control 

5.4.5 The feedback structure 

In general, the controller is assumed to be a dynamic state feedback (5.2). The 
controller dynamic will be from now on assumed as follows 

z(k + 1) = aZ(k) + xl,a(k) - r(k) (5.17) 

where we partitioned the Xl part of the state vector into two components 

This partitioning defines a set of states xl,a which will be tracked with a zero final 
errOr and the other states x1,b may be tracked with nonzero final errors. Assuming 
xl,a (k) E lRn"Q, then the dimension of both z(k) and r(k) is assumed to be nl,a. 

The constant a > a is a constant equal to 1 in case of assuming pure integrators, 
but often chosen in our algorithm slightly smaller than one, e.g. a E (0.9, 0.999), 
which improves a numerical stability of the controller optimization procedure. This 
will be demonstrated in Chapter 6 on a simulation example. 

The nonlinearity of the controller (3 in (5.2) will be approximated by a static 
MLP and will be denoted as follows 

u(k) = k[z(k), x(k), r(k), ei'] (5.18) 

where e k stands for the weights of the neural network. 
The controller structure given by equations (5.17) and (5.18) can be also con

sidered in a simpler form, for instance 

u{k) 

u(k) 

k[x(k), x(k - 1), r(k), r(k - 1), e kl 
k[u(k - 1), x(k), r(k), ekl 

(5.19a) 

(5.19b) 

which is a sort of I/O dynamic parametrization of a dynamic state feedback. 

5.5 Controller synthesis 

The controller synthesis, which will now be described, is based on a separation of 
the state estimation and the controller design. This is a proven optimal controller 
synthesis for linear systems. In case of a general nonlinear system there is no 
evidence yet that this should be also an optimal controller synthesis. However, we 
adopt this principle also in the case of a nonlinear controller design while expecting 
only an approximation of an optimal synthesis which we do not know. 

The structure of the controller is schematically depicted in Figure 5.7. The 
state feedback k to be designed takes as inputs a reference signal r( k), an estimated 
state x(k) and an integrator state z(k) computed by the block Z:J representing the 
equation (5.17). 



5.5. Controller synthesis 103 

Prior to the actual numerical optimization of the neural network parameters 
8 k we compute the equilibrium set IE of the estimated model (5.9) and we define 
a reference signal for a couple of transitions within this set. To compute IE we 
have to solve the following set of nonlinear equations 

(5.20) 

It is dear, that to determine all equilibrium points of IE would require to find 
all solutions of (5.20). The equilibrium value for the known part of state vector 
components xl will be given in practice and therefore the equation 5.20 will have 
to be solved only with respect to the black states £0. Let us assume for the next 
discussion that we have defined a couple of equilibrium points. If the reference 
signal was defined, e.g. by following the discussion in Section 5.4.4, then 8 ic is 
computed by minimization of the following criterion 

Jr = LJ(t.;,j) (5.21) 
i,j 

with respect to the weights of the controller neural network. Basically, we can 
simulate the closed loop for all t.;,j, evaluate the criterion Jr together with its 
gradients with respect to 8 k and then use any numerical minimization method to 
minimize this criterion. The function J is defined either by (5.12) or by (5.10) or 
by (5.11). 

A block diagram of the closed loop set-up is depicted in Figure 5.7. As it 
was mentioned earlier, the design is carried out off-line. That means, that we can 
not dispose of the real output y(k}. A simulation of this closed loop can be, in 
principle, considered in three situations: 

1. The filter gain fj is completely omitted from the simulation of the closed loop. 

2. The filter gain fj is included into the closed loop with zero inputs, that means 
ere,(k} = O. 

3. The filter gain fj is included assuming ere! =f O. 

We can test the closed loop using a reference Signal erej(k) in place of the 
true innovation sequence elk} = y(k) ~ y(k) in the filter gain. The statistical 
properties of the ere,(k) sequence (type of distribution, mean, variance) can be 
estimated from the state observer design results. As the estimation is based on 
a minimization of a least-squares type of criterion e(k) shows most of the time 
a Gaussian distribution and therefore it is straightforward to generate an eref(k) 
sequence. 

As the minimization of (5.21) with respect to 8 k is performed numerically it 
is useful to determine the required cost function gradients analytically. These are 
given in the following section. As this computation is quite involved and badly 
influenced by the simulation time of the closed loop, we have often used numerical 
evaluation of these gradients. 



104 Chapter 5. Neural State Transition Control 

Neural Net 
--------------------------------------~ g 

r(k) 

z(k) u(k) Neural Net 

k f----I Neural Net 

j 

+ 
+ 

i(k) 

Figure 5.7: Controller set-up 

The value of the parameter a in the controller dynamic (5.17) has been changed 
during the controller optimization sequentially starting from a value less than one, 
let us say 0.9, to a final value 1. This was done mainly due to obtain the stability 
of the closed loop. Notice, that the controller is estimated numerically and in 
general we can not expect a stable closed loop when taking random initial weights 
for the controller neural network eA;. As we minimize a cost function on a finte 
time interval, in general, there is no guarantee for stability of the closed loop . We 
have experienced on the polymerization reactor, that if we started the optimization 
from an unstable closed-loop system, it remained unstable, no matter how long 
the control interval was . As the control interval was always finite the controller 
neural network could not learn the stability of the closed-loop system. A choice of 
a < 1 helped us to start the optimization from a stable closed-loop system. 

Training of the controller neural network is in fact done by an unconstrained 
minimization and all the constraints are handled by suitable choice of reference 
signals r(k) and weighting matrices Q and R in (5.12). 

5.6 Gradient computation 

The gradient computation for a numerical minimization of (5.21) depends on the 
parametrization of the state observer, on the structure of the state feedback and 
also on the choice of the cost function. As an example we show here a gradient 
computation for only one situation. Let us assume a minimization of the following 
cost function 

Nc 

J(e k ) = L (1Ii(k) - r(k)llb + Illlu(k)II~) (5.22) 
k=l 



5.6. Gradient computation 105 

where tlu(k) = u(k) - u(k - 1) and let us assume state observer equations 

x(k + 1) 

y(k) 

j[x(k), u(k), ° i] + g[y(k), y(k), 0 g] 

h[x1(k)] 

and let us assume the state feedback be parametrized by 

z(k + 1) 

u(k) 

az(k) + x(k) - r(k) 

k[x(k), z(k), r(k), 0 kl 

Then the gradient computation of (5.22) with respect to the weights of k is given 
by following formulas 

8tlu(k) 
80ki 

8x(k + 1) 
80ki 

8u(k) 
80ki 

8z(k + 1) 
80k; 

8u(k) 8u(k - 1) 

.Jxh(k) 8x(k) 
80ki 

8k[x(k), z(k), r(k), 0 kl + .Jxk(k) 8x(k) + .J}(k) 8z(k) 
80ki 80L 80ki 

8z(k) M(k) 
a--+--

80L 80ki 

As we can immediately observe that an analytical gradient evaluation is rather 
involved. In our controller estimation experiments we often replaced this procedure 
by a numerical estimation of gradients using a finite difference approach 

8J(0k) _ J(Oki + f) - J(Oki - f) 
80ki 2f 

where f is a small number chosen usually in a neighbourhood of the square root 
of the machine precision. Our experience is that using numerically estimated 
gradients in training of neural networks it is better to set the value of f in advance 
rather than to use a computer program based adjustment. The reason for this is 
that at the initial point, the computer estimated f might be numerically optimal 
but later on in the course of the optimization it can become a very bad choice, the 
optimization is consequently getting stuck and requires a restart with a new value 
for f. 



106 Chapter 5. Neural State Transition Control 

5.7 Numerical example 

In this section we give a simple numerical example to demonstrate the proposed 
controller design scheme using the methodology proposed in this chapter and in 
Chapter 4. Let us consider a nonlinear dynamic system described by the following 
state-space equations in discrete time 

xI(k + 1) 
Xl (k) 

1 + x2(k)X2(k) + u(k) + WI (k) (5.23) 

x2(k + 1) 
xl(k)X2(k) 

1 + 1 + x2(k)X2(k) + w2(k) (5.24) 

y(k) x2(k) + v(k) (5.25) 

where wI(k), w2(k) and v(k) are the process disturbances and the measurement 
noise, respectively, simulated as a zero mean uniformly distributed random se
quences with maximal amplitude 0.1. To test the dynamics of this system we used 
as an input u(k) a sequence of uniformly distributed, zero mean random samples 
with maximum amplitude 1. It means that nonlinearities of this system are excited 
in a very specific range. We generated a data set of N = 2000 input/output data 
points in a form of (4.1) on page 45. 

The first step of the algorithm is an estimation of a state-space simulation 
model of the system from data while using the available a priori knowledge. To 
simulate the methodology proposed in Section (4.2)' we assumed that we know 
that the second component of the system state vector X2 is directly measured and 
we also assumed that the order of the process n = 2 is also known. Then the state 
vector of the model is defined as x = (Xb X2) = (iO, Xl). The first component 
xO stands for the black-box part of the model while the second component Xl 
represents the prior process knowledge. The model is then parametrized by (4.30) 
where the output map is given by 

and the state map was parametrized by a neural network with one hidden layer 
for which the number of nodes was varied from 2 to 8. For each neural network 
configuration we have used one half of the data set to estimate the network's 
parameters El j and the rest of data was used for the validation of the estimated 
model. The results of these experiments are shown in Table 5.1. A good choice 
for the complexity of the neural network model of the system dynamics could be 
a configuration with 4 hidden nodes as configurations with more nodes tend to fit 
the noise in data. 

In the second step of the algorithm we estimated a filter gain {j introduced by 
(4.37) while we parametrized {j by (4.42d). The nonlinearity of {j was approximated 
by a neural network with one hidden layer containing 4 nodes and 22 weights. 
This choice was actually based on an optimization of a set of neural networks with 
different number of one hidden layer nodes while choosing the one with the best 



5.7. Numerical example 107 

Table 5.1: Output error identification results, NNI is the number of nodes, no is 
the number of estimated parameters, Je is the estimation cost function value and 
Jv is the validation cost function value. 

NNI n(J Je Jv 

2 14 1.S8Se - 02 1.668e - 02 
3 20 9.66ge - 03 1.266e - 02 
4 26 9.018e - 03 1.221e - 02 
S 32 8.863e - 03 1.300e - 02 
6 38 8.361e - 03 2.921e - 02 
7 44 8.261e - 03 1.261e - 02 
8 SO 8.028e - 03 1.636e - 02 

performance on the validation data set. The best cost function value we found 
during this experiment was 8.769ge-03. 

Figure S.8(a) shows the spectrum of the output error signal obtained from the 
identification experiment together with the spectrum of the validation error. The 
spectra of output error signals obtained from identification experiments clearly 
shows the effect of process disturbance which is not described by the model. The 
estimated state observer then gives a flat spectrum of the output error signal shown 
in the Figure S.8(b). 

The nonlinear static state-feedback controller parametrized as 

u(k) = k[i;(k), r(k), 0kl 

was optimized for the estimated simulation model in a noise free situation and then 
validated on the true description of the process given by (S .23)-(S .2S) including 
the noise. The controller nonlinearity k was approximated by an MLP with one 
hidden layer containing 4 hidden nodes resulting in a design of 21 weights . As 
a reference signal we used a sequence of random steps uniformly distributed in 
the interval (O.S, 1.5) of a total length SOO samples. The range of the reference 
signal was chosen with respect to the simulated range of the system output. The 
weights of the controller neural network were obtained from an optimization of the 
criterion (S.l1) where the weighting factors Q and R were chosen as follows: Q = 1 
and R = 0.1. The value of R was experimentally chosen to bound the amplitude of 
the control input by -1 < u < 1 as it defines the validity of the estimated model. 
The results of the controller design are plotted in Figure S.9. The steady-state 
errors in the tracking of the state component Xl = X2 are due to the penalty we 
put on u to limit its range. The steady-state errors where removed by including 
an extra state into the controller neural network as follows 

which should emulate an integral action in the closed loop . The weights of this 
dynamic state feedback were estimated by a minimization of the criterion (S.12) . 



108 Chapter 5. Neural State Transition Control 

(a) solid line - estimation error, dashed 
line - validation error 

w .. 1 

(b) state observer validation 

Figure 5.8: Output error spectra 

The plot of these results is shows in Figure 5.9(c). We have shown here only a noise 
free situation to see clearly that the tracking errors were removed . A validation 
of the dynamic controller with noise shows similar behaviour to results shown in 
Figure 5.9(b) only the steady-state errors are removed. Notice also that there are 
some irregularities in tracking of reference values close to the magnitude 0.5. This 
is due to the fact that these magnitudes are close to the nonlinear validity of the 
estimated model. 

5.8 Summary 

As a general nonlinear control problem is not analytically solvable we have con
sidered in this chapter its numerical solution. The control function is, in general , 
parametrized as a static state feedback approximated by a multilayer feedforward 
neural network while the weights of the network are computed by minimization 
of an optimality criterion, defined in advance. We have shown by an example 
(multi-link inverted pendulum) that the choice of this criterion can influence the 
solvability of a considered control problem. The controller synthesis is based on 
separation of a state estimation problem and a state-feedback controller design 
problem. By doing so we expect an approximation of the optimal synthesis which 
we do not know. The numerical example, presented at the end of this chapter, 
shows feasibility of this approach. 



5.B. Summary 109 

".l 

.1 0 :;0 lOO 150 200 !SO lOO :J.5D 400 450 500 

(a) Static controller optimization (b) Controller validation 

(c) Dynamic controller estimation 

Figure 5.9: State tracking controller results: solid line - state reference signal 
r(k); dashed line - state :i;l{k); dotted line - control signal u(k) 



6 Transition Control of a 
Polymerization Reactor 

In this chapter we will demonstrate on a large simulation example the applicability 
of the transition controller design as it was proposed in the above chapters. The 
controlled process will be a rigorous simulation model of the fluidized bed poly
merization reactor shown already in Figure LIon page 3. This system was chosen 
for our tests because a transition type of control is extensively used for this process 
and it also shows a complex nonlinear behaviour with process disturbances. 

6.1 Process simulation model 

To test the ideas presented in previous chapters we developed a rigorous mathemat
ical model of the fluidized bed polymerization reactor [36J based on first principal 
analysis of material and energy balances in the reactor [10],[50J. The complete 
description of this model requires an introduction of more than hundred variables 
and is therefore outside the scope of this section. Therefore we describe only that 
part of the process which is relevant for presentation of our results. 

A schematic diagram of the process is shown in Figure 6.1. The process consists 
of a reactor and a heat exchanger which are connected through a recycling loop. 
The reactor is fed at the bottom with a monomer (ethylene), co-monomer (propane, 
butane) and inertial gases (N2 ,H2 ). As the inertial gas is not consumed by the 
reaction it is added into the recycling loop once for all. In our rigorous model we did 
not manipulate the amount ofH2 fed into the reactor though it will be manipulated 
in the reality as it is used as a "chain stopper" in the polymerization reaction. 
The monomer and co-monomer polymerize in the reactor into a polymer which is 
then withdrawn from the reactor as a final product. The reactor is continuously 
supplied with a monomer and a co-monomer such that the total mass flow into the 
reactor Cflow and the ratio of the mass concentration of co-monomer to monomer 
(C"IC2 )set in the mixed flow are being manipulated. 

The lower part of the reactor is called a "fluidized bed" and consists of solid 
particles of polymer and catalyst called an "emulsion phase". The catalyst is fed 
into the reactor at a rate qc- Through the emulsion phase bubbles of gas rise what 



112 Chapter 6. Transition Control of a Polymerization Reactor 

Gascap 

Catalyst-polymer 
&article 

Fluidized 
Bed 

Inputs: T.et 
Fsd 

(Cx IC2 )se! 

qc 

Recycle 
loop 

Outlet cooling water 

Heat 

exch. 

Q 

Product 
witkldrawal 

Outputs: Q 
Te 
PCz 

Cs.JC 2 

(= pc. I Pc, 

Disturbances: WTw 

well ow 

WXwt 

Figure 6.1: Fluidized bed polymerization rector diagram 



6.1. Process simulation model 113 

is called as "bubble phase". It is important to operate the reactor at a gas velocity 
which is above the so called minimum fluidized velocity to maintain the fluidized 
bed of solid particles and bubbles of gas. 

Above the bed is a free space called "gascap" which prevents the solid particles 
to get into the gas recycling loop. Recycled unreacted gases are cooled down in 
the heat exchanger and then added to the incoming fresh gas flow at the bottom 
of the reactOr. The temperature of the cooling water temperature Tw in the heat 
exchanger is manipulated by a primary PID controller which stabilizes the process 
dynamics. The process instability is in fact caused by an exothermic type of the 
chemical reaction taking place in the reactor. The temperature of the emulsion 
phase Te is controlled by this primary PID controller to a given set-point value 
T set · 

The final product (polyethylene) is withdrawn from the reactor at such a rate 
Q that the height of the bed remains constant. 

The total length of the recycling loop is significant so that the unreacted gases 
are added to the input flow with a delay of about 1 minute. This delay together 
with the dynamics of the heat exchanger create slow dynamics of the process. 

The gas in the gascap is analyzed in analyzers to measure the partial pressure 
of monomer Pcz and a ratio ( of the partial pressure of co-monomer to monomer 
( = pc./ Pc,. As this measurement takes about five minutes this will be our 
bottleneck for the choice of the sampling time for the control system. Besides, 
the measured samples of Pcz and ( will be also delayed five minutes. Also the 
production rate Q measurement requires some chemical analysis and these samples 
are also available at a rate of one sample per five minutes with a delay of five 
minutes. 

The total pressure in the gascap P which relates to the product quality is 
basically kept at a certain constant value. The problem is that the five minutes 
sampling interval of Pc, and ( might be too slow for a compensation of fast 
perturbations of the pressure P. The total pressure P can be measured on-line at a 
much faster rate than one sample per 5 minutes. Therefore a primary pressure PID 
controller is designed here to suppress the fast pressure perturbations in the gascap. 
The structure of this controller is shown in Figure 6.2. The pressure set-point Pset 

is compared with the measured pressure P, the error signal is then filtered by the 
PID controller which manipulates the total mass flow into the reactor Cflow. The 
PID controller is then followed by a block of nonlinear functions which compute 
the actual monomer and co-monomer input flows by using their ratio set-point 
(Cx /C2 )set. 

Both the temperature PID primary controller and the pressure PID controller 
were tuned experimentally by a visual judgment of either water temperature dis
turbance or pressure disturbance step responses. 

To demonstrate the process behaviour we show here a couple of step experi
ments obtained by simulation of considered types of process disturbances. Figures 
6.3-6.5 show effects of perturbations of process variables: C flow - the total process 
mass input flow, Tw - the cooling water temperature and X cat - the mass fraction of 
the catalyst with respect to the solid particles. From a positive Cftow disturbance 



114 Chapter 6. Transition Control of a Polymerization Reactor 

C 2 ,in 

Poet 
+~ 

PID Cflow Distribution 
controller code Cx,in 

-

_ ..... _- --------------------------- ..... --_ ... _----
P (CX/e2)8et 

Figure 6.2: Pressure inner-loop controller 

simulation (see Figure 6.3) can be seen that the production rate, the temperature 
and the monomer partial pressure initially raise due to increased reaction rates 
in the reactor. The ratio <: initially drops due to the smaller reactivity of the 
co-monomer with respect to the monomer. We can also observe that except of the 
ratio <: the settling time of all shown process variables is about 2 hours. The set
tling time of <: is much longer and in fact converges slowly to a steady-state value 
due to the already mentioned slow reactivity of the co-monomer. The overshoot 
is caused in all responses by the delay of the recycling loop what is confirmed by 
simulation experiments shown in Figure 6.4. Due to the delay in the recycling 
loop, the water temperature PID controller responds to the increase of the bed 
temperature Te with a delay and therefore there is a rather large initial increase 
of the bed temperature Te. Due to the increased temperature in the reactor the 
production rate also increases, the pressure drops due to the faster consumption of 
monomer and co-monomer and the ratio increases, because the monomer is con
sumed faster than the co-monomer. The water temperature disturbance is fully 
compensated by the controller and the process stabilizes to its original steady-state 
values. The catalyst activity perturbation responses, shown in Figure 6.5, result in 
a similar behaviour. The only difference is that some of the process variables con
verge to different steady-state values. In this case an adjustment of the (ex /CZ)8et 
set-point is required. 

We can observe that the settling time of the process is about 2 hours for first 
three outputs and about 8 hours for the last output. The slow dynamics of the 
process is caused mainly by the recycling loop. It causes that the concentrations 
of monomer and co-monomer in the reactor reach their steady-state values in the 
order of tenth of hours. We can also see the effect of primary controllers which 
stabilize the process dynamics. An e/low perturbation is partly handled by the 
pressure controller which controls the total pressure in the reactor. However, 
the partial pressure pc. and the ratio <: stabilizes around different equilibrium 
points. The water temperature disturbance Tw is completely compensated by the 



6.1. Process simulation model 115 

8.7.2 . 82.04 . 

'"in 8.7 c, 

~ 8.66 0 82.02 

~ B.B. 
i!...... 

~ 
B. o a.'" 

a.62 S1.9B 
B .• 

Ma 81.96 
10 • 10 

Time [h] Time [h] 

•. 0. 

~ 
~ 6.04 

rJJ 6.02 

o.we 

5.9B 0..297 
10 10 

Time [h] Time [h] 

Figure 6.3: Step experiment of Cltow perturbation by a disturbance 0.02 

9.3 65 

9.2 
".5 

'"in 9.1 
5' --- •• bO i!...... 

~ 83.5 
B.9 

~ 0 ... 63 

B.7 

~. 
82.5 

B.6 82 
6 10 6 10 

Time [h] Time [h] 
x 10

5 

6.1 0.31 

6.05 

I~ ~ 6r" ~ 0.305 

5.9' V 

~ 5.9 
0.3 

\/ 5.a5 

5.8 

10 10 

Time [h] Time [h] 

Figure 6.4: Step experiment of Tw perturbation by a disturbance 0.03 



116 Chapter 6. Transition Control of a Polymerization Reactor 

82.8 

82.5 

Vi' 
8.9 IV .......... U 82.' 

b() <!..... 2!. 8.8 . 82.3 

0 ~ 822 
8.7 

B2.1 

8 .• 82 
10 10 

Time [h] Time [h] 
6.02 

)( 10~ 
0.305 

6 0.304 . 

til 5.98 0.303 
0.. 
"---' 5-.96 .. '-P 0.302 

~ 5.94 .:. 0.301 0.:; • 
5.92 0.3 

59 0.299 

S.BS 0.298 
10 10 

Time [h] Time [h] 

Figure 6.5: Step experiment of X cat perturbation by a disturbance 1.5e05 

corresponding PID controller. The catalyst activity disturbance seems to affect the 
process dynamics more seriously. To return the process conditions to its original 
operating conditions requires manipulation of all process inputs. From the Figure 
6.5 we can realize that the production rate Q is much more sensitive to the C/low 
disturbance than the bed temperature Te and the partial pressure pc.. This is 
due to the effects of primary controllers. 

6.2 The control problem 

The grade of the produced polymer is characterized by properties like: melt index, 
density, molecular weight and distribution, chain structure and others. These char
acteristics are influenced by the selected operating conditions of the reactor. Let 
these conditions be characterized by values of the following four process variables: 

1. Q - production rate, 

2. Te - temperature of the emulsion phase, also called bed temperature, 

3, pc. - partial pressure of the monomer in the bubble phase, 

4. ( - ratio of co-monomer to monomer partial pressure in the bubble phase 
pc. = (Pc" 



6.2. The control problem 117 

All these variables are directly measured and define measured process outputs as 
follows 

y = (Q, Te , Pc" ()T 

A different combination of these values corresponds to a different type of product 
being produced. When switching the process production to a production of a 
different type of product we have to change these values to new ones. This "change
over" type of operation is supposed to be performed by manipulating the following 
input variables: 

1. Tset - set-point for the bed temperatureTe , 

2. Pset - set-point for the total pressure P in the gascap, 

3. (C",fC2 )set - set-point for the ratio of co-monomer to monomer concentration 
in the reactor input flow, 

4. qc - catalyst input rate. 

These variables define then the process control inputs 

u = (Tset' Pset , (Cx/C2 )set. qcf 

The most important disturbances acting on the process include: 

1. WTw - water temperature disturbance, 

2. Wqc - catalyst flow disturbance reflecting impurities in the catalyst and ir
regularities in its activity, 

3. wc"ow - disturbance acting on the total input flow of monomer and co
monomer into the reactor reflecting impurities and temperature changes of 
the input mass. 

These variables define then the process disturbance 

The measurement noise v is assumed to be additive to outputs y and is represented 
by a four dimensional vector of measurement errors. 

A transition from one operating point to another should be fast to minimize 
either the wasted production or production of wide specifications type. 

The rate of change of all process inputs is assumed to be limited to a few percent 
of their nominal values, usually about 10%, for safety reasons. A faster change 
of process inputs results in physically non-feasible values of some variables of the 
used simulation model of the reactor, e.g. the required input flow can become 
negative or the required cooling water temperature in the heat exchanger can also 
become negative. Faster changes of the bed temperature T, could in reality cause 
melting of solid particles an a collapse of the fluidized bed. 



118 Chapter 6. Transition Control of a Polymerization Reactor 

6.3 Identification 

At the first stage of the controller design we estimate a simulation model of the 
process. Before being able to do this we have to prepare and perform measurement 
experiments on the process. The classical theory of system identification (see e.g. 
[33]) gives us properties of test signals for linear systems. In case of the linearity 
assumptions of the process dynamic and a parametrization of estimated model 
either a gaussian white noise signal or PRBS (pseudo-random binary sequence) 
are typical test signals. As the process dynamics are nonlinear it is not clear what 
an optimal test signal should be. Often we use a similar type of signals as in the 
case of linear system identification. Due to the process nonlinearity we often use 
uniformly distributed random signals to excite the process in very specific ranges. 
When testing a practical process we are very seldom, or better to say newer, 
allowed to excite the process by input signals of white noise type. Usually we are 
restricted to use very specific signals, responses to which are well predictable. 

To create a data set we have used in our tests a low-pass filtered uniformly 
distributed white noise signal. However, in practice, the measured data will consist 
of a set of operating point changes performed on a real process. As these operations 
use a very specific control inputs, like step changes of set-points, the estimated 
model will be valid only in a very small region around the transition trajectories 
and will be of a very low pass character. Nevertheless, such a model could be very 
useful to improve the model accuracy around existing transition trajectories. 

6.3.1 The data 

To create a data set for identification purposes, the process inputs were excited 
using a discrete-time low-pass filtered uniformly distributed random signal followed 
by a zero-order hold with a sampling time ts = 300 seconds. As a low-pass filter 
we used a fourth order Butterworth filter with a cutoff frequency Wn = (1/16)ws, 
were w. was the sampling frequency in rad/s. The cut-off frequency of the filter 
was chosen such that the rate of change of test inputs was only a few percent of 
their nominal values. In this case not more than 10%. 

The range of test signals was chosen as big as possible with respect to the physi
cal ranges of process variables simulated using the available simulation model of the 
process. That means such ranges of process inputs that the process does not oper
ate in physically impossible states. The physical ranges of simulated input/output 
process variables are given in Table 6.1. In case of the temperature Tut and the 
pressure set-point Pset these ranges were chosen as 10% of the nominal values 
of corresponding variables. The concentration ratio (C",fC2 )set was changed for 
about 90% and catalyst input flow for about 20% of their nominal values, respec
tively. These ranges were chosen with some margin to be able to simulate also 
process disturbances without violating the already mentioned impossible physical 
process states. The disturbance variations were chosen 5% of the nominal values 
of signals to which they were applied. These ranges of simulated disturbances are 
given in Table 6.2. 



6.3. Identification 119 

Table 6.1: Process input and output description 

input nominal value minimum value maximum value 

Tset [0G] 355.00 390.50 319.5 

Pset [1Q5Pa] 20.99 18.89 23.08 

(C,jC2 ).et 0.30 0.04 0.57 

qc [kg/h] 2.83 2.30 3040 

(al Test input description 

output nominal value 

Q {kg/s) 2.39 

Te [0C] 355.00 

PC2 [105Pa] 5.99 

C,:/C2 0.30 

(b) Output nominal values 

Table 6.2: Disturbance input description 

disturbance magnitude disturbed variable nominal value 

WTw [0C) 10040 Tw 207.32 

we flow [kg/s) 0.12 Cftow 2.39 

WX'OI [10- 4
] 0.16 X cat 3.28 

We simulated the process model in SIMULINK for 601 process hours using 
the standard Adams-Gear numerical integration method with a variable step size. 
Collected process data were low-pass filtered by a continuous time fourth order 
Butterworth anti-aliasing filter with a cutoff frequency Wn = (1/4)ws /2 in rad/s 
and then sampled with a sampling time T. = 300 seconds. The spectra of the 
simulated process outputs are shown in the Figure 6.6 as solid lines. The process 
was simulated also without the disturbance using only the process inputs. By sub
tracting these simulated outputs from the simulated outputs with disturbances we 
obtained a spectra plots of the effect of disturbances at the output (see Figure 6.6, 
dashed lines). The dotted lines in Figure 6.6 show the spectrum of measurement 
noise added to the outputs. 



120 Chapter 6. Transition Control of a Polymerization Reactor 

10" 10-2 

0 10" ~---

_ -- .... ".'" 
\ h'10" , , 
\ , , 

/ \ 

10" 10" \ 

10-10 

10-il 10' 
10-~ 

10-~ 

Frequency [rad/s] Frequency [rad/s] 

10-2 10-2 

"'10-4- / / ...... , 10-· ---- , , 
c2 " \ 

<.J" 

-----
, 

\ 

10-05 10-15 

" .~ .. . \. 

\ 

1Q-S 
10-.1: 10' 

10·B 

10-~ 10' 

Frequency [rad/s] Frequency [rad/s] 

Figure 6.6: Spectra of simulated signals relative to the half of the sampling 
rate; solid line - simulated output spectrum; dashed line - spectrum of a difference 
between simulated output with disturbance and without disturbance and measure
ment noise; dotted line - spectrum of measurement noise. 

6.3.2 The grey-box model prametrization 

To parametrize the process model we will follow the methodology proposed in the 
Section 4.2.3. Let us assume that the partial pressures of the monomer Pc, and 
the co-monomer pc. in the gascap relate to the concentration of the monomer C2g 

and the co-monomer Cxg , respectively, according to the following correlations 

where Rg [J mol-IK- I] is the known universal gas constant and Me"Me. [kg 
mol-I] are known molecular weights of monomer and co-monomer, respectively, 
which are known. The temperature of gases in the gascap Tg can be assumed 
to be equal to the temperature of the emulsion Te , which is directly measured. 
This assumption is valid due to the high heat transfer coefficient between the solid 
particles and the bubbles of gas. 

Let us define the physically known part of the state vector with respect to 



6.3. Identification 121 

(4.29) as follows 

Q 

T. 

~ (i!) Xl = Rg C
2 

Me2 
..!.!Lc M x c. 

This means that Xl E JR4 will be represented by the first four components of the 
state of the model. The other state vector components will represent the hidden 
part of the state vector XO which dimension will be subject of identification. The 
output map h in the model of this process is with respect to (4.30) on page 66 
analytically defined as follows 

h[x(k),u(k)] = [£):)~!(k)l 
x4(k) 
x3(k) 

We also know that the catalyst, being fed into the reactor, becomes active in 
the reactor after about one hour. Assuming a sampling time of 5 minutes, this 
fact translates to a delay of 12 samples at the fourth control input. This a priori 
knowledge was brought into the estimated state map i as a known analytical part 
in a form of a tapped-delay line of 12 delay units, all with sampling period 5 
minutes. In this way we have inserted into the model additional 12 known states, 
which were not estimated. In fact, the known part of the state map was realized by 
a time shift of the data sequence at the fourth control input, so J was skipped from 
the next discussion. The black-box part of the model I was then approximated 
by an MLP with one hidden layer with weights e i' The dimension of XO was 

considered either 1, 2 or 4. The input of the neural network i was then defined as 

X == (u(k)T,i(k)T)T = (u(kf,xl(k)T,xo(k)Tf 

and the output was defined as 

l' == i(k + 1) = (il(k + 1f,io(k + If)T 

In j we have used linear output nodes corresponding to Xl states and sigmoidal 
output nodes corresponding to iO states. The results of the optimization of the 
neural network's weights e j are discussed in the next section. 

6.3.3 Model parameter optimization 

The length of the data set, used for optimization of the neural network weights 
e j, as well as for validation of the model, was N = 7200. The number of nodes 



122 Chapter 6. Transition Control of a Polymerization Reactor 

in the hidden layer of the neural network NNI was varied from 8 to 14. We 
have performed a number of optimization experiments for a total state dimension 
fi E {5,6,8} and x(k) E lEt" that means defining one, two and four extra hidden 
states XO. 

We observed that taking 5 states of the model led to a model of poor per
formance, while a model with 8 states, compared to a model with 6 states, gave 
us only a marginal improvement. Therefore we decided to continue further ex
periments with the state dimension it = 6. This choice was also driven by the 
effort to limit the dimension of e j with respect to the consumed CPU time by the 
numerical minimization routines. 

We started the optimization of each neural network from the zero initial state 
condition and we performed 20ne j simulated annealing iterations followed by 20ne J 

quasi-Newton iterations to minimize the criterion (4.9). After that we replaced the 
zero initial condition by a mean value of simulated states, for each model com
plexity independently, and we performed additional 20no i simulated annealing 
iterations followed by 20ne j quasi-Newton iterations. The results of this experi
ment are summarized in the Table 6.3. In the first column is shown the number 
of the hidden layer nodes and in the second column is shown the number of op
timized weights. We can see, that already for the smallest model this number is 
quite Significant. In the third and fourth columns are shown the final values of 
the cost function for both estimation and validation data. For each complexity of 
the neural network we restarted the optimization from five different random initial 
points. In the last two columns is shown the total computing time spent in the 
optimization routines, namely in the simulated annealing and in the quasi-Newton 
optimization. Comparing to the number of iterations, we have performed, to the 
number of weights these figures are quite significant. Note, that the simulated 
annealing was always terminated at the maximum number of cost function eval
uations, while the quasi-Newton optimization was in some cases terminated due 
to impossibility of finding a better minimizing point and in the other cases by 
reaching the maximum number of iterations. 

As a good choice for the model of identified process we chose a model with 
12 hidden nodes reSUlting in an estimated cost function value 1.5498e - 5, which 
gives us an output approximation accuracy of 0.3%, computed by (4.10) on page 
48. We estimated also a linear state-space model of 6th order in a form of (4.43) 
on page 74 and it gave us an approximation accuracy of about 16-17%. This 
result demonstrates that the process behaviour shows significant nonlinearities. 
In Figure 6.7 are shown spectra plots of all four output error signals obtained 
with the chosen model. It can be seen from these plots that there is quite a good 
consistency in estimated results except of the solution with the worst cost function 
value. The remaining dynamics in the output errors are most likely caused by the 
process disturbance. 



6.4. State estimation 123 

Table 6.3: Identification results: NN1-number of nodes, noi-number of weights, 
Je-estimation cost function, Jv-validation cost function, SA - total time spent in 
the simulated annealing optimization, QN - total time spent in the quasi-Newton 
optimization (the large computation time figures in the first row of this table were 
caused by execution of a higher priority job). 

NNl no· Je (10 -5) Jv (10 -5) ,SA [sec) QN [sec) 
8 142 3.2657 3.2495 33852 90233 

1.9874 1.9275 3780 28351 
2.1022 2.1005 3985 51122 
2.0257 1.9812 3052 26150 
1.9727 1.9171 4300 46301 

9 159 2.6389 2.6236 3710 22838 
2.5106 2.2996 2173 27790 
2.0429 1.9782 1767 13934 
3.0581 2.9221 2052 28513 
2.2956 2.2063 1770 13551 

10 176 1.6828 1.6320 2060 48338 
1.8158 1.8409 5156 35474 
2.2748 2.2614 2389 56271 
1.7987 1.8388 5156 35474 
1.9857 1.9321 2389 56271 

11 193 1.6699 1.6579 2476 24537 
1.7841 1.7734 2378 22178 
1.6925 1.6889 2447 23203 
1.6157 1.5747 3061 23606 
1.6424 1.6538 2537 21270 

12 210 2.4552 2.4751 7591 43386 
1.5953 1.5792 4547 53573 
1.6806 1.6022 4704 30174 
1.5721 1.5529 4872 35692 
1.5498 1.5740 4794 30104 

13 227 1.5747 1.6028 5370 36628 
1.6092 1.6034 5408 36124 
1.5731 1.5392 5417 40071 
1.6409 1.6230 5636 39506 
1.5531 1.5703 5384 36450 

14 244 1.7161 1.7011 6206 48889 
1.5644 1.5849 5946 93622 
1.5209 1.5587 7758 94500 
1.4925 1.5504 5962 53676 
1.5727 1.5528 6091 164523 



124 Chapter 6. Transition Control of a Polymerization Reactor 

10~r=====~~-1 

0' 10~ 

Frequency [rad/s] Frequency [rad/s] 

Frequency [rad/s] Frequency [rad/s] 

Figure 6.7: Estimated model output error spectra 

10~.-------~--.---..-, 

0' jO~ 

10~ 
10-3 1Q-l 10" 10' 

10-1; 
10~ 10-~ 10-1 10' 

Frequency [rad/s] Frequency [rad/s] 
10-:1- 10-~ 

~ 10"' "-Jt 10~ 

10-5 

10.3 10-2 10-' 10' 
10-~ 

10~ to-~ 10·' 10' 

Frequency [rad/s] Frequency [fad/s] 

Figure 6.8: Estimated model output error spectra for validation data 



6.4. State estimation 125 

6.4 State estimation 

The second step in our controller synthesis algorithm is the state observer design. 
That is done via an estimation of a nonlinear filter gain 9 which is added to the 
previously estimated simulation model of the process. We parametrized the state 
observer as a single-stage ahead state predictor (4.37) with a gain 9 parametrized 
by (4.42e) on page 73. We assumed, that the process nonlinearity is not that big 
that we should take a more complex parametrization of the filter gain fj to obtain a 
sufficient accuracy of the state estimates. The nonlinearity of 9 was approximated 
by a neural network with one hidden layer with variable number of nodes. The 
number of neural network inputs was 4 and the number of neural network outputs 
was 6. By varying the number of hidden nodes from 4 to 9 we optimized an 
additional from 50 to 105 weights 8i/, to the 210 weights 8! of the simulation 
model which were fixed during this optimization. 

These optimization results are summarized in Table 6.4. Initial values of pa
rameters 8i/ were generated at random. The dash "-" symbol in this table means, 
that the optimization got stuck in a local minimum with a very high value. We can 
see, that variations of the performance of the observer given by different neural 
network complexities are not that big and we also can see that the estimated and 
validated cost values are consistent with each other. The smaller values of the 

Table 6.4: Observer design results: N Nr-number of nodes, no. -number of weights, 
ie-estimation cost function, iv-validation cost function 

NNI no!; ie (10 6
) iv (10 -6) 

4 50 2.3444 2.1063 
2.3610 2.1234 
2.3299 2.1028 

5 61 2.3506 2.2149 
2.2676 2.0220 
2.3245 2.1349 

6 72 - -
2.2979 2.0411 
2.2743 2.0334 

7 83 - -
2.2449 2.0011 
2.2413 2.0100 

8 94 2.2199 1.9914 
2.2410 2.0151 
2.2187 1.9901 

9 105 2.2212 1.9793 
2.2295 1.9992 
2.2247 1.9835. 



126 Chapter 6. Transition Control of a Polymerization Reactor 

validation cost function compared to the estimation cost function were seen also 
in Table 6.3 and are probably caused by a lower level of the noise in the validation 
data set. As a good approximation of the observer gain 9 we have chosen a neu
ral network with 6 nodes with a final value of the cost function 2.2743e-6. The 
spectrum of predicted output errors y(k) - y(k) produced by this state observer 
are shown in Figure 6.9. In the case of the first output Q, there are still some low 
pass effects present in the prediction errors. These may be caused by the model 
errors. A better solution would require a re-estimation of the process simulation 
model with a higher complexity of the neural network. We could also try to further 
optimize the filter gain 9 parameters or to increase the complexity of the neural 
network. 

Finally, we have checked for distributions of estimated observer prediction er
rors y(k)-fj(k), because they are going to be used later on in the controller design 
stage. In Figure 6.10 are shown estimates of probability density functions of inno
vation sequences by means of histograms (solid lines). In the same plots are shown 
also Gaussian probability density functions (dashed lines). The mean value is zero 
in all cases and the standard deviations are (J = (1.6,2.1, 2.2, 2.3)1O~3, estimated 
by 

N-l 

for i = 1,2,3,4. We can see that the estimated p.d.f. of prediction error sequences 
are close to those of the Normal distribution. 

6.5 Controller design and validation 

The last step of the transition controller design algorithm is the design of a state
tracking feedback controller. The design proposed in the Chapter 5 will be followed 
and demonstrated. 

First of all, we define a set of equilibrium points J.l = (Xe, ue) of the estimated 
model by computing a couple of solutions of the equation 

Fror this porpose we have used the MAT LAB function fsolve. m and we have found 20 
different equilibrium points, defining the set IE. Next, we have chosen 3 operating 
points out of this set, namely (OP!, OP2, OP3 ), which define a set of six possible 
state transitions among them. The state reference signal r was chosen as a sequence 
of low pass filtered unit steps scaled to the proper initial and final equilibrium 
values to specify a sequence of transitions 



6.5. Controller design and validation 127 

10
4 10-' 

10-< 

(yl0'" ~10-6 

10" 

10-' 
1Q-2 10' 

10'" 
10'" 

Frequency [rad/s] Frequency [rad/s] 
10'" 10-< 

10"'L-~--~~------~~ 
10'" 10' 

Frequency [rad/s) Frequency [rad/s] 

Figure 6.9: Observer validation results: Spectra plots of prediction errors for all 
four outputs. 

3;O,-~~--__ ----__ ---, 

300 

250 

200 

150 

100 

50 

_gL01-~..L.-~--"""------,JO.Ol 

250,---------------, 

200 

150 

100 

50 

-8.0 ... ,---"---~--.,..".~-,,-'O.Ol 

05o,-------------, 

000 

150 

100 

50 

200,-------------------, 

150 

100 

50 

..a.OL,-=:-,---~--:--"""'--O~.01· 

Figure 6.10: Probability density function estimation of prediction errors for all 
four outputs 



128 Chapter 6. Transition Control of a Polymerization Reactor 

Each reference input signal was filtered by a first-order filter given by 

P,'(z) = 1 - exp( -l/T;) < . {I 4 5 6} 
( /) 

lor ~ E ,2,3", 
z - exp -1 Ti 

where the index i stands for the reference input. The time constants Ti were a 
priori chosen with respect to the process dynamic as follows 

71 = 8, T2 = 8, 72 = 12, 72 = 30, 72 = 10, 72 = 20 

The first two reference signals stand for the state components representing the 
production rate Q and the temperature Te. These outputs show faster dynamics 
then other state components, mainly due to effects of primary controllers. The 
third and fourth state component, describing the concentrations of the monomer 
C2 and the co-monomer Cx in the gas cap show slower dynamics. Moreover, the 
dynamic of co-monomer is much slower. The last two states are hidden states 
without a physical interpretation and therefore are their responses judged using 
the estimated model. Notice also, that the process was tested in a low pass band 
and therefore the choice of reference signal must be done also in this respect. 

The eigen frequency of filters used to pre-filter the test input signals was 0.08 
rad/min which corresponds to a time constant about 2.5 samples. The lowest time 
constant, used for pre-filtering of the reference signals, is chosen with this respect 
and a safety margin is taken as worse model performance is to be expected at 
higher frequencies. 

The controller was optimized using the set-up shown in the Figure 5.7. We 
minimized the criterion (5.21) combined with (5.12). We have chosen to = 0 and 
tf = 75 hours resulting in 900 samples in a single transition. The controller k was 
parametrized by an MLP with one hidden layer. 

At the first instance we performed a few optimization experiments using dif
ferent complexities of the controller neural network and different penalty matrices 
Q and R in (5.12). We also varied the integration time constant a in (5.17) within 
an interval (0.99, 1), starting wit a value 0.99. All these experiments where done 
with a choice of eref = O. At the first instance we had observed, that for smaller 
values of t f and a choice of a = 1 the closed loop response tend to show an unsta
ble pole in the local linearization of the closed loop around the final equilibrium 
point. A typical result showing this kind of solutions is shown in Figure 6.11. It 
becomes clear, at this point, why we have introduced an integration time cOnstant 
a < 1 in (5.17) on page 102. By performing a couple of minimization experiments 
we have experienced that a random initial guess for the controller neural network 
parameters with a < lIed more likely to a stable behaviour of the closed loop. By 
a gradual increase of a to a final value a = 1 we managed to obtain a stable closed 
loop also for the choice of a = 1. 

The final results of the controller design are shown in Figure 6.12 and Figure 
6.13, These results were obtained using weighting matrices 

Q = diag(0.5, 0.1, 0.1, 0.02, om, 0.01) 

R = diag(O.l, 10,2,0.01) 

(6.1) 

(6.2) 



6.5. Controller design and validation 129 

0.04 0.2' 
1.25 

0.035 0.23 

0.03 0.22 

0.025 Xl (k) L2 x2(k) 0.21 

0.02 Tl (k) T2(k) 0.2 

0.015 0.19 
1.15 

0.01 0.18 

0.005
0 400 800 400 

0.17 
SOO 0 400 BOO 

k k k 

oms 0.385 

0.3 
0.07 

x4{k) xs(k) 0.38 

0.065 T4(k) 0.28 rs(k) 
0.375 

0.06 

0.26 
0.055 

0.37 

005
0 

0.24 0.365 
400 SOD 0 400 BOO 0 400 800 
k k k 

Figure 6.11: Unstable state transitions due to a "bad" choice of t f = 800 and 
a = 1 

It was also found out to be advantageous to add an extra penalty term to the cost 
function (5.12) in the earlier stages of the optimization based on the computed 
control equilibrium values. This term had the following form 

where ur{k) is a control reference signal chosen as a sequence of unit steps simi
larly to the choice of the state reference, but this time without pre-filtering. The 
weighting matrix Rr was chosen as follows 

Rr = diag(O.OOl, 0.001, 0.001,0.0001) 

This extra term helps to keep the simulation of the closed loop in estimated validity 
bounds of the neural network of the modeL Note, that the extrapolation of neural 
network models is in general poor and a random initial guess for the controller 
neural network weights will, in general, not guarantee that all signals in the closed 
loop stay in their proper regions. 

In Figures 6.14 and 6.15 we have shown zoomed estimated trajectories of all 
six transitions for both the control input and states, respectively. Each column 
in these figures corresponds to a particular control input or to a model state and 
each row corresponds to one of six estimated transitions .. 



130 Chapter 6. Transition Control of a Polymerization Reactor 

Recall, that the previous optimization of the controller was done with ere! =: 0 
(see Figure 5.7). The last step of the controller estimation was a further optimiza
tion of the controller using a nonzero ere! (k) signal. Now, we defined a control 
criterion with three examples of each of the six considered transitions for a different 
realization of ere,(k). The total length of computed closed-loop signal sequences 
was in this case 17100 data points. Due to high computation costs we performed 
only a modest number of random search iterations. 

The final controller was validated with the original process by a continuous 
time simulation of the closed loop in SIMULINK. The simulation scheme used for 
this experiment is briefly discussed in Appendix B. The process was simulated 
with process disturbances and measurement noise. The final results are shown in 
Figures 6.16, 6.17 and 6.18. Basically we can observe from plots in Figures 6.12 
and 6.16 that the time response of the controller was increased and that is in a 
sort of de-tuning of the controller when optimizing it with noise. This suggests 
that there will always be a trade-off between the disturbance reduction and the 
tracking accuracy. We can also observe an offset in steady-state values of the first 
output, which was the production rate Q. The cause of this may be in a poor 
performance of the filter gain 9 with respect to this output which was showing a 
rather poor performance at this output already before (see Figure 6.9). 



6.5. Controller design and validation 

100 

90 

~ so 

70 

60 
a 

2.2 

c0 2.1 

2 

1.9 a 

0.35 

~ 0.3 

IS 
---~ 0.25 

3.4 

3.2 

2.8 

2.6 a 

50 

50 

50 

50 

{ 

100 150 200 250 

l 
l 

100 150 200 250 

I 
100 150 200 250 

! 

100 150 200 250 

Time [h] 

131 

l 
300 350 400 450 500 

I 
{ 

300 350 400 450 500 

(\ 

1 
l 

300 350 400 450 500 

\ 

l 
300 350 400 450 500 

Figure 6.12: Estimated control inputs u(k) for the neural model without the 
disturbance (ere! = 0) 



132 Chapter 6. Transition Control of a Polymerization Reactor 

~ :J " ! r: !, I, · : 1 
o 50 100 150 200 250 300 350 400 450 500 

~ :~f >, l ,I: I I' l : j 
o 50 100 150 200 250 300 350 400 450 500 

<l : \' ~ : I ~ ~: ! : 1 
a 50 100 150 200 250 300 350 400 450 500 

~OAt :L, [1, § ,j 
0.3 o 50 100 150 200 250 300 350 400 450 500 

~e:j ',. ! 'I' ; :1: ~ :J 
o 50 100 150 200 250 300 350 400 450 500 

?<:r:r ~ ,l: c, ~ :1 
0.340:-----------:':50 ~100 150 ----=------=-=-200 250~300 35'-:--------::-:0 400 ~450 500 

Time [h] 

Figure 6.13: Estimated state transitions without the disturbance (ere! = 0): 
dashed line - reference signal r{k), solid line - estimated model state :i(k) 



6.5. Controller design and validation 133 

Time [h] 

Figure 6.14: Zoomed control transitions at first 100 samples. Columns stand for 
4 control inputs and rows for 6 different transitions 



134 Chapter 6. Transition Control of a Polymerization Reactor 

Time [h] 

Figure 6.15: Zoomed model state transitions at first 100 samples. Columns stand 
for 6 states and rows for 6 different transitions 



6.5. Controller design and validation 

U 
2-

~ 

~ 
C4 

~ 

~ 

110 

100 

90 

BO 

70 

60 o 

2.2 

2.1 

1.9 
0 

0.35 

~ 0.3 

r:S 
-........ 
rJ 0.25 

:;;:: 3.2 -........ 
bO 

2S 
~ 

2.8 
a 

( 
50 100 150 200 250 300 

\ 

50 100 150 200 250 300 

50 100 150 200 250 300 

Time [h) 

135 

I 

350 400 450 500 

j 
r 

350 400 450 500 

350 400 450 500 

350 500 

Figure 6.16: Validated control input on a "real" process with disturbances and 
a measurement noise 



136 Chapter 6. Transition Control of a Polymerization Reactor 

20 

15 
til --b.O 10 ~ 

0' S 

0 
0 

120 

\.) 100 
2...., 

~ 80 

50 100 lS0 

.......... 
~. 

50 100 150 

200 250 300 350 400 450 500 

'1 '1 

J l 
.. 

200 250 300 350 400 450 500 

O.4,....---,--,----r--,----,---,----,---,----,-~__.___, 

0.3SI"fY'WIIHtW_ 
<if 
& 0.3 

~0.25 
0.2 

0.lS0'----S'-0--10'-0--1'-50----c2'-00c---2-'-SO=---3-'-00--3-'-SO--40-"0.,---45c-'-::-0--5:c'0-::-0~ 

'J 

0.4 

0.35 

0.3 

0.25 

!.... 
0.2 

0.15 o 

..... 

J 

50 100 150 

".... 
.,.,....~ 

~ 
I 

\ 

200 250 300 350 400 450 500 

Time [h] 

Figure 6.17: Validated outputs of the real process: dashed line - assumed output 
reference, solid line - true process output 



6.5. Controller design and validation 137 

o :~t ,:5 :_f ~ ,I' ': ,l 
o 50 100 150 200 250 300 350 400 450 500 

~ :~p .. 'l., "~. ('"""'1 .: .r:''''~g 
o 50 100 150 200 250 300 350 400 450 500 

G ,:f- ',,' i. J ,.j" ""\ , .' - ." r'"'' .:, '1 
s- 1l _ ""~"""""""-.L . _ _ . rHo · _ __ 

0.5 '--------'-----'-------'------'-----'----"-------'------'-----'----'---' 
o 50 100 150 200 250 300 350 400 450 500 

~M~' 5,.-:3 
0.2 '--------'-----'-------'------'-----'----"-------'------'-----'----'---' 

o 50 100 150 200 250 300 350 400 450 500 

~~::r ',: i 'I: ~:l ~ :] 
o 50 100 150 200 250 300 350 400 450 500 

0.4~ '7'of 0.381 

0.36_ 

0.340 50 100 150 200 250 300 350 400 450 500 

Time [h] 

Figure 6.18: States of the process model in the controller during its validation 



138 Chapter 6. Transition Control of a Polymerization Reactor 

6.6 Summary 

The simulation example presented in this chapter clearly showed strong and weak 
points of the the proposed controller synthesis. The strong points are: 

1. A carefully estimated and validated simulation model of the process guar
antees a good level of robustness of the controller with respect to modelling 
errors and process disturbances. 

2. The process disturbances are handled very well by the designed neural state 
observer. 

3. The controller is a nonlinear static state feedback where the process esti
mated state is extended with integrator states. 

4. The process constraints are handled by the choice of the reference signals 
and by the choice of weighting matrices in the control criterion. 

The weak point of this controller design is that the all involved design steps 
are translated to a minimization problem of a non-convex function. This results 
in a large computational time. 



7 Conclusions and 
Recommendations 

7.1 Conclusions 

Recently, a large variety of control techniques concerning industrial process control 
based on neural networks was proposed. Often authors claim that their method 
is suitable for control of an unknown nonlinear system. They still implicitly make 
strong assumptions on the available a priori information. Frequently the assump
tion on the availability of a full process state for the feedback is made, see e.g. 
[68]. More realistic are approaches based on predictive control techniques, but 
authors often present simulations of these techniques without considering process 
disturbances [62]. A state-space approach to modelling and control using neural 
networks was recently elaborated on [65, 64]. 

Our approach to controller design differs from these techniques mainly due 
to following: We estimate a grey-box state-space simulation model of the process 
with a physical meaning of a part of state components; a neural state observer 
is parametrized and estimated independently of the process model so that the 
controller can cope with pmcess disturbances. The reference signal specification 
can be based either on available a priori knowledge or can be optimized for the 
estimated simulation model. The final controller is based on dynamic output 
feedback with a structure similar to a linear LQG design providing us with better 
insight into the controller functionality than a complete black-box design. 

In the following we summarize the conclusions of this thesis: 

• According to the simulations we have done, we can conclude, that the con
trol strategy proposed in this thesis is a powerful tool for controlling com
plex nonlinear systems while achieving a high level of performance. It shows 
robustness with respect to process disturbances and process uncertainties, 
mainly due to the fact that the controller is based on a grey-box simulation 
model of the process supplemented with a filter gain to predict the next pro
cess state. This is also supported by the state-space approach we adopted 
as it allows us to include a priori process knowledge into the model param
etrization. Furthermore it allows us to do a more proper estimation and 



140 Chapter 7. Conclusions and Recommendations 

validation of the model as part of the state vector has a physical meaning. 
The controller is completed with a neural nonlinear static state feedback, if 
necessary supplemented by a dynamic component in the form of integrators. 

• Another important aspect of the proposed controller design is its structure 
and the resulting systematic design. The structure of the controller is dic
tated by: 

1. Grey-box state-space model estimation based on measured process data 
and parametrized by a combination of a known analytical part and a 
black-box neural network. The estimated model is a nonlinear simulation 
model of the process dynamics optimized to predict the process outputs 
over a long horizon terms. 

2. Neural state observer design to estimate a process state from disturbed 
process data. The observer takes the information from the estimated 
process model and adds a correction to model state predictions pro
cessed by means of a nonlinear filter gain from an error between the 
true and predicted process outputs. The filter gain is parametrized by 
a static neural network. Two types of a state observer are considered in 
this thesis: a single stage ahead predictor and a current state filter. An 
important aspect here is that the filter gain is parametrized and esti
mated independently of the simulation model and therefore it preserves 
the simulation capabilities of the state observer. 

3. The dynamic state-feedback design is being optimized such that the 
model states follow a priori defined trajectories to steer the system 
from one operating point to another. Provided that the model is ac
curate enough, the process outputs will converge also to correct values. 
A presence of physically defined states in the model, provides us with 
an easier way of reasonning when modifying the controller parametri
zation and/or the feedback structure, e.g. in order to obtain better 
convergence of the optimization algorithm. At the same time we can 
avoid a plenty of trials and errOrs in the design. 

• In general, a neural network training task leads to a non-convex optimization 
problem. Structuring of the controller design allows us better access to this 
problem as we do it in three, "relatively simple" steps: model estimation, 
filter gain estimation and state feedback estimation. In each step, a static 
feedforward neural network is trained where all the dynamics are put outside 
of the neural network. 

• The design is carried out in state-space domain. This approach was found 
to be conceptually and algorithmically more attractive than adopting in
put/output domain. By conceptual advantages of the state-space approach 
we mean the opportunity of incorporation of a priori process knowledge into 
the model parametrization, better access to control problem definition and 
also dealing with the process constraints. By algorithmical advantages we 



7.2. Recommendations 141 

mean an easy and effective way of translation of the design algorithms into 
digital computer programs. The state-space approach provides us also with 
more freedom as we usually control more process states (estimated) than 
process outputs. This provides more freedom in specifying reference signals. 
The controller is a static neural network and consequently, it is easier to 
estimate such a controller by numerical optimization techniques. 

• When dealing with a control problem related to a practical process we have 
to face a set of constraints coming from physical process limitations and 
from safety considerations. These constraints concern both the modelling 
issues and controller design issues. Handling constraints is always a diffi
cult task, especially if the problem is of a non-convex type. Moreover, as 
we parametrize all unknown nonlinearities by neural networks, we are faced 
with another set of constraints that define validity of these nonlinear approx
imations. We include these constraints into the design via an optimization of 
reference signals in time-domain by means of solving a suitable nonlinear op
timal control problem off-line. The constraints can also be handled by using 
a priori knowledge in specification of proper reference signals which satisfy 
the process constraints with some safety margins. The controller then has 
to guarantee that the process remains close to these trajectories. 

• In practice, the proposed controller synthesis will differ from the one demon
strated in Chapter 6, as we will not have such a freedom in the choice of 
testing signals to generate the data for the model estimation. The type of 
data, which are available in practice, consist of a large number of transitions 
performed on the process. A model, estimated using these data, will be 
tuned to very specific nonlinear regions of the process dynamics where the 
later transitions will take place. We may expect that the controller designed 
for the specific nonlinear reagions ofthe process dynamics will perform better 
than one being designed for a broad range of the process nonlinearities. 

• We did some preliminary experiments with nonlinear multi-rate sampled 
neural state-space models discussed in Section 4.5.3 on page 81. These are 
novel neural state-space models based on different time intervals for updates 
of states of the model. These models could be applicable for an easier iden
tification of stiff dynamics. 

• Neural network training remains is the most time consuming part of the 
proposed controller design algorithm. This is caused by the non-convexity 
of this problem and by a high dimensionality of the neural network's weight 
space. For example, the controller designed in Chapter 6 for the FBPR, 
contains in total 366 weights, which had to be tuned. 

7.2 Recommendations 

• What concerns the controller design, presented in Chapter 6, we would rec-



142 Chapter 7. Conclusions and Recommendations 

om mend to perform a couple of transitions with the designed controller, 
record them and repeat the design using these data to see if there is any 
improvement in the performance. 

• As the proposed controller design leads to non-convex minimization prob
lems, one should take some precautions to make these minimizations more 
accessible: 

1. Include a priori knowledge into the model parametrization. 

2. Estimate all initial conditions as well, thich means both for the esti
mated state-space model and integral state of the controller, provided 
that it is included into the feedback. 

3. To save some computing time while to have good level of confidence in 
the chosen neural network complexity, one should always perform a few 
training iterations on a wider range of neural network complexities Then 
he can decide about the most promissing neural network complexity 
which parameters can be further optimized. 

4. Periodic re-scaling of neural network weights to improve numerical con
ditioning of the minimization (see Section 4.5.3, page 84). 

• We would advise building up an expert system for neural network optimiza
tion. Our experience is, that at different stages of neural network training, 
different minimization methods are required for speeding up convergence. 
Moreover, every method requires a set up of optional parameters which de
termine performance, e.g. line search accuracy for the quasi-Newton, a speed 
of temperature reduction in simulated annealing and many more. However, 
we do not have a conclusive recommendation in this respect. We found out, 
that trying high accuracy for line search in quasi-Newton leads to extensive 
computing time whereas it could be more effective using a few extra iter
ations. To optimize all these parameters, e.g. by simulated annealing, we 
soon found out that the available computing power was too smalL 

• Some attention should be given also to the further improvement of the soft
ware routines we developed for simulation and estimation purposes of this 
work. Though some of these routines were carefully optimized, like the for
ward neural network evaluation path and the backpropagation path, there 
are still places which were not programmed efficiently. These concern mainly 
data storage and update during the neural network training. Notice, that 
when dealing with multivariable systems and large data sets, this issue should 
not be underestimated. At present, the available software is a bundle of un
documented C functions and MATLAB macros to carryon the design at different 
steps. The data transfer from one program to the next one is done manually. 
Also the analysis of all intermediate results is done manually. Automation of 
these steps would speed-up the design and avoids mistakes in data transfer. 



A System Transformations 

In this appendix we describe methods we frequently use to approximation a con
tinuous time system by a discrete-time systems for computer simulation purposes. 

The transformation of a continuous time system to a discrete-time system can 
be determined by the approximation of the first derivative involved in (2.Ia). If 
we approximate the first derivative by a forward difference 

• () --,x (,-t ...:.-+-,7 )'--_X--'(c.-'-t) x t ~-
7 

where 7 > 0 is small with respect to the time variation of x(t), and we substitute 
this approximation into (2.Ia) we obtain an approximation 

x(t + 7) = x(t) + 7 f[x(t), u(t), w(t)] (A.I) 

When T is considered as being the sampling time T. and we index x(t) as x(k) and 
x(t + T) as x(k + 1) we immediately obtain a description of type (2.3). 

A more accurate derivative approximation is obtained when using its central 
difference approximation 

. ( ) x(t + r) - x(t - r) 
x t ~ 2T 

A discretized version of (2.Ia) then gets the following form 

x(k + 1) = x(k -1) + 2rf[x(k),u(k),w(k)] (A.2) 

while assuming an indexing in a similar way to the previous case. To rewrite the 
last formula into the form of (2.3a) we have to define a new state vector consisting 
of x(k) and x(k + 1). This observation brings us to the following remark. 

Remark. The state dimension of a discretized system does not necessarily have 
to coincide with the state dimension of its continuous time system. 

In general we can expand the solution of (2.1a) at a certain time moment into 
a Taylor series as follows 

x(t + T) = x(t) + X(t)7 + X(t)72 /2 + ... + XU)(t)T j jj! (A.3) 



144 Appendix A. System Transformations 

where j is the order of the series. By consecutive differentiation of the right 
hand site of (2.1a) with respect to time t we can obtain all the necessary time 
derivatives of the state vector for the expression (A.3). The speed of convergence 
of the Taylor series (A.3) is given by the choice of the step T and the accuracy of 
the approximation is controlled then by T and j. 

In all of the introduced system disretizations the accuracy of the discrete-time 
model is given by the choice of T. To ensure certain accuracy we relate T to the 
system sampling time T. by T. = T I, where I E IN, I > 1. 

For the case of simplicity and the ease of programming is for computer simula
tions often chosen in (A.3) j = 1 which results in the well known Euler method of 
integration of ordinary differential equation or j = 2 which seems to be sufficient 
for most simulations provided that the step size T is properly chosen. If the system 
nonlinearity is complex it might be to cumbersome to evaluate by hand analyti
cally higher order derivatives of x(t). Using some of the symbolic mathematical 
calculation software package (e.g. MAPLE) can greatly help here. We have observed 
some advantages of this approach which are listed bellow 

1. Easiness of the siscretization accuracy control, namely by T and j. Notice, 
that the analytical formulas for time derivatives of x(t) are independent of 
T. 

2. A symbolic mathematical calculation language, like MAPLE, was shown to 
be a very powerful tool to compute analytically Taylor series expansions of 
nonlinear functions and export them as a high level computer language (e.g. 
C, C++) subroutines and then link them with simulation or optimization 
programs. 

Another approach to the problem of siscretization of the system (2.1) is to 
approximate the integral in the following expression 

t+r 

X(t+T) =x(t) + J fc[x(t'),u(t'),w(t')]dt' (AA) 

The most straightforward way to approximate this integral is to compute 

T fc[x(t), u(t), w(t)] 

while obtaining back the result (A.I). This simple integration method is often 
modified as follows 

x(i + T) = x(t) + ~ (fc[x(t) , u(t}, w(t)] + fc[x(t + T), u{t), w(t)l) (A.5) 

which is an implicit nonlinear equation for x(t + T). To solve this equation we can 
start from an Euler estimate a = x(t) + Tfc[x(t),u(t),w(t)] and iterate (A.5) as 
follows 

a(l + 1) Xl (t) + Hfc[x(t), u(t), w(t)] + fc[aU), u(t), w(t)]) 

for I = 0,1, ... 



145 

until a convergence is obtained and then put x(t + T) = a. If we would perform 
only one iteration of (A.5) we obtain an explicit siscretization rule as follows 

x(t) 

x(t + T) 

x(t) + T fc[x(t) , u(t), w(t)] 

x(t) + i (ic[x(t) , u(t), w(t)] + fc[x(t) , u(t), w(t)]) 

known as Heun method. 

(A.6) 

To obtain a more accurate discretizations we can consider for instance the 
Runge-Kutta methods. The simpler methods are applicable for computer sim
ulations when the computing time has to be short, e.g. in minimization algo
rithms. More complex methods are applicable mainly for off-line simulations, e.g. 
in SIMULINK. 



B Simulation Model of the 
FBPR 

In this Appendix we show the SIMULINK scheme of the simulated process and the 
controller, to give the reader an impression about the complexity of the problem 
we were treated in Chapter 6. 

The main simulation scheme is shown in Figure B.l. One can easily recognize 
there the reactor block, the heat exchanger, the inner-loop pressure controller 
and the outer-loop transition controller. The inputs of this scheme include: the 
reference input, the process disturbance input and the measurement noise. The 
water temperature primary PID controller is hidden inside of the heat exchanger 
block. 

The reactor model is shown in Figure B.2. It contains three integrators xl, x6, 
x3 in the main diagram, then three integrators in a linear state-space model of 
the gascap and two integrators in the block of the catalyst activity model. There 
is also a delay of one hour at the sixth input of this diagram. The fCu) blocks 
contain different nonlinear terms. 

In the Figure B.3 is shown the transition controller implementation which re
sembles the proposed controller structure given in Figure 5.7. In this diagram 
f-hat, g-hat and k-hat stand for the process state-space model, for the filter gain 
and for the state feedback, respectively. The output map h [x-hat (k)] is in the 
diagram fixed to a known analytical relation. 



148 

Clockl 

INPUT 

Appendix B. Simulation Model of the FBPR 

SIMULATION MODEL OF THE POLYMERIZATION PROCESS 

)-l-+t------1It--+I C'g 

!--_+I-__ ---''+--+I c,. 
T. 
T. 

a 
Tw 

Th 

L-_-=====~+-______ ~abw 
L---------------~----------~km 

TRANSITION 

CONTROLLER 

PROCESS 

CONTROl.., SYStEM 

Figure B.1: A global simulation diagram 

o 
More Inl0 

~ 
~ 



THcOR~TICAl MOD~L OF THE POLYMERIZATION REACTOR 

l-
in..2 

;:: 
~ 
j:r:l 
!'r 
0 

in_3 S;" 
OG .., 
~ 
0 ,.., 
rt-
i:l" 
Cl> .., 
Cl> 

~ 
'"'" 0 .., 

T. 



150 Appendix B. Simulation Model of the FBPR 

I TRANSITION CONTROLLER 

2r-------------------------~ 

Le.mat 

To File2 

x...,ef(k) 

Figure B.3: Diagram of the controller with three neural networks 



Bibliography 

[1] P. E. An, M. Brown, S. Chen, and C. J. Harris. Comparative aspects of neural 
network algorithms for on-line modelling of dynamic processes. Journal of 
Institute of Mechanical Engineering, 207:223-241, 1993. 

[2] B. R. Bakshi and G. Stephanopoulos. Wave-net: a multiresolution, hierar
chical neural network with localized learning. AIChE Journal, 39(1):57-81, 
1993. 

[3J A. Ben-Tal, A. Melman, and J. Zowe. Curved search methods for uncon
strained optimization. Optimization, 21(5):669-695, 1990. 

[4J M. L. A. Bierman. Identification of a non-linear dynamic system using re
current multirate sampled data neural networks. Report on practical train
ing period, Eindhoven University of Technology, Measurement and Control 
Group, Eidhoven, August 1996. 

[5J S. A. Billings and W. S. F. Voon. Correlation based model validity tests in 
the identification of nonlinear systems. International Journal of Control, 44, 
1986. 

[6J D. Braess. Nonlinear approximation theory. Springer, Berlin, 1986. 

[7J B. D. Bunday and G. R. Garside. Optimization methods in PASCAL. Edward 
Arnold Ltd, London, 1987. 

[8J S. Chen and S. A. Billings. Representations of nonlinear systems: the narmax 
model. International Journal of Control, 49(3):1013-32, 1989. 

[9J S. Chen and S. A. Billings. Neural networks for nonlinear dynamic system 
modeling and identification. International Journal of Control, 56(2):319-46, 
1992. 

[10] K. Y. Choi and W. H. Ray. Fluidized bed reactors for ethylene and propylene 
polymerization. Chemical Engineering Science, 40(12):2261-2279, 1985. 

[l1J O. L. Chua. Global optimization: A naive approach. IEEE Transactions on 
Circuits and Systems, 37(7):966-969, 1990. 

[12J A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal 
functions of continuous variables with the simulated annealing algorithm. 
ACM Trans. on Mathematical Software, 13(3):262-280, 1987. 



152 Bibliography 

[13] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math
ematics of Control, Signals and Systems, 2:303-314, 1989. 

[14] J. F. Davidson, D. Harrison, and R. Clift. Fluidization. Academic Press, 
London, 1985. 

[15] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. 
Computer Journal, 7: 149-154, 1964. 

[16] K. Funahashi. On the approximate realization of continuous mappings by 
neural networks. Neural Networks, 2:183-192, 1989. 

[17J M. J. M. Garderen. Numerical solutions for nonlinear constrained optimal 
control problems in discrete time. Master's thesis, Eindhoven University of 
Technology, Faculty of Electrical Engineering, 1995. 

[18] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the 
bayesian restoration of images. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 6(6):721-741, November 1984. 

[19] P. C. Goosen. Simulation of an overhead crane using neural networks. Master's 
thesis, Eindhoven University of Technology, Faculty of Electrical Engineering, 
1992. 

[20J R. Hecht-Nielsen. Theory of the backpropagation neural network. In Pro
ceedings of the International Joint Conference on Neural Networks, volume I, 
pages 657-664, San Diego, 1989. 

[21J R. Hecht-Nielsen. Neurocomputing. Addison-Westley, Amsterdam, 1990. 

[22] M. R. Hestens and E. StiefeL Methods of conjugate gradients for solving linear 
systems. Research Journal of the National Bureau of Standards, 49:409-436, 
1952. 

[23] K. Hornik. Approximation capabilities of multilayer feedforward networks. 
Neural Networks, 4:251-257, 1991. 

[24] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks 
are universal approximators. Neural Networks, 2:359-366, 1989. 

[25] A. L. Ingber. Very fast simulated re-annealing. Mathematical and Computer 
Modelling, 12(8):967-973, August 1989. 

[26] R.A. Jacobs. Increased rates of convergence through learning rate adaptation. 
Neural Networks, 1:295-307, 1988. 

[27] R.A. Jarvis. Adaptive global search by the process of competitive evolution. 
IEEE Transactions on Systems, Man and Cybernetics, SMC-5(3), 1975. 



Bibliograpby 153 

[28] P. J. Larcombe. The dynamic equations of motion for a horizontally trans
lating two dimensional it N-link inverted pendulum: A symbolic derivation 
using lagrangeS method. Control Group Research Report R-90/12, University 
of Glasgow, Department of Mechanical Engineering, Glasgow, May 1990. 

[29J M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward 
networks with a nonpolynomial activation function can approximate any func
tion. Neural Networks, 6:861-867, 1993. 

[30J S. Li. An optimized backpropagation with minimum norm weights. In IJCNN 
International Joint Conference on Neural Networks, volume 1, pages 697-702, 
San Diego, 1990. 

[31] D. F. Liang. Comparison of nonlinear recursive filters for systems with non
neglible nonlinearities. In C. T. Leondes, editor, Control and Dynamic Sys
tems, volume 20, pages 341--401. Academic Press, 1983. 

[32] R. P. Lippmann. An introduction to computing with neural nets. IEEE 
Acoustics, Speech and Signal Processing Magazine, pages 4-22, april 1987. 

[33] 1. Ljung. System identification: theory for the user. Prentice-Hall, Englewood 
Cliffs, 1987. 

[34] J. M. Maciejowski and R. J. Ober. Balanced parametrizations and canon
ical forms for system identification. In Identification and system parameter 
estimation, volume 2, pages 701-8, Beijing, 1988. 

[35] T. Matsuoka and T. J. Ulrych. Information theory measures with application 
to model identification. IEEE Transactions on Acoustics, Speech, and Signal 
Processing, 34(3):511-517, 1986. 

[36] J. Mazak and J. L. F. Balseiro. Modeling of a fluidized bed reactorfor ethylene 
polymerization. Research project, Eindhoven University of Technology, Dept. 
of Electrical Engineering, Eindhoven, The Netherlands, February 1996. 

[37] J. Mazak, A. A. H. Damen, and A. C. P. M. Backx. Neural state transition 
controller for a polymerization reactor. Journal A, 37(3):34-9, 1996. 

[38] J. Mazak, A. A. H. Damen, and A. C. P. M. Backx. Nonlinear transition 
controller design using neural networks tested on a polymerization reactor. In 
CDC, 1996. to be published. 

[39] J. Mazak, A. A. H. Damen, Weiland. S., and A. C. P. M. Backx. State
tracking control of non-linear systems with unknown dynamics in the presence 
of disturbances. In Proceedings of the American Control Conference, volume 6, 
pages 4270-4274, 1995. 

[40] T. P. McGarty. Stochastic systems and state estimation. John Wiley & Sons, 
Inc., New York, 1974. 



154 Bibliography 

[41] V. S. Mikhalevich, N. N. Redkovskij, and A. A. Antonyuk. Minimization 
methods for smooth nonconvex functions. Cybernetics, 24(4):395~403, 1988. 

[42] B. C. Mikhalevitch, A. M. Gupal, and B. 1. Nopkin. Nonconvex optimization 
methods. Nauka, Moskva, 1987. in russian. 

[43J M. Minsky and S. Papert. Perceptrons: an introduction to computational 
geometry. M.I.T. Press, Cambridge, 1969. 

[44] J. Moody and C. J. Darken. Fast learning in networks of locally-tuned pro
cessing units. Neural Computation, 1:281~94, 1989. 

[45J K. S. Narendra and K. Parthasarathy. Identification and control of dynami
cal systems using neural networks. IEEE Transactions on Neural Networks, 
1(1):4~27, 1990. 

[46] L. Nazareth. A conjugate direction algorithm without line searches. Journal 
of optimization theory and applications, 23(3):373~87, 1977. 

[47] The Numerical Algorithm Group Limited. The NAG Fortran Library Manual 
- Mark 13, 1988. 

[48] J. Park and 1. W. Sandberg. Universal approximation using radial-basis
functions. Neural Computation, 3:246~57, 1991. 

[49] B. T. Polyak. Introduction to optimization. Optimization Software, New York, 
1987. 

[50] M. Post. Modelling and control of a fluidized bed reactor for ethylene poly
merization. Technical Report R92.177/MP, IPeOS b.v., 1992. 

[51J D. Psaltis, A. Sideris, and A. A. Ymamura. A multilayer neural network 
controller. IEEE Control Systems Magazine, 8(2):17~21, 1988. 

[52J G. Qiu, M. R. Varley, and T. J. Terrell. Accelerated training of backprop
agation networks by using adaptive momentum step. Electronics Letters, 
28( 4):377~8, 1992. 

[53J N. N. Redkovskij. A minimization method with nonlinear transformation of 
coordinates. Dokl. Akad. Nauk SSSR, 288(3):556~560, 1986. 

[54] F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of 
brain mechanisms. Spartan Books, 1962. 

[55] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing: Ex
plorations in the Microstructure of Cognition, VoU Foundations. Cambridge, 
MA: MIT Press, 1986. 

[56J L. E. Scales. Introduction to Non-linear Optimization. MacMillan, London, 
1985. 



Bibliography 155 

[57] D. F. Shanno. Conjugate gradient methods with inexact searches. Mathemat
ics of opemtions research, 3(3):244-56, 1978. 

[58] D. F. Shanno and K. H. Phua. Algorithm 500: Minimization of unconstrained 
multivariate functions [E4]. ACM Transactions on Mathematical Software, 
2(1):87-94, 1976. 

[59] F. M. Silva and L. B. Almeida. Speeding up backpropagation. In R. Eckmiller, 
editor, Advanced Neural Computers, pages 151-58. North-Holland, Amster
dam, 1990. 

[60] J. Sjoberg and L. Ljung. Overtraining, regularization, and searching for mini
mum in neural networks. In L. Dugard, M. M'Saad, and I.D. Landau, editors, 
Adaptive Systems in Control and Signal Processing 1992. Selected Papers from 
the 4th IFAC Symposium, pages 73-8. Pergamon Press, 1992. 

[61] H. W. Sorenson. Kalman filtering techniques. In Harold W. Sorensen, editor, 
Kalman Filtering: Theory and Application, pages 90-126. IEEE Press, 1985. 

[62J H. T. Su and T. J. McAvoy .. Neural model predictive control of nonlinear 
chemical processes. In P.K. Simpson, editor, Neural networks applications, 
New York, 1996. IEEE. 

[63] J. Sun, W. 1. Grosky, and M. H. Hassoun. A fast algorithm for finding global 
minima of error functions in layered neural networks. In Proceedings of the 
International Joint Conference on Neural Networks, volume 1, pages 715-20, 
San Diego, CA, 1990. 

[64J J. Suykens. Artificial neural networks for modelling and control of nonlinear 
systems. PhD thesis, Katolieke Universiteit Leuven, Leuven, 1995. 

[65J J. Suykens, B. De Moor, and J. Vandewalle. Static and dynamic stabilizing 
neural controllers applicable to transition between equilibrium points. Neural 
Networks, 7(5):819-831, 1994. 

[66] J. L. Synge and B. A. Griffith. Principles of mechanics. MacGraw-Hill, 
Kogakusha, 1970. 

[67] H. Szu and R. Hartley. Fast simulated annealing. Phys. lett. A, 122:157-162, 
1987. 

[68] J. Tao. Control completely unknown dynamical systems using critic adap
tive neural networks. In H.C. Cihan H. Dagli, M. Akay, and P. ret al.] Chen, 
editors, Intelligent engineering systems through artificial neural networks, vol
ume 5, pages 949-954, St. Louis, 1995. 

[69] H. J. M. Telkamp and A. A. H. Damen. Neural network learning in nonlinear 
system identification and control design. In Proc. of the European Control 
Conf., Groningen, The Netherlands, 1993. 



156 Bibliography 

[70] G. T. Timmer. Global optimization: A stochastic approach. PhD thesis, 
Centrum for wiskunde en informatica, Amsterdam, 1984. 

[71] A. Torn and A. Zilinskas. Global Optimization. Lecture Notes in Computer 
Science. Springer-Verlag, 1989. 

[72] S. Weiland. Theory of approximation and disturbance attenuation for linear 
systems. PhD thesis, Rijksuniversiteit Groningen, Groningen, 1991. 

[73J M. K. Weir. A method for self-determination of adaptive learning rates in 
back propagation. Neural Networks, 4:371-79, 1991. 

[74] P. J. Werbos. Backpropagation through time: What it does and how to do 
it. Proceedings of the IEEE, 78(10):1550-1560, 1990. 

[75] J. C. Willems. Paradigms and puzzles in the theory of dynamical systems. 
IEEE Transactions on Automatic Control, 36(3), 1991. 



Samenvatting 

Dit proefschrift is gewijd aan een studie van het gebruik van neurale netwerken 
voor het ontwerp van regelaars die de proces toestand van het ene werkpunt naar 
het andere sturen. Het voordeel van onze aanpak is, dat we met behulp van 
een enkele niet-lineaire regelaar een breed bereik van process werkpunten kunnen 
bestrijken. Voor praktische toepassingen betekent dit een versnelling van de over
gang van de procestoestand tussen verschillende werkpunten terwijl toch een goed 
prestatieniveau wordt gehandhaafd. 

Onze aanpak bestrijkt aile stadia van een praktisch regelaarontwerp. We be
schouwen: (1) proces modellering in een vorm van grey-box neurale modellen in 
toestandsruimte beschrijving (2) proces toestandsschatting door middel van het 
ontwerp van een niet-lineaire neurale toestandsobserver en tenslotte (3) regelings
aspecten met betrekking tot een niet-lineaire neurale regelaar met behulp van 
toestandsterugkoppIing. 

Ais mathematisch model voor het proces wordt een niet-lineair toestandsruimte 
model beschouwd, geparametriseerd door een combinatie van een a priori bekend 
analytisch deel en een black-box neuraal netwerk deal. In de toestandsvector van 
het model onderscheiden we witte, fysische goed gedefinieerde toestanden en zwarte 
of "verborgen" toestanden. Het model van het proces wordt geschat als een simu
latiemodel om een goede simulatie van de procesuitgang te krijgen over een lange 
horizon. Het neurale net van het model wordt getraind, in een output-error confi
guratie, met behulp van gemeten ingangs- en uitgangsdata. Door de keuze van een 
toestandsruimteparametrisatie van het model kan a-priori kennis over het proces 
op een conceptueel eenvoudige manier worden opgenomen. Hierdoor kunnen we 
ook, in een later stadium, goede referentie signalen voor de regelaar definieren. 

Het simulatiemodel van het proces wordt dan aangevuld met een niet-lineair 
filter, geparametriseerd door een statisch neuraal netwerk, am zo de toestands
voorspellingen verkregen door het eerder geschatte simulatiemodel te verbeteren. 
Verschillende manieren voor de parametrisatie van het filter worden beschouwd in 
dit proefschrift. Het neurale netwerk voor de filtering wordt getraind met behulp 
van gemeten procesdata, onafhankelijke van de simulatiemodelparametrisatie. Dit 
completeert de tweede stap van het voorgestelde regelaarontwerp. 

De transitie-regelaar is een niet-lineaire statische toestandsterugkoppeling, eve
neens geparametriseerd door een neuraal netwerk. Het regelaar-netwerk wordt 
getraind op het simulatiemodel van het proces zodanig dat de modeltoestanden 
voorgeschreven referentietrajectorien volgen. Dit proefschrift bevat een vergelij
king tussen verschillende keuzes voar de toestandreferentiesignalen, indusief een 
optimale keuze. Om eindfouten in het volggedrag te elimineren wordt een inte-



158 Sam en vatting 

gratieactie opgenomen in de gesloten Ius configuratie. Aan de randvoorwaarden 
voor bedrijving van het proces wordt voldaan door een juiste specificatie van de 
referentiesignalen. Deze worden verkregen met behulp van het witte gedeelte van 
het model en een aangepaste keuze van weegfactoren in een regeIcriterium. 

Aile niet-lineaire functies die in verschillende stadia van ons algoritme wor
den geschat zijn geparametriseerd door sigmoidale feedforward neurale netwerken. 
Voor de training van de neurale netwerken maken we onderscheid tussen gradient
gebaseerde, deterministische optimalisatie en stochastische optimalisatie. Een aan
tal methoden wordt in dit proefschrift besproken om tot een effectieve combinatie 
van deze twee optimalisatietechnieken te komen. Deze gecombineerde techniek 
wordt vervolgens gebruikt voor de training van de neurale netwerken. 

In dit proefschrift wordt een aantal voorbeelden gegeven die zowel de model
leringsaspecten als de regelaspecten van dit proefschrift demonstreren. De be
langrijkste voorbeelden zijn: (1) een portaalkraan. Hiermee wordt de modelle
ringsprocedure voor niet-lineaire processen gedemonstreerd. (2) een fluidized bed 
polymerisatie proces. Hiermee worden zowel modellerings- als regelaspecten gede
monstreerd. (3) een niet-lineaire toestandsterugkoppeling wordt beschouwd voor 
een regeling voor een inverse slinger met meerdere links. 



Curriculum Vitae 

Jozef Mazak was born on March 19th , 1963 in Trnava, Slovakia. In 1981 he started 
his university study at the Faculty of Electrical Engineering of the Slovak Technical 
University. He studied at the Department of Automatic Control Systems for Tech
nological Processes where he successfully graduated in 1986. In 1987 he started 
his postgraduate study in the field of control theory. After the political changes in 
Slovakia he left the country in 1991 and started to study telecommunications at 
the Eindhoven International Institute. In May 1992 he received his master's de
gree in telecommunications. Immediately after that he started his Ph.D. research 
at Eindhoven University of Technology in the Measurement and Control Section, 
Faculty of Electrical Engineering. 

Jozef Mazak is married to Diana and has a son Dominik. 



STELLING EN 

behorende bij het proefschrift: 

Transition Control Based 
on 

Grey, Neural States 

van 

JozefMazak 

Eindhoven, 25 november 1996 



I 
There would be no learning, either natural or artificial, without the notion of an 
error: 

Neural net (1949): a computer architecture in which a number of processors are in
terconnected in a manner suggestive of the connections between neurons in a human 
brain and which is able to learn by a process of trial and error - called also neu
ral network. (Merriam Webster's Collegiate Dictionary, 10-th edition, Springfield, 
1993) 

II 
Searching for a local minimum of a non-convex function formed by a neural network 
training problem is like searching for a needle in a haystack. Finding a global 
minimum is even worse. However, it is enough to find sufficiently low function 
values. 

III 
A structure with less than thousand neurons should not be called a Neural Network 
as it is much too simple. It could be called a "quasi Neural-Network" or let's say a 
"O'-function" . 

IV 
Increasing the complexity of black boxes (e.g. neural nets) for the approximation 
of certain functions can be helpful in finding global minima which, in fact, already 
exist for low complexity: the increased complexity may offer more ways with an 
easier access towards the global minima. 

V 
The future development of general control design methods should reflect mainly 
the ideas and skills of the designer, rather than the brilliant theoretical methods 
currently described in the text books, as the majority of them can not be computed 
in practice, no matter how big and fast the computer is. 



VI 
The term "A global optimization method" is misleading. Its meaning is twofold: It 
denotes either an optimization method converging to a global minimum or a globally 
convergent method converging to a local minimum. 

VII 
Preventing computer crashes on the part of the user in the first place is a better 
idea than asking either the computer manufacturer or the system manager for an 
assistance solving them. 

VIII 
A unification of the "Vysegrad" countries with EC has to happen as soon as possible, 
not only in the interests of the Vysegrad countries, but also in the interests of 
Western countries who will benefit from the economic prosperity and the growth of 
household demand in the Vysegrad countries. 

IX 
Photography has a lot in common with neural networks. There are some basic 
formulas which always apply, the rest is based on experience obtained by trial and 
error. 

X 
As soon as there is an expert in the neighbourhood people tend to stop either reading 
manuals or thinking and ask the expert first. 


	Voorblad
	Preface
	Abstract
	Contents
	glossary
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A�
	Appendix B
	Bibliography
	Samenvatting
	Cv
	Stellingen

