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Abstract 

This thesis is devoted to studying the use of neural networks for the design of 
controllers which steer the process state between different operating points. The 
advantage of our approach is that by means of a single nonlinear controller we cover 
a broad range of the process operating conditions. For a practical application this 
means a speed up of transitions of the process state between different operating 
points while maintaining a good level of optimality. 

Our approach covers all phases of a practical controller design. We consider: (1) 
process modelling issues in a form of nonlinear grey-box state-space neural models, 
(2) process state estimation issues by means of design of a nonlinear neural state 
observer and finally (3) control issues related to a nonlinear neural state feedback 
tracking controller. The design takes into account process constraints, process 
disturbances and measurement noise. 

As a mathematical model of the process we consider a nonlinear state-space 
model parametrized by a combination of an a priori known analytical part and a 
black box neural network part. In the state vector of the model we distinguish 
between white, physically well defined states and black or hidden states. The model 
is estimated as a simulation model of the process to obtain a good simulation of the 
process output over a long time horizon. The neural net of the model is trained, 
in output error set-up, on measured process input/output data. The choice of 
a state-space parametrization of the model enables inclusion of a priori process 
knowledge into the model in a conceptually easy way. It also enables us, later on, 
to define proper reference signals for the controller. 

The simulation model of the process is then supplemented with a nonlinear 
filter gain, parametrized by a static neural network, to improve the state pre
dictions obtained by the previously estimated simulation model due to process 
disturbances. Various options for the filter gain parametrization are also consid
ered in this thesis. The filter gain neural network is trained using the measured 
process data, independently of the simulation model parametrization, completing 
the second step of the proposed controller design. 

The transition controller is a nonlinear static state feedback parametrized also 
by a neural network. The controller neural network is trained on the simulation 
model of the process such that the model states follow prescribed reference trajec
tories. A discussion of various choices of the state reference signals, including an 
optimal choice, is also given in the thesis. In order to remove final tracking errors 
an integral action is introduced into the closed loop. The process constraints are 
handled by proper speCification of reference signals, which is done by means of the 
white-box part of the model and then by choosing of weighting factors in a control 
criterion. 
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All nonlinear functions being estimated at different steps of our algorithm are 
parametrized by sigmoidal feedforward neural networks. To train the neural net
work we distinguish between gradient-based deterministic optimization and sto
chastic optimization. A number of methods are reviewed in the thesis in order to 
obtain an effective combination of these two optimization techniques which is then 
used for neural network training. 

There are a number of examples given in this thesis demonstrating both mod
elling issues and control issues involved in the topic of this thesis. The most impor
tant examples include: (1) a gantry crane process to demonstrate the state-space 
modelling procedure of a nonlinear process and (2) a fluidized bed polymeriza
tion process is used to demonstrate both modelling and transition control issues. 
A nonlinear state feedback controller is considered for a swing-up problem of a 
multi-link inverted pendulum. 
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1 Introduction 

One of the most challenging problems of the system theory is the problem of non
linear control of nonlinear dynamic systems. This challenge is interesting not only 
from a theoretical point of view where new theories can be developed but also 
from practical point of view as the majority of technological processes show com
plex nonlinear behaviour within present operating conditions. A typical example 
of an industrial control problem is a transition of process operating conditions from 
one operating point to another. This type of control will also be a general topic of 
this thesis. In the following section we explain why this problem is so interesting 
and put forward problems to be solved. 

1.1 Motivations 

Taking a linear approximation of the process behaviour restricts the control quality 
up to a certain leveL It is quite logical to realize that an increase of the quality of 
the process control can be reached by abandoning the linearity assumptions about 
the process dynamics and trying to treat the control problem in a full nonlinear 
set-up. However, the nonlinearities in the process behaviour and the process di
mensionality might be so high that we will still have to approximate the process 
dynamics with a less complex model but this time on a higher qualitative level 
than using linear models. The linear control theory was brought in the past to 
a very high level by mathematical proofs of optimality and global convergence. 
A tremendous step forward was done in the robustification of linear methods. In 
the nonlinear framework we are faced qualitatively with completely new problems 
which do not exist in the linear framework. These include multiple equilibrium 
points of the system, bifurcations of equilibrium points, periodic solutions, chaos, 
strange attractors and so on. The available analytical methods do not provide uS 
with a practically computational methodology. In practice we have often experi
enced that the nonlinear dynamics of a given process can be much more complex 
than those assumed by existing analytical methods. These are complexities like 
nonlinear time-delayed feedbacks, general nonlinear dependence of the dynamics 
on observed and unobserved inputs, high or infinite state dimensionality. 

Another important aspect concerning recent control systems is that the number 
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of control tasks provided by these systems is still increasing. The market demands 
are pushing manufacturers into producing a wider range of products and there
fore into periodically switching the process production between different operating 
points. A pragmatic solution adopted by large industries at the present moment 
is a control strategy based on a set of linear controllers designed for each oper
ating point. The transition from one operating point to another is realized by a 
sequence of manual control actions. It is clear that manual control is not optimal 
as it is done by an operator using only his process knowledge without doing any 
optimizations at all. Optimization and consequent automation of this operation 
might result in an improvement of a production performance, for instance, just 
by speeding up the transition. Note that the products made during the transition 
are usually of wide speCifications type as they do not meet prescribed the high 
specifications. 

To make our research motivations more clear we present at this point an exam
ple of a nonlinear dynamic control process, namely a fluidized bed polymerization 
reactor (FBPR) widely used in petrochemical industries, for example for an ethy
lene polymerization. This type of reactors can also be found in biotechnological 
and coal industries. The process itself is schematically depicted in Figure 1.1. 
This process will be discussed in detail later on in Chapter 6 when we will demon
strate our control algorithms. The process consists of a reactor, a heat exchanger 
and primary controllers. The reactor is fed at the bottom with monomer and co
monomer masses in gas form. These polymerize in the reactor with the help of a 
catalyst. The mass in the reactor is composed of solid particles of polymer through 
which bubbles of gas rise. Recycled, un-reacted gases are cooled down in the heat 
exchanger and then added to the incoming gas flow. The temperature of the cool
ing water Twin the heat exchanger is controlled by a primary PID controller to 
stabilize the process dynamic. The mass input flows are manipulated by a pres
sure controller which keeps a constant pressure at the top of the reactor through 
compensation of fast process disturbances. The final product is withdrawn from 
the reactor at a rate Qo. 

The dynamics of the FBPR are quite complex, and as we stated at the begin
ning of this section, this is often the case. A rigorous modelling of this process 
is based on a set of simplifying assumptions. Basically we take here the mass 
and energy balances to build up a mathematical model which is then of restricted 
fidelity. We assume, for example an average size of solid particles and gas bubbles 
in the reactor. This might not be such a bad assumption, but if it is not properly 
chosen, the overall mathematical model might be wrong [14]. This and similar 
model simplifications limit the performance of the control system being designed 
using these models. If the performance of a control system has to be further opti
mized we have to consider first the process modelling issue and try to build up a 
more accurate mathematical model of the process dynamic. This would enable us 
to increase both robustness and performance of the control system. 

A practical operation of technological processes is often complicated by the fact 
that the process behaviour is influenced by disturbances. For instance, in the case 
of the polymerization reactor, it can be a fouling of the heat exchanger, impurities 
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in the input mass flows or the catalyst activity fluctuations in the reactor. The 
main difficulty is not in determining the stochastic characteristics of disturbances, 
these can be estimated rather well, but in their nonlinear effect to the process 
outputs. Existing theories of nonlinear stochastic systems assume additive distur
bances either at the process state or at the process output. If we could model also 
the effect of disturbances to controlled outputs we could then further improve the 
quality of control. 

Along with the problem of a complex nonlinear process behaviour and process 
disturbance we are also faced with the problem of high process dimensionality. 
By this we mean that the process dynamics are described by a large number of 
differential equations whose order can also be rather high. Often these equations 
contain also partial derivatives which further complicate the process description. 
For instance, a heat exchanger is described basically by partial differential equa
tions, but to translate these equations to ordinary differential equations we have to 
consider a rather large number of equations. For such a high-dimensional nonlinear 
dynamic system it is very cumbersome to use analytical techniques. 

In practice, we often have a good prior knowledge about the process we are 
going to control. The first principal dynamic relations concerning some of the 
process variables are usually also known. In the case of the FBPR these are for 
example the concentrations of the monomer and the co-monomer, as we know how 
they relate to the pressure. This also means that the dynamics of the process 
is partly known and the known part of the process dynamics can be explicitly 
brought into the model parametrization. 

From the previous discussion it is clear that for the controller design a good 
mathematical model of the process dynamics and disturbance effects will be un
avoidable. A good model should not be too complex, as it will be used later on 
in the further optimization of the controller, and it should not oversimplify the 
process dynamics. In general, it should be a nonlinear model. The controller, in 
general, should be nonlinear as well. In our design we have chosen a state-space 
realization of the controller. Our motivations for this choice are: (1) having a 
possibility of an easy way of including a prior process knowledge about the pro
cess into the model; (2) to be able to parametrize approximated nonlinearities by 
static nonlinear functions; (3) to be able to model the effect of disturbances at 
the process output; (4) the controller is a static state feedback. The state of the 
process is, in general, not measured directly and has to be estimated. 

Therefore an immediate problem arising at this point is how to parametrize the 
nonlinear functions of all the components of the controller, which will be designed. 

1.2 Neural networks 

Let us turn Our attention for a while to biological systems, e.g. the human body. In 
daily practice we perform a number of control tasks without noticing any problems 
there unless we are in a good health. Presumably, these are optimal and efficient. 
But do we know how are we really solving these tasks? Isn't it also possible to 
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mimic this approach in industrial process control? A human body is also a com
plex nonlinear dynamic system. The decisions and movements we make represent 
similar problems we meet in the fields of pattern recognition and control. We know 
that all these decisions and pulses leading to control actions are being determined 
in our brain. We also know, that our brain is a complex system of neurons, building 
up perhaps the most complex, most efficient system consisting of nonlinear maps 
performing different tasks and storing millions of bits of information. Therefore a 
question can be asked whether a similar artificial neural network can be used for 
modelling of the process behaviour and solving control tasks. 

Studies of neural networks, attempts of understanding their functionality and 
the build up of their artificial equivalents are quite old. The use of linear threshold 
units as a basic unit in neural networks was pioneered by Rosenblatt [54). The 
neural network mechanism proposed by Rosenblatt is called the perceptron. Re
search on the general architecture by Rosenblatt and others continued into the 
late 1960s. During this period, Minsky and Papert [43J published a mathemati
cal analysis of the perceptron showing its limitations, since the perceptron's basic 
computational element is a linear threshold unit. Therefore the perceptron can 
only discriminate between linearly separable classes. The fact that a large pro
portion of interesting classes of patterns are not linearly separable means that the 
capabilities of the perceptron are very limited. After this criticism the neural net
works lost some of the attention until new learning rules were discovered. That 
enabled using nonlinear threshold units in the perceptron replacing the original 
linear units. It was also proven that such a structure can approximate any non
linear map, and this became immediately attractive not only for control engineers 
but also for statisticians, computer scientists and others. 

Neural network structures, used in the context of this thesis, will be discussed 
in more detail in a specially devoted chapter. But basically a neural network can be 
seen as a high dimensional nonlinear static/dynamic black-box system with many 
inputs and many outputs while the behaviour of this box can be adjusted freely by 
tuning weighted interconnections inside the network. This looks very much like a 
modelling problem of an unknown complex system with many inputs and outputs 
indicated in the previous section. If we can use measured data of process inputs 
and outputs, we can try to teach a neural network the process dynamics from 
these data. However, the process dynamics can be so complex, that by trying to 
model it by a black-box neural network we might end up with a not very feasible 
problem. In such cases we can try to combine a black-box neural network with an 
available a priori knowledge about the process. A way of doing it will be explained 
in Chapter 4. 
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1.3 Thesis contributions 

The main contributions of this thesis are summarized as follows: 

• We have proposed a complete procedure for the design of a nonlinear tran
sition controller for a partly-known multivariable nonlinear process which 
brings the process state from one operating point to another, while taking 
into the account process disturbances and process constraints. The design 
was verified by a large number of simulation experiments done on a rigorous 
simulation model of a fluidized bed ethylene polymerization reactor [37, 38] 
as well as on an academic example [39]. 

The controller uses neural networks to parametrize unknown nonlinearities. 
The design is carried out in state-space domain and the design is model 
based. The model of the process is a prior knowledge based state-space 
simulation model, where a black-box part is parametrized by a static neural 
network. The process state is estimated by means of a design of a state 
observer, similar to the Kalman design, but this time is the filter gain a 
nonlinear function parametrized by a neural network. The controller is then 
a nonlinear static state feedback parametrized by a neural network. 

• In this thesis we have elaborated on a concept of nonlinear state observers 
based On the available prior process knowledge and using neural networks as 
nonlinearities approximators. A state observer is a composition of a dynamic 
simulation model of the process and a static nonlinear filter. The model 
incorporates our prior process knowledge. For this purpose we have divided 
the process state vector into two parts: 

1. The physically known part of the state vector represents those states of 
the process, which physical meaning is well defined. 

2. The hidden part represents the complementary part of the state vector 
containing those states of the process which are unknown. 

With this respect we divided the model into an analytically known part and 
into a black-box part parametrized by a static neural network. The filter 
gain is also parametrized by a static neural network. 

• The state observer is being designed in two steps: 

1. An output-error simulation model of the process is estimated using the 
measured process data and a prior process knowledge; 

2. A nonlinear filter gain is estimated to improve the state estimates from 
the previously estimated simulation model. In this step are the weights 
of the model neural network set to fixed values and the weights of the 
filter neural network are tuned independently of them. 
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• It is shown in this thesis that the state-space approach for modelling partly
known nonlinear dynamic processes provides us with better conceptual and 
algorithmic properties than similar nonlinear dynamic I/O models, mainly 
in terms of an easier way of incorporating different types of prior knowledge 
about the process dynamics at the modelling stage. 

• In this thesis we have also paid attention to the training of neural networks, 
as it is a problem to be solved at every stage of our controller design algo
rithm. Neural network training is a non~convex, high dimensional minimiza
tion problem. To deal with this problem efficiently we have investigated and 
tested a couple of function minimization algorithms. We have also proposed 
a novel training algorithm based on weighted past gradients. To balance the 
time spent in the minimization and the risk of getting trapped in a local 
minimum we have proposed a combined stochastic and deterministic opti
mization procedure, supplemented by a number of restarts from different 
initial points. 

• In this thesis we have also considered the computational cost and mem
ory requirements for different problems involving a neural network training 
procedure. These considerations are very seldom reported in the literature 
though they are Significant. 

• We have elaborated on a simulation model of the FBPR reactor [37], which 
was used to test the proposed controller design algorithm. 

1.4 Chapter overview 

In Chapter 2 we discuss the general framework of this thesis. We define here a 
general concept of a nonlin~ar dynamic system as it will be looked at throughout 
this thesis. Then we state a control problem which will be the main topic of this 
thesis. This control problem will be concerned with a real industrial process what 
will then, in fact, dictate the proposed solution. As one of our ideas is to use neural 
networks we review the most important existing control techniques for control of 
nonlinear systems based on neural networks. After this we describe, in general 
terms, our approach. At the end of this section we review a nonlinear function 
approximation problem. 

In Chapter 3 we describe the class of neural networks, which we use for the 
approximation of unknown nonlinear functions. We address both static and recur
rent feedforward neural networks. As these are structures with many parameters 
to optimize we investigate in this chapter some of the function minimization tech
niques, both deterministic and stochastic and we conclude this chapter with a 
suggestion of a combined deterministic stochastic minimization algorithm. 

Chapter 4 is devoted to a discussion concerning modelling issues related to 
estimation of a mathematical model of the controlled process. In this chapter we 
treat both prediction models and simulation models, both in I/O configuration and 
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state-space configuration. A state-space model is treated as a simulation model of 
the process and later on it is supplemented with a nonlinear filter gain resulting in a 
neural process state observer. In this chapter we also demonstrate, using a simple 
numerical example, why simulation models are to be preferred with respect to 
prediction models. In this chapter we also give another, more practical, numerical 
example and that is an identification of a grey-box state-space simulation model 
of a gantry crane process. 

In Chapter 5 we discuss the transition control problem. We start by an intro
duction of a nonlinear state feedback. We then give an example of the control of 
a multi-link inverted pendulum using a neural network to parametrize the state 
feedback. Next we discuss all issues related to the state feedback design for a tran
sition controller. These issues include: the process model, the controller objective, 
the choice of a reference signal and the state feedback structure. At the end of 
this chapter a simple numerical example demonstrating the whole controller design 
procedure is given. 

In Chapter 6 we give a simulation example of a transition controller design for 
the fluidized bed ethylene polymerization reactor. First of all, we introduce the 
process itself and we specify the transition control problem precisely. Then we 
discuss the identification experiments together with the process data simUlations. 
Next we discuss the state observer design and finally, we describe the controUer 
state feedback design. A validation of the controller using the original simulation 
model of the process is also given. 



2 Framework and Problem 
Statement 

In this chapter we discuss a general framework for the type of problems we want to 
address in this thesis and are essential for our global goal: Design of a tmnsition 
controller for a partly known nonlinear dynamic system. First of all, we specify 
mathematical descriptions of dynamical system which will be used as general mod
els of real processes. We will treat these concepts in state-space domain, both in 
continuous-time domain and in discrete-time domain. A general formalism of sys
tem theory, directly related to this framework, can be found in [75, 72]. After this, 
we state a general problem of this thesis: The transition control problem. Next we 
review the most important control schemes based on neural networks and propose 
a scheme which will be worked out in this thesis. We conclude this chapter.by a 
general framework for function approximation problems. 

2.1 System descriptions 

A broad class of nonlinear dynamic state-space systems L. can be described in 
continuous time t E JR, t > 0 by the following set of equations 

x(t) 

y(t) 

fc[x(t), u(t), w(t)] 

hc[x(t), u(t), v(tl] 

(2.la) 

(2.lb) 

Both Ie and h are assumed to be smooth, nonlinear, multivariate functions of their 
arguments given by 

(

fe.dx , u, w l) 
le[X,u,W] = : 

Ic,n[x, u, w] 
(

hI [x, u, Vl) 
h[x,u,w] = : 

hp[x, u, v] 

where we omitted the time arguments for time signals. The equation (2.1a) is 
called the state equation and describes the time evolution of the state x E JRn 
of the system assuming that x(O) = Xo is the initial condition of the state at the 
time t = O. The other two arguments of the function I belong to the input space 
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of the system: u E IRm is an observed system input and is called the control 
input or simply control, W E IRq is a non-observed system input and is called 
the process disturbance or simply disturbance. The equation (2.1b) describes the 
measurement system, attached to the system evolution, and therefore we often call 
this equation a measurement equation. The measurements are denoted by a vector 
y E IRP. The variable v E IR' is another non-observable input signal which stands 
for the measurement noise. It is quite usual to assume that the measurement noi~e 
is additive to the output and then the dimension of the measurement noise is equal 
to the dimension of the output vector, or T = p. 

Similarly to (2.1), a linear time-invariant state-space dynamic system can be 
described as follows 

x(t) = Ax(t) + Bu(t) + Gw(t) 

y(t) Cx(t) + Du(t) + Hv(t) 

(2.2a) 

(2.2b) 

where A,B,C,D,G,H are, in this case, constant matrices. The system (2.2) is a 
special case of a system described by (2.1). An advantage of considering the system 
description (2.2) is, for instance, that this description satisfies the supperpossition 
principle and the differential equations (2.2a) are readily solved. However, the 
real-world systems are nonlinear and the system description (2.2) is only valid for 
limited ranges of system variables. 

Let a sampled version of the system ~s is described in the discrete-time domain 
by 

x(k + 1) 
y(k) 

fd[X(k), u(k), w(k)] 

hd[X(k), u(k), v(kl] 

(2.3a) 

(2.3b) 

where k E Z+ stands for the time index or time step and the meaning of other 
variables is similar to those in (2.1). The state in this description evolves at equal 
discrete-time moments also called sampling moments. The time interval between 
two successive samples is the sampling time and will be denoted by T •. 

A transformation of a continuous-time system given by (2.1) to its equivalent 
description a discrete-time system (2.3) and vice-versa is not trivial for a gen
eral nonlinear system. In this thesis we will require only transformations from 
continuous-time to discrete-time domain. The reason is that the first principles of 
real process behaviours provide us with mathematical laws of type (2.1) while e.g. 
for a numerical optimization of controllers using a digital computer descriptions 
of type (2.3) are more convenient. In a lack of an analytical solution to a general 
problem of transformation of (2.1) to (2.3) we often take an approximation of this 
transformation. As there are many ways of constructing such an approximation 
and these were used later on in this thesis in different simulation examples we 
review some of them in Appendix A. 

We know that the representation ofthe process given either by equations (2.1) 
or by equations (2.3) is unique up to modulo any state transformation of type 

i = a[x] (2.4) 
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where 0: : IRn -+ IRn is a smooth and invertible function and x is the state, either 
continuous or discrete. This ambiguity of the state-space representation can be 
avoided by choosing a certain structure for Ie, he or /d, hd . The importance ofthis 
restriction is given by preserving the physical meaning of states under study. 

Let us consider the continuous time nonlinear dynamic system ~s described by 
(2.1). We call a triple j.I. = (xo,uo,wo) an equilibrium point of this system (2.1) if 

(2.5) 

Similarly, an equilibrium point of a discrete-time dynamic system (2.3) is defined 
by 

(2.6) 

In the following we will consider only those equilibrium points, either defined by 
(2.5) or by (2.6) for which Wo = O. We will call Xo an equilibrium state and 1.10 an 
equilibrium control. 

The disturbances w entering the state equation, either in (2.1) or in (2.3) can be 
deterministic or stochastic or combination of these two. In this thesis we consider 
mainly stochastic disturbances of white noise type. Strictly speaking, one can not 
simulate a white noise sequence in continuous time over its full frequency range. 
Therefore it is often replaced in the literature (see e.g. [40]) by dw, which is then 
a Wiener process. This delicate problem will be overcome, when we will consider 
a discrete-time process description. 

By restricting ourselves in this section to a specific class of nonlinear dynamic 
systems we are ready to state a control problem related to these systems. 

2.2 The transition control problem 

The control problem stated in this section will be studied in this thesis. We use 
the continuous time domain for its statement as this is more natural when having 
in mind a physical process. However, the actual implementation of the solution, 
we will propose later on, will be done in the discrete-time domain as a digital 
computer is going to be used in the place of a control device. 

The next definition defines a control function of the system (2.1): A measurable 
function u E IRm defined on an interval (to,t,) is said to be a control on (to,tf) if 
there exists a function x(t) E Coo defined on (to, tf) such that 

1. x(t) E IRn for all t E (to, t f) 

2. x{t) = I[x(t),u(t),w(t)] on (to,t,) for any measurable w(t). 

This definition says that u(t) is any measurable function for which the system of 
differential equations (2.1a) has a solution provided an initial condition Xo E IRn 
is given. The function x{t} is called a state trajectory corresponding to u{t) called 
a control trajectory. 



12 Chapter 2. Framework and Problem Statement 

Let us consider now a nonlinear closed-loop dynamic system according to Figure 
2.1. The variables u, y, w, v denote the already introduced control, output, process 
disturbance and measurement noise signals. Let the control system or simply 
controller be represented by a nonlinear dynamic system I:~, similarly to (2.1). 
A general task of any controller is to ensure a certain specific behaviour of the 
controlled system. To do this the controller takes the process output y and an 
external signal r E JRs as its inputs and computes a control signal u offered to the 
system input. The signal r is called a reference signal. The behaviour of the closed 
loop is judged by the controller via a new output signal Z E JRn, which represents 
an optimized output and is defined as follows 

q(t) = d[x(t) , u(t), r(t), w(t), v(t)] (2.7) 

where d is a nonlinear function, for simplicity assumed to be smooth. 

w,v q 

Nonlinear 

-----> 
System 

- y 

u 
- Control ------r System 

Figure 2.1: Feedback control loop 

Let us assume two different equilibrium points of the controlled system I: s , fio and 
fif. Then the transition control problem can be stated as follows: 

Problem 2.1. Find a controller I:~, which steers a nonlinear dynamic system 
(2.1) from a neighbourhood of one equilibrium point 11-0 to a neighbourhood of 
another equilibrium point I1-f in an optimal way to be defined. 

This problem can be mathematically described as follows: Minimize a cost 
functional 

t/ 

J=W[q(t,),tf]+ J L[q(t),tJdt (2.8) 

to 

where \li[q(t,),t,J E C 2 is defined on IRn, x JR is the final-time penalty put on 
q(t), L[q(t), tJ E C 2 is a Lebesgue integrable function on JRn, x (to, tf)' subject to: 
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a) the differential system equations (2.1) describing the controlled system dy
namics; 

b) the initial state of the system given by 

x(to) ~ 0(1'0) (2.9) 

where 0 stands for a neighbourhood of 1'0; 

c) the final state condition defined by 

cf[x(tf), 1'" tf] :::; 0 (2.10) 

where cf E Goo; 

d) the control inequality constraints 

Cu[u(t), t] :::; 0 (2.11) 

where c" E Coo; 

e) the inequality constraints expressing the forbidden region of the state space 

c,,(x(t), t] :::; 0 (2.12) 

where Cx E Goo. 

Discussion 

• The above stated problem is a free final-time optimal nonlinear control prob
lem with mixed state and control constraints. 

• All process variables, u(t), yet), x(t), q(t), are stochastic processes due to the 
presence of random process disturbances and measurement noise. To be 
precise in the above problem formulation all these variables should be re
placed by their expected values. As the problem is nonlinear, an analytical 
determination of expected values of these variables is, in general, not trivial. 

• An initial state condition x(to) of the controlled system is assumed to be 
known only approximately. This is expressed by the constraint (2.9). It tells 
us that the initial state of the system can be found in a neighbourhood of the 
initial equilibrium point /1-0, It is more likely that the initial state is closer 
to /1-0 than far away. Therefore the neighbourhood of the initial equilibrium 
0(/1-0) can be probabilistically described by a normal distribution N (1'0, a 1'0)' 

• A similar reasoning as the one for the initial state of the system applies also 
for the final state of the system. As the process is subject to disturbances 
the requirement of reachability of the final equilibrium /1-f exactly is relaxed 
to other conditions, namely that the final state of the system x(t f) should 
be suffiCiently close to J.Lj. This problem can be also handled by the "tail" 
ifJ[q(tf), tf] of the cost functional (2.8) by penalizing large deviations of the 
final state value from /J.f. 
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• In practice, all process variables have physically defined ranges of operational 
values. These values can not be exceeded, mainly due to safety reasons. 
Often also time changes of manipulated variables can not exceed certain 
limits. The same holds also for process states and outputs. For example, in 
the case of the polymerization reactor introduced in Chapter 1 (see Figure 
1.1), a fast increase of the temperature can cause melting of solid particles 
and consequent collapse of the fluidized bed. The constraints put on process 
variables does not have to be only simple bounds put on magnitudes of these 
signals but and can be considered as a general nonlinear constraints. 

• We have required in this transition control problem definition that all con
straints are smooth functions. This requirement could be in fact relaxed, as 
the later on used numerical optimization methods require only continuity of 
first derivatives, that is {c/,c",cx } E C2 might suffice. 

• In practice, there is always an existing control system present in the process, 
e.g. primary controllers, and we can assume that there are present also 
some steady-state controllers designed for specific equilibrium points. A 
transition from one operating point to another can possibly start by swi tching 
from a steady-state controller to a nonlinear transition controller (design of 
which is studied in this thesis). The transition controller changes the process 
operating conditions to the new ones which are in the neighbourhood of the 
final operating point. Finally, we can let a new steady-state controller to 
take over. The transition controller is in principle nonlinear as it controls 
the process over nonlinear regions. The steady-state controllers are linear 
because they control the process only close to an equilibrium. 

2.3 Neural control paradigms 

Before we describe the approach presented in this thesis to approximation of a 
solution of the above stated control problem we review the most important control 
techniques based on neural networks as our approach is closely related to them. We 
assume, that the reader has already got a general knowledge about neural networks, 
so we give the following discussion without going into the details concerning neural 
networks as to this discussion is devoted the Chapter 4. 

In the past decade a large number of, prevailing model~based control algorithms 
has been proposed to achieve better control quality and robust controllers. All 
these techniques rely strongly on the availability of a mathematical model that is 
a good representation of the process dynamics. However, most of these models are 
empirical, first principal models or linear estimates of the true process dynamics. 
The neural networks methodology offers an alternative for the derivation of proper 
dynamic models of the system. In addition, it is possible to take advantage of the 
potential of neural networks to device new control strategies that are impossible 
with conventional methods. 
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2.3.1 Direct inverse control 

The most appealing feature of neural networks is the ability of the inversion of 
complex dynamic systems. The inverse system model can be generated from in
put/output process data and then cascaded with the controlled process such that 
the composed system results in an identity mapping between the desired response 
and the controlled process output. Clearly, the quality of such a control will be 
determined by the accuracy of the process inverse model. The other problem is 
the lack of the feedback. This affects the robustness of the direct inverse design 
with respect to the process disturbances or inverse model discrepancies. Provided 
that the process dynamics are non-minimum phase, an inverse of the process will 
be unstable and the control loop will be internally unstable. 

A more appropriate structure of the direct inverse control is shown in Figure 
2.2. This structure is in the literature usually addressed as a specialized learning 
[51J. The neural controller is trained to find the process input u that drives the 
process output y to the desired reference value r. The drawback of this procedure 
lies in the requirement of knowledge of the process Jacobian (ay/au). As this is 
in general not available heuristics and different approximations are used at this 
place. 

The learning algorithm represents here a quasi-feedback which, if implemented 
on line, can contribute to the robustness, however the speed of the neural controller 
parameter adjustment might be too slow for compensation of fast disturbances. 

2.3.2 Model reference control 

The structure of this control scheme is shown in Figure 2.3. The desired perfor
mance of the closed-loop is specified by through a stable reference model which 
output is compared with the process output and the error signal e is then used to 
adjust the neural network controller. Again, the Jacobian of the process might be 
required in the adaptation mechanism when minimizing the squared error signal 
by a gradient descent. In the case when the reference model is chosen as an identity 
mapping the model reference control coincides with the direct inverse control. 

An advantage of this structure is in better robustness and the possibility 
of adaptation when the neural controller is trained on-line. However, the non
convexity of the adaptation mechanism might be of a real practical limitation 
here. 

2.3.3 Adaptive neural control 

This type of control is meant for processes with time variable or changing dynamics 
and is suitable also for an on-line implementation. It consists of a recursive process 
parameter identification to track the process environmental conditions or parame
ters and a procedure to adjust the control parameters (see Figure 2.4). The process 
parameters are in fact the weights of a neural network which are being adapted. 
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Figure 2.3: Model reference control block diagram 
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The estimated neural process model is then used for a neural controller parameter 
adjustment. 

The problems of this scheme are similar to the problems arising in a "clas
sical" linear set-up, like stability and persistent excitation of the identification 
algorithm. The biggest problem is a guaranteed convergence of this scheme as all 
being recurSively solved subproblems are hard non-convex optimizations. 

2.3.4 Internal model control 

The internal model control structure (IMC) is illustrated in Figure 2.5. A neural 
model of the process is connected in parallel with the process and the difference 
of the process and model outputs is used for feedback. The neural controller is 
then related to the process inverse and therefore is this structure limited to open 
loop stable minimum-phase systems. The filter in the feedback is introduced due 
to the practically imperfect process model and measurement noise to improve the 
sensitivity characteristics of the closed loop. 

As the IMC structure is theoretically well understood and theoretically sup
ported by stability and robustness proves at least in a linear set-up it is a good 
candidate for a general scheme of a controller for our control problem. 

2.3.5 Model-based predictive control 

This type of control became very popular in recent years due mainly to its ability 
to handle process constraints effectively. This strategy includes an optimization 
routine which is used to determine the optimal sequence of future controls to min
imize an objective function. The receding horizon control approach is a principal 
concept applied here. The optimizer computes a range of future controls to min
imize the cost function based on predicted future process outputs f)(k + d) over 
a long-range time horizon d = 1, ... ,Ly • However, only the first control value of 
the sequence is applied at the process input and the whole procedure is repeated. 
The structure of this structure is shown in Figure 2.6. 

If the controller and predictor are assumed to be multilayer neural networks 
parametrized nonlinearly with respect to their outputs than the optimization prob
lem is a non-convex one. The only way out seems to be using linear parametriza
tions like radial basis neural networks. 

2.4 The proposed control strategy 

Our approach to the controller design is a model-based design. The model serves 
as a simulator of the process dynamics. This is then used to optimize a state 
feedback controller. Our general idea is that if the model can be improved, e.g. 
with respect to existing models, we can possibly achieve better robustness and 
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Figure 2.6: Model-based predictive control 

better performance of the closed loop. A major improvement is expected from 
using neural networks to parametrize both the model and the controller. 

A general strategy of the controller synthesis adopted in this thesis is described 
by these three stages: 

1. Using measured process data we estimate a nonlinear, a priori knowledge
based dynamic state-s>pace simulation model of the process which captures 
the control relevant dynamic relations between manipulated variables and 
controlled variables. The a priori knowledge is brought into the model by 
means of combination of known analytical part with a black-box neural net
work part. This allows us to give a physical meaning to a part of the esti
mated state vector and later on define reference signals for required transi
tions. 

2. At the second stage we compute a static nonlinear filter gain to build up a 
state observer reconstructing the process state in a disturbed environment. 
An important point to stress here is that the filter gain is going to be com
puted for a fixed model preserving its simulation capabilities. 

3. At the last stage we compute a nonlinear, in principle static, state feedback 
controller which steers the process from one operating point to another. The 
reference signal is defined basically in the model state-space domain but is 
partly physically related to the physical process states. The feedback gain is 
optimized such that the tracking errors are minimized. 
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With respect to this strategy the controller will be a complex nonlinear dynamic 
system composed of two main blocks and two sub-blocks as shown in Figure 2.7. 
The main blocks are the state observer and the neural controller. The state ob
server is composed of two sub-blocks, which are the process simulation model and 
the filter gain. The block h represents a part of the process prior knowledge. 

By means of this internal structuring of the controller we hope that we will gain, 
with respect to black-box strategies, in a better insight into the controller design 
problem, in an easier analysis of results and it will allow us doing the modifications 
of the controller in an easy way if the controller requirements changes. 

2.5 Approximation theory 

Later on we will see that in the vast majority of problems of a controller design 
appears a subproblem of approximation of an unknown nonlinear function from ex
amples. The problem offunction approximation has been treated quite extensively 
in literature, see e.g. [6]. For our needs the following formulation suffices: 

Problem 2.2. Let <J>(X) be a real-valued continuous function defined on a set IRn
, 

and let ~ (X, 8) be a real-valued approximating function depending continuously on 
X and on no parameters, 8. Given a distance function p, determine the parameters 
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8* E IRn, such that 

(2.13) 

for all 8 E IRn •. 

The distance measure p is a measure of the goodness of approximation and is 
usually given as the LP norm of the distance ;)(x, 8) - <I> (X) , called also error, and 
is defined as follows 

p~l (2.14) 

In practice, mainly p = 1, p = 2 and p = 00 is used. In the first case we have to 
find such a e that the median of the approximation error is minimal. This type 
of approximation typically allows occasionally big approximation errors. In case 
p = 2, the distance measure (2.14) translates to the usual Euclidean vector norm. 
An approximation done using this distance measure allows only for small errors 
and gives minimum error variance. The case p = 00 is the so called worst case 
because it minimizes a worst approximation error. The most interesting case is 
the choice of p = 2 as this leads to a differentiable optimization problem which can 
be solved numerically by available gradient optimization methods. As the original 
function <I> is not known the actual approximation is done on a set of test data 
produced by this function and the integral in (2.14) is replaced by a sum. 

In the context of neural networks, which will be introduced in the next chapter, 
;j;(X, 8) is parameterized by a neural network and 8 is a vector of network's weights 
and biases. 

2.6 Summary 

In this chapter we defined a general framework necessary for the type of control 
problems we will be dealing with later on. We have also defined a control problem 
which will be the main subject of this thesis. 

We have chose state-space descriptions of nonlinear dynamic systems, consid
ered either in continuous time domain or in discrete-time domain. The main rea
son why we have chosen state-space descriptions is that in the MIMO case (m > 1 
and/or p > I) the other forms are not simpler to work with than the state-space 
form. Besides of this, in practice, we always can point to some variables, which do 
not belong to the output space of the process. These variables can be usually re
constructed from measurements and then used for feedback. This already suggests 
the use of an estimated process state for the feedback. 

The type of control problem we are going to study include the operating point 
changing type of control. We use neural networks as a tool for approximations 
of unknown nonlinear functions. We have reviewed the most important neural 
control techniques using neural networks and then proposed a scheme which should 
be suitable for a practical application. 
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At the end of this chapter we addressed a problem of approximation of nonlinear 
functions as this problem relates to the problem of neural network training. 



3 On Neural Networks 

In this chapter we discus the concept of a neural network as we apply it in pro-
cess modelling and process control. Neural networks are in our context considered 
purely from a mathematical point of view as universal approximators of nonlinear 
functions and not as biological systems. However, many notions related to bio
logical networks are inherently used also here like "neuron" instead of a special 
nonlinear function and also "learning" or "training" instead of parameter estima
tion or mathematical optimization. Our mathematical neural networks, as will 
be understood later, share a lot of properties with biological neural networks, for 
instance a massive parallelism, hierarchy and multitasking. All these properties 
make the neural networks attractive in modelling and control of complex nonlinear 
dynamic processes. 

There are multitudes of different types of neural network architectures. To list 
them here would be outside of the scope of this chapter. According to our expe
rience there are well over hundreds different neural networks proposed by many 
researchers, but only few of them became really popular for modelling problems [1]. 
This is mainly because of a strong mathematical support of these popular struc
tures. These networks include the so called multilayer feedforward neural networks 
[55], radial-basis functions neural networks [44, 48] and recently also wavelet net
works [2]. We will concentrate in this thesis only on multilayer feedforward neural 
networks called also multilayer perceptrons. 

3.1 Multilayer feedforward network 

The basic element of a neural network is a simple computational or processing unit 
that is characterized by 

1. Bw E IRn,w - a vector of weights 

2. Bb E IR - a bias or offset 

3. s: 1R ---+ 1R - an activation function 

If z E IRn, is an input vector, fed to the processing unit, the activation function 
computes s(B~z + (h) and this value is then taken as output of the unit. If we 
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connect a finite number of such units in parallel into a layer and subsequently 
connect a finite number of such unit-layers in series only by feedforward connection 
we end up with an architecture called multilayer feedforward neural network or a 
multilayer perceptron (MLP), schematically depicted in Figure 3.1. 

input layer 
1=0 

hidden layer 
1=1 

• • • 

1 

output layer 
I=NL 

Figure 8.1: The multilayer perceptron (MLP) structure 

An MLP can therefore be considered as a function 

which maps an input space of a vector dimension ni into an output space of a 
vector dimension no. The input of the MLP is denoted by X E IRn , and the 
output of the MLP is denoted by l' E 1R"'·. Let the ith node in the lth layer of 
the network compute its output z; according to 

NNI_l 

ul. , L o I 1-1 0 1 
WijZj + bi (3.1a) 

j=l 

zi , s{uD (3.lb) 

where 1 = 1,2, ... ,NL stands for the hidden layer number, i = 1,2, ... ,Nm is the 
node index of the Ith layer, OwL is a weighting factor of the connection between 

the jth node of the (1- l)th layer and ith node of the lth layer and O&~ is the bias 
of the ith node of the Ith layer. The input of the processing function of the ith 
node in the lth layer is denoted by u~ and the corresponding node output is then 
denoted by z;. 
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The input layer, 1= 0, is a special layer because it provides only the distribution 
of inputs ~i, for i = 1, ... ,ni, among the nodes of the first hidden layer, I = 1. 
Mathematically it can be seen as 

for i = 1,2, ... ,ni 

The variable u~ is sometimes called an activation of the node and serves as an 
input of the node activation function stu). This function is usually chosen as 

1 
stu) = -- (3.2) 

1 +e-U 

or 

1- e-2u 

stu) = tanh(u) = 2 
1 + e- U 

(3.3) 

For the last hidden layer we often chose a linear processing function 

stu) = u (3.4) 

to allow any range for the MLP outputs zf"L. The radial basis neural networks 
use as a processing function 

(3.5) 

where Um is a mean value and au is a standard deviation, both chosen in advance. 
A family of functions F that can be realized by an MLP is characterized by 

1. The number of inputs and outputs ni, no; 

2. The number of layers NL , inclusive the output layer; 

3. The number of nodes in hidden layers NNI, I = 1,2, ... , NL - 1; 

4. The set of weights eW~,j and biases (h~j 

5. The processing function s(u). 

We will use a notation FNN1 ,NN2,,,.,NNNL-l for an MLP with NN1, NN2, ... , 

NN NL -1 nodes in consecutive hidden layers. We include the weights and biases of 
a MLP into a long vector 8 E IRn , in the following order 

k:= 1 
for I := 1 12 NL do 

for i := 1 12 NN/ do 
8 k = Ob; 
k:= k + 1 
for j := 1 12 NN1-l do 

8 k := OwL 
k:= k + 1 
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The question is now, that if we can choose N L, NN/, I = 1,2, ... ,NL - 1 and 
8 freely, what kind of functions can be represented by this neural network. The 
answer is well known and shortly it is that a multilayer neural network can approx
imate arbitrarily well any continuous function on any compact set provided that 
the network contains sufficiently many hidden nodes and the activation function 
stu) is continuous, bounded and non-constant. This is a well known result proven 
by many authors [13, 16, 20, 24, 23, 29], as already indicated in Section 2.5. 

A special class of MLPs is an MLP with only one hidden layer or a two layer 
perceptron N L = 2. It was shown in the literature [13, 16] that such a neural 
network is sufficient to approximate any continuous function. There is always a 
question whether it is better to use a MLP with only one hidden layer or with 
more hidden layers for a particular approximation problem. This question was 
also noticed in [32]. One can think that by using more hidden layers we might 
possibly need less nodes to approximate a complex nonlinearity. But, in general, 
it is difficult to say which structure is better as we also do not know a priori how 
many nodes do we have to put into the MLP to obtain a certain approximation 
accuracy. 

If we look back to the approximation problem we see that the approximation 
is generally done by means of a set of training examples or simply by data 

D = {(X(I), ,(1)), (X(2), ,(2)), ... ,(X(N), ,(N))) 

computed by the true function '}'(k) = <I>[X(k)] for k = 1,2, ... ,N and N denotes 
then the length of the data set D. The pair (X(k), ,(k)) will be also called a 
pattern, X(k) is the input pattern and ,(k) is the output pattern. Let us assume 
that the test inputs X(k) are for the moment chosen freely, e.g. at random. A 
suitable set of weights and biases of the MLP which approximates this function is 
then found by the so called supervised learning of the neural network. This means, 
that the output of the network zNL(k), which also represents the approximated 
value i'(k) of the desired output ')'(k) evaluated for a certain input pattern x(k), 
is compared to the data and the error 

~(k) = ,(k) -i'(k) (3.6) 

is then used to adjust the weights and biases. More precisely, we define a cost 
function or an error measure to measures the goodness of the approximation as 
in Problem 2.2. Let this measure be chosen as a sum of squares of errors (3.6) as 
follows 

N 1 N 
J(8) = L J(k, 8) = 2N L c(k)T ~(k) 

k=l k=l 

(3.7) 

where J(k, 8) = ~(k)T ~(k). The function (3.7) is then minimized with respect to 
the network parameters e, inclusive the number of layers NL and the number of 
nodes NNI in each layer l. Let us assume that the network complexity, in terms 
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of NL and NNI, was chosen in advance. A natural way of weights adjustment is 
the direction of the negative gradient of the error function (3.7), that is 

8( . 1) 8( .) 8J(8) 
- J + = - J ~ Pj 88(j) (3.8) 

where j is the iteration index, ~~\~? is the gradient of the cost function with respect 
to the weights and Pj > 0 is a step size taken at the jth iteration. We usually start 
the iteration process (3.8) from an initial guess S(O) which is generated randomly. 
In principle, we have two options how to perform the update (3.8): 

1. either we perform the update after each single pattern using as an update 
direction gradient 

8J(k,8) 
88(k) 

2. or we perform the update after collecting errors of a number of patterns, let 
us say M, computing the gradient as follows 

where c = 0, 1, ... ,M ~ 1 

c+M 8J(k,8) 

L 88(k) 
k=c+l 

An update of weights according to the second option is also called a batch learning. 
If the order of patterns in the data set does not play any role we can be choosing 
patterns in these two cases at random. As it will become clear later on, this is 
not always the case, for instance when the data are being produced by a dynamic 
system and we are interested in a simulation model of the process. Then we have 
to do the batch learning, often having chosen M = N. The weight update (3.8) 
is iteratively repeated until a sufficient minimum of the cost function is found, 
usually checked by using testing data, different from training data. 

To do be able to perform the iteration process (3.8) efficiently we need analytical 
expressions of gradients of (3.7) with respect to the weights of the MLP. These are 
defined as follows 

where 

Let use denote 

Be(k) 8c(k) 8ul(k) 

80w L = 8ui(k) 80wL 

,sl(k) = 8c(k) 
, 8u\(k) 

(3.9) 

(3.10) 

(3.11) 
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and observing from (3.la) that 

the equation (3.10) can be written in the following form 

Using the chain rule the expression (3.11) can be rewritten as follows 

(3.12) 

where Sl (u) is the derivative of the processing function with respect to its argument. 
It can be easily verified that for (3.2) holds 

SI(U) = s(u)(l- stu)) (3.13) 

and for (3.3) holds 

SI(U) = 1 - S(u)2 (3.14) 

For an output layer composed of linear units we have 

SI(U) = 1 

and 

For an output layer composed of nonlinear units, let us assume stu) given by (3.2), 
we have 

z{h = S(U;VL) and o;VL(k) = -s(u)(l- stu)) 

Observing, that for the lth hidden layer of the MLP, I < N L , holds 

we can compute (3.12) recursively as follows 

NNI+l 

8;(k) = s'{u\(k)) L Wl(k)w~tl 
j=l 

(3.15) 

(3.16) 
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where I is iterated backwards from I = NL - 1 untill = 1. 
The gradient of the cost function with respect to the MLP's biases is determined 

in the same way as for weights. We can assume in (3.1a) for the moment that the 
bias /hl is represented by a weight Owj,Q while defining zb = 1 and letting the sum 
in (3.1aa) to run from j = O. Then the gradient of the cost function according to 
the bias is given by 

~ =ol(k) 
BOb: ' 

(3.17) 

The variable oj( k) represents the error sensitivity of the ith unit in the Ith hid
den layer for the kth data point. The equation (3.16) defines the back-propagation 
of this error sensitivity through the network starting at the output layer, and there
fore is the algorithm (3.9)-(3.17) called backpropagation. 

An important issue to keep in mind is that due to the finiteness of the set of 
training examples is the original function 'Y = cli[X] tested only on a limited range of 
the input space of the function <J>, that means X E X C JRn, , which is then mapped 
into a bounded subset of the output space Y = hE JRno : 'Y = <J>[x]' X E X}. As 
we assume <J> to be a general nonlinear function the extrapolation ability of the 
MLP can be very poor or, in general, it will be meaningless. With this respect 
the approximation will always show increasing errors towards the boundary of the 
input space X, depending on the distribution of X within this set and the number 
of weights of the neural network. 

3.2 Recurrent feedforward network 

By a recurrent feedforward neural network we mean a structure based on a MLP in 
which some of the outputs are fed back to the input of the network, usually through 
a number of delays. We do not assume in this structure any recurrent connections 
inside of the MLP, e.g. between hidden layers. That means that all recurrent 
connections appear outside of the MLP. Such a recurrent MLP, though it is still 
static, represents a nonlinear dynamic map which can be used to approximate 
nonlinear dynamic system, e.g. given by (2.3). How is this done exactly, will be 
treated in detail in the next chapter. At this moment it is important to realize 
that training of a recurrent MLP from input/output examples by a minimization 
of criterion (3.7) becomes more complicated because the error (3.6) does not only 
depend on the MLP weights e but also on those inputs, which stand for past MLP 
outputs, as these are also a function of e. 

Therefore the backpropagation algorithm has to be revised. This revision is 
incorporated through a correction term added to the backpropagation formula 
(3.10) as follows 

(3.18) 
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where the index j runs through those inputs, which are function of the past network 
outputs. The last term has to be determined with respect to the actual recurrent 
feedback configurations. To compute 

8E.(k) 
8Xj(k) 

we can still use the backpropagation algorithm. Observe that X == zO so that from 
(3.15) we can see that by performing one extra backpropagation step we obtain 
required partial derivatives. 

3.3 Iterative MLP learning algorithms 

In the previous section we have seen that training of a MLP is in fact a minimiza
tion of criterion (3.7). This is nothing else then a general unconstrained nonlinear 
optimization problem. As it is not a trivial to solve problem we will pay in the 
following more attention to it. 

First of all, we have to notice, that the minimization of (3.7) with respect to 
the weights of a MLP can not be done analytically. Therefore it must be done by 
an iterative numerical procedure. Actually, we have already introduced one such 
an iterative procedure and that was the backpropagation algorithm (3.9)-(3.17) 
together with the weights update (3.8). 

A neural network learning problem is in fact nothing else than a nonlinear 
optimization problem which can be stated as follows 

Problem 3.1. Given a real-valued function J : 1R'" -t IR defined on a set IRn. 
and a bounded subset C C IRn., by the optimization problem 

minimize J (8) 

subject to 8 E C 

we mean a problem of finding an element 8* E C such that 

J(8*) :$ J(8), for all 8 E C 

(3.19) 

(3.20) 

Such a 8* we call a globally optimal solution or simply a global minimum. 
The existence of such an element is in fact guaranteed by the boundedness of C. 
When C is not finite then existence of a minimizing point is only guaranteed if 
J: IRn• -t lR is a continuous function, C = lRn" and J(8) -t +00 if 11811 -t +00. 

Necessary and sufficient conditions for optimality are readily available when J 
is a differentiable function on lRn• and C is a convex subset of lRn•. Then we 
have 'V J(8*)T (8 - 8*) ~ 0, for all e E C where 'V J(8*) is the gradient of J 
evaluated at e* 
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In case C = JRn. (unconstrained case) this is equivalent with V' J(8*) = O. When 
J is in addition twice continuously differentiable and C = JRn., an additional 
necessary condition is that the Hessian matrix \72 J(8*) be positive definite at 
8*. If J is a non-convex function of 8, i.e. the condition J(a8 1 + (1 - a)82J ::; 
oJ(8d + (1 - 0)J(8 2 ) is not satisfied for every 81, 8 2 E C and every scalar 
0, 0 ::; 0 ::; 1 then the above stated conditions of optimality have only local 
character for some neighbourhood of 8* . 

When the function J is defined by the MLP it becomes non-convex. This 
creates a serious obstacle to finding a global solution of the optimization problem 
Problem 3.1. The parameter dimension is usually in the order of a few tens or 
even hundreds what further complicates the problem. 

A method of finding a minimizer 8' of the function J is then called an opti
mization method. These methods perform a certain iteration process on 8, similar 
to (3.8). Such an iteration process can be based either on a gradient of the opti
mized function or the updates can be generated randomly. In the following sections 
we will discuss both of these approaches. 

3.4 Gradient optimization 

In the following we consider search methods which use the gradient of the mini
mized function as well as the function values. We will concentrate on a feasibility 
of using these methods for neural network training. 

3.4.1 The method of steepest descent 

One of the reasons, why neural networks became so popular was the promotion of 
the backpropagation trainin~ algorithm [74, 55, 21]. Purely seen from the mathe
matical point of view it is an algorithm of analytical evaluation of gradients of the 
MLP error function with respect to weights and then application of this gradient 
in a steepest descent minimization procedure for an iterative update of weights. 

The negative gradient - \7 J(8{j)) in (3.8) shows the direction ofthe most rapid 
decrease of the function at the point 8{j). This is where the name of this method, 
steepest descent, comes from. The step size Pj determines the speed of convergence 
of this method or in another words the learning rate of the network. Under certain 
conditions this is a globally convergent method converging to a local minimum of 
the cost function J. If Pj is too small the method converges very slowly. On the 
other hand, if Pi is too big, the method starts to oscillate. The choice of a constant 
Pl == P causes also oscillations of the method near a local minimum. Often is (3.8) 
combined with a one dimensional search or line optimization as follows 

P~ = argmin J(8U) - pj V'J(8U))) 
J Pi 

(3.21) 

with respect to Pj E JR. The actual update (3.8) uses then a value pj obtained 
as a result of this optimization problem. An analysis shows, that we then iterate 
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our search along orthogonal increments. This feature, in fact, makes the steepest 
descent method slow and computationally inefficient. This inefficiency becomes 
even more obvious if the dimensionality of 8 becomes very large which is the case 
of neural network training. 

Many suggestions are reported in the literature of speeding up the backprop
agation training algorithm. All these improvements are based on some heuristics 
which are closely related to the application and therefore it is hardly possible to 
generalize these results. However, they can be found useful for large problems 
being solved on small machines with a limited memory when the steepest descent 
algorithm is the only one applicable. 

A most common improvement of (3.8) concerns the extension of this recurrence 
in an extra, so called, momentum term [55] giving us the following iteration process 

8(1) = 8(0) - Po V J(8(0)) 

S(j + 1) = 8(j) - pjV J(8(j)) + (3j(8(j) - 8(j - 1)), j 2 1 

A complete mathematical proof of a global convergence of this interesting algo
rithm together with conditions put on Pi and (3) can be found in [42, 49]. Intu
itively, the benefit of this method lies in a sort of filtering out zigzag changes of 
the gradient along steep valleys. It can potentially also escape from shallow local 
minimum, because when VJ(8(j)) becomes zero, 8(j) - 8(j - 1) probably was 
not. The main drawback of this method lies in a reliable choice of steps Pi and (3J 
which could provide a good convergence speed. 

Other improvements of the algorithm (3.8) concerns an adaptive choice of the 
step size Pi during the learning process by monitoring the speed of the descent 
progress [59, 52, 26, 73]. Our experience and tests of some of these methods show 
that the error functions formed by neural networks together with data are much 
too complex that we could benefit out of these methods. Another weak point of 
all these proposals is that they were not tested on mOre examples and compared 
to other methods, for instance on the same data. 

Another often seen modification of the backpropagation algorithm is an exten
sion of the basic cost function into a term penalizing superfluous weights [30, 60]. 
This is expressed by an Euclidean norm put on weights resulting in the following 
criterion 

(3.23) 

where {! E JR, (! > 0 is a so called regularization parameter. We can immediately 
notice, that in this way we penalize also nonzero weights and therefore we introduce 
here some bias with respect to the optimal solution. The gradient of (3.23) is 
readily available as a combination of the backpropagation gradient and an extra 
term as follows 

VJ(8) = VJ(8) + {!8 
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We have found this method useful for early stages of any optimization to penalize 
weights with very big values which might cause node saturations and consequently 
numerical problems in optimization. The regularization term in fact pre-conditions 
the Hessian of the cost function and in this way makes the optimization easier. 

3.4.2 Conjugate gradient optimization methods 

A method which outperforms the steepest descent algorithm and has a precise 
mathematical interpretation is the method of conjugate gradients proposed orig
inally in [22J and then reconsidered for a non-convex optimization in [15]. This 
method is already close to the second order gradient optimization techniques which 
are subject of the next section. The algorithm assumes that the optimized func
tion is quadratic and implicitly uses the Hessian matrix in its derivation. In the 
iteration process is this matrix actually not updated and therefore this method is 
also called as memoryless quasi-Newton. 

The search direction p(k) is in this method generated as follows 

p(k) = -\7 J(8(k)) + f3(k)p(k - 1) 

where f3(k) is computed by different formulas (see e.g. [56]) 

\7 J(8CkW\7 J(8(k)) 
f3(k) = \7 J(8(k - 1))T\7 J(8(k - 1)) 

or 

f3(k) = (\7J(8(k -1)) - \7J(8(k)))T\7J(8(k)) 
\7J(8(k -1))T\7J(8(k -1)) 

For quadratic functions this method finds the minimum in a finite number of steps. 
When this method is used for optimization of non-quadratic functions the search 
direction is periodically re-initialized to the steepest descent direction by choosing 
f3(k) = 0 for k = 0, no, 2no, . ... We have experienced that when using this method 
for neural network training, after a few iterations the method gets stuck and as 
a consequence the conjugate direction generation has to be restarted more often 
than after every ne iterations. To explain this assume that 8(k + 1) ~ 8(k). 
As for this method holds that p(k)~ \7 J(8(k + 1)) and \7 J(8(k + 1))~ \7 J(8(k)), 
we can easily verify, that the search direction becomes almost orthogonal to the 
gradient direction, where marginal improvement can be expected. For this reason 
at least the second formula for f3(k) should be used, which automatically "resets" 
the search direction to the steepest descent one when this occurs. But then we 
often proceed the optimization mainly in the inefficient steepest descent steps. 

Some modification of the basic algorithm of conjugate gradients are discussed 
in [46]' [57J. Mainly the problem of inexact line searches addressed in [571 could 
be of particular interest here, as the line search is very crucial for maintaining the 
mutual conjugacy of the search directions. As we are dealing with complex non
linear functions benefits of these improvements might be masked by the problem 
complexity. 
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3.4.3 Second~order gradient optimization methods 

It turns out, that for some applications, mainly concerning pattern recognition 
problems, is the backpropagation learning method sufficient. For system identifi
cation for control purposes, where accurate approximations are natural this is not 
enough at all. It is well known, that for quadratic functions is the steepest descent 
not the best search direction. This is due to the curvature of the cost function, 
which is not taken into the account or in other words the steepest descent does 
not considers the successive gradient changes of the cost function. These changes 
can be brought into the optimization implicitly or explicitly. In both approaches 
we relay on a strictly quadratic landscape of the optimized function with respect 
to optimized parameters, in our case these are the weights of the neural network 
8. Then we reach the global minimum within at most n steps if n is the searched 
space dimension. The error landscapes produced by neural networks, even they 
are quadratic in terms of the error €, are very complicated in shape. They are 
non-convex functions of its parameters 8 and often resulting in an ill-conditioned 
optimization problem. By ill-conditioning we mean, that the spectrum of eigen
values of the Hessian can be very wide at different points of J(8). 

The current state-of-the-art in non-convex optimization based on quadratic 
approximation of the optimized function is the well known Broyden-Fletcher
Goldfalb-Shanno (BFGS) quasi-Newton method [58]. This method starts with 
an initial guess 8(0) and initial positive definite matrix Qo and iterates: 

• a line search (3.21) in Pj > 0 for 

• and an update 

Q( . + 1) = Q( .)_ Q(j)p(j)d(jjT + d(j)p(j)T Q(j) 
J J d(j)T p(j) 

+ (1 + p(j)TQ(j)p(j)) d(j)d(j)T 
d(j)Tp(j) d(j)Tp(j) 

where d(j) = 8(j + 1) - 8(j) and prj) = \lJ(8(j + 1)) - \lJ(8(j)). 

Similar method to BFGS is an older method of Davidon-Fletcher-Powell (DFP) 
method [7]. This method updates Q-1 and therefore gives the search direction 
directly while the BFGS must solve a linear system of equations. But test examples 
shows that the DFP method has a tendency to produce a sequence of matrices Qj 
which are not positive definite because of computer round-off errors. The numerical 
stability of BFGS method is usually further increased by updating Cholesky factors 
of the approximated Hessian Q j . 

The main advantage of quasi-Newton methods is in their fast convergence close 
to the minimum. When used for non-quadratic functions they still show superlinear 
rate of convergence in a neighbourhood of a non-singular minimum point. The 
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main drawback of these methods is in the need to store and update an no x 
no matrix Qj which can be significant for large sets of optimized parameters. 
Basically, these methods do not handle situations when the true Hessian matrix 
of J becomes singular or negative definite. In such a situations we have to switch 
to other optimization methods. 

A method specifically designed for minimizing a sum-of-squares error is the 
Levenberg-Marquardt algorithm. This method balances a Newton update and a 
standard gradient descent. However, our tests did not show a clear superiority of 
this method with respect to the quasi-Newton method. 

3.4.4 Optimization by optimal filtering techniques 

The problem of weights adjustment can be transformed into a problem of the state 
estimation of a nonlinear dynamic system from noisy data using optimal filtering 
techniques. The estimate can be done by the extended Kalman filter [31, 61]. 

Let the weights of the neural network constitute a state of the following discrete
time nonlinear dynamic system 

elk + 1) 

,(k) 
elk) 
~(x(k), elk)) + v(k) 

(3.24a) 

(3.24b) 

where "((k) is the given output pattern and .y(k) = ~(X(k), elk)) is the output of 
the neural network at time instant k and e is the neural network input pattern. 
The vector v(k) E !Rna is assumed to be a Gaussian white noise. Let 

£{v(k)} 
[{ V(k)V(j)T} 

where Okj is the Dirac function, [{.} denotes the expectation operation and Rk is 
a positive definite covariance matrix of the noises v(k). 

To apply the extended Kalman filter on the nonlinear dynamic system (3.24), 
we linearize the nonlinearity in the output equation (3.24b) around the current 
estimate of the state vector, which is in fact the current estimate of weights of the 
neural network. Then the filter equations are 

where 

e(k + 1) 

P(k + 1) 

K(k) 

elk) + K(k)[,(k) - ~(X(k), elk))] 

P(k) - K(k) H(k) P(k) 

P(k) H(k)T [R(k) + H(k) P(k) H(k)T]-l 

H(k) = 8~(X(k), elk)) I 
8x(k) e(k)=e{k) 

(3.25a) 

(3.25b) 

(3.25c) 
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The equation (3.25a) defines the weights update and the equation (3.25b) defines 
the weights covariance matrix P(k) update, both are being updated after present
ing a single input pattern X(k) of the data to the neural network input. Notice, 
that P(k) E IRn • x IRn • is a square matrix of dimension of e and to compute 
the Kalman gain K(k) we have to invert a matrix of dimension no, which is the 
number of neural network outputs. 

This method was tested on simulated data from the following system 

(k 1) = Yd(k)Yd(k - 1)(1- u(k - 1)) + u(k) 
Yd + 1 + Yd(k - 1)2 + Yd(k - 2)2 

y(k) = Yd(k) + elk) elk) ~ N(O, 0.01) 

Using as an input u(k) a sequence of uniformly distributed random samples from 
an interval (-1,1) we generated a sequence of 500 output points y(k) produced by 
this system. A neural network was then let to approxiIl}ate the nonlinearity of this 
process. To construct an approximation problem, we defined the neural network 
input as follows 

X(k) = (u(k - 1), u(k - 2), y(k - 1), y(k - 2)? 

The neural network was a MLP with one hidden layer with 10 nodes, 4 inputs 
and 1 output computing i. The true output pattern 'Y(k) was represented by the 
simulated system output y(k), 'Y(k) = y(k). This example was taken from another 
study where we were comparing prediction and simulation models. At this point we 
want to demonstrate the performance of the extended Kalman filter used for neural 
network training regardless obtaining a biased estimate of the system transfer 
function. In Figure 3.2 is shown the cost function value against the iteration 
number. We can immediately recognize the superiority of the EKF against the 
backpropagation. The slow convergence of the backpropagation algorithm is quite 
remarkable. As the EKF is computationally more involved its advantage in cost 
reduction speed is weakened by this problem. However, the overall CPU time 
spent in 5000 iterations of the backpropagation was 3799 seconds and reached cost 
function value was 0.241, while 200 iterations of the EKF took 2354 seconds of 
CPU and the reached cost function value was 0.0255. 

3.4.5 Other gradient optimization methods 

When we have tested the quasi-Newton optimization method for its suitability for 
neural network training we have observed a couple of convergence difficulties. The 
main convergence difficulty was related to a situation when the Hessian matrix of 
the optimized function has negative eigenvalues or is almost singular. The land
scape of the optimized function has there eccentric curved valleys or fiat ravines. 
Since the method uses a quadratic approximation of the optimized function, which 
can happened to be very poor resulting in slow convergence rate of the optimiza
tion. To overcome these problems we have tested different optimization methods. 
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In the following we give a review of some of these methods as they can be used in 
combination with the quasi-Newton optimization. 

Except the quasi-Newton method, these methods are usually not included in 
currently available software packages and must be programmed separately. 

Optimization by weighted past gradients 

In this section we discuss an optimization method which we proposed when tackling 
the problem of following steep, curved, high dimensional valleys of J(0). The 
steepest descent method will be getting stuck in such a valley after a few iterations 
by taking small orthogonal steps and the quasi-Newton method will be affected 
by not strictly positive definite Hessian of J(O). In these cases the optimization is 
proceeded by small orthogonal increments resulting in jumping from side to side 
of a multidimensional valley. 

The defined by the following formulas 

0(k+ 1) 0(k)+Q(k,>.*) 
k 

Q(k, >. *) L >'i\7J(0(i)) 
l..=k-q 

where k is the iteration number, Q(k, )..') is a weighted sum of past q gradients 
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inclusive the current one and .\* E lR5+ 1
• The weighting factors .\; are chosen at 

each iteration by solving the following optimization problem 

.\* = argmin J(8(k) + Q(k,.\)) 
>. 

The last optimization problem can be easily solved by a quasi-Newton algorithm. 
Compared to the quasi-Newton method used to minimize J(8), The convergence 
rate of this method was only better than the convergence rate of the quasi-Newton 
method only in the earlier stages of the optimization. It seems that the dimension
ality of the valley can be so high that it is impossible to follow the valley curvature 
only by using a few past gradients. 

However, the main advantage of this method remains in the reduction of the 
searched parameter space dimension compared to the quasi-Newton optimization 
method as q « no. 

Optimization along curved lines 

The reason to investigate the "curved search methods" for training of the neural 
network is their potential improvement of convergence on error landscapes featured 
by curved valleys. The method derived in [3] performs a one dimensional search 
along a quadratic curve 

(3.26) 

where q(k) is the steepest descent direction and p(k) is the quasi-Newton direction. 
We have experienced occasionally a faster convergence using this type of methods 
but in longer terms these methods did not outperform the quasi-Newton method. 
The reason for this may be that the curvature of the valley is so complex that the 
quadratic curve can only fit this curvature in a very small neighbourhood of the 
current point. In fact, our implementation of this method was not optimal as the 
Hessian matrix was only estimated numerically. 

Optimization by nonlinear coordinates transformation 

Another class of gradient methods which considers non-quadratic shape of op
timized cost function are described in [53, 41]. As we have already mentioned, 
using second order gradient optimization methods, like the quasi-Newton, usually 
results in a poor performance because the supposed quadratic approximation of 
the optimized function does not describe the behaviour of the optimized function 
accurately, e.g. when the Hessian matrix of J(8) has negative eigenvalues. In such 
cases it is interesting to use a nonlinear transformation of coordinates 8 = 1/J(8). 
The Hessian matrix in the transformed coordinates is given by 

n. 
\J2J(1/J(8)) = \J1/JT (8)\J 2J(8)\J1/J(8) + L\J21/Ji(8)\JJ(8) (3.27) 

i=l 
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and can be made positive definite. This means that in transformed coordinates the 
approximation of the optimized function by some quadratic form is more accurate 
than in the original coordinates. 

For the nonlinear transformation of coordinates we took the form proposed in 
[53J. We implemented this method using numerical estimation of required gra
dients and Hessian matrix components. The problem with this method is that 
to construct a suitable coordinate transformation function we have to know the 
sensitivity of the eigenvalues of the Hessian matrix with respect to optimized pa
rameters and that requires determination of third derivatives. Just for curiosity, 
this method finds the minimum of the well known Rosenbrock's "banana" function 
in the second iteration. 

3.5 Stochastic optimization 

This broad class of optimization techniques is very well suited for non-convex opti
mization problems with many local minima. We can distinguish deterministic and 
stochastic global optimization methods. The deterministic optimization methods 
try to locate all local minima and then choose the best one as a global minimum. 
However, there is no test available for a general non-convex function to verify 
whether there exists another local minimum other than already found. There
fore methods like [I1J won't work in practice unless we can exploit the optimized 
function analytically. Even if our problem is a global optimization problem on a 
bounded set the covering methods [71], working with certain grids, are not inter
esting for us because of very large grid points to be considered even for problems of 
moderate dimensions. On top of this, these methods assume limited rate of change 
of the optimized function given by the Lipschitz constant which is in practice also 
very hard to find. 

Later on we rather concentrate on stochastic methods which seem to give better 
results [70J. These methods usually guarantee a convergence to a global minimum 
in a probabilistic sense as the number of trials increases 

Pr{ lim 8(k) = eO} = 1 
k-too 

(3,28) 

where e* is a global optimizer and Pr is the probability operator. However, 
in practice we do sacrifice the possibility of global convergence otherwise such a 
method would be found lacking efficiency. At the same time we are loosing the 
reliability of these methods and therefore some trade-off between these two issues 
is always necessary. 

A basic algorithm describing this class of methods is as follows 

1. Choose an initial point eo, step size ao, set k '=' 0, and 8(0) = eo· 

2. Generate a search trial p(k) E lRn • at random 

3. If J(8(k) + akP(k)) < J(8(k)) update e(k + 1) = e(k) + O'.kP(k) 
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4. set k = k + 1 and go to step 2. 

Different methods differ namely in steps 2 and 3 of this scheme, that is how to 
generate a search trial and how to perform the update or to choose the step size 
Ok. To satisfy (3.28) Ok must obey the following conditions 

00 

(ii) L ok < 00 

k=O 

(iii) lim Ok = 0 
k~oo 

These are simple conditions to fulfill theoretically, e.g. by a choice Ok = t. An 
obvious problem here is that computationally we can perform only a finite number 
of iterations. However, for simple functions of modest dimension of 8, say ng < 10, 
which can be evaluated in a relatively short time and we usually can perform 
a sufficient number of iterations, these conditions are practically satisfied. For 
functions of high dimensionality, say ng > 50, this is a real limitation. In the next 
part we will review those stochastic search methods ~which we were found very 
useful for neural network training and which also showed better effiCiency than 
the basic method discussed just above. 

3.5.1 Controlled random search 

Controlled random search methods are characterized by controlling some of the 
parameters of the generating probability density function (p.d.f.) of search trials 
p(k). Most of the time, a trial is chosen from a Normal p.d.f. which variance is 
controlled with respect to the progress in optimization. The method proposed by 
[27] was used by many researchers in different modifications. For instance, in [63] 
is in the case of success the variance increased by a constant ratio and in the case of 
failure decreased by a constant ratio. In [69] is proposed a controlled random search 
strategy which belongs to a class of reinforcement search algorithms. It means that 
a successful trial is used also in the future to adjust the search parameters as there 
is a good chance that the same trial will also appear in the future. 

The algorithm of [69] generates trials 8 by 

8(k) = 8(k) + p(k) (3.29) 

where p(k) E IRn8 is a vector of stochastic increments which are chosen from an 
uniform distribution on an interval (-ak, ak), ak E IRn •. If a trial is successful, 
that is J(8(k)) < J(8(k)), we perform the following update 

8(k + 1) 8(k) 
1 

ak+l = oak + (1- o)
2P

a Ip(k)1 

(3.30a) 

(3.30b) 

where Po. is a user defined parameter specifying the probability of success. If a 
trial is not successful, that is J(8(k)} 2: J(8(k)), we perform the following update 

8(k + 1) 8(k) 

O<a<l 
(3.31) 

(3.32) 
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The decay factor a defines the speed of the algorithm convergence and typical 
values of this factor are 0.9, 0.99. The coefficient Pa defines expected probability 
of a successful trial. A typical value for Po. is from interval (0.1, 0.01). It is claimed 
in [69] that the parameter ranges will stabilize to effective values. Actually, this 
will only happen when an expectation of a successful trial will approach value 
Po· As this is seldom the case, unless we choose a very small value for Pa, the 
searched parameter ranges converge exponentially to zero. We have used this 
method mainly due to its simplicity and almost no computational overhead. 

3.5.2 Simulated annealing 

Simulated annealing is a stochastic optimization technique that can optimize any 
cost function possessing arbitrary degree of nonlinearity, discontinuities or stochas
ticity, including arbitrary constraints imposed on these cost functions. From the 
statistical point of view it guarantees finding a globally optimal solution. Simu
lated annealing is an optimization procedure which probabilistically samples dif· 
ferent points of the function landscape, called also energy function. This method 
maintains a parameter called the temperature. As the temperature is reduced the 
likelihood that lower local minima are sampled rather than higher ones increases. 
Finally, when the temperature is at zero the global minimum is found. 

The method of simulated annealing consists of three functional relationships: 

1. The generating probability density function fatS) of the parameter space. 

2. The probability function Pa for acceptance of a new cost function given just 
the previOUS value. 

3. A schedule T(k) of annealing the temperature T in annealing-time steps k. 

Basically, the method generates random trials with a probability density function 
fatS) and successful trials represent new points. The key feature of the simulated 
annealing optimization is that a not successful trial is treated probabilistically: 
the probability that this trial is accepted is Po.. The standard simulated annealing 
optimization, generally specified as Boltzman annealing, uses as the acceptance 
probability a function, which is based on changes in the cost function value in two 
successive trials, 

Pa (b,.J) = exp( - b,.J IT) (3.33) 

where b,.J represents the difference between the present and previous values of the 
cost function, i.e. b,.J = J(k + 1) - J(k). 

As a generating function fatS), the Boltzman annealing uses a Gaussian p.d.£. 

(3.34) 

where b,.ei = ei(k + 1) -' ei(k) is a single parameter deviation of S(k + 1) from 
the currently accepted point 0(k) and T represents the temperature in the sys
tem. In [18J has been shown that for the Boltzman annealing with the generating 
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function (3.34) the optimization procedure can find a global minimum of J(8) if 
the annealing temperature is reduced at the rate of 

T(k) = ~ 
Ink 

or slower. As we can see from the last equation, the logarithmic decrease of the 
temperature will in general lead to a very slow optimization. 

A faster annealing schedule can be obtained using a Cauchy distribution as 
the generating probability density function of the parameter space (see [67]). The 
Cauchy distribution given by 

(3.35) 

has a fatter tail than the Gaussian distribution of the Boltzman annealing and this 
permits easier access to test local minima in the coarse of the search. To guarantee 
that the system will statistically find the global minimum, the annealing schedule 
for Cauchy distribution is 

T(k) = ~o. 

Both the Boltzman annealing and the Cauchy annealing have the distribution 
functions, which sample infinite ranges and there is no provision for considering 
different annealing schedules for different parameters. It would be also convenient 
to sample a bounded search space rather than an infinite space. Also, there is 
no quick algorithm for calculating a no-dimensional Cauchy random generator. 
One might choose a no-product of one-dimensional Cauchy distributions for which 
a few quick algorithms exists. This could also permit different To's to take into 
account different parameter sensitivities. The required annealing schedule looks in 
this case as 

To 
Ti(k) = kIln 

which, although faster than Boltzman annealing, is still quite slow. This sort of 
annealing was proposed in [25]. Though this is a very sophisticated version of 
simulated annealing, it introduces relatively high computational overhead which 
may not allow us to perform sufficient number of cost function evaluations within 
a reasonable time. 

Less computational overhead is introduced in the simulated annealing of [12]. 
This method uses (3.33) as the acceptance probability function and an uniform 
probability density function of the parameter space. During the optimization 
are the ranges of parameters adaptively adjusted for each parameter dimension 
independently such that the averaged percentage of accepted moves is about one
half of the total moves. Basically, the parameter range is extended if the success 
rate is too high or decreased if the success rate is too small. 
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3.6 Summary and conclusions 

While the problem of a neural network training belongs to the class of non-convex 
optimization problems we have to consider it as a global optimization problem. 

In principle, we have two options for a choice of an optimization method and 
that is either a deterministic or a stochastic optimization method. The deter
ministic methods try to solve this problem by locating all local minima. No such 
method, however, can guarantee that all local minima will be found for a general 
non-convex function. Far better results - both theoretically and computationally 
- are obtained by stochastic methods. We have seen that these methods are re
liable under mild conditions, that is they converge almost certainly to the global 
minimum. However, a strictly global method is usually found lacking in efficiency. 
Therefore we do sacrifice the possibility of an absolute guarantee of the global 
minimum and we only expect to find a good minimum. 

The advantages and disadvantages of local and global optimization algorithms 
are judged mainly by the number of iterations needed to solve the problem and 
computer time needed to complete this task. Some methods are very sophisticated 
and may need fewer iterations than simpler methods. On the other hand, more 
complex methods need more computer time per iteration but after all, the practice 
shows that increased computational costs are always compensated by substantially 
fewer number of iterations required than for simple methods. This is the case of 
the quasi-Newton method compared to conjugate gradients of Fletcher-Reeves or 
weighted past gradients proposed in this chapter. Local optimizations methods 
usually converge very fast but only to a local minimum and are very sensitive to 
the shape of the energy function. Global optimization methods are insensitive 
to the shape of the energy function and converge to a global minimum but very 
slowly and theoretically in infinite time. As in many practical problems, a trade-off 
between complexity and renability of overall optimization will take place. 

Our approach to neural network training is based on a combination of deter
ministic and stochastic methods resulting in the following algorithm: 

for j := 1 iQ Ne do 
set 8j(0) to either random or user-specified values 
call stochastic search routine 
call quasi-Newton routine 

whrere 8 j (0) is a starting point of the optimization. That means that we iterate a 
stochastic search followed by a quasi-Newton optimization for a number of starting 
points Ne until sufficient performance is obtained which is judged manUally. The 
stochastic search is either the controlled random search algorithm using formulas 
(3.30) or a Boltzman simulated annealing of [12]. The quasi-Newton routine starts 
then from the best point found by the stochastic search. The returned minimum 
is stored and later on, after a whole batch of Ne optimizations was completed we 
decide either to restart them, possibly with replacement of worst solutions with 
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new random guesses, or we accept the best solution. This decision process was not 
automated yet and was done manually. The number of iterations performed either 
by a stochastic search or by the quasi-Newton search are specified in advance as 
input parameters. 

A C code of the simulated annealing of [25] we obtained from the author himself. 
A FORTRAN code of the simulated annealing of [12], which is publicly available on 
the INTERNET computer network, was re-programmed in C. The other stochastic 
search routines were programmed in C. As a quasi-Newton routine we were using 
FORTRAN routines E04KBF. E04JBF, E04UCF of the NAG library [47]. 



4 Grey-Box Neural Network 
Models 

This chapter deals with the modelling issues involved in the controller design pro
cedure discussed in the next chapter. Provided, that there is ·available a math
ematical simulation model of the process we can test different control strategies 
and synthesize such a strategy which is the best with respect to our requirements. 
Therefore, to have a feasible simulation model of the process is of importance. 
We consider only parametric models which means that the model is a mathemat
ical function of a finite number of tunable parameters which allow the model to 
compute a specific function. 

Neural networks offer an excellent approximation possibility and are recently 
often used to approximate functions that define the plant input/output dynamics. 
The main feature of our approach is that the process dynamics is modeled by 
embedding as much available a priori knowledge about the process dynamics into 
the neural network model as possible. 

4.1 Black-box modelling 

The general idea behind black-box modelling is to assume measured input/output 
data of the given system, usually assumed in a form of multivariate time series 

D={[u(k),y(k)], uEIRm, yEIW, k:=I,2, ... ,N} (4.1) 

where u is the input and y is the output and to approximate the output of the 
system y(k) by a relationship y(k) :::= j(r/>, 8) where r/> is the usual regression vector 
and 8 denotes the parameters of the model. In our context, the function j is in our 
context approximated by an MLP and the regression vector is typically composed 
from either past inputs and past outputs. The values of parameters 8 are then 
typically obtained by minimizing a summed squared error between the true system 
outputs y(k) and the modelled output Y(k). 

In the following we will be treating two classes of dynamic black-box models: 
input/output models and state-space models. Each of these models will implicitely 
assume a certain structure of the modeled system. 
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4.1.1 110 models 

Consider the following prediction form of a nonlinear input/output dynamic system 
in the discrete-time domain 

y(k) = Jp[y(k -1), ... ,y(k - ny),u(k), ... ,u(k - null + elk) (4.2) 

where u(k) E IR m and y(k) E IRP are observed inputs and outputs, respectively, 
k E Z+ is the discrete-time index and elk) E lRP is a noise sequence of mutually 
independent identically distributed random samples which are independent of in
puts u(k) and outputs y(k). The order of this system is defined by the number 
of output delays ny E IRm and by the number of input delays n" E IRP. Let the 
measured I/O data of this system be denoted by Dp and let a model of this system 
be parameterized as follows 

y(k) == ip[y(k - 1), ... , y(k - r!;;), u(k), .. . ,u(k - 11,;), €l jJ (4.3) 

In (4.3) the arguments of the approximation function ip are the delayed true 
process outputs y(k) and process inputs u(k), 11;; and n,; define the model order 
similarly to the definition ofthe given system order in (4.2). The parameter vector 
€l jp is a finite dimensional vector of unknown parameters. Let the approximating 

function ip be a member of a family of approximation functions Fnl ,n" ... ,nNL' 

i.e. ip E F n" n2 •..• nN" represented by a multilayer perceptron consisting of hidden 
layers of nI, n2, ... ,nNL hidden nodes. The parameter vector €ljp E !Rn

, then 
contains all network's weights and biases and no denotes the dimension of the 
vector e jp' The prediction error elk) is defined by 

e(k) = y(k) - f)(k), for k = 1, ... ,N (4.4) 

The model (4.3) is in the literature called a nonlinear auto-regressive model with 
an exogenous signal or NARX [8, 9]. If the noise sequence elk) does not satisfy 
the previously required assumptions we have to consider a generalization of (4.2), 
namely 

y(k) = J;[Y(k - 1), ... ,y(k - ny), u(k), ... , u(k - nul, 

e(k - 1), '" ,e(k - nell + elk) 
(4.5) 

where elk) E IRP is a white noise sequence. A model of this system is then 
parameterized as follows 

y(k) = i;[y(k - 1), ... ,y(k - 11;;), u(k), ... ,u(k - 11,;), 

e(k - 1), ... , e(k - f!;), €l j;] 
(4.6) 

where elk) are the prediction errors computed by (4.4), 1; E F n, •n ' ..... nN, is a 
neural network and e j. are its weights. Compared to the NARX model (4.3), 

p 
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the model (4.6) is extended in a moving average part of the order n; and is often 
called as N ARMAX model [8]. 

Another way of modelling a nonlinear dynamic I/O system is to consider a 
model described by the following equation 

fj(k) = is[Y(k - 1), ... , fj(k - n;)' u(k), ... , u(k - il,;), e iJ (4.7) 

Here, as the arguments of the approximation function i" is E F n1 ,n2, .. ,nNL ' we 
have used past values of the model output y(k) and the past values of the process 
input u(k). The free parameters e i. contain the neural network weights and 
biases. This model assumes that a data generating system being described by 

ys(k) 

y(k) 

fs[Ys(k - 1), ... , ys(k - ny), u(kl, ... , u(k - nul] 

ys(k) + elk) 

(4.8al 

(4.8b) 

where elk) is an output noise or measurement noise assumed to be un correlated 
with past inputs and with past outputs. Let us denote the measured input/output 
data of this system by Do. 

Although both models (4.3) and (4.7) predict the next value of the process 
output y(k) and they are quite similar in their structure, they state different as
sumptions and they have also different mathematical properties. These properties 
become more obvious if the prior assumptions, in this case (4.2) and (4.8), are 
violated, e.g. in practice. 

The first of these two models, (4.3) or (4.6), is called a prediction error model 
or an equation error model. The second model (4.7) is called a simulation model or 
an output error model. The first type of model is usually optimized towards a best 
prediction of the next process output value given past system outputs and inputs, 
while the second one is optimized for longer time predictions which are based 
exclusively on past system inputs. A schematic diagram of both of these two 
models is depicted in Figure 4.1. We frequently use a subscript "p" when talking 
about a prediction model and a subscript "s" when talking about a simulation 
model. 

The question is now how to choose the unknown parameters of the above 
proposed models. Typically, an estimate of either e i. or e i. is obtained by 
minimizing the following criterion 

(4.9) 

where 11·112 is the usual Euclidean vector norm, i stands either for ip or is, the 
model orders n;;, n; and possibly n; are chosen beforehand together with the size 
of the neural network. As y(k) is parametrized nonlinearly it is not in general 
possible to minimize (4.9) analytically. Moreover, this criterion defines a non
convex function of parameters e j' The minimized value of J(e i) gives us some 
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Figure 4.1: Input/output model parametrizations 

idea about the accuracy of the estimated model. It is convenient to compute an 
index 

N 

L Ily(k) - y(k, e J)II~ 
19 = k=l . 100% 

N 
(4.10) 

Z Ily(k)ll~ 
k=l 

relating the approximation error magnitudes to the magnitudes of the true pro
cess output. The accuracy of the approximation is determined by many factors. 
Basically, we have to distinguish between an approximation accuracy of process 
nonlinearities and an approximation accuracy of the process dynamics. These two 
aspects have to be treated together as their separation is complicated by the non
linearity of the problem. The most important factors influencing the approximation 
accuracy are discussed bellow: 

• First of all, it is the value of the criterion (4.9) we find during its minimiza
tion. Since we are dealing with a non-convex problem it is hard to access 
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this issue. We rely here on the optimization routine used to minimize the 
cost function. Usually a priori knowledge about the physical nature of the 
problem and a noise level in the system might help us to reject poor solutions 
and continue the optimization procedure trying to find better ones. 

• The accuracy of process nonlinearities approximation will depend not only 
on the smallest value of the criterion we find in the criterion (4.9) but also on 
how densely the observation points fill the input space of the approximated 
transfer function. That implies that the length of the data set will grow 
very fast with the input dimension if one wants to maintain a certain level 
of accuracy. This might badly affect the optimization process which will be 
slowed down due to the increased computational costs. 

• As the approximation is concerned with dynamic systems, the bandwidth 
of the system, understood as a frequency range between the smallest and 
highest eigen frequency of the system, will also influence the accuracy of 
approximation. In general, the process bandwidth limits the maximum sam
pling T., used to sample the process inputs and outputs and also the length 
N of the used set. If the process dynamics are stiff, that is the bandwidth is 
very broad, the data set can be quite long. The longer the data set the more 
time is required for minimization of the criterion (4.9). Besides of the choice 
of a proper data set the accuracy of approximation of the system dynamics 
will be given by the choice of model orders n;; and n;;. 

• The accuracy of the approximation will also be determined by the complexity 
of approximated nonlinearities and the size of the neural network we chose. 
If the complexity of the neural network is too small than the approximation 
will be, in general, poor. If the complexity of the neural network is too high 
one run into overparametrization problems. 

• The process noise e(k) can not be omitted from the approximation accuracy 
discussion. If the noise level in the system is significant, we can expect poor 
models. As the minimization of (4.9) is a non-convex problem, in general, it 
might become very hard to separate the effect of input signal u(k) from the 
effect of the noise signal e(k) in the output signal y(k). 

To minimize (4.9) we will use an iterative numerical procedure proposed in Chapter 
3, which was a combination of stochastic search (e.g. simulated anneling) and 
a quasi-Newton search. For an effective quaSi-Newton optimization we have to 
provide the software computer routines with analytical expressions of gradients. 
These are given in the next sections, both for prediction and simulation I/O models. 

4.1.2 Gradient computations 

To perform an efficient numerical optimization of the criterion (4.9) we need to 
evaluate the gradients of this cost function with respect to the network weights, 
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preferably analytically. These gradients are in general defined by 

(4.11) 

where 

for i = 1,2, . .. ,no (4.12) 

For the criterion (4.9) then holds 

1 N ( )T 8Y(k,0·) 
g(().)=~-~ y(k)~iJ(k0.) f 

Ii N ~ , I of)· 
k=l Ii 

(4.13) 

In the following we will distinguish two situations. The first situation is concerned 
with the prediction error model and the second one is concerned with the output 
error model. 

Prediction model 

If the process is modeled by a prediction model (4.3) then the past input and past 
output arguments of the transfer function are independent of parameters 8 i i and 
therefore in this case holds 

(4.14) 

The partial derivatives of the approximation function jp with respect to 8 i i pa
rameters are computed by the backpropagation algorithm (3.9-3.17). 

Simulation model 

The situation is quite different in case of the simulation model. Because this model 
takes as arguments, besides the past inputs, the past model outputs rather than 
the past true process outputs these arguments become dependent on parameters 
() i i through the recursive evaluation of the model transfer function. Therefore we 
differentiate the modeled output with respect to 0 i. as follows 

(4.15) 

The last expression is in fact includes the expression (4.14) plus a dynamic sum
mation term, whicl1 stands for the network weights dependency on part of the 
network inputs. 
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The first term in the equation (4.15) is a static term computed by the back
propagation algorithm (3.9-3.17) as in case of (4.14) and the second term is a 
dynamic term where 

a/.[.J 
af)(k - j) 

has to be still evaluated. This expression represents a differentiation of the neural 
network output with respect to part of its inputs. This operation can be performed 
by the backpropagation algorithm as already shown in Section 3.2. The formula 
(4.15) together with the backpropagation algorithm (3.9-3.17) is called dynamic 
backpropagation as proposed in [45]. 

The equation (4.15) is a recurrent equation evaluation of which may be quite 
cumbersome for a digital computer. This is determined by four factors: 

1. n; - the number of estimated output delays, 

2. p - the output dimension, 

3. ne - the total dimension of the parameter vector e j,' 
4. N - the length of the data set. 

The approximate number of memory locations pen;; + 1 )ne, required by a computer 
program, computing the equation (4.15), can be quite high. The same holds also 
for the number of arithmetic operations involved in this computation. We have to 
consider also the length of the data set. These kinds of issues have to be taken 
into account when formulating this type of modelling problems, otherwise the 
computing time can be rather high when using a small computer machine. 

4.1.3 Black-box state-space models 

Let us assume a sampled dynamic system described by 

x(k + 1) 

y(k) 

f[x(k), u(k), w(k)] 

h[x(k) , u(k)] + v(k) 

(4.16a) 

(4.16b) 

Here w(k) is the process disturbance and v(k) is the measurement noise. Assume, 
that w(k) is a sequence of mutually independent random samples which are not 
correlated to either x(k) or u(k). The measurement noise v(k) is assumed to be 
white. 

Then a modelling problem can be stated as follows: Given a data set V of type 
(4.1), generated by the system (4.16), find a discrete-time state-space model 

i(k + 1) 

y(k) 

/[i(k), u(k), e j] 
h[i(k), u(k), 8 hl 

(4.17a) 

(4.17b) 
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approximating the true system. The unknown nonlinear functions of the true 
system (4.16), f and h, are parametrized by MLPs with weights 8 j and 8 h, 
respectively. The dimension of the state of this model irk) is assumed to be ii, 
that means that it should be estimated as well unless it is assumed to be known. 

If we compare the formulas of the proposed model (4.17) with the formulas of 
the assumed system dynamics (4.16) we can see that the model does not include 
a disturbance input w(k). As this signal is not assumed to be available for the 
observation, the model (4.17) approximates only that part of fin (4.16a) which is 
a function of x(k) and u(k). The model (4.17) does not use the true system output 
y(k) either. It is using only the system input u(k) and the internal state x(k) to 
compute its output fj(k) and therefore belongs to the class of simulation models. 
A prediction form of a state-space model of a nonlinear process will be discussed 
later on when we will talk about neural state observers (Section 4.3). 

We can see, that both equations (4.17a) and (4.17b) take the same arguments 
and therefore we can combine these two equations intq one equation as follows 

[ 
X(k+l)] = [![X(k),U(k),8,1] =:it[x(k),u(k),8,,] 

fj(k) h[!i;(k) , u{k), 8hl 
(418) 

The nonlinear map it is now parametrized by a single MLP with weights 8 j, . 
The model parametrization (4.18) is a good option for a black-box model. If we 

have some knowledge about f and/or h maps of the original system (4.16), which 
can be brought into the model, then the model parametrization will be probably 
closer to the structure of (4.17). This will be discussed and explained in Section 
4.2. 

The structures of both neural state-space models (4.17) and (4.18) are depicted 
in Figure 4.2. The neural network i of the model (4.17) is a recurrent neural 
network as its full output is fed back through a one step delay to its input. The 
h neural network is an ordinary static MLP. Also the it neural network belongs 
to the class of recurrent neural networks as a part of its output is fed back to 
the input. The neural network weights are in all cases obtained by minimizing 
a criterion (4.9) in which 8 j is replaced either by a concatenation of e j and 
8i\. or by 8 j,' What concerns the approximation accuracy of the model and 
minimization of the criterion (4.9)' the same discussion as the one on page 48 
holds also here. The gradient evaluation of the above proposed state-space models 
for the computer optimization routines is done using similar rules as those we have 
used in case of I/O models. However, algorithmically the gradient evaluation for 
state-space models is easier. For completeness of our discussion, we give these 
gradient formulas in the next two sections. 
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Figure 4.2: State-space model parametrizations 

4.1.4 Gradient computations - structured model 

Let the :1/ (k) E IRnxn be the Jacobian matrix of the neural network j given by 

:Ji (k) = &j[x(k), u(k), 8 fJ 
x &x(k) 

(4.19) 

and .:rfrk) E IRmxn be the Jacobian matrix of the neural network it given by 

.:rhk) = &h[x(k),u(k),8h l 
x ax(k) 

(4.20) 

where both Jacobians are evaluated for values of x(k) and u(k) at the time instance 
k. Then the gradient of the error function with respect to weights is given by 

&J(8 i ,8h) 

&Oi; 

&J(8i ,8,,) 

&OiL; 

~ ~ t (y(k) ~ y(k))T (.:ri'(k) &!~) ) 
= ~~ t (Y(k) ~Y{k)f&h[X(k~0~(k),8hl 
. k=l hJ 

(4.21) 

(4.22) 

where 0 ii and 01,j are components of the neural network's weights 8 i' 8", respec
tively, with indexes i and j running through all weights in corresponding neural 
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networks. The partial derivative of irk) with respect to () J i weights has to be 
computed recursively by 

8i(k) _ 8J[i(k-l),u(k-lJ,8/1 I 8.i(k-l) 
~ - 8(). +:Jx(k-l) 8()' 

J, fi fi 
(4.23) 

The first term in the last expression is being evaluated by the backpropagation 
algorithm (3.~3.17). The same algorithm is used to evaluate the Jacobian matrix 

:1/ (k - 1) which is necessary for evaluation of the second term of (4.23). The last 
formula is a recurrent relation which has to be evaluated recursively in time. 

4.1.5 Gradient computations - unstructured model 

The parameter gradient computation of the cost (4.9) for the model (4.18) is similar 
to the one shown in the previous section. By the backpropagation algorithm we 
compute the partial derivatives of it with respect to weights and a Jacobian matrix 

.1/' (k) = 8ft[i(k),u(k), 8 f ,] 
x 8X(k) 

( 4.24) 

Now we partition this matrix row-wise with respect to the vector dimensions of 
y(k) and i(k + 1), respectively. Let the upper part, corresponding to differenti-

ation of y(k) outputs, be denoted by :Jl"y and the lower part, corresponding to 

differentiation of i(k + 1) outputs, be denoted by .1l',x. Then it holds 

8i(k + 1) = ait"[x(k), u(k), 8 J,l + .:.TI.,x (k) ax(k) 
8() lti 8(}i'i x 8(} iti 

and li denotes that part of the neural network it which outputs compute iJ(k) 
and similarly, it denotes that part of it which outputs compute i(k + 1). 

4.1.6 Model complexity 

The minimization procedure, which we usually perform on the sum-squared out
put error cost function (4.9) to find suitable weights and biases for different neural 
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networks, does not provide us with optimal structure (or size) of the neural net
work. It neither tells us the correct model orders. It is clear that the complexity 
of the model has a strong impact on its performance in a particular application. 

When talking about the model complexity we have to distinguish between the 
order of the dynamics and the complexity of the neural network. These determine 
the complexity of the model. The order of the model dynamics is defined as follows: 

1. In case of an I/O model it is the number of delayed system inputs and 
delayed outputs, either measured or produced by the model, and possibly 
also the number of delayed prediction errors (in the case ofNARMAX model) 
specified by 

2. In case of a state-space model it is the number of model states specified by 

The complexity of the neural network, used for the parametrization of the transfer 
function in the case of an I/O model is specified by the number of hidden layers 
and the number of nodes in each hidden layer, that is by numbers 

In the case of a state-space model we have to consider either one or two neu
ral networks, depends whether we consider either the paramterization (4.17) or 
the parametrization (4.18). Then we have to consider either two or one set of 
parameters, like N L, N N 1, ... , N N NL to define the neural network complexity. 

The above definition of, the complexity of the neural network includes only 
parameters which are free to choose. There are, in fact, other two parameters 
which might be also included into the neural network complexity consideration, 
namely the number of neural network inputs and the number of neural network 
outputs. However,. these two parameters are defined by the dimension of system 
inputs m and the dimension of system outputs p and the order of the model. 

It is very hard to say a priori, what the neural network complexity should be 
and in practice it is estimated from data and using the prior knowledge about the 
process. A pragmatic approach to the neural network complexity optimization is 
to train different neural networks of different complexities and by checking out 
their performance on validation data we decide about optimal complexity. To do 
such a search systematically, we can consider, for instance, a set of neural networks 
with only one hidden layer and to vary the number of hidden nodes NN1' Thus, 
we have to train a set of neural networks having a range of values for N Nl and 
finally we select one which gives the best validation results. This approach requires 
tremendous computational effort, is extremely time consuming and yet we often 
search only through a very small set of neural network complexities. If we try 
to extend the searched set of neural networks, e.g. for neural networks with two 
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hidden layers, then we soon find out that we do not have enough computational 
reSOurces to complete our search. And even if we keep the set of neural network 
sizes small enough we still have to put a lot of computational effort to train a 
particular neural network. As training of a neural network is a non-convex problem, 
the comparison of performance of different neural networks might not be that 
informative. It means, that we can not say, that one complexity is a better choice 
than the other, as we can not be sure, that the minimum we have found, in case 
of the worse neural network is a good one. A partial way out of this problem is 
to train the same neural network for couple of times, by means of starting the 
training from different initial starting points and check the similarity of solutions. 

The choice of the model order will be in this thesis based on ,the available prior 
process knowledge. Otherwise, we would have to vary during the neural network 
training not only its complexity but also the model order. 

4.1. 7 Model validity 

If a model of a system is adequate then the residues or predictor errors should 
be unpredictable from past inputs and past outputs. This statement is equivalent 
to a saying that the prediction errors should be uncorrelated with all linear and 
nonlinear combinations of past inputs and past outputs. Checking of model va
lidity in a framework of nonlinear systems is complicated because of the system 
nonlinearity. That means, that the validity of the model should be considered in 
two directions: 

1. accuracy of approximation of the system nonlinearities; 

2. the order of the model. 

The validity of the estimated model is often being verified by examining the 
residuals. These are computed both for an estimation data set and for a validation 
data set. To do this analysis we have a few options which are discussed below: 

1. Plot of residues and visual judgment. This is usually the first step in a 
residual analysis. Basically we can check, for instance, if the mean value of 
errors is about zero, if the errors are symmetric or asymmetric with respect 
to the mean value, or we can check for some abrupt behaviours of errors. 

2. Plot of residual spectra. When estimating a prediction-error model, assuming 
a system (4.2) and e(k) to be a white noise, a correct model should show a 
fiat spectrum of residuals. If this is not the case, we have to reconsider either 
the neural network complexity or the model orders. 

In case of assuming a system configuration (4.8) while estimating a simulation 
model the residual spectrum should be equal to the spectrum of the output 
noise, provided that it is not correlated with u and y. 

If the noise is not strictly additive to the output then it can be seen as a 
colored noise additive to the output filtered by the process dynamic. It is 
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hard to say, in general, how the spectrum of residuals should look like, as 
both prediction and simulation model will be biased. 

3. Correlation tests. These tests can detect un-modeled nonlinearities by exam
ining cross-correlation functions operating on e(k) and u(k). This approach 
is described in [5J. In case of the prediction-error model we basically check 
for correlation of the prediction errors e(k) with the input signal u(k) and 
mutual correlation of prediction errors e(k). For more proper verification of 
the model validity we should follow all tests proposed in [5]. 

Our experience shows that on simple test examples, as the one which will be 
treated bellow, the correlation and cross-correlation tests are satisfied if the esti
mated model gives similar performance also on the validation data. As the data 
generating system becomes more complex, as for instance the polymerization reac
tor shown in Figure 1.1, the assumed model parametrization will not describe the 
process such, that these criteria will be satisfied. However, they can be "almost" 
satisfied, depending on how complex our model is. The main issue here is to de
cide, whether the model accuracy is sufficient for the particular application. If this 
is not the case, we have to re-parametrize the model and repeat the estimation 
phase, possibly until satisfactory results are obtained. 

4.1.8 Prediction or simulation - an example 

To demonstrate some aspects of the previous discussion we present at this place a 
simple numerical example. 

As a process we consider a system proposed in [45] but extended with a process 
noise. The system was given as follows 

(k) = y(k - l)y(k ~ 2)y(k - 3)u(k - 2)(y(k - 3) - 1) + u(k - 1) 
y 1 + y(k - 2)2 + y(k - 3)2 

(4.25) 

where u(k) denotes the input sequence and y(k) denotes the output sequence. 
We included into the simulation of this system a process disturbance w(k) and a 
measurement noise v(k) while using a state-space description of this system. The 
new given system is then given by 

xI(k + 1) 

x2(k + 1) 

x3(k + 1) 

x4(k + 1) 

y(k) 

XI (k)X2 (k)X3 (k)X4(k)(X3 (k) - 1) + u(k) + WI (k) 
1 + x2(k)2 + X3 (k)2 

XI (k) + w2(k) 

x2(k) + w3(k) 

u(k) + w4(k) 

xI(k) + v(k) 

We simulated this system with u(k) being a combination of a sweeped sine wave 
and a uniformly distributed zero-mean random signal with maximum amplitude 
1, shown in the Figure 4.3, all wi(k) and v(k) were also simulated as uniformly 
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Figure 4.3: Estimation data set 

distributed zero-mean random signals, but with maximum amplitude 0.02. We 
generated two data sets D, N = 1000, of simulated I/O data points. The first one 
was used for the estimation of a model and the second one for its validation. 

The idea of combining a random signal with a sine wave signal is that the 
random signal does not sufficiently excite the system in the nonlinear region. The 
nonlinearity of this system becomes visible only when y(k) stays in magnitude 
close to one for a couple of time instances otherwise the product of the last three 
past samples of y(k) in the numerator of (4.25) decay to zero very fast and the 
remaining term in the numerator u(k) becomes dominant. 

We estimated a set of prediction models parametrized by (4.3) and a set of 
simulation models parametrized by (4.7). Approximated nonlinear process maps 
ip and is were parametrized by a MLP with one hidden layer. In case of the 
prediction error model, the neural network input was defined as 

x = [y(k - 1), y(k - 2), y(k - 3), u(k - 1), u(k - 2)f 

and in the case of the simulation model, the neural network input was defined as 

x = [Y(k - 1), y(k - 2), y(k - 3), u{k - 1), u(k - 2)f 

This also means, that we implicitly assumed that we know the correct process 
orders n;, n,;. 
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The neural network weights were in all cases optimized by minimization of the 
following criterion 

1 1000 

J(8 j ) = 22)y(k)-y(k,8j JJ 2 (4.26) 
k=l 

similarly to (4.9). The number of hidden nodes N Nl in the hidden layer was varied 
from 8 to 19 and the total number of parameters to estimate, given by 

was varying from 57 to 134. Note, that 134 is already quite a considerable num
ber of parameters to estimate. To optimize the neural network weights we first 
performed lOOne simulated annealing iterations and then 50 One quasi-Newton it
erations. We restarted the optimization of each neural network configuration five 
times, always from different starting point. We evaluated the model performance 
on the validation data set. The results of prediction error model estimation and 
its validation are summarized in Figure 4.4(aJ. In this Figure we have also shown 
the value of the Akaike's criterion 

A/e(ne) = -2log(J(8 jp J/N) + 2ne 

as proposed in [35]. Only scaled values are shown in this graph as the actual values 
of this criterion are not that important as the location of its minimum with respect 
to no. The results of simulation model estimation and validation are summarized 
in Figure 4.4(b). 

From the Figure 4.4(a) we can see that on estimation data is the cost function 
monotonically decreasing with increasing number of nodes in the neural network's 
hidden layer. While testing the model performance on validation data (still in the 
prediction-error set-up) we 'can find a turning point from which the cost function 
value increases. We can also observe that the Akaike's criterion is consistent with 
testing the model performance on validation data. In case of estimation of the sim
ulation model (Figure 4.4) we can observe similar characteristics of the estimation 
process: a decreas~ of the cost function value with respect to the number of hidden 
nodes on estimation data and an initial decrease of the cost on validation data and 
than its increase. We can also notice from these results that optimization of a 
output-error model is more difficult as decrease of the cost function on estimation 
data is not that gradual as in the case of prediction-error model optimization. 

In this example we actually did not succeeded to manage a monotonic decrease 
of the cost function value on estimation data for neural networks with 14 and 15 
nodes. It is very hard to say in this case why, but it may be due to a very complex 
cost function landscape. 

In both experiments, prediction model estimation and simulation model esti
mation, we have found out that a neural network with 13 hidden nodes might be a 
good choice. If we compute the predictions and simulations using the true system 
equations with and without the disturbance and we compute the criterion (4.26) 
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using these data we obtain cost function values 0.1703 and 0.1680, respectively. 
These values are in fact reached by 13 hidden nodes neural in the neural network 
both for prediction and simulation models and that is consistent with our already 
made decision about the neural network complexity. 

For further validation of these models we have used a sweeped sine wave sig
nal as an input. In Figure 4.5(a) we can see that the output error in case of the 
prediction model is decreasing towards higher frequencies, what is to be expected, 
while the output error in case of the simulation model remains small over the whole 
input signal spectrum. Testing both models for even smaller frequencies, shown in 
the Figure 4.5(b), the prediction model is very likely to fail in predicting the next 
output sample simply by getting stuck outside of estimated region of nonlineari
ties of the true transfer function. The simulation model is still showing reliable 
performance. Actually, in this particular example, the process shows most of its 
nonlinearities when the input signal stays close to 1 for a couple of samples. As the 
prediction model tends to predict the next output sample by using mainly previous 
output samples, while underestimating the importance of inputs, its validation by 
simulation often results in errors similar to the one shown in Figure 4.5(b). 

To compute the results shown in Figure 4.4 we needed about one month of 
computing time on the DEC 3000 computer. 

4.1.9 110 models versus state-space models 

When dealing with nonlinear systems it is difficult to say if it is better to model 
a given process by an I/O model or a state-space model. In case of linear systems 
the mathematical transformation between both models is trivial, while in the case 
of nonlinear system this is a nontrivial problem. 

In our work we have developed computer software to handle both I/O and 
state-space models. The I/O model can be estimated either in the prediction 
configuration (see Figure 4.1(a)) or in the simulation configuration (see Figure 
4.1(b)). The state-space models (see Figure 4.2(a) and Figure 4.2(b)) are always 
estimated as simulations models. 

The decision about estimating either an I/O model or a state-space model 
should be based on the particular purpose of the estimated modeL For us the model 
purpose is to design a controller for a real-world process. I/O models are often 
used as SISO, one step ahead predictors. Estimation of I/O multivariable models 
is a much more difficult problem. The number of a neural network inputs grows 
very fast with the process dimensionality and the order of the system dynamics. 
If we are interested in a prediction error model the problem difficulty might be 
still acceptable, but in case of estimating a simulation model we are almost always 
faced with a difficult optimization problem. In case of a state-space model the 
number of neural network inputs is smaller and the number of outputs is given 
either by the state dimension or output dimension. This means that in case of a 
MIMO system we might end up with less parameters to estimate. 

The advantage of state-space models is also their simpler implementation and 
handling in software programs for a digital computer where we can gain some 
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algorithmic advantages with respect to the I/O models. These advantages concern 
mainly the gradient computation where in the case of I/O simulation model the 
dynamic term in the backpropagation is summed from one to the highest delay used 
in tapped delay lines while in case of state-space models this sum reduces into just 
one term. From a conceptual point of view the state-space model parametrization 
allows us a better understanding and formulation of problems and, what is most, 
important it allows us also to incorporate our a priori knowledge into the modelling 
in a straightforward way. 

4.2 Grey-box modelling 

The grey-box modelling is characterized by the a priori available partial informa
tion about the process dynamic and structure which may be used for the model 
parametrization. This knowledge can be expressed during modelling in many ways. 
One way can be the choice of parameter values, another way is to elaborate the 
model structure. As it was already said, the available a priori information does not 
contain full dynamic description of the process. Consequently, the total dynamical 
model must contain a white-box part that reflects the a priori knowledge and as 
well as black-box part to model the complementary process dynamics. 

In the following sections we further exploit the state-space models in such a 
direction that we can effectively incorporate the available a priori process knowl
edge. Before we start to do this we classify different kinds of a priori knowledge 
which is usually available. 

4.2.1 A priori information in process modelling 

In practice we are always de.aling with physical processes in which we are able to 
point out exactly some of the process's physical states. These can be, for instance 
in different type of processes, represented by following variables: 

1. technological processes 

temperatures, pressures, flows, volumes, levels, concentrations 

2. mechanical systems 

positions, angles, speeds, angular speeds, accelerations, forces, torques 

3. electrical systems 

voltages, currents, powers, fluxes 

These variables always obey physical laws which relate them to other variables in 
the process. For instance the Newton's law relates the acceleration and force in a 
mechanical system, the acceleration is a time derivative of the speed. In electrical 
systems, it is Ohm's law or Faraday's law which relates currents, voltages and fluxes 
to each other. In chemical processes, for instance, pressures or concentrations 
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r 
Figure 4.6: Gantry crane schematic diagram 

depend on the temperature also by known relations coming clearly from energy 
balances in the process. 

To express mathematically a combination of a white, a priori known part of 
the model, and a black-box part we will now consider two situations. 

Known static relations 

A static relation is a relation which does not contain time derivatives or delays of 
the considered variables. Such a relation can be brought into the model parame
trization simply by defining the output map h of the model (4.17). To illustrate 
this case, let us consider the gantry crane process, depicted in Figure 4.6. 

Without going into the details of the dynamics of this process, as it will be 
given precisely later on, assume that we can measure a position of the load (Xl, Yl) 
in a Cartesian coordinate system, a position Xt of the trolley, the actual length 
L of the rope holding the load and an angle ¢ of the rope with respect to the 
vertical direction. If we are interested in modelling the load behaviour in the load 
coordinates then we can fix the output map h of the model (4.17) as follows 

Xl Xt + Lsin(¢) 

Yl Lcos(¢) 

and the complementary system dynamics is given by a state equation 

x(k+ 1) = j[x(k),u(k),8 j l 

where j stands for a neural network and the state vector x is defined as 

x = (Xt, ¢, L, ... f 
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where the dots mean that we still have to fill in couple of states to model the 
process dynamics properly. The first three state components have then a physical 
meaning while the rest of state components will not have a physical interpretation. 

Known dynamic relations 

Dynamic relations are those that include time derivatives or time delays. Let us 
take the gantry crane example again. It is quite straightforward to distinguish in 
the process behaviour three different subsystems with approximate dynamics: 

1. Pendulum dynamics 
.. g 
</1+ Isin(f/l) = 0 (4.27a) 

2. Mass translation dynamics of trolley 

(4.27b) 

3. Mass lift dynamics 

(4.27c) 

where Fh is the hoisting force. 

Assuming that these relations are known beforehand we can form the following 
model of this process 

i(k + 1) 

y(k) 
= ![i(k), u(k)] + iN[i(k) , u(k), e j] 
= h[i;(k)] 

where the state, control and output vectors are defined as follows 

y = (~:) 

/[x,u] 

h[x] 

(4.28a) 

(4.28b) 
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where T is the sampling time of the process. The discretization of dynamical 
relations (4.27) was, in this case, done by taking a first-order Taylor series ap
proximation of their solutions and therefore the sampling time T should be kept 
small. 

The model (4.28) is composed of a known part represented by ! and an un
known part to be estimated, represented by a neural network iN, 

4.2.2 State partitioning 

In the last two sections we could see that the state vector always contained compo
nents with either an exact physical meaning or directly related to the outputs or to 
other states by known relations. The other part of the state vector was composed 
of states without a specific physical meaning but which are necessary for modelling 
of the process dynamics. Therefore we propose the following state partitioning of 
the considered system (4.16) 

(4.29) 

where xO E JR"o represents unknown system state components and Xl E JRn' are 
known state components, physically well defined and later on they will represent 
our a priori knowledge about the system dynamics. 

In the hidden state component xO we can possibly further distinguish more 
types of states. For instance, in case of assuming process disturbances which are 
not white, x[) will also include states modelling the coloring of the disturbances. 

The above discussion brings us directly to grey-box modelling problem dis
cussed in the following sections. 

4.2.3 Grey-box state-space models 

A grey-box state-space model in discrete time will be from now on understood as 
a model of type (4.17) in which we assume: 

1. that the process output map h is known exactly and set in the model by 
defining h = h; 

2. that part of the true system state map f can also be known and the model 
state map is then a combination of an analytically known part ! and an 
unknown part iN approximated by a neural network; 

3. that the state vector is partitioned according to (4.29). 

The resulting grey-box state-space model is then parametrized as follows 

!irk + 1) 

y(k) 

i[x(k), u(k), e j] 
h[x1 (k), u(k)] 

(4.30a) 

(4.30b) 
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where the function j denotes here a combination of an analytical part 1 and a 
neural network approximated part iN and Xl is the known part of the state vector 
carrying our process a priori knowledge. The weights e j of the neural network j 
are estimated by a minimization of a criterion (4.9) with respect to e j' 

4.2.4 Gradient computations - fixed output map 

The partial derivatives of the criterion (4.9) with respect to the free parameters 
e j are for the model (4.30) determined in the same way as described in Section 

4.1.4. The only difference is in replacement it by h, skipping (4.22), the neural 
network part of j is handled by the backpropagation algorithm and the analytical 
part! has to be differentiated from problem to problem independently. 

4.2.5 Computational costs 

The overall procedure for gradient evaluations of the cost function (4.9) may be 
time consuming mainly for large values of N. In Table 4.1 we give some figures 
of time needed to evaluate the cost function (4.9) by different computers. These 
figures correspond to an identification problem done on the FBPR (see Figure 1.1). 
The number of inputs in this experiment was m = 4, the number of outputs was 
p = 4 and the length of the data set was N = 7201. The model was parametrized 
by a neural state-space model of type (4.30), the order was chosen as ii = 6 and 
j was parametrized by an MLP with one hidden layer containing 12 nodes. This 
yields an estimation of 

(10 + 1) x 12 + (12 + 1) x 6 = 210 

parameters. 
The first column of Tabl~ 4.1 shows the type of used computer hardware. The 

second column shows an average CPU time needed for the cost function (4.9) 
evaluation and the third column shows a timing for the gradient computations. 
These figures demonstrate that optimization of the cost function is, in general, 
a time consuming process and that it is quite essential to have a fast computer 
available. 

Imagine, for instance, that we want to optimize 6 different neural network 
configurations, each containing one hidden layer, and we vary the number of nodes 
from 10 to 15. We want to estimate also models of different orders, let's say ranging 
from 5 to 8. Because we are essentially using only local optimization routines, we 
want to restart every optimization let's say 5 times, what is still a very modest 
number compared to the dimensionality of the parameter space. However, we 
already end up with 120 optimization problems of parameter dimensionality in a 
range from 176 parameters for the smallest model up to 320 parameters for the 
largest model. Let us assume, that we want to perform 5000 stochastic search 
iteration and that we limit the number of gradient evaluations in a gradient search 
also by 5000. Then the estimated time to complete such an optimization task will 
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Table 4.1: CPU time spent in evaluation ofthe cost function (4.9) and its gradi
ents 

Hardware cost CPU time gradient CPU time 
[sec] [sec] 

Intel 386/25MHz 12.5 741.4 
VAXstation 3100 10.3 332 
VAXstation 3100-M76 4.7 165 
Pentium/90MHz 0.37 30.6 
DEC 3000 M300X 0.28 13.0 

not be less than about 90 days, because the computation overhead of optimization 
routines still has to be added. 

4.2.6 Initial state condition estimation 

To start a simulation of the state-space model (4.17) we have to specify the value 
of the state vector i(O) at the time instance k = O. Often we choose as an 
initial condition X(O) = O. In the case of a fully parametrized model (4.17) the 
minimization routine will choose such a state coordinates that the transient from a 
wrong initial condition will be minimal. In the case of an estimation of a grey-box 
state-space model (4.30) it is possible to specify more precisely an initial condition 
for the known part of the state vector xl and choose a zero initial condition for 
the hidden state components £0. The initial condition can also be estimated from 
the data together with the neural network weights. Then the estimation problem 
could be formulated as a minimization of the following criterion 

1 N 
Jo(8 j ,x(0)) = 2N I)y(k) -y(k,8j,x(0))1I5 

k=l 

(4.31) 

with respect to 8 j and X(O). If we assume a model parametrization (4.30), the 
gradient of the criterion (4.31) with respect to El j is evaluated in the same way 
as already shown in Section 4.2.4. The only problem is to determine the partial 
derivatives of (4.31) with respect to the initial state i(O). These are computed as 
follows 

8Jo(Elj,i(0)) _.! ~ _ A T oy(k,Elj,5;(O)) 
05;,(0) - N ~(Y(k) y{k)) OXi(O) (4.32) 

and 
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where .Jxh(k) is the Jacobian matrix of the output map h with respect to £(k) and 
i = 1, ... , n. The partial derivatives of i; with respect to x(O) are computed by 
the following recurrsive formula 

a£(k} aj[£{k - 1), u(k - I)J M(k - 1) 
8£;(0} = ai;(k - 1) 8£;(0) 

(4.33) 

for i = 1, ... , n. 
The evaluation of gradients of the cost function with respect to the initial 

condition requires a computation of the recursive formula {4.33}, which might 
be time consuming. If we do not have enough computing power and we fix the 
initial condition to a constant value we can often observe an abrupt behaviour of 
simulated states during the first few simulated samples. To overcome this problem 
we can skip a requirement of an optimal estimation of x(O) by minimizing (4.32) 
and we can simply start the optimization from a chosen initial condition and after 
a few iterations, when the state coordinates were chosen, we compute a mean value 
of simulated states by 

N 

£(0) = N ~ Nt L x(k) (4.34) 
k=N' 

where N' > 1 is used to skip the transients, and use this value as an initial condition 
for further optimization of (4.9). This method was experimentally proven to give 
satisfactory results. 

4.3 Nonlinear neural state observers 

The so far discussed state-space models represented simulation models of the true 
system and they used only the system input u to compute the model state £ and 
output y evolutions. As the true system is also subject to a disturbance input w, 
there will always be a difference in the simulated output fj and the true output 
y due to the fact that the model does not take into the account the effect of the 
disturbance. The purpose of treating the problem of state estimation is to improve 
the state estimates i; computed by the simulation model for the disturbance effects. 

Let the system be again described in the discrete-time domain by equations 
(4.16). The state estimation problem is concerned with estimating a state of this 
system at time k given all measurements up to the time index k. This estimate is 
denoted by x(k I k). A prediction involves an estimation ofthe state at some future 
time k + I, I> 0 and the corresponding estimate is then denoted by x(k + II k). 

Definition 4.1. By a single-stage ahead state predictor we denote a state esti
mator estimating the value of the state at time k + 1 denoted by x(k + 1 I k) given 
all measurements up to the time moment k. 

Definition 4.2. By a current-stage state filter we denote a state estimator esti
mating the value of the state at time k denoted by x{k I k) given all measurements 
up to and inclusive the time moment k. 
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4.3.1 A single-stage ahead state predictor 

An optimal nonlinear discrete-time single-stage predictor, in general, is required 
to minimize an estimation error criterion 

J = trace [{irk I k -l)i(k I k _l)T} (4.35) 

The estimation error i is given by 

i(k I k - 1) =: x(k) - irk I k - 1) (4.36) 

where x(k) is the true system state and irk I k - 1) is its estimated value. The 
main problem is now how to generate such a sequence of state estimates irk I k-l) 
which would minimize (4.35). 

Let us consider as a candidate for such an estimator the following system 

irk + 1 I k - 1) 

y(k I k - 1) 

x(k + 11 k) 

i(O I -1) 

=: j[i(k I k - 1), u(k)] 
h[j)l(k I k -l),u(k)] 

irk + 11 k - 1) + g[y(k) - f)(k I k - 1)] 

io is given 

(4.37a) 

(4.37b) 

( 4.37c) 

where j and h represent an estimated model of the given system in a form (4.30) 
and 9 is a correction to be designed. The first equation (4.37a) defines an a priori 
state prediction at the time instance k based on knowledge of u(k) and a state 
estimate irk I k - 1) estimated on the previous stage from data up to the time 
instance k - 1. The second equation (4.37b) computes an output estimate y(k I 
k - 1) based on a state estimate irk I k -1) availahle at this stage. The estimated 
output is then compared to the true process output. The output prediction error, 
containing information about the influence of the disturbance w(k) and the noise 
v(k) and given as 

e(k) =: y(k) - y(k I k - 1) (4.38) 

is then used by the 9 correction term in the third equation (4.37c) to correct the a 
priori state estimate for the disturbance effect. The nonlinear function 9 must be 
chosen such, that (4.35) is minimal. The correction term 9 will be later referred 
to also as a nonlinear static filter gain or simply filter gain. 

In general, the filter gain 9 in (4.37c) is a complex nonlinear function which 
analytical synthesis is a very hard problem and in fact, in general, there is no 
analytical solution to this problem. Therefore we parametrize this gain by a static 
neural network and estimate its weights from data. Let us denote this approxi
mation by 9f[y(k) - f)(k),8ii l and let 8 g denotes a vector of all network weights 
and biases. From now on, the state estimation problem translates to a parame
ter estimation problem where a neural network parameters 8 g are estimated such 
that (4.35) is minimal. However, this minimization would require knowledge of the 
true process state x(k). Because of a lack of this knowledge we can minimize the 
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output error (4.38) and hope that the state estimation error will be small as welL 
The parameters of the neural network 8 y are the obtained by a minimization of 
the following criterion 

1 N 
J(89) = 2N L Ile(k)ll~ 

k=l 

( 4.39) 

where e(k) is given by (4.38). This criterion coincides with the criterion (4.9), used 
for the model estimation. The state estimates obtained by a minimization of the 
criterion (4.39) are in fact weighted state estimates, where the weighting factor is 
the output map h. 

4.3.2 Current-stage state filter 

An optimal nonlinear discrete-time current-stage state filter is required to minimize 
an estimation error criterion 

J = trace £{x(k I k)x(k I kf} (4.40) 

The estimation error x is given by 

x(k I k) = x(k) - x(k I k) 

Let us consider a nonlinear current-stage state filter described by the following set 
of equations 

x(k I k) 

x(k I k - 1) 

fj(k I k - 1) 

X(O 10) 

= x(k I k - 1) + 90[y(k) - fj(k I k - 1), egJ 
= j[x(k -11 k -1),u(k)] 

= ' h[x1(k I k - I)J 

= Xo is given 

( 4.41a) 

(4.41b) 

(4.41c) 

where the nonlinear function 90 is again parametrized by a static neural network 
and the vector eYe contains all its weights. An optimal set of weights is determined 
similarly as in the previous Section, that is by minimization of the criterion (4.39). 
The prediction error e(k) is again defined by (4.38), but fj(k I k - 1) is computed 
by the system (4.41). 

4.3.3 Discussion 

The proposed two structures of the state observer are depicted in Figure 4.7 and in 
Figure 4.8, respectively. From a comparison of these two diagrams we can see that 
the predictor corrects the model state prediction before the delay and the filter 
makes this correction after the delay. The choice between these two schemes should 
be based on the controller implementation. When we assume, that the controller 
should at the time instance k deliver a control sample u(k) to the process input, 
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what means that it must be computed before the time moment k using a state 
estimate i(k I k - 1) we have to use the predictor schema. If the control sequence 
is being computed using the filter, the control output sample u(k) will be delayed 
by the computing procedure. 

The parametrization of the gain 9 assumed as an input the innovation sequence 
(4.38). This type of parametrization was proposed also in [64] and in fact it gains 
a lot from an inspiration of a state estimation in linear dynamic systems. As we 
are dealing with nonlinear systems, proper parametrization of 9 would be 

g[y(k), y(k), i(k), u(k), By] ( 4.42a) 

That means that, in general, the filter gain is also a function of the system state 
I(k) and u(k) because it is very unlikely that in different regions of the system 
nonlinearity an optimal gain will be locally the same. Also the values of y(k) 
and y(k) should be used independently, because the output map h is in general 
assumed to be a nonlinear function. 

If the system nonlinearity is not too complex the gain 9 parametrization can 
be considered in a simpler form. The most interesting modifications include: 

1. replacement of y(k) and y(k) by their difference 

g[y(k) - y(k), I(k), u(k), By] ( 4.42b) 

2. assuming only the prediction error 

g[y(k) - y(k), By] ( 4.42c) 

3. assuming only f)(k) and y(k), but independently 

g[y(kl, y(k), ey] ( 4.42d) 

Taking a different parametrization of the gain fj we can obtaine better or worth 
approximation of an optimal gain g, that means better or worth state estimates. 

4.3.4 Gradient computations 

In this section we give the gradient computation of the criterion (4.39) assuming 
the single-stage ahead state predictor given by (4.37) and assuming that the filter 
gain 9 has the form (4.42c). The gradient of the cost function (4.39) with respect 
to weights ey is in this case given by 

aJ(B9) = ~ t (Y(k) _ f)(k))TaY(k) 
80!li N k=l aOrn 

for i = 1, 2, . .. , no and 
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where .J;(k) is again the Jacobian matrix of the output map h with respect to i. 
The partial derivative of states i with respect to the weights are computed by the 
following formula 

.I! (k - 1) is the Jacobian matrix of the system map j with respect to the state 

given by (4.19) and .11 (k) is the Jacobian matrix of the neural network 9 given by 

.J}(k) = 8g[y(k) - y(k), 8 9J 
Y 8fj(k) 

4.4 Linear MIMO state-space identification 

In this section we are concerned with identification of linear time-invariant models 
for multi variable data. We again assume that a measured data set (4.1) is available 
and we want to find a linear time-invariant state-space model 

irk + 1) 

fj(k) 

Ai(k) + BU(k) 

Ci(k) 

( 4.43a) 

(4.43b) 

where i(k),u(k),y(k) are the state, control, output vectors, respectively. For the 
case of simplicity, we assume that the modelled system does not contain the direct 
feed-through. The objective is to find such constant matrices A, B, C that the 
simulated output fj will be close to the real output y in the usual least-squares sense. 
Let all the unknown matrices A, B, C in the model (4.43) be fully parametrized 
and let 8 L denotes a column vector of all entries of matrices A, B, c. This is 
expressed by the following criterion 

1 N 
J = 2N L Ily(k, 8£1- y(k)ll~ 

k=l 

(4.44) 

which is then in an optimal situation minimal with respect to A, B, c. Because 
of the non-quadratic dependency of the value of (4.44) on the model parameters, 
there is no analytical solution to this problem and again a numerical minimization 
has to be employed here. 

Notice, that the linear model (4.43) can be seen as a neural state-space model 
with a very simple neural network containing just an output layer of n linear nodes 
(see the Figure 4.9). Then we can use the same concept of gradient computation 
as the one given in Section 4.1.4. The resulting gradient computation algorithm 
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Figure 4.9: Linear state-space identification set-up: seen as a neural network 
only with one linear node 

is as follows 

8J((~h) = t (i)(k) _ y(k») T 8i)(k) 
80L, k=l 80L; 

where for the parameters of ElL corresponding to the {: matrix elements holds 

i and j indices run through all elements of the C matrix and Ii is a zero column 
vector of dimension of i) with unit entry on ith row. For the parameters of ElL 
corresponding to the A and"B matrices components hold 

where i and j indices run through all elements of the A matrix and the B matrix, 
independently. The partial derivatives of states x are computed by the following 
recurrent formulas, similar to the dynamic backpropagation rule (4.23) 

where i and j indices run through all elements of the B matrix and 

ax(k) = Iixj(k _ 1) + A 8x(k - 1) 
aai,j 8ai,j 

i and j indices run through all elements of the A matrix. In this scheme we have 
to estimate n2 + n(m + p) parameters. From a theoretical point of view this is 
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an overparametrized identification problem and by considering e.g. observability 
canonical form we could remove n2 parameters. For detailed discussion see [34] 
and references therein. Main purpose of linear identification in this thesis is to 
have a kind of a reference value for the nonlinear identification. Therefore we are 
mainly interested in the performance of the best least-squares linear simulation 
model. 

Note that the minimization of (4.44) with respect to 8 L is a non-convex opti
mization problem. For reliability of this minimization we use the same techniques 
as for neural network training, that is a combination of the simulated annealing 
and the quasi-Newton optimization. To start the minimization of (4.44) we have 
used a random guess for .4, iJ, 6 matrices. It is clear that if this results in an 
unstable system than it is not possible to evaluate the cost function. Therefore 
we incorporated into the simulated annealing a simple stability test to be able to 
refuse unstable trials. The optimization was started by an simulated annealing 
search and then, after a sufficient optimization of the .cost function, we switched 
to the quasi-Newton search. 

4.5 Gantry crane identification - A case study 

4.5.1 Equations of motion 

To illustrate the previously described modelling issues we present here an example 
of model identification of a nonlinear MIMO process. The considered process 
represents a gantry crane. The gentry crane is a machine for lifting and lowering 
a load and moving it horizontally, with the hoisting mechanism an integral part of 
the machine. The trolley is a device which travels along the horizontal direction 
and carries the hoisting mechanism. The process is schematically depicted in the 
Figure 4.6. Assume the following notation: mt - the total mass of the trolley, Xt -

the position of the trolley, Ft - the driving force on the trolley, mL - the mass of 
the load, L - the length of the rope, ¢ - the angle of the rope with respect to the 
vertical axis measured anticlockwise. 

The equation of motion are derived from kinematics laws valid for plane motions 
of rigid bodies [66] and Newton's laws of motion. Referring to Figure 4.6, it holds 
for the velocity and acceleration of the load in a vector notation 

where eL is is the unit radial vector and e4. is the unit transverse vector. Applying 
the Newton's laws we can write for the forces acting on the trolley an equation 
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For the forces acting on the load in the radial and transverse directions hold 
equations 

Considering also friction forces the equations of motion of the system should be 
extended for damping factors and the final equations of motion are 

(4.45) 

_f sin(4)) - .£Xt C08(4)) - ~t~ - !!!L~ 
L L L mL 

(4.46) 

Fh"2 dL . 
gcos(¢) - - + L¢ - Xt sin(¢) - -L 

mL mL 
L (4.47) 

where dt , dq, and dL are the damping constants. Notice, that in the equation (4.46) 
and (4.47) we did not substitute for Xt the right-hand side of the equation (4.45), 
for a compactness of the notation. A linearization of the process dynamics shows 
two pure integrators, one in the motion of the trolley and the second one in the 
lifting and lovering of the load action. To have a well posed identification problem 
we prestabilized this process by a static feedback 

-tXt + L sin(¢) - xref) - 2xt + 2~ 
14.7+4(Lcos(1» -1- Yre/) 

(4.48) 

( 4.49) 

computed by an LQ design for a linearized system around an equilibrium point 
given by 

Xt = 1> = it = if; = t = 0, L = 1, F t = 0, Fh = mLg (4.50) 

In the feedback law (4.48)-(4.49) we fed back the load coordinates 

Xl = Xt + Lsin(1)) Yl = LC08(1)) 

instead of the trolley position Xt and the rope length L to create reference inputs 
which are directly related to the future control problem. The identification problem 
can then be formulated as to estimate a dynamical relation between the load 
reference position and tlre actual load position. 

The above described model of a gantry crane process, used for a nonlinear 
neural identification, was proposed in [19]. 
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Figure 4.10: Gantry crane identification set-up 

4.5.2 Identification experiment 

The performance of the final I/O neural model was found in [19J to be unsatis
factory. This was mainly due to a difficult quasi-Newton optimization problem 
resulting from minimization of an output error criterion. Here we parametrized 
the estimated model in a state-space form and added the simulated annealing 
optimization to the minimization algorithm. 

We defined the inputs and outputs as follows 

u = (Xref) 
Yre! 

We simulated equations (4.45)-(4.47),(4.48),(4.49) by a numerical integration using 
a Merson form of the Runge-Kutta method. For the process parameters we have 
chosen the following values: mt = 3.5kg, mL = 1.5kg, dt = G.INs/m, dq, = 

G.GINs/rad, dL = 10Ns/m and 9 = 9.8m/s2. 
As a testing input signal we have chosen a sequence of uniformly distributed 

random samples with maximal amplitudes 

max IYre11 = 2 

followed by a zero-order hold with a sampling time of 0.2 seconds. From physical 
construction of the gantry crane reference values for the vertical position of the 
load above 1 do not make sense as then the physical length of the rope L would 
become negative. However, as the test signal was of white noise type, it was 
possible to use a higher range for Yre! to excite suffiCiently the process dynamiCS 
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in its nonlinear regions. We simulated the process twice for 500 seconds. After 
re-sampling output signals with a sampling time T8 = 0.2s we created two data 
sets of 2501 data points, one used for estimation purposes and the other one for 
validation purposes. The process model was parametrized by a nonlinear neural 
state-space structure according to 4.2(a) where the output map h was chosen such 
that the two process outputs were taken as the first two components of the state 
vector, that is 

giving them a physical meaning of a position of the load. The rest of the state 
components was treated as a black-box part of the model. The dimension of the 
state vector was chosen 6 what can be a priori assumed from the physical structure 
of the process. The complexity of the neural network j, approximating the state 
map of the process f, was estimated together with the network weights in a large 
optimization batch job. 

Initially, we have tried all optimization methods discussed in Chapter 3 to find 
a proper set of weights for this process. The main problem was to capture by a 
model the dynamic of the load swing as this should be later on suppressed by the 
controller. As the impulse responses of the second output show faster dynamic 
than the impulse responses of the first output, we think that the optimized cost 
function landscape is characterized by curved valleys. This is a typical example 
when gradient methods show slow convergence and stochastic search methods are 
time expensive. 

Finally, we have performed a number of optimization experiments on this prob
lem. Each optimization was carried out for different complexity of the network 
while for each networks complexity we performed three optimizations started from 
different initial points. The cost function was optimized first by by simulated an
nealing procedure to eliminjl-te local solutions with very high values of the cost 
function and then followed by the quasi-Newton method. Just for curiosity the 
CPU time consumed by this optimization was 144 hours 33 minutes and 36 seconds 
on the DEC 3000 workstation. 

The results of these experiments are shown in the Table 4.2. In this table are 
shown cost function values for both the estimation data set Je and the validation 
data set Jv . The number of nodes in the hidden layer of the neural network and the 
corresponding number of weights is also shown in this table. For each complexity 
of the neural network we performed three different minimizations. The dash"-" 
symbol denotes cost function values bigger than 100, considered as very poor local 
minima. 

In the Figure 4.11 we show the learning curves obtained from the quasi-Newton 
optimization. We can observe that the optimization is getting stuck mainly at 
two different values of the cost function, either 100 or about 4. The first value 
corresponds to the situation with a good fit of the second output and much worse 
fit of the first one. This happens due to the fact that the impulse response of the 
second output is shorter than the impulse response of the first output, as already 
mentioned. 
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Table 4.2: Neural net optimization results: NN1-number of nodes, nUj-number 
of weights, N Je-a scaled value of the estimation cost function, Jv-a scaled value 
of the validation cost function 

NNl no; N Je N Jv 

6 96 6.81 74.85 7.57 15.61 80.91 -

7 111 0.73 96.46 0.76 2.00 - 2.34 

8 126 0.59 4.82 8.09 1.72 21.54 -
9 141 60.96 4.43 0.23 - - 0.75 

10 156 75.39 0.15 6.91 - 0.41 47.22 

11 171 5.13 7.30 3.67 - 43.55 -

12 186 3.69 0.07 0.16 - 0.18 -

13 201 3.55 0.02 0.13 - 0.11 0.69 

14 216 3.72 3.55 83.56 35.97 - -
15 231 42.68 62.95 3.54 - - -

The second value, where the optimization is getting stuck corresponds to the 
situation of again a very good fit of dynamics of the second output while only 
slow dynamics of the first output are reasonably good fitted. At this point the 
unmodelled part of the process dynamics corresponds to the load swing. As the 
total power of the output is about 8, the approximation error, evaluated by (4.10)' 
gets below 1 % for most of the cases. But to model properly also the load swinging 
it turns out that we need to reach much better performance as the contribution of 
the load swing is masked by process nonlinearities. 

From the Figure 4.11 can be seen that the neural network learning procedures 
with the best performances did not reach a minimum yet. We therefore continued 
the minimization from the best result, that was the configuration with 13 nodes 
and a cost 0.02, for an additional 500nw iterations which consumed 36 hours and 
58 seconds of the CPU time. After this experiment we found the performance of 
the model on estimation data 3.19e-03 and on validation data it was 1.53e-02. In 
the Figure 4.12 are shown spectra of final output errors on the estimation data set. 
Even these errors are very low there are still small approximation errors at low 
frequencies and in case of the first output Xl the spectrum shows increased errors 
around the resonance frequency of the load swinging. For a better validation of 
the model we evaluated also impulse responses of the estimated model. In the 
Figure 4.13 are shown only the two most interesting ones out of four possible. In 
the top left plot are shown impulse responses from xref input to Xl output and in 
the top right plot are shown impulse responses from YTe! input to YI output. As 
the difference between the true impulse response and the model impulse response 
are hardly visible, below these two plots are shown corresponding errors. 

For a comparison, we estimated also a 6th order linear state-space model of 



4.5. Gantry crane identification - A case study 81 

the process parametrized by (A, B, C) triple. The value of the cost function we 
found here was 9.18. The performance of the best linear model we found is shown 
in Figure 4.14. Actually, the impulse response test does not excite the process 
nonlinearities suffiCiently, and the linear model performs here quite well on this 
test. 

4.5.3 Discussion 

The dynamics of the gantry crane process is composed of both fast dynamics, 
caused by the pendulum swing and slow dynamics, caused by the movement of 
the trolley. A numerical estimation of the simulation model for this process, 
parametrized by a neural network, was found to be a difficult task, mainly be
cause of enormously time consuming minimization procedures. To speed-up the 
minimization we have considered the following issues: 

• Different optimization methods. Here we have experienced, that the opti
mization will remain difficult as we are probably dealing with error land
scapes composed of multi-dimensional valleys. These are probably caused 
by the fact that the impulse response of the second output is shorter than 
the impulse response of the first output and that the contribution of the load 
swing to the final error is rather small. 

• Initial guess of weights. We have also used as an initial guess of weights of 
an estimated linear state-space model which, of course, were properly scaled 
and biases adjusted such that the linear portion of the sigmoidal function 
was used by the neural network. This approach led only to a marginal im
provement as the weights of the neural network stayed in the neighbourhood 
of the initial guess. 

• A parallel combination of a linear model with the neural network. We have 
also parametrized the model as a parallel combination of a linear model 
estimated around the system equilibrium point (4.50) and a neural network. 
We have observed, when training the neural network, that the neural network 
tried to compensate for the parallel linear model and then it tried to fit the 
process dynamic. 

• Non-uniform sampling time. One of the problems, why the neural network 
training is time consuming, is the excessive number of data points used for 
identification as the prosess dynamics have a broad range. To cope with this 
problem we sampled the process inputs and outputs non-uniformly, using a 
random sampling time. The sampling time intervals were chosen as uniformly 
distributed random numbers from an interval (0.1,1) seconds. The state 
map j was extended for an extra input and that was the sampling time. 
In this way we reduced the length of the data set what led to a better 
conditioned optimization problem but as we validated the estimated model 
with a constant sampling time this model did not outperform the one being 
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estimated specially with this constant sampling time. It was also not clear, 
how such a variable sampling time model could be used for the controller 
design . 

• Variable sampling time for states. Another solution to the problem how to 
deal with broad process dynamics could be in using different sampling time 
for the internal states of the model. Preliminary tests were done in [4] but 
these were not completed due to the lack of computing power. The advantage 
of this approach could be that a controller design for this model makes more 
sense than in the previous case. 

• Periodic rescaling of neural network weights. Often we could observe that 
some of the nodes of the neural network saturated during the optimization 
in the fiat reagion of the node activation function. This caused a slow down 
of the optimization due to the bad numerical properties of the model. To 
minimize these problems we have periodically monitored the inputs and out
puts of the activation function s(vj(k)) "" A\(k) of all nodes, that is for all i 
and 1 and for all k. We have computed a variance of the node outputs G),;' 
a minimum value of the node input!d "" min lu(kll and a maximum value of 
the node input 1:'.~ = max lu(kll for all k. A node saturation was detected as 
a small variance of the node output G),I and 17\ was large. Then the weights 
corresponding to this node were rescaled as follows: 

1. the bias of the node 

2. the weights 

for j = 1, ... ,NNI 

3. the biases of next layer nodes 

neweb;+l = eb~+l + s((V: - 1:'.\)/2) 

4. the weights at the output of the node 

newew~tl = ew ;jl(5(J7; - !'.;))s'((J7; - 1:'.;)/2)/8'(0) 

for j = 1, ... ,NNI+l 

4.6 Summary 

In this chapter we discussed both black-box and grey-box neural models. Black-box 
models were considered both in I/O configuration and in state-space configuration. 
We proposed the state-space configuration as being a better form for including 
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a priori process knowledge into the model. Therefore the grey-box models are 
considered exclusively as state-space models. 

Next the state-space model of the process is completed with a nonlinear filter 
gain, similarly to a Kalman gain from the linear estimation theory. This filter 
stands for improved state predictions by the simulation model due to the fact that 
the process is subject to non-observed disturbances and measurement noise. We 
have considered both Single-stage ahead state estimates and current-stage esti
mates. 

The unknown nonlinearities are parametrized by neural networks whose weights 
are estimated by numerical minimization of a quadratic error function. For all 
proposed modelling structures we gave formulas for the evaluation of gradients. 

In this chapter we have trated two numerical examples. The first one was 
intended to show a different performance obtained from an optimized prediction 
model and an optimized simulation model. The second one was originally used to 
test different optimization methods for their feasibility for neural network training. 
It shows a typical set-up of an identification problem in a state-space domain using 
neural networks. 



5 Neural State Transition 
Control 

In this chapter we will discuss in detail our approach to the solution of the tran
sition control problem as it was stated in Chapter 2 by the Problem 2.1. In this 
chapter we will tackle this control problem in a discrete-time state-space domain, 
as the controller will be realized by a digital computer. 

Before we start addressing all issues involved in the controlled design, we discuss 
a general nonlinear state-space control problem and give an academic example of 
control of a multi-link inverted pendulum. A static neural network will be used 
to approximate the nonlinear state feedback. After a discussion of a transition 
controller design, applicable in process control, we give a more realistic example 
to illustrate some of the ideas of the transition controller design. The proposed 
transition controller design algorithm will be fully demonstrated in the last chapter 
of this thesis. 

5.1 Operating point changing 

Theoretically "operating point changing" means steering the system to another 
equilibrium point. Practically that means changing values of process variables, 
e.g. pressures, temperatures, flows, speeds etc., to new values such that a product 
with different properties can be produced or new functionality is attributed to the 
process. If the system is linear, this operation presents no problem because of a 
global character of the system properties. However, in nonlinear systems, this type 
of operation has many unsolved problems, which include: 

• problems of capturing and exploiting process nonlinearities; 

• stability of the closed loop along transition trajectories; 

• level of optimality of the transition; 

• robustness with respect to process disturbances; 

• process conditions and constraints handling. 
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In general, the operating point changing type of control belongs to the most 
complex control problems, mainly because we have to go through nonlinear re
gions of the process dynamic. If the transition is done manually, it requires a lot 
of understanding of the process functionality and behaviour. This knowledge is 
usually obtained from the first physical, chemical, mechanical or other principles. 
The actual operating point change is then carefully scheduled through a sequence 
of intermediate equilibria by slow manipulation of process set-points and possibly 
also by sequentially switching between in advance designed linear controllers com
puted using linearized process dynamic along the transition path. If we would be 
able to model the process dynamics and to design a single nonlinear controller the 
operating point change could possibly be done in a faster, simpler, smoother, more 
reliable and effective way. 

There have been many studies dealing with nonlinear system control problems, 
but it seems that there is no conclusive method. To control a nonlinear system we 
often use the "Optimal control theory" as a general mElthod for treating nonlinear 
control problems to devise concrete algorithms for a specific control problem. Un
fortunately, a vast amount of numerical calculations is required in this approach 
with many trials and errors. We will demonstrate on numerical examples that a 
careful set-up of the controller synthesis procedure is important to eliminate these 
problems to a certain extent. 

5.2 General considerations 

Let a sampled version of the controlled nonlinear dynamic system ~s be now given 
by 

x(k + 1) 

y(k) 

f[x(k), u(k), w(k)] 

h[x1 (k), u(k)] + v(k) 

(5.la) 

(5.1b) 

with a similar notation as in (2.3) on page 10 and Xl (k) denotes the known part 
of the state vector as proposed in (4.29). The system (5.1) can be seen as a model 
of the process for which we want to design the controller. 

Let the control system attached to the system (5.1), see also Figure 2.1, be 
described by the following nonlinear state-space dynamic system 

z(k + 1) 

u(k) 

a[z(k), x(k), r{k)] 

,(3[z(k), x(k), r{k)] 

(5.2a) 

(5.2b) 

where a: and {3 are smooth nonlinear functions, z(k) E IRn z is the state of the 
controller, nz is the dimension of the reference and r(k) E IRn is a reference 
signal. The controlled system state x(k) and the reference signal r(k) represent 
the controller input and u(k), the controller output becomes the controlled system 
input. A composition of (5.1) and (5.2) is shown in Figure 5.1 and is shortly called 
a dynamic state feedback. The nonlinear functions (l' and ,(3 should be chosen such 
that the system state x(k) will follow r(k), preferably as good as possible. 
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w(k) 

r(k) 
v(k) 

(n, (J) 
u(k) 

(f,h) 
y(k) 

x(k) 

Figure 5.1: Dynamic state feedback 

The proposed controller (5.2) includes a regular static state feedback just by 
assuming in (5.2a) that z(k + 1) = z(k) for all k. But what is more important it 
also includes the idea of adding integrators into the state feedback. In this case 
the function a could be defined as 

a[z(k), x(k), r(kl] = z(k) + (x(k) - r(k)) 

provided that the reference signal r(k) is a state reference signal. If the dynamics 
of the controller are fixed, in other words a is fixed, only the output map of the con
troller f3 has to be designed. In such cases we consider only static neural networks 
used for approximation of the controller. This also makes the controller design 
easier than using a dynamic neural network for the controller parametrization. 

5.3 Example: A multi-link inverted pendulum 

To check the feasibility of using neural networks for a parametrization of state
feedback controllers we took as a test example a problem of swinging-up a multi
link inverted pendulum. We took a rather strong assumptions: the state of the 
system is fully available for the feedback, the system dynamics are fully known 
and there are no disturbances acting in the system. 

The inverted pendulum is considered as a two dimensional mechanical system 
of nl + 1 degrees of freedom shown in Figure 5.2. A frictionless trolley of mass 
M moves in the horizontal direction under the action of a force Ft. We attached 
to the trolley a series of nl ideal links each of a length 11 ,12 , •.. ,In" and a mass 
ml, m2, ... , m",. Each joint is assumed to be a frictionless revolute hinge. The 
system is at any moment described in terms of nl + 1 coordinates (Xt, 6, ... , ~n,)T 
and their first-order time derivatives. The position of the troiley with respect to 
some freely chosen reference point is denoted by Xt and ~i is an angle of the base of 
the ith link against the vertical axis, measured positive in the clockwise direction. 

Let us assume in the following an equal length of all links, Ii = I and and also 
equal mass of all links mi = m, for i = 1, ... ,nj. Then the total energy of the 
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7 7 7 7 777 777 

Xt 

Figure 5.2: Three-link inverted pendulum 

system, given as a sum of the kinetic and the potential energy is according to [28] 
given by the system Lagrangian as follows 

L(xt,6, ... ,en"i:t'~I"" '~n,) = 
1 . 2 (M + nJm) xt + 
1 n,. . 
"2 L ((1/3 + nj - k)ml2e~ + (1 + 2(n/ - k))ml COS(ek)(Xtek - g)) + 
k~1 

1 .. ,-1 n, 
"2 L L (1 + 2(n/ - k))mI2 cos(ej - ek)~ik 

k~l j=k+l 

(5.3) 

Equations of motion of the system are then given by the Lagrange method as 

d (8L) 8L F
t dt 8x 8x 

d (8L) 8L = 0 
dt 8~k - 8ek k = 1,. .. , nj 

Substituting (5.3) into the equations (5.4a) and (5.4a) yields for the Xt coordinate 
an equation 

1 n, .. 
(M + njm) Xt + "2 L(1 + 2(nl - k))ml COS(ek)ek = 

k=1 

1 n, 
Ft +"2 :2)1 + 2(n/ - k))mlsin(~k)~~ 

k=l 
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and for the coordinate ~k' k = 1, ... ,nl yields an equation 

I.-I 

(1/2 + nl - k)ml ( COS(~k)Xt + L l COS(~k - ~j )eJ) 
j=1 

n, 
+ (1/3 + nl - k)mz2f.k + [2m L (1/2 + nl - j) COS(~j - ~k)ej 

j=p+l n, 
= 12 m L (1/2 + nl - j) sin(~j - ~k)e 

j=k+l 
n, 

- (1/2 + nl - k)m[(1 Lsin(~j - ~k)e~ - gSin(~k)) 
j=1 

These equations are used for simulation of this system. From now on let M = 
1, m = 0.1, I = 1 and 9 = 10. 

A mathematical model of the above described system can be brought into a 
nonlinear state-space dynamic form affine in u(t) and given as follows 

i(t) = Jdx(t)] + h[x(t)]u(t) (5.5) 

where x E 1R2n
,+2 is the state vector of the system consisting of the position and 

speed of the trolley and angles and angle speeds of links attached to he trolley, 
that is 

and U E 1R is the control input representing the force Ft applied on the trolley. An 
exact analytical form of both II and h becomes very complicated for systems with 
more than two links, because of the necessity of inversion of a nl + 1 dimensional 
matrix. To evaluate hand h in (5.5) analytically for different number of links of 
the pendulum we have used the MAPLE software package for symbolic computa
tions. The final computer program code was optimized for a minimum of floating 
point operations also by this package. 

With respect to this system we formulate the control problem as a synthesis of 
such a nonlinear state-feedback control law 

uri) = ,6[x(t) , 8;3] 

which satisfies 

-urna", :S u(t) :S urnax 

and which brings the system from a given initial equilibrium point 

x(ta) = (0,0, 1r, 0, 1r, 0, .. . )T 
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that is {i = 11" for all i and the rest of the state vector components are zero, to the 
final zero equilibrium point 

X(t,)=(O, ... ,O)T 

in a finite time, possibly small. The controller nonlinearity (3 is approximated 
by an MLP with weights Gp. As the control signal is required to be bounded 
we simply define the output node of the neural network to be nonlinear, namely 
U max tanh(.). 

An approximate solution to the above stated control problem can be obtained 
by a direct numerical minimization of the following cost functional 

(5.6) 

with respect to the weights of the neural network G p. The final time t f is chosen in 
advance. To compute the value of the criterion (5.6) we integrated the closed-loop 
system numerically using the Heun method (A.6). We estimated the controller for 
a one, two and three link inverted pendulum. 

After completing many optimization experiments, we have found a couple of 
solutions of a swing-up of the one-link and two-link inverted pendulum. In case 
of the three link inverted pendulum the computing costs became so high that we 
were not able to complete the full optimization of the controller due to the lack 
of computing resources. Most of the solutions were showing an irregular control 
and state trajectories. The type of the solution found during the neural network 
training was determined mainly by the length of the simulated state trajectory of 
the closed-loop system, that is by the choice of the final time tf. The integration 
step size T, used in the Heun method (A.6) to integrate the closed-loop system, 
defined then the accuracy of the integration and consequently a discrete-time sys
tem for which the controller is computed. Basically, we started the optimization of 
the controller with a suffiCiently large final time to be sure that a solution exists. 
When we found a solution we decreased the final time by some factor, usually a 
few percent, and we continued the optimization of the neural network using the 
last set of weights. In this way we tried to optimize the control interval to the 
minimum. We have also observed that starting the neural network training using 
random initial weights and the minimal control interval did not lead to a solution. 
A logical explanation is that in this case we have to find a very particular solution 
while on longer control intervals there exist more solutions to this control problem 
which are easier to find. Note also, that due to the non-convexity of the problem 
not every initial solution on a longer time interval led to a minimal solution while 
using the strategy of gradual decrease of the the final time tf. Usually, we ended 
up this procedure when we found a few similar solutions showing about the same 
type of behaviour and resulting in about the same minimal control interval. This 
provided us with certain level of confidence in the obtained solution. 

While experimenting with this control problem we propose a new criterion ex
plaining the control objective and that is a minimization of the kinetic energy of 
this system with simultaneous maximization of the potential energy of the sys
tem in the final equilibrium point. Geometrically, this means the pendulum keeps 
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staying in an up-right position. Mathematically, the new control objective can be 
formulated as a minimization of a modified Lagrangian of this system L, where L is 
L given by (5.3) where the minus sign next to the gravity term 9 is reversed. If we 
also require that the position of the trolley Xt and the control input u in the final 
point must be zero, we have to solve a nonlinear constrained optimization prob
lem. To do this we used the penalty function approach converting the constrained 
optimization problem to an unconstrained one. Then the control objective is given 
as follows 

Pk > 0, Pk ---100 (5.7) 

with respect to the system dynamics (5.4). 

One link inverted pendulum results 

This is the easiest situation and nl "" 1. To parametrize the controller we have 
chosen a neural network with one hidden layer consisting of 8 sigmoidal nodes. The 
integration step-size was chosen T "" 0.01, the final time tj "" 1.6 and U max = 20. 
The controller neural network was optimized by minimization of (5.7) by per
forming 40,000 simulated annealing iterations followed by 100,000 quasi-Newton 
iterations. Some of these results are shown in Figure 5.3. In Figure 5.4 are shown 
the final time optimized state and control trajectories. These were found by tak
ing the fourth solution from the previous experiment and gradually decreasing the 
final time tf during the neural network training to its final value tj = 1.18. 

Two-link inverted pendulum results 

In this case is nj = 2. The complexity of the neural network was chosen as 6 
nodes in one hidden layer resulting in 49 weights. The final time was chosen 
t f = 2, the integration time was T = 0.005 and U max = 40. As a maximum 
number of simulated annealing iterations we chose 2,000,000 and as a maximum 
of quasi-Newton iterations we chose 100,000. Figure 5.5 shows five solutions of 
this control problem. In the first column is shown Xt against Xt, in the second 
column is shown 6 against el, in the third column is shown ~2 against ~l and in 
the fourth column is shown u against the time t. These are typical solutions when 
tackling this problem by a numerical unconstrained optimization of a black-box 
neural network controller. The last of these solutions, shown at the bottom of 
Figure 5.5, seems to give an acceptable solution to the problem and could possibly 
be further optimized, to obtain a smaller final time tj. 

Three-link inverted pendulum results 

In this case nj = 3. The complexity of the neural network was chosen as 8 nodes 
in one hidden layer. The final time was chosen tj = 2, the integration time was 
T "" 0.005 and U max = 40. We have optimized in this case in total 81 weights 
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Figure 5.6: Three-link inverted pendulum swing-up results 

20 

by performing 100,000 simulated annealing iterations followed by 200,000 quasi
Newton iterations. The best solution we have found is shown in the Figure 5.6. We 
can see that the pendulum is approaching the final position, in this case ~l = 0, 
6 = -'if, 6 = 0, but is not yet there exactly. The penalizing factor Pk in (5.7) was 
chosen very small, just to make the problem easier, resulting in a final position 
error of the trolley. 

Comments 

In this test example we have found out that the choice of the optimized control 
cost function can be quite crucial for an easiness of solvability of this control 
problem. The minimization of an energy function of the system (5.7) led to a 
solution in less iterations than minimization of the usual quadratic function (5.6). 
Intuitively, this can be explained by a more proper match of the energy function 
to the system dynamics compared to a general quadratic function. Another reason 
of a better convergence when using the energy function may also be found in the 
fact, that when optimizing the quadratic function (5.6), we are searching for a very 
particular solution, while a minimization of the energy function allows all modulo 
2'if solutions for link angles, so that we have many more global minima. 

Notice, that all solutions we have found are valid only for a very specific state 
initial point. Validation of the controller with a slightly perturbed initial state 
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condition did not result in a swing-up of the pendulum in any case. To make 
the controller more robust with this respect we minimized a new cost function 
consisting of a sum of cost functions of type (5.7), but each one computed by 
starting the simulation of the closed-loop from different initial state condition, 
close to the downwards position of the pendulum. Though these results are not 
shown here, this should be a more proper way of design of a controller in this 
example. 

We did some preliminary work to implement a neural network controller for a 
real inverted pendulum. The main problems we have to deal with include: 

• The system state is not fully observable. We can only measure the angles 
and the speeds must be reconstructed from measurements. 

• The links and joints are not ideal anymore and extra dynamics have to 
be considered. These dynamics include coulomb and viscous friction terms 
which represent non-differentiable dynamics. 

• The presence of non-differentiable dynamics makes the numerical optimiza
tion of either (5.6) or (5.7) using gradient methods impossible due to the 
lack of a sufficient smoothness of the minimized function. 

5.4 Controller design considerations 

In the design of the transition controller we will assume that 

1. the process dynamics are only partiy known; 

2. the state of the process is not measured; 

3. the process is subject to process disturbances and measurement noise. 

These assumptions immediately suggests that we will have to estimate a model 
of the process dynamics. In the Chapter 4 we proposed a grey-box state-space 
modelling concept (Section 4.2 on page 63) which will be followed also in this 
chapter. The unknown state of the process will be reconstructed by a design of a 
neural state observe while following the concepts proposed in Section 4.3 on page 
69. The remaining part of the complete transition controller design consists of a 
design of the state feedback. The issues concerned with this design are discussed 
next. 

5.4.1 Process model 

The state feedback shown in the Figure 5.1 assumes direct measurements of the 
full state vector. However, in practice, the state of the controlled process is most 
of the time not measured directly, at least not the whole state vector. To deal with 
this problem we reconstruct a state of the process from measured data using the 
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neural state-space observer proposed by (4.37). Again, the state-space observer is 
composed of an estimated simulation model of the process j and a filter gain g, 
both approximated by static neural networks. That is 

x(k + 1) 

y(k) 

j[x(k), u(k), ef ] + g[y(k), y(k), eg] 

h[x1(k), u(k)] 

(5.8a) 

(5.8b) 

As the design of the controller is carried on off-line, what means that y(k) is not 
available, the controller will be designed for the model (5.8) and later, on during the 
actual controller implementation, the model will be replaced by the real process. 

5.4.2 Controller objective 

In this section we will refer to the control problem state in Chapter 2 on page 11. 
Let the controlled system ~. model be given by 

x(k + 1) 

y(k) 

j[x(k), u(k), e f] 
h[x1(k),u(k)] 

(5.9a) 

(5.9b) 

Recall, that h is a known nonlinear function and j stands for a static MLP j N 

combined with an a priori known analytical part j. 
Let us assume that 

IE := {I-' E lRm +p+n
, I-' = (ue , Ye, xe) I Xe = J[xe, Un 0], Ye = h[x~, ue]} 

be a finite set of equilibrium points of the system (5.9) and x! denotes the known 
part of the equilibrium state with respect to the state partitioning proposed by 
(4.29). Let us define a set of all trajectories of the system (5.9) by 

T := {(u(k},y(k),x(k)) E lRm +p+n
, k E Z+ I (5.1) holds} 

while assuming that k evolves on a finite time interval (to, tf}. Let t denotes an 
element of T. With respect to the equilibrium set IE of the system (5.9) we denote 
by ~.j c T' those trajectories, which start at time to at an equilibrium point J1.i, 
J1.i E IE and terminate at time tf, tf > to in an equilibrium point J1.j, j.Jj E IE. 
Then T', T' c T is defined by 

T' := {Vt;,j E T, J1.i E IE, j.Jj E IE, I-'i * j.Jj} 

The trajectories t E T' will also be called transitions or state transitions. 
The controller objective was defined in Chapter 2 by a criterion (2.8) on page 

12. We will discuss now the two most interesting versions of this criterion. 

Time-optimality 

It is quite logical to require a time optimality from a transition. For instance, in 
the case of the fluidized bed polymerization reactor, the production during the 
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transition between different operating points is either a wide-specification product 
or off-specification product. A faster transition will also mean less losses of the 
production. This requirement can be translated into the following criterion 

J(t) = tl - to (5.10) 

where t E T' and (to, tl) is the control interval. initial time can often be considered 
zero and then the criterion (5.10) reduces to the length of the control sequence 
u(k), in discrete time. To be consistent with (2.8) on page 12 we can choose either 
iII = tl, L = 0 or iII = 0, L = 1 to obtain the criterion (5.10). 

Minimum energy 

Besides the transition time we also would like to optimize other process condi
tions. Often the transition can be a priori prescribed by reference trajectories of 
physically defined states and/or outputs ofthe process. These states should follow 
these trajectories as close as possible. Often we want to minimize also the control 
effort. In case of the polymerization reactor this can be, for instance, the amount 
of the catalyst fed into the reactor. 

All these and similar requirements can be translated into the following criterion 

tf 

J(t) = L (1Ix(k) - r(k)II~ + IIu(k)lIk) (5.11) 
k=to 

where the norms are weighted Euclidean vector norms, Q is a semi-positive definite 
matrix and R is a positive definite matrix. The criterion (5.11) is evaluated along 
a single transition t E T' on a discrete-time interval (to, t I)' In the criterion (5.11) 
we assume a reference signal r( k) E lRn , defined for all states of the model. From 
the physical point of view, the reference signal r(k) can only be defined for Xl part 
of the state vector. The choice of the reference signal for the black states XO is a 
subject of the design and will be discussed later on. 

Often we are interested in having an integral action in the state feedback to 
guarantee zero final tracking errors. Then we have to consider the following crite
rion 

tl 

J(t) = L (lIx(k) - r(k)lIb + lI~u(k)llk) (5.12) 
k=ta 

where ~u(k) = u(k) - u(k - 1) and ~u(to) '= O. 

5.4.3 Constraints 

The minimization of either (5.11) or (5.12) is subject to a set of constraints in
troduced already in (2.8) on page 12. The first obvious constraint is given by the 
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model (5.9) defining the process dynamics and therefore also the set of all possible 
trajectories of the system T. 

The initial state uncertainty constraint (2.9) on page 13 is handled by consid
ering in the control criterion different realizations of the transition each of them 
starting at different initial points close to "'0. 

The final state constraint given by (2.10) can be easily handled by including 
a penalty term 'J! into the control criterion, e.g. 'J! = lIi(t,) - ILfll~. It can also 
be handled by the criterion (5.11) or (5.12) by defining a sufficiently long control 
interval and a reference value with r(k) = ILf for k E (t', tf), where to < t' < tf. 

The state and control constraints are often considered as simple bounds, con
straining operating ranges of corresponding variables. These constraints are then 
given by 

;[ ~ x(k) ~ x 
11::; u(k) ~ U 

(5.13a) 

(5.13b) 

where ;[ E IRn , 11 E IRm are the lower bounds and x E IRn
, U E IRm are the 

upper bounds, respectively. The consideration of the constraints (5.13) is not only 
important for a proper process operations but also to define the model validity 
ranges. 

Other type of constraints, often met in practice, are the limited rates of change 
of process variables, given as follows 

,6.x ::; ,6.x(k) ::; LlX 

,6.u ~ ,6.u(k) ::; Llu 

(5.14a) 

(5.14b) 

where Llx E IRn, Llu E IRm are lower bounds and ,6.x E IRn, ,6.u E IRm are upper 
bounds, respectively. 

5.4.4 Reference signal 

The reference signal is considered either as a constant value specifying the final 
equilibrium point of the system or as a time varying signal specifying also the path 
in the state space. Notice that the model (5.9) provides us only with a part of the 
state vector irk) which has a physical interpretation and that the rest of the state 
vector is meaningless in this respect. Therefore a prior specification of a reference 
signal can be concerned from physical point of view only with Xl state components. 
In practice, an operating point of the process will be given by specific values of 
inputs tie and outputs Yeo Based on Ye we can determine the equilibrium values 
of Xl state components knowing that Ye = h[x~l and h is known. Equilibrium 
values of other states, namely x~ are given by the model equation Xe = j[xe, uel 
corresponding to (5.9a), which has to be solved for the unknown x~_ It might 
happen that there is no feasible solution for x~ as its value is bounded by the 
validity of the estimated neural network. Then a new model has to be estimated 
using either more data or different complexity of the model. 
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When defining the state reference path signal between two equilibrium points 
we have to consider the reachability of the state-space of the model. As the con
trolled system is being considered as a general nonlinear system it is hard to 
investigate this issue. As the estimated model is a grey-box model, with physically 
well defined part of the state vector, we can use our a priori knowledge about the 
process dynamics to define a transition path for the states xl. For the rest of the 
state components, namely xO, is the transition path obtained as a result of the 
controller optimization. 

In the following we discuss three approaches of a choice of a reference signal. 

Step signal 

Let us assume that a new operating point of the system is required to be fif 
(x" u,)T = (fij, Jii)T. A most straightforward way of defining a reference signal 
is using a step signal given by 

r(k) = fij, for k = to,··· ,tf (5.15) 

where 111 is a value of states in the final equilibrium point. 

Filtered step signal 

As an alternative to a simple step reference signal we often use a low pass filtered 
step signal, given by 

'i(k) = 110; + (Jifi - fiOi)exp(k/k;) for i = 1, ... ,ii (5.16) 

where n is the dimension of the model state vector X, k = to, ... ,tf is the discrete 
time and k; is a discrete-time constant chosen in advance. For the known part 
of the state vector Xl is this constant chosen with respect to the prior process 
knowledge. For the other states, namely xc, we can use a guess. 

Optimized state trajectory 

A better way, and also a more difficult way, to determine the reference trajectories 
is to use the optimal state, and possibly also control, trajectories, provided that we 
are able to solve the optimal control problem (2.1) in function space. That means 
that if we would be able to find an optimal control input u*(k) as a time function 
resulting in an optimal state x*(k) trajectory, this trajectory could be used as a 
reference signal for a later on design of a state-feedback controller. 

For this purpose, we have developed in [17] numerical techniques for solving 
nonlinear optimal control problems with control and/or state constraints. 
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5.4.5 The feedback structure 

In general, the controller is assumed to be a dynamic state feedback (5.2). The 
controller dynamic will be from now on assumed as follows 

z(k + 1) = aZ(k) + xl,a(k) - r(k) (5.17) 

where we partitioned the Xl part of the state vector into two components 

This partitioning defines a set of states xl,a which will be tracked with a zero final 
errOr and the other states x1,b may be tracked with nonzero final errors. Assuming 
xl,a (k) E lRn"Q, then the dimension of both z(k) and r(k) is assumed to be nl,a. 

The constant a > a is a constant equal to 1 in case of assuming pure integrators, 
but often chosen in our algorithm slightly smaller than one, e.g. a E (0.9, 0.999), 
which improves a numerical stability of the controller optimization procedure. This 
will be demonstrated in Chapter 6 on a simulation example. 

The nonlinearity of the controller (3 in (5.2) will be approximated by a static 
MLP and will be denoted as follows 

u(k) = k[z(k), x(k), r(k), ei'] (5.18) 

where e k stands for the weights of the neural network. 
The controller structure given by equations (5.17) and (5.18) can be also con

sidered in a simpler form, for instance 

u{k) 

u(k) 

k[x(k), x(k - 1), r(k), r(k - 1), e kl 
k[u(k - 1), x(k), r(k), ekl 

(5.19a) 

(5.19b) 

which is a sort of I/O dynamic parametrization of a dynamic state feedback. 

5.5 Controller synthesis 

The controller synthesis, which will now be described, is based on a separation of 
the state estimation and the controller design. This is a proven optimal controller 
synthesis for linear systems. In case of a general nonlinear system there is no 
evidence yet that this should be also an optimal controller synthesis. However, we 
adopt this principle also in the case of a nonlinear controller design while expecting 
only an approximation of an optimal synthesis which we do not know. 

The structure of the controller is schematically depicted in Figure 5.7. The 
state feedback k to be designed takes as inputs a reference signal r( k), an estimated 
state x(k) and an integrator state z(k) computed by the block Z:J representing the 
equation (5.17). 
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Prior to the actual numerical optimization of the neural network parameters 
8 k we compute the equilibrium set IE of the estimated model (5.9) and we define 
a reference signal for a couple of transitions within this set. To compute IE we 
have to solve the following set of nonlinear equations 

(5.20) 

It is dear, that to determine all equilibrium points of IE would require to find 
all solutions of (5.20). The equilibrium value for the known part of state vector 
components xl will be given in practice and therefore the equation 5.20 will have 
to be solved only with respect to the black states £0. Let us assume for the next 
discussion that we have defined a couple of equilibrium points. If the reference 
signal was defined, e.g. by following the discussion in Section 5.4.4, then 8 ic is 
computed by minimization of the following criterion 

Jr = LJ(t.;,j) (5.21) 
i,j 

with respect to the weights of the controller neural network. Basically, we can 
simulate the closed loop for all t.;,j, evaluate the criterion Jr together with its 
gradients with respect to 8 k and then use any numerical minimization method to 
minimize this criterion. The function J is defined either by (5.12) or by (5.10) or 
by (5.11). 

A block diagram of the closed loop set-up is depicted in Figure 5.7. As it 
was mentioned earlier, the design is carried out off-line. That means, that we can 
not dispose of the real output y(k}. A simulation of this closed loop can be, in 
principle, considered in three situations: 

1. The filter gain fj is completely omitted from the simulation of the closed loop. 

2. The filter gain fj is included into the closed loop with zero inputs, that means 
ere,(k} = O. 

3. The filter gain fj is included assuming ere! =f O. 

We can test the closed loop using a reference Signal erej(k) in place of the 
true innovation sequence elk} = y(k) ~ y(k) in the filter gain. The statistical 
properties of the ere,(k) sequence (type of distribution, mean, variance) can be 
estimated from the state observer design results. As the estimation is based on 
a minimization of a least-squares type of criterion e(k) shows most of the time 
a Gaussian distribution and therefore it is straightforward to generate an eref(k) 
sequence. 

As the minimization of (5.21) with respect to 8 k is performed numerically it 
is useful to determine the required cost function gradients analytically. These are 
given in the following section. As this computation is quite involved and badly 
influenced by the simulation time of the closed loop, we have often used numerical 
evaluation of these gradients. 
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Figure 5.7: Controller set-up 

The value of the parameter a in the controller dynamic (5.17) has been changed 
during the controller optimization sequentially starting from a value less than one, 
let us say 0.9, to a final value 1. This was done mainly due to obtain the stability 
of the closed loop. Notice, that the controller is estimated numerically and in 
general we can not expect a stable closed loop when taking random initial weights 
for the controller neural network eA;. As we minimize a cost function on a finte 
time interval, in general, there is no guarantee for stability of the closed loop . We 
have experienced on the polymerization reactor, that if we started the optimization 
from an unstable closed-loop system, it remained unstable, no matter how long 
the control interval was . As the control interval was always finite the controller 
neural network could not learn the stability of the closed-loop system. A choice of 
a < 1 helped us to start the optimization from a stable closed-loop system. 

Training of the controller neural network is in fact done by an unconstrained 
minimization and all the constraints are handled by suitable choice of reference 
signals r(k) and weighting matrices Q and R in (5.12). 

5.6 Gradient computation 

The gradient computation for a numerical minimization of (5.21) depends on the 
parametrization of the state observer, on the structure of the state feedback and 
also on the choice of the cost function. As an example we show here a gradient 
computation for only one situation. Let us assume a minimization of the following 
cost function 

Nc 

J(e k ) = L (1Ii(k) - r(k)llb + Illlu(k)II~) (5.22) 
k=l 
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where tlu(k) = u(k) - u(k - 1) and let us assume state observer equations 

x(k + 1) 

y(k) 

j[x(k), u(k), ° i] + g[y(k), y(k), 0 g] 

h[x1(k)] 

and let us assume the state feedback be parametrized by 

z(k + 1) 

u(k) 

az(k) + x(k) - r(k) 

k[x(k), z(k), r(k), 0 kl 

Then the gradient computation of (5.22) with respect to the weights of k is given 
by following formulas 

8tlu(k) 
80ki 

8x(k + 1) 
80ki 

8u(k) 
80ki 

8z(k + 1) 
80k; 

8u(k) 8u(k - 1) 

.Jxh(k) 8x(k) 
80ki 

8k[x(k), z(k), r(k), 0 kl + .Jxk(k) 8x(k) + .J}(k) 8z(k) 
80ki 80L 80ki 

8z(k) M(k) 
a--+--

80L 80ki 

As we can immediately observe that an analytical gradient evaluation is rather 
involved. In our controller estimation experiments we often replaced this procedure 
by a numerical estimation of gradients using a finite difference approach 

8J(0k) _ J(Oki + f) - J(Oki - f) 
80ki 2f 

where f is a small number chosen usually in a neighbourhood of the square root 
of the machine precision. Our experience is that using numerically estimated 
gradients in training of neural networks it is better to set the value of f in advance 
rather than to use a computer program based adjustment. The reason for this is 
that at the initial point, the computer estimated f might be numerically optimal 
but later on in the course of the optimization it can become a very bad choice, the 
optimization is consequently getting stuck and requires a restart with a new value 
for f. 
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5.7 Numerical example 

In this section we give a simple numerical example to demonstrate the proposed 
controller design scheme using the methodology proposed in this chapter and in 
Chapter 4. Let us consider a nonlinear dynamic system described by the following 
state-space equations in discrete time 

xI(k + 1) 
Xl (k) 

1 + x2(k)X2(k) + u(k) + WI (k) (5.23) 

x2(k + 1) 
xl(k)X2(k) 

1 + 1 + x2(k)X2(k) + w2(k) (5.24) 

y(k) x2(k) + v(k) (5.25) 

where wI(k), w2(k) and v(k) are the process disturbances and the measurement 
noise, respectively, simulated as a zero mean uniformly distributed random se
quences with maximal amplitude 0.1. To test the dynamics of this system we used 
as an input u(k) a sequence of uniformly distributed, zero mean random samples 
with maximum amplitude 1. It means that nonlinearities of this system are excited 
in a very specific range. We generated a data set of N = 2000 input/output data 
points in a form of (4.1) on page 45. 

The first step of the algorithm is an estimation of a state-space simulation 
model of the system from data while using the available a priori knowledge. To 
simulate the methodology proposed in Section (4.2)' we assumed that we know 
that the second component of the system state vector X2 is directly measured and 
we also assumed that the order of the process n = 2 is also known. Then the state 
vector of the model is defined as x = (Xb X2) = (iO, Xl). The first component 
xO stands for the black-box part of the model while the second component Xl 
represents the prior process knowledge. The model is then parametrized by (4.30) 
where the output map is given by 

and the state map was parametrized by a neural network with one hidden layer 
for which the number of nodes was varied from 2 to 8. For each neural network 
configuration we have used one half of the data set to estimate the network's 
parameters El j and the rest of data was used for the validation of the estimated 
model. The results of these experiments are shown in Table 5.1. A good choice 
for the complexity of the neural network model of the system dynamics could be 
a configuration with 4 hidden nodes as configurations with more nodes tend to fit 
the noise in data. 

In the second step of the algorithm we estimated a filter gain {j introduced by 
(4.37) while we parametrized {j by (4.42d). The nonlinearity of {j was approximated 
by a neural network with one hidden layer containing 4 nodes and 22 weights. 
This choice was actually based on an optimization of a set of neural networks with 
different number of one hidden layer nodes while choosing the one with the best 
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Table 5.1: Output error identification results, NNI is the number of nodes, no is 
the number of estimated parameters, Je is the estimation cost function value and 
Jv is the validation cost function value. 

NNI n(J Je Jv 

2 14 1.S8Se - 02 1.668e - 02 
3 20 9.66ge - 03 1.266e - 02 
4 26 9.018e - 03 1.221e - 02 
S 32 8.863e - 03 1.300e - 02 
6 38 8.361e - 03 2.921e - 02 
7 44 8.261e - 03 1.261e - 02 
8 SO 8.028e - 03 1.636e - 02 

performance on the validation data set. The best cost function value we found 
during this experiment was 8.769ge-03. 

Figure S.8(a) shows the spectrum of the output error signal obtained from the 
identification experiment together with the spectrum of the validation error. The 
spectra of output error signals obtained from identification experiments clearly 
shows the effect of process disturbance which is not described by the model. The 
estimated state observer then gives a flat spectrum of the output error signal shown 
in the Figure S.8(b). 

The nonlinear static state-feedback controller parametrized as 

u(k) = k[i;(k), r(k), 0kl 

was optimized for the estimated simulation model in a noise free situation and then 
validated on the true description of the process given by (S .23)-(S .2S) including 
the noise. The controller nonlinearity k was approximated by an MLP with one 
hidden layer containing 4 hidden nodes resulting in a design of 21 weights . As 
a reference signal we used a sequence of random steps uniformly distributed in 
the interval (O.S, 1.5) of a total length SOO samples. The range of the reference 
signal was chosen with respect to the simulated range of the system output. The 
weights of the controller neural network were obtained from an optimization of the 
criterion (S.l1) where the weighting factors Q and R were chosen as follows: Q = 1 
and R = 0.1. The value of R was experimentally chosen to bound the amplitude of 
the control input by -1 < u < 1 as it defines the validity of the estimated model. 
The results of the controller design are plotted in Figure S.9. The steady-state 
errors in the tracking of the state component Xl = X2 are due to the penalty we 
put on u to limit its range. The steady-state errors where removed by including 
an extra state into the controller neural network as follows 

which should emulate an integral action in the closed loop . The weights of this 
dynamic state feedback were estimated by a minimization of the criterion (S.12) . 
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(a) solid line - estimation error, dashed 
line - validation error 

w .. 1 

(b) state observer validation 

Figure 5.8: Output error spectra 

The plot of these results is shows in Figure 5.9(c). We have shown here only a noise 
free situation to see clearly that the tracking errors were removed . A validation 
of the dynamic controller with noise shows similar behaviour to results shown in 
Figure 5.9(b) only the steady-state errors are removed. Notice also that there are 
some irregularities in tracking of reference values close to the magnitude 0.5. This 
is due to the fact that these magnitudes are close to the nonlinear validity of the 
estimated model. 

5.8 Summary 

As a general nonlinear control problem is not analytically solvable we have con
sidered in this chapter its numerical solution. The control function is, in general , 
parametrized as a static state feedback approximated by a multilayer feedforward 
neural network while the weights of the network are computed by minimization 
of an optimality criterion, defined in advance. We have shown by an example 
(multi-link inverted pendulum) that the choice of this criterion can influence the 
solvability of a considered control problem. The controller synthesis is based on 
separation of a state estimation problem and a state-feedback controller design 
problem. By doing so we expect an approximation of the optimal synthesis which 
we do not know. The numerical example, presented at the end of this chapter, 
shows feasibility of this approach. 
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(a) Static controller optimization (b) Controller validation 
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Figure 5.9: State tracking controller results: solid line - state reference signal 
r(k); dashed line - state :i;l{k); dotted line - control signal u(k) 



6 Transition Control of a 
Polymerization Reactor 

In this chapter we will demonstrate on a large simulation example the applicability 
of the transition controller design as it was proposed in the above chapters. The 
controlled process will be a rigorous simulation model of the fluidized bed poly
merization reactor shown already in Figure LIon page 3. This system was chosen 
for our tests because a transition type of control is extensively used for this process 
and it also shows a complex nonlinear behaviour with process disturbances. 

6.1 Process simulation model 

To test the ideas presented in previous chapters we developed a rigorous mathemat
ical model of the fluidized bed polymerization reactor [36J based on first principal 
analysis of material and energy balances in the reactor [10],[50J. The complete 
description of this model requires an introduction of more than hundred variables 
and is therefore outside the scope of this section. Therefore we describe only that 
part of the process which is relevant for presentation of our results. 

A schematic diagram of the process is shown in Figure 6.1. The process consists 
of a reactor and a heat exchanger which are connected through a recycling loop. 
The reactor is fed at the bottom with a monomer (ethylene), co-monomer (propane, 
butane) and inertial gases (N2 ,H2 ). As the inertial gas is not consumed by the 
reaction it is added into the recycling loop once for all. In our rigorous model we did 
not manipulate the amount ofH2 fed into the reactor though it will be manipulated 
in the reality as it is used as a "chain stopper" in the polymerization reaction. 
The monomer and co-monomer polymerize in the reactor into a polymer which is 
then withdrawn from the reactor as a final product. The reactor is continuously 
supplied with a monomer and a co-monomer such that the total mass flow into the 
reactor Cflow and the ratio of the mass concentration of co-monomer to monomer 
(C"IC2 )set in the mixed flow are being manipulated. 

The lower part of the reactor is called a "fluidized bed" and consists of solid 
particles of polymer and catalyst called an "emulsion phase". The catalyst is fed 
into the reactor at a rate qc- Through the emulsion phase bubbles of gas rise what 
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Figure 6.1: Fluidized bed polymerization rector diagram 
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is called as "bubble phase". It is important to operate the reactor at a gas velocity 
which is above the so called minimum fluidized velocity to maintain the fluidized 
bed of solid particles and bubbles of gas. 

Above the bed is a free space called "gascap" which prevents the solid particles 
to get into the gas recycling loop. Recycled unreacted gases are cooled down in 
the heat exchanger and then added to the incoming fresh gas flow at the bottom 
of the reactOr. The temperature of the cooling water temperature Tw in the heat 
exchanger is manipulated by a primary PID controller which stabilizes the process 
dynamics. The process instability is in fact caused by an exothermic type of the 
chemical reaction taking place in the reactor. The temperature of the emulsion 
phase Te is controlled by this primary PID controller to a given set-point value 
T set · 

The final product (polyethylene) is withdrawn from the reactor at such a rate 
Q that the height of the bed remains constant. 

The total length of the recycling loop is significant so that the unreacted gases 
are added to the input flow with a delay of about 1 minute. This delay together 
with the dynamics of the heat exchanger create slow dynamics of the process. 

The gas in the gascap is analyzed in analyzers to measure the partial pressure 
of monomer Pcz and a ratio ( of the partial pressure of co-monomer to monomer 
( = pc./ Pc,. As this measurement takes about five minutes this will be our 
bottleneck for the choice of the sampling time for the control system. Besides, 
the measured samples of Pcz and ( will be also delayed five minutes. Also the 
production rate Q measurement requires some chemical analysis and these samples 
are also available at a rate of one sample per five minutes with a delay of five 
minutes. 

The total pressure in the gascap P which relates to the product quality is 
basically kept at a certain constant value. The problem is that the five minutes 
sampling interval of Pc, and ( might be too slow for a compensation of fast 
perturbations of the pressure P. The total pressure P can be measured on-line at a 
much faster rate than one sample per 5 minutes. Therefore a primary pressure PID 
controller is designed here to suppress the fast pressure perturbations in the gascap. 
The structure of this controller is shown in Figure 6.2. The pressure set-point Pset 

is compared with the measured pressure P, the error signal is then filtered by the 
PID controller which manipulates the total mass flow into the reactor Cflow. The 
PID controller is then followed by a block of nonlinear functions which compute 
the actual monomer and co-monomer input flows by using their ratio set-point 
(Cx /C2 )set. 

Both the temperature PID primary controller and the pressure PID controller 
were tuned experimentally by a visual judgment of either water temperature dis
turbance or pressure disturbance step responses. 

To demonstrate the process behaviour we show here a couple of step experi
ments obtained by simulation of considered types of process disturbances. Figures 
6.3-6.5 show effects of perturbations of process variables: C flow - the total process 
mass input flow, Tw - the cooling water temperature and X cat - the mass fraction of 
the catalyst with respect to the solid particles. From a positive Cftow disturbance 
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Figure 6.2: Pressure inner-loop controller 

simulation (see Figure 6.3) can be seen that the production rate, the temperature 
and the monomer partial pressure initially raise due to increased reaction rates 
in the reactor. The ratio <: initially drops due to the smaller reactivity of the 
co-monomer with respect to the monomer. We can also observe that except of the 
ratio <: the settling time of all shown process variables is about 2 hours. The set
tling time of <: is much longer and in fact converges slowly to a steady-state value 
due to the already mentioned slow reactivity of the co-monomer. The overshoot 
is caused in all responses by the delay of the recycling loop what is confirmed by 
simulation experiments shown in Figure 6.4. Due to the delay in the recycling 
loop, the water temperature PID controller responds to the increase of the bed 
temperature Te with a delay and therefore there is a rather large initial increase 
of the bed temperature Te. Due to the increased temperature in the reactor the 
production rate also increases, the pressure drops due to the faster consumption of 
monomer and co-monomer and the ratio increases, because the monomer is con
sumed faster than the co-monomer. The water temperature disturbance is fully 
compensated by the controller and the process stabilizes to its original steady-state 
values. The catalyst activity perturbation responses, shown in Figure 6.5, result in 
a similar behaviour. The only difference is that some of the process variables con
verge to different steady-state values. In this case an adjustment of the (ex /CZ)8et 
set-point is required. 

We can observe that the settling time of the process is about 2 hours for first 
three outputs and about 8 hours for the last output. The slow dynamics of the 
process is caused mainly by the recycling loop. It causes that the concentrations 
of monomer and co-monomer in the reactor reach their steady-state values in the 
order of tenth of hours. We can also see the effect of primary controllers which 
stabilize the process dynamics. An e/low perturbation is partly handled by the 
pressure controller which controls the total pressure in the reactor. However, 
the partial pressure pc. and the ratio <: stabilizes around different equilibrium 
points. The water temperature disturbance Tw is completely compensated by the 
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corresponding PID controller. The catalyst activity disturbance seems to affect the 
process dynamics more seriously. To return the process conditions to its original 
operating conditions requires manipulation of all process inputs. From the Figure 
6.5 we can realize that the production rate Q is much more sensitive to the C/low 
disturbance than the bed temperature Te and the partial pressure pc.. This is 
due to the effects of primary controllers. 

6.2 The control problem 

The grade of the produced polymer is characterized by properties like: melt index, 
density, molecular weight and distribution, chain structure and others. These char
acteristics are influenced by the selected operating conditions of the reactor. Let 
these conditions be characterized by values of the following four process variables: 

1. Q - production rate, 

2. Te - temperature of the emulsion phase, also called bed temperature, 

3, pc. - partial pressure of the monomer in the bubble phase, 

4. ( - ratio of co-monomer to monomer partial pressure in the bubble phase 
pc. = (Pc" 
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All these variables are directly measured and define measured process outputs as 
follows 

y = (Q, Te , Pc" ()T 

A different combination of these values corresponds to a different type of product 
being produced. When switching the process production to a production of a 
different type of product we have to change these values to new ones. This "change
over" type of operation is supposed to be performed by manipulating the following 
input variables: 

1. Tset - set-point for the bed temperatureTe , 

2. Pset - set-point for the total pressure P in the gascap, 

3. (C",fC2 )set - set-point for the ratio of co-monomer to monomer concentration 
in the reactor input flow, 

4. qc - catalyst input rate. 

These variables define then the process control inputs 

u = (Tset' Pset , (Cx/C2 )set. qcf 

The most important disturbances acting on the process include: 

1. WTw - water temperature disturbance, 

2. Wqc - catalyst flow disturbance reflecting impurities in the catalyst and ir
regularities in its activity, 

3. wc"ow - disturbance acting on the total input flow of monomer and co
monomer into the reactor reflecting impurities and temperature changes of 
the input mass. 

These variables define then the process disturbance 

The measurement noise v is assumed to be additive to outputs y and is represented 
by a four dimensional vector of measurement errors. 

A transition from one operating point to another should be fast to minimize 
either the wasted production or production of wide specifications type. 

The rate of change of all process inputs is assumed to be limited to a few percent 
of their nominal values, usually about 10%, for safety reasons. A faster change 
of process inputs results in physically non-feasible values of some variables of the 
used simulation model of the reactor, e.g. the required input flow can become 
negative or the required cooling water temperature in the heat exchanger can also 
become negative. Faster changes of the bed temperature T, could in reality cause 
melting of solid particles an a collapse of the fluidized bed. 
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6.3 Identification 

At the first stage of the controller design we estimate a simulation model of the 
process. Before being able to do this we have to prepare and perform measurement 
experiments on the process. The classical theory of system identification (see e.g. 
[33]) gives us properties of test signals for linear systems. In case of the linearity 
assumptions of the process dynamic and a parametrization of estimated model 
either a gaussian white noise signal or PRBS (pseudo-random binary sequence) 
are typical test signals. As the process dynamics are nonlinear it is not clear what 
an optimal test signal should be. Often we use a similar type of signals as in the 
case of linear system identification. Due to the process nonlinearity we often use 
uniformly distributed random signals to excite the process in very specific ranges. 
When testing a practical process we are very seldom, or better to say newer, 
allowed to excite the process by input signals of white noise type. Usually we are 
restricted to use very specific signals, responses to which are well predictable. 

To create a data set we have used in our tests a low-pass filtered uniformly 
distributed white noise signal. However, in practice, the measured data will consist 
of a set of operating point changes performed on a real process. As these operations 
use a very specific control inputs, like step changes of set-points, the estimated 
model will be valid only in a very small region around the transition trajectories 
and will be of a very low pass character. Nevertheless, such a model could be very 
useful to improve the model accuracy around existing transition trajectories. 

6.3.1 The data 

To create a data set for identification purposes, the process inputs were excited 
using a discrete-time low-pass filtered uniformly distributed random signal followed 
by a zero-order hold with a sampling time ts = 300 seconds. As a low-pass filter 
we used a fourth order Butterworth filter with a cutoff frequency Wn = (1/16)ws, 
were w. was the sampling frequency in rad/s. The cut-off frequency of the filter 
was chosen such that the rate of change of test inputs was only a few percent of 
their nominal values. In this case not more than 10%. 

The range of test signals was chosen as big as possible with respect to the physi
cal ranges of process variables simulated using the available simulation model of the 
process. That means such ranges of process inputs that the process does not oper
ate in physically impossible states. The physical ranges of simulated input/output 
process variables are given in Table 6.1. In case of the temperature Tut and the 
pressure set-point Pset these ranges were chosen as 10% of the nominal values 
of corresponding variables. The concentration ratio (C",fC2 )set was changed for 
about 90% and catalyst input flow for about 20% of their nominal values, respec
tively. These ranges were chosen with some margin to be able to simulate also 
process disturbances without violating the already mentioned impossible physical 
process states. The disturbance variations were chosen 5% of the nominal values 
of signals to which they were applied. These ranges of simulated disturbances are 
given in Table 6.2. 
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Table 6.1: Process input and output description 

input nominal value minimum value maximum value 

Tset [0G] 355.00 390.50 319.5 

Pset [1Q5Pa] 20.99 18.89 23.08 

(C,jC2 ).et 0.30 0.04 0.57 

qc [kg/h] 2.83 2.30 3040 

(al Test input description 

output nominal value 

Q {kg/s) 2.39 

Te [0C] 355.00 

PC2 [105Pa] 5.99 

C,:/C2 0.30 

(b) Output nominal values 

Table 6.2: Disturbance input description 

disturbance magnitude disturbed variable nominal value 

WTw [0C) 10040 Tw 207.32 

we flow [kg/s) 0.12 Cftow 2.39 

WX'OI [10- 4
] 0.16 X cat 3.28 

We simulated the process model in SIMULINK for 601 process hours using 
the standard Adams-Gear numerical integration method with a variable step size. 
Collected process data were low-pass filtered by a continuous time fourth order 
Butterworth anti-aliasing filter with a cutoff frequency Wn = (1/4)ws /2 in rad/s 
and then sampled with a sampling time T. = 300 seconds. The spectra of the 
simulated process outputs are shown in the Figure 6.6 as solid lines. The process 
was simulated also without the disturbance using only the process inputs. By sub
tracting these simulated outputs from the simulated outputs with disturbances we 
obtained a spectra plots of the effect of disturbances at the output (see Figure 6.6, 
dashed lines). The dotted lines in Figure 6.6 show the spectrum of measurement 
noise added to the outputs. 



120 Chapter 6. Transition Control of a Polymerization Reactor 

10" 10-2 

0 10" ~---

_ -- .... ".'" 
\ h'10" , , 
\ , , 

/ \ 

10" 10" \ 

10-10 

10-il 10' 
10-~ 

10-~ 

Frequency [rad/s] Frequency [rad/s] 

10-2 10-2 

"'10-4- / / ...... , 10-· ---- , , 
c2 " \ 

<.J" 

-----
, 

\ 

10-05 10-15 

" .~ .. . \. 

\ 

1Q-S 
10-.1: 10' 

10·B 

10-~ 10' 

Frequency [rad/s] Frequency [rad/s] 

Figure 6.6: Spectra of simulated signals relative to the half of the sampling 
rate; solid line - simulated output spectrum; dashed line - spectrum of a difference 
between simulated output with disturbance and without disturbance and measure
ment noise; dotted line - spectrum of measurement noise. 

6.3.2 The grey-box model prametrization 

To parametrize the process model we will follow the methodology proposed in the 
Section 4.2.3. Let us assume that the partial pressures of the monomer Pc, and 
the co-monomer pc. in the gascap relate to the concentration of the monomer C2g 

and the co-monomer Cxg , respectively, according to the following correlations 

where Rg [J mol-IK- I] is the known universal gas constant and Me"Me. [kg 
mol-I] are known molecular weights of monomer and co-monomer, respectively, 
which are known. The temperature of gases in the gascap Tg can be assumed 
to be equal to the temperature of the emulsion Te , which is directly measured. 
This assumption is valid due to the high heat transfer coefficient between the solid 
particles and the bubbles of gas. 

Let us define the physically known part of the state vector with respect to 
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(4.29) as follows 

Q 

T. 

~ (i!) Xl = Rg C
2 

Me2 
..!.!Lc M x c. 

This means that Xl E JR4 will be represented by the first four components of the 
state of the model. The other state vector components will represent the hidden 
part of the state vector XO which dimension will be subject of identification. The 
output map h in the model of this process is with respect to (4.30) on page 66 
analytically defined as follows 

h[x(k),u(k)] = [£):)~!(k)l 
x4(k) 
x3(k) 

We also know that the catalyst, being fed into the reactor, becomes active in 
the reactor after about one hour. Assuming a sampling time of 5 minutes, this 
fact translates to a delay of 12 samples at the fourth control input. This a priori 
knowledge was brought into the estimated state map i as a known analytical part 
in a form of a tapped-delay line of 12 delay units, all with sampling period 5 
minutes. In this way we have inserted into the model additional 12 known states, 
which were not estimated. In fact, the known part of the state map was realized by 
a time shift of the data sequence at the fourth control input, so J was skipped from 
the next discussion. The black-box part of the model I was then approximated 
by an MLP with one hidden layer with weights e i' The dimension of XO was 

considered either 1, 2 or 4. The input of the neural network i was then defined as 

X == (u(k)T,i(k)T)T = (u(kf,xl(k)T,xo(k)Tf 

and the output was defined as 

l' == i(k + 1) = (il(k + 1f,io(k + If)T 

In j we have used linear output nodes corresponding to Xl states and sigmoidal 
output nodes corresponding to iO states. The results of the optimization of the 
neural network's weights e j are discussed in the next section. 

6.3.3 Model parameter optimization 

The length of the data set, used for optimization of the neural network weights 
e j, as well as for validation of the model, was N = 7200. The number of nodes 
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in the hidden layer of the neural network NNI was varied from 8 to 14. We 
have performed a number of optimization experiments for a total state dimension 
fi E {5,6,8} and x(k) E lEt" that means defining one, two and four extra hidden 
states XO. 

We observed that taking 5 states of the model led to a model of poor per
formance, while a model with 8 states, compared to a model with 6 states, gave 
us only a marginal improvement. Therefore we decided to continue further ex
periments with the state dimension it = 6. This choice was also driven by the 
effort to limit the dimension of e j with respect to the consumed CPU time by the 
numerical minimization routines. 

We started the optimization of each neural network from the zero initial state 
condition and we performed 20ne j simulated annealing iterations followed by 20ne J 

quasi-Newton iterations to minimize the criterion (4.9). After that we replaced the 
zero initial condition by a mean value of simulated states, for each model com
plexity independently, and we performed additional 20no i simulated annealing 
iterations followed by 20ne j quasi-Newton iterations. The results of this experi
ment are summarized in the Table 6.3. In the first column is shown the number 
of the hidden layer nodes and in the second column is shown the number of op
timized weights. We can see, that already for the smallest model this number is 
quite Significant. In the third and fourth columns are shown the final values of 
the cost function for both estimation and validation data. For each complexity of 
the neural network we restarted the optimization from five different random initial 
points. In the last two columns is shown the total computing time spent in the 
optimization routines, namely in the simulated annealing and in the quasi-Newton 
optimization. Comparing to the number of iterations, we have performed, to the 
number of weights these figures are quite significant. Note, that the simulated 
annealing was always terminated at the maximum number of cost function eval
uations, while the quasi-Newton optimization was in some cases terminated due 
to impossibility of finding a better minimizing point and in the other cases by 
reaching the maximum number of iterations. 

As a good choice for the model of identified process we chose a model with 
12 hidden nodes reSUlting in an estimated cost function value 1.5498e - 5, which 
gives us an output approximation accuracy of 0.3%, computed by (4.10) on page 
48. We estimated also a linear state-space model of 6th order in a form of (4.43) 
on page 74 and it gave us an approximation accuracy of about 16-17%. This 
result demonstrates that the process behaviour shows significant nonlinearities. 
In Figure 6.7 are shown spectra plots of all four output error signals obtained 
with the chosen model. It can be seen from these plots that there is quite a good 
consistency in estimated results except of the solution with the worst cost function 
value. The remaining dynamics in the output errors are most likely caused by the 
process disturbance. 
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Table 6.3: Identification results: NN1-number of nodes, noi-number of weights, 
Je-estimation cost function, Jv-validation cost function, SA - total time spent in 
the simulated annealing optimization, QN - total time spent in the quasi-Newton 
optimization (the large computation time figures in the first row of this table were 
caused by execution of a higher priority job). 

NNl no· Je (10 -5) Jv (10 -5) ,SA [sec) QN [sec) 
8 142 3.2657 3.2495 33852 90233 

1.9874 1.9275 3780 28351 
2.1022 2.1005 3985 51122 
2.0257 1.9812 3052 26150 
1.9727 1.9171 4300 46301 

9 159 2.6389 2.6236 3710 22838 
2.5106 2.2996 2173 27790 
2.0429 1.9782 1767 13934 
3.0581 2.9221 2052 28513 
2.2956 2.2063 1770 13551 

10 176 1.6828 1.6320 2060 48338 
1.8158 1.8409 5156 35474 
2.2748 2.2614 2389 56271 
1.7987 1.8388 5156 35474 
1.9857 1.9321 2389 56271 

11 193 1.6699 1.6579 2476 24537 
1.7841 1.7734 2378 22178 
1.6925 1.6889 2447 23203 
1.6157 1.5747 3061 23606 
1.6424 1.6538 2537 21270 

12 210 2.4552 2.4751 7591 43386 
1.5953 1.5792 4547 53573 
1.6806 1.6022 4704 30174 
1.5721 1.5529 4872 35692 
1.5498 1.5740 4794 30104 

13 227 1.5747 1.6028 5370 36628 
1.6092 1.6034 5408 36124 
1.5731 1.5392 5417 40071 
1.6409 1.6230 5636 39506 
1.5531 1.5703 5384 36450 

14 244 1.7161 1.7011 6206 48889 
1.5644 1.5849 5946 93622 
1.5209 1.5587 7758 94500 
1.4925 1.5504 5962 53676 
1.5727 1.5528 6091 164523 
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6.4 State estimation 

The second step in our controller synthesis algorithm is the state observer design. 
That is done via an estimation of a nonlinear filter gain 9 which is added to the 
previously estimated simulation model of the process. We parametrized the state 
observer as a single-stage ahead state predictor (4.37) with a gain 9 parametrized 
by (4.42e) on page 73. We assumed, that the process nonlinearity is not that big 
that we should take a more complex parametrization of the filter gain fj to obtain a 
sufficient accuracy of the state estimates. The nonlinearity of 9 was approximated 
by a neural network with one hidden layer with variable number of nodes. The 
number of neural network inputs was 4 and the number of neural network outputs 
was 6. By varying the number of hidden nodes from 4 to 9 we optimized an 
additional from 50 to 105 weights 8i/, to the 210 weights 8! of the simulation 
model which were fixed during this optimization. 

These optimization results are summarized in Table 6.4. Initial values of pa
rameters 8i/ were generated at random. The dash "-" symbol in this table means, 
that the optimization got stuck in a local minimum with a very high value. We can 
see, that variations of the performance of the observer given by different neural 
network complexities are not that big and we also can see that the estimated and 
validated cost values are consistent with each other. The smaller values of the 

Table 6.4: Observer design results: N Nr-number of nodes, no. -number of weights, 
ie-estimation cost function, iv-validation cost function 

NNI no!; ie (10 6
) iv (10 -6) 

4 50 2.3444 2.1063 
2.3610 2.1234 
2.3299 2.1028 

5 61 2.3506 2.2149 
2.2676 2.0220 
2.3245 2.1349 

6 72 - -
2.2979 2.0411 
2.2743 2.0334 

7 83 - -
2.2449 2.0011 
2.2413 2.0100 

8 94 2.2199 1.9914 
2.2410 2.0151 
2.2187 1.9901 

9 105 2.2212 1.9793 
2.2295 1.9992 
2.2247 1.9835. 
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validation cost function compared to the estimation cost function were seen also 
in Table 6.3 and are probably caused by a lower level of the noise in the validation 
data set. As a good approximation of the observer gain 9 we have chosen a neu
ral network with 6 nodes with a final value of the cost function 2.2743e-6. The 
spectrum of predicted output errors y(k) - y(k) produced by this state observer 
are shown in Figure 6.9. In the case of the first output Q, there are still some low 
pass effects present in the prediction errors. These may be caused by the model 
errors. A better solution would require a re-estimation of the process simulation 
model with a higher complexity of the neural network. We could also try to further 
optimize the filter gain 9 parameters or to increase the complexity of the neural 
network. 

Finally, we have checked for distributions of estimated observer prediction er
rors y(k)-fj(k), because they are going to be used later on in the controller design 
stage. In Figure 6.10 are shown estimates of probability density functions of inno
vation sequences by means of histograms (solid lines). In the same plots are shown 
also Gaussian probability density functions (dashed lines). The mean value is zero 
in all cases and the standard deviations are (J = (1.6,2.1, 2.2, 2.3)1O~3, estimated 
by 

N-l 

for i = 1,2,3,4. We can see that the estimated p.d.f. of prediction error sequences 
are close to those of the Normal distribution. 

6.5 Controller design and validation 

The last step of the transition controller design algorithm is the design of a state
tracking feedback controller. The design proposed in the Chapter 5 will be followed 
and demonstrated. 

First of all, we define a set of equilibrium points J.l = (Xe, ue) of the estimated 
model by computing a couple of solutions of the equation 

Fror this porpose we have used the MAT LAB function fsolve. m and we have found 20 
different equilibrium points, defining the set IE. Next, we have chosen 3 operating 
points out of this set, namely (OP!, OP2, OP3 ), which define a set of six possible 
state transitions among them. The state reference signal r was chosen as a sequence 
of low pass filtered unit steps scaled to the proper initial and final equilibrium 
values to specify a sequence of transitions 
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Figure 6.9: Observer validation results: Spectra plots of prediction errors for all 
four outputs. 
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Each reference input signal was filtered by a first-order filter given by 

P,'(z) = 1 - exp( -l/T;) < . {I 4 5 6} 
( /) 

lor ~ E ,2,3", 
z - exp -1 Ti 

where the index i stands for the reference input. The time constants Ti were a 
priori chosen with respect to the process dynamic as follows 

71 = 8, T2 = 8, 72 = 12, 72 = 30, 72 = 10, 72 = 20 

The first two reference signals stand for the state components representing the 
production rate Q and the temperature Te. These outputs show faster dynamics 
then other state components, mainly due to effects of primary controllers. The 
third and fourth state component, describing the concentrations of the monomer 
C2 and the co-monomer Cx in the gas cap show slower dynamics. Moreover, the 
dynamic of co-monomer is much slower. The last two states are hidden states 
without a physical interpretation and therefore are their responses judged using 
the estimated model. Notice also, that the process was tested in a low pass band 
and therefore the choice of reference signal must be done also in this respect. 

The eigen frequency of filters used to pre-filter the test input signals was 0.08 
rad/min which corresponds to a time constant about 2.5 samples. The lowest time 
constant, used for pre-filtering of the reference signals, is chosen with this respect 
and a safety margin is taken as worse model performance is to be expected at 
higher frequencies. 

The controller was optimized using the set-up shown in the Figure 5.7. We 
minimized the criterion (5.21) combined with (5.12). We have chosen to = 0 and 
tf = 75 hours resulting in 900 samples in a single transition. The controller k was 
parametrized by an MLP with one hidden layer. 

At the first instance we performed a few optimization experiments using dif
ferent complexities of the controller neural network and different penalty matrices 
Q and R in (5.12). We also varied the integration time constant a in (5.17) within 
an interval (0.99, 1), starting wit a value 0.99. All these experiments where done 
with a choice of eref = O. At the first instance we had observed, that for smaller 
values of t f and a choice of a = 1 the closed loop response tend to show an unsta
ble pole in the local linearization of the closed loop around the final equilibrium 
point. A typical result showing this kind of solutions is shown in Figure 6.11. It 
becomes clear, at this point, why we have introduced an integration time cOnstant 
a < 1 in (5.17) on page 102. By performing a couple of minimization experiments 
we have experienced that a random initial guess for the controller neural network 
parameters with a < lIed more likely to a stable behaviour of the closed loop. By 
a gradual increase of a to a final value a = 1 we managed to obtain a stable closed 
loop also for the choice of a = 1. 

The final results of the controller design are shown in Figure 6.12 and Figure 
6.13, These results were obtained using weighting matrices 

Q = diag(0.5, 0.1, 0.1, 0.02, om, 0.01) 

R = diag(O.l, 10,2,0.01) 

(6.1) 

(6.2) 
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Figure 6.11: Unstable state transitions due to a "bad" choice of t f = 800 and 
a = 1 

It was also found out to be advantageous to add an extra penalty term to the cost 
function (5.12) in the earlier stages of the optimization based on the computed 
control equilibrium values. This term had the following form 

where ur{k) is a control reference signal chosen as a sequence of unit steps simi
larly to the choice of the state reference, but this time without pre-filtering. The 
weighting matrix Rr was chosen as follows 

Rr = diag(O.OOl, 0.001, 0.001,0.0001) 

This extra term helps to keep the simulation of the closed loop in estimated validity 
bounds of the neural network of the modeL Note, that the extrapolation of neural 
network models is in general poor and a random initial guess for the controller 
neural network weights will, in general, not guarantee that all signals in the closed 
loop stay in their proper regions. 

In Figures 6.14 and 6.15 we have shown zoomed estimated trajectories of all 
six transitions for both the control input and states, respectively. Each column 
in these figures corresponds to a particular control input or to a model state and 
each row corresponds to one of six estimated transitions .. 
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Recall, that the previous optimization of the controller was done with ere! =: 0 
(see Figure 5.7). The last step of the controller estimation was a further optimiza
tion of the controller using a nonzero ere! (k) signal. Now, we defined a control 
criterion with three examples of each of the six considered transitions for a different 
realization of ere,(k). The total length of computed closed-loop signal sequences 
was in this case 17100 data points. Due to high computation costs we performed 
only a modest number of random search iterations. 

The final controller was validated with the original process by a continuous 
time simulation of the closed loop in SIMULINK. The simulation scheme used for 
this experiment is briefly discussed in Appendix B. The process was simulated 
with process disturbances and measurement noise. The final results are shown in 
Figures 6.16, 6.17 and 6.18. Basically we can observe from plots in Figures 6.12 
and 6.16 that the time response of the controller was increased and that is in a 
sort of de-tuning of the controller when optimizing it with noise. This suggests 
that there will always be a trade-off between the disturbance reduction and the 
tracking accuracy. We can also observe an offset in steady-state values of the first 
output, which was the production rate Q. The cause of this may be in a poor 
performance of the filter gain 9 with respect to this output which was showing a 
rather poor performance at this output already before (see Figure 6.9). 
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Figure 6.12: Estimated control inputs u(k) for the neural model without the 
disturbance (ere! = 0) 
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Figure 6.14: Zoomed control transitions at first 100 samples. Columns stand for 
4 control inputs and rows for 6 different transitions 



134 Chapter 6. Transition Control of a Polymerization Reactor 

Time [h] 

Figure 6.15: Zoomed model state transitions at first 100 samples. Columns stand 
for 6 states and rows for 6 different transitions 
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Figure 6.18: States of the process model in the controller during its validation 
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6.6 Summary 

The simulation example presented in this chapter clearly showed strong and weak 
points of the the proposed controller synthesis. The strong points are: 

1. A carefully estimated and validated simulation model of the process guar
antees a good level of robustness of the controller with respect to modelling 
errors and process disturbances. 

2. The process disturbances are handled very well by the designed neural state 
observer. 

3. The controller is a nonlinear static state feedback where the process esti
mated state is extended with integrator states. 

4. The process constraints are handled by the choice of the reference signals 
and by the choice of weighting matrices in the control criterion. 

The weak point of this controller design is that the all involved design steps 
are translated to a minimization problem of a non-convex function. This results 
in a large computational time. 



7 Conclusions and 
Recommendations 

7.1 Conclusions 

Recently, a large variety of control techniques concerning industrial process control 
based on neural networks was proposed. Often authors claim that their method 
is suitable for control of an unknown nonlinear system. They still implicitly make 
strong assumptions on the available a priori information. Frequently the assump
tion on the availability of a full process state for the feedback is made, see e.g. 
[68]. More realistic are approaches based on predictive control techniques, but 
authors often present simulations of these techniques without considering process 
disturbances [62]. A state-space approach to modelling and control using neural 
networks was recently elaborated on [65, 64]. 

Our approach to controller design differs from these techniques mainly due 
to following: We estimate a grey-box state-space simulation model of the process 
with a physical meaning of a part of state components; a neural state observer 
is parametrized and estimated independently of the process model so that the 
controller can cope with pmcess disturbances. The reference signal specification 
can be based either on available a priori knowledge or can be optimized for the 
estimated simulation model. The final controller is based on dynamic output 
feedback with a structure similar to a linear LQG design providing us with better 
insight into the controller functionality than a complete black-box design. 

In the following we summarize the conclusions of this thesis: 

• According to the simulations we have done, we can conclude, that the con
trol strategy proposed in this thesis is a powerful tool for controlling com
plex nonlinear systems while achieving a high level of performance. It shows 
robustness with respect to process disturbances and process uncertainties, 
mainly due to the fact that the controller is based on a grey-box simulation 
model of the process supplemented with a filter gain to predict the next pro
cess state. This is also supported by the state-space approach we adopted 
as it allows us to include a priori process knowledge into the model param
etrization. Furthermore it allows us to do a more proper estimation and 
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validation of the model as part of the state vector has a physical meaning. 
The controller is completed with a neural nonlinear static state feedback, if 
necessary supplemented by a dynamic component in the form of integrators. 

• Another important aspect of the proposed controller design is its structure 
and the resulting systematic design. The structure of the controller is dic
tated by: 

1. Grey-box state-space model estimation based on measured process data 
and parametrized by a combination of a known analytical part and a 
black-box neural network. The estimated model is a nonlinear simulation 
model of the process dynamics optimized to predict the process outputs 
over a long horizon terms. 

2. Neural state observer design to estimate a process state from disturbed 
process data. The observer takes the information from the estimated 
process model and adds a correction to model state predictions pro
cessed by means of a nonlinear filter gain from an error between the 
true and predicted process outputs. The filter gain is parametrized by 
a static neural network. Two types of a state observer are considered in 
this thesis: a single stage ahead predictor and a current state filter. An 
important aspect here is that the filter gain is parametrized and esti
mated independently of the simulation model and therefore it preserves 
the simulation capabilities of the state observer. 

3. The dynamic state-feedback design is being optimized such that the 
model states follow a priori defined trajectories to steer the system 
from one operating point to another. Provided that the model is ac
curate enough, the process outputs will converge also to correct values. 
A presence of physically defined states in the model, provides us with 
an easier way of reasonning when modifying the controller parametri
zation and/or the feedback structure, e.g. in order to obtain better 
convergence of the optimization algorithm. At the same time we can 
avoid a plenty of trials and errOrs in the design. 

• In general, a neural network training task leads to a non-convex optimization 
problem. Structuring of the controller design allows us better access to this 
problem as we do it in three, "relatively simple" steps: model estimation, 
filter gain estimation and state feedback estimation. In each step, a static 
feedforward neural network is trained where all the dynamics are put outside 
of the neural network. 

• The design is carried out in state-space domain. This approach was found 
to be conceptually and algorithmically more attractive than adopting in
put/output domain. By conceptual advantages of the state-space approach 
we mean the opportunity of incorporation of a priori process knowledge into 
the model parametrization, better access to control problem definition and 
also dealing with the process constraints. By algorithmical advantages we 
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mean an easy and effective way of translation of the design algorithms into 
digital computer programs. The state-space approach provides us also with 
more freedom as we usually control more process states (estimated) than 
process outputs. This provides more freedom in specifying reference signals. 
The controller is a static neural network and consequently, it is easier to 
estimate such a controller by numerical optimization techniques. 

• When dealing with a control problem related to a practical process we have 
to face a set of constraints coming from physical process limitations and 
from safety considerations. These constraints concern both the modelling 
issues and controller design issues. Handling constraints is always a diffi
cult task, especially if the problem is of a non-convex type. Moreover, as 
we parametrize all unknown nonlinearities by neural networks, we are faced 
with another set of constraints that define validity of these nonlinear approx
imations. We include these constraints into the design via an optimization of 
reference signals in time-domain by means of solving a suitable nonlinear op
timal control problem off-line. The constraints can also be handled by using 
a priori knowledge in specification of proper reference signals which satisfy 
the process constraints with some safety margins. The controller then has 
to guarantee that the process remains close to these trajectories. 

• In practice, the proposed controller synthesis will differ from the one demon
strated in Chapter 6, as we will not have such a freedom in the choice of 
testing signals to generate the data for the model estimation. The type of 
data, which are available in practice, consist of a large number of transitions 
performed on the process. A model, estimated using these data, will be 
tuned to very specific nonlinear regions of the process dynamics where the 
later transitions will take place. We may expect that the controller designed 
for the specific nonlinear reagions ofthe process dynamics will perform better 
than one being designed for a broad range of the process nonlinearities. 

• We did some preliminary experiments with nonlinear multi-rate sampled 
neural state-space models discussed in Section 4.5.3 on page 81. These are 
novel neural state-space models based on different time intervals for updates 
of states of the model. These models could be applicable for an easier iden
tification of stiff dynamics. 

• Neural network training remains is the most time consuming part of the 
proposed controller design algorithm. This is caused by the non-convexity 
of this problem and by a high dimensionality of the neural network's weight 
space. For example, the controller designed in Chapter 6 for the FBPR, 
contains in total 366 weights, which had to be tuned. 

7.2 Recommendations 

• What concerns the controller design, presented in Chapter 6, we would rec-
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om mend to perform a couple of transitions with the designed controller, 
record them and repeat the design using these data to see if there is any 
improvement in the performance. 

• As the proposed controller design leads to non-convex minimization prob
lems, one should take some precautions to make these minimizations more 
accessible: 

1. Include a priori knowledge into the model parametrization. 

2. Estimate all initial conditions as well, thich means both for the esti
mated state-space model and integral state of the controller, provided 
that it is included into the feedback. 

3. To save some computing time while to have good level of confidence in 
the chosen neural network complexity, one should always perform a few 
training iterations on a wider range of neural network complexities Then 
he can decide about the most promissing neural network complexity 
which parameters can be further optimized. 

4. Periodic re-scaling of neural network weights to improve numerical con
ditioning of the minimization (see Section 4.5.3, page 84). 

• We would advise building up an expert system for neural network optimiza
tion. Our experience is, that at different stages of neural network training, 
different minimization methods are required for speeding up convergence. 
Moreover, every method requires a set up of optional parameters which de
termine performance, e.g. line search accuracy for the quasi-Newton, a speed 
of temperature reduction in simulated annealing and many more. However, 
we do not have a conclusive recommendation in this respect. We found out, 
that trying high accuracy for line search in quasi-Newton leads to extensive 
computing time whereas it could be more effective using a few extra iter
ations. To optimize all these parameters, e.g. by simulated annealing, we 
soon found out that the available computing power was too smalL 

• Some attention should be given also to the further improvement of the soft
ware routines we developed for simulation and estimation purposes of this 
work. Though some of these routines were carefully optimized, like the for
ward neural network evaluation path and the backpropagation path, there 
are still places which were not programmed efficiently. These concern mainly 
data storage and update during the neural network training. Notice, that 
when dealing with multivariable systems and large data sets, this issue should 
not be underestimated. At present, the available software is a bundle of un
documented C functions and MATLAB macros to carryon the design at different 
steps. The data transfer from one program to the next one is done manually. 
Also the analysis of all intermediate results is done manually. Automation of 
these steps would speed-up the design and avoids mistakes in data transfer. 



A System Transformations 

In this appendix we describe methods we frequently use to approximation a con
tinuous time system by a discrete-time systems for computer simulation purposes. 

The transformation of a continuous time system to a discrete-time system can 
be determined by the approximation of the first derivative involved in (2.Ia). If 
we approximate the first derivative by a forward difference 

• () --,x (,-t ...:.-+-,7 )'--_X--'(c.-'-t) x t ~-
7 

where 7 > 0 is small with respect to the time variation of x(t), and we substitute 
this approximation into (2.Ia) we obtain an approximation 

x(t + 7) = x(t) + 7 f[x(t), u(t), w(t)] (A.I) 

When T is considered as being the sampling time T. and we index x(t) as x(k) and 
x(t + T) as x(k + 1) we immediately obtain a description of type (2.3). 

A more accurate derivative approximation is obtained when using its central 
difference approximation 

. ( ) x(t + r) - x(t - r) 
x t ~ 2T 

A discretized version of (2.Ia) then gets the following form 

x(k + 1) = x(k -1) + 2rf[x(k),u(k),w(k)] (A.2) 

while assuming an indexing in a similar way to the previous case. To rewrite the 
last formula into the form of (2.3a) we have to define a new state vector consisting 
of x(k) and x(k + 1). This observation brings us to the following remark. 

Remark. The state dimension of a discretized system does not necessarily have 
to coincide with the state dimension of its continuous time system. 

In general we can expand the solution of (2.1a) at a certain time moment into 
a Taylor series as follows 

x(t + T) = x(t) + X(t)7 + X(t)72 /2 + ... + XU)(t)T j jj! (A.3) 
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where j is the order of the series. By consecutive differentiation of the right 
hand site of (2.1a) with respect to time t we can obtain all the necessary time 
derivatives of the state vector for the expression (A.3). The speed of convergence 
of the Taylor series (A.3) is given by the choice of the step T and the accuracy of 
the approximation is controlled then by T and j. 

In all of the introduced system disretizations the accuracy of the discrete-time 
model is given by the choice of T. To ensure certain accuracy we relate T to the 
system sampling time T. by T. = T I, where I E IN, I > 1. 

For the case of simplicity and the ease of programming is for computer simula
tions often chosen in (A.3) j = 1 which results in the well known Euler method of 
integration of ordinary differential equation or j = 2 which seems to be sufficient 
for most simulations provided that the step size T is properly chosen. If the system 
nonlinearity is complex it might be to cumbersome to evaluate by hand analyti
cally higher order derivatives of x(t). Using some of the symbolic mathematical 
calculation software package (e.g. MAPLE) can greatly help here. We have observed 
some advantages of this approach which are listed bellow 

1. Easiness of the siscretization accuracy control, namely by T and j. Notice, 
that the analytical formulas for time derivatives of x(t) are independent of 
T. 

2. A symbolic mathematical calculation language, like MAPLE, was shown to 
be a very powerful tool to compute analytically Taylor series expansions of 
nonlinear functions and export them as a high level computer language (e.g. 
C, C++) subroutines and then link them with simulation or optimization 
programs. 

Another approach to the problem of siscretization of the system (2.1) is to 
approximate the integral in the following expression 

t+r 

X(t+T) =x(t) + J fc[x(t'),u(t'),w(t')]dt' (AA) 

The most straightforward way to approximate this integral is to compute 

T fc[x(t), u(t), w(t)] 

while obtaining back the result (A.I). This simple integration method is often 
modified as follows 

x(i + T) = x(t) + ~ (fc[x(t) , u(t}, w(t)] + fc[x(t + T), u{t), w(t)l) (A.5) 

which is an implicit nonlinear equation for x(t + T). To solve this equation we can 
start from an Euler estimate a = x(t) + Tfc[x(t),u(t),w(t)] and iterate (A.5) as 
follows 

a(l + 1) Xl (t) + Hfc[x(t), u(t), w(t)] + fc[aU), u(t), w(t)]) 

for I = 0,1, ... 
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until a convergence is obtained and then put x(t + T) = a. If we would perform 
only one iteration of (A.5) we obtain an explicit siscretization rule as follows 

x(t) 

x(t + T) 

x(t) + T fc[x(t) , u(t), w(t)] 

x(t) + i (ic[x(t) , u(t), w(t)] + fc[x(t) , u(t), w(t)]) 

known as Heun method. 

(A.6) 

To obtain a more accurate discretizations we can consider for instance the 
Runge-Kutta methods. The simpler methods are applicable for computer sim
ulations when the computing time has to be short, e.g. in minimization algo
rithms. More complex methods are applicable mainly for off-line simulations, e.g. 
in SIMULINK. 



B Simulation Model of the 
FBPR 

In this Appendix we show the SIMULINK scheme of the simulated process and the 
controller, to give the reader an impression about the complexity of the problem 
we were treated in Chapter 6. 

The main simulation scheme is shown in Figure B.l. One can easily recognize 
there the reactor block, the heat exchanger, the inner-loop pressure controller 
and the outer-loop transition controller. The inputs of this scheme include: the 
reference input, the process disturbance input and the measurement noise. The 
water temperature primary PID controller is hidden inside of the heat exchanger 
block. 

The reactor model is shown in Figure B.2. It contains three integrators xl, x6, 
x3 in the main diagram, then three integrators in a linear state-space model of 
the gascap and two integrators in the block of the catalyst activity model. There 
is also a delay of one hour at the sixth input of this diagram. The fCu) blocks 
contain different nonlinear terms. 

In the Figure B.3 is shown the transition controller implementation which re
sembles the proposed controller structure given in Figure 5.7. In this diagram 
f-hat, g-hat and k-hat stand for the process state-space model, for the filter gain 
and for the state feedback, respectively. The output map h [x-hat (k)] is in the 
diagram fixed to a known analytical relation. 
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Samenvatting 

Dit proefschrift is gewijd aan een studie van het gebruik van neurale netwerken 
voor het ontwerp van regelaars die de proces toestand van het ene werkpunt naar 
het andere sturen. Het voordeel van onze aanpak is, dat we met behulp van 
een enkele niet-lineaire regelaar een breed bereik van process werkpunten kunnen 
bestrijken. Voor praktische toepassingen betekent dit een versnelling van de over
gang van de procestoestand tussen verschillende werkpunten terwijl toch een goed 
prestatieniveau wordt gehandhaafd. 

Onze aanpak bestrijkt aile stadia van een praktisch regelaarontwerp. We be
schouwen: (1) proces modellering in een vorm van grey-box neurale modellen in 
toestandsruimte beschrijving (2) proces toestandsschatting door middel van het 
ontwerp van een niet-lineaire neurale toestandsobserver en tenslotte (3) regelings
aspecten met betrekking tot een niet-lineaire neurale regelaar met behulp van 
toestandsterugkoppIing. 

Ais mathematisch model voor het proces wordt een niet-lineair toestandsruimte 
model beschouwd, geparametriseerd door een combinatie van een a priori bekend 
analytisch deel en een black-box neuraal netwerk deal. In de toestandsvector van 
het model onderscheiden we witte, fysische goed gedefinieerde toestanden en zwarte 
of "verborgen" toestanden. Het model van het proces wordt geschat als een simu
latiemodel om een goede simulatie van de procesuitgang te krijgen over een lange 
horizon. Het neurale net van het model wordt getraind, in een output-error confi
guratie, met behulp van gemeten ingangs- en uitgangsdata. Door de keuze van een 
toestandsruimteparametrisatie van het model kan a-priori kennis over het proces 
op een conceptueel eenvoudige manier worden opgenomen. Hierdoor kunnen we 
ook, in een later stadium, goede referentie signalen voor de regelaar definieren. 

Het simulatiemodel van het proces wordt dan aangevuld met een niet-lineair 
filter, geparametriseerd door een statisch neuraal netwerk, am zo de toestands
voorspellingen verkregen door het eerder geschatte simulatiemodel te verbeteren. 
Verschillende manieren voor de parametrisatie van het filter worden beschouwd in 
dit proefschrift. Het neurale netwerk voor de filtering wordt getraind met behulp 
van gemeten procesdata, onafhankelijke van de simulatiemodelparametrisatie. Dit 
completeert de tweede stap van het voorgestelde regelaarontwerp. 

De transitie-regelaar is een niet-lineaire statische toestandsterugkoppeling, eve
neens geparametriseerd door een neuraal netwerk. Het regelaar-netwerk wordt 
getraind op het simulatiemodel van het proces zodanig dat de modeltoestanden 
voorgeschreven referentietrajectorien volgen. Dit proefschrift bevat een vergelij
king tussen verschillende keuzes voar de toestandreferentiesignalen, indusief een 
optimale keuze. Om eindfouten in het volggedrag te elimineren wordt een inte-
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gratieactie opgenomen in de gesloten Ius configuratie. Aan de randvoorwaarden 
voor bedrijving van het proces wordt voldaan door een juiste specificatie van de 
referentiesignalen. Deze worden verkregen met behulp van het witte gedeelte van 
het model en een aangepaste keuze van weegfactoren in een regeIcriterium. 

Aile niet-lineaire functies die in verschillende stadia van ons algoritme wor
den geschat zijn geparametriseerd door sigmoidale feedforward neurale netwerken. 
Voor de training van de neurale netwerken maken we onderscheid tussen gradient
gebaseerde, deterministische optimalisatie en stochastische optimalisatie. Een aan
tal methoden wordt in dit proefschrift besproken om tot een effectieve combinatie 
van deze twee optimalisatietechnieken te komen. Deze gecombineerde techniek 
wordt vervolgens gebruikt voor de training van de neurale netwerken. 

In dit proefschrift wordt een aantal voorbeelden gegeven die zowel de model
leringsaspecten als de regelaspecten van dit proefschrift demonstreren. De be
langrijkste voorbeelden zijn: (1) een portaalkraan. Hiermee wordt de modelle
ringsprocedure voor niet-lineaire processen gedemonstreerd. (2) een fluidized bed 
polymerisatie proces. Hiermee worden zowel modellerings- als regelaspecten gede
monstreerd. (3) een niet-lineaire toestandsterugkoppeling wordt beschouwd voor 
een regeling voor een inverse slinger met meerdere links. 
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I 
There would be no learning, either natural or artificial, without the notion of an 
error: 

Neural net (1949): a computer architecture in which a number of processors are in
terconnected in a manner suggestive of the connections between neurons in a human 
brain and which is able to learn by a process of trial and error - called also neu
ral network. (Merriam Webster's Collegiate Dictionary, 10-th edition, Springfield, 
1993) 

II 
Searching for a local minimum of a non-convex function formed by a neural network 
training problem is like searching for a needle in a haystack. Finding a global 
minimum is even worse. However, it is enough to find sufficiently low function 
values. 

III 
A structure with less than thousand neurons should not be called a Neural Network 
as it is much too simple. It could be called a "quasi Neural-Network" or let's say a 
"O'-function" . 

IV 
Increasing the complexity of black boxes (e.g. neural nets) for the approximation 
of certain functions can be helpful in finding global minima which, in fact, already 
exist for low complexity: the increased complexity may offer more ways with an 
easier access towards the global minima. 

V 
The future development of general control design methods should reflect mainly 
the ideas and skills of the designer, rather than the brilliant theoretical methods 
currently described in the text books, as the majority of them can not be computed 
in practice, no matter how big and fast the computer is. 



VI 
The term "A global optimization method" is misleading. Its meaning is twofold: It 
denotes either an optimization method converging to a global minimum or a globally 
convergent method converging to a local minimum. 

VII 
Preventing computer crashes on the part of the user in the first place is a better 
idea than asking either the computer manufacturer or the system manager for an 
assistance solving them. 

VIII 
A unification of the "Vysegrad" countries with EC has to happen as soon as possible, 
not only in the interests of the Vysegrad countries, but also in the interests of 
Western countries who will benefit from the economic prosperity and the growth of 
household demand in the Vysegrad countries. 

IX 
Photography has a lot in common with neural networks. There are some basic 
formulas which always apply, the rest is based on experience obtained by trial and 
error. 

X 
As soon as there is an expert in the neighbourhood people tend to stop either reading 
manuals or thinking and ask the expert first. 
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