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Abstract

Let At, A2 , A3 denote a vector space basis, formed by right invariant
vector fields, of the Lie algebra 9 of the three-dimensional Lie group
G of Euclidean motions of the plane. We demonstrate that for m 2: 4
the semigroup kernel J{t associated with the strongly elliptic operator
H = (_1)m/2 2:1=1 Ai satisfies m-th order Gaussian bounds for all
t 2: 1 if, and only if, two of the A span the nilradical of g. If this
condition is not satisfied the kernel has an anomalous asymptotics. It
behaves like an m-th order kernel in one direction and like a second
order kernel in the other two directions. No such anomaly occurs for
the kernels associated with the operators H = (- 2:1=1 A7)m/2.
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1 Introduction

The rate of dissipation of heat on a manifold is determined by the available volume. This
geometric principle is illustrated by the behaviour of the heat kernel J{ associated with a
right invariant sublaplacian on a Lie group G of polynomial growth. Then one has bounds

(1)

for all t > 0 where V(t) denotes the volume of the ball of radius t measured with re
spect to the subelliptic distance (see [Rob], Theorems IVo4.16 and IVo4.21, or [VSC], The
orem VIII.2.9). The asymptotic properties of the kernels associated with higher-order
operators is less clear.

Let 9 denote the Lie algebra of G and AI, . .. ,Ad a vector space basis of 9 formed by
right-invariant vector fields. First, let J{ denote the semigroup kernel corresponding to a
power of the Laplacian H = (- Ef=I A7)m/2. Then one has the m-th order analogue

(2)

of the bounds (1) for all t > 0 The upper bounds are a consequence of the Gaus
sian bounds established in Theorem 3.1 below and then the lower bounds follow from
[EIR4], Corollary 204. Secondly, consider the kernel corresponding to the operator H =
(-1 )m/2 Ef=I Ai. Then the situation is more complex. If G is nilpotent the bounds (2)
are again valid for all t > 0 because the Gaussian upper bounds on J{ follow from [ERS1],
Theorem 3.5. More generally, if G is the local direct product C XI N of a compact Lie
group C and a nilpotent Lie group N then the bounds (2) are valid. The key upper bounds
(2) are a consequence of Theorem 4.3 of [DER], with m = m. The special form of Hallows
one to verify that Condition 11 of [DER], Theorem 4.1, holds and hence all the equivalent
conditions of Theorems 4.1 and 4.3 are valid. In particular H satisfies the strong Garding
inequality

(cp, Hcp) :::: f-l sup IIAacpll~ (3)
lal=m/2

for some f-l > 0 and all cp E D(H) where we have used the standard multi-index notation.
Conversely, Dungey [Dun], Theorem 1.1, has shown that if H satisfies (3) and J{ satisfies
Gaussian bounds for all t > 0 then G is the local direct product C X I N of a compact
Lie group C and a nilpotent Lie group N. Therefore it is of interest to examine possible
upper bounds and the possible asymptotic behaviour of J{ for groups which are not of the
special form C X IN. The purpose of this note is to investigate this problem for the simplest
such group, the three-dimensional group of Euclidean motions in the plane. Our analysis
establishes that for large t the bounds (2) are the exception rather than the rule. Indeed
many m-th order operators have the large time characteristics of second-order operators
in some directions.

Let G denote the three-dimensional, connected, simply-connected Lie group of Eu
clidean motions, 9 its (solvable) Lie algebra and n the (two-dimensional) nilradical of g.
Further let I . I be the modulus associated to a fixed basis of 9 and note that different
bases give equivalent moduli. Fix a basis aI,a2,a3 of g. Next let AI, A2,A3 denote the
infinitesimal generators of the one-parameter groups t I--t L(exp( -tai)) where L is the left
regular representation of G in L2 (G). All the operators H we consider are m-th order
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polynomials in the Ai with the common feature that the corresponding semigroup kernels
I< are smooth functions satisfying Gaussian bounds

with b, c > 0 and w 2:: 0, uniformly for all g E G and t > 0 (for details see [Rob], Chapters I
and III, or for a short proof, [ElR3]). Our interest is to derive bounds of this nature with
the optimal behaviour as t --+ 00.

Theorem 1.1 Let H = (-1 )m/2 2:;=1 Ai with m 2:: 4 even. The following conditions are
equivalent.

I. There exist b, c > 0 such that

(4)

for all g E G and t > O.

II. There exists a c > 0 such that et-3/m
::; III<tlloo for all t 2:: l.

III. limt_oo t3/m I<t(e) exists and is not O.

IV. The nilradical n is spanned by two of the basis elements at, a2, a3'

The theorem implies that the geometric bounds (2) and the good Gaussian bounds (4) are
only valid for large t for very special bases. This contrasts starkly with the situation for
powers of the Laplacian, Theorem 3.1 below, for which the Gaussian bounds are satisfied
independently of the choice of basis at, a2, a3. Note that Theorem 1.1 gives examples for
which I< satisfies the Gaussian bounds (4) but H does not satisfy the strong Garding
inequality (3). Indeed (4) together with (3) would imply that G is of the form C Xl N, by
[Dun], Theorem 1.1, which is a contradiction.

The next result gives detailed bounds on the kernels of Theorem 1.1 for general bases.
To state it we need an explicit description of G.

First, there is a basis bI, b2 , b3 of 9 satisfying [bI, b2] = b3, [bt, b3] = -b2 and [b2, b3] = O.
Then n = span{b2 , b3 }. Secondly, define the homeomorphism <I>: R 3 --+ G by

<I> (xI, X2, X3) = exp(Xl bI) exp(X2b2) exp(X3b3) .

Then there is a c > 0 such that c-I Ixl ::; 1<I>(x)1 ::; c Ixl for all X E R 3
• (Actually, if the

modulus I . I is defined with respect to the basis bI, b2 , b3 then I<I> (X ) I = Ix I for all x E R 3
. )

Thirdly, for b, t > 0 and n 2:: 2 even introduce the Gaussians G~~): R 2 --+ R by

on the commutative group R 2
•

Theorem 1.2 Let H = (_1)m/2 2:f=I Ai with m 2:: 4 even and assume the nilradical n is
not spanned by any pair of the basis elements at, a2, a3. Then the following is valid.
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I. There exist b, b' , c > 0 such that

IK (q>(x x x ))1 < ct-l/me-b(lxllmt-l)l!(m-l) (G(m) * G(2»)(X x)t I, 2, 3 _ b,t b',t 2, 3

for all t > 0 and (XI, X2, X3) E R3 where * denotes convolution on R 2
• In particular

there are b, b' , c > 0 such that

1
et-3/me-b(lxllmrl )l!(m-l) e-b((x~+xDm!2rl )l!(m-l) if t ~ 1

IKt(q>(Xl, X2, X3)) I ~ c r(m+l)/me-b(lxllmrl )l!(m-l) (e-b((x~+xDm/2t-l )l/(m-l) V e-bl(X~+x~)t-l)

ift ~ 1

for all t > 0 and (XI, X2, X3) E R 3

II. limt-+oo t(m+l)/m Kt(e) exists and is not zero.

The asymptotic behaviour of the kernels K associated with the homogeneous operators
H = (-1 )m/2 2::7=1 Ai can be described in much greater detail. We will demonstrate that
the kernel is accurately approximated for large t by the kernel of an m-th order, weighted
strongly elliptic operator with constant coefficients on R 3.

The above results extend to subelliptic operators H = (-1 )m/2 2::7=1 Ain with aI, a2 an
algebraic basis of g. The subelliptic geometry changes the detail of the small t estimates
but not the large t estimates. One has normal Gaussian behaviour if n contains one of the
ai and anomalous behaviour if this is not the case.

2 Proof of Theorems 1.1 and 1.2

We begin by establishing crude upper bounds on the kernel K by standard arguments
based on Sobolev inequalities and perturbation theory. The bounds are established on
L 2(R3

).

Let BI, B2, B3 denote the representatives of bl , b2, b3 in the left regular representation
of G on L 2(G). Then BI, B2, B3 transfer to operators EI, E2, E3 on L 2(R3) by use of the
homeomorphism q>. Explicitly, if <P E C~(R3) then

(El<P)(x) = (Bl(<p 0 q>-l))(q>(X)) = -(Ol<P)(X) ,

(E2<P)(x) = (B2(<poq>-1))(q>(X)) = -cosxdo2<P)(x)+sinxdo3<P)(x) ,

(E3<P)(x) = (B3(<p 0 q>-l))(q>(X)) = -sinxl (02<P)(X) - cos Xl (03<P)(X)

for all x = (Xl,X2,X3) E R 3 where Ok = OjOXk' Since bI,b2,b3 is a basis of 9 there is a
non-singular, real-valued, matrix (Vk/) such that ak = 2::r=l vk/b/. Then AI, A2 , A3 transfer
to operators Ak = 2::r=l vk/E/ on L2(R3

) for all k E {I, 2, 3}. Hence the operator H is
represented on L 2 (R3) by

3

H<p = (H(<p 0 q>-l)) 0 q> = (_1)m/2 E A;;<p
k=l
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Next for all P E R 3 introduce the multiplication operator Up by (Up<p)(x) = eP.x<p(x)
and set Hp = UpHU;l. Further let k and kp denote the forms associated with Hand Hp
on L2 (R3).

Lemma 2.1 There is a I 2:: 0 and for each c > 0 a Ce > 0 such that

Ikp(<p) - k(<p)1 ::; ck(<p) + cew-y(p)II<pII~

for all <p E D(k) where w-y(p) = pf + P'2 + p'[f + l(p~ + P5). Moreover, if al = Vll bl with
Vll E Rand a2, a3 span n then one may choose I = O.

Proof One has UpAkU;;l = Ak + Lk(p) with

Lk(p) = VklPl +Vk2(P2 Cl - P3 S l) +Vk3(P2 S l + P3Cl)

where Cl(X) = COSXl and Sl(X) = sin Xl. We consider Lk(p) both as a multiplication
operator on L2 (R3

) as as a function on R 3 . Moreover,

3

kA<p) - k(<p) = L (((Ak - Lk(p))n<p, (Ak +Lk(p)t<p) - (Ak<p, Ak<P)) (5)
k=l

with n = m/2. But
n-l

(Ak +Lk(p)t<p = A~<p +L c~~l(p) A~<p
1=0

where the coefficients have the form

The sum is over all p E {I, ... , n} and jIJ ... ,jp 2:: 0 such that jl +... +jp +p+ 1= nand

the cf~~,...,jp are numerical constants. Now one immediately obtains bounds IILk(p)lloo ::;
co(pi + p~ + pDl/2 and IIA{Lk(p)lloo ::; Cj(p~ + pDl/2 if j 2:: 1. Therefore, fixing I > 0 one
has bounds

Ilc~~l(p)ll~ ::; C~ (pi + p~ + p;)n-I + C~ I (p~ + p~) ::; cw-y(p)(n-I)/n

Next it follows from (5) that

Ikp(<p) - k(<p)1 ::; 2t IIA~<p112 I: Ilc~~l(p)llooIIA~<p112 +t (I: IIc~~1(p)llooIIA~<p112) 2
k=l 1=0 k=l 1=0

Then the leading term in (7) is bounded by

2t IIA~<p112 I: Ilc~~1(p)llooIIA~<p112::; ck(<p) +c-l t (I: 11c~~1(p)llooIIA~<p1l2)2
k=l 1=0 k=l 1=0

for all c > O. But

Ilc~~1(p)llooIIA~<p112 ::; 8 k(<p)l/2 +8-1/(n-l) Ilc~~1(p)II:{(n-I)II<p112

::; 8 k(<p)l/2 + 8-1/(n-l) cn/(2(n-l)) W-y(p)l/211<p112

4
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for all {) > 0, 1 E {O, ... , n - I} and k E {I, 2, 3}, by (6). Then the first statement of the
lemma follows by adding the contributions and choosing {) appropriately.

Finally, if al = Vn bi then V12 = 0 = VI3 and if a2, a3 span n then V2I = 0 = V31. Hence
(A{Lk(p)) = 0 for all j 2:: 1 and k E {I, 2, 3} and the bounds (6) are valid with / = O.
Then the subsequent arguments are also valid with / = O. 0

Since m 2:: 4 and G is three-dimensional one has a Sobolev inequality

11<p11~ ~ c (h( 'P) + II'PII~)

for all 'P E D(h). Therefore using the estimate of Lemma 2.1 one deduces that there are
b, c > 0 such that

1I<p11~ ~ c(thp(<p) + etbw-y(p)II<pIID

for all 'P E D(h) and all t 2:: 1. But standard estimates give bounds IISf'Pll~ ~ M etb'w-y(p)II'PII~

and Ihp(Sf<p)1 ~ Mt-Ietb'w-y(p)II<pII~ for all 'P E L2(R3) and all t > 0 where SP is the semi
group generated by Hp. Hence one obtains bounds IISflI2-+oo ~ c etbw-y(p) for all t 2:: 1. Since

the corresponding kernel J{P satisfies IIJ{flloo ~ IIS:/2112-+ooIIS~iI12-+oo one immediately ob
tains crude bounds on the kernel J{.

Lemma 2.2 There are b, c > 0 and / 2:: 0 such that

for all x E R 3 and t > O. Moreover, if al = Vnbi with Vn E Rand a2, a3 span n then one
may choose 1=0.

Proof The bounds for t E (0,1] follow from the standard small time Gaussian bounds.
The bounds for t 2:: 1 are a consequence of the previous reasoning. 0

If I = 0 then the bounds of the lemma can be reexpressed as

uniformly for all t > 0, i.e., one has Gaussian bounds with an additional polynomial growth
factor (1 + t?/m. If, however, I > 0 one has bounds

uniformly for all t > 0 and x = (Xl, X2, X3) E R 3 and these are of the type given in
Theorem 1.2 but again with the additional growth factor (see [DER] Proposition 2.10.1).
Next we use arguments based on periodicity to remove this factor.

The operator H on L2(R3
) is strongly elliptic with periodic coefficients. Therefore one

can analyze it with the Bloch decomposition as in [ERS3]. Let Ho be the operator on
L2([-7r,7rj3) obtained by replacing each 8k in H by 8k - ifh, where 0 E C 3 and the 8k on
L2([-7r,71y) have periodic boundary conditions. Then Ho has a compact resolvent with a
simple eigenvalue 0 and eigenfunction 'Po = 1, the constant function with value 1. Therefore
by holomorphic perturbation theory there exist {), e > 0 and holomorphic functions Ao: n ~
C and 0 1----7 <po from n into L2([-7r, 7rj3) such that Ho<po = Ao(O) <po and Ao(O) is the unique
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eigenvalue of He with IAo(O)1 < c for all °E 0, where °= {O E C 3
: 101 < <5}. (Cf. [ERS3],

Proposition 2.7.)
The behaviour of the Ao depends on whether Condition IV of Theorem 1.1 is valid or

not. If it is we again make a technical restriction which we later remove.

Lemma 2.3

I. If n is not spanned by any pair of all a2, a3 then there exist C ~ 1 and Cll C2 > 0 such
that

IAo(O) - ~0(0)1 ::; c(Or;: + O~ + o~)(m+l)/m

for all °E 0, where ~0(0) = ClOt + C2(0~ + O~).

II. If a1 = Vnb1 with Vn E Rand a2, a3 span n then there exist C ~ 1, J-l > 0 and a
homogeneous m-th order polynomial ~o: R 3 -+ R such that

for all°E 0. Moreover, the coefficients of ~o(0) are real and ~o(0) ~ J-lIOl m for all

°E R
3

•

Proof For all k E {1, 2, 3} and °E R 3 set

and
(k) )La = -Vk1 fA - Vk2(Cl 82 - Sl 83 ) - Vk3(Sl 82 + C1 83 •

In particular L~k) = Lk(iO). We consider L~k) as a multiplication operator and L~k) as a

partial differential operator on L2([-7r,7r]3). Then He = (_1)m/2E~=1(L~k) +L~k))m. Note
that if '1/-1 is a linear combination of C1 and 81 then Ho'lj; = v 'Ij;, where v = E~=l vkI ' Since
Ao and °l---7 'Pe are holomorphic and °l---7 He is a polynomial one can write

00

Ao(O) = L A(n)(o)
n=O

00

'Pe = L 'P(n)(o)
n=O

m

and He = L H(n)(o)
n=O

for all °E 0, where each A(n) (0), 'P(n)(o) and H(n)(o) is homogeneous of degree n in 0, if <5
is sufficiently small. Then A(0) (0) = 0, 'P(O) (0) = 1 and H(O) (0) = Ho. So

m 00 00 00

L H(n)(o) L 'P(n)(o) = He 'Pe = Ao(O) 'Pe = L A(n)(o) L 'P(n) (0) (9)
n=O n=O n=l n=O

for all °E R 3 with 101 < 8.
Comparing the linear terms gives Ho'P(1)(0) +H(l)(O) 1 = A(l)(O) 1 and

Then Ho'P(1)(0) = -H(l)(O) 1 is a linear combination of C1 and 81. Since 'P(1)(0) is linear
this implies that there is a linear function 71: R 3 -+ C such that 'P(1)(0) = 71(0) 1 
V-I H(l)(O) 1 for all °E R 3 with 101 < 8.
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Comparing the second order terms in (9) gives

(211"? ),(2)(0) = (1, H(2)(0) 1) - 1/-1(1, H(1)(0) H(1)(0) 1)

= (I,H(2)(0) 1) - 1/-11IH(1)(0) 111~

We calculate both terms. One has

3

H(I)(O) 1 = (_1)m/2 2JL~k))m-lL~k)1

k=1
3 3

= L 1/kt-lalL~k) 1 = -i L 1/kt-1((1/k2 03 - 1/k3 (2)C1 + (1/k2 O2+ 1/k3 (3)SI) . (10)
k=1 k=1

Then

3

II H(1) (0) 111~ = 2-1 (211")3 L 1/kt-l1/~-1 ((1/k2 03 - 1/k3 ( 2)(1/12 03 - 1/13 ( 2)
k,I=1

+ (1/k2 O2+ 1/k3 (3)(1/12 O2+ 1/13 ( 3))

= T ' (2,,- )3(e; +0;) ( (t, v,r'V,,)' +(t, v;::-Iv,,)')
for all 0 E R3 with 101 < o. Similarly,

3

(1, H(2)(0) 1) = L((L~k))m/2-1 L~k) 1, (L~k))m/2-1 L~k) 1)
k=1

3

= 2-1(211"?(0~ + O~) (L 1/kt-2(1/~2 + 1/~3))
k=1

But it follows from the Cauchy-Schwarz inequality that

for alll E {2,3}. SO C2 ~ O. Moreover, since (1/~/2,1/~/2,1/~/2) -=I (0,0,0) the Cauchy
Schwarz inequality implies that C2 = 0 if, and only if, there are P2, P3 E R such that
1/'?:!/2-11/kl = PI1/'?:!/2 for all k E {I, 2, 3} and 1E {2,3}. If, however, n is not spanned by any
pair of a1, a2, a3 then there are kt, k2 E {I, 2, 3} with k1 -=I k2 such that 1/k1 l -=I 0 -=I 1/k2 1' So
if, in addition, C2 = 0 then there are P2, P3 E R such that 1/k;1 = PWk;1 for alll E {2,3} and
i E {1,2}. Then ak; = 1/k;l(b1+P2b2+P3b3) for all i E {1,2} and ak1 and ak2 are linearly
dependent. Therefore C2 > O. Conversely, if n is spanned by a pair of at, a2, a3 then it is
easy to show that C2 = O.

7



Note that the coefficients of ()r in <p(n)(()) and A(n)(()) equal <p(n)(()o) and A(n)(()o), where
for simplicity we assume that ()o = (1,0,0) E n. Then <p(1)(()o) = 71 (()o) :D. _11-1H(l)( ()o) :D. =
71 (()o) :D. by (10). Let n E {2, ... , m} and suppose there are constants PI, ... , Pn-1 E C such
that A(j)(()o) = 0 and <p(j)(()o) = pj:D. for all j E {I, ... , n - I}. Comparing the n-th order
terms in (9) at ()o gives

n-1
A(n) (()o) :D. = H(n) (()o) 1 +L pjH(n- j)(()o) 1 + Ho<p(n) (()o)

j=l

Since L~:) is an operator of multiplication with a constant it follows that HU)( ()o) 1 = 0
for all j E {I, ... , m - I}. So if n < m then (271")3 A(n) (()o) = (I, Ho <p(n) (()o)) = 0 and
Ho<p(n)(()o) = 0, which implies that <p(n)(()o) = pn 1 for some pn E C. Alternatively, if n =

m then (271")3 A(m)(()o) = (1, H(m) (()o) 1) = (_I)m/2 L::%=1(1, (L~:))m I) = (271")3 11• So if n is

not spanned by any pair of aI, a2, a3 then C1 = 11 and one sets ~o(()) = C1 ()~ +2-1C2 (()~ +()D.
This establishes Statement 1 of the lemma.

Finally, if a1 = lInb1 and a2, a3 span n then for each k E {I, 2, 3} the operators L~k)
and L~k) commute. Hence it follows as in the last part of the proof of Statement 1 that
A(n)(()) = 0 for all n E {I, ... ,m -I} and (271"?A(m)(()) = (_I)m/2I:~=1(:D.,(L~k))ml) for
all () E R 3 with I()I < 8. Obviously A(m)(()) extends to a real homogeneous polynomial of
degree m. It remains to show that A(m)(()) f. 0 for all () E R 3 with 0 < I()I < 8. Let () E R 3

with I()I < 8 and suppose that A(m)(()) = O. Then L::%=1 II(L~k))m/2111~ = (271")3 A(m)(()) = O.
So (L~k))m/2:D. = 0, for each k, almost everywhere. Since (L~k))m/21 is continuous one

deduces that (L~k)1 )(x) = 0 pointwise. Setting x = 0 gives L::r=ll1kl()1 = 0 for each k. But
the matrix (lIkl) is not singular and hence () = O. This completes the proof of the lemma. 0

Proof of Theorem 1.2 Suppose that n is not spanned by any pair of al, a2, a3· Let ~o,

Cl, C2 and c be as in Lemma 2.3.1. Then there is a C3 E (0, C1 1\ C2) such that Re Ao(()) ~
C3( ()~ +()§ +()5) for all () E 0, if 8 is small enough. Set ii = (_I)m/2c1 a~ -C2(ai+an. Then
ii is a weighted strongly elliptic operator on R 3 (see [ElR2]). Using the crude Gaussian
estimates (8) one can argue as in the proof of Theorem 3.5 in [ERS3] to deduce that there
are c', f1 > 0 such that

IIKt 0 <I> - Ktll oo S; c' e-/l-t + c' r d() e-c3(iJi"+B~+B~)t(I()1 + t(()~ + ()~ + ();)(m+l)/m)
J{iJER3:liJl<6}

for all t ~ 1, where K is the kernel of the semigroup generated by ii. Hence there is a
C" > 0 such that

IIKt 0 <I> - Ktll oo S; c"r(m+2)/m (11)

for all t ~ 1. Since (-1)m/2a~ and -(ai +aD commute the kernel K has Gaussian bounds

IKt(xI, X2, x3)1 ::; cr(m+l)/me-b(lxllmt-l)l/(m-l) e-b(x~+xnt-l

(12)

for all t ~ 1 (see [DER], Proposition 2.10.111). Then one can combine (11) and (12) and
interpolate with the bounds (8) as in the proof of Corollary 3.6 of [ERS3]. It follows that
for all E > 0 there are b, b', c > 0 such that

IKt 0 <I>(x) - Kt(x)1 S; cr(1-e)/mr1/me-b(lxllmt-l)1/(m-l)(G~;) * G~~!t)(X2,X3) (13)
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for all t 2: 1 and x = (Xl, X2, X3) E R3. The bounds (12) and (13) imply the first bounds of
Theorem 1.2.1 in case t 2: 1. The bounds for t S; 1 follow from the local Gaussian bounds
and Propositions 2.10.1 and 2.10.11 of [DER].

Finally it follows from (11) and Fourier theory that

lim t(m+l)/m Kt ( e) = lim t(m+l)/m ~(O)
t-+oo t-+oo

= f dp e-(CIPr'+C2(p~+pm = 211" r(m-l ) c~1/m(c2mtl
JR 3

and the proof of Theorem 1.2 is complete. 0

Remark 2.4 Note that actually limt-+oot(m+l)/m Kt(g) = 211"r(m-l)c~1/m(c2mtl for all
9 E G, by the same argument.

Proof of Theorem 1.1 "I::::}II" . Since H is self-adjoint it follows from Corollary 2.4 of
[EIR4] that K t ( e) 2: et-3

/
m for some C > 0 and all t > O. This implies Condition II.

"II::::}IV". If Condition IV is not valid then Theorem 1.2.1 implies that there is a c > 0
such that IIKtll oo S; ct-(m+l)/m for all t 2: 1. This contradicts Condition II.

Obviously Condition III implies Condition II, so it suffices to show the implications
IV::::}I and IV::::} III. We first prove these implications if al = Vn bl and a2, a3 E n.

Let f.l > 0 and ~o(O) be as in Lemma 2.3.11. There exist Ca E R such that ~o(O) =
2::lal=mcaoa for all °E R 3. Set Jj = (-1)m/22::lal=mca8a. Since ~o(O) 2: f.lIOlm for all°E R 3 it follows that Jj is a strongly elliptic operator on R3. If K is the kernel of the
semigroup generated by Jj then it follows as in [ERS3] that there is a c > 0 such that
IIKt a <I> - Ktll oo S; et-3

/
m r l/m for all t 2: 1. Arguing as in the proof of Theorem 1.2 the

Gaussian upper bounds of Condition I follow. Moreover,

lim t3
/

m Kt ( e) = lim t3 / m ~(O) = r dO e- Ao ((}) =I 0 ,
t-+oo t-+oo JR3

which is Condition III.
Finally suppose that Condition IV is valid. We may assume that a2, a3 E n. Then

Vn =I O. Set a = vul (V13 b2 - V12 b3 ) E n. Let W be the inner automorphism of G induced
by exp a, so w(g) = (exp a) 9 exp( -a). Then W(exp ak) = exp ak for all k E {I, 2, 3}, where
al = Vn bl , a2 = a2 and a3 = a3. Let U be the unitary map from L2(G) onto L 2(G)
defined by U tp = tp a W-l . Then UHU- l = (-1 )m/2 2::%=1 A.r, where A.k is the generator in
the direction ak. So the kernell< of the semigroup generated by the operator UHU- l has
Gaussian bounds and limt-+oo t3

/
m k t ( e) exists and is not zero by the foregoing arguments.

But Kt = f<t oW. Since Wis an automorphism of G the Conditions I and III for K follow
from those for l<. 0

Also here Condition III can be strengthened (or weakened) to limt-+oo t3
/

m Kt(g) = c
for all 9 E G with c =I 0 a constant independent of g.

Remark 2.5 The foregoing arguments apply with very little alteration to subelliptic op
erators H = (_1)m/2 2::7=1 Ai with aI, a2 an algebraic basis of g. The subelliptic geometry
changes the local singularity of K t from t-3/m to t-4/m but the behaviour for large t remains
unchanged. Examination of the proof of Lemma 2.3 shows that the previous condition for
normal Gaussian behaviour for large t is replaced by the requirement that n contains one
of the ai. If this condition is not fulfilled one has the anomalous second-order asymptotics.
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3 Powers of the Laplacian

The next theorem shows that the anomalous behaviour exhibited by Theorem 1.1 cannot
occur if H is replaced by a power of the Laplacian. Note that the following argument is
independent of the group structure and applies equally well to powers of operators on a
space of polynomial growth.

Theorem 3.1 Let G be a Lie g1'OUp with polynomial growth, aI, . .. ,ad' an algebraic basis
of the corresponding Lie algebra 9 and AI, . .. ,Ad' the representatives in the left regular
representation on L2(G). Further let I. I' and V denote the associated subelliptic distance
and volume. Finally let H = (- Lf~1 A7)m/2, with m 2: 2 even, and K the corresponding
semigroup kernel. Then there exist b, e > 0 such that

IKt(g) I S; e V(ttl/me-b((lgl,)mt-l )l!(m-l)

and
sup I(AJ{t)(g)1 S; eCI/mV(ttl/me-b((lgl,)mt-l)l!(m-l)
I9~d'

f01' all 9 E G and t > O.

Proof The bounds are well known for m = 2 and the general bounds follows from this
special case in three steps. The first step reduces the proof to the case D' = D 2: 4, where
D' and D are the local and global dimension of G corresponding to the algebraic basis.

If D' > D define G2 = HD'-D X R 3 where H is the three-dimensional Heisenberg group,
if D' < D define G2 = T D - D ' X R3 and if D' = D define G2 = R 3. Then consider the
group G= G X G2 • Choose a full basis of the Lie algebra 92 of the group G2 and consider
the algebraic basis of Gobtained by the union of the algebraic basis of G and the full basis
of G2 • Let D' denote the local dimension of Gwith respect to the corresponding basis and
D the dimension at infinity. It follows that D' = D 2: 4. Next let ~2 denote the Laplacian- ~corresponding to the full basis of 92 and Hz = Hz 0 I + I 0 ~z, where Hz = - Li=1 Ar
Note that there is a e > 0 such that V(t) 2: e V(t) lt2(t) for all t > 0 where V and V2

are the volumes on G and Gz corresponding to the appropriate bases. Now suppose the
estimates of the proposition are valid for the kernel K associated with (Hz)m/Z. But with
9 = (g, gz) E Gone has

for all 9 E G. Hence

IKt(g) I S; cV(t)-I/me-b((lgl,)mcl )l!(m-l) lt2(ttl/m f dg
2

e-b(lg2Imt-1 )l!(m-l)

JG2

S; e V(ttl/me-b((lgl,)mt-l)l!(m-l) .

Thus the estimates on G follow from those on the larger group G. Therefore we now
assume D' = D 2: 4. Then V(t) behaves like tD for all t > O.

The second step consists of deriving the Gaussian bounds on the ball {g : Igl' S; tl/m}.
First, let S(2) denote the semigroup generated by the (sub)Laplacian Hz. Then there is a

e> 0 such that IIS?)lIz-+oo S; erD / 4 for all t > O. Secondly, if n > D/4 then

11('\ I + Hzt nl12-+oo S; e (n!t l f(n - D/4) ,\-n+D/4 = en ,\-n+D/4
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for all ). > 0 by Laplace transformation. Hence if S is the semigroup generated by H then

for all )., t > 0 with a suitable c~ > 0, where the last bound follows from spectral theory.
Thirdly, setting). = r 2/ m gives bounds IIStlk oo ::; 2c~ t-D /(2m). Hence

IIKtll oo ::; IISt/211~ oo ::; c'rD
/

m

and consequently
IKt(g)1 ::; c'ebrD/me-b((lgl/)mt-l)l/(m-l)

for all b > 0, 9 E G and t > °with Igl' ::; t1
/
m

.

The final step of the proof is to derive the bounds on {g : Igl' 2: t1
/

m
}.

point is the Cauchy integral representation
The starting

where n = m/2 and r is a curve running from infinity with arg). = -7r + c around the
origin in the sector A( 7r - E) to infinity with arg). = 7r - c for some fixed c E (0, 7r /2) with
A(O) = {z E C\{O}: largzl::; O}. If). E C\(-oo,O] and a E (0,1) define).a = 1).laeiaargA.
Set w = e2rri /

n and
Ck = _e- rri

/
n II (wk - wlt1

/=1,/#

for all k E {I, ... ,n}. Then, by partial fractions,

n

(AI +H;)-l = L Ck (Al/n)l-n ().k I + H2t 1

k=l

for all ). E C\ (-00,0], where ).k = _e- rri / n ).l/n wk. Therefore

(14)

where RI-' denotes the kernel of the operator (f1 1+ H 2t 1
• Note that Iarg ).kl ::; 7r - c/n

for all ). E A( 7r - c) and k E {I, ... , n}. Moreover, there exist b, c > 0 such that

(15)

uniformly for all f1 E A(7r-c/n) and 9 E G\{e} (see, for example, the appendix of [EIR1]).
Let t > °and 9 E G with Igl' 2: t1

/
m

. Choose r to be the contour in the complex
plane formed by connecting the two line segments LR ,± = {). E C : arg). = ±(7r 
c), 1).1 2: R} and the arc AR = {). E C : arg). E [-7r + c,7r - c], 1).1 = R}, where
R = (bm-1Igl't-1)m/(m-l) is chosen such that the function x f-+ xt - bx1/mlgl' on [0,00)
attains its minimum at R.

One then estimates for each k E {I, ... , n} that

j dl).lleAtll).I-l+l/nIRAk(g)l::; c'r2/(m-l)(lgl')-D+2m/(m-l)e-w((lgl/)mCl)1/cm-l)
AR
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since Igl' 2:: t l /m and D 2:: 4 2:: 2m/(m -1), with w = (bm-l)m/(m-l)(m -1). Moreover,

{ dl,\lleAtll,\I-I+l/nIRAk(g)l:::; 2ce-2-1RtcoSE:(lgl,)-D+2rl/n roo dv v-l+l/ne-2-1IlCOSE:
~~± k

:::; c'rD/me-w'((lgl,)mCl)l/(m-l)

since D > 2, with w' = 2-l (bm-l )m/(m-l) cos c. A combination of the last two estimates
and equation (14) gives the required Gaussian bounds for the kernel.

The bounds on the derivatives follow by a similar argument. First, one estimates
IIAi St I1 2-+oo as before but using the bounds IIAi S?)1I2-+oo :::; et-D

/
4t- l

/
2

• Then one has
the resolvent bound IIAi('\I + H2t n112-+oo :::; c,\-n+D/4+l/2. Consequently one obtains
IIAKtll oo :::; a r(D+l)/m. Secondly, on the set {g: Igl' 2:: t l/m} one has

I(AJ{t)(g) I :::; E(21l"tl ICkil dl,\lleAtll,\I-I+l/nl(ARAk)(g)1

in place of (14) and
I(AiRJl)(g)1 :::; a (lgl')-(D-l)e-bIJlll/2Igl'

in place of (15). The latter estimate again follows from the appendix of [EIR1]. The only
difference is the introduction of an extra factor (Igl')-\ which is bounded by t-l/m. 0

Remark 3.2 The situation is quite different for higher derivatives. If n 2:: 2 one has
bounds IIAC>Ktll oo :::; et-1c>I/m V(tt l / m for all t > 0 and a with lal = n if, and only if,
G = C X IN is the local direct product of a connected compact Lie group C and a connected
nilpotent Lie group N. If m = 2 this result is contained in [ERS2], Theorem 1.1. The
general case can be deduced from the special case.

Remark 3.3 It also follows that the powers H = ~m/2 of the sublaplacian ~ = - Lt~l A~,

with m ~ 4, satisfy the strong Garding inequality (3) if, and only if, G = C XI N. The
inequality (3) for H is equivalent to IIAC>~ -m/4112-+2 :::; 00 for all a with lal = m/2. But
then by [ERS2], Theorem 4.4, this is equivalent to G = C Xl N.

Remark 3.4 The foregoing arguments also apply to powers of n-th order operators. If
H generates a holomorphic semigroup with a kernel satisfying n-order Gaussian bounds
and if Hm also generates a holomorphic semigroup then the latter semigroup has a kernel
which satisfies Gaussian bounds of order nm.

We conclude with a specific illustration of the power of these results.

Example 3.5 Let Bl , B2, B3 denote the representatives of the standard basis bI, b2, b3 of
the Lie algebra of the Euclidean motion group. Then the kernel of H = (Bl+B2)4+Bi+B~

satisfies fourth-order Gaussian bounds by Theorem 1.1. Hence the kernel of the operator
((Bl + B2)4 + Bi + B~)2 satisfies eighth-order Gaussian bounds by Theorem 3.1.
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