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Preface 

In this thesis mathematical analyses and numerical computations have been employed to 
study and to simulate flow instabilities that occur during an extrusion process of polymeric 
melts. In this way, a better insight into the various rheological aspects of extrusion processes 
can be obtained. This thesis makes clear that mathematical modelling provides excellent 
means to study physical phenomena, like the flow instabilities. The thesis is just one ex­
ample of the large variety of applications of mathematics known. Hopefully, the practical 
use illustrated here, encourages more people to apply mathematics. 
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First of all, I would like to thank Fons van de Ven for his stimulating support, the pleasant 
collaboration, and the vivid and open-minded discussions. His positive encouraging helped 
me to get on very well in my research. Furthermore, his enthusiasm served me to experience 
the many interesting aspects of mechanics. 

Secondly, I would like to express my gratitude to prof. J. Boersma. By carefully reading 
the drafts of this thesis, he pinpointed all inconsistencies and improved my English writing. 
Furthermore, his constructive criticism resulted in many improvements. 

Next, I would like to thank prof. M.L.J. Hautus for the stimulating discussions and sug­
gestions concerning the stability analyses. 

I am also thankful to the people that are or have been involved with the project supported 
by DOW Chemical in Temeuzen, in particular to Jaap Molenaar, Rudy Koopmans, Marcel 
Grob and Jaap den Doelder. The discussions and suggestions about interesting aspects to 
study and checking the physical aspects of the problem, have always been very stimulating 
and useful to me. I would like to thank Rudy Koopmans also for providing me with some 
experimental data, and for the support of DOW Chemical. 

Furthermore, I am grateful to prof. J.A Nohel from 'Eidgenossische Technische Hoch­
schule' in Zurich for his interest in my work and his valuable comments. To prof. G. Gripen­
berg from the University of Helsinki I render my thanks for his fast responses on several ques­
tions and his useful suggestions concerning the theory of Volterra integral equations. Prof. 
F. Verhulst from the University of Utrecht owes my thanks for the stimulating discussions 
about the theory of small parameter asymptotics. 

Naturally, I would like to thank all colleagues of the group 'Toegepaste Analyse' for the 
pleasant work atmosphere during the last four years, and particularly prof. J.B. Alb las for his 
pleasant company and the interesting talks during the coffee breaks. 

Finally, I would like to thank my family and friends for their continuing support and inter­
est in my work. And most of all: Jacques Bruynen, whose care, encouragement and support 
have been very important to me. 

Eindhoven, November 1996 Annemarie C.T. Aarts 
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Chapter 1 

Introduction 

1.1 The extrusion process of polymers 

Polymers are frequently used in many industrial applications because of their excellent mate­
rial and mechanical properties. In the polymer manufacturing and shaping industry a variety 
of processes is employed to produce from polymeric feedstock all kinds of plastic products. 
One important production process for e.g. fibres is extrusion. The extrusion process is usually 
carried out in the liquid state of the polymer. The principle of extrusion is that a polymeric 
melt is forced to flow through a die, e.g. by the action of a moving plunger; see Figures 1.1 
and 4.1 for a schematic representation of an extruder. This extruder consists of a wide barrel 
and a narrow die. The barrel is filled with polymeric melt and the plunger movement com­
presses the melt in the barrel and forces it through the die. When the melt leaves the die, the 
extrudate is formed by cooling down ofthe melt. The plunger velocity can be used to control 
the desired production rate, as this velocity determines the volumetric flow rate of the extru­
date. By adapting the form of the cross-section of the die, one can extrude plastic products 
such as wires, pipes, fibres and plates. Wires are extruded from a circular die and pipes from 
an annular die. For the extrusion of plates one needs a flat die and to produce insulated cables 
a metal wire is enclosed by polymeric melt extruded from a circular die. 

barrel~ 

plunger 

Figure 1.1 The How in an extruder which consists of a wide barrel and a narrow die, 
controlled by a plunger moving to the right. 

1 
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For the efficiency of the production process the polymeric melt is generally extruded at 
high flow rates. At these high flow rates, however, often surface distortions or fracture of 
the extrudate occur. Since the distortions make the product worthless, it is of commercial 
importance to know what causes the distortions and how they can be avoided. In this way, an 
optimal production rate, at which the extrudate flow rate is as high as possible and a smooth 
and regular extrudate forms, can be obtained. Since the ultimate extrudate properties will 
depend on the polymer used and on the processing conditions, it is important to know how 
the onset of the extrudate irregularities depends on the material properties of the polymeric 
melt and the dimensions of the extruder. In this way one can optimize the efficiency of the 
extrusion process. 

1.2 The characteristic behaviour of polymer solutions and 
melts 

The molecular weight of polymers, which is a measure for the length of the polymer chain, is 
about 104-106 gram per mol. The polymer chain exhibits a great diversity of orientations and 
conformations, e.g., fully stretched out, completely entangled or somewhere in between. As 
a result, fluids like polymer solutions and polymeric melts have a complex structure and be­
have in unexpected ways. In dilute solutions the concentration of polymers is so low that the 
chains do not interact. On the other hand, in concentrated solutions and molten polymers the 
molecular weight is so large that a gross interference between molecules is inevitable. In this 
thesis we consider flows of concentrated solutions and melts of flexible polymer molecules. 
Ferry [13, Chapter 17] showed that the rheology of concentrated solutions is similar in na­
ture to the rheology of pure polymeric melts. Since the constituents of polymer solutions 
and melts differ in size, weight, and degrees of freedom, from small-molecule fluids like e.g. 
water and air, the microstructure of the materials has to be taken into account in order to de­
scribe typical features of non-Newtonian fluid behaviour, such as shear-thinning and normal 
stress effects. 

The viscosity of a fluid is defined as the ratio of the shear stress and the shear strain-rate 
in a simple shear flow. For a Newtonian fluid the viscosity is constant. For a non-Newtonian 
fluid, however, the ratio depends on the shear strain-rate. Most of the concentrated poly­
mer solutions and melts are shear-thinning which means that the viscosity decreases if the 
shear strain-rate increases. Another feature of a non-Newtonian fluid is that it exhibits nor­
mal stress differences in simple shear flow. With reference to a properly chosen orthogonal 
coordinate system (xt. xz, X3) the normal stresses are equal to the diagonal terms 1i 1. Tzz 
and '133 of the stress tensor. Here, the x1-direction is the flow direction, the x2-direction is 
the direction of the velocity gradient, and the x3-direction is the neutral direction. The two 
independent differences N1 := 111 - Tzz and Nz Tz2 - T33 are called the first and second 
normal stress differences, respectively. For a Newtonian fluid in a Poiseuille flow or Cou­
ette flow the normal stresses are equal, hence, the normal stress differences are exactly zero. 
For a polymer solution or melt, however, the first normal stress difference N1 is positive and 
the second normal stress difference N2 is negative, where Nz is much smaller in magnitude 
than N1. Meissner et al. [37] experimentally folUld for a low-density polyethylene (LDPE) 
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the ratio N2/ N1 = -0.24. A very close result (N2/ N1 -0.22) was found earlier by Meiss­
ner for an LDPE of a different molecular weight. In general, Weissenberg's hypothesis that 
the second normal stress difference is zero is an acceptable approximation for most polymer 
flows (cf. Tanner [50, p. 85]). 

Another typical flow behaviour of polymeric melts and solutions is that they are viscoelas­
tic, meaning that effects of both elasticity and viscosity are noticeable. In a purely viscous 
fluid the shear stress in a sheared body is proportional to the instantaneous rate of shear strain, 
whereas in a purely elastic material the shearing stress is proportional to the instantaneous 
amount ofshear strain. Mter the applied force is removed, a viscous fluid remains unchanged 
in its deformed shape, whereas an elastic body retains its initial shape again. A material is 
called viscoelastic if the stress in a sheared body depends on the shear strain-rate as well as 
on the amount of shear strain. Moreover, the shear stress in a viscoelastic material also de­
pends on the time elapsed since the strain has been applied. Hence, a viscoelastic material 
can be characterized by a positive, finite time A - 1, during which it remembers its past defor­
mations. For a purely elastic material the characteristic time A - 1 oo, i.e. the material never 
forgets its undeformed state, whereas for a purely viscous fluidA-l 0, i.e. the fluid imme­
diately forgets its initial state. This characteristic time is called the relaxation time, and A is 
called the relaxation rate. Thus, a polymeric fluid has memory, and the entire temporal his­
tory of the deformation determines the stresses in the fluid. Typically the memory fades with 
time, meaning that applied forces or deformations in the distant past have less influence on 
the present stresses than those which occurred in the more recent past. The fading influence 
of the deformation history is governed by a memory function containing the characteristic 
relaxation rates of the polymer. Thus, polymeric materials are not described by the (linear) 
constitutive equation for Newtonian fluids; to describe the response of polymers adequately, 
a nonlinear viscoelastic constitutive model with fading memory is needed. These models 
must essentially be nonlinear, because the response of the very complex polymer solutions 
and melts is a highly nonlinear one. 

Standard works on viscoelastic fluids are the books of e.g. Tanner [50], Bird et al. [5], 
Larson [28], Joseph [21], and Renardy et al. [48]. In these books various macroscopic con­
stitutive models are derived from the microstructure of the polymers. To describe the non­
linear viscoelastic behaviour of a concentrated polymer solution or a polymeric melt with 
fading memory, we will use in this thesis two different constitutive models. The first model 
has been independently proposed by Kaye and by Bernstein, Kearsly and Zapas [4], and ap­
pears to have been inspired by the theory of rubberlike elasticity. The constitutive equation 
for the so-~:;alled KBKZ-model in its general form is given by an integral equation (cf. Tan­
ner [50, p. 141] or (2.1.6)). Wagner modified this KBKZ-model into the so-called integral of 
Wagner (see Tanner [50, p. 209]; cf. (2.1.7) for simple shear flow). Since the second normal 
stress difference is small compared to the first normal stress difference (see Meissner et al. 
[37]), the integral of Wagner provides an adequate modification of the KBKZ-model. For 
the kernel in this integral various forms have been suggested by e.g. Wagner and Meissner 
(cf. Tanner [50, p. 212]) and by Papanastasiou et al. (cf. Tanner [50, p. 213]). 

The second constitutive model we will use in this thesis is due to Phan-Thien and Tanner. 
This model is based on a relaxation of the hypothesis of affine deformation in the Lodge­
Yamamoto network theory, and the constitutive equation is given by a differential equation 
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(see Tanner [50, p. 207]). Under neglect of the extensional flow response, the P1T-model is 
identical to the model of Johnson and Segalman which was deduced by an alternative (con­
tinuum) method; in this case the model becomes one of the Oldroyd family (cf. Tanner [50, 
p. 131] or (3.1.5)). Tas [51] showed that the constitutive PIT-model is the most satisfactory 
model to predict the stresses in a film blowing process. As for the capillary extrusion flow of 
polymeric melts and solutions, we will show that both Wagner's modification of the KBKZ­
model and the Johnson-Segalman-Oldroyd (JSO)-model are qualitatively adequ;lte to explain 
the various flow phenomena observed. · 

1.3 Flow instabilities occurring in extrusion 

Flow instabilities are known to occur in a variety of commercially important polymer pro­
cessing operations, including extrusion. The viscoelastic nature of polymeric fluids has many 
complex effects on the flow stability. Larson [29] has given an extended review of instabili­
ties of many different categories, for example, instabilities in Taylor-Couette flows, in cone­
plate and plate-plate flows, in parallel shear flows, in extensional flows, as well as thermo­
hydrodynamical instabilities. We now summarize some of the instabilities that have been 
observed in the extrusion of polymeric fluids (cf. Larson [29, p. 236-242]). 

When a polymeric melt leaves the die of the extruder, the formed extrudate becomes 
thicker than the die, the so-called die-swell (cf. Joseph [21, Chapter 13]). This die-swell is 
caused by the elastic elongation of the melt in the die which recovers in free space by con­
traction, so thickening. When choosing the die geometry one must take into account this die­
swell. Especially in the case of a non-axisymmetric cross-section of the die, a deformation 
of the cross-section of the extrudate will occur along with the thickening. 

One of the most dramatic phenomena observed in the flow of polymeric fluids is an insta­
bility commonly known as melt fracture. This instability is most easily observed in extrusion 
through a long die; see Kalika and Denn [23]. At high flow rates the elastic deformations of­
ten become extremely large, leading to distortions on the surface of the extrudate or to frac­
ture of the extrudate. The distortions that occur can range from loss of gloss, small scratches, 
or slight roughness, to massive aperiodic and asymmetric variations in cross-sectional area 
and shape (cf. Kalika and Denn [23], Ramamurthy [46], El Kissi and Piau [12]). While the 
origins of extrudate distortions are still in dispute, there is agreement that the less severe dis­
tortions, called sharkskin or surface melt fracture, ought to be distinguished from the more 
severe distortions that are called gross-melt fracture or wary fracture. As the name indicates, 
sharkskin is a surface roughness that usually modulates the extrudate diameter by no more 
than a few percent. Sharkskin consists of regular cracks or grooves that are narrowly spaced 
running perpendicular to the flow axis. Gross-melt fracture typically involves large variations 
of the diameter which at high flow rates are extremely irregular, even chaotic. In a piston­
driven flow, Vinogradov et al. [52], Ramamurthy [46], Kalika and Denn [23], Durand [10] 
and El Kissi and Piau [12] found between sharkskin and gross-melt fracture a regime of al­
ternating distorted and smooth extrudate, known in the literature as stick-slip, spurt flow or 
cork flow. In this thesis we shall refer to a flow that shows alternating distorted and smooth 
extrudate, as spurt flow. 
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wall 
shear 
stress 

: : 

- flowrate 

Figure 1.2 The different patterns of extrudate distortions delineated in the flow curve 
of the wall shear stress versus the flow rate for an LLDPE extruded under a constant 
plunger velocity. 
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Sharkskin, spurt flow and gross-melt fracture are distinguished not only by the appear­
ance of the extrudate, but also by the critical conditions for onset. The most complete set of 
different forms of melt fracture is observed for a linear low density polyethylene (LLDPE) 
(Denn [9]; Kalika and Denn [23]). In Figure 1.2 the different patterns of extrudate distor­
tions are shown coming up in the successive flow regimes of an LLDPE extruded under a 
constant plunger velocity. The patterns are delineated in a sketch of the flow curve of the 
wall shear stress versus the flow rate (cf. Kalika and Denn [23], Durand [10, p. 76]). The 
wall shear stress is a measure for the pressure drop in the die, whereas the flow rate is related 
to the plunger velocity. The figure shows that below some critical flow rate, the extrudate is 
smooth and glossy and no distortions are observed. At a first critical flow rate sharkskin oc­
curs, observed as a regular pattern of small scratches on the extrudate. These scratches form 
a small~amplitude and narrowly spaced ribbing on the surface of the extrudate. Ramamurthy 
[ 46] and Kalika and Denn [23] found at the critical onset for sharkskin a small change in the 
slope of the flow curve (cf. Figure 1.2). At a second critical flow rate spurt flow occurs, ob­
served as alternating smooth and distorted regions on the surface of the extrudate. The period 
of alternation roughly equals the time for the melt to traverse the die. The critical onset for 
spurt flow is characterized by a large change of the slope of the flow curve (see Figure 1.2). 
Spurt flow is accompanied with low-frequency, large-amplitude oscillations in the pressure 
'(see Lim and Schowalter [31], El Kissi an:d Piau [12], Kalika and Denn [23]). The period of 
these oscillations is the same as the period of alternation of the extrudate. Due to the severe 
pressure oscillations, causing volume expansion and contraction of the melt, the flow rate at 
the die exit oscillates also with the same period. The spurt flow regime is apparently a con­
sequence of the impossibility to operate at a volumetric flow rate on the 'forbidden' vertical 
part of the flow rate versus pressure gradient curve ofVinogradov et al. [52] (see Figure 1.3). 
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At a third critical flow rate the flow curve shows an apparent discontinuity (see Figure 1.2), 
indicating the onset of the gross-melt fracture regime. At this onset the oscillations in pres­
sure and flow rate (as observed during the spurt flow regime) have disappeared, and the ex­
trudate becomes severely and irregularly distorted. The degree of distortion at the onset of 
the gross-melt fracture regime depends on the die length. For longer dies there may be a nar­
row transition zone in which the extrudate is smooth and glossy again. The severity of the 
gross-melt distortions increases with increasing flow rate. Thus we conclude that sharkskin 
appears at a flow rate distinctly lower than that required for spurt flqw or gross-melt fracture. 

The critical conditions for the onset of the different flow instabilities are known to depend 
in some way on the polymeric fluid used and on the geometry of the extruder. Experimental 
observations indicate that sharkskin does not occur for all polymeric fluids (Denn [9]). For 
fluids for which it does occur, the critical wall shear stress at the onset of sharkskin is found to 
depend on the polymer concentration in the liquid (Pomar et al. [ 44]) and on the die material 
(Ramamurthy [ 46]). In particular, Ramamurthy [ 46] showed that the onset of sharkskin could 
be delayed to significantly larger values of the flow rate by a proper choice of the die material. 
The critical wall shear stress at the onset of spurt flow or gross-melt fracture, however, seems 
to depend little or not at all on the polymer concentration (Pomar et al. [44]), the length and 
diameter of the die, or on the material from whiCh the die is made (Kalika and Denn [23], El 
Kissi and Piau [12], Ramamurthy [46]). 

flow 
rate I 

- pressure gradient 

Figure 1.3 The ilow rate versus pressure gradient curve of Vinogradov et al. [52] 
obtained from experiments involving pressure-driven ilow. 

A phenomenon related to the extrudate distortions described above is observed in exper­
iments involving a pressure-driven flow. The phenomenon, called spurt, shows up through a 
discontinuity in the flow curve of the volumetric flow rate versus the driving pressure gradient 
(see Vinogradovetal. [52], [53], ElKissi and Piau [12],Figure 1.3). The discontinuity occurs 
at a critical pressure gradient which is independent of the molecular weight of the polymer 
and the temperature (Vinogradov et al. [52]; El Kissi and Piau [12]). Beyond this critical 
pressure gradient the volumetric flow rate increases substantially by a large amount. At the 
occurrence of the jump in the flow rate, the extrudate becomes irregularly distorted. Experi­
ments by El Kissi and Piau [12] and Vinogradov et al. [53] involving a pressure-driven flow, 
have shown that the critical pressure gradient, or wall shear stress, at which the discontinuity 
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in the flow curve occurs, is also independent of the length and the diameter of the die. On the 
other hand, the jump in the flow rate becomes larger for larger molecular weight of the poly­
mer. Moreover, in the experiments of El Kissi and Piau [12], hysteresis in the flow curve of 
the volumetric flow rate versus the driving pressure gradient has been observed. More specif­
ically, when the pressure gradient is successively raised and lowered, the flow curve is found 
to consist of a loading path and an unloading path which do not coincide. 

1.4 Aim of this thesis 

The aim of this thesis is to get a better insight into the relation between the characteristic 
behaviour of polymeric melts and concentrated solutions, as described by the constitutive 
model chosen, and the particular flow phenomena discussed in Section 1.3. Die-swell has 
been analyzed in various papers (see e.g. Tanner [50, §§8.4-8.7], Goublomme et al. [14] and 
[15]). In this thesis we focus on spurt, observed in pressure-driven flow as well as in piston­
driven flow. Specific questions are: What causes spurt, and how does spurt depend on the 
processing conditions and on the material parameters of the polymeric fluid? As a secondary 
topic we will validate some of our theoretical results in a comparison with experimental re­
sults described in the literature so far. 

The investigation of a pressure-driven flow aims at an explanation of the spurt phenomenon 
observed in experiments ofVinogradovetal. [52], [53], and of the hysteresis loop in the flow 
curve obtained in experiments ofEl Kissi and Piau [12]. We will also explore the critical con­
dition for the onset of spurt in its dependence on the flow parameters. The investigation of 
a piston-driven flow aims at an explanation of the spurt flow as observed in the experiments 
of Vinogradov et al. [52], Ramamurthy [46], Kalika and Denn [23], Durand [10], Lim and 
Schowalter [31], and El Kissi and Piau [12]. In particular, we go into the questions how the 
oscillations in the pressure observed during the spurt flow can be explained, and how the crit­
ical onset for the spurt regime is affected by the dimensions of the die and by the material 
parameters of the polymeric fluid used. As a third topic we will study the complete extrusion 
process of polymers, whereby the compression flow in the barrel is coupled to the capillary 
flow in the die. We will investigate in which way the critical onset for spurt flow depends on 
the input parameters: dimensions of the extruder, material parameters of the polymer, and 
plunger velocity. In essence, the ultimate aim of this thesis is to provide a theoretical basis 
for determining the input parameters such that an optimal extrusion rate is achieved at which 
no flow instabilities occur and the extrudate is smooth and glossy. 

The irregularities of the extrudate that occur in the spurt flow regime, are assumed to be 
due .to instabilities in the viscoelastic shear flow of the polymeric fluid inside the die. By us­
ing an adequate constitutive model and imposing the no-slip boundary condition at the wall 
of the die, we will provide a theoretical explanation for spurt and other related phenomena. 
To account for the unhindered motion of the polymer chains, we add a Newtonian viscous 
term to the stress tensor of the constitutive model employed. Further analysis leads to a non­
monotone relation between the steady state shear stress and the steady state velocity gradient, 
or shear strain-rate. By integration of the velocity gradient under the no-slip boundary condi­
tion, we find that the flow is nearly plug flow, in accordance with the experiments of E1 Kissi 
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and Piau [ 12]. Moreover, we will show that the constitutive model does predict the hystere­
sis in the flow curve obtained in experiments ofEl Kissi and Piau [12], and the oscillations 
in the pressure during the spurt flow observed in experiments of Kalika and Denn [23], Lim 
and Schowalter [31], and El Kissi and Piau [12l Indirectly, through the constitutive model 
which accounts for the memory of the polymeric melt, the deformation history and the dif­
ferent processing conditions also play an important role in the achieved flow behaviour. 

In our approach the polymer properties (such as a nonlinear and nonmonotone viscoelas­
tic behaviour and a fading memory) are crucial in explaining spurt~ hysteresis and persistent 
oscillations in the pressure. Thus the flow instabilities are associated with internal properties 
of the melt, and are therefore referred to as constitutive instabilities. This is in contrast to 
the explanation of spurt as being due to wall slip, that is, the failure of the fluid to adhere to 
the wall (see e.g. Leonov [30], Piau and El Kissi [43], Greenberg and Demay [16]). Both 
explanations will be discussed in more detail in the next section. We just mention that true 
wall slip is experimentally difficult to distinguish from the nearly plug flow predicted by our 
theory. Finally, it is pointed out that our constitutive model does predict the flow instabilities 
as occurring in experiments. Furthermore, the dependence of the critical onset of the flow 
instabilities on the melt properties and on the dimensions of the extruder, agrees well with 
the experimentally observed dependence (cf. Chapter 5). We believe this agreement supports 
the explanation of spurt in terms of constitutive instabilities. 

1.5 Modelling polymer flow instabilities: survey of the 
literature 

In the previous section we have alluded to the explanation of spurt either in terms of constitu­
tive instabilities (mechanical failure of the polymer itself), or in terms of wall slip (failure of 
the polymer to adhere to the wall of the capillary). A constitutive instability will occur when 
the constitutive relationship between the shear stress and the shear strain-rate is nonmono­
tone (Huseby [19], Malkus et al. [32]). Wall slip is modelled by replacing the conventional 
no-slip boundary condition by one that allows the fluid velocity at the wall to depend on the 
shear stress or strain history of the fluid at the wall (Piau and El Kissi [43], Renardy [47]). 
From experiments by El Kissi and Piau [12] it is known that for a sufficiently large pressure 
gradient the flow in the capillary is nearly plug flow, or intermittent plug flow. These experi­
ments seem to support the hypothesis of wall slip. For the spurt flow regime various theories 
based on constitutive instabilities, however, predict that the flow will develop a thin layer 
(spurt layer) near the wall with large shear strain-rates, while the rest of the flow is nearly 
plug flow (see e.g. Malkus et al. [32], [33], Aarts and van de Ven [1], [2]). With respect to 
the two possible explanations of spurt, namely, constitutive instabilities or wall slip, Larson 
[29, p. 238] states that "although the two explaining mechanisms of extrudate distortion are 
different in principle, they are difficult to distinguish in practice, because both predict the 
same macroscopically observable phenomenon (namely, a sudden increase of the flow rate 
at a critical pressure gradient) and they both seem likely to lead to flow instabilities and ex­
trudate distortion". Hence, both mechanisms provide a theoretical explanation for the flow 
instability spurt. 
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Theoretical explanations for the polymer flow instabilities, based on a nonmonotone con­
stitutive relationship between the shear stress and the shear strain-rate and on the no-slip 
boundary condition, are given in many papers. Here, we mention some of these papers. Start­
ing from Pao's molecular theory for viscoelastic polymeric melts combined with measure­
ments of the relaxation spectrum of a linear polyethylene, Huseby [19] predicts the shear 
stress as a nonmonotone function of the shear rate. Malkus et al. [32], [33] and Nohel and 
Pego [ 41], [ 42] analyze the one-dimensional pressure-driven shear flow of a JSO-fluid through 
a slit die, in order to provide a theoretical explanation for the spurt phenomenon. The flow is 
governed by a quasilinear, singularly perturbed system of partial differential equations sup­
plemented by a no-slip boundary condition and compatible initial data for the velocity and the 
stresses. The governing initial-boundary value problem is shown in [ 41] to be globally well­
posed in time for smooth (even discontinuous) initial data of arbitrary size. The dynamics 
of the corresponding inertialess flow (obtained by putting the singular parameter a equal to 
zero) is governed by an autonomous quadratic system of ordinary differential equations. In 
[33], Malkus et al. determine the global dynamics of the inertialess flow by a phase-plane 
analysis and use the results to explain spurt, latency, shape memory and hysteresis under 
quasi-static loading and unloading of the pressure gradient, as well as flow reversal. Fur­
thermore in [32], the flow parameters are fitted to experimental data for the onset of spurt 
obtained by Vinogradov et al. [52]. Subsequently, it is shown in [41] and [42] that the full 
governing system and its inertialess approximation display similar dynamics provided the 
singular parameter a (i.e., the ratio of Reynolds and Deborah numbers) is sufficiently small. 

Corresponding results for the spun phenomenon in the axisymmetric pressure-driven flow 
of a KBKZ-fluid through a capillary, have been found by Aarts and van de Ven [1], [2]. For 
the details we refer to Chapter 2 of this thesis, which comprises an expanded version of the 
papers [I] and [2]. Hunter and Slemrod [18] use a general (nonspecified) viscoelastic model 
with one relaxation rate to analyze the pressure-driven flow through a slit die. These authors 
show that the addition of a Newtonian viscous term is necessary to prove the existence of 
singular surfaces in the flow. Such singular surfaces are inherent to the spurt phenomenon. 
Kolkka et al. [24] analyze the shear flow of a JSO-fluid through a slit die by a numerical cal­
culation of the dynamics of the spurt process by means of a finite-element solution technique. 

One-dimensional piston-driven shear flow of a highly elastic and viscous JSO-fluid through 
a slit die at a prescribed volumetric flow rate, has been treated by Malkus etal. [35], [36]. The 
flow is governed by a quasilinear, singularly perturbed system of partial differential equations 
with a non-local constraint, supplemented by a no-slip boundary condition and compatible 
initial data for the velocity and the stresses. This system is globally well-posed in time but 
the asymptotic behaviour of its solutions as t --+ oo, and the stability of its possibly discon­
tinuous steady states remain as open problems. The inertialess approximation of this flow 
is governed by a quadratic system of functional differential equations having all solutions 
bounded fort 2: 0. In [36], Malkus et al. use a spectral analysis of the linearization of this 
system about a piecewise smooth steady state solution with a single jump discontinuity to 
predict oscillations in the pressure gradient. These oscillations exhibit a transition to seem­
ingly periodic oscillations at a critical prescribed volumetric flow rate. Although not estab­
lished rigorously, the transition to persistent oscillations appears to be due to a Hopf bifur­
cation to a stable periodic orbit, in agreement with the occurrence of persistent oscillations 
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in the pressure observed in the experiments of Lim and Schowalter [31]. 

Molenaar and Koopmans [39] developed and analyzed a two-dimensional Lienard system 
that describes the extrusion of a polymeric fluid in a capillary by a plunger. The constitutive 
behaviour of the fluid determines the functional relationship between the global pressure and 
the flow rate fluctuation; this relationship is assumed to be nonmonotone. In [39], oscillations 
in the pressure and in the volumetric flow rate are predicted which are similar to the relaxation 
oscillations governed by Vander Pol's equation. Renardy [49] analyzes a two-dimensional 
Couette flow of a JSO-fluid between infinite parallel plates driven by the motion of the up­
per plate. For a given two-layer velocity profile the stability of the flow is examined by a 
numerical computation of the eigenvalue spectrum. Brunovsky and Sevcovic [8] provide a 
theoretical explanation for spurt by means of a constitutive model that is supplemented with 
a spatial diffusion term. 

Theoretical explanations for the polymer flow instabilities, based on wall slip due to the 
failure of the polymer to adhere to the wall, are given in the following papers. On the basis 
of experimental measurements, Piau and El Kissi [43] propose a procedure for modelling 
polymer slip at the wall. The procedure makes use of a so-called friction curve that relates the 
shear stress at the wall to the fluid velocity at the wall (slip velocity). An empirical expression 
for the friction law is determined from experimental data. By combining the friction law with 
an equation for the compression of the melt in the barrel, Piau and El Kissi [43] succeed 
in modelling relaxation oscillations in the pressure. Leonov [30] employed a linear friction 
law, derived by a crude molecular approach, for a qualitative theoretical study of spurt flow 
phenomena. 

Renardy [ 47] shows that the flow problem for an upper-convected Maxwell fluid becomes 
ill-posed if the no-slip boundary condition at the wall is replaced by a law of 'memory' slip 
which relates the slip velocity to the history of the shear stress. Greenberg and Demay [ 16] 
describe the extrusion process for a molten polymer in a capillary under the condition that the 
mean velocity at the capillary inlet is maintained at a constant value. The polymer is mod­
elled as a linear (Newtonian) compressible fluid. As a boundary condition at the wall, a linear 
slip relation is postulated including an empirical piecewise linear switch rule that relates the 
wall shear stress to the slip velocity. The switch rule combined with the compressibility re­
lation yields a global flow model exhibiting relaxation oscillations. 

The discussion about the origins of extrudate distortions has not yet come to a conclu­
sion. Even if there exists agreement about "slip" along the wall of the capillary, the inter­
pretation and the modelling of this slip is still controversial. Joseph and Joe Liu [22] suggest 
that both explaining mechanisms of wall-slip and constitutive instabilities give rise to a lubri­
cating layer of nearly inviscid material adjacent to the wall, as one observes in core-annular 
flows of heavy oils in water. These authors state that "the dynamics of lubricating layers in 
slipping polymer melts and solutions is such as to produce an asymmetric wavy extrudate 
in which the steep side of the wave advances". Kurtz [26], in his comment on the letter of 
Joseph and Joe Liu [22], states that "there are observations and experiments that do not fit 
with the Joseph/Liu model". Larson [29, p. 239] remarks that "one cannot decide conclu­
sively between the mechanisms of wall slip and constitutive instabilities using data from a 
single fluid-die combination". Experiments (Ramamurthy [46], El Kissi and Piau [12], Vino­
gradov et al. [53]) have shown that the critical condition for the onset of spurt flow and gross-
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melt fracture in cylindrical dies is little or not at all affected by changes in the die material 
or by the presence of lubricants, whereas the critical condition for the onset of sharkskin is 
affected in most cases. The difference in dependence for the onset suggests that different 
mechanisms may be responsible for sharkskin, for spurt flow, and for gross-melt fracture. 
Thus, following Larson [29, p. 239], wall slip may cause sharkskin instabilities, whereas it 
is possible that spurt flow and gross-melt fracture are nearly always caused by constitutive 
instabilities of the melt. 

In Chapter 5 we present a validation of our theoretical results by a comparison with ex­
perimental results taken from the following papers. Vinogradov et al. [52], [53], and El Kissi 
and Piau [12] report on the spurt phenomenon observed in experiments involving pressure­
driven flows. In these experiments the pressure gradient at the onset of spurt is found to be 
independent of the molecular weight, whereas the corresponding flow rate strongly depends 
on the molecular weight of the polymeric melt. Furthermore, spurt only occurs for polymeric 
melts that have a sufficiently large molecular weight. El Kissi and Piau [12] experimentally 
found that the hysteresis loop in the flow curve gets wider for a polymeric melt with a larger 
molecular weight. 

Kalika and Denn [23], Lim and Schowalter [31], and El Kissi and Piau [12], report on 
spurt flow observed in experiments involving piston-driven flows. In these experiments per­
sistent oscillations in the pressure are observed for a bounded range of flow rates. Lim and 
Schowalter [31] found that the span of the oscillations goes through a maximum with in­
creasing flow rate. Furthermore, they observed that the persistent oscillations only occur for 
polymeric melts with sufficiently large molecular weight; the oscillations occur for a wider 
range of flow rates when the polymeric melt has a larger molecular weight. El Kissi and 
Piau [12] found that the flow rate at the onset of spurt flow is independent of the length of 
the capillary, whereas the flow rate gets larger for a wider capillary. Finally, both Kalika and 
Denn [23], and Lim and Schowalter [31] report that the frequency of the persistent oscilla­
tions increases with increasing flow rate. We shall return to the experimental observations of 
Vinogradov et al. [52], [53], Kalika and Denn [23], Lim and Schowalter [31], and El Kissi 
and Piau [12], in Chapter 5. 

1.6 Contents of this thesis 

At the end of Section 1.4 it was argued that the agreement with experimental results supports 
the explanation of spurt in terms of constitutive instabilities. The particular flow phenomena 
caused by constitutive instabilities are investigated in Chapters 2, 3 and 4. 

In Chapter 2 we consider the axisymmetric flow of a polymeric melt through a cylindri­
cal capillary driven by a pressure gradient. The characteristic behaviour of the viscoelastic 
melt is described by the KBKZ-model supplied with an extra Newtonian viscous term. For 
the simple shear flow considered the KBKZ-model is modified into the integral of Wagner. 
The Newtonian viscous term accounts for the response of a small-molecule solvent. We will 
show that the inclusion of this Newtonian term is essential in our further analysis, as it leads 
to a nonmonotone relationship between the steady state shear stress and the steady state shear 
strain-rate or velocity gradient. The inertialess approximation of the transient capillary flow 



12 CHAPTER 1. INTRODUCTION 

of the KBKZ-fluid is governed by an integrodifferential equation for the shear strain at a given 
radial coordinate (the governing equation (2.1.35) is obtained by putting ct = 0 in equation 
(2.1.29) for the full flow problem). The flow starts from rest by a suddenly applied constant 
pressure gradient. Numerical computations indicate that after the transient phase the flow 
approaches a steady state. Since the relation between the steady state shear stress and the 
steady state velocity gradient is nonmonotone, the steady state is not unique; depending on 
the prescribed pressure gradient, at most three distinCt steady state solutions for the velocity 
gradient exist. We prove the asymptotic stability of two of the steady state states by a pertur­
bation analysis of the nonlinear integral equation of non-convolution type that governs the 
inertialess flow, and we motivate why the third steady state is unstable. The question which 
of the two stable solutions for the velocity gradient is attained, has to be answered by numer­
ical computations. These computations also confirm that the unstable state is not attained. 
Moreover, we show that the steady state velocity gradient is discontinuous as function of the 
radial coordinate, if the driving pressure gradient exceeds a certain critical value. As a result, 
the polymeric flow will develop a thin layer near the wall, called the spurt layer, in which the 
velocity gradient is very large compared to the velocity gradient in the rest of the capillary. 
Hence, in case of a supercritical pressure gradient, the bulk of the fluid contained in the cen­
tral part of the capillary moves in a plug-like fashion. It is found that a slight increase of the 
driving pressure gradient beyond its critical value gives rise to a substantial increase of the 
flow rate, as observed in the experiments of Vinogradov et al. [52]. After a steady state has 
been attained, a subsequent small decrease of the driving pressure gradient results in shape 
memory of the fluid, that is, the spurt layer remains fixed. Shape memory is also instrumen­
tal in the explanation of the hysteresis loop in the flow curve obtained in experiments of El 
Kissi and Piau [12]. Finally, we show that the transient flow behaviour of a polymer solu­
tion containing a small-molecule solvent, is similar to the flow behaviour of a pure molten 
polymer. To that end, we establish that the KBKZ-model with one main relaxation rate and 
supplemented with a Newtonian viscous term, is a good approximation to the KBKZ-model 
with two widely spaced relaxation rates. Thus, the viscous Newtonian term accounts for the 
very fast relaxation rates of the polymeric liquid. The greater part of Chapter 2 has also been 
published in [1] and [2]. It should be mentioned that the results of Chapter 2 are very sim­
ilar to those obtained by Malkus et al. [32], [33] for the pressure-driven flow of a JSO-fluid 
through a slit die. 

In Chapter 3 we consider the flow of a polymeric melt through a cylindrical capillary, 
controlled by a moving piston that induces a constant volumetric flow rate. The pressure 
gradient is then unknown and adjusts itself to maintain the desired flow rate. The character­
istic behaviour of the viscoelastic melt is described by the JSO-model supplied with an extra 
Newtonian viscous term. The extra term accounts either for the response of a small-molecule 
solvent, or for the unhindered polymer chain motions described by a very fast relaxation rate. 
Further analysis of the flow problem leads to a nonmonotone relationship between the steady 
state shear stress and the steady state shear strain-rate or velocity gradient (cf. Malkus et al. 
[32], [33]). Prescribing the constant volumetric flow rate of the capillary flow leads to an 
integral relation between the pressure gradient and the shear stress due to the polymer con­
tribution. For a given radial coordinate this shear stress is coupled to the pressure gradient 
by a system of two ordinary differential equations derived from the constitutive I SO-model. 
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The flow starts from rest by a suddenly applied constant flow rate. Dependent on the pre­
scribed flow rate, there exists a range of attainable steady state solutions for the pressure 
gradient and the velocity gradient, whereby the steady state velocity gradient is found to be 
discontinuous as function of the radial coordinate. Which steady state solution is attained, 
depends on the location of the discontinuity which has to be determined by numerical com­
putations. Furthermore, we compare the dynamics of a piston-driven flow to the dynamics of 
a pressure-driven flow as considered in Chapter 2. One aspect of the piston-driven flow is the 
appearance of oscillations in the pressure gradient, if the prescribed flow rate is sufficiently 
large. For most flow rates these oscillations are damped and a steady state pressure gradient 
is attained. For a limited range of flow rates, however, the oscillations are not damped but 
persistent, and no steady state is attained. We will explain the occurrence of persistent oscil­
lations by means of a linearized stability analysis of the steady state solution. In addition, we 
present conditions for the onset of persistent oscillations in terms of the material parameters 
of the polymeric melt and the radius of the capillary. In experiments spurt flow is accom­
panied by pressure oscillations, which corresponds very well with the persistent oscillations 
in the pressure gradient as predicted by our analysis. Furthermore, it is found that the flow 
curve of the attained steady state pressure gradient versus the prescribed flow rate is S-shaped 
and exhibits a nonmonotone behaviour, in accordance with experiments (cf. Kalikaand Denn 
[23], El Kissi and Piau [12], and Durand [10]). Persistent oscillations in the pressure gradient 
have been found before by Malkus et al. [35], [36], in the piston-driven flow of a JSO-fluid 
through a slit die. In fact, Chapter 3 deals with the analogous problem of a piston-driven flow 
of a JSO-fluid through a cylindrical capillary. From a detailed study of this flow we find that 
the criterion for the onset of persistent oscillations depends both on the flow rate and on the 
material parameters of the polymeric melt. 

In Chapter 4 we consider the complete extrusion process for a polymeric melt, combined 
with compression. The extruder is modelled by a wide barrel connected to a narrow cylin­
drical capillary. The melt is compressed in the barrel by a plunger, moving at constant speed, 
and is thus forced to flow into the capillary. The characteristic behaviour of the viscoelastic 
melt is described by the JSO-model supplied with an extra Newtonian viscous term. Both the 
pressure gradient and the flow rate are unknown. By coupling the compression flow in the 
barrel to the simple shear flow in the capillary, we are led to a system of differential equations 
supplemented with an integral relation to describe the whole extrusion process. As input pa­
rameters we have the constant plunger velocity driving the flow, the material parameters of 
the polymer (i.e. the compression modulus, the relaxation rate, the shear modulus and the 
solvent viscosity), and the dimensions of the extruder (i.e. length and radius of the barrel 
and of the capillary). Numerical computations disclose how these input parameters deter­
mine the pressure gradient and the flow rate as functions of time, if the flow starts from rest 
by a suddenly applied constant plunger velocity. In particular, the occurrence of persistent 
oscillations in the pressure gradient and iri the flow rate will be demonstrated. Again, these 
oscillations provide a theoretical explanation for the spurt flow accompanied by pressure os­
cillations, as observed in the experiments of Kalikaand Denn [23], Lim and Schowalter [31], 
El Kissi and Piau [12]. The occurrence of persistent oscillations is explained by means ofa 
linearized stability analysis of the steady state solution, and the frequency of these oscilla­
tions is determined. The critical conditions for the onset of persistent oscillations are ex-
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pressed in terms of three dimensionless input parameters. In this manner, the influence of 
parameters like length and radius of the capillary, and bulk modulus of the melt, on the onset 
of spurt flow accompanied by persistent oscillations, will be assessed. Finally, the influence 
of the deformation history is demonstrated in a study of some loading and unloading pro­
cesses, whereby the prescribed inlet flow rate is successively raised and lowered. It is found 
that shape memory may occur and the transient flow behaviour may change drastically. 

Different constitutive models are employed to describe the characteristic behaviour of 
the viscoelastic melt, namely, the integral KBKZ-model in case of a pressure-driven flow 
(Chapter 2), and the differential JSO-model in case of a piston-driven flow (Chapter 3) or an 
extrusion flow combined with compression (Chapter 4). We did not study the piston-driven 
flow or the extrusion flow of a KBKZ-fluid because the computation time would become 
prohibitive due to the time consuming evaluations of the hereditary integral in the KBKZ­
model, and of the non-local constraint that fixes the volumetric flow rate. Neither did we 
investigate the pressure-driven flow of aJSO-fluid because that would duplicate the detailed 
analysis of Malkus et al. [32], [33]. 

In Chapter 5 we discuss the results of this thesis, and we will validate our theoretical 
analyses by a comparison with experimental results. Phenomena of spurt and hysteresis oc­
curring in a pressure-driven flow (Chapter 2) are compared to their counterparts observed 
in experiments of Vinogradov et al. (52], [53], and El Kissi and Piau [12]. Spurt flow ac­
companied by persistent oscillations occurring in a piston-driven flow (Chapter 3) and in an 
extrusion flow combined with compression (Chapter 4) is compared to certain pressure os­
cillations observed in experiments of Kalika and Denn [23], Lim and Schowalter [3l], and 
El Kissi and Piau [ 12]. Likewise, the critical conditions for the onset of flow instabilities pre­
dicted by our theory, are compared to the critical conditions found in experiments. To that 
end, we investigate the dependence of the (dimensional) critical conditions on the material 
parameters of the polymeric fluid and on the dimensions of the extruder. Here the material pa­
rameters in our KBKZ-model are estimated by a fit to the experimental data of Vinogradov et 
al. (52] for polyisoprene samples of different molecular weights. It will tum out that there is 
qualitative agreement between the theoretical results predicted by our models and the exper­
imental results referred to. We conclude with some recommendations for further research. 



Chapter 2 

Pressure-driven shear flow of a 
KBKZ-ftuid 

In this chapter we consider the flow of a polymeric melt through a cylindrical capillary driven 
by a constant pressure gradient. Since the polymeric melt is strongly viscous, the inertia 
forces may be neglected. Due to the prescribed pressure gradient, the balance of linear mo­
mentum implies thatthe shear stress is a known function of the radial coordinate (see (2.1.34)). 
The constitutive equation to describe the characteristic behaviour of the viscoelastic melt 
with fading memory chosen here, is the Kaye-Bemstein-Kearsly-Zapas (KBKZ)-model sup­
plied with an extra Newtonian viscous term. This extra term, which dominates the initial re­
sponse of the fluid, is essential as it leads to a nonmonotone behaviour of the steady state 
shear stress as function of the steady state shear strain-rate or velocity gradient (see Figure 
2.1). 

2.1 Mathematical formulation 

The flow of an incompressible viscoelastic fluid under isothermal conditions is governed by 
the conservation of mass 

V·v=O (2.1.1) 

and the balance of linear momentum 

(2.1.2) 

Here, pis the (constant) fluid density, b the body force per unit of mass, v the fluid velocity 
and 'T the total (symmetric) stress tensor. Later on we shall show that for strongly viscous 
fluids the inertia forces, represented by the right-hand side of (2.1.2), can be neglected. 

The characteristic response of the material to a deformation is described by the constitu­
tive equation for the stress. For viscoelastic fluids with fading memory, the stress depends on 
the deformation history. If a polymer solution contains a small-molecule solvent, this solvent 
will generally respond in a viscous manner to any applied force or deformation, separately 

15 
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from the elastic response due to the dissolved polymer; see Renardy et al. [ 48, p. 17]. There­
fore, it is assumed that the extra stress tensorS:= 'T +pi in the fluid consists of a Newtonian 
viscous component and an isotropic elastic one, namely 

S = 'T +pi= 21]s'lJ + Sp. (2.1.3) 

Here, p is the pressure, I the unit tensor and 'lJ is the rate-of-deformation tensor defined by 

1 T 
2(£+ £ ), 

where £is the gradient of the velocity, i.e. 

L = gradv 
av 
-(= (Vvl). 
(Jx 

(2.1.4) 

(2.1.5) 

Furthermore, 1'/s is the solvent viscosity, and the elastic part Sp characterizes the polymer con­
tribution. 

In this chapter the elastic part Sp is assumed to be described by the KBKZ-model, which 
in its general form reads (see [50, p. 141] or [48, p. 23, p. 171]) 

Sp = [
1

00 
( a~~~ c-1 

- ~~ c ) dr. (2.1.6) 

Here, C is the strain tensor (see definition (2.1.12)), c-t (the Finger tensor) is its inverse, 
Ic and le-t are the first invariants (traces) of these tensors, and the potential U is a scalar 
function of Ie, le-I and the timet- r. The term au 1a1e governs the second normal stress 
difference, which is small compared to the first normal stress difference (see Meissner et al. 
[37]). Accordingly, for simple shear flow Wagner modified the integral (2.1.6) by putting 
au I ale 0 and au I aie-l = K (Ie-1 )m(t - r), thus leading to (see [50, p. 209]) 

Sp j_~ K(Ie-t)m(t r)C-1dr. (2.1.7) 

The memory function m can be written as the derivative of the stress relaxation function G, 

m(t) = -G'(t). (2.1.8) 

The stress relaxation function G can be represented by a sum of n 1) exponential terms, 
i.e. 

n 

G(t) = I>t;e->-11
, 

i=l 

(2.1.9) 

where /ki is the shear modulus corresponding to the relaxation rate A;. Henceforth we restrict 
ourselves to one relaxation rate A, so that G(t) lke->-1

, and we use the kernel K explored 
by Papanastasiou et al. (see [50, p. 213]) given by 

KOc-t) 
c 

(2.1.10) 
3 +le-I' 
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where c is a dimensionless material constant. Then the constitutive relation (2.1.7) becomes 

S - ' c-1 -l.(t-r)d I t c 
P- f.J."" e r, 

-oo c - 3 + le-t 
(2.1.11) 

where f.t is the shear modulus of the materiaL The quotient f.t I 'A is also called the shear vis­
cosity. When a material particle moves from position i at timer to x at timet (r ::: t), the 
strain tensor C is given by 

(2.1.12) 

and its inverse is 

(2.1.13) 

We consider the axisymmetric shear flow in a cylindrical tube with radius R. Cylindrical 
coordinates (r, e. z) are introduced with the z-axis along the centerline of the tube. With the 
flow aligned along the z-axis, the flow parameters are independent of the axial coordinate 
z and the azimuthal coordinate e. Under the condition that the flow starts from rest at time 
t = 0, the velocity takes the form 

v = v(r, t)H(t)ez, (2.1.14) 

where His the (Heaviside) step function and Cz is a unit vector in the positive z-direction. 
The conservation of mass is now automatically satisfied, and the convective terms p(v · V)v 
in (2.1.2) disappear. The no-slip boundary condition at the wall and the regularity of the 
velocity at the axis require 

v(R, t) = 0, (2.1.15) 

and 

av 
(0, t) = 0, (2.1.16) 

respectively. To determine the stress components we need the strain tensor C and its inverse. 
With the momentary position at timet represented in cylindrical coordinates by (r, 0, z), the 
position of the same particle at an earlier timer is (r, 0, i), where 

z z ~~ v(r, s)H(s)ds. (2.1.17) 

Then (2.1.13) yields 

c-· uy LYY) (2.1.18) 

with trace le-t 3 + y, where 

y f
1 av 

y(r, t, r) =- " ar (r, s)H(s)ds, t ?:. r, (2.1.19) 



18 CHAPTER 2. PRESSURE-DRIVEN SHEAR PLOW OF A KBKZ-FLUID 

is the shear strain from r to t. For r < 0 no motion is observed, hence 

y(r, t, r) y(r, t, 0), r < 0. (2.1.20) 

From (2.1.5) it follows that Lzr = avfar is the only non-zero component of L, implying that 
Drz = D2, = iavfar, whereas the remaining components of'[) are zero. In terms of y, the 
stress components T;i determined from (2.1.3) and (2.1.11) become 

T,., =Too - p + f..LA ~~ 2c e-.l.(t-~) dr, 
-oo c + y (r, t, r) 

+ 
, ~~ c [1 + y(r, t, r)] -.l.(H)d 

-p f..L" 2 e r, 
-oo c + y (r, t, r) (2.1.21) 

l t c y(r, t, r) -'-(t-~)d 
f..LA 2( e ~ -oo c + y r, t, r) 

0, 

where p = p(r, z, t). 
The balance of linear momentum (2.1.2), with pb 0, is satisfied if the stress compo­

nents T;i, given by (2.1.21), solve the following equations: 

aT,., = 0 aT,.z T,.z ap av 
ar ' Tr + 7 - az = p at . (2.1.22) 

Since 1',.2 and v are independent of z, the solution for the pressure p takes the form 

p(r, z, t) =- f(t)z + po(r, t), (2.1.23) 

with 

po(r, t) = f..LA ~~ 2~ ) e-.l.(t-~) dr + Po(t), 
-ooc+y r,t,r 

(2.1.24) 

while the shear stress 1',.2 equals 

1 p 1' av 1',.2 - -rj(t) +- y-(y, t)dy. 
2 r 0 at 

(2.1.25) 

Here, f is the prescribed pressure gradient driving the flow, and Po is a further irrelevant 
pressure term. Substitution of (2.1.23) into (2.1.21)1•2 yields 

T,., =Tee j(t)z- Po(t), 

j(t)z- Po(t) + f..LA ~~ c y2~, t, r) e-'-(l-~) dr. 
-oo c + y (r, t, r) 

(2.1.26) 

By equating the expressions (2.1.25) and (2. 1.21 )3 for T,.z and using (2.1.20), we are led to 
the following relation between the velocity gradient and the pressure gradient: 

aV ( ) C y(r, t, 0) -M , 11 
C y(r, t, r) -.!.(1-r)d 

1Js r, t - f..L e f..L" e r 
ar c + y2 (r, t, 0) 0 c + y2 (r, t, r) 

1 p 1' av - -rj(t) +- y-(y, t)dy, 0:::; r:::; R, t > 0. 
2 r 0 at 

(2.1.27) 
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Equation (2.1.27) is made dimensionless by scaling length by Rand time by A. - 1• Further­
more, we introduce dimensionless variables v, y and j by writing v = A.RJc v, y = Jc y, 
f = ~tJc j I R, and the two dimensionless material parameters s and a given by 

TJsA. pR2A.2 
s = a=--. (2.1.28) 

It It 

Then equation (2.1.27) turns into its dimensionless form, reading (since no confusion will 
arise we omit the caret) 

-s- (r, t) + h(f'(r, t) )e-1 + h(y(r, t, r))e-(l-r) dr av 11 
ar 0 

1 
= 2rf(t) 

a r av 
; Jo Ya,; (y, t)dy, 0 s r s I, t > 0, 

where the function h is defined by 

h(x) 
X 

The variable f' represents the shear strain from 0 to t, i.e. 

f'(r, t) y(r, t, 0) = -11 

:~ (r, s)ds, 0 s r s 1, t 0; 

thus, y can be expressed in terms off' as 

y(r, t, r) f'(r, t)- f'(r, r), 0 s r s 1, 0 s r st. 

(2.1.29) 

(2.1.30) 

(2.1.31) 

(2.1.32) 

Notice that relation (2.1.19) between y and av;ar remains the same after scaling, and also 
holds for the dimensionless variables y and av 1 ar. The velocity gradient, or shear strain-rate, 
w is defined by 

w(r, t) 
av ar 

- ar (r, t) = at(r, t). (2.1.33) 

The parameters represents the ratio of the solvent viscosity Tis and the shear viscosity ~t/A., 
and the quotient a/ s corresponds to the Reynolds number. For the strongly viscous polymers 
we consider, a « 1. Thus, the last term in the right-hand side of (2.1.29) may be neglected. 
In the original equation (2.1.2) this amounts to the neglect of the inertia terms on the right. 
Consequently the shear stress Tn in (2.1.25) reduces to 

1 
T.-z =- lrf(t), (2.1.34) 

which means that T.-z is a known function of r. With the inertia terms neglected (a = 0) and 
with the notation (2.1.33), equation (2.1.29) takes the ultimate form 

t 1 sw(r, t) + h(f'(r, t) )e-1 + Jo h(y(r, t, r) )e-(H)dr = 2rf(t), 
(2.1.35) 

Osrsl, t>O. 
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The boundary conditions pertinent to (2.1.35) read in dimensionless form 

v(I, t) = 0, w(O, t) = 0, t > 0. (2.1.36) 

One integration by parts transforms (2.1.35) into 

t 1 ew(r, t) + Jo w(r, r)h' (y(r, t, r))e-(l-r)dr = 2rf(t). (2.1.37) 

After division by r/2, the right-hand side of (2.1.37) becomes independent of r. Then, by 
letting r .} 0 and using h' (0) = 1, we obtain the following expression for the pressure gradient 
f(t): 

provided that 

1. w(r,t) () Im--=:u t 
r.J,O r 

exists. The inverse of (2.1.38) is 

1 1 11 
. 1 + €: u(t) =- f(t)-- j(r)exp[--(t 

2e 2e2 
0 e 

r)]dr, 

which can be used to calculate the function u when f is given. 

(2.1.38) 

(2.1.39) 

(2.1.40) 

We conclude this section by deriving an expression in terms of w for the volumetric flow 
rate Q defined by 

Q(t) = 2:;r foR v(r, t)rdr, (2.1.41) 

or in dimensionless form 

Q(t) = 211 

v(r, t)rdr, (2.1.42) 

where Q = Q/ (rrR3 "Avfc). After one integration by parts with the aid of the no-slip bound­
ary condition (2.1.36) at the wall, the volumetric flow rate can be expressed in terms of the 
velocity gradient by (omitting the caret) 

Q(t) = 11 

rw(r, t)dr. (2.1.43) 

Since, according to (2.1.35), w is determined by f, the expression (2.1.43) provides a rela­
tionship between the volumetric flow rate Q and the pressure gradient f. 
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2.2 Steady state flow 

In this section we investigate the asymptotic behaviour ofthe flow as t _,.. oo, in case limr-;.00 f(t) 

7 exists. It turns out that the flow reaches a steady state (in which the flow variables are 
independent of the time) as t _,.. oo. This steady state plays an important role in the explana­
tion of the spurt phenomenon. The steady state velocity profile is expressed in terms of the 
steady state velocity gradient w, defined by 

w(r.) = lim w(r, t), 
l-->00 

w(O) = 0. (2.2.1) 

From the stability analysis in Section 2.3 it follows that w(r) exists under certain conditions; 
see the comment below Corollary 2.3.1. In this section we shall derive an equation for w. 
Let the pressure gradient f(t) be prescribed and tend to 7 as t _,.. oo. In the limit as t _,.. oo, 
equation (2.1.35) turns into a relation between the steady state velocity gradient w and the 
given pressure gradient 

Theorem 2.2.1 If the steady state velocity gradient w(r) exists, then it satisfies 

1
00 u-• 1 -

&w(r) + w(r) 
0 1 + wZ(r)r2 dr = 2r f, 0 ~ r ~ 1, (2.2.2) 

if 

7 =lim /(t) 
1-->oo 

(2.2.3) 

exists. 

Proof Given the existence of 7, we anticipate that w(r), as defined by (2.2.1), exists (this 
will be justified below Corollary 2.3.1). Then fort_,.. oo, the first and last terms of equation 
(2.1.35) tend to &w(r) and r7 f2, respectively. Sinceh is bounded, the functionh(r(r, t))e-t 
vanishes fort_,.. oo. Hence, to verify that equation (2.1.35) turns into equation (2.2.2) as 
t _,.. oo, it remains to prove that 

lim t [h(y(r, t, r)) - h(w(r)(t - r)) ]e-(H) dr = 0. 
1-->oo Jo (2.2.4) 

Let o > 0, then there exists a time 1] such that 

iw(r, t)- w(r)l < o, t > 1]. (2.2.5) 

Choose a fixed to > 1] , then there exists a time Tz such that 

e-1 110 

ih(y(r, t, r)) h(w(r)(t- r))ie'dr < o, (2.2.6) 

For all t > to the remaining integral over [t0 , t] is bounded by 

i t lh(y) 
to 

h(w(t- r))le-(H·) dr ~it iy(r, t, r)- w(r) (t- r)le-(H) dr < 8,(2.2.7) 
to 
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since (2. 1. 19) and (2.2.5) imply that 

ly(r, t, r)- w(r)(t- r)l < 8(t- r), to~ r < t. (2.2.8) 

Thus, in view of(2.2.6) and (2.2.7), the integral in (2.2A) is bounded by28for all t >max{ to, T2}. 

This completes the proof. o 

We introduce the integral J defined by 

{oo re-r 
J(w) = w Jo 1 + w2r2dr. (2.2.9) 

Then the steady state velocity gradient can be determined for each r e [0, 1] by solving w = 
w(r) from the equation 

:f(w(r)) = F(r), (2.2.10) 

where the function :F is defined by 

:f(w) = ew+ J(w), (2.2. 11) 

and the steady state shear stress F is given by (cf. (2.1.34)) 

F(r) = r f/2. (2.2.12) 

The steady state velocity profile v(r) lim~-+oo v(r, t) is next obtained by integration of w(r) 
= -v' (r) using the boundary condition v(l) 0 at the wall. 

In Appendix A it is shown that the function :F is nonmonotone in w when 0 ~ e < e1, 

where e1 = -J'(w**) = 0.02886. In Figure 2.1 the function :f(w) is plotted for a specific 
value of e with 0 < e < e1. Since the solvent viscosity 'lis is small in comparison to the shear 
viscosity J-L/A, we will henceforth assume that 0 < e < e1 (cf. (2.1.28)). Then the function 
:F (w) has two extreme values, a maximum FM eWM + J (wM) at w WM and a minimum 
Fm = eWm + J(wm) at w = wm; see Figure 2.1. If e t eJ, the two extreme values coalesce 
at the inflection point w** = 2.6255. In addition to w = WM and w = Wm, both equations 
:f(w) = FM and :f(w) = Fm have a second solution w = iiJM and w = Wm, respectively; see 
Figure 2.1. Numerical values of WM, FM, WM, Wm, Fm, Wm fore= 0.010, 0.020, 0.025 are 
presented in Table AI of Appendix A 

Since F(r) = r] /2 with constant f, the function F(r) reaches its maximum at the wall 
r = 1. This maximum, denoted by Fw 7 j2, remains below the minimum Fm, if 7 < 2Fm. 
In that case equation (2.2.10) has fl unique solution w(r) < Wm for each radial coordinate 
r. Moreover, w(r) is continuous in r, leading to a smooth steady state velocity profile v(r), 
and the flow is referred to as classical flow. The maximum Fw exceeds the maximum FM, if 
7 > 2FM. Denote the critical pressure gradient by fcrit := 2FM. Then in supercritical flow, 
i.e. if] > fcrit> equation (2.2.10) has 

• one solution if 0 ~ F < Fm, 

• three solutions if Fm < F < FM, 

• one solution if FM < F ~ Fw; 
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:r Fw 

r 
FM 

Fm 

Figure 2.1 The function '.f(w) = ew + J(w), when 0 < e < e1. In steady state flow 
the velocity gradient w satisfies '.f (w) = F, where F = r ]/2 is the steady state shear 
stress. 
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see Figure 2.1. Consequently, in supercritical flow the steady state velocity gradient w has at 
least one jump at some radial coordinate. In case of exactly one jump we denote the radial 
coordinate at which the jump occurs by r• (r* < 1), and we refer to the flow as spurt flow. 
Hence, in spurt flow w(r) < w~ for 0::::; r < r•, whereas w(r) > w~ for r• < r::::; 1, where 

w:'_ := limw(r) < limw(r) =: w:. 
rtr• r .J_r• 

(2.2.13) 

with w~ ::::; WM and w~ :=: Wm. The corresponding shear stress at which the jump occurs is 
denoted by F* := F(r*) = r*f/2, such that :f(w±) = F*, with Fm::::; F*::::; FM. As a result 
of the jump the velocity profile v(r) shows a kink at r = r•; see Figure 2.2. If the velocity 

v(r) 

0 r• 1 -r 

Figure 2.2 The steady state velocity profile v(r) in spurt flow showing a kink at 
r = r•. 

gradient jumps from w~ = WM tow~ = WM (i.e. ifF* = FM), we call this top-jumping. If 
the velocity gradient jumps from w~ = Wm tow~= Wm (i.e. ifF*= Fm). we call this bottom­
jumping. Due to the jump in the velocity gradient profile, a layer with large velocity gradients 



24 CHAPTER 2. PRESSURE-DRIVEN SHEAR FLOW OF A KBKZ-FLUID 

forms near the wall, the so-called spurt layer. The large velocity gradients near the wall give 
rise to an overall raise of the velocity in the capillary. As a result, the steady state volumetric 
flow rate Q given by (cf. (2.1.42), (2.1.43)) 

Q = 21
1 

v(r)rdr = 11 

?-w(r)dr, (2.2.14) 

will substantially increase when the pressure gradient is increased beyond fcril· 

2.3 Stability analysis 

In this section we first investigate the uniqueness and the existence of the solution of the in­
tegrodifferential equation (2.1.35). As the steady state equation (2.2.1 0) can have more than 
one solution w, we next discuss the local stability of the different steady state solutions. This 
will be the main topic of this section. 

The shear strain r and the velocity gradient w are related by 

r(r, t) = 11 

w(r, s)ds; (2.3.1) 

see (2.1.31) and (2.1.33). Using (2.3.1) and (2.1.32) we rewrite the governing equation (2.1.35) 
as 

ar . r 
sat(r, t) + h(r(r, t))e-1 + Jo h(r(r, t) (2.3.2) 

valid for 0 ::: r ::: 1, t > 0. Equation (2.3.2) is a nonlinear integrodifferential equation for r. 
We integrate this equation with respect to t, suppress the variable r, and obtain 

r 11 111 111 1s r(t) 2 f(s)ds-- h(r(s))e-'ds - h(r(s) r(r))e-(s-r)drds.(2.3.3) 
so so soo 

Theorem 2.3.1 The shear strain r depends continuously on the pressure gradient f. 

Proof: Let r 1 be a solution of (2.3.3) with f = fx. and let r2 be a solution of (2.3.3) with 
f = /2. Then the difference r 1 - r 2 satisfies 

!rt(t) rz(t)i:':
2
r rlft(s)-/2(s)lds+! rlh(rt(S)) h(r2(s))le-'ds 
s lo e lo 

(2.3.4) 1111s + lh(rt(s)-rt(r))-h(r2(s) r2(r))le-<•-~)duls, t2':0. 
e o o 
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Since lh (x) - h (y) I ~ lx - yl for x, y E IR, it follows that 

!rt (t) r2(t)l ~ ~it 1ft (s)- fz(s)lds +~it !rt (s) r2(s)le-• ds 

1 itis +- ( lft(S)-f2(S)i+jrt(i) f2(i)l )e-(s-r)didS 
e o o 

r f 
= 2e Jo lft (s) 

1 it h(s)lds +- !rt (s)- r2(s)l(2- e-(t-s))ds 
e o 

(2.3.5) 

zit f2(s)jds +- lft(S)- f2(s)jds, 
e o 

r it ~- lft(s) 
2e 0 

t 2: 0. 

By applying Gronwall's lemma (see Lakshmikantham et al. [27, Theorem 1.1.2]) to this in­
equality we obtain 

(2.3.6) 

From (2.3.6) it is readily seen that r depends continuously on f. 0 

In the same manner it can be shown that the shear strain r(r, t) is a continuous function of r. 

Theorem 2.3.2 Let r 1 and r 2 be solutions of (2.3.3 ), then r 1 = r 2· 

Proof: Put ft = fz in (2.3.6). Then it immediately follows that ft (t) = f2(t) fort 2: 0. I:J 

Theorem 2.3.3 Let f be continuous on [0, oo ). Then for each T > 0, equation (2.3.3) has 
a unique solution r on the interval [0, T]. 

Proof The theorem is proved by applying the fixed point theorem for contraction mappings; 
see Kreyszig [25, p. 300] or Miller [38, p. 419]. LetT> 0. Let C[O, T] be the Banach space 
of continuous functions defined on [0, T], with norm 

llcl>ll!o.n = sup e-2t/tlc/>(t)l. 
osrsT 

(2.3.7) 

Then C[O, T] is a complete metric space under the natural metric d(¢>, 1/f) II¢> 1frll!o.n· 
For¢> E C[O, T] and 0 ::: t ~ T, define the mapping :Jv{ by 

M(¢>)(t) = \IJ(t)-! f h(c/>(s))e-ids-! f t h(c/>(s) -c/>(i))e-(s-r)drds,(2.3.8) 
e Jo e Jo Jo 

where 

r lot w(t) = - f(s)ds. 
2e 0 

(2.3.9) 
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Then equation (2.3.3) can be rewritten as r(t) = :M (r) (t) for 0 s t s T. DefineS= {¢ E 

C[O, n Ill¢- Wll[o,T) s 1}. Given¢ E sand t E [0, n, one has, since lh(x)l s 1/2 for 
X E ffi., 

1 11 

1 111' t i%(¢)(t)- W(t)l s -
2 

e-'ds +- e-<s-r)drds = -
2 

. 
Eo 2E 00 E 

(2.3.10) 

Hence, 

(2.3.11) 

Furthermore, it is easily seen that iff is continuous, then W is continuous. Consequently, 
%(¢)is continuous, whenever¢iscontinuous. Therefore, :M maps Sinto S. Given¢1. ¢ 2 E S 
and 0 s t s T, one has 

Hence, 

111 

S- l¢t(s) -¢2(s)le-sds 
E 0 

1111s +- ( l¢t(s)-¢2(s)l+l¢t(!) 
E 0 0 

11%(¢.)- %(¢2)ll[o,TJ 

s 11¢1- ¢2llro,TJ sup { 
O:st~T 

l+E 
s 2 + E ll¢t ¢zllro,TJ· 

- e-21/e + ---1 + E e-(2/e+l)t } 

2+E 2+E 

(2.3.12) 

(2.3.13) 

Since (1 + E)/(2 +E) < 1 forE> 0, the mapping :M: S -'l> Sis a contraction. By the Ba­
nach fixed point theorem it follows that :M has a unique fixed point in S. Since :M (r) = r, 
this fixed point is the unique solution r of (2.3.3) in s. 0 
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Next, we investigate the stability properties of the steady state solution (1), which satisfies 
(2.2.10). The pressure gradient f = fw is chosen such that the solution of (2.1.35) is given 
by w(r, t) = (t)(r) fort~ 0. Then the shear strain equals 

r(r, t) = (t)(r)t, t ~ 0, (2.3.14) 

and by substitution of (2.3.14) into (2.3.2) we find that fw is given by 

fwW = ~ [ £(t)(r) + h((t)(r)t)e-1 + 11 

h((t)(r)l:)e--r dr: J, t ~ 0. (2.3.15) 

To investigate the stability properties of (1), we let to ~ 0 and we assume that the system is in 
the steady state with w(r, t) (t)(r) fort< to; this is accomplished by choosing f(t) = fw(t) 
for 0 :::; t < to. At t = to the steady state is perturbed by a prescribed pressure gradient f of 
the form 

f(t) = fw(t) + <p(t), t ~to. (2.3.16) 

Here, <p denotes the perturbation of fw applied at time t0 • From now on we consider only 
times t ~ t0 . The resulting perturbation of the steady state velocity gradient (t)(r) is denoted 
by s. so that 

w(r, t +to)= (t)(r) + s(r, t), t ~ 0, (2.3.17) 

where s(r, t) = 0 fort< 0. Integration of (2.3.17) with respect tot yields 

r(r, t +to) = (t)(r)t + (t)(r)to + X(r, t), (2.3.18) 

where X is defined by 

X(r, t) = 11 

s(r, r:)dr:, t ~ 0. (2.3.19) 

The behaviour of the perturbation s(r, t) fort > 0 determines the stability of the unperturbed 
steady state solution (t)(r). As the dependence on r is irrelevant for our stability analysis, we 
suppress this variab1e and represent all functions as depending only on t. 

In order to derive the equation for s(t), we replace t by t +to in (2.3.2), and obtain 

ar 1~ e- (t +to)+ h(r(t +to) )e-<t+to) + h(r(t +to) r(r:) )e-<t+to-•ldr: 
at o 

i
t+~ 1 

+ h(r(t +to)- r(r:))e-(t+to-T)dr: = zr[fw(t +to)+ ({J(t +to)], 
to 

(2.3.20) 

valid fort > 0. The two integrals in (2.3.20) are rewritten as 

1t0 ft+to 
h(r(t +to)- r(r:))e-(r+to-•ldr: = 

1 

h(r(t +to) 

f t+to 1' h(r(t +to)- r(r))e-(I+IQ-T}dr: = h(r(t +to) 
0 0 

(2.3.21) 
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From (2.3.14) and (2.3.18) it follows that 

r(t +to) r(t +to-r) = wr + X(t), t s r s t +to, 

r(t +to) r(r +to)= wt- wr + X(t)- X(r), 0 S r st. 
(2.3.22) 

Substitution of (2.3.15), (2.3.18), (2.3.21) and (2.3.22) into (2.3.20) yields 

dX 

dt 

r 1 lit+to 
-
2 

({J(t +to)+ -h(wt + wt0 )e-(t+to) +- h(wr)e-r dr 
e e e 0 

1 1 [t+IQ 
-h(wt + wto + X(t) )e-(t+to) - h(wr + X(t) )e-• dr 
e e 1 

(2.3.23) 

111 

- h(wt- wr + X(t)- X(r))e-(t-r)dr, 
e o . 

t > 0. 

The latter equation is rewritten as the following integrodifferential equation for X: 

dX(t) 

dt 
<t>(t) A(t + to)X(t) + 11 

a(t- r)X(r)dr + (j(X)(t, to), t > 0, (2.3.24) 

with initial condition X (0) = 0. Here we introduced the notations 

<t>(t) 
r 

28 
({J(t +to), 

1 
a(t) = -h' (wt)e-1

, 
e 

A(t) a(t) + 11 

a(r)dr, (2.3.25) 

(j(X)(t, to) 
1 } [I+IQ 
-R(X(t), wt + wt0 )e-(t+to) - R(X(t), wr)e-• dr 
e e 1 

111 

-- R(X(t)- X(r), wt wr)e-(t-r)dr, 
£ 0 

(2.3.26) 

where the function R(X, y) is given by 

R(X, y) = h(y +X) h(y)- h'(y)X. (2.3.27) 

Representing the function h by a Taylor expansion around y, we observe that R(X, y) = 
h"(y+ KX)X2 j2 for someK E (0, 1). Recalling thatdX(t)/dt = ~(t) by (2.3.19), and per­
forming one integration by parts in (2.3.24), we are led to the nonlinear integral equation 

~(t) = <l>(t) c(t)X(t) -11 

b(t- r)~(r)dr + (j(X)(t, to), 

where b and c are given by 

b(t) = [oo a(r)dr, c(t) = a(t +to)- b(t +to). 

Finally, we rewrite (2.3.28) in the ultimate form 

~(t) + 11 

k(t, r)~(r)dr <t>(t) + !){ (~)(t), t ~ 0, 

(2.3.28) 

(2.3.29) 

(2.3.30) 
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where the kernel k is defined by 

k(t, r) = c(t) + b(t- r), 0 :s r :s t, (2.3.31) 

and the nonlinear term J{ (~)(t) is defined similar as (j(X) (t, to) in (2.3.26), viz. 

J{ (~)(t) = J-4 (~) (t) + .1-k (~)(t) + J{j (~) (t)' (2.3.32) 

where 

J-4 m (t) = -; R ( 11 

~(s)ds, wt + Wto ) e-(l+lo), 

1 fl+lo ( r ) Jk(~)(t) =-; 
1 

R Jo ~(s)ds, wr e-'dr, (2.3.33) 

J{j(~)(t) =-; 11 

R ( 11 

~(s)ds, UJt- wr ) e-(l-r) dr. 

By putting k(t, r) = 0 for 0 :S t < r, the kernel k is a Volterra kernel (see Gripenberg et 
al. [ 17, Definition 9.2.1]), and equation (2.3.30) is a nonlinear Volterra integral equation of 
nonconvolution type for~· Volterra integral equations are treated in e.g. the books of Miller 
[38] and of Gripenberg et al. [ 17]. 

The stability question for the steady state solution w can now be reduced to the stability 
question for the zero solution~ = 0 of (2.3.30) with <I> = 0. Following Bownds and Cushing 
[ 6] we define the following stability criteria for the zero solution~ = 0. 

Definition 2.3.1 Let V be a normed space of functions defined for t ~ 0, with norm II II v. 
Then the zero solution~= 0 of(2.3.30) corresponding to <I>= 0 is called 

• stable on V if for each to ~ 0 and each TJ > 0 there exists a 8 > 0 (depending on to 
and TJ) such that whenever <I> E V with II <I> II v :S 8, the solution ~of (2.3.30) exists and 
satisfies l~(t) I :S TJ for all t ~ 0; 

• asymptotically stable on V if it is stable on V and if for each to~ 0 there exists a 8 > 0 
(depending on to) such that whenever <I> E V with II<I>IIv :S 8, one has ~(t) --+ 0 as 
t--+ 00. 

As a proper function space to work with we choose the Banach space V = BC0 n L 1, where 

BCo := {¢ : JR+ --+ IR I ¢is continuous, lim ¢(t) = 0}, 
1~00 

L1 := {¢: IR+--+ IR 11
00 

l¢(t)ldt < oo}, 

with the norm in BC0 n L 1 given by 

11¢11 =sup 1¢(t) I + [oo 1¢(t) ldt. 
1:::0 Jo 

(2.3.34) 

(2.3.35) 

Notice that a function in BC0 is bounded, so that the norm (2.3.35) is finite in BC0 n L 1. Then 
BC0 n L1 is a complete metric space under the natural metric d(¢, 1/1) = II¢ -1/111. 
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We first present two preliminary lemmas on the operator 1{ introduced in (2.3.32) and 
(2.3.33). 

Lemma 2.3.1 The operator 1l maps BC0 n L1 into BC0 n L1
• 

Proof" Let ~ E BC0 n L1. Since ~ is continuous, it is easily seen that 1l (~) is continuous. 
Hence, in order that 1{ (~) E BC0 n L1, it remains to prove that 

sup 11l (~) (t) I < oo, 
1~0 

lim 1l (~) (t) = 0, 
1-+00 

100 

11l (~)(t)ldt < 00. (2.3.36) 

Since lh' (X) I s 1 for X E R., the function R is bounded by 

IR(X, y)l s 21XI. X, y E R.. (2.3.37) 

From (2.3.37) we derive the following inequalities, valid fort:=:: 0 and to:=:: 0: 

2 
1Jl3 (~)(t) I s -11~11. (2.3.38) 

E: 

These results prove (2.3.36)1
, and (2.3.36)2

•
3 for 1ft and~. To prove (2.3.36)2

•
3 for Jl3, we 

sharpen the estimate (2.3.38)3 to 

1Jl3 (~)(t) I S - l~(s) le-(l-<) dsdr 21111 
E: 0 t 

(2.3.39) 

From (2.3.39) it easily follows that liffit_,.00 ~(t) = 0 implies limr_,.00 Jl3 (~) (t) = 0. Finally, 
we use (2.3.39) to estimate 

This completes the proof of (2.3.36). 0 

Definition2.3.2 Let £I' be an operator that maps BCo n L1 into BCo n L1
. Then Tis of 

higher order with respect to BCo n L1 if and only if £I'(O) = 0, and for each 11 > 0 there 
exists a 8 > 0 such that llti'(I/JI) £I'(I/Jz)ll s 11III/J1 1/Jzll whenever 1/JI, 1/Jz E BCo n L1 with 
111/Jtll, 111/Jzll s 8. 
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Lemma 2.3.2 The operator !/{ is of higher order with respect to BC0 n L 1. 

Proof InLemma2.3.1 it was shown that!/{ maps BC0 nL1 into BC0 nL1. FromR(O, y) = 0 
for y E IR, it follows that !I{ (0) = 0. We start with some preliminaries. Since h" is bounded, 
there exists a con~tant represented by sM such that 

(2.3.41) 

Let ~1 , ~2 E BCo n L1
• From (2.3.41) we derive the following inequalities, valid for to 2: 0: 

19l! (~t )(t) - 9ll (~z)(t) I ::S M (ll~tll + ll~2ll) ll~t ~zlle-r, t 2: 0, 

l~(~t)(t) ~(~2)(t)l ::S M(ll~tll + ll~2ll)ll~1- ~zlle-t, t 2:0, 

1Ji3(~t)(t)- Ji3(~z)(t)l ::S M(ll~tll + ll~zll) ll~t- ~211. t 2: 0. 

From (2.3.42) it readily follows that 

sup!!/{(~l)(t) !/{(~2)(t)l ::S 3M(II~tll + ll~zll) ll~t -~211· 
t:;::O 

Next, we sharpen the estimate (2.3.42)3 to 

t/1 
1Ji3(~t)(t) Ji3(~2)(t)l ::S M Jo (ll~tll + ll~2ll)l1~1 -~2lle-(r-r)d-r 

+Mit it ll~t -~zll(l~t(s)l + l~2(s)l)e-(t-r)dsd-r 
1/2 " 

M(ll~tll + ll~zll)ll~1 ~zlle-t11 (1- e-112) 

+MII~1 ~21! !1 

(1~1 (s)l + l~z(s)l)(e-<1-s) e-111 )ds. 
1/2 

By use of this estimate we find 

i"" 1Ji3(~t)(t)- :JM~z)(t)ldt ::S M(ll~tll + ll~zll)ll~t- ~2111
00 

e-112dt 

+MII~t- ~211 foo !1 

(1~1 (s)l + l~z(s)l)(e-<r-s) e-111 )dsdt 
Jo r;2 

(2.3.42) 

(2.3.43) 

(2.3.44) 

2MII~t - ~2!1 (1!~11! + ll~zll) (2.3.45) 

+MII~t- ~21! i"" (l~t (s)l + l~2(s)j)(l + e-s- 2e-sf2 )ds 

::::; 3M(II~tll + ll~zll)ll~t ~211. 
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Let 1J > 0. Choose o = 1Jfl6M and assume Jlgtll, Jlg2ll ~ o. Combination of(2.3.42), (2.3.43) 
and (2.3.45) then yields 

Jl.?f (gt) (t) - .?f (g2)(t) II 

= ~~E l.?f(gt)(t) .?f(g2)(t)l + 100 

l.?f($t)(t)- .?f(g2 )(t)ldt (2.3.46) 

~ 6Moll$t szll + 4Mollst- S211 + 6Mollst- $zll = 1JIIst ;211. 

0 

We now return to the stability question for the zero solution$= 0 corresponding to <I> = 0. 
The stability is determined by the behaviour of the solution$ of the Volterra integral equation 
(2.3.30). We introduce the (Volterra) resolvent r(t, r) of the kernel k(t, r) as the solution of 

r(t, r) + j' k(t, s)r(s, r)ds k(t, r), 0 ~ r ~ t, (2.3.47) 

supplemented with r(t, r) 0 forO :S t < r (cf. Gripenberg et al. {17, p. 226]). By use of the 
'variation of constants formula [ 17, Theorem 2.3.5]), equation (2.3.30) is transformed into 

s(t) = <~>(t) + .?f<sHt)- ~<<~>Ht)- ~<.?f<$))(t), 1::: o. (2.3.48) 

where the resolvent operator~ is defined by 

~(¢)(t) = 1' r(t, r)¢(r)dr, t 2: 0. (2.3.49) 

For latter use we need some concepts taken from [17, Section 9.2]. Let ¢(t, r) be a contin­
uous function defined for 0 ~ r ~ t. Then¢ is of type L1 if and only if 

111¢111£1 supj
00 

l¢(t, r)ldt < oo, 
..-;:::0 ... 

whereas¢ is oftype L00 if and only if 

lll¢111n"' sup t l¢(t, r)ldr < oo; 
12::0 lo 

(2.3.50) 

(2.3.51) 

see [ 17, Proposition 9 .2. 7]. Furthermore, we introduce the notation g* (z) for the Laplace 
transform of a function g defined on IR+, i.e. 

g* (z) 100 

g(t)e-zt dt, (2.3.52) 

defined for those z E C for which the integral exists. 
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Theorem 2.3.4 Let b satisfy the Paley-Wiener condition 1 + b* (z) ::f= 0 for Rez 0. Then 
the resolvent operator$.. maps BCo n L1 into BCo n L1, and the mapping is bounded (i.e. 
continuous). 

Proof Since k is continuous, it follows from Gripenberg et al. [ 17, Theorem 9.5. 7] that the 
resolvent r is continuous. The Volterra kernel k(t, t:) b(t- t:) + c(t) is of the form con­
sidered in [17, Theorem9.3.19] with bE L1, while cis of both type L1 and V"0

, and 

lim ro lc(t)ldt = 0, 
T->oo}y 

lim sup(!- T) lc(t)l 0. 
T ->oo t?:T 

(2.3.53) 

Furthermore, the resolvent rc of the kernel c can be explicitly determined, viz. 

rc(t, 1:) = c(t)exp(-!1 

c(s)ds), 0 ~ 1: ~ t. (2.3.54) 

Clearly, rc is of both type L1 and L00
• Also the additional condition 1 + b*(z) ::f= 0 for Rez 2: 0 

is satisfied. Then it follows from [17, Theorem 9.3.19] that k has a resolvent r of both type 
L1 and L 00

• 

Let <P E BC0 n L1
• By use of (2.3.50) and (2.3.51) we establish the inequalities 

1$..(</J)(t)l ~ ( lr(t, <)11</l(t:)ldt: ~ lllriiiL"" sup 1</J(t)l, lo t>o 
(2.3.55) 

f'Xl 1$..(</J)(t)ldt ~ roo t lr(t, -r)II</J(-r)ldt:dt ~ lllrlllv roo 1</J(t)idt, 
Jo lo Jo . Jo (2.3.56) 

which are combined into 

11$..(</J)II ~ max{lllriiiL"", lllrlll£1} 11</JII. (2.3.57) 

Thus, 1{ induces a bounded mapping from BC0 nL1 into BC n L1
, where BC is the space 

of bounded continuous functions on JR+. It remains to verify that $.. (</J) E BCo. To that end 
consider the operator ':1( defined by 

':1( (</J) (t) = 11 

k(t, 1:)</J(-r)d-r, t 2: 0. (2.3.58) 

Since k is of type L 00
, and 

lim ( lk(t, -r)ld-r = 0 
t->oo Jo (2.3.59) 

for each T 2: 0, it can easily be shown that ':1( maps BCo into BCo. Next it follows from a 
result of Pulyaev and Tsalyuk [45, Theorem 2] that also $..maps BCo into BCo. o 
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To obtain the stability of the zero solution~= 0 of the nonlinear Volterra integral equation 
(2.3.30) (equivalently of (2.3.48)) with <I> = 0, we require the following result: 

Theorem 2.3.5 Let <I> E BC0 n L 1, and let b satisfy the Paley-Wiener condition 1 + b* (z) "f 0 
for Rez 2: 0. Then for each 17 > 0 there exists a 8 > 0 such that whenever II <I> II s 8, equation 
(2.3.30) has a unique solution~ E BCo n L1 with 11~11 s 11· 

Proof' For ¢ E BC0 n L 1, define the mapping :M by 

:M(¢)(t) = <l>(t) -!/((<l>)(t) + Jl(¢)(t) -1((Jl(¢))(t), t 2:0. (2.3.60) 

Then equation (2.3.48) can be rewritten as ~(t) = :M (~) (t) fort 2: 0. From Lemma 2.3.1 and 
Theorem 2.3.4 it follows that the operator :M maps BCo n L1 into BCo n L1. Furthermore, 
the resolvent operator 1( is bounded so that 

111(11 := sup 111((¢)11 < oo. 
111>11=1 

(2.3.61) 

By Lemma 2.3.2 the operator J{ is of higher order with respect to BC0 n L1. Hence, there 
exists a p > 0 such that 

(2.3.62) 

whenever ¢1,¢2 E BCo n L1 with llr/J1II, llr/J2II s p. Let 17 > 0. Define Po= min{p, 17} and 
S = {¢ E BCo n L1lll¢11 s Po}. Choose 8 = Po0 + 111(11)-1/2. Assume 11<1>11 s 8. Given 
¢ E S, one has 

II:M(¢)11 s 11<1>11 + 111(1111<1>11 + IIJl(¢)11 + 11!/(IIIIJl(¢)11 

S 8(1 + 111(11) + ~11¢11 S ~o + ~o =Po. 

Hence, :M maps S into S. Similarly, given¢~, ¢2 E S, one has 

(2.3.63) 

(2.3.64) 

Thus, the mapping :M : S --+ S is a contraction. By the Banach fixed point theorem (see 
Kreyszig [25, p. 300]; Miller [38, p. 419]) it follows that :M has a unique fixed point inS. 
Since :M (~) = ~, this fixed point is the unique solution~ of (2.3.30) inS. 0 

The result of Theorem 2.3.5 may be rephrased in terms of stability of the zero solution~= 0 
of (2.3.30) with <I> = 0. 

Corollary 2.3.1 Let b satisfy the Paley-Wiener condition 1 + b* (z) # 0 for Re z 2: 0. Then 
the zero solution~= Oof(2.3.30) corresponding to <I>= 0 is asymptotically stable on BC0 n L1. 
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Consequently, if b satisfies the Paley-Wiener condition 1 + b*(z) =ft 0 for Rez:::: 0, then 
the steady state solution (J) of (2.2.10) is asymptotically stable, and the limit (2.2.1) which 
is needed for achieving steady state flow exists provided the perturbation of the pressure gra­
dient is sufficiently small. 

Next, we investigate the stability of the steady state solution (J) when the Paley-Wiener 
condition is not satisfied, i.e. when the equation 

1 + b*(z) 0, Rez:::: 0, (2.3.65) 

has at least one root. To that end, we introduce the resolvent rb of the Volterra kernel b. Since 
b is of convolution type, it is easily verified that rb solves the integral equation 

(2.3.66) 

From the latter equation the Laplace transform r; (z) of rb (t) is found as 

* b* (z) 
rb (z) = 1 + b* (z) (2.3.67) 

According to the Paley-Wiener theorem ( cf. Gripenberg et al. [ 17, Theorem 2.4.1]) one has 
rb (t) ¢. L1, if equation (2.3.65) has a root. Suppose now that equation (2.3.65) has precisely 
one root z zo, which is simple and satisfies Rez0 > 0. Then the Laplace transform r; may 
be rewritten as 

r;(z) =_a_+ Pb(z), 
z zo 

(2.3.68) 

where a Resz=zor~ (z) and pi, is analytic in the half-plane Rez > 0. Taking inverse Laplace 
transforms in (2.3.68), we find that rb (t) may be expressed as 

(2.3.69) 

Here, Pb is the so-called residual resolvent and it can be shown that Pb(t) E L1
; for a proof 

see Jordan and Wheeler [20, Theorem 1.1]. 

We consider the solution ~~ of equation (2.3.30) with c = 0 and :H = 0, i.e. 

~~ (t) + 11 

b(t r)~l ('r)dr = <l>(t), t :::: 0. (2.3.70) 

The latter equation is a linear Volterra integral equation of convolution type for ~1 • 
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Lemma 2.3.3 Let 1 + b* (z) = 0, Re z ~ 0, have one root z = zo, which is simple and satisfies 
Rezo > 0. Then the solution Sl of(2.3.70) can be written as 

SI(t) = -a<l>*(zo)ezot + 9{(<f>)(t), (2.3.71) 

where 

(2.3.72) 

Proof: By use of the variation of constants formula, equation (2.3.70) is transformed into 

s(t) = <f>(t) -11 

rb(t- r)<f>(r)dr. (2.3.73) 

By substituting (2.3.69) into (2.3.73), and rearranging the terms, we obtain (2.3.71). 0 

To obtain the instability of the zero solution SI = 0 of the linear Volterra integral equation 
of convolution type (2.3.70) with <f> = 0, we require the following result: 

'Theorem 2.3.6 Let 1 + b* (z) = 0, Re z ~ 0, have one root z zo, which is simple and satis­
fies Rezo > 0. Then there exists a to~ 0 and an TJ > 0 such that for each 8 > 0 there exists a 
junction <f> E BC0 n L1 with 11<1>11 :::::; 8,forwhich the solutions/ of(2.3.70) satisfies lst (t)l > TJ 

for some t ;:::: 0. 

Proof: We start from the representation (2.3.71) of the solution Sl· Choose to ~ 0 and TJ > 0 
arbitrarily. Let 8 > 0. Choose <f> E BCo n L 1 such that II <f> II 8 and I <f>* (zo) I > 0. Assume 
st E BCo n L1 with II sEll :::::; TJ. Since Pb(t) E Ll, one has the estimate 

19{(<f>)(t)l:::::; MII<I>II:::::; M8, 

where M is given by 

M = 1 + f'::o IPb(t)ldt +Rial . 
lo ezo 

From (2.3.71) it then follows that 

lst(t)l ~ lall<f>*(zo)le1Rezo- M8, 

This contradicts the assumption llstll :::::; TJ. 

(2.3.74) 

(2.3.75) 

t ~ 0. (2.3.76) 

0 

The result of Theorem 2.3.6 may be rephrased in terms of instability of the zero solution 
s1 = 0 of (2.3.70) with <f> = 0. 

Corollary 2.3.2 Let 1 + b*(z) = 0, Rez 
isfies Rezo > 0. Then the zero solution st 
on BCo n L1. 

0, have one root z zo, which is simple and sat-
0 of{2.3. 70) corresponding to <I>= 0 is unstable 
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We conjecture that also the zero solution§ = 0 of (2.3.30) corresponding to <I> = 0 is unstable 
on BCo n L1, if the equation 1 + b*(z) = 0, Rez 2: 0, has one root z zo, which is simple 
and satisfies Rezo > 0. We have not been able to prove the conjecture, not even in the linear 
case of the integral equation (2.3.30) with J{ 0. To properly describe the state of affairs 
we introduce the following modified instability criterion: 

Definition 2.3.3 The steady state solution w of(2.2.10) is called [-unstable if the zero solu­
tion §1 = 0 of(2.3.70) corresponding to <I>= 0 is unstable on BCo n L1• 

Thus as a consequence of Corollary 2.3.2 one has: If the equation 1 + b*(z) = 0, Rez 2: 0, 
has one root z = zo, which is simple and satisfies Rezo > 0, then the steady state solution w 
of (2.2.10) is 1-unstable. 

We now present a necessary and sufficient condition for stability of the steady state so­
lution w in terms of the function G(J» defined by 

Gw(z) = t: + ~z ( J(w) 1(1 :z)), Rez > 1, (2.3.77) 

where the function J is given by (2.2.9). 

Theorem 2.3. 7 

• If Gw (z) # 0 for Rez 2: 0, then the steady state solution w is asymptotically stable. 

• lfGw(z), Rez 2: 0, has one zero z zo, which is simple and satisfies Rezo > 0, then 
the steady state solution w is [-unstable. 

Proof: Since b'(t) = -a(t), the Laplace transform of the function b is equal to b*(z) 
( -a*(z) + b(O) )/z. Calculating b(O) J(w)jt:w and the Laplace transform a* of the func-
tion a as 

a*(z) = 1"" a(t)e-z'dt ! 1"" h'(wt)e-<z+l)rdt 8~1( 1 :z), Rez> -1,(2.3.78) 

we obtain 

1 + b*(z) = Gw(z)' 
t: 

Rez > 1. (2.3.79) 

Next, translation of the conditions of Corollaries 2.3.1 and 2.3.2 in terms of Gw completes 
the proof. o 

We investigate the zeros of Gw (z) in the half-plane Re z 2: 0, using the argument principle. 
This principle is formulated as (cf. Nehari [40, Chapter IV, Sec. 7]) 
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Theorem 2.3.8 Let the junction F (z) be analytic inside and on a simple closed contour K 
in the complex z-plane, and let F (z) =/= 0 on K. Then the total number N of zeros ofF (z) 
inside K, counted according to their multiplicities, is given by 

1 
N = 

2
rr [ arg F(z) ]C' (2.3.80) 

where [arg F(z)]c denotes the increase in arg F(z) as z goes once around Kin anticlockwise 
direction. 

As an equivalent formulation we have: N equals the number of times that the closed contour 
F(K) goes around the origin in anticlockwise direction. 

To determine the number N of zeros of G(ij (z) in Re z ~ 0, we apply the argument princi­
ple to the function G(ij(z) and the closed contour K consisting of the semi-circle CR: lzl = R, 
R --+ oo, Rez ~ 0, and the imaginary axis z iy, y E IR. Since 

'A. 1f 1f 
lim G (Re'"') = E: -- < ,~.. < -

R->oo "' ' 2 - 'I' - 2' 
(2.3.81) 

the image G,(K) is the closed curve Gw(iy), oo ~ y ~ -oo, with coinciding end points e. 
Furthermore, for z = 0 one has 

Gw(O) = E: + J'(w) = :J'(w), (2.3.82) 

with :J' (w) > 0 ifO :::::0 w < WM or w > Wm, while :J'(w) < 0 if WM < w < Wm; see Figure 2.1. 
Further points ofthe contour G, (iy ), oo ~ y ~ -oo, are found through numerical integration 
of 

. 1"" 1 + y2- w2r2 -~ 
ReGw(ty) = e+ (1 2)2 20 2) 2 2 4 7:" re dr, 

o +y + -y wr +w 

ImGw(iy) =! ( ["" 1 + y2 + w2r:2 . u-~dr:- J(w))' 
Y Jo (1 + y2)2 + 2(1- y2)w2r:2 + w4f" w 

(2.3.83) 

for various values of y. Since G,(z) = G,(z), it is sufficient to evaluate G,(iy) for y > 0. 
In Figure 2.3 the numerically computed contours G(ij(iy), y E IR, are plotted forE: = 0.02, 
and three typical values of w, namely, w = 1 E [0, WM ), w = 3 E (wM, Wm). and w = 6 E 

(wm. oo ); the values WM = 1.7063 and Wm = 5.2439 for s = 0.02 are given in Table A.1 of 
Appendix A. We observe that Gw(iy) --+ E: as y--+ ±oo, for all threew-values, in accordance 
with (2.3.81). Furthermore, we observe that Gw(O) > 0 for w 1 < WM or w 6 > Wm, 
whereas G(ij (0) < 0 for w = 3 E (wM, wm). in correspondence to (2.3.82). From Figure 2.3 
it is seen that .the origin is outside the contours Gw (iy) with w 1 or w 6, whereas the 
contour G"' (iy) with w = 3 goes around the origin once in anticlockwise direction. Thus, we 
find N 0 for w = I or w = 6 (when Gw (0) > 0), while N If or w 3 (when Gw (0) < 0). 
Supported by additional computations of G"' (iy), y E IR, for other e- and w-values, we con­
clude that the total number N of zeros of Gw(z) in Rez:::: 0, is given by 

N { 0, 
1' 

0 :::::0 W < WM Or Wm < W, 
(2.3.84) 
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For Rez = 0, the computations reveal that Gw(iy) =/:- 0 for y E IR, if w =j:. WM and w =j:. Wm, 

whereas Gw(O) = 0 if w = WM or w = Wm. Notice that for w = 0, the function Go(z) = 
B + 1/(1 + z) has no zeros in Rez ~ 0. For WM < w < Wm, the single zero of Gw(Z) in 
Rez > 0 is real because of Gw(z) = Gw(z). 

o.oo,-.-----.--------,----,------,---'------,----.., 

Im Gw(iy) 

1 0.04 

' ' 
-0.04 ' 

-!LOS 
0.02 

' 

0.04 

--

I 

I 

I 

\ 

' I 

',, 

, __ 

o.os 

' ' \ 
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Fignre 2.3 The contours Gw(iy), oo 2: y 2: -oo, in the complex plane fore= 0.02, 
and (J) 1 (dashed curve), (J) = 3 (solid curve), and (J) 6 (dotted curve). 

The results for the zeros of Gw(z) are now used in Theorem 2.3.7. Thus we arrive at the 
following Corollary on the stability of the steady state solution w. 

Corollary 2.3.3 

• Steady state solutions w with 0 .:::; w < WM or w > Wm are asymptotically stable. 

• Steady state solutions w with WM < w < Wm are !-unstable. 

Again it is conjectured that steady state solutions w with WM < w < Wm are unstable (without 
the prefix 1-). The conjecture is supported by the numerical calculations in Section 2.4 which 
disclose that steady states with WM < w < Wm are not attained. 

2.4 Transient flow behaviour 

In this section we present some results of numerical calculations based on the integrodif­
ferential equation (2.3.2). These results will confirm the conclusions of our stability anal­
ysis and will provide extra information on such phenomena as spurt, shape memory and 
hysteresis. We first consider the loading process in which the flow is started up from rest, 
driven by a constant pressure gradient f(t) = } 0 • After a sufficiently long time, the ve­
locity gradient will attain a steady state value w(r), where either 0 .:::; w < WM or w > Wm; 

steady states with WM < w < Wm are [-unstable and accordingly such states are not attained. 
Next, after the steady state has been reached, the pressure gradient is suddenly decreased 
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to f(t) fo + D.f, where D.f < 0. The decrease of the stationary pressure gradient cor­
responds to an unloading process. We shall demonstrate the influence of the deformation 
history by exploring the flow during the loading and unloading processes. 

At t = 0 the velocity gradient equals w(r, 0) rf(O+ )/2e, as can be found by letting 
t + 0 in (2, 1.37). Integration with respect to r and use of the no-slip boundary condition at 
the wall yield that the velocity profile is parabolic, namely 

v(r, 0) ~~:) (1- ?), 0::::; r::::; l. (2.4.1) 

Fort> 0 the velocity gradient w ar jat is obtained by computing the shear strain r(r, t) as 
solution of equation (2.3.2) for a fixed value of rand the pressure gradient f(t) prescribed. 
We solve this integrodifferential equation by using Euler's forward discretisation method 
with fixed time step D.t. Under the initial conditions r(r, 0) = 0 and w(r, 0) = rf(O+ )/2e, 
the flow variables r and w at time t = tn := nD.t are computed according to 

r(r, tn) r(r, tn-d + D.tw(r, tn-1 ), 

1 [ 1 t· J (2.4.2) 
w(r, tn) =; 2rf(tn)- h(r(r, tn))e-1

"- Jo h(r(r, tn)- r(r, r))e-(t.-r)dr . 

The integral in (2.4.2)2 is approximated by the trapezoidal rule. The governing equation 
(2.3.2) is stiff because of the term ear jat with small e, and for an accurate numerical so­
lution the time step must be sufficiently small (D.t «e). Because of the hereditary effect we 
have to use all values of r(r, r), 0::::; r::::; t, to compute r(r, t). However, fort sufficiently 
large (t > T) the integral can be approximated by the integral over the interval [t T, t], 
since 

(2.4.3) 

In our calculations we have chosen T = 20. 
During the loading process, the shear strain r and the velocity gradient w are computed 

for a prescribed pressure gradient of the form 

f(t) foH(t). (2.4.4) 

To let the flow be supercritical, we take e 0.02 ( < et} and fo = 0.8 > fcrir = 2FM = 
0.7546. In Figure 2.4 the computed velocity gradient w(r, t) as a function oft is plotted 
for some values of r. We observe that w(r, t) approaches a steady state value, equal to the 
solution w numerically computed from ew + J (w) r 7/2 and represented by the dotted 
lines in Figure 2.4. As long as 0::::; r < rM := 2FM/fo 0.9432 fore 0.02 and / 0 = 0.8), 
the steady state value w(r) is found to lie between 0 and WM. At r = rM, the steady state 
velocity gradient jumps from a value below WM to a value that exceeds WM (> wm); see Figure 
2.1. Hence, for r < rM the steady state solution w satisfies w(r) < WM = 1.7063, whereas 
for r > rM it satisfies w(r) > WM = 9.0094, which corresponds to top-jumping; see also 
Figure 2.7a. Due to the jump in the steady state velocity gradient w(r) at r = rM, a spurt 
layer in the steady state velocity profile v(r) forms for rM < r ::;S 1. 
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Figure 2.4 The velocity gradient w(r, t) fore= 0.02 and f(t) = ] 0H(t), ] 0 = 0.8, 
computed by Euler's forward discretisation method with time step M = 0.005. The 
steady state velocity gradient jumps at r = rM = 0.9432, corresponding to top­
jumping. 

30 

The process of unloading is numerically implemented by prescribing the pressure gradi­
ent as 

f(t) = foH(t) + eft - fo)H(t- to), (2.4.5) 

where to is sufficiently large to achieve a steady state att =to and !!:.f = -cf0 -f1). We take 
£ = 0.02, fo = 0.80 and to= 27. We choose f 1 = 0.78 > Fmfo/ FM = 0.7605 and plot the 
numerically computed solution following from this change ofload in Figure 2.5. We observe 
that after the load has changed from fo = 0.80 to f 1 = 0.78, the jump in the steady state 
velocity gradient still occurs between r = 0.94 and r = 0.95, suggesting that tlle boundary 
ofthe spurt layer remains fixed atthe position r = r• = 2FM If 0 = 0.9432. This phenomenon 
is called shape memory, because the spurt layer remains unchanged, regardless of the change 
in loading. The set of w(r)-values (for r E [0, m can be read off from Figure 2.7b. 

Next we choose f 1 = 0.75, which lies between 2Fm = 0.7173 and Fmfo/ FM = 0.7605. 
The solution for this particular unloading step is presented in Figure 2.6. We observe that 
when the load has changed to 71 = 0.75, tlle jump in tlle steady state velocity gradient oc­
curs between r = 0.95 and r = 0.96, suggesting that the boundary of the spurt layer lies at 



42 

w(r, t) 

CHAPTER 2. PRESSURE-DRIVEN SHEAR FLOW OF A KBKZ-FLUID 

12 

r = 1.00 
10 

r = 0.95 
8 

6 

4 

r = 0.94 

r 
OL----L----~--~----~--~----~--~~---L----L---~ 

0 5 10 15 20 25 30 35 40 45 

t 

Figure 2.5 The velocity gradient w(r, t) for e 0.02 under the changing load 
f(t) = foH(t) Uo f1)H(t- to), 7o = 0.80 and / 1 = 0.78, at to 27, com­
puted by Euler's forward discretisation method with time step At = 0.005. The steady 
state velocity gradient after change of load jumps at r = r* 0.9432. 

50 

r rm := 2Fmff1 = 0.9564, which corresponds to bottom-jumping. Hence, the spurt layer 
boundary is closer to the wall than its position for fo 0.80, indicating that the spurt layer 
boundary has moved back to the walL This corresponds to the loss of shape memory. As 
shown in Figure 2.7c, the velocity gradient now jumps from the value Wm < WM to Wm. 

If we choose f 1 < 2Fm 0.7173, then numerical computations show that the jump in 
the steady state velocity gradient has disappeared after the unloading step: for each radial 
coordinate r E [0, 1] the steady state velocity gradient satisfies w(r) < Wm = 0.9242. 

We conclude that the numerical calculations confirm that in supercritical flow the steady 
state velocity gradient profile has one jump. If the loading is supercritical top-jumping oc­
curs. Which particular steady state is achieved during the unloading process, depends on the 
deformation history. If the unloading A.f is smaller than a critical value, shape memory oc­
curs. This shape memory causes hysteresis in a loading-unloading cycle, as will be shown 
in Section 2.5. 
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Figure 2.6 The velocity gradient w(r, t) for e 0.02 under the changing load 
f(t) = / 0H(t) (10 -f1 )H(t- to), fo = 0.80 and / 1 = 0.75, at to = 27, com­
puted by Euler's forward discretisation method with time step l:!t = 0.005. 'The steady 
state velocity gradient after change of load jumps at r r m = 0.9564, corresponding 
to bottom-jumping. 
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Figure 2.7 The set of (.()-values for different values of the stationary pressure 
gradient f. 
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Next, we reconsider the transient flow behaviour in some more detail for the loading pro­
cess withe= 0.02, f(t) 7 H(t) and 7 0.80; see Figure 2.4. In the development of the 
velocity gradient w (r, t) for this loading process we distinguish, dependent on the radial co­
ordinate r, two or three distinct time phases. These phases are characterized as follows: 

• A Newtonian phase in which w(r, t) decreases on an O(e)-time scale from its initial 
value w(r, 0) r7 j2e to a value w(r, t) O(e0

), e-+ 0. 

• A latency phase in which w(r, t) 0(e0
), e-+ 0. If r < rM, the latency phase is the 

final phase during which w(r, t) tends to a steady state w(r) < WM. 

• If r > rM, the latency phase is followed by a spurt phase during which W (r, t) suddenly 
increases to a value larger than WM, and then tends to a steady state w(r) > WM. 

We shall analyze these phases in terms of the dimensionless stresses S and N, defined by 

S(r, t) = h(r(r, t))e-1 + f h(y(r, t, r))e-(l-t)dr, . Jo (2.4.6) 

N(r, t) = g(r(r, t))e-1 + 11 

g(y(r, t, r))e-<t-t>d-c, (2.4.7) 

where the function g is given by g(y) = yh(y). With the use of (2.1.21), we find that Sand 
N equal 

1 ()v 
S = - J.h/C( Trz -IJs ()r ), 

1 
N = Tu. 

J.tC 
T,., ) . (2.4.8) 

Hence, -S corresponds to the (dimensionless) shear stress component S,z of Sp. and N cor­
responds to the first normal stress difference. From (2.1.35) with f(t) 7. t ~ 0, it follows 
that 

1 -
ew(r, t) + S(r, t) = F(r) = 2r f, 0.:::; r :S 1, t ~ 0. (2.4.9) 

In the proof of Theorem 2.2.1 it has been derived that for t -+ oo the function S tends to 
the stationary value S(r) = J(w(r)), where the function J is defined by (2.2.9) and w is a 
solution of (2.2.10). Analogously, it can be shown that the normal stress difference N tends 
to the stationary value N (r) = 1 - L(w (r)), where the function L is defined by the integral 

1
oo e-t 

1
oo 

L(w) = 
1 2 2

dr = 1- g(wr)e-tdr. 
+wr o 

By letting t -+ oo in (2.4.9) we find w = (F- S) j e, from which we infer 

- - F-S 
N = No(S) := 1- L(--). 

e 

On the other hand, w = Linv (1 - N), so that 

S = So(N) := J(Linv(l- N)), 

(2.4.10) 

(2.4.11) 

(2.4.12) 
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where Linv is the inverse of the function L. Notice that Linv exists, since Lis a strictly de­
creasing function. Hence, in an (S, N)-plane the stationary values Sand N correspond to 
the intersection points of the two curves S = So (N) and N = No (S). 

In the Figures 2.8 and 2.9 the solid curves are plots of points (S(r, t), N(r, t)), with pa­
rameter t and fixed r = 0.9 and r = 1.0, respectively, for the loading process of Figure 2.4, 
i.e. for s = 0.02, f(t) = JH(t) and f = 0.80 > fcrit· For r = 0.9 one has F = rf /2 = 0.36 
with Fm < F < FM, while for r = 1.0 one has F = rf /2 = 0.4 > FM. Also shown in Fig­
ures 2.8 and 2.9 are the two curves S = So(N) and N = No(S), plotted as dashed-dotted and 
dotted curves, respectively. In Figure 2.8, where Fm < F < FM, we observe that the curves 
S = So (N) and N = No (S) have three distinct intersection points, denoted by a dot ( o ), and 
corresponding to the three distinct steady state solutions. In Figure 2.9, where F > FM, we 
observe that there is just one intersection point, denoted by a dot ( o ), and corresponding to 
the single steady state solution. Notice that the functionS = S0 (N) is independent ofF, 
whereas N = N0 (S) depends on F. 

1 -
N 
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a. a 
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. . . . . . . . . . . . . . . 
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·: ... . ·, 

·. ' a.s . \ 

a.5 

a.4 ··.i 

a.3 

a.2 

a.1 

a 
a a.a5 a.1 a.15 a.25 a.3 a.35 a.4 

-s 
Figure 2.8 (S, N)-plot (solid curve) of points (S(r, t), N(r, t)) with parameter t and 
fixed r = 0.9, fore = 0.02 and 7 = 0.8. Dashed-dotted curveS = S0 (N) of (2.4.12), 
dotted curve N = No(S) of (2.4.11), and dashed curve N = NNew (S) of (2.4.15). The 
dots ( o) correspond to the three distinct steady state solutions. 

Next, we derive some analytical approximations for S and N during the three distinct 
time phases, valid when s « 1. At t = 0 the stresses Sand N start at S(r, 0) = N(r, 0) = 0, 
because of r(r, 0) = 0. Then, by (2.4.9), the velocity gradient starts at w(r, 0) = F(r)js. 
During the Newtonian phase 0 s t < fN, say, w(r, t) decreases on an O(s)-time scale to the 
value w(r, tN) = O(s0 ). AssumingthattN = O(s) and setting t = st, we start from the formal 
expansions 

r(r, t) = ro(r, t) + srl (r, t) + ... , wo(r,i') -
w(r,t)= +w1(r,t)+ ... , (2.4.13) 

s 



46 CHAPTER 2. PRESSURE-DRIVEN SHEAR PLOW OP A KBKZ-FLUID 

1, 

N 

I 
0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

-s 
Figure 2.9 (S, N)-plot (solid curve) of points (S(r, t), N(r, t)) with parameter t and 
fixed r = 1.0, for s 0.02 and 7 = 0.8. Dashed-dotted curveS = So (N) of (2.4.12), 
dotted curve N N0 (S) of (2.4.11), and dashed curve N NNew(S) of(2.4.15). The 
dot ( o) corresponds to the single steady state solution. 

in which Wj = ar;jfii. These expansions are supposed to be valid during the Newtonian 
phase, that is, till t O(e) ori = 0(1 ). The initial values are r 1(r, 0) = 0, i = 0, 1, 2, ... , 
w0 (r, 0) = F(r) and w;(r, 0) 0, i = I, 2, .... Substitution of (2.4.13) into (2.4.6) and (2.4.7) 
yields for the stresses during the Newtonian phase: 

S = h(ro) + O(e), N = g(ro) + O(e). 

Neglecting the O(z)-term, we may eliminate ro to obtain the relationship 

1 
N = NNew (S) := 1.0 .J1- 482), 0 "S: t "S: IN. 

(2.4.14) 

(2.4.15) 

The function N = NNew (S) is plotted as the dashed curve in the Figures 2.8 and 2.9. We ob­
serve that this curve approximates the calculated (S, N)-plot very well during the Newtonian 
phase. Substitution of the leading terms of the expansions for w and S into (2.4.9) results in 
~~~ . 

- aro(r, i) -
w0 (r, t) = _ = F(r)- h(ro(r, t)). at (2.4.16) 

The solution of (2.4.16) can implicitly be represented by i as a function of r 0, viz. 

(2.4.17) 



2.4. TRANSIENT FLOW BEHAVIOUR 47 

valid for 0::; r 0 < (1 J1- 4F2)j2F, provided that 0 < F < 1/2. 
The Newtonian phase ends at t =IN, determined by w(r, IN) 0(e0 ). Consequently, 

S(r, tN) = F(r) + O(e) by (2.4.9). Since also S(r, tN) h(r(r, IN))+ O(e), it follows that 

r(r, IN) r ( ) ·= 1 - jl - 4F
2
(r) (2 4 18) 

.N r · 2F(r) ' · · 

under neglect of the O(e )-terms. By setting t IN = etN in the expansion (2.4.13)2 we find 
that wo(r, tN) = ep must hold for a certain p = p(r). By use of (2.4.16) we are led to the 
equation 

wo(r,iN) F(r) - h(ro(r, 'iN)) ep, (2.4.19) 

which has the solution 

- 1- jl- 4(F(r)- ep)Z 
ro(r, IN)= 2(F(r) ep) 

( 
1- ep + 0(e2)) 

rN(r) F(r)jl - 4F2(r) . 

(2.4.20) 

On inserting the latter value of ro into (2.4.17) we obtain, under neglect of the O(e )-terms, 

1- J1- 4F2 1- JI- 4F2 1 ( 1 _ Jl- 4F2) 
tN = 2v' 2 ln(ep) + 2F 2 + 2p21n 

2F 1 - 4F (2.4.21) 

- 2F2Jl
1

- 4F2ln ( (1- 4F2)(:F ) . 

Thus, <iN O(lne), implyingthattN = O(elne) ratherthan IN= O(e). 
In the Figures 2.8 and 2.9 the end 1 = tN of the Newtonian phase corresponds to the point 

where the (S, N)-plot starts to deviate from the curve N NNew (S). The Newtonian phase is 
followed by a latency phase in which w(r, t) = O(e0

) and consequently S(r, t) F (r) + O(e ), 
e --+ 0. In the Figures 2.8 and 2.9 we observe that after 1 =IN the (S, N)-plots run upwards 
with S ~ F = 0.36 and S ~ F = 0.40, respectively. Hence, S is almost constant, and the 
latency phase is referred to as a pseudo steady state; the first normal stress difference N still 
increases. For F < F M or r < rM, as in Figure 2.8, we observe that during the latency phase 
the stationary value S(r) = F(r) + O(e), e--+ 0, is reached. For F > FM orr> rM, as in 
Figure 2.9, the latency phase is followed by a spurt phase during which S decreases and tends 
to the stationary value S. For small e we use the asymptotic expansions of the functions J 
and L (see Appendix A), to express the stationary values in the spurt phase by 

F 
e--+ 0, 

S=~ln~ 8
;+0(e2ln

2
e), N=l-~;+0(e2 1ne), e--+0, 

(2.4.22) 

where C 0.57721... is Euler's constant. Finally, we observe in both Figures 2.8 and 2.9 
that the (S, N)-plot starts in the origin and lies insidethe region bounded by the three curves 
N = NNew (S), N No(S) and S So(N). 
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2.5 Spurt, shape memory and hysteresis 

Consider experiments in which the flow is in a steady state, reached at time t = t0 , corre­
sponding to a pressure gradient f(t) = f 0 H(t), and the pressure gradient is suddenly changed 
to 7 = fo +D./. If D.f > 0, we call this process loading, otherwise unloading. As the nu­
merical calculations reveal, the outcome of the experiments depends on the initial loading / 0 
and the change of loading D./. On the basis of our numerical results, we shall discuss the 
quasi -static loading-unloading cycle, whereby the load is gradually increased from 7 = 0 up 
to f max > fcrit> followed by an unloading sequence until the initial load f = 0 is reached 
again. 

0.7 

Q 

1 

0.6 A:f 0 

B: f=2FM 0.7546 

0.5 C:f 0.80 

D:f F.,[,.,./F.v = 0.7605 
0.4 E: f=2F., 0.7173 

0.3 

0.2 

0.1 

A 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

-7 
Figure 2.10 Hysteresis under cyclic load. The steady state volumetric flow rate Q 
versus the loading 7. fore 0.02 and 7 max = 0.80. 

During the first part of the loading, where f < fcrit = 2FM (subcritical flow), the entire 
flow is classical: The steady state velocity gradient satisfies w(r) < WM and is continuous in 
r for all r E [0, 1]. In Figure 2.10 the steady state volumetric flow rate Q (defined by (2.2.14)) 
is depicted as a function of/. The curve AB corresponds to classical flow, where the point 
A corresponds to 7 = 0 and the point B to 7 = fcrit· When the flow becomes supercritical 
<f::::, fcrit), a kink in the velocity profile forms at the wall, moving away from the wall to 
a position r = rM = 2FM1f. The large values of the velocity gradient near the wall cause 
a substantial increase of the volumetric flow rate (curve BC in Figure 2.10). For f = J,nax, 
corresponding to point C in Figure 2.10, the spurt layer r* :S r :S 1, where r* 2FM If max• is 
of maximum thickness. From this point we start to unload and as a result Q decreases. At first 
the spurt layer remains fixed between r r* = 2F M If max and r = 1; this phenomenon called 
shape memory corresponds to the path from C to Din Figure 2.10. During this unloading the 
magnitude of the shear stress Trz = - F at r* decreases according to F* = F (r*) r* f 12 
FMJifmm:· IfF* falls below Fm, i.e. if/< FmfmaxiFM, the boundary r = rm 2Fmlf 
of the spurt layer moves back towards the wall for further decreasing f. This loss of shape 
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memory occurs on the path from D to E in Figure 2.1 0, where the point D corresponds to 
7 Fm7 max/ FM. The spurt layer disappears for 7 = 2Fm, i.e. forrm = 1, which corresponds 
to pointE in Figure 2.1 0. After that (for 7 < 2Fm), the flow becomes entirely classical again. 
In the final unloading path EA, the flow is classical and this path coincides with the initial 
part of the loading curve. The phenomenon that no part of the loading curve in Figure 2.10 
is retraced until the flow has become entirely classical again, is typical for hysteresis. 

2.6 The influence of a relaxation spectrum 

In general, the characteristic response of molten polymers and polymer solutions to a defor­
mation. is described by a constitutive equation that involves a continuous spectrum of relax­
ation rates. This spectrum can be approximated by choosing a set of n ? 1 discrete relax­
ation rates A;, whereupon the corresponding shear moduli J.,t; are adjusted such that a sat­
isfactory fit to experimental data is obtained. In this manner, the stress relaxation function 
G is represented by a sum of exponential terms J.,t; exp( -A;t) as in (2.1.9). The constitu­
tive KBKZ-model employed thus far, describes the characteristic response of a concentrated 
polymer solution; the response of the polymer is characterized by one main relaxation rate 
A, whereas the response of the small-molecule solvent with viscosity 1/s is described by the 
Newtonian viscous term. For molten polymers, however, the Newtonian viscous term is ob­
solete (1/s = 0), because there is no solvent. Instead the response of molten polymers is char­
acterized by at least two relaxation rates. In this section we will show that the KBKZ-model 
with two widely spaced relaxation rates At and A2 can be reduced to the KBKZ-model with 
only the dominant relaxation rate At retained and supplied with a Newtonian viscous term 
involving a fictitious solvent viscosity 1/s = J.,t2/A2. 

We start from the stress relaxation function 

(2.6.1) 

with two widely spaced relaxation rates At « A2, and corresponding shear moduli J.,tt and 
J.,t2. The corresponding expression for m(t) = -G'(t) and Papanastasiou's kernel K from 
(2.1.10) are inserted into (2.1.7). As a result we find that the polymer contribution Sp to the 
extra stress tensor Sis given by 

1
1 c· 

S = [" A e-'-dt-r) +" A e-'-z(t-r>]c-td-c 
p 3 + I rl 1 r2 2 , 

-oo c- c-l 
(2.6.2) 

similar to (2.1.11). We omit the Newtonian viscous term by putting 1/s = 0 in (2.1.3), so that 
the extra stress tensor S reads 

S=T+ pi Sp. (2.6.3) 

The stress tensor thus determined, is substituted into the balance of linear momentum 
(2.1.2) without body forces (pb = 0) and with the inertia forces neglected (p(ov f&t + (v · 
V)v) = 0). The balance is satisfied if Trz = -rf(t)/2 (cf. (2.1.34)), where f is the pressure 
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gradient -aplaz driving the flow (see (2.1.23)). Combined with the representation (2.1.21)3 

for Tn., properly modified, we obtain the governing equation (similar to (2.1.27)) 

C y(r, t, 0) [ -At I+ -A2I) + , 1l C y(r, t, 't') -AJ (1-r)d -..:.......:,,....,...-__;__ J.L 1 e J.Lz e J.L JA 1 e r 
c + y2(r, t, 0) 0 c + y2(r, t, r) 

+ ). [' cy(r, t, r) -:<2 (1-r)d 1 
J.Lz 2 Jo c + yZ(r, t, r) e r -:yf(t), 0::::: r::::: R, t > 0, 

(2.6.4) 

in which the shear strain y is defined by (2. 1.19). 
By scaling time by the dominant relaxation time ).}1, length by the radius R, and by in­

troducing the dimensionless variables v viAl RJc, y := yl Jc and j := Rfl J.L1 Jc, we 
transform equation (2.6.4) into its dimensionless form (since no confusion will arise we omit 
the caret) 

h(I'(r, t))e-1 + 1
1 

h(y(r, t, r))e-(t-r) dr + mh(r(r, t))e-fJ1 

+mf31
1 

h(y(r, t, r))e-fJ(t-r)dr ~rf(t), 0::::: r::::: 1, t > 0, 

{2.6.5) 

where the dimensionless parameters m and {3 are given by 

J.Lz m=-, (2.6.6) 
J.LJ 

In (2.6.5) the function h is defined by (2.1.30), while r(r, t) = y(r, t, 0) by (2.1.31). The 
relation (2.1.19) between y and av1ar remains the same after scaling, and also holds for the 
dimensionless variables y and av1ar. By multiplying (2.6.5) by {31m we obtain 

c:-1h(r(r, t))e-1 + c:-1 11 

h(y(r, t, r))e-(t-tldr + {3h(r(r, t))e-fJ1 

+ {3211 

h(y(r, t, r))e-fl(l-r:)dr ~c:- 1rf(t), 0::::: r::::: 1, t > 0, 

in which c: ml {3. 

(2.6.7) 

The secondary relaxation time ).21 is supposed to be much shorter than the dominant re­
laxation time A}1, so that {3 » 1. We shall now prove that the third and fourth terms in the 
left-hand side of (2.6.7) tend to w(r, t) = -av(r, t)lor as f3 ~ oo. 

Theorem 2.6.1 Let the derivatives w = ar I at a:nd aw I at be bounded as functions of time t. 
Then for all t > 0, 

lim { f3h(I'(r, t))e-flt + {32 [' h(I'(r, t)- I'(r, r))e-fJ(t-r)dr } = w(r, t). (2.6.8) 
fJ->-oo Jo 
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Proof As the dependence on r is irrelevant for the proof, we suppress this variable and rep­
resent all functions as depending only on t. Thus, we need to prove that for all t > 0, 

lim { f3h(r(t))e-P1 +{32 rh(r(t) -r(t-s))e-f3sds w(t)} =0. 
p--.oo Jo (2.6.9) 

We start with some preliminaries. Let 8 > 0. Given the boundedness of ()wjat, there exists 
an so > 0 such that 

jr(t) r(t- s)- sw(t)l :s 8s, 0 :::s s <so, t > 0. 

For the function h defined by (2.1.30) we have the inequalities 

1 
lh(x)l :S 2' lh(x + y)- h(y)l :S lxl, x, y E lR, 

while there exists an x0 > 0 such that 

lh(x) -xi :S 81xl, 0 :S lxl <xo. 

For given to > 0 there exists a f3o > 0 such that 

(1 + f3to)e-P1o < 8, f3e-Pio < 8, f3 > f3o. 

(2.6.10) 

(2.6.11) 

(2.6.12) 

(2.6.13) 

Let t > 0 be fixed, and let M := sup1>o lw(t)i. Choose to such that 0 < to < t and to < 
min{s0,x0 /M}. Then by use of (2.6.11) and (2.6.13) we have the estimate 

lf3h(r(t) )e-P1 + {3211 

h(r(t) - r(t s) )e-f3s dsl 
lo 

1 11 1 8 :S -{3(e-P1 + f3 e-fJsds) = -pe-P10 < f3 > f3o. 
2 lo 2 

(2.6.14) 

Next, by use of (2.6.10)-(2.6.13), the remaining part of the expression on the. left of (2.6.9) 
can be estimated by 

1/32110 

h(r(t)- r(t s))e-P'ds w(t)l 

= 1 {32110 

[ h(r(t) r(t s) sw(t) + sw(t)) h(sw(t)) ]e-f3s ds 

· +f32 11Q [h(sw(t)) sw(t)]e-Ps ds + {321
10 

sw(t)e-Ps ds- w(t) I 

:S {32 1~ Jr(t)- r(t s) sw(t)!e-Psds 

+{32110 

8slw(t) le-Ps ds + lf32 w(t) 110 

se-f3s ds - w(t) I 

:S {32110 

8se-f3s ds + M8 + M(l + f3to)e-Pto < (1 + 2M)8, f3 > f3o. 

This completes the proof. 

(2.6.15) 

D 



52 CHAPTER 2. PRESSURE-DRIVEN SHEAR FLOW OF A KBKZ-FLUID 

Since fJ » 1, we approximate the third and fourth terms in the left-hand side of (2.6.7) by 
their limit w(r, t) as fJ ~ oo. Then equation (2.6.7), multiplied bye, reduces to 

t 1 . 
h(r(r,t))e-'+ lo h(y(r,t,r))e-(t-r)dr+ew(r,t)='2rf(t), O::::;r::::;l, t>0.(2.6.16) 

The latter equation is identical to the previous equation (2.1.35), which was derived from the 
KBKZ-model with one relaxation rate and supplied with an extra Newtonian viscous term. 
In order that the present parameter e = mf fJ agrees with e = TfsA I I"' from (2.1.28), we need 
to put Tfs = f."'2/A.2. Thus we have shown that equation (2.6.5) for a KBKZ-model with two 
relaxation rates A.1 « A.2, may be approximated by equation (2.1.35) for a KBKZ-model with 
one relaxation rate A.1 and supplied with an extra Newtonian viscous term with a fictitious sol­
vent viscosity Tfs = f."'2/A.2. The Newtonian viscous term accounts for the very fast relaxation 
rates of the polymeric melt. 

The approximation of a KBKZ-model with two widely spaced relaxation rates by a KBKZ­
model with one relaxation rate and a Newtonian viscous term can also be justified in a direct 
manner. To that end, we rewrite the second term in (2.6.1) as 1"'2 exp ( -A.2t) Sf."'lfJexp ( -A.tfJt). 
If fJ » 1, we may approximate this second term by its distribution limit 

lim Sf."'lfJexp(-A.lfJt) = Sf."'l o(t), 
/3--"'oo A.1 

(2.6.17) 

where o denotes the delta-function of Dirac. Then the stress relaxation function becomes 

(2.6.18) 

which replaces (2.6.1). Again, the corresponding expression for m(t) = -G'(t) and Pa­
panastasiou's kernel K from (2.1.10) are inserted into (2.1.7). As a result we find that the 
extra stress tensor S = Sp is given by 

i
t e s = f."'l)"l e-'"1 (t-r) e-1dr 

_ 00 e - 3 + Ic-1 
(2.6.19) 

e 8' (t 
3 + Ic-l 

The first integral in (2.6.19) is recognized as the polymer contribution Sp to the extra stress 
tensor, according to the KBKZ-model with one relaxation rate A.1; see (2.1.11 ). The second 
integral in (2.6.19) is evaluated through an integration by parts yielding 

t e . 8'(t-r)e-1dr= t .!!...{ ee-l }o(t-r)dr 
}_00 e - 3 + Ie-1 J -oo i.h: e 3 + Ic-1 

(2.6.20) 

a { ee-
1 

} I 
!Jr c - 3 + Ic-l r=t. 
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The latter derivative is determined by use of the expression (2.1.18) for c-1 and the special 
values y(r, t, r)l~=t = 0 and iJy(r, t, r)/iJrl~=t = iJv(r, t)fiJr, obtained from (2.1.19): 

a { _c_c-_
1 _}I = [ _ 2cy ay c-I+_c_~{c-t}] 

or c 3 + Ic-1 ~=I (c + y2)2 ar c + y2 Or 'C=t 

= ( ~ av 
-or (r, t) 0 

0 av ) or (r, t) 

0 = -2'D. 

0 

(2.6.21) 

0 

Finally, by combining the previous results and by putting e = m/ fJ = ry,A 1 f J.LI, we find that 
the extra stress tensor S of (2.6.19) can be expressed by 

(2.6.22) 

in accordance with the relation (2.1.3) for the KBKZ-model with one relaxation rate At and 
supplied with a Newtonian viscous term. The present analysis shows that the Newtonian vis­
cous term 2rys '])follows from the constitutive Wagner integral, if the stress relaxation func­
tion G contains a delta-function as in (2.6.18). 

2. 7 Conclusions 

Stability analysis and numerical calculations have been used to analyze the capillary flow of a 
polymeric melt. In order to find a theoretical explanation for the spurt phenomenon observed 
in the experiments of e.g. Vinogradov et al. [52], [53], a flow driven by a prescribed constant 
pressure gradient 7 has been considered. The constitutive behaviour of the polymeric melt is 
described by Wagner's modification of the KBKZ-model, supplemented with an extra New­
tonian viscous term. This extra term accounts for the effect of a small-molecule solvent with 
viscosity '1s· We used the kernel ofPapanastasiou and restricted ourselves to one main relax­
ation rate A. Thus, the KBKZ-model used here describes, by an integral relation, the charac­
teristic behaviour of a viscoelastic concentrated polymer solution with fading memory. The 
addition of the extra Newtonian viscous term is essential in our analysis, since it leads to a 
nonmonotone relation between the steady state shear stress F (r) = r 7/2 and the steady state 
velocity gradient or shear strain-rate w(r). We have shown that this nonmonotone relation 
provides an explanation for the spurt phenomenon. Hence, internal material properties of 
the fluid itself account for the spurt phenomenon, instead of a global external effect such as 
'wall slip', because in our model the no-slip boundary condition at the wall of the capillary 
is maintained. 

Our results for the pressure-driven flow of a KBK.Z-fluid through a cylindrical capillary 
are very similar to those obtained by Malkus et al. [32], [33]. These authors employed the 
differential constitutive model of Johnson, Segalman and Oldroyd (JSO-model) in their anal­
ysis of the pressure-driven flow through a slit die. In addition, Malkus et al. studied the full 
governing JSO system of partial differential equations, whereas our analysis is restricted to 
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the case of inertialess flow governed by the integrodifferential equation (2.1.35) (which ob­
tains by putting ex = 0 in equation (2.1.29) for the full flow problem). 

For pure molten polymers, where the solvent is absent, we have shown that the KBKZ­
model with two widely spaced relaxation rates can be approximated by a KBKZ-model with 
one relaxation rate and an extra Newtonian term viscous term. We have demonstrated that the 
stresses in a concentrated polymer solution, described by Wagner's integral with one relax­
ation rate A. and supplemented with the Newtonian viscous term with viscosity TJs, equal the 
stresses in a pure molten polymer with two widely spaced relaxation rates A.1 and A.2, pro­
vided that A.2 » A.1 =A. and 1/s = ~-t2/A.2, where 11-2 is the shear modulus corresponding to 
A.2. Hence, the Newtonian viscous term accounts for the unhindered polymer chain motions 
described by a very fast secondary relaxation rate. Thus, the KBKZ-model used here, de-· 
scribes the characteristic behaviour of both concentrated polymer solutions and pure molten 
polymers. 

The description of the flow considered here, involves one dimensionless parameter e, 
which is equal to the quotient of the solvent viscosity TJs and the shear viscosity 11-/ A.. In the 
case of no solvent viscosity (TJs = 0) and two widely spaced relaxation rates, the parameter 
e is equal to the quotient of the two shear viscosities. We obtain a nonmonotone steady state 
relation, given by (2.2.10), between the steady state shear stress F(r) and the steady state ve­
locity gradient w(r), ifO < e < e1 = 0.02886. This nonmonotone relation gives rise to three 
distinct steady state solutions w if Fm < F < FM. We showed by analytical and numerical 
means that 

• steady state solutions w with WM < w < Wm are [-unstable (and conjectured to be un­
stable); 

• steady state solutions w with 0 :S w < WM or w > Wm are asymptotically stable; 

• if the stationary pressure gradient 7 exceeds the critical value 7crit = 2F M, the steady 
state equation (2.2.10) has two distinct stable solutions for the steady state velocity 
gradient w(r) for a certain range of the radial coordinate r; 

• as t ---+ oo, the flow reaches a steady state. 

The actual (stable) steady state attained by the fluid has to be determined by numeri­
cal calculations. Which steady state w is attained depends on the radial position, the pre­
scribed stationary pressure gradient 7 and the deformation history of the fluid. Our calcula­
tions reveal that if the flow starts from rest under a prescribed subcritical pressure gradient 
7 < 7crit = 2FM, then the steady state velocity gradient w(r) is a continuous function of the 
radial coordinate r. Consequently, the steady state velocity profile v(r) is a smooth function 
of r, and the flow is referred to as classical flow. If the stationary pressure gradient 7 exceeds 
the critical value 7crit (supercritical flow), one observes that for rM < r :S 1 near the wall and 
during a rather short time interval the velocity gradient increases from a value below WM to 
a value that exceeds WM, after which the flow becomes gradually stationary; for r E [0, rM), 

the velocity gradient tends to a steady state value w(r) < WM. Hence, the steady state veloc­
ity gradient w (r) is discontinuous at r = rM, which leads to a kink in the steady state velocity 
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profile v(r) at r = 'M· The large values of w(r) in the layer rM < r:::; 1 near the wall (the so­
called spurt layer) give rise to an overall raise of the velocity in the capillary, which provides 
an important contribution to the magnitude of the steady state volumetric flow rate Q. As 
a result, if during a loading process the prescribed stationary pressure gradient is gradually 
increased from 7 = 0 up to 7 max > 7cri~> a substantial increase of the volumetric flow rate 
Q occurs at 7 = 7criz· This increase of Q is known as the spurt phenomenon. Since in our 
analysis the no-slip boundary condition v(l) = 0 is maintained (see Figure 2.2), wall slip 
cannot account for the spurt phenomenon. 

In the unloading process where the prescribed stationary pressure gradient is gradually 
decreased from 7 = 7 max down to 7 = 0, the following peculiarities are observed: 

• When the unloading step -~7 = 7 max -7issufficientlysmallsuch that7 > 7 maxFml FM, 
the spurt layer remains fixed, which is referred to as shape memory; 

• the velocity gradient first decreases rapidly, after which it gradually becomes stationary 
again (see the Figures 2.5 and 2.6); 

• when the unloading step -~7 = 7 max- 7 exceeds a certain value corresponding to 
7 < 7 maxFm/ FM, the spurt layer becomes thinner (loss of shape memory) as long as 
7 > 2Fm, and the layer disappears iff < 2Fm; 

• the loading and unloading paths in the plot of Q versus 7 do not coincide, which is 
characteristic for the occurrence of hysteresis (see Figure 2.1 0). 

Hence, in case the steady state solution w is not unique, it depends on the deformation history 
of the fluid which steady state is attained by the fluid. We found that if the flow starts from 
rest under a supercritical pressure gradient 7 > 7cril' top-jumping occurs. This means that, 
in terms ofthe steady state shear stress F (r) r 7/2, the jump in the steady state velocity 
gradient w(r) occurs at the local maximum F = FM, corresponding tor= rM = 2FM/f. 
During the unloading process, shape memory is observed as long as 7 max > 7 > 7 maxFm/ FM, 
whereby the jumpinw(r) occurs at F = F* Fmf/7 max• corresponding to the fixed position 
r r* = 2FM/7 max· Shape memory is lost iff maxFmf FM > 7 > 2Fm, in which case bottom­
jumping occurs: the jump in w(r) occurs at the local minimum F = Fm, corresponding to 
r = rm = 2Fm/f. If 7 < 2Fm, the jump in w(r) has disappeared and the flow is classical 
again. 

In the transient flow behaviour we distinguished different time phases. For a supercritical 
flow we observed, dependent on the radial coordinate r, two or three distinct time phases 
in the development of the velocity gradient w(r, t). These time phases are characterized as 
follows: 

• A Newtonian phase in which w(r, t) decreases on an 0(8)-time scale from its initial 
value w(r, 0) r7/28 to a value w(r, t) = 0(8°), 8---* 0. 

• A latency phase in which w(r, t) = 0(8°), 8---* 0. If r < rM, the latency phase is the 
final phase during which w(r, t) tends to a steady state w(r) < WM. 

• If r > rM, the latency phase is followed by a spurt phase during which w(r, t) suddenly 
increases to a value larger than WM, and then tends to a steady state w(r) > WM. 
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These phases have also been analyzed in terms of the dimensionless stresses S and N, where 
S corresponds to the shear stress due to the polymer contribution, and N corresponds to the 
first normal stress difference. We observed that during the Newtonian phase the relation­
ship between Nand Sis well approximated by N = NNew (S), whereas during the latency 
phaseS remains almost constant at S = F + O(e), e--+ 0. Moreover, we found that during 
loading the calculated (S, N)-plot lies inside the region bounded by the Newtonian curve 
N = NNew(S) and the steady state curves N = No(S) and S = So(N). 

By fitting the dimensionless parameter e to the material parameters of the polymeric melt, 
the dimensional steady state volumetric flow rate Q can be determined as a function of the di­
mensional driving pressure gradient f. This flow rate is of great practical interest in polymer 
processing, since it determines the production rate of an extrusion process; a higher flow rate 
leads to more extrudate produced per unit of time. The dimensional critical pressure gradient 
fcrit beyond which spurt ensues, can be estimated in terms of the material parameters 1'/s. A, 
fL and c, and the radius R ofthe capillary. From this critical pressure gradient the associated 
dimensional critical volumetric flow rate Qcrit can easily be derived, also in terms of TJ., A, 
fL, c and R. In the experiments of Vinogradov et al. [52], [53], the extrudate becomes irreg­
ularly distorted at the onset of spurt. Thus, the critical flow rate Qcrit determines the optimal 
production rate at which a classical steady state flow profile producing a smooth extrudate, 
can be established. 

In Chapter 5 we fit the parameter e to the material parameters of the polymeric samples 
used by Vinogradov et al. [52]. By comparison of our theoretical critical pressure gradient 
fcrit at the onset of spurt, to the experimentally found critical pressure gradient, we are able 
to estimate the parameter c that occurs in Papanastasiou's kernel used in the KBKZ-model. 
Furthermore, we examine the critical conditions for the onset of spurt and hysteresis, in their 
dependence on the material properties of the polymeric fluid. The dependence predicted by 
our theory is next compared to the dependence observed in experiments of Vinogradov et al. 
[52], [53], and of El Kissi and Piau [12]. 



Chapter 3 

Piston-driven shear flow of a JSO-fluid 

In this chapter we analyze the flow of a polymeric melt through a cylindrical capillary. A 
piston, moving at constant speed, controls the flow by inducing a constant volumetric flow 
rate. The pressure gradient is then unknown and adjusts itself to maintain the desired flow 
rate. Since the polymeric melt is strongly viscous, the inertia forces may be neglected. The 
constitutive equation to describe the characteristic behaviour of the viscoelastic fluid with 
fading memory chosen here, is the Johnson-Segalman-Oldroyd (JSO) model supplied with 
an extra Newtonian viscous term. This extra term, which accounts for the unhindered motion 
of the polymer chains, is essential as it leads to a nonmonotone behaviour of the steady state 
shear stress as function of the steady state shear strain-rate or velocity gradient (see Figure 
3.1). 

3.1 Mathematical formulation 

The flow of the incompressible melt is governed by the conservation of mass 

'V·v 0 

and the balance of linear momentum 

V · T + pb = p ( (tv + (v · V)v ) . · at 

(3.1.1) 

(3.1.2) 

Here, pis the (constant) fluid density, b the body force per unit of mass, v the fluid velocity 
and T the total (symmetric) stress tensor. Later on we shall show that for strongly viscous 
fluids the inertia forces, represented by the right-hand side of (3.1.2), can be neglected. 

The characteristic response of the material to a deformation is described by the constitu­
tive equation for the stress. For viscoelastic fluids with fading memory, the stress depends on 
the deformation history. If a polymer solution contains a small-molecule solvent, this solvent 
will generally respond in a viscous manner to any applied force or deformation, separately 
from the elastic response due to the dissolved polymer; see Renardy et al. [ 48, p. 17]. There­
fore, itis assumed thattheextrastress tensorS:= T +pi in the fluid consists of a Newtonian 
viscous component and an isotropic elastic one, namely 

(3.1.3) 

57 
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Here, p is the pressure, I the unit tensor, and ']) is the rate-of-deformation tensor defined by 

1 T (Jv 
']) = 2(£+ £ ), £ gradv = (Jx (=: (\lv)T). (3.1.4) 

Furthermore, "f/s is the solvent viscosity, and the elastic part Sp characterizes the polymer con­
tribution. 

In this chapter the elastic part Sp is assumed to be described by the constitutive JSO­
model, which can be derived from the Phan-Thien-Tanner (PTT) model by neglecting the 
extensional flow response. In the JSO-model, which is suitable in pure shear flows, Sp is 
determined by the following nonlinear differential equation (see Tanner [50, p. 207]): 

di:- LSp- SpLT + (1 a)('lJSp + Sp'lJ) +'ASp= 2J..t'lJ, (3.1.5) 

where d/dt denotes the material derivative. The relaxation rate 'A, the slip parameter a E 

( -1, 1), and the shear modulus J..t are material parameters. The special cases a = 1, a = 0 and 
a 1 are known as the upper convected, the corotational and the lower convected Maxwell 
models, respectively; cf. Renardy et al. [48, p. 24]. 

In general, the constitutive equation involves a continuous spectrum of relaxation rates. 
Let this spectrum be approximated by choosing a set of n 2:: 1 discrete relaxation rates A.;, 
then the elastic part Sp of the extra stress tensor Sis given by the multimode model 

n 

Sp= L,s$\ (3.1.6) 
i=l 

whereeaehelasticpartSX) is determined by (3.1.5) with Sp = Sjj), A.= A.;, f..t = J..t;, and a= a;, 
i 1, ... , n. Malkus et al. [33] have shown that the effects of two widely spaced relaxation 
rates AI and A.z for aJSO-fluid with az 1 are correctly modelled by one main relaxation rate 
'A =A. I and a small Newtonian viscosity "f/s, provided that A.2 » 'A1 and "f/s = J..tz/A.2 . Thus, 
the extra Newtonian viscous term 2.,, '])accounts either for the response of a small-molecule 
solvent, or for the unhindered polymer chain motions described by a very fast relaxation rate. 

We consider the axisymmetric shear flow in a cylindrical tube with radius R. Cylindrical 
coordinates (r, e. z) are introduced with the z-axis along the centerline of the tube. With the 
flow aligned along the z-axis, the flow parameters are independent of the axial coordinate 
z and the azimuthal coordinate e. Under the condition that the flow starts from rest at time 

0, the velocity takes the form 

v v(r, t)H(t)ez, (3.1.7) 

where His the (Heaviside) step function and ez is a unit vector in the positive z-direction. 
The conservation of mass is now automatically satisfied, and the convective terms p(v. \l)v 
in (3.1.2) disappear. The no-slip boundary condition at the wall and the regularity of the 
velocity at the axis require 

v(R, t) = 0, (3.1.8) 

and 

011 or (0, t) = 0, (3.1.9) 
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respectively. 
With the velocity given by (3.1.7), Lu = ovfor is the only non-zero component of Land 

the componentsSij of Spare functions of rand t only. A<; a result, the material derivative 
dSp/dt is equal to the partial time derivative oSp/ot, and the JSO-model (3.1.5) transforms 
into the following. equations: 

as,, . (l 
at + 

av 
a)S,z or +AS,, = 0, 

asu av --at- (1 + a)S,, or + ASzz = 0, 

1 av 1 av av 
ot - 2(l + a)Srr or+ 2(1- a)Su or+ ASrz = Jt or, 

asrli "iit + ASro = 0, 

0
::

9 
+AS(J(} 0, 

as(}z 
ot +AS9z =0. 

(3.1.10) 

Under the initial condition Sp = Oatt 0, the solutions of(3.1.10)4•5•6 are S,9 S(J(} = S9z = 0. 
Introduction of the new variables 

Z ~(1 + a)S,, ~(1 a)S44 , 

(3.1.11) 

in (3.1.10) yields for S, Z and W the differential equations 

az av at- (1 a2 )S or + }..Z = 0, 

aw 
at +}..W =O. (3.1.12) 

as av av 
-+ Z-+AS= -Jt-. 
at or or 

The solution of the second equation of (3.1.12), with W(r, 0) 0, is W = 0, implying that 

Z (1 + a)S,, = (1 - a)S44 • 

In terms of Sand Z, the stress components T;i of ti according to (3.1.3) become 

1 
T,, = -p + -

1
-Z(r, t), 
+a 
1 

T44 =-p- t), 
1 a 

T,9 Tez = 0, 

T(J(}=-p, 

av 
Trz = T/s or (r, t) S(r, t), 

(3.1.13) 

(3.1.14) 
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where p = p(r, z, t). The first and second normal stress differences N1 := Tu. - T,., and 
Nz :=-Too+ T,., are determined by 

2 
Nt = ---2 Z(r,t), 

1-a 
Nz 1 a 
Nt =--2-. (3.1.15) 

Hence, Z is related to the first normal stress difference, and the ratio of the two normal stress 
differences is constant. 

The balance of linear momentum (3.1.2), with pb = 0, is satisfied if the stress compo­
nents Tii, given by (3.1.14), solve the equations 

aTrr 1 -a + -(T,.,- Too)= 0, 
r r 

Since T,.z and v are independent of z, the solution for the pressure p takes the form 

p(r, z, t) = - f(t)z + po(r, t), 

with 

1 1 1' p0 (r, t) = -
1 
-Z(r, t) + -

1
- ---a 

+a +a 0 y 
+ Po(t), 

while the shear stress T,.z equals 

1 p r av 
Trz = -;yf(t) +-;: lo y at (y, t)dy. 

(3.1.16) 

(3.1.17) 

(3.1.18) 

(3.1.19) 

Here, f is the pressure gradient driving the flow, and Po is a further irrelevant pressure term. 
Substitution of (3.1.17) and (3.1.18) into (3.1.14)1•2•3 yields 

T,, = f(t)z- -
1-1' Z(y,t) dy 

1 +a 0 y 
Po(t), 

I 1' Z(y, t) Z(r, t) 
Po(t), (3.1.20) Too = f(t)z- -- ---dy 

l+a I +a o y 

Tu. = f(t)z- _1_1' Z(y, t) dy 2Z(r,t) 
Po(t). 

1 +a 0 y 1 -a2 

By equating the expressions (3.1.14)4 and (3.1.19) for Trz, we are led to the following relation 
between the velocity gradient and the pressure gradient: 

av(r, t) 
-TJ,~ + S(r, t) I p 1' ov -rj(t)-- y-(y,t)dy, Os_rs_R, t>O. (3.1.21) 

2 r 0 at 
Finally, the volumetric flow rate Q is defined by 

Q(t) = 2:rr 1R v(r, t)rdr. (3.1.22) 

The equations are made dimensionless by scaling length by R and time by A -I. Further­
more, we introduce the dimensionless variables fJ, j, Z and S by writing v = ARv f J 1 - a2, 
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f = ,_, J I R ~. Z = ,_,Z; and S ,_,s I J 1 - a2, and the two dimensionless parameters 
e and a given by 

(3.1.23) 

Then equation (3.1.21) turns into its dimensionless form, reading (since no confusion will 
arise we omit the caret) 

1 a 1' av ew(r, t) + S(r, t) = -
2
rf(t)-- y-(y, t)dy, 0:::: r:::: 1, t > 0, 

r 0 at 
(3.1.24) 

and equations (3.1.12)1•3 transform into 

az as 
- = -Z- wS -S + w(l + Z), 0:::: r:::: 1, t > 0. at · at (3.1.25) 

Here, the velocity gradient, or shear strain-rate, w is defined by 

av 
w(r, t) =- ar (r, t). (3.1.26) 

Notice that Malkus et al. [32], [33] obtain the same dimensionless equations (3.1.25) for the 
flow of a JSO-fluid through a slit die. The parameter e represents the ratio of the Newtonian 
viscosity rts and the shear viscosity ~J,j'A, and the quotient ale corresponds to the Reynolds 
number. For the strongly viscous polymers we consider, a « 1. Thus, the last term in the 
right-hand side of (3.1.24) may be neglected, which amounts to the neglect of the inertia 
forces in (3.1.2). By putting a= 0, equation (3.1.24) reduces to 

1 
ew(r, t) + S(r, t) = 2rf(t), 0:::: r::=: 1, t ~ 0. (3.1.27) 

The boundary conditions pertinent to (3.1.27) read in dimensionless form 

v(l, t) = 0, w(O, t) = 0, t > 0. (3.1.28) 

By writing Q = rc)..R3 QIJl - a2 , the expression (3.1.22)passes into the dimensionless form 
(omitting the carets) 

Q(t) 211 

v(r, t)rdr. (3.1.29) 

After one integration by parts with the aid of the no-slip boundary condition (3.1.2W at the 
wall, the volumetric flow rate Q can be expressed in terms of the velocity gradient w by 

Q(t) = 11 

~w(r, t)dr. (3.1.30) 

Elimination of w by means of (3.1.27), transforms (3.1.30) into the following (implicit) re­
lation between the pressure gradient f and the volumetric flow rate Q: 

f(t) = 8eQ(t) +81
1 

rzscr,t)dr. (3.1.31) 
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For the piston-driven flow considered here, it is understood that the volumetric flow rate 
has a prescribed constant value Qfort 2:: 0. Thus, after substitution of Q(t) = Qinto (3.1.31), 
we obtain for the four unknowns f, w, S, and Z, the following system that describes the 
piston-driven flow: 

1 
ew(r, t) + S(r, t) = 2rf(t), 

as at -S+w(l+Z), 

f(t) SeQ+ sfo1 

?S(r, t)dr, 

az 
-=-Z-wS at ' o::::; r::::; 1, 

t 2:: 0, 
(3.1.32) 

t > 0. 

For t < 0 the fluid is at rest, and at t = 0 the flow is suddenly started up by imposing the. 
constant flow rate Q. Thus, the initial conditions for Sand Z which are supposed to be con­
tinuous at t = 0, are given by 

S(r, 0) = 0, Z(r, 0) = 0, 0::::; r ::::; 1. (3.1.33) 

Substitution of(3.1.33) into (3.1.32)1•2 then yields the initial values 

/(0) =SeQ, w(r, 0) = 4Qr, · 0 ::::; r ::::; 1. (3.1.34) 

Notice that, in contrast to Chapter 2 where w(r, 0) = 0(1/e), the initial velocity gradient 
of the piston-driven flow considered here is of order e0

, e-+ 0. By integration with respect 
to r and by use of the boundary condition at the wall, we find that the initial velocity profile 
v(r, 0) = 2 Q(l - r 2 ) is parabolic in r. The equations (3.1.32) governing the piston-driven 
flow can be viewed as a continuous family of quadratic ordinary differential equations cou­
pled by a non-local constraint that fixes the volumetric flow rate Q. Malk:us et al. [35, Sec. 3] 
have shown that the system (3.1.32) for the inertialess piston-driven flow is globally well­
posed in time. Following Malkus et al. [35], [36], we establish the Lyapunov-type identity 

:r { S2 
+ (Z + 1)

2 
} = -2 [ S

2 
+ ( z + ~ r ~ J. (3.1.35) 

which readily follows from (3.1.32)3•4. This identity can be used to prove global existence 
and boundedness of solutions of the system (3.1.32), in much the same manner as in [35], 
[36]. However, we will not pursue this point. 

3.2 Steady state flow 

In this section we investigate the steady state reached by the flow as t -+ oo. The steady state 
flow, driven by the constant volumetric flow rate Q, is described in terms of the steady state 
variables 

cv(r) = lim w(r, t), 
1->00 

7 =lim f(t), 
l->00 

S(r) = lim S(r, t), 
t-+00 

Z(r) = lim Z(r, t), 
l-+00 

(3.2.1) 
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under the assumption that these limits exist. In (3.2.1 ), w is the steady state velocity gradient, 
7 is the steady state pressure gradient, and S and Z are the steady state extra stresses. For 
t-+ oo, the equations (3.1.32) reduce to 

- 1-
ew(r) + S(r) = 2r f, 

0 = + w(l + Z), 

7 = 8&Q + 811 

?S(r)dr, 

o = -z ws. 
The solutions of (3.2.2)3•

4 expressed in terms of w read 

- w(r) 
S(r) = 1 + w2(r)' 

(3.2.2) 

(3.2.3) 

On substitution of (3.2.3)1 into (3.2.2)1 , we find that the steady state velocity gradient can be 
determined for each r E [0, 1] by solving w w(r) from the equation 

:J(w(r)) = F(r), 

where the steady state shear stress F is defined by 

F(r) = rf/2, 

and the function :J is defined by 

(J) 

:J(w) = ew + 
+ 

(3.2.4) 

(3.2.5) 

(3.2.6) 

Notice that the same function :J appears in Malk.us et al. [32], [33]. For a given volumetric 
flow rate Q, the velocity gradient w must satisfy the constraint 

Q 11 

r2w(r)dr, (3.2.7) 

obtained by letting t-+ oo in (3.1.30). The steady state velocity profile v(r) lim:-,.00 v(r, t) 
is obtained by integration of V' (r) -w(r) using the boundary condition v(l) = 0 at the 
wall. 

Fore< 1/8 the function :fisnonmonotoneinw. InFigure3.1 the function :J(w) is 
plotted for a specific value of£ with 0 < e < 1/8. Since theN ewtonian viscosity T/s is small in 
comparison to the shear viscosity f.L/A, we will henceforth assume thatO < £ < 1/8. Then the 
function :J(w) has two extreme values, a maximum FM = :J(wM) at w = WM [(1- 2£­
Jl - 8e)./2e]lf2 and a minimum Fm :f(wm) atw = Wm [(1- 2e + Jl - 8&)/2&]112 ; see 
Figure 3.1. In addition tow= WM andw = Wm, both equations :f(w) = FM and :f(w) = Fm 
have a second solution w = WM and w = Wm, respectively; see Figure 3.1. For small values 
of e the following expansions can be derived: 

1 3 
-[1- -£ 
J€ 2 

Wm = J€[2 + 5e + O(e2
)], 

5 
Fm = J€[2- £- 4e2 + 0(&3

)]. 

(3.2.8) 
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:r Fw 

l FM 

F. --. m 

Figure 3.1 The function :J((J)) = e(J) + (J)j(l + (J)2), when 0 < e < 1/8. In steady 
state flow the velocity gradient (J) satisfies :F ((J)) = F, where F = r 7/2 is the steady 
state shear stress. 

The steady state shear stress F is linear in r and has its maximum at the wall r = 1. If 
this maximum, denoted by Fw = 7/2, remains below the minimum Fm, then equation (3.2.4) 
has a unique solution w(r) < ii>m for each radial coordinate r. Clearly, w(r) is continuous in 
r, leading to a smooth steady state velocity profile ii(r), and the flow is referred to as clas­
sical flow. If the maximum Fw = f /2 exceeds the minimum Fm, equation (3.2.4) has three 
distinct solutions if Fm < F < FM. Malkus et al. [33, Sec. 3] have shown by a phase-plane 
analysis of the critical points of the system (3.1.32), that the solution w with WM < w < Wm 
corresponds to a saddle point. Hence, this w-solution is unstable and is therefore not attained. 
If F(l) > FM, i.e. iff> 2FM =:fait (supercritical flow), the steady state velocity gradient 
w(r) has at least one jump at some radial coordinate r. In case of exactly one jump we denote 
the radial coordinate at which the jump occurs by r* (r* < 1), and we refer to the flow as spurt 
flow. Hence, in spurt flow w(r) < w: for 0::::; r < r*, whereas w(r) > w~ for r* < r ::::; 1, 
where 

limw(r) < limw(r) = w~, 
rtr• r-l.r' 

(3.2.9) 

with w: ::::; WM and w~ ~ Wm. From (3.2.3) it follows that in spurt flow S(r) and Z(r) are also 
discontinuous at r r*. The jump in w results in a kink in the steady state velocity profile 
v(r) at r r*, and a spurt layer with large velocity gradients forms near the wall;. see Figure 
2.2. For small 6, we can express the steady state values in this spurt layer in terms of the 
shear stress F(r) = rf/2, r* < r::::; I, by 

F 
(t)=-

6 

62 263 4 
-l+F2 + F4 +0(6 ), 

(3.2.10) 

6-+ 0. 

To obtain an expression for the constant volumetric flow rate Q in terms of the steady 
state pressure gradient f, we change the variable of integration.in (3.2.7) from r tow, by 
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using the steady state equation (3.2.4) written as r = 2'.f((J))/7. This transforms the relation 
(3.2.7) into 

Q ~3 { :r2 ((/)) :J' ((/) )(J)d(J). 
f Jw (3.2.11) 

Here, U' is the set of attained velocity gradients (J)(r), 0 :S r :S 1, which we shall specify be­
low for classical flow and for spurt flow. The primitive function P of the integrand in (3.2.11) 
can be calculated by analytical means, yielding 

1 1 1 P((J)) = _ 8 3(/)4 + _8 2(/)2 _ -s(l 
4 2 2 

3- 4s 1 
(3.2.12) 

- 4(1 + (/)2)2 + 3(1 + (/)2)3. 

For classical flow, the set U' is given by U' [0, (!)wall] where (!)wall := (J)(l) :S (J)M, 
implying that (3.2.11) can be evaluated as 

(3.2.13) 

In classical flow one has 0 :S (J)(r) :S (!)wall :S (J)M for 0 r s 1, and (J)(r) is found as the 
smallest solution of the steady state equation '.f((J){r)) = By means of Figure 3.1 itis 
readily seen that for fixed r, the velocity gradient (J){r) increases with increasing]. Thus it 
follows from (3.2.7) that Q, as given by (3.2.13), is an increasing function of]. The inverse 
of this function exists and is denoted by 7 !c1as (Q), which is an increasing function of Q. 
The maximum value of Qforwhichclassical flow can be achieved, occursif7 = 7cril = 2FM 

. - - . 3 
and (!)wall = (J)M· Denote this value by Qcritt then Qcrit [P((J)M)- P(O)]/ FM by (3.2.13). 
By use of (3.2.12) and the expansions (3.2.8) we establish the following approximations: 

- 1 2 
Qcril = 6 + (3- 41n2)s + O(s ), E:-+ 0. (3.2.14) 

In classical flow the steady state velocity gradient can be approximated by 

(J)(r) (3.2.15) 

provided that 7 s 1. Likewise, the volumetric flow rate Q as given by (3.2.13) can be ap­
proximated by 

(3.2.16) 

In spurt flow the steady state velocity gradient (J)(r) is discontinuous at some radial co-
ordinate r r*, where (J) jumps from a value (!):_ < (J)M to a value (J)~ > (J)m; cf. Figure 2. 7b. 
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Hence, for spurt flow the set W is given by W = [0, w:.] U [w~, Wwau] where Wwall = w(1), 
implying that (3.2.11) can be evaluated as 

Q = ~3 [P(w:.)- P(O) + P(wwall)- P(w~)], 0 S W~ < W~ S Wwall· 
f 

(3.2.17) 

Here, w = Wwall is found as the largest solution of the steady state equation :f(w) = f/2, 
whilew = w:. andw = w~ are the smallest and largest solutions of the equation :J(w) = r* f/2. 
Thus the volumetric flow rate Q is uniquely determined by the values off and r•, and we 
shortly rewrite (3.2.17) as 

Q=Q(r*,f). (3.2.18) 

Next we examine the monotony of the function Q with respect to f and r•. In spurt flow the 
steady state velocity gradient w (r) is found as the smallest or the largest solution of the steady 
state equation :f(w(r)) = rf/2, dependent on whetherO s r < r• orr*< r s 1, respectively. 
By use of Figure 3.1 we observe that for fixed rand r•, w(r) increases with increasing f, 
while for fixed rand f, w(r) decreases with increasing r•. Then it follows from (3.2.7) that 
Q = Q (r* , f) is an increasing function off and a decreasing function of r*. Hence, for a 
given flow rate Q and radial coordinate r•, there exists a unique steady state pressure gradi­
ent f such that Q = Q (r*, f). Spurt flow can only occur iff~ 2Fm and accordingly, the 
function Q (r*, f) is defined for f ~ 2Fm, rm s r• s min{l, rM }. Here, the lower bound 
r• = rm := 2Fm/f corresponds to bottom-jumping, whereby F* = F(r*) = Fm and w jumps 
fromw~ = Wm tow~= wm; cf. Figure2.7c. The upperboundr* = rM := 2FM/f corresponds 
to top-jumping, whereby F* = F(r*) = FM and w jumps from w:. = WM tow~ = WM; cf. 
Figure 2.7a. For a fixed f ~ 2Fm, the function Q = Q (r*, f) has its maximum at r• = rm, 
corresponding to bottom-jumping, and this maximum is given by 

- - 8 
Q = Omax(f) = _3 [P(wm)- P(O) + P(Wwall)- P(wm)]. 

f 
(3.2.19) 

Since Ou.ru<f) is an increasing function off, the inverse of this function exists and is de­
noted by f = /bottom ( Q). Consequently, the lower bound r• = r m can be represented as a 
function of Q according to r• = rbottom(Q) := 2Fm//bottom(Q). The functions /bottom(Q) 
and rbottom (Q) are defined for Q ~ 0max(2Fm) = [P(wm) - P(O)]/ F~ =: Q0 . Use of the 
expansions (3.2.8) yields the approximation 

€-+ 0. (3.2.20) 

For a fixed f ~ 2FM, the function Q = Q (r*, f) has its minimum at r* = rM, corresponding 
to top-jumping, and this minimum is given by 

- - 8 
Q = Oo,;n (f) = _ 3 [P(WM)- P(O) + P(Wwall)- P(wM )], 

f 
f ~ 2FM. (3.2.21) 

Since Oo,;n (j) is an increasing function off, the inverse of this function exists and is denoted 
by f = ftop(Q). Consequently, the upper bound r• = rM can be represented as a function 
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of according tor*= r:op(Q) := 2FM/!top(Q). The functions /top(Q) and r:op(Q) are 

defined for Q 2::: Ooun (2FM) = [P(wM)- P(O)]j Fit= Qcrit· Finally, Ooun (j) S Q (r*, f) S 
Ormu(J) holds, which implies that · 

(3.2.22) 

Plots of the functions /c1as (Q), /bottom (Q), and /top(Q), are shown as dashed curves in Figure 
3.5, while plots of the functions 1- rZouom (Q) and 1- r:op (Q), are shown as dashed curves 

in Figure 3.6. In Table 3.1 the values of WM, Wm, FM, Fm. WM, Wm, Qcrit and Q0, are given 
for s 0.02, 0.01 and 0.005. 

s WM Wm FM Fm WM Wm Qcrit Qo 
0.02 1.0427 6.8493 0.5204 0.2799 23.9356 0.2984 0.1714 0.0724 
O.Ql 1.0206 9.8467 0.5101 0.1990 48.9689 0.2052 0.1690 0.0506 
0.005 1.0102 14.0349 0.5050 0.1411 98.9847 0.1432 0.1678 0.0356 

Table 3.1 The values of WM, Wm, FM, Fm, WM, Wm, Qcrit and Q0 , for s 0.02, 0.01 
and0.005. 

In conclusion, for a prescribed constant flow rate Q we have for a possible steady state: 

• If 0 s Q s Q0 , the steady state is unique; classical flow occurs with]= /c1as (Q). 

• If Q0 < Q s Qcrit> the steady state is not unique; either classical flow or spurt flow 
occurs with /bottom(Q) S] S /clas(Q). 

• If Q > QcriP the steady state is not unique; spurt flow occurs with /bottom(Q) s] s 
/top(Q). 

Notice that the results derived in this section are only valid in case the steady state does indeed 
exist. Numerical computations as carried out in the next section will show whether or not the 
flow tends to a steady state as t ~ oo. It will turn out that for Q s Qcrit there is no jump in 
the steady state velocity gradient, so that the flow is classical. 

3.3 Transient flow behaviour 

In this section we compute for t > 0 the transient flow, starting from rest at time t = 0 and 
driven by the constant volumetric flow rate Q(t) Q, t 2::: 0. The flow is governed by the 
system of equations (3. 1.32), with initial conditions (3.1.33) and (3.1.34 ). From the numeri­
cal results we infer whether the flow reaches a steady state, and we determine the steady state 
variables. The main interest goes to the relationship between Q and the steady state pressure 
gradient]= lim~-1-oo f(t). In the case of a classical steady state this relationship is one-to­
one: ] = /c1as (Q), obtainable as the inverse of (3.2.13). In the case of a spurt steady state, 
7 is not uniquely determined by just Q, as discussed below (3.2.18). Whether the flow tends 
to a steady state, is found to depend on the values of Q and the dimensionless parameters. 
In the first part of this section we take s 0.02 and compute the transient flow for several 
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values of Q. It turns out that a steady state is reached for all values of Q considered. Fur­
thermore, the steady state velocity gradient w(r) = limz.-.00 w(r, t) is either continuous in r, 
corresponding to classical flow, or w(r) has one jump at r = r*, corresponding to spurt flow. 
In the latter case, the radial coordinate r* is related to Q and 7 by (3.2.18). Next, we present 
some analytical approximations for f(t), w(r, t), S(r, t) and Z(r, t), that are valid during the 
initial phase of the flow. Finally. we investigate the dependence of the transient flow on the 
parameter 6, by taking 6 0.01 and 6 = 0.005. The immerical calculations for 6 = 0.01 re­
veal that a steady state is reached for all values of Q considered. However, in case 6 = 0.005 
we find a range of Q-values for which the flow shows so-called persistent oscillations that 
do not die out, so that no steady state is attained. 

The equations (3.1.32) for f, w, S and Z, are solved by numerical integration. Let the 
discretisation time step be denoted by l:::.t. Divide the interval 0 _:::: r _:::: 1 into M subintervals 
of equal length t::.r 1 I M. The numerical discretisation scheme used below for the com­
putation of S, Z and w, has been adopted from Malkus et al. [32], [34], [351; see [34] for a 
detailed analysis of the stability of the algorithm. Fork= 0, 1, ... , M, n = 1, 2, 3, ... , the 
stresses S(r, t) and Z(r, t) at t tn := nt::.t and r = rk := kt::.r are computed according to the 
following first-order scheme: 

S(rk. tn) = [1- l:::.t]S(rk. tn-d + l:::.tw(rk. tn-d[I + Z(rk. tn-1)], 
(3.3.1) 

Z(rk. tn) = [1- l:::.t]Z(rk. tn-d l:::.tw(rk. tn-dS(rk. tn), 

with initial values S(rk, 0) 0, Z(rk, 0) 0, w(~~:, 0) = 4rk Q. Hence, Sis treated explicitly 
(Euler forward), whereas (the nonlinear term in) Z is treated semi-implicitly. Next we com­
pute the pressure gradient f(tn) by approximating the integral in (3.1.32f by the trapezoidal 
rule, to obtain 

M-1 

f(tn) = 86Q + 8/:::.r L rfS(rk. tn) + 4/:::.r S(l, tn ). (3.3.2) 
k=l 

Subsequently, for k = 0, 1, ... , M, the velocity gradient w (rk, tn) is computed according to 

(3.3.3) 

System (3.1.32) is thus treated explicitly, and for given Q and 6 we obtain the numerically 
computed values f(tn), w(rt. tn), S(~~:, tn) and Z(rk. tn), k 1, 2, ... M, n 1, 2, .... 

In Figure 3.2 the pressure gradient f(t), the velocity gradient w(l, t) at the wall, and 
the stresses S(l, t) and Z(l, t) at the wall are plotted as functions of time t, for 6 = 0.02 
and Q = 0.1; the plots are drawn as solid curves. We observe that f(t), w(I, t), S(l, t) 
and Z(l, t) are monotone and smooth functions oft. After sufficient time a steady state 
is reached. From the numerical results that underlie Figure 3.2, we determine the steady 
state values 7, w(l), S(l) and Z(l), as listed in Table 3.2. It has been checked that these 
values do satisfy (3.2.3) and the steady state equation !J(w(l)) 7/2; cf. (3.2.4). Since 
Q = 0.1 E (Q0 , Qcrit) for 6 = 0.02 (see Table 3.1), the steady state pressure gradient 7 is 
not uniquely determined by just the given ftow rate Q; either a classical steady state or a spurt 
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steady state with a discontinuous velocity gradient occurs. The computations for Q = 0.1 re­
veal that w(l) < WM, implying that the flow reaches a classical steady state with a continuous 
steady state velocity gradient. As a further check it has been verified that the relation (3.2.13) 
for classical flow is satisfied. 

f(t) w(l,t) 

r r 

.... 
....... 

0.44 

OA3S 

..... 

OJ 

10 

-t --t 

S(l, t) Z(l, t) l :.:.--~~--.---r;,.,..,...--....-~--.---,---, r ~-.----.---.----~ 

0.06 

-0.1 

-t -t 

Figure 3.2 The pressure gradient f (t), the velocity gradient w( 1, t), and the stresses 
S(l, t) and Z(l, t) as functions of timet, fore 0.02 and Q(t) = Q = 0.1, t :=: 0, 
computed according to (3.3.1)-(3.3.3) with !:it= 0.0005 and 6.r 0.0004, and plotted 
as solid curves. The approximations fo(t) and So(l, t) are plotted as dashed-dotted 
curves, and the approximations h (t), w1 (1, t), S1 (1, t) and Z1 (1, t) as dashed curves. 
The dotted lines correspond to the steady state values of Table 3.2: 

To investigate supercritical flow ( Q > Qcrir = 0.1714) for s = 0.02, we take successively 
Q = 0.2 and Q 1.0. In the Figures 3.3 and 3.4, the pressure gradient f(t), the velocity gra­
dient w(l, t) at the wall, and the stresses S(l, t) and Z(l, t) at the wall are plotted as func­
tions of timet, and the plots are drawn as solid curves. We observe for both flow rates that in 
the beginning f(t) shows an overshoot. Mter sufficient time this overshoot disappears and 
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Figure 3.3 The pressure gradient f(t), the velocity gradient w(1, t), and the stresses 
S(1, t) and Z(1, t) as functions of timet, fore= O.Q2 and Q(t) = Q = 0.2, t:::: 0, 
computed according to (3.3.1)-(3.3.3)with M = 0.0005 and M = 0.0004, and plotted 
as solid curves. The approximations /o(t) and S0 (1, t) are plotted as dashed-dotted 
curves, and the approximations ft (t), w1 (1, t), S1 (1, t) and Zt (1, t) as dashed curves. 
The dotted lines correspond to the steady state values of Table 3.2. 
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- -
S(l) 

-
Q f r* (V~ w+ w(l) Z(l) 

0.1 0.7369 - - - 0.4249 0.3599 -0.1530 
0.2 0.8001 0.9946 0.4766 16.96 17.09 0.0583 -0.9966 
1.0 0.7591 0.9346 0.4030 14.24 15.83 0.0629 -0.9960 

Table3.2 Thecomputedsteadystatevalues f, r*, w~. w_b w(1), S(l) ~d Z(1), for 
a flow driven by the constant volumetric flow rate Q(t) = Q, t ~ 0, with Q = 0.1, 0.2 
and 1.0, for s = 0.02. 

oscillations in w(l, t), S(l, t) and Z(l, t) appear. For Q = 1.0, also f(t) starts to oscillate. 
The numerical computations disclose that oscillations in w(r, t), S(r, t) and Z(r, t) occur for 
each radial coordinate r. All these oscillations die out and after sufficient time a steady state 
is reached. From the numerical results that underlie Figures 3.3 and 3.4, we determine the 
steady state values 7. w(l), S(l) and Z(l), as listed in Table 3.2. Again it has been checked 
that these values satisfy (3.2.3) and the steady state equation _r(w(l)) = 7/2. The compu­
tations for Q = 0.2 and Q = 1.0 reveal that both steady states show a discontinuous velocity 
gradient w(r) with exactly one jump from w~ < WM tow+ > Wm at some radial coordinate 
r = r*. Furthermore, S (r) and Z (r) are also discontinuous at r = r*. Recall that w = w~ 
and w = w+ are the smallest and largest solutions of the equation .r (w) = r* 7/2. Then the 
values of r*, w~ and w+ are found by numerical solution of equation (3.2.17), and the values 

computed are listed in Table 3.2. The functions 7 = !bottom (Q) and 7 = .ftop (Q) were intro­
duced as the inverses of the functions (3.2.19) and (3.2.21). By a simple calculation we have 
fbottom(Q) = 0.5696, /top(Q) = 1.0421, for Q = 0.2, SO that fbottom(Q) < 7 < /top(Q). It 
has been checked that the latter inequality also holds for Q = 1.0. Hence, the two steady 
states for Q = 0.2 and Q = 1.0, correspond neither to top-jumping nor to bottom-jumping. 

To investigate whether for e = 0.02 and a given flow rate Q the flow starting from rest 
reaches a steady state, we compute the transient flow for several flow rates, varying from 
Q = 0 to Q = 5 .0. The result is that for all values of Q considered, a steady state is reached. 
In Figure 3.5 the steady state pressure gradient 7 attained is plotted versus the flow rate Q, 
fore = 0.02; the 7 versus Q curve (solid curve) is called the flow curve. The functions 
7 = fc~as(Q), 7 = !bottom(Q) and 7 = .ftop(Q), which are the inverse functions of (3.2.13), 
(3.2.19) and (3.2.21), respectively, are represented by the dashed curves in Figure 3.5, and 
correspond to classical flow, bottom-jumping and top-jumping, respectively. We observe that 
for 0:::; Q:::; Qcrito the flow curve coincides with the curve 7 = !c1as (Q), which demonstrates 
that the (subcritical) flow tends to a classical steady state. If the flow becomes supercritical 
(Q > Qc,;1), the computations disclose that the steady state velocity gradient w(r) is discon­
tinuous at some radial coordinate r = r*. The steady state pressure gradient 7 attained satis­
fies !bottom (Q) < 7 < .ftop(Q) for Q > Qcrit• implying that neithertop-jumping nor bottom­
jumping takes place. The flow curve shows a kink at Q = Qcrit and isS-shaped, with a local 
maximum 7 = 7crit at Q = Qcrit and a local minimum 7 ~ 0.6423 at Q ~ 0.35. Further­
more, the flow curve tends to the curve 7 = .ftop (Q) for Q sufficiently large. In Figure 3.6 
the thickness 1 - r* of the spurt layer is plotted versus the flow rate Q for supercritical flow, 
and e = 0.02; the plot is drawn as a solid curve. The value of r* follows either from the 
place of the discontinuity in the computed steady state velocity gradient w(r), or, more ac-
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curately, by numerical solution of equation (3.2.17) with known Q and f. We observe that 
the spurt layer becomes thicker with increasing Q. The functions 1 r* = 1 - 'bottom (Q) 
and 1 - r* 1 - r;;,P (Q) are represented by the dashed curves in Figure 3.6, and correspond 
to bottom-jumping and top-jumping, respectively. 

One of the differences between supercritical transient flow (Q > Qcrit; see the Figures 
3.3 and 3.4) and subcritical transient flow (Q < Qcrit; see Figure 3.2), concerns the occur­
rence of damped oscillations during the period in which the flow settles to a steady state. For 
Q = 0.2 (see Figure 3.3) the oscillations in f(t) are still negligible, but the oscillations in 
S(l, t), w(l, t) and Z(l, t) are clearly visible. For Q = 1.0 (see Figure 3.4) alsothe oscil­
lations in f(t) beeome manifest. The instant at which these oscillations start is preceded by 
a time phase in which f(t), w(l, t), S(l, t) and Z(l, t) behave smoothly in t. Therefore, in 
supercritical flow we distinguish two time phases, characterized as follows: 

1. a so-called latency phase, 0 s t < ts, in which w(r, t) = O(e0 ), e -+ 0, and f(t), 
w(r, t), Z(r, t) and S(r, t) are smooth functions oft; 

2. a so-called spurt phase, t > ts, during which w(r, t), f(t), S(r, t) and Z(r, t) oscillate 
as functions oft. 

The timet ts is taken as the instant at which the normal stress difference Z (1, t) at the wall 
assumes the value -1 for the first time. From the Figures 3.3 and 3.4 we observe that Z = -1 
at t = ts indeed corresponds to the onset of oscillations. 

We shall now derive some analytical approximations for the functions f, w, Sand Z, that 
are valid during the latency phase, provided that e « L During the latency phase w(r, t) = 

O(e0
), e-+ 0, holds forO s r s L Neglecting the O(e)-terms, wepute = Ointhegoveming 

equations (3.1.32) to obtain the following system: 

as az at= -S + w(l + Z), at -Z wS, 0 s r s 1, t > 0, 

f(t) 811 

r 2 S(r, t)dr. 

(3.3.4) 

S(r, t) rf(t)/2, 

Substitution of the third equation of (3.3.4) into the fourth equation yields an identity. There­
fore, the fourth equation is omitted and replaced by the original equation (3. 1.30) with Q(t) = 
Q, viz. 

Q = 11 

~w(r, t)dr. (3.3.5) 

Fore= 0 the initial values (3.1.33) and (3.1.34) reduce to 

S(r, 0) = 0, Z(r, 0) = 0, f(O) = 0, w(r, 0) = 4Qr, 0 s r s L (3.3.6) 

Equations (3.3.4)1
•
3 are solved for S and w expressed in terms of f and Z, with the result 

1 
S(r, t) = 2rf(t), (3.3.7) 
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r[f'(t) + f(t)] 
w(r, t) = 2[1 + Z(r, t)] ' 

75 

(3.3.8) 

where f' (t) is the derivative of f(t). On substitution of (3.3.8) into (3.3.5), we find for f(t) 
the differential equation 

f'(t) + f(t) = 2Q [ 11 1 + ~(r, t) dr r1' t > 0. (3.3.9) 

By use of (3.3.9), the solution (3.3.8) for ui(r, t) is rewritten as 

w(r, t) = r y d Q [ 11 3 J-1 
1 + Z(r, t) 0 1 + Z(y, t) y 

(3.3.10) 

Finally, by substitution of (3.3.7) and (3.3.10) into equation (3.3.4)2, we find for Z(r, t) the 
differential equation 

az QrZ f(t) [ t l J-l 
at(r, t) + Z(r, t) =- 2[1 + Z(r, t)] )

0 
1 + Z(y, t) dy ' (3.3.11) 

valid for 0 :s r :s 1, t > 0. Thus, the functions f(t) and Z(r, t) are found as solutions of 
the system of equations (3.3.9) and (3.3.11), subject to the initial conditions f(O) = 0 and 
Z(r, 0) = 0. Next, the functions S(r, t) and w(r, t) are given by (3.3.7) and (3.3.10), ex­
pressed in terms of f and Z. 

The equations (3.3.9) and (3.3.11) are now solved by a kind of iteration procedure, lead­
ing to analytical approximations fn and Zn (n = 0, 1) for the functions f and Z. The cor­
responding approximations for the functions S and w are denoted by Sn and Wn, and are 
determined by (3.3.7) and (3.3.10). Since IZI « I in the beginning of the latency phase 
(see e.g. Figure 3.3), we take Z0 = 0 as zeroth approximation for the function Z. By putting 
Z = Zo = 0 in the right-hand side of (3.3.9), we find for fo the differential equation 

f~(t) + fo(t) = 8Q, t > 0, 

with initial condition fo(O) = 0. The solution for fo is given by 

fo(t) = 8Q(l- e-1
), 

whereupon the approximations So and wo follow as 

. 1 -
So(r, t) = 2rfo(t) = 4Qr(l e-1

), wo(r, t) = 4Qr. 

The next approximation Z1 must satisfy the differential equation 

az1 -2 2 , 
Tt(r,t) + Zt(r,t) = -16Q r(1-e- ), 0 :S r :S 1, t > 0, 

(3.3.12) 

(3.3.13) 

(3.3.14) 

(3.3.15) 

obtained from (3.3.11) by putting f 
of (3.3.15) with initial value Z1 (r, 0) 

fo and Z = Zo = 0 in the right-hand side. The solution 
0 reads 

-2 2 
Z1(r,t) = -16Q r (l-e-1 (3.3.16) 
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We now establish the auxiliary result 

[ 11 1 + ;: (r, t/' rl = [ 11 r3[1 + r2zt(t) + O(zf)]dr rt 
=4[ 1 ~z1 (t)+0(zf) l Zt--+0, 

(3.3.17) 

which is used in the right-hand sides of (3.3.9) and (3.3.10), whereby the O(zf)-terms are 
neglected. Thus we find from (3.3.10) that the approximation w1 is given by 

4Qr ( 2 ) w1 (r, t) = 1 r2z
1 
(t) 1 - 3z1 (t) 

4Qr[l- Jf{t(l e-1 -te-1
)] 

2 • 
1- 16Q r2(1- e-1 - te-1 ) 

(3.3.18) 

From (3.3.9) we find that the approximation ft satisfies the differential equation 

!{ (t) +It (t) = 8Q ( 1 ~Zt (t)) = 8Q [ 1 
3

3

2 d (1 - e-1 te-1
) J . t > 0, (3.3.19) 

with initial condition ft (0) 0. The solution for ft is given by 

-[ -1 32-2 ft(t)=8Q 1-e - 3 Q (1 (3.3.20) 

whereupon the approximation St follows as 

S1 (r, t) = ~rft (t) 4Qr [ 1 - e-1 3
3
2 d (1- e-1 te-1

- ~Pe-1 ) J. (3.3.21) 

The approximations fo, ft, wo, Wt. So, S1 and Zt are compared with the numerical so­
lutions for f, w, Sand Z, presented in the Figures 3.2-3.4 and in the Figures 3.7-3.9. In the 
Figures 3.2, 3.3 and 3.4, the approximations /o(t) and So(l, t) are plotted as dashed-dotted 
curves, while /1 (t), w1 (1, t), S1 (1, t) and Zt(l. t) are plotted as dashed curves, for Q 0.1, 
Q 0.2 and Q = 1.0, respectively. In the Figures 3.7, 3.8 and 3.9, the calculated func­
tions S(r, t), Z(r, t) and w(r, t) are plotted as functions of the radial coordinate rat times 
t l, 2, 3, 4 and 5, during the latency phase, for s 0.02 and Q = 0.2; the plots are drawn 
as solid curves. Also in the Figures 3.7, 3.8 and 3.9, the approximations St (r, t), Zt (r, t), 
wo (r, t) and w1 (r, t) are plotted as functions of rat t 1, 2, 3, 4, 5; the plots are drawn as 
dashed curves. 

For s 0.02 and Q = 0.1 (subcritical flow) we observe in Figure 3.2 that the approxima­
tions f 1, w1, S1 and Z1 are very close to the numerical solutions for all t. 2: 0. For Q 0.2, 
we observe in Figure 3.3 and in the Figures 3.7-3.9, that the approximations ft. tilt. S1 and 
Z1 are rather close to the numerical solutions during the beginning 0 s t < to of the latency 
phase. Furthermore, the upper-left Figure 3.3 shows that the timet= to at which the approx­
imation / 1 for f starts to fail, corresponds to the time at which the derivative f'(t) becomes 
zero. Using the approximation f ::::J ft, we find that f{ (to) = 0 for to .J3J4Q; note that 
to .J3!4Q = 2.165 for Q = 0.2. In Figure 3.3 we observe that w1(1, t) and S1 (1, t) ap­
proximate w(l, t) and S(l, t) quite well even beyond t = t0 • For Q = 1.0, we observe in 
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Figure 3.4 that Z1 (1, t) is rather close to the numerical solution Z(l, t) during the whole la­
tency phase 0 :S t < t,. Using the approximation Z ~ Z1 we find, by solving Z1 ( 1, t,) = 1, 
that t, = 0.40 for Q 1.0. We observe in Figure 3.4 that also the approximations ft (t), 
w1 (1, t) and S1 (1, t) areratherclosetothenumericalsolutionsfor f(t), w(1, t) and S(l, t), 
during the whole latency phase 0 :S t < t,. Furthermore, at t = ts 0.40 the approximations 
ft. Wt, S1 and Zt start to fail, and oscillations appear. 

Finally, we investigate the influence of the parameter e on the transient flow behaviour 
and the steady state values attained. As we may infer from the previous analysis, the influ­
ence of e on the transient flow behaviour during the latency phase is negligible, provided that 
e « 1. During the spurt phase, however, the transient flow is clearly affected by the value of e. 
For example, the dependence one ofthesteady state velocity gradientw(r) = rf j2e + O(e0

), 

e---+ 0, is striking. To demonstrate the influence of e, we compute the transient flow for sev­
eral values of the constant flow rate Q, in the two cases e = 0.01 and e 0.005, and we 
compare the numerical results to those obtained in the case e = 0.02. 

0.2 

0 0.5 1.5 2 2.5 3 3.5 4.5 

-Q 
Figure 3.10 The flow curve of the steady state pressure gradient 7 liint-oo f(t) 
versus the volumetric flow rate Q, forE = 0.02, O.Ql and 0.005. The points (Q, f) 
marked by the crosses ( x) correspond to computed steady states. The gap in the flow 
curve for s 0.005 corresponds to flow rates Q for which persistent oscillations occur. 

The numerical computations fore = 0.01 disclose that the transient flow behaviour is 
similar to the flow behaviour observed when e = 0.02. For Q < Qcrit = 0.1690 (see Table 3.1 ), 
it is found that the functions f, w, Sand Z behave smoothly in time and after sufficient time 
a steady state is reached that is classical. For Q > Qcrit> damped oscillations occur and af­
ter sufficient time a steady state is reached. This steady state exhibits a discontinuous steady 
state velocity gradient w(r) with exactly one jump from w~ < WM to wt > 0,. at some radial 
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coordinate r r*. Also S(r) and Z(r) are discontinuous at r r*. In Figure 3.10 the flow 
curve of the steady state pressure gradient 7 = limt-...:x.l f(t) versus the volumetric flow rate 
Q is plotted fore= 0.01. The computed points (Q, f) are marked by a cross (x). We ob­
serve that the flow curve fore = 0.01 is S-shaped just like the flow curve fore = 0.02 which 
has been included in Figure 3.10 (see also Figure 3.5). In Figure 3.11 the thickness 1 - r* 
of the spurt layer is plotted versus the volumetric flow rate Q, fore = 0.0 1. The computed 
points (Q, 1 - r*) are marked by a cross (x). We observe that also fore= 0.01 the spurt 
layer becomes thicker with increasing Q. 
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Figure 3.11 The thickness 1 - r* of the spurt layer versus the volumetric flow rate 
Q, fore= 0.02, 0.01 and 0.005. The points (Q, 1 - r*) marked by the crosses (x) 
correspond to computed steady states; the points (Q, 1 - r*) marked by the dots (o) 
correspond to flows for which persistent oscillations occur. 

Fore = 0.005, the transient flow behaviour is essentially different for a certain range of 
flow rates Q. In Figure 3.12 the computed pressure gradient f(t) is plotted as function of time 
t, fore 0.005 and Q = 0.1, 0.2, 0.6 and 1.0. We observe that for Q =0.1 ( < Qcrit 0.1678 
ate 0.005; see Table 3.1) f(t) is a smooth increasing function oft and after sufficient 
time a steady state is attained with 7 lim~-+oo f(t) = 0.7248. The computations disclose 
that the steady state variables w(r), S(r) and Z(r) attained are continuous in r, implying 
that the steady state corresponds to classical flow. As a further check it has been verified 
that the relation (3.2.13) for classical flow is satisfied. For Q = 0.2 (> Qcr;1), the pressure 
gradient f(t) shows oscillations with a very small amplitude. The oscillations decay and 
after sufficient time a steady state is reached with 7 = 0.4991. The computations reveal that 
the steady state variables w(r), S(r) and Z(r) attained are discontinuous with one jump at 
r r* 0.9970. The value of r* has been determined by numerical solution of equation 
(3.2.17). For Q = 0.6 and Q = 1.0, the oscillations in f(t) are clearly visible. For Q 1.0, 
we observe that the amplitude of the oscillation decays. The numerical computations show 
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Figure 3.12 The pressure gradient f(t) as function of timet, fore 0.005 and 
Q(t) = Q, t ~ 0, withQ 0.1, 0.2, 0.6 and 1.0, computed according to (3.3.1)-(3.3.3) 
with D.t 0.00025 and llr 0.0004. The dotted lines correspond to the steady state 
pressure gradient 7 lim~-;.oo f(t). 
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that the oscillations are sufficiently damped out at t = 80, and that a steady state is reached 
with 7 = 0.4316 and a jump in w(r) at r = r* = 0.9738. Again, the latter value has been 
found by numerical solution of equation (3.2.17). For Q 0.6, however, we observe that the 
amplitude of the oscillations in f (t) fails to decay and remains constant after a certain instant. 
We computed the transient flow up tot= 320, at which time the amplitude of the oscillations 
is still the same as at t =30. Hence, for Q = 0.6, the pressure gradient f(t) does not settle 
to a stationary value within the time interval of computation, indicating that no steady state 
pressure gradient 7 is attained. Instead, f(t) shows so-called persistent oscillations about 
a certain value. The numerical computations for Q = 0.6 reveal that persistent oscillations 
also appear in the velocity gradient w (r, t), the stress S (r, t) and the stress difference Z (r, t) 
for each value of the radial coordinate r. These oscillations have a larger amplitude near the 
wall r = I. Although no steady state is attained for Q = 0.6, the computations show that the 
oscillating functions w(r, t), S(r, t) and Z(r, t) tend to become discontinuous in r at some 
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radial coordinate r = r*. Recalling the notation lie = k!lr, we find that the plots of w(rt. t) 
and w(rk+l· t) start to deviate significantly after sufficient time, for a specific index k. Next, 
the value of r* is taken as r* = (rk + rk+t }/2, which might be in error by at most !lr f2. In 
the computations for Q = 0.6, the numerical discontinuity appears between rk = 0.9820 and 
rk+1 0.9824, and we set r* = 0.9822. 

To establish for which Q a steady state is attained (within the time interval of compu­
tation) when s 0.005, we compute the transient flow for several flow rates, varying from 
Q 0 to Q 5.0. The outcome of the computations is that a steady state is reached for 
Q :::; 0.42 and for Q ::: 0.85. This steady state is classical when Q :::; Qcrit = 0.1678, and 
corresponds to spurt flow when Qcrit < Q :::; 0.42 or Q ::: 0.85. For values of Q close to 
0.42 or 0.85, the time interval within which the flow settles to a steady state, becomes very 
large. For 0.45 :::; Q :::; 0.80, however, the functions f(t), w(r, t), S(r, t) and Z(r, t) show 
persistent oscillations and fail to settle to stationary values within the time interval of compu­
tation. Thus, for s 0.005, four different flow regimes can be distinguished, corresponding 
to different ranges for the prescribed flow rate Q. For Q > Qcrit (supercritical flow), we find 
that the (steady state) velocity gradient is discontinuous at some radial coordinate r = r*. 

In Figure 3.10 the flow curve of the steady state pressure gradient 7 = limHoo f(t) ver­
sus the volumetric flow rate is plotted for s = 0.005. The computed points ( Q, f) are 
marked by a cross ( x ). We observe that the flow curve for s = 0.005 is again S-shaped. Fur­
thermore, we observe that for < Qcrit the three flow curves for s = 0.02, 0.01 and 0.005 
almost coincide, whereas for > Qcrit the flow curve for s = 0.005 lies below the one for 
s = 0.01, which in its turn lies below the flow curve for s = 0.02. Hence, at a fixed supercrit­
ical flow rate Q > Qcritt the steady state pressure gradient 7 becomes smaller if s is changed 
from s = 0.02 to tlle smaller values s 0.01 or s = 0.005. The gap in the flow curve for 
s = 0.005 corresponds to flow rates Q for which persistent oscillations occur and no steady 
state is attained. In Figure 3.11 the thickness 1 - r* of the spurt layer is plotted versus the 
volumetric flow rate Q, for s 0.005. In case the flow tends to a steady state the computed 
points ( Q, I r*) are marked by a cross ( x ); in case persistent oscillations occur the com­
puted points (Q, 1 r*) are marked by a dot (o). We observe that also for s = 0.005 the spurt 
layer becomes thicker with increasing Q. On the other hand, at a fixed supercritical flow rate 
Q > Qcrit• the spurt layer becomes tllinner if sis changed from s = 0.02 to tlle smaller values 
s = 0.01-or s = 0.005. 

From the numerical results presented in this section we infer that a bounded range !!{. = 

( Qm, QM) of flow rates Q exists, for which persistent oscillations occur and no steady state 
is attained. At Q = Qm and Q = QM, the transition from a steady state to a state of persistent 
oscillations and vice versa takes place. The size of!!{. depends on the value of s: for s 0.02 
and s = 0.01, the range!!{. is empty, whereas for s 0.005, tlle range!!{. (Qm, QM) is not 
empty and has transition points Qm between 0.42 and 0.45, and QM between 0.80 and 0.85. 
In the next section we provide an explanation for the occurrence of persistent oscillations. 
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3.4 Stability analysis 

In this section we provide an explanation for the occurrence of persistent oscillations, as ob­
served in Section 3.3, by means of a linearized stability analysis of the steady state solution. 
It will tum out that the transient flow showing persistent oscillations corresponds precisely 
to the steady state solution being unstable. Likewise, if the transient flow tends to a steady 
state, then correspondingly the steady state solution is found to be stable. In Section 3.3 the 
range !!( of flow rates Q for which persistent oscillations occur, was found to depend on the 
parameter£. In this section we further investigate the dependence of!!( on£ by additional 
numerical computations of the transient flow. 

From the results of Section 3.3 we infer that the prescribed flow rate Q(t) = Q, t 2:: 0, 
completely determines the transient flow behaviour. For Q > Qcrit, the transient flow is 
found to either tend to a spurt steady state or to show persistent oscillations. If a spurt steady 
state is attained, the numerical results yield the values of the steady state pressure gradient 
7 limt ..... oo f(t) and of the steady state velocity gradient w(r) = limt ..... oo w(r, t). This ve­
locity gradient is discontinuous with one jump from w:_ < WM tow~ > Wm at r r* ( < 1). 
The steady state values 7 and r* satisfy the relation (3.2.17), while w(r) is the smallest or 
the largest solution of the steady state equation :f(w(r)) = r7f2, dependent on whether 
0 :s r < r* or r* < r :s 1, respectively. If persistent oscillations occur, however, no steady 
state is attained. In that case the velocity gradient w(r, t), calculated at r rk kb..r, is 
found to show after sufficient time a numerical discontinuity between rk and rk+l for some 
specific index k. By taking r* = (rk + rk+l) f2, we assign a value to the radial coordinate r* 
at which w(r, t) is discontinuous. The fictitious steady state solution corresponding to per­
sistent oscillations, is then determined as follows: the fictitious steady state pressure gradient 
7 is determined from Q and r* such that (3.2.17) is satisfied, while the fictitious steady state 
velocity gradient w(r) is the smallest or the largest root of :f(w(r)) = r7f2, dependent on 
whether 0 :s r < r* orr* < r :S 1, respectively. Thus, in case of a spurt steady state as well as 
in case of persistent oscillations, the (fictitious) steady state solution satisfies the equations 
of Section 3.2. 

We now proceed with the stability analysis of the (fictitious) steady state solution. Anal­
ogous to Malkus et al. [36, Sec. 5], we consider the solution of the system (3.1.32) to consist 
of a stationary part plus a dynamic part: 

f(t) 7 + q;(t), 

S(r, t) = S(r) + X(r, t), 

w(r, t) w(r) + ~(r, t), 

Z(r, t) = Z(r) + Y(r, t), 
(3.4.1) 

where q;, ~.X andY are dynamic perturbations. Substitution of (3.4.1) into (3.1.32) yields, 
with the use of (3.2.2), 

1 
t:~(r, t) + X(r, t) = 2rq;(t), 

~~ -X+ (1 + Z)~+wY +~Y, 

q;(t) = 811 

r2 X(r, t)dr, 

ar -at = - Y - S~ - wX ~X. 

(3.4.2) 
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Eliminating~ by means of (3.4.2)1, we obtain the following two ordinary differential equa­
tions for X and Y: 

Expressing Sand Z in terms of w according to (3.2.3), we rewrite (3.4.3) as 

}!_ ( X(r, t) ) = ;l(w(r)} ( X(r, t) ) + np(t) a(w(r)) + G(X y r:p) 
iJt Y(r, t) Y(r, t) 2e ' ' ' 

where the matrix ;l and the vector a are given by 

a(w) ( I

1

}:J, 
and the vector G consists of terms of second order in the perturbations. 

(3.4.3) 

(3.4.4) 

(3.4.5) 

Next, we consider the linearized form of the system of equations (3.4.4) and (3.4.2)2. In 
order to determine the stability properties of the solution of the linearized system, we look 
for a non-trivial solution of the form 

X(r, t) = X(r)e21
, Y(r, t) = Y(r)ez1

, (3.4.6) 

where z is the eigenvalue parameter. Substitution of (3.4.6) into (3.4.4) with G = 0 yields 

while substitution of (3.4.6) into (3.4.2)2 leads to 

(ji 811 

r2 X(r)dr. 

(3.4.7) 

(3.4.8) 

Provided that the matrix zl -;lis non-singular, the solution of (3.4. 7) expressed in terms of 
(ji reads 

X(r) ra(r,z)(ji/2, Y(r) = rb(r, z)(ji/2, (3.4.9) 
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where the functions a and b are given by 

( ) _ z+ 1-(tl(r) 
a r, z - (z + 1)(1 + e(z + 1))- (1- £- e(z + 1)2)w2(r) + ew4 (r)' 

(3.4.10) 

b(r z) = _ (z + 2)w(r) . 
' (z + 1)(1 + e(z + 1))- (1- £- e(z + 1)2)w2(r) + ew4 (r) 

(3.4.11) 

Finally, by using (3.4.9)1 in (3.4.8) we are led to the eigenvalue equation 

1 = 411 

a(r, z)r3 dr. (3.4.12) 

Changing in the integral the variable of integration from r tow by writing r = 2:F(w)j f, we 
transform equation (3.4.12) into 

_ 64 1"'~ l"'waJI ct>(z, Q) := 1 - -4 ( + )ii(w, z) :F3 (w) :F' (w )dw = 0, 
f 0 "'+ 

(3.4.13) 

where ii(w(r), z) := a(r, z). Hence, for the steady state solution determined by Q, the eigen­
values z are the roots of equation (3.4.13). Analogous to the stability theory of ordinary dif­
ferential equations, the following stability criteria apply: The steady state solution is unstable 
if there is at least one eigenvalue z with a positive real part (Rez > 0), whereas the steady 
state solution is stable if all eigenvalues z have a negative real part (Rez < 0). 

To find the eigenvalues z we set z = x + iy with x, y E IR in (3.4.13), and solve numeri­
cally 

Re{ct>(x+iy, Q)}=O, Im{ct>(x+iy, Q)}=O, (3.4.14) 

by means of a program package for solving nonlinear equations. Since ct>(:Z, Q) = c:I>(z, Q), 
the eigenvalues are either real or appear as complex conjugate pairs. The numerical com­
putations reveal that, for the range of flow rates Q we explored, equation (3.4.13) has three 
eigenvalues z: one real eigenvalue z = x0 < 0, and two complex conjugate eigenvalues z = 

z~ := A.o ±in. 
In Table 3.3 the computed eigenvalues z = xo and z = z~ = A.o ± in are presented for 

flows driven by a constant flow rate Q, varying from Q = 0.18 > Qcrit to Q = 5 .0, in case 
£ = 0.02. In this table also the radial coordinate r* at which the steady state velocity gradient 
w(r) is discontinuous, and the steady state pressure gradient 7 = limHoo f(t) are listed; cf. 
Figures 3.5 and 3.6. We observe that all eigenvalues have a negative real part (x0 < 0 and 
Rez~ < 0). Hence, the steady state solution is stable for each value of Q. This stability 
result corresponds precisely to the result of Section 3.3, where we found that for£ = 0.02 
the transient flow shows damped oscillations and tends to a steady state for each value of Q. 

Similarly, we have calculated the three eigenvalues z = x0 and z = z~ = A.0 ± in for 
flows driven by a constant flow rate Q, for several values of Q, in case£ = 0.0 1. The calcu­
lations (of which no details are given here) disclose that all eigenvalues have a negative real 
part (xo < 0 and Rez~ < 0). Hence, the steady state solution is stable for each flow rate Q 
considered. Again there is agreement with the result of Section 3.3, where we found that for 
£ = 0.01 the transient flow shows damped oscillations and tends to a steady state for each 
value of Q. 
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-
Q r• f Xo zt 

0.18 0.9982 0.9496 -0.750 -1.147 ± 0.353i 
0.20 0.9946 0.8001 -2.151 -1.004± 15.531i 
0.25 0.9870 0.6736 -4.289 -0.723 ± 10.981i 
0.30 0.9810 0.6478 -5.889 -0.493 ± 9 .993i 
0.35 0.9758 0.6423 -7.061 -0.376 ± 9.854i 
0.40 0.9714 0.6462 -7.891 -0.340 ± 10.094i 
0.50 0.9638 0.6619 -9.137 -0.346 ± 10.083i 
0.60 0.9570 0.6801 -10.156 -0.381 ± 11.588i 
0.80 0.9454 0.7214 -11.740 -0.475 ± 13.114i 
1.00 0.9346 0.7591 -13.154 -0.560 ± 14.397i 
2.00 0.8882 0.9230 -18.417 -0.870 ± 19.440i 
3.00 0.8434 1.0456 -22.586 -0.992 ± 23.001i 
4.00 0.8002 1.1572 -25.744 -1.023 ± 26.148i 
5.00 0.7582 1.2659 -28.050 -1.026 ± 29 .136i 

Thble 3.3 The computed eigenvalues z = Xo and z = zt, which are the roots of the 
eigenvalue equation <l>(z, Q) 0, for flows driven by a constant flow rate Q(t) = Q, 
t ~ 0, and e 0.02. The radial coordinate r• signifies the position of the discontinu­
ity in the steady state velocity gradient w(r), and 7 = liiDt-><Xl f(t) is the steady state 
pressure gradient. 
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In Table 3.4 the computed eigenvalues z = xo and z = z6' = Ao ± irl are presented for 
flows driven by a constant flow rate Q, varying from Q = 0.18 > Qcrit to Q = 5.0, and 
6 = 0.005. In case a steady state is attained, also the radial coordinate r• at which the steady 
state velocity gradientw(r) is discontinuous, and the steady state pressure gradient lim1_HXl f(t) 
= 7 are listed in Table 3.4. In case persistent oscillations occur, however, only the radial co­
ordinate r• at which the velocity gradient w (r, t) shows a numerical discontinuity is listed in 
Table 3.4. The numerical values of 7 and r• versus Q are in accordance with Figures 3.10 
and 3.11. We observe that for Q ::::; 0.42 and Q ~ 0.85 all eigenvalues have a negative real 
part (xo < 0 and Rezt < 0), whereas for 0.45::::; Q::::; 0.80 the eigenvalues z = zt have a pos­
itive real part (Rezt > 0). Hence, the steady state solution is stable for 0 ::::; Q::::; 0.42 and 
Q ~ 0.85, whereas the (fictitious) steady state solution is unstable for 0.45 ::::; Q ::::; 0.80. For 
comparison we quote the result of Section 3.3 in case 6 0.005: The transient flow shows 
damped oscillations and tends to a steady state for 0 ::::; Q ::::; 0.42 and Q ~ 0.85, whereas 
persistent oscillations occur and no steady state is attained for 0.45 ::::; Q ::::; 0.80. Thus we 
conclude that stability of the steady state solution corresponds precisely to the transient flow 
tending to a steady state, whereas instability of the steady state solution agrees with the oc­
currence of persistent oscillations. The gap in the flow curve of Figure 3.10 and the dots ( o) 
in Figure 3.11 correspond to steady state solutions that are unstable. 

The transition from a spurt steady state to a state of persistent oscillations and vice versa 
takes place at the flow rates Q Qm and Q QM· Using the results of the linearized stabil­
ity analysis, we now determine Qm and QM as the flow rates at which the transition from a 
stable steady state solution to an unstable fictitious steady state solution and vice versa takes 
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Q r* 
I 7 xo zij' 

0.18 0.9986 0.6717 -2.084 -1.024 ± 62.440i 
0.20 0.9970 0.4991 -3.554 -0.947 ± 43.220i 
0.25 0.9938 0.3894 -6.844 -0.590 ± 29.664i 
0.30 0.9914 0.3673 -9.343 -0.284 ± 26.693i 
0.35 0.9894 0.3621 -11.260 -0.096 ± 26.035i 
0.40 0.9878 0.3651 -12.612 -0.024 ± 26.538i 
0.42 0.9874 0.3702 -12.856 -0.047 ± 27.251i 
0.45 0.9862 - -13.938 0.038 ± 26.965i 
0.50 0.9650 - -14.790 0.022 ± 28.091i 
0.60 0.9822 - -16.939 0.059 ± 29.245i 
0.70 0.9802 - -18.406 0.012 ± 31.137i 
0.80 0.9778 - -19.990 0.002 ± 32.338i 
0.85 0.9770 0.4174 -20.475 -0.053 ± 33.636i 
0.90 0.9758 0.4209 -21.341 -0.055 ± 34.089i 
1.00 0.9738 0.4316 -22.699 -0.090 ± 35.418i 
1.50 0.9654 0.4871 -28.139 -0.308 ± 41.934i 
2.00 0.9582 0.5366 -32.606 -0.514±47.517i 
3.00 0.9454 0.6197 -40.151 -0.840 ± 56.672i 
4.00 0.9334 0.6852 -46.825 -0.993 ± 63.830i 
5.00 0.9218 0.7395 -52.920 1.020 ± 69.688i 

Table 3.4 The computed eigenvalues z Xo and z which are the roots of the 
eigenvalue equation <l>(z, Q) = 0, for flows driven by a constant flow rate Q(t) = Q, 
t 2: 0, and s 0.005. The radial coordinate r• signifies the position of the discontinuity 
in the (steady state) velocity gradient, and 7 = lilllt->ex:> f(t) is the steady state pressure 
gradient. 

place. That is, we estimate by numerical computations of the transient flow for several flow 
rates Q, the radial coordinate r* at which the (steady state) velocity gradient shows a numer­
ical discontinuity. Subsequently, we calculate Qm and QM as the values of Q for which the 
eigenvalue equation <l>(z, Q) = 0 has two purely imaginary roots z = ±iO. In this way we 
find that Qm ~ 0.43 and QM ~ 0.82, if e = 0.005. 

The range '1(. of flow rates Q for which persistent oscillations occur depends on the pa­
rameter e. We have computed the transient flow for a set of input parameters (e, Q). From 
the transient flow behaviour we estimate, for given e, the range '1(. ( Qm, QM) for which 
persistent oscillations occur. Subsequently, we use the linearized stability analysis to deter­
mine Q = Qm and Q QM as the values of Qforwhich the eigenvalue equation <l>(z, Q) = 0 
has two purely imaginary roots z = ±in. In Figure 3.13 the range '1(. obtained is plotted for 
e = 0.006, 0.005, 0.004, 0.003, 0.002 and 0.001. The dotted curve corresponds to Q = Qcrit• 
and the transition points Qm and QM of '1(. are marked by dots ( o). The dots lie on the 
boundary of a region in the (e, Q)-plane. For parameters (e, Q) inside this region the flow 
shows persistent oscillations, whereas for (e, Q) outside this region the flow tends to a (sta­
ble) steady state. We observe that Qm ~ 0.4, whereas QM strongly depends on e. Further-



3.5. CONCLUS"IONS 89 

more, !!{becomes smaller with increasing e. The numerical computations reveal that!!{ = 0, 
fore 0.007. Hence, a critical value E:crit exists below which persistent oscillations may oc­
cur. In conclusion, if e 2: E:crit = 0.007, the flow driven by a constant flow rate Q tends to 
a steady state for each value of Q; if e < E:crit = 0.007, the flow tends to a steady state if 
Q f/ !!{; whereas the flow shows persistent oscillations if Q E !!{. 

1.5 

0.5 I [ 
0 

2 4 
X 10-3 

-e 

Figure 3.13 The range '1{ = (Qm, QM) of flow rates Q for which persistent oscilla­
tions occur, fore= 0.001, 0.002, 0.003, 0.004, 0.005 and0.006; '1{ = 0for e = 0.007. 
The transition points Q = Qm and Q = QM are marked by a dot ( o ). The dotted curve 
corresponds to Q = Iicrit· 

3.5 Conclusions 

Stability analysis and numerical calculations have been used to analyze the flow of a poly­
meric melt through a cylindrical capillary. In order to find a theoretical explanation for the 
phenomenon of persistent oscillations, as observed in the experiments of e.g. K.alik:a and 
Denn [23], Lim and Schowalter [31], and El Kissi and Piau [12], a flow driven by a pre­
scribed constant volumetric flow rate Q has been considered. The pressure gradient f(t) is 
unknown and adjusts itself to maintain the desired flow rate Q. The constitutive behaviour 
of the polymeric melt is described by the JSO-model supplemented with an extra Newtonian 
viscous term. This extra term accounts either for the response of a small-molecule solvent, 
or for the unhindered motion of the polymer chains, described by a very fast relaxation rate 
(cf. Malkus et al. [33]). The JSO-model used here describes the characteristic behaviour of 
viscoelastic concentrated polymer solutions and pure molten polymers with fading memory, 
by a differential equation. The additional Newtonian viscous term leads to a nonmonotone 
relation between the steady state shear stress F(r) and the steady state velocity gradient or 
shear strain-rate (t)(r). We have shown by numerical computations of the transient flow that 
persistent oscillations in the pressure gradient may occur, as observed in experiments. Hence, 
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internal material properties of the fluid itself account for persistent oscillations, instead of a 
global external effect such as 'wall slip', because in our model the no-slip boundary condition 
at the wall of the capillary is maintained. 

A theoretical explanation for the occurrence of persistent oscillations has been given be­
fore by Malkus et al. [35], [36], in the piston-driven flow of a JSO-fluid through a slit die. 
In fact, this chapter deals with the analogous problem of a piston-driven flow of a JSO-fluid 
through a cylindrical capillary. By numerical computations of the transient flow we have 
found critical conditions for the onset of persistent oscillations in terms of the volumetric 
flow rate Q and the material parameters of the polymeric melt. 

In the description of the piston-driven flow considered here, the material parameters of 
the polymeric melt are included in one dimensionless parameters, which is equal to the quo­
tient of the solvent viscosity T/s and the shear viscosity JL/A. In the case of no solvent viscos­
ity (T/s = 0) and two widely spaced relaxation rates, the parameters is equal to the quotient 
of the two shear viscosities (see Malkus et al. [33]). The equations (3.1.32) governing the 
piston-driven flow can be viewed as a continuous family of quadratic ordinary differential 
equations coupled by the non-local constraint that fixes the volumetric flow rate Q. The non­
local constraint expresses the pressure gradient f(t) in terms of Q and an integral of the extra 
shear stress S(r, t) over the cross-section of the capillary. The quadratic ordinary differential 
equations relate the stresses S(r, t) and Z(r, t) to the pressure gradient f(t) and the velocity 
gradient w(r, t) for each radial coordinate r, whereby w is determined in terms of Sand f 
by the balance of linear momentum. 

The steady state flow is described by a nonmonotone relation between the steady state 
shear stress F(r) and the steady state velocity gradientw(r), ifO < e < 1/8. This nonmono­
tone relation gives rise to three distinct steady state solutions w if Fm < F < FM. As shown by 
Malkus et al. [33, Sec. 3], the solution w with WM < w < Wm is unstable, whereas the solutions 
w with w < WM or w > Wm are stable. The steady state pressure gradient 7 = limt-><Xl f(t) 
and the steady state velocity gradient w(r) depend on the flow rate Q in the following man­
ner: 

• If 0::::; Q ::::; Q0 , 7 is unique and w(r) is continuous in r; the flow is referred to as clas­
sical flow. 

• If Q0 < Q::::; Qcrit• 7 is not unique, and w(r) is either continuous in r (classical flow) or 
w(r) is discontinuous with a jump from w":. < WM tow~ > Wm at some radial coordinate 
r = r*; the latter case is referred to as sp.urt flow. 

• If Q > Qcrin 7 is not unique and w(r) is discontinuous at r r*, corresponding to 
spurt flow. 

In the case of classical flow, 7 is uniquely determined by Q only, as expressed by (3.2.13). 
In the case of spurt flow, 7 is uniquely determined by Q and r*, as expressed by (3.2.17). In 
spurt flow, the jump in w(r) results in a kink in the steady state velocity profile v(r) at r = r*, 
and a spurt layer, of thickness 1 - r*, with large shear velocity gradients forms near the wall. 

By numerical computations we have examined whether or not the transient flow tends to 
a steady state. If a steady state is attained, the computations yield the value of 7 and, in the 
case of spurt flow, the value ofr* where w(r) is discontinuous. For s = 0.02 and s 0.01, the 
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calculations of the transient flow revealed that for each flow rate Q a steady state is attained, 
showing the following characteristics: 

• If Q < Qcrit (subcriticalflow), the flow tends to a classical steady state with 7 = /clas (Q). 

• If Q > Qcrit (supercritical flow), the flow tends to a spurt steady state with 
/bottom ( Q) :S. 7 :S. .frop ( Q) · 

• The flow curve of 7 versus Q is S-shaped, shows a kink at Q = Qcrit, and tends to the 
curve 7 = .frop(Q) for Q sufficiently large. 

• The spurt layer becomes thicker with increasing Q > Qcrit· 

The transient flow behaviour was found to crucially depend on the values of e and Q. For 
e = 0.005 we observed that for a certain bounded range 1( = (Qm, QM) of supercritical flow 
rates Q, persistent oscillations in f(t), w(r, t), S(r, t) and Z(r, t) occur, for each value of the 
radial coordinate r. These persistent oscillations do not die out and have constant amplitude 
after a certain instant. For Q ¢ 1(, a steady state is reached after sufficient time. At Q = Qm 
and Q = QM, the transition from a steady state to a state of persistent oscillations and vice 
versa takes place. From additional computations we conclude that 

• if 0 < e < E:crir = 0.007, a bounded range 1( = (Qm, QM) of flow rates Q exists for 
which persistent oscillations occur; 

• if e ?: E:crit = 0.007, the flow tends to a steady state for each flow rate Q; 

• the range 1( becomes smaller with increasing e. 

In the case of persistent oscillations we have found that after sufficient time the velocity gra­
dient w(r, t), calculated at r = rk = k!1r, shows a numerical discontinuity between r = rk 
and r = rk+l for some specific index k. Then the value of r* is taken as r* = (rk + rk+l) /2. 
In this manner, we have been able to assign a value to the radial coordinate r* at which the 
(steady state) velocity gradient is discontinuous, for each flow rate Q. 

The occurrence of persistent oscillations has been explained by means of a linearized sta­
bility analysis of the steady state solution. By numerical computations we have verified that 
the transient flow tending to a steady state for some value of Q, corresponds precisely to the 
steady state solution being stable. Likewise, if the transient flow shows persistent oscillations 
for some value of Q, then correspondingly the steady state solution is found to be unstable. 

By fitting the dimensionless parameter e to the material parameters of the polymeric melt, 
the dimensional steady state pressure gradient attained can be determined as a function of 
the dimensional driving flow rate Q. This flow rate is of great practical interest in polymer 
processing, since it determines the production rate of an extrusion process; a higher flow rate 
leads to more extrudate produced per unit of time. The dimensional critical flow rate Qcrit 
beyond which spurt flow ensues, and the range 1( = (Qm, QM) of dimensional flow rates for 
which persistent oscillations occur, can be estimated in terms of the material parameters ry, 
J-t, "A, a, and the radius R of the capillary. Furthermore, the value E:crir determines directly 
the critical quotient ry,"A/ t-t of material parameters below which persistent oscillations occur, 
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dependent on whether Q E 1{. Thus, for a polymeric fluid with material properties such that 
e ::.:: Scrit• no persistent oscillations occur and the transient flow tends to a steady state for each 
flow rate Q. In Chapter 5 we will compare the critical conditions for the onset of persistent 
oscillations predicted by our theory, to the critical conditions found in the experiments of 
Kalika and Denn [23], Lim and Schowalter [31], and ofE1 Kissi and Piau [12]. 



Chapter 4 

Extrusion of a JSO-ftuid, combined with 
• compression 

In this chapter we consider the extrusion process for a polymeric melt, combined with com­
pression. The extruder consists of a wide barrel connected to a narrow cylindrical capillary. 
The melt ih the barrel is compressed by a plunger, moving at constant speed, and the melt is 
thus forced to flow into the capillary. The flow in the capillary is shear dominated, whereas 
the flow in the barrel is mainly a uniform compression flow. A global relation between the 
pressure in the barrel and the volumetric flow rate in the capillary is derived in terms of 
the melt compressibility and the plunger speed. Since the polymeric melt is strongly vis­
cous, the inertia forces may be neglected. The constitutive equation to describe the charac­
teristic behaviour of the viscoelastic melt with fading memory chosen here, is the Johnson­
Segalman-Oldroyd (JSO)-model supplied with an extra Newtonian viscous term. This extra 
term, which accounts for the unhindered motion of the polymer chains, is essential as it leads 
to a nonmonotone behaviour of the steady state shear stress as function of the steady state 
shear strain-rate or velocity gradient (see Figure 4.2). 

4.1 Mathematical formulation 

This section deals with the modelling of the extrusion process. The extruder consists of a 
wide cylindrical barrel connected to a narrow cylindrical capillary; see Figure 4.1. Thus, the 
radius R of the capillary is small compared to the radius Rb of the barrel. The centerlines of 
the barrel and the capillary coincide. Cylindrical coordinates (r, e, z) are introduced with the 
z-axis along the centerline of the extruder, and z = 0 corresponding to the position where the 
barrel is connected to the capillary; see Figure 4.1. The polymeric melt in the barrel is com­
pressed by a plunger, moving at constant speed Vo in the positive z-direction. Consequently, 
the length l of the barrel equals l(t) = /0 - V0 t, where /0 = /(0) denotes the initial length. 
Due to the plunger movement a pressure P is built up inside the barrel, and the melt is forced 
to leave the barrel at z 0 and to flow into the capillary, with volumetric flow rate Q. At the 
end of the capillary, i.e. at z = L where L denotes the capillary length, the melt leaves the 
capillary and the extrudate is formed. In the main part of the barrel the flow is aligned along 
the z-axis, and the flow is a uniform compression flow; only near z = 0 a strong contraction 
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flow exists; see Figure 1.1. Thus, the compressibility of the melt inside the barrel must be 
taken into account, and the melt density p is variable. Since the flow in the barrel is uniform, 
P and pare only time-dependent, i.e. P = P(t) and p p(t). The melt flowing through the 
capillary is incompressible, and the flow inside the capillary is a pure shear flow. Hence, the 
melt flows through the whole capillary with volumetric flow rate Q = Q(t). 

Vo pressure P(t) 

melt density p(t) 

l (t) 

volumetric 
flow rate 

Q(t) 

Figure 4.1 . The extruder which consists of a wide barrel and a narrow cylindrical cap­
illary. The melt in the barrel is compressed by a plunger moving with constant speed 
Vo in the positive z-direction. 

We first consider the flow inside the barrel, where the polymeric melt is compressible. 
This flow is governed by the conservation of mass 

dp - = -p("V. v) 
dt . 

(4.1.1) 

and the balance of linear momentum 

"V · T + pb p ( : + (v · "V)v ) . (4.1.2) 

Here, p is the fluid density, b the body force per unit of mass, v the fluid velocity and T the 
total (symmetric) stress tensor. The rate-of-deformation tensor 1J is defined by 

(4.1.3) 

With the flow aligned along the z-axis, the flow parameters in the barrel are independent of 
the azimuthal coordinate Band the radial coordinate r. Under the condition that the flow starts 
from rest at time t 0, and that the compression flow in the barrel is uniform, the velocity 
takes the form 

v [W(t)z + V(t)]H(t)ez, (4.1.4) 

where His the (Heaviside) step function and ez is a unit vector in the positive z-direction. 
Consequently, 

"V · v tr1J Dzz = W(t) (4.1.5) 
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and Du. is the only non-zero component of 'lJ. The conservation of mass ( 4.1.1) then becomes 

d~~) = -p(t)W(t). (4.1.6) 

The global balance of mass, expressing that the total change of mass of the melt in the barrel 
equals the mass flowing out of the barrel into the capillary, is formulated by 

d 
dt { Al(t)p(t) } = -p(t)Q(t), (4.1.7) 

where A : = rr R~ denotes the area of the cross-section of the barrel. By using l' (t) = - Vo we 
rewrite (4.1.7) as 

dp(t) = p(t) [ Q· - Q(t) ] 
dt Al(t) ' ' 

(4.1.8) 

where Q; := AVo denotes the constant (prescribed) inlet flow rate due to the plunger move­
ment. The inlet flow rate Q; is driving the flow inside the extruder. Combination of (4.1.6) 
and (4.1.8) yields 

W(t) = Q(t) Q; 
Al(t) 

(4.1.9) 

Since the compression flow in the barrel is uniform, the stress tensor 'I' only depends on time 
t. Thus, the balance of linear momentum (4.1.2), with the body force pb and the inertia forces 
p(ifv jBt + (v · V')v) neglected, is automatically satisfied. 

The characteristic response of the material to a deformation is described by the constitu­
tive equation for the stress. For viscoelastic fluids with fading memory, the stress depends on 
the deformation history. If a polymer solution contains a small-molecule solvent, this solvent 
will generally respond in a viscous manner to any applied force or deformation, separately 
from the elastic response due to the dissolved polymer; see Renardy et al. [ 48, p. 17]. There­
fore, it is assumed that the extra stress tensorS:= 'I'+ pi in the fluid consists of a Newtonian 
viscous component and an isotropic elastic one, namely 

(4.1.10) 

Here, p is the pressure, I the unit tensor, Tis the solvent viscosity, and the elastic part Sp char­
acterizes the polymer contribution. As in Chapter 3, the elastic part Sp is assumed to be de­
scribed by the constitutive JSO-model. In the JSO-model, Sp is determined by the following 
nonlinear differential equation (see Tanner [50, p. 207]): 

dSp- rs Sp rT +(I )('lJS + S 'lJ) + 'S 2 '1J dt .J.J P .J.J a P P "' P = J.L ' (4.1.11) 

where d/dt denotes the material derivative. The relaxation rate A., the slip parameter a E 

1, 1), and the shear modulus J.L are material parameters. 
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For the uniform compression flow in the barrel, the elastic part Sp only depends on time t. 
With Lu the only non-zero component of£, the JSO-model (4.1.11) transforms into the fol­
lowing equations for the components sii of Sp: 

dS, dt + J..S, = 0, 
dSoo dt + J..Soo = 0, 

dS,6 dt +J..S,(j 0, (4.1.12) 

dSt~z dt + J..S6z = 0, 
dSn dt +J..Sn =0. 

Under the initial condition Sp 
Hence, 

0 at t = 0, it follows that S, = S99 = SriJ = St~z = S,z = 0. 

trSp = Su. (4.1.13) 

and the stress components T;.i of 'I in the barrel reduce to 

T,, = TIJIJ -p, TriJ =Too = T,z = 0. (4.1.14) 

The pressure P in the barrel is measured as the opposite - T,, of the normal stress at the wall 
ofthe barrel. Hence, according to (4.1.14), 

p P(t). (4.1.15) 

By substitution of Du = W(t) from (4.1.9) into (4.1.12)3 for Szz, we are led to the following 
differential equation: 

dSu (t) _ -J..S ( ) 2JJ,[ Q(t) - Qi] 2a[ Q(t) - Q;]Szz(t) O 
dt - zz t + Al(t) + Al(t) ' t > . (4.1.16) 

The characteristic response of the material to a compression is described by the consti­
tutive equation for the hydrostatic pressure Phydr := -(tr'I)/3. Here, it is assumed that the 
compression in the barrel is purely elastic, which means that Phydr satisfies the constitutive 
equation 

dphydr = - K tr tj) 
dt • 

where K is the compression or bulk modulus of the polymeric melt. With 

1 
Phydr = --tr'I = P(t) 

3 

equation ( 4.1.17) reduces to 

211s[Q(t)- Qi] _ !s ( ) 
3Al(t) 3 zz t ' 

dP(t) 

dt 
K[Q(t} Q;] 2'1s d { Q(t)- Qi .} 1 dSu(t) O 

- Al(t) + 3A dt l(t) + 3~· t > · 

(4.1.17) 

(4.1.18) 

(4.1.19) 

The equations (4.1.16) and (4.1.19) provide one coupling between the pressure P(t) in the 
barrel and the volumetric flow rate Q(t) in the capillary. In these equations l{t) /0 - Vot 
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is the length of the barrel. Later on we will show that for a low plunger speed V0, the length 
l(t) may be replaced by the initial length lo. 

Next we consider the flow in the capillary, where the polymeric melt is incompressible. 
This flow is governed by the balance of linear momentum (4.1.2) and the conservation of 
mass (4.1.1) with dp/dt 0, i.e. 

V-v 0. (4.1.20) 

With the flow aligned along the z-axis, the flow parameters in the capillary are independent 
of the axial coordinate z and the azimuthal coordinate e. Under the condition that the flow 
starts from rest at time t = 0, the velocity takes the form 

v = v(r, t)H(t)e,, (4.1.21) 

where His the (Heaviside) step function and e, is a unit vector in the positive z-direction. 
The conservation of mass is now automatically satisfied, and the convective terms p(v · V)v 
in (4.1.2) disappear. The no-slip boundary condition at the wall of the capillary and the reg­
ularity of the velocity at the axis require 

v(R, t) = 0, (4.1.22) 

and 

av ar (0, t) 0, (4.1.23) 

respectively. 
To further describe the pure shear flow in the capillary, we use the results of Chapter 3. 

With the stress tensor 'T given by (4.1.10) and the constitutive JSO-model (4.1.11) used for 
the elastic part Sp. under the initial condition Sp = 0 at t = 0, we found in (3.1.14) that the 
stress components T;j of 'T are given by 

1 
Trr =-p + -

1
-Z(r, t), 
+a 

-p 
1 

-
1
-Z(r, t), 
-a 

Tre = Te, 0. 

TBe -p, 

S(r, t), (4.1.24) 

Here, p ~ p(r, z. t) is the pressure inside the capillary, and the variables Sand Z, introduced 
in (3.1.11), satisfy 

az- (1-az)iv +).Z 
at ar 
as 2 av 'S -+ -+~~. at ar 

0, 

0 _s; r .s; R, t > 0; (4.1.25) 

see (3.1.12). According to (3.1.15), the variable Z is related to the first and second normal 
stress differences N1 := Tzz - Trr and Nz := - TBe + T,,, while S -S,z by (3.1.11). In 
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(3.1.17)-(3.1.19) we found that the balance oflinear momentum (4.1.2), with pb = 0, is sat­
isfied if the pressure p takes the form 

p(r, z, t) =- f(t)z + po(r, t), (4.1.26) 

with 

po(r, t) = - 1-Z(r, t) + -
1

1 
[' Z(y, t) dy+ P0(t), 

1 +a +a Jo y 
(4.1.27) 

while the shear stress Trz equals 

1 p r av 
Trz = 2rf(t) +-;: Jo yat(y, t)dy. (4.1.28) 

Here, f is the pressure gradient in the capillary, and Po is a pressure term determined by the 
boundary condition at the end z = L of the capillary. We assume that the pressure outside 
the capillary .is at level zero, so that p(O, L, t) 0. Then it follows that 

Po(t) Lf(t). (4.1.29) 

By equating the expressions (4. 1.28) and (4.1.24)4 for Trz, we are led to the following relation 
between the velocity gradient and the pressure gradient: 

av 
-TJ, or (r, t) + S(r, t) 

1 
2rf(t) p1' av - Y--::~(y, t)dy, 0 s r s R, t > 0. (4.1.30) 

r 0 ut 

The volumetric flow rate Q in the capillary is defined by 

Q(t) = 2n1R v(r, t)rdr. (4.1.31) 

The second coupling between the flow in the capillary and the flow in the barrel is achieved 
by equating the pressure terms in the barrel and in the capillary at r = 0, z 0. From ( 4.1.15) 
and (4.1.26) it follows that Po P, or equivalently, 

P(t) = Lf(t). (4.1.32) 

Equation ( 4.1.32) can be used to replace fin ( 4.1.30) by P 1 L. 
The equations describing the extrusion process are made dimensionless by appropriate 

scaling. We Ause the same sJling as in Secti~n 3.1, that is, we p~t Q = n}.,R3 {2/·Jl- a;, 
r=Rr,t tiA,v=A.Rvl l-a2,f=ttfiRJl-a2,S ttSIJl-a2,andZ=ttZ. 
Furthermore, we introduce dimensionless variables/, Q;, P and Szz, by writing l l0l, Q1 = 
7rAR3 Q;/ J1- a 2 , P 8ttLP I RJ 1 - a2 and Szz = ttSzziJ1- a 2• Then equations (4.1.19) 
and ( 4.1.16), governing the flow in the barrel, transform into their dimensionless forms, read­
ing (since no confusion will arise we omit the carets) 

dP(t) __ .!_ Q(t) Q; !!:._ { Q(t)- Q; } dSzz (t) O 
- X l(t) +~dt l(t) +K dt ' t> ' 

dSzz(t) Q(t)- Q; aa Q(t)- Q; 
dt -Szz(l) +rr l(t) + JI-a2 l(t) Szz(t), t > 0, 

(4.1.33) 
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where the dimensionless inlet flow rate Q; and length l are given by 

Q._AVo~ '- rr)..R3 ' 
Vo 

l(t) =I--t 
Alo ' 

and the dimensionless parameters x. ~.Kanda are given by 

8AlotJ,L 
X= KrrR4 ' 

TJsArrR4 

~= l2AlotJ,L' 

R 2rrR3 

K = 24L' a=--
Alo · 

Furthermore, equation (4.1.32) transforms into its dimensionless form 

f(t) = 8P(t). 

Equations ( 4.1.25) and ( 4.1.30), governing the flow in the capillary, transform into 

and 

as 
- = -S + w(l + Z), 
at 

az 
-=-Z-wS 
at • 

1 a 1' av cw(r, t) + S(r, t) = -rf(t) -- y- (y, t)dy, 0 s r s 1, t 2: 0. 
2 r 0 at 

Here, the velocity gradient, or shear strain-rate, w is defined by 

av 
w(r, t) =- ar (r, t), 

and the dimensionless parameters c and a are given by 

'f/sA 
8=-, 

pRz).,z 
a=--. 

fJ, fJ, 

Finally, the volumetric flow rate passes into its dimensionless form 

Q(t) = 211 

v(r, t)rdr. 

The boundary conditions pertinent to ( 4.1.38) read in dimensionless form 

v(l, t) = 0, w(O, t) = 0, t > 0. 
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( 4.1.34) 

(4.1.35) 

(4.1.36) 

(4.1.37) 

(4.1.38) 

(4.1.39) 

(4.1.40) 

(4.1.41) 

(4.1.42) 

The parameter c represents the ratio of the solvent viscosity Tis and the shear viscosity 
tJ,/A, and the quotient a/c corresponds to the Reynolds number. In Table 4.1 the order of 
magnitude is given of the various parameters of the polymeric melt and the extruder. For the 
strongly viscous polymers we consider, a « 1; see Table 4.1. Thus, the last term in the right­
hand side of ( 4.1.38) may be neglected, which amounts to the neglect of the inertia forces in 
( 4.1.2). By putting a = 0, and with the use of ( 4.1.36), equation ( 4.1.38) reduces to 

cw(r, t) + S(r, t) = 4rP(t), 0 s r s l, t 2: 0. (4.1.43) 
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After one integration by parts with the aid of the no-slip boundary condition (4.1.42)1 at the 
wall, the volumetric flow rate Q can be expressed in terms of the velocity gradient w by 

Q(t) = 1' ?w(r, t)dr. (4.1.44) 

Elimination of w by means of (4.1.43), transforms (4.1.44) into the following (implicit) re­
lation between the pressure P and the volumetric flow rate Q: 

P(t) = t:Q(t) + 11 

?S(r, t)dr. (4.1.45) 

From Table 4.1 we find that V0 jAI0 ~ 10-3 « 1. Hence, we may replace l(t) in (4.1.33) 
by /(0) = 1, which is valid as long as t « Al0 jV0 ; see (4.1.34)2. Considering (4.1.33)2 

we observe that S-a. is proportional to a, so that the derivative KdS-a.(t)/dt is proportional 
to Ka. For the strongly viscous polymers we consider, one has Kax = 2J..L/3K « 1 and 
t;x = 2rJs"A/3K « 1; see Table 4.1. Thus the lasttwo terms in the right-hand side of (4.1.33)1 

may be neglected. In the original expression (4.1.14? this amounts to the neglect of the ex­
tra stress component 2rJsDzz +S-a. in the stress Tzz. Consequently, for the compression flow 
in the barrel also Tzz equals -p. By putting l(t) = 1, l; = 0 and K = 0, equations (4.1.33) 
reduce to 

dPd(t) = - .!_[ Q(t) - Qi ]. 
t X 

(4.1.46) 

Notice that Molenaar and Koopmans [39] obtained the same differential equation. 

symbol I order of magnitude I unit II symbol I order of magnitude I unit 

R 10-3 m K 109 Nm·'-

L w-2 m J..L 10-) Nm·'-

Vo 10-4 ms -I ).. lOU s ·l 

lo w-1 m 1'/s 103 Nsm -1. 

Rb w-'- m a 0.9 -

A= rrR~ w-4 ml. p 103 kgm -j 

Table 4.1 The order of magnitude of the various parameters of the extruder and the 
polymeric melt. 

Thus, the extrusion process driven by a plunger moving at constant speed is described by 
the following system of equations: 

as at= -S+ w(l + Z), 

t:w(r, t) + S(r, t) = 4rP(t), 

dP(t) . 1 
--;It = --x [Q(t) - Qi], 

az 
-=-Z-wS at · 

P(t) = t:Q(t) + 11 

?-S(r, t)dr, 

0 s r s 1, t > 0. 

(4.1.47) 
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For t < 0 the fluid is at rest, and at t = 0 the flow is suddenly started up by letting the plunger 
move at constant speed V0 . The plunger movement induces the constant inlet flow rate Q;. 
The initial conditions for P, Sand Z, which are supposed to be continuous at t = 0, are given 
by 

P(O) = 0, S(r, 0) = 0, Z(r, 0) 0, 0 ~ r ~ 1. (4.1.48) 

Substitution of (4.1.48) into ( 4.1.47)3
•
4 yields the initial values 

Q(O) = 0, w(r, 0) 0, 0 ~ r ~ 1. (4.1.49) 

The equations (4.1.47) governing the flow in the extruder can be viewed as a continuous fam­
ily of quadratic ordinary differential equations coupled by the non-local constraint that deter­
mines the flow rate, and the non-local ordinary differential equation that describes the com­
pression in the barrel. The material parameters of the polymeric melt, the plunger speed V0 , 

and the dimensions of the extruder are included in the three dimensionless parameters s, x 
and Q;. Notice that s contains only the material parameters of the polymeric melt, whereas 
Q; and x depend on both the material parameters and the geometry of the extruder. The pa­
rameter xis proportional to the melt compressibility 1/ K. 

4.2 Steady state flow 

In this section we investigate the steady state reached by the flow as t -+ oo. The steady 
state flow, driven by the constant inlet flow rate Q;, is described in terms of the steady state 
variables 

P lim P(t), 
t->00 

7 =lim f(t), 
t->00 

S(r) lim S(r, t), 
t->oo 

Q =lim Q(t), 
t->00 

(4.2.1) 
w(r) = lim w(r, t), 

t->00 
Z(r) =lim Z(r, t), 

t->00 

under the assumption that these limits exist. In (4.2.1), Pis the steady state pressure, 7 is the 
steady state pressure gradient, Q is the steady state volumetric flow rate, w is the steady state 
velocity gradient, and Sand Z are the steady state extra stresses. Fort-+ oo, the equations 
(4.1.36) and (4.1.47) reduce to 

o = -s +w(l + Z), 0 = wS, Q- Q; 0, 

sw(r) + S(r) = 4rP, P sQ + 11 

r2S(r)dr, 7=8P. 
(4.2.2) 

Hence, Q Q, and 7 8P, and the solutions of (4.2.2)1•2 expressed in terms of w read 

w2 (r) 
Z(r) = 

2 
• (4.2.3) 

1 + w (r) 

- w(r) 
S(r) = 1 + w2(r), 

On substitution of (4.2.3)1 into (4.2.2)\ we find that the steady state velocity gradient can be 
determined for each r E {0, 1] by solving w = w(r) from the equation 

:J(w(r)) = F(r), (4.2.4) 
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where the steady state shear stress F is defined by 

- 1-
F(r) = 4rP = 2r f, 

and the function !! is defined by 

(I) 

!f(w) = sw + 1 + w2. 

For a given inlet flow rate Q;, the velocity gradient w must satisfy Ule constraint 

Q; = 11 

?w(r)dr, 

(4.2.5) 

(4.2.6) 

(4.2.7) 

obtained by letting t ~ oo in (4.1.44). The steady state velocity profile v(r) = lim~-+oo v(r, t) 
is obtained by integration of v' (r) = -w(r) using the boundary condition v(l) = 0 at the 
wall. Notice that the equations (4.2.3)-(4.2.7) with f = 8P and Q = Q; are identical to the 
equations (3.2.3)-(3.2.7) describing the steady state of a piston-driven flow controlled by a 
constant volumetric flow rate Q; see Section 3.2. 

For s < 1/8 the function![ is nonmonotone in w. In Figure 4.2 the function ![(w) is 
plotted for a specific value of s with 0 < s < 1/8. ·Since the Newtonian viscosity IJs is small in 
comparison to the shear viscosity J-L/ A, we will henceforth assume that 0 < s < 1/8. Then the 
function ![(w) has two extreme values, a maximum FM = !f(wM) at w = WM = [ (1 - 2s­
,Jf=SS)j2s]112 and a minimum Fm = ![(wm) atw = Wm = [(1- 2s + ,Jf=SS) j2s]112; see 
Figure 4.2. In addition tow= WM and w = Wm, both equations !f(w) = FM and ![(w) = Fm 
have a second solution w = WM and w = Wm, respectively; see Figure 4.2. 

!! 

I 

Figure 4.2 The function !f(w) = ew + wj(l + w2), when 0 < e < 1/8. In steady 
state flow the velocity gradient w satisfies !f(w) = F, where F = 4rP is the steady 
state shear stress. 

The steady state shear stress F is linear in rand has its maximum at the wall r = 1. If this 
maximum, denoted by Fw = 4P, remains below the minimum Fm. then equation (4.2.4) has 
a unique solution w(r) < Wm for each radial coordinate r. Clearly, w(r) is continuous in r, 
leading to a smooth steady state velocity profile v(r), and the flow is referred to as classical 
flow. If the maximum Fw = 4P exceeds the minimum Fm. equation (4.2.4) has 
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• one solution if 0 :::; F < Fm; 

• three solutions if Fm < F < FM; 

• one solution if FM < F:::; Fw. 

Malkus et al. [33, Sec. 3] have shown by a phase-plane analysis of the critical points of the 
system (4.1.47), that the solution w with WM < w < Wm corresponds to a saddle point. Hence, 
this w-solution is unstable and is therefore not attained. IfF ( 1) > F M, i.e. if P > F M /4 =: P crit 
(supercritical flow), the steady state velocity gradient w(r) has at least one jump at some 
radial coordinate r. In case of exactly one jump we denote the radial coordinate at which 
the jump occurs by r• (r* < 1), and we refer to the flow as spurt flow. Hence, in spurt flow 
w(r) < w~ for 0 :::; r < r•, whereas w(r) > w~ for r• < r :::; 1, where 

w~ := limw(r) < limw(r) =: w~. 
rtr* r ,j_r* 

(4.2.8) 

with w~ :::; WM and w~ 2: Wm. From (4.2.3) it follows that in spurt flow S(r) and Z(r) are 
also discontinuous at r = r•. The jump in w results in a kink in the steady state velocity 
profile v(r) at r = r•, and a spurt layer with large velocity gradients forms near the wall; see 
Figure 2.2. If the velocity gradient jumps from w~ = WM to w~ = WM, i.e. if F (r*) = F M, 
we call this top-jumping. If the velocity gradient jumps from w~ = Wm to w~ = Wm, i.e. if 
F (r*) = Fm, we call this bottom-jumping. 

For classical flow, we infer from (3.2.13) with 7 = 8P and Q = Q;, the following relation 
between the inlet flow rate and the velocity gradient at the wall: 

1 
Q; = ----=3 [ P(wwall) - P(O)], 

64P 
(4.2.9) 

where Wwall := w(l) :::; WM and the function Pis given by (3.2.12). The inverse of (4.2.9) 
is known to exist and is denoted by P = Pc~as(Q;). The maximum value of Q; for which 
classical flow can be achieved, equals Q; = Qcrit := [P(wM) - P(O)]/ Fit. For spurt flow 
with w(r) being discontinuous at r = r•, we infer from (3.2.17) and (3.2.18) with Q = Q; 
and 7 = 8P, the following relationship: 

.- lp• p p p• Q; = Q(r , 8P) := ----=3[ (w_)- (0) + (Wwall)- (w+)], 
64P (4.2.10) 

0 ::S (J)~ < (J)~ ::S Wwall • 

Here, w = Wwall is found as the largest solution of the steady state equation 'J(w) = 4P, while 
w = w~ and w = w~ are the smallest and largest solutions of the equation 'J (w) = 4r* P. 
Bottom-jumping occurs when F(r*) = Fm. or equivalently, whenr• = rm := Fm/4P; see Fig­
ure 2.7c. The steady state pressure for bottom-jumping is given by P = Pbottom ( Q; ), where 
the function Pbottom is the inverse of (4.2.10) with w:_ = Wm and w~ = Wm. This inverse ex­
ists for Q; 2: Q0 := [P(wm)- P(O)]/ F~. The lower bound r• = rm can be represented as a 
function of Q; according to r• = r'bottom (Q;) := Fm/4Pbottom (Q;). Top-jumping occurs when 
F(r*) = FM, or equivalently, when r* = rM := FM/4P; see Figure 2.7a. The steady state 
pressure for top-jumping is given by P = Prop(Q;), where the function Prop is the inverse of 
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(4.2.10) with w~ WM andw~ = WM. Theinverseexistsfor Q; 2': Qcrit = [P(mM)- P(O)]/ Fit 
(supercritical flow). The upper bound r* = rM can be represented as a function of Q1 ac­
cording tor* r7op(Q;) = FMJ4Prop(Q;). Plots of the functions Pc~as(Q;), Pbouom(Q;), and 
Prop ( Q;), are shown as dotted curves in Figure 4.6, while plots of the functions 1 ri:ouom ( Q;) 
and 1- r:op(Q;), are shown as dotted curves in Figure 4.7. In Table 3.1 of Chapter 3 the val-

ues of WM, Wm, FM, Fm, WM, Wm, Qcrit and Q0 , are given forE= 0.02, 0.01 and 0.005. 
In conclusion, for a prescribed constant inlet flow rate Q1 we have for a possjble steady 

state: 

• If 0 s Q; s Q0 , the steady state is unique; classical flow occurs with P = Pc1as (Q;). 

• If Q0 < Q; s Qcrit> the steady state is not unique; either classical flow or spurt flow 
occurs with Pbouom ( Q;) S P S Pclas ( Q;). 

• If Q; > Qcrio the steady state is not unique; spurt flow occurs with Pbouom (Q;} s P s 
Prop(Q;). 

Notice that the results derived in this section are only valid in case the steady state does indeed 
exist. Numerical computations as carried out in the next section will show whether or not the 
flow tends to a steady state as t --+ oo. It will tum out that for Q; s Qcrit there is no jump in 
the steady state velocity gradient, so that the flow is classical. 

4.3 Transient flow behaviour 

In this section we compute for t > 0 the transient flow, starting from rest at time t = 0 and 
driven by the constant inlet flow rate Q; due to the plunger movement. The flow is governed 
by the system of equations (4.1.47}, with initial conditions (4.1.48) and (4.1.49}. From the 
numerical results we infer whether the flow reaches a steady state, and we determine the 
steady state variables. The main interest goes to the relationship between Q; and the steady 
state pressure P = lim,...,.00 P(t). In the case of a classical steady state this relationship is 
one-to-one: P Pclns (Q1), obtainable as the inverse of (4.2.9}. In the case of a spurt steady 
state, Pis not uniquely determined by just Q1, as discussed in Section 3.2 below (3.2.18). 
Whether the flow tends to a steady state, is found to depend on the values of Q; and the di­
mensionless parameters E and x. In the first part of this section we take E = 0.02 and x = 1, 
2, 4, and compute the transient flow for several values of Q1• It turns out that a steady state 
is reached for all values of Q1 considered. Furthermore, the steady state velocity gradient 
m(r} = lim,...,. 00 w(r, t) is either continuous in r, corresponding to classical flow, or m(r) has 
one jump at r = r*, corresponding to spurt flow. In the latter case, the radial coordinate r* 
is related to Q; and P by (4.2.10). Next, we investigate the dependence of the transient flow 
on the parameters E and x, by taking E 0.005 and x = 1, 2, 6. The numerical calculations 
forE = 0.005 and x 6 reveal that a steady state is reached for all values of Q; considered. 
However, in case x = 1 or x 2 we find a range of Q;-values for which the flow shows so­
called persistent oscillations that do not die out, so that no steady state is attained. Finally, we 
calculate the frequency of the persistent oscillations by means of a Fourier spectral analysis. 
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The equations (4.1.47) for P, Q, w, Sand Z, are solved by numerical integration. Let 
the discretisation time step be denoted by !::..t. Divide the interval 0 ::; r ::; 1 into M subin­
tervals of equal length !::..r = 1 J M. The numerical discretisation scheme used below for the 
computation of S, Z and w, has been adopted from Malkus et al. [32], [34], [35]; see [34] 
for a detailed analysis of the stability of the algorithm. Fork = 0, I, ... , M, n 1, 2, 3, ... , 
the stresses S(r, t) and Z(r, t) at t = tn n!::..t and r rk := k!::..r are computed according 
to the following first-order scheme: 

S(rb In) [1- !::..t]S(rk. ln-d + !::..t w(rk. ln-d[1 + Z(rk. ln-d], 
(4.3.1) 

Z(rk. tn) = [1- !::..t]Z(rk.tn-d !::..tw(rk,tn-dS(rk. tn), 

with initial values S(rk. 0) = 0, Z(rk. 0) = 0, w(rk. 0) 0. Hence, Sis treated explicitly 
(Euler forward), whereas (the nonlinear term in) Z is treated semi-implicitly. Next we com­
pute the pressure P(tn) by using Euler's forward discretisation method, i.e. 

!::..t 
P(tn) P(tn-1)--[Q(tn-1)-Q;], (4.3.2) 

X 

with initial values P(O) 0 and Q(O) 0. Subsequently, fork = 0, 1, ... , M, the velocity 
gradient w (TJ,, tn) is computed according to 

4rkP(tn)- S(rk. tn) 
(4.3.3) 

Finally, we compute the volumetric flow rate Q(tn) by approximating the integral in ( 4.1.47)4 

by the trapezoidal rule, to obtain 

(4.3.4) 

System ( 4.1.47) is thus treated explicitly, and for given Q;, sand x we obtain the numerically 
computed values P(tn), Q(tn), w(rk, tn), S(rk. tn) and Z(rk. tn), k = l, 2, ... M, n = 1, 2, .... 

In Figure 4.3 the pressure P(t) and the volumetric flow rate Q(t) are plotted as functions 
of time t, for s = 0.02, x = 1 and Q; 0.1 (subcritical flow). We observe that P(t) and 
Q(t) are monotone and smooth functions oft. The numerical computations disclose that 
also S(r, t), Z(r, t) and w(r, t) are monotone and smooth functions oft, for each value of the 
radial coordinate r. Mter sufficient time a steady state is reached. From the numerical results 
that underlie Figure 4.3, we determine the steady state values P, Q, w(l), S(l) and Z(l ), as 
listed in Table 4.2. It has been checked that these values do satisfy (4.2.3) and the steady 
state equation _r(w(l)) 4P; cf. (4.2.4). Since Q; 0.1 E (Q0 , Qcrit) for s = 0.02 (see 
Table 3.1), the steady state pressure Pis not uniquely determined by just the given inlet flow 
rate Q;; either a classical steady state or a spurt steady state with a discontinuous velocity 
gradient occurs. The computations for Q; = 0.1 reveal that w(l) < WM, implying that the 
flow reaches a classical steady state with a continuous steady state velocity gradient. As a 
further check it has been verified that the relation ( 4.2.9) for classical flow is satisfied. Notice 
that 7 8P = 0.7369 is equal to the steady state pressure gradient 7 attained in a piston­
driven capillary flow with Q(t) = Q 0.1, t ?: 0; see Table 3.2. 
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Figure 4.3 The pressure P(t) and the volumetric flow rate Q(t) as functions of time 
t, fore = 0.02, x = 1 and Q; = 0.1, computed according to (4.3.1)-(4.3.4) with 
!::.t = 0.0005 and t:..r = 0.0004: The dotted lines correspond to the steady state values 
of Thble 4.2. 

Q; Q p r* (J)* (J)t (/)( 1) S(l) Z(l) 
0.1 0.1 0.09211 - - - 0.4249 0.3599 -0.1530 
0.6 0.6 0.07933 0.9486 0.3258 10.19 11.58 0.0857 -0.9926 
2.0 2.0 0.10845 0.8750 0.4436 15.83 19.08 0.0523 -0.9973 

Table 4.2 Thecornputedsteadystate values Q, P, r•, w:_, w+. w(l), S(l) and Z(l), 
for a flow driven by the constant inlet flow rate Q;, with Q; = 0.1, 0.6 and 2.0, for 
e = 0.02 and x 1. 

To investigate supercritical flow (Q; > Qcril 0.1714) for s = 0.02 and x = 1, we take 
successively Q; = 0.6 and Q; = 2.0. In the Figures 4.4 and 4.5, the pressure P(t) and the 
volumetric flow rate Q(t) are plotted as functions of time t. We observe for both values of 
Q; that in the beginning P(t) shows an overshoot. After sufficient time this overshoot dis­
appears and oscillations in P(t) and Q(t) appear. The numerical computations disclose that 
also oscillations occur in S(r, t), Z(r, t) and w(r, t) for each radial coordinate r. All these 
oscillations die out and after sufficient time a steady state is reached. From the numerical re­
sults that underlie Figures 4.4 and 4.5, we determine the steady state values P, Q, (J)( 1), S (1) 
and Z(l ), as listed in Table 4.2. Again it has been checked that these values satisfy ( 4.2.3) 
and the steady_state equation !f((J)(l)) = 4P. The computations for Q; = 0.6 and Q; = 2.0 
reveal that both steady states show a discontinuous velocity gradient (J)(r) with exactly one 
jump from (J)~ < (J)M to (J)t > (J)m at some radial coordinate r = r*. Furthermore, S(r) and 
Z(r) are also discontinuous at r = r*. Recall that (J) = (J)~ and (J) = (J)t are the smallest and 
largest solutions of the equation !F((J)) = 4r* P. Then the values of r*, (J)~ and (J)t are found 
by numerical solution of equation (4.2.10), and the values computed are listed in Table 4.2. 

Th investigate whether for s 0.02, x = 1 and a given flow rate Q; the flow starting from 
rest reaches a steady state, we compute the transient flow for several flow rates, varying from 
Q; 0 to Q; = 4.0. The result is that for all values of Q; considered, a steady state is reached. 
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Figure 4.4 The pressure P(t) and the volumetric flow rate Q(t) as functions of time 
t, fore = 0.02, x = l and Q; = 0.6, computed according to (4.3.1)-(4.3.4) with 
At 0.0005 and Ar = 0.0004. The dotted lines correspond to the steady state values 
of Thble 4.2. 
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Figure 4.5 The pressure P(t) and the volumetric flow rate Q(t) as functions of time 
t, fore 0.02, x 1 and Q; = 2.0, computed according to (4.3.1)-(4.3.4) with 
At = 0.0005 and Ar 0.0004. The dotted lines correspond to the steady state values 
of Thble 4.2. 
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In Figure 4.6 the steady state pressure P attained is plotted versus the inlet flow rate Q1, for 
e 0.02 and x 1; the plot is drawn as a solid curve. The P versus Q; curve is called the flow 
curve. The functions P = Pc~as(Q;), P Pbottom(Q;) and P P1op(Q;) are represented by 
the dotted curves in Figure 4.6, and correspond to classical flow, bottom-jumping and top­
jumping, respectively. We observe that for 0 :s Q; :S Qcrit> the flow curve coincides with 
the curve P Pc~as ( Q;), which demonstrates that the subcritical flow tends to a classical 
steady state. If the flow becomes supercritical (Q; > Qcr11), the computations disclose that 
the steady state velocity gradient w(r) is discontinuous at some radial coordinate r · r*. The 
steady state pressure P attained satisfies Pbottom ( Q;) < P < P1op ( Q;) for Q; > Qcrit• implying 
that neither top-jumping nor bottom-jumping takes place. The flow curve shows a kink at 
Q1 = Qcrit and is S-shaped. Furthermore, the flow curve tends to the curve P P1op ( Q;) for 
Q; sufficiently large. In Figure 4. 7 the thickness 1 - r* of the spurt layer is plotted versus the 
inlet flow rate Q; for supercritical flow, and e 0.02, x 1; the plot is drawn as a solid curve. 
The functions 1 - r* = 1 rbc,ttom ( Q;) and 1 r* = 1 - r7op ( Q;) are ~epresented by the dotted 
curves in Figure 4.7, and correspond to bottom-jumping and top-jumping, respectively. The 
value of r* follows either from the place of the discontinuity in the computed steady state 
velocity gradient w(r), or, more accurately, by numerical solution of equation (4.2.10) with 
known Q1 and P. We observe that the spurt layer becomes thicker with increasing Q;. 
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0.1 

0.08 

0.06 

0.04 

0.02 

0 
0 0.5 3.5 4 

-Q, 

Figure 4.6 The flow curves of the steady state pressure P liffit_,00 P(t) versus the 
inlet flow rate Q1,fore = 0.02 and x 1 (solid curve), x = 2 (dashed curve) and x = 4 
(dashed~dottedcurve). The dotted curves correspond toP= Pc~as (Q;) (classical flow), 
P Pbottom (Q;) (bottom-jumping) and P P1op (Q;) (top-jumping). The flow cunies 
show a kink at Q; Qcrit = 0.1714. 

To investigate the influence of the parameter x. we compute the transient flow for x = 2 
and x 4, keeping e = 0.02, and we compare the numerical results to those obtained in the 
case x 1, e = 0.02. The numerical computations disclose that for all values of Q; consid­
ered, a steady state is reached. In Figure4.6 the flow curves are plotted fore = 0.02 and x 2 
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Figure 4. 7 The thickness 1 - r• of the spurt layer versus the inlet flow rate Q;, for 
s = 0.02, Q; > Qcrit 0.1714 (supercritical flow), and x = 1 (solid curve), x = 2 
(dashed curve) and x 4 (dashed-dotted curve). The dotted curves correspond to 
1 - r• 1 - rbottom (Q;) (bottom-jumping) and 1 - r• = 1 - r;',;p (Q;) (top-jumping). 
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(dashed curve), and for£ 0.02 and x = 4 (dashed-dotted curve). We observe that the flow 
curves for x = 2 and x = 4 areS-shaped, just like the flow curve for x = 1. Furthermore, the 
flow curves show a kink at Q; = Qcrit independent of x. Notice that for Q; < Qcrit the three 
flow curves for x = 1, 2 and 4 coincide, whereas for Q; > Qcrit the flow curve for x = 41ies 
below the one for x = 2, which in its turn lies below the flow curve for x = 1. Hence, at a 
fixed supercritical flow rate Q; > Qcrir> the steady state pressure P becomes smaller if x is 
changed from x = 1 to the larger values x 2 or x = 4. In Figure 4. 7 the thickness 1 - r* of 
the spurt layeris plotted versus the inlet flow rate Q;, for£ = 0.02 and x = 2 (dashed curve), 
and for£ = 0.02 and x = 4 (dashed-dotted curve). We observe that also for x = 2 and x = 4 
the spurt layer becomes thicker with increasing Q;. In addition, at a fixed supercritical flow 
rate Q; > Qcrit, the spurt layer also becomes thicker if x is changed from x = 1 to the larger 
values x = 2 or x = 4. 

Next, we investigate the influence of the parameters e and x on the transient flow be­
haviour and the steady state values attained. To that end, we compute the transient flow for 
several values of the inlet flow rate Q;, when e = 0.005 and x = 1, 2 and 6. In the Figures 
4.8, 4.9 and 4.10 the pressure P(t) and the volumetric flow rate Q(t) are plotted as func­
tions of time t, for£ = 0.005, x = 1, and Q; 0.2, 0.6 and 2.0, respectively. We observe 
that in the beginning P(t) shows an overshoot, for all the three inlet flow rates. After some 
time this overshoot disappears and oscillations in Q(t) appear. For Q; = 0.6 and Q; = 2.0, 
also oscillations in P(t) appear. For Q; = 0.2 and Q, 2.0, the amplitudes of these oscilla­
tions decay, and the oscillations are sufficiently damped out at t = 20. Hence, after sufficient 
time a steady state is reached, if Q; = 0.2 or Q; 2.0. The computations yield the steady 
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state values P = 0.05446, Q = 0.2 for Q; = 0.2, and P = 0.06002, Q = 2.0 for Q; = 2.0. 
Furthermore, the steady state variables w(r), S(r) and Z(r) are found to be discontinuous 
at r = r*, with r* = 0.9962 for Q; = 0.2, and r* = 0.9514 for Q; = 2.0. Again the value 
of r* follows either from the place of the discontinuity in the computed steady state velocity 
gradient w(r), or, more accurately, by numerical solution of equation (4.2.10) with known 
Q; and P. 
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Figure 4.8 The pressure P(t) and the volumetric flow rate Q(t) as functions of time 
t, fore = 0.005, x = 1 and Q; = 0.2, computed according to (4.3.1)-(4.3.4) with 
M = 0.00025 and ilr = 0.0004. The dotted lines correspond to the steady state values 
P lilllt-.oo P(t) and Q = lilllt-.oo Q(t). 
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Figure 4.9 The pressure P(t) and the volumetric flow rate Q(t) as functions of time 
t, fore= 0.005, x = land Q; = 0.6, computed according to (4.3.1)-(4.3.4) with 
ilt =:::: 0.00025 and M · 0.0002. 

-t 

For Q; = 0.6, however, we observe in Figure 4.9 that the amplitude of the oscillations 
in P(t) and Q(t) fails to decay and remains constant after a certain instant. We compute the 
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Figure 4.10 The pressure P(t) and the volumetric flow rate Q(t) as functions of 
timet, for 8 0.005, x = 1 and Q; = 2.0, computed according to (4.3.1)-(4.3.4) with 
!:.t = 0.00025 and t:..r = 0.0004. The dotted lines correspond to the steady state values 
P = lilllr_,.oo P(t) and Q = limt_,oo Q(t). 
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Figure 4.11 The pressure P(t) and the volumetric flow rate Q(t) as functions of 
timet, for 8 0.005, x = 1 and Q; = 0.6, computed according to (4.3.1)-(4.3.4) with 
!:.t = 0.00025 and M 0.0002; enlarged detail of Figure 4.9. The dotted line in the 
right picture corresponds to the inlet flow rate Q; = 0.6. 
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transient flow up to t = 200, at which time the amplitude of the oscillations is still the same 
as at t = 30. Hence, for Q; = 0.6, the functions P(t) and Q(t) do not settle to a stationary 
value within the time interval of computation, indicating that no steady state is attained. In­
stead, P(t) and Q(t) show so-called persistent oscillations. The numerical computations for 
Q; = 0.6 reveal that persistent oscillations also appear in w(r, t), S(r, t) and Z(r, t) for each 
value of the radial coordinate r. In Figure 4.11 a more detailed plot of the persistent oscilla­
tions in P(t) and Q(t) is given. We observe that the amplitude of the persistent oscillations 
is constant. Furthermore, the span of the oscillations in P(t) is approximately 25 percent of 
the mean value of P(t), whereas the span of the oscillations in Q(t) is about half the ficti­
tious steady state value Q Q1 0.6. Finally, we observe that the oscillations in P(t) and 
Q(t) differ in phase. Although no steady state is attained for Q; = 0.6, the computations 
show that the oscillating functions w(r, t), S(r, t) and Z(r, t) tend to become discontinuous 
in rat some radial coordinate r r*; see Figure 4.12. Recalling the notation rk = kf:l.r, we 
find that the plots of w(rk, t) and w(rk+l· t) start to deviate significantly after sufficient time, 
for a specific index k. Next, the value of r* is taken as r* = (r" + rk+l) /2, which might be in 
error by at most f:l.r/2. In the computations for Q; = 0.6, the numerical discontinuity appears 
between r" = 0.9788 and r~;+1 0.9790, and we set r* = 0.9789. In Figure 4.12 the stress 
S(r, t) is plotted as function of the radial coordinate rat the times t = 28.18 and t = 28.30, 
for s = 0.005, x = 1 and Q; 0.6. At these times the flow rate Q(t) reaches its maximum 
and its minimum, respectively. We observe that S(r, t) is discontinuous in rat t = 28.18 and 
t = 28.30, so that a spurt layer has formed near the wall. Outside the spurt layer, i.e. for 
0 s r < r*, S(r, t) ~ 4rP(t) is approximately linear in r. 

S(r, t) o:zr--~~~-....--..---..-..---~--, S(r, t) o:z.---~-.----.-....-~--.--..---~-----. 
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Figure 4.12 The stress S(r, t) as function of the radial coordinate r at the times 
t 28.18 and t = 28.30, at which the flow rate Q(t) reaches its maximum and its 
minimum, respectively, fore = 0.005, x = 1 and Q; 0.6. 

To establish for which inlet flow rates Q; a steady state is attained (within the time in­
terval of computation) when s = 0.005 and x = 1, 2, 6, we compute the transient flow for 
several flow rates, varying from Q; = 0 to Q; = 3.0. The outcome of the computations for 
x = 1 is that a steady state is reached for Q; s 0.35 and for Q; :::: 0.90. This steady state is 
classical when Q; s Qcrit 0.1678, and corresponds to spurt flow when Qcrit < Q; s 0.35 
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or Q; ;::: 0.90. For values of Q; close to 0.35 or 0.90, the time interval within which the flow 
settles to a steady state, becomes very large. For 0.40 :::; Q; :::; 0.80, however, the functions 
P(t), Q(t), w(r, t), S(r, t) and Z(r, t) show persistent oscillations and fail to settle to sta­
tionary values within the time interval of computation. Thus, four different flow regimes can 
be distinguished, corresponding to different ranges for the inlet flow rate Q; .. For Q; > Qcrit 

(supercritical flow), we find that the (steady state) velocity gradient is discontinuous at some 
radial coordinate r. The computations for e = 0.005 and x = 2 disclose that the transient 
flow behaviour is similar to that observed when e = 0.005 and x 1. For Q; :::; 0.35 or 
Q; ;::: 0.70, it is found that after sufficient time a steady state is reached. This steady state is 
classical when Q; :::; Qcrit = 0.1678, and corresponds to spurt flow when Qcrit < Q; :::; 0.35 
or Q; ;::: 0.70. For 0.40 s Q; s 0.65, however, persistent oscillations occur, and the flow fails 
to settle to a steady state. Fore 0.005 and x = 6, the numerical computations reveal that a 
steady state is reached after sufficient time, for each value of the inlet flow rate Q; considered. 

In Figure 4.13 the flow curve of the steady state pressure P = lim,_, coP (t) versus the 
inlet flow rate Q; is plotted fore= 0.005 and x = 1, 2, 6. The computed points (Q;, P) are 
marked by a cross (x ). Notice thatthe three flow curves areS-shaped. The gaps in the flow 
curves for x 1 and x = 2 correspond to flow rates Q; for which persistentoscillations occur 
and no steady state is attained. We observe that the gap becomes smaller if x is changed from 
x = I to the larger value x 2, and has disappeared when x = 6. 
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Figure 4.13 The flow curve of the steady state pressure P = lilllt_,00 P(t) versus 
the inlet flow rate Q;, for e = 0.005 and x = 1, 2, 6. The points ( Q;, P) marked by 
the crosses ( x) correspond to computed steady states. The gaps in the flow curves for 
x = 1 and x 2 correspond to flow rates Q; for which persistent oscillations occur. 

In Figure 4.14 the thickness 1 - r* of the spurt layer is plotted versus the inlet flow rate Q;, 
for e = 0.005 and x = 1, 2, 6. In case the flow tends to a steady state, the computed points 
(Q;, 1 - r*) are marked by a cross (x); in case persistent oscillations occur the computed 
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points (Q;, 1 - r") are marked by a dot ( o ). We observe that the spurt layer becomes thicker 
with increasing Q;. In addition, at a fixed supercritical flow rate Q; > Qcrit• the spurt layer 
also becomes thicker if x is changed from x = 1 to the larger values x 2 or x 6. 

-Q; 

Figure 4.14 The thickness 1 - r" of the spurt layer versus the inlet flow rate Q;, for 
e = 0.005, Q; > Qcrit = 0.1678, and X 1, 2, 6. The points (Q;, 1- r*) marked by 
the crosses (x) correspond to computed steady states; the points (Q;, 1 - r*) marked 
by the dots ( o) correspond to flows for which persistent oscillations occur. 

From the numerical results presented in this section we infer that a bounded range 1{ = 
(Qm, QM) of inlet flow rates Q; exists, for which persistent oscillations occur and no steady 
state is attained. At Q; = Qm and Q; = QM, the transition from a steady state to a state of 
persistent oscillations and vice versa takes place. The size of 1{ depends on the value of € 

as well as on the value of x: for s = 0.02 and x 1, 2, 4, and for & = 0.005 and x = 6, 
the range 1{ is empty, whereas for s = 0.005 and x 1, 2, the range 1{ = (Qm, QM) is not 
empty. For s = 0.005 and x = 1, the range 1{ has transition points Qm between 0.35 and 
0.40, and QM between 0.80 and 0.90. For s = 0.005 and x = 2, the range 1{ has transition 
points Qm between 0.35 and 0.40, and QM between 0.65 and 0.70. In the next section we 
provide an explanation for the occurrence of persistent oscillations. 

Finally, we determine the frequency of the computed persistent oscillations by means of 
a Fourier spectral analysis. We consider the persistent oscillations in the pressure P (t). The 
function P (t) is taken as a time dependent signal that has been computed over a time interval 
to ::: t::: to+ T oflength T. Then P(t) is expanded in a complex Fourier series, viz. 

00 

P(t +to)= L cke21rilctfT, (4.3.5) 
k=-00 
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where the Fourier coefficients ck are given by 

1 {T . 
Ck = T Jo P(t + to)e-21rikt/T dt. (4.3.6) 

In (4.3.5) the FoUJjer component Cke21rikt/T has frequency Vk kjT and amplitude lckl· To 
determine Ck. the signal P(t) is sampled N times at equidistant points t =to+ jTj N, j = 
0, 1, ... , N - 1. Next the integral ( 4.3.6) is approximated by the discrete Fourier transform 

1 N-1 

Ck =-L P(to + jT/ N)e-2'1fikjJN, 
N J=o 

k 0, 1, ... , N- 1, (4.3.7) 

which is conveniently evaluated by means of a fast Fourier transform (FFT) algorithm. For 
a survey of discrete Fourier transforms and FFT algorithms, see the books by Brigham [7], 
and Elliot and Rao [11]. 
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Figure 4.15 The amplitude spectra let) I and lciQ) I of the pressure P(t) and the 
volumetric flow rate Q(t), respectively, as function of the frequency vk = k/30, 
k = 0, ... , 480, fore 0.005, x = 1 and Qi = 0.6. The signals P(t) and Q(t) com­
puted for 10 ~ t ~ 40, are sampled at intervals 0.01. 

As an example we consider the persistent oscillations in the pressure P(t) and the volu­
metric flow rate Q(t), shown in Figures 4.9 and 4.11, and occurring in the transient flow for 
s = 0.005, x = 1 and Q; 0.6. The signals P(t) and Q(t), computed over the time interval 
10 ~ t::; 40oflength T 30, are sampled at intervals T/N = 0.01, so that N = 3000 sam­
ples are taken. By use of the FFT algorithm of 'Matlab' applied to (4.3.7), we compute the 
Fourier coefficients cY) and ciQ) of P (t) and Q(t), respectively. In Figure 4.15 the amplitude 

spectra let) I and lciQ) I are plotted as functions of the frequency vk = k/ T, k 0, ... , 480. 
In this figure we distinguish five peaks in both let) I and lciQ) 1. The computations show that 
in both spectra the peaks are located at vo = 0, 11113 = 3. 77, vm = 7.57, 1!341 = 11.37 and 
V455 15.17. These locations correspond to the so-called dominant frequencies. We observe 
that the dominant frequencies are approximately integral multiples of vm 3. 77. The latter 
value is called the main frequency of the signal; to be denoted by v. Thus we have v 3. 77 
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as the frequency of the persistent oscillations in the transient flow fore= 0.005, x = 1 and 
Qi 0.6. The value v = 3.77 agrees very well with the frequency 3.75, determined from 
Figure 4.11 by counting the number of oscillations per unit of time. As a further check we 
have verified that a spectral analysis of the signal w(r, t) for several values of r, produces the 
same main frequency v = 3.77. Our computations also show that eaQ> ~ Q; = 0.6, suggest­
ing that the average value of Q(t) is equal to the fictitious steady state value Q = Q1• 

Qi X v Q; X v 
0.4 I 3.23 0.4 2 2.81 
0.5 1 3.50 0.5 2 3.06 
0.6 1 3.77 0.6 2 3.30 
0.7 1 4.00 
0.8 1 4.27 

Table 4.3 The main frequency v of persistent oscillations, for z 0.005, x "" 1, 
Q1 0.4, 0.5, 0.6, 0.7, 0.8 (E 9{), and f: 0.005, X"" 2, Q; 0.4, 0.5, 0.6 (E 9{). 

The same spectral analysis has been carried out for several other flows showing persistent 
oscillations. Thus the amplitude spectra let> I and leiQ) I of the signals P(t) and Q(t) have 
been computed by means of the discrete Fourier transform ( 4.3.7), for transient flows at given 
s, x and Q1 E :1{. In all cases considered the computations show that the signals P(t) and 
Q(t) have the same main frequency v. In Table 4.3, the frequency v of the persistent oscil­
lations is given fore= 0.005, x = 1, Q; 0.4, 0.5, 0.6, 0.7, 0.8, and fore 0.005, x = 2, 
Q1 = 0.4, 0.5, 0.6. We observe that v increases with increasing Q; E :1{. On the other hand, 
at a given Q1 E :1{, the frequency v decreases if x is changed from x = 1 to the larger value 
x=2. 

e r* v 
0.005 0.9789 3.77 
0.004 0.9818 4.37 
0.003 0.9849 5.37 
0.002 0.9883 7.10 
0.001 0.9927 11.42 

Table 4.4 The radial coordinate r* at which w(r, t) is discontinuous, and the main 
frequency v for fiows showing persistent oscillations, for x = 1, Q1 = 0.6 and 
z = 0.005, 0.004, 0.003, 0.002 and 0.001. 

To investigate the dependence of the frequency v one, we compute the transient flow for' 
x = 1, Q; 0.6 and e = 0.005, 0.004, 0.003, 0.002, 0.001. The computations reveal for the 
values of e considered, that the flow shows persistent oscillations. Furthermore, the velocity 
gradient w(r, t) tends to become discontinuous in rat some radial coordinate r = r*. Again, 
we calculate the amplitude spectra let) I and leiQl I of the signals P(t) and Q(t) by means 
of the discrete Fourier transform. The outcome of the calculations is that, for given e, the 
signals P(t) and Q(t) have the same main frequency v. In Table 4.4, the values of v and r* 
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are given for x = 1, Q; 0.6 and s 0.005, 0.004, 0.003, 0.002, 0.001. We observe that 
v strongly depends on s, in such a way that v increases with decreasing s. Furthermore, we 
see that the spurt layer becomes thinner with decreasing s. In the next section it is found, 
just by comparison of numerical values, that v ~ D.j2rr, where n is the imaginary part of the 
complex eigenvalue that comes up in the stability analysis of the steady state solution. 

4.4 Stability analysis 

In this section we provide an explanation for the occurrence of persistent oscillations, as ob­
served in Section 4.3, by means of a linearized stability analysis of the steady state solution. 
It will tum out that the transient flow showing persistent oscillations corresponds precisely 
to the steady state solution being unstable. Likewise, if the transient flow tends to a steady 
state, then correspondingly the steady state solution is found to be stable. In Section 4.3 the 
range 1{ of flow rates Q; for which persistent oscillations occur, was found to depend on the 
parameters s and X· In this section we further investigate the dependence of 1{ on s and x 
by additional numerical computations of the transient flow. 

From the results of Section 4.3 we infer that the prescribed inlet flow rate Q; completely 
determines the transient flow behaviour. For Q; > Qcru• the transient flow is found to ei­
ther tend to a spurt steady state or to show persistent oscillations. If a spurt steady state is 
attained, the numerical results yield the values of the steady state pressure P = limr-->oo P(t), 
the steady state flow rate Q lim:-.oo Q(t) Q;, and of the steady state velocity gradient 
w(r) = lim:-.oo w(r, t). This velocity gradient is discontinuous with one jump from w:'_ < WM 
to w~ > Wm at r = r* ( < 1). The steady state values P and r* satisfy the relation ( 4.2.10), 
whilew(r) is the smallest or the largest solution ofthe steady state equation :f(w(r)) 4rP, 
dependent on whether 0 ~ r < r* orr* < r ~ 1, respectively. If persistent oscillations occur, 
however, no steady state is attained. In that case the velocity gradient w(r, t), calculated at 
r = rk kD.r, is found to show after sufficient time a numerical discontinuity between rk 
and rk+l for some specific index k. By taking r* = (rk + rk+l) /2, we assign a value to the 
radial coordinate r* at which w (r, t) is discontinuous. The fictitious steady state solution cor­
responding to persistent oscillations is then determined as follows: the fictitious steady state 
pressure Pis determined from Q; and r* such that (4.2.10) is satisfied, while the fictitious 
steady state velocity gradient w(r) is the smallest or the largest root of :F (w(r)) 4rP, de­
pendent on whether 0 ~ r < r* orr* < r ~ 1, respectively. Thus, in case of a spurt steady 
state as well as in case of persistent oscillations, the (fictitious) steady state solution satisfies 
the equations of Section 4.2. 

We now proceed with the stability analysis of the (fictitious) steady state solution. Anal­
ogous to Malkus et al. {36, Sec. 5], we consider the solution of the system (4.1.47) to consist 
of a stationary part plus a dynamic part: 

P(t) P + 1/r(t), 

Q(t) = Q + q(t), 

S(r, t) = S(r) + X(r, t), 

Z(r, t) Z(r) + Y(r, t), 

w(r, t) = w(r) + ~(r, t), 
(4.4.1) 

where 1/r, q, ~.X andY are dynamic perturbations. Substitution of (4.4.1) into (4.1.47) yields, 
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with the use of (4.2.2), 

e;(r, t) + X(r, t) = 4r1{r(t), 

ax -at= -X+ (1 + Z); + (J)y + ;Y, 

dl{r(t) = - .!.q(t). 
dt X 

1/r(t) = eq(t) + 11 

r
2 X(r, t)dr, 

ar -
- = - Y - s; - (J)x - ;x 
at • 

(4.4.2) 

Eliminating; by means of (4.4.2)1, we obtain the following two ordinary differential equa­
tions for X and Y: 

(4.4.3) 

Expressing Sand Z in terms of (J) according to (4.2.3), we rewrite (4.4.3) as 

!._ ( X(r, t) ) = Jl((J)(r)) ( X(r, t) ) + 4r1{r(t) a((JJ(r)) + G(X, Y, 1/r), 
at Y(r, t) Y(r, t) e 

(4.4.4) 

where the matrix Jl and the vector a are given by 

a((JJ) = ( -1; :::' ) ' 
1 + (1)2 

(4.4.5) 

and the vector G consists of terms of second order in the perturbations. 
Next, we consider the linearized form of the system of equations (4.4.4) and (4.4.2)2•5. 

In order to determine the stability properties of the solution of the linearized system, we look 
for a non-trivial solution of the form 

(4.4.6) 

where z is the eigenvalue parameter. Substitution of (4.4.6) into (4.4.4) with G = 0 yields 

( 
X ) ( X ) 4rlii z y = Jl y + -e-a, (4.4.7) 

while substitution of (4.4.6) into (4.4.2?·5 leads to 

1ii = eq + 11 

?X(r)dr, 
- 1 

zl{r = --7j. 
X 

(4.4.8) 
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Provided that the matrix zl Jil is non-singular, the solution of ( 4.4. 7) expressed in terms of 
lf reads 

X(r) = 4ra(r,z)1jl, Y(r) = 4rb(r, z)lfr, (4.4.9) 

where the functions aand bare given by 

( ) _ z + I- w2 (r) 
a r, z - (z + 1)(1 + s(z + 1))- (1- s s(z + 1)2)w2 (r) + sw4 (r)' 

(4.4.10) 

b( ) = _ (z + 2)w(r) 
r,z (z+ 1)(1 +s(z+ 1))- (1-s-s(z+ 1)2)w2 (r) +sw4 (r) · 

(4.4.11) 

Finally, by using ( 4.4.9)1 in ( 4.4.8) we are led to the eigenvalue equation 

1 = 4 i 1 

a(r, z)r3 dr- sxz. (4.4.12) 

Changing in the integral the variable of integration from r tow by writing r :J(w)j4P, we 
transform equation (4.4.12) into 

W(z. Q;) := 1 + sxz ~ ( (": + ("wa~1 

)fi(w,z):J\w):J'(w)dw = 0, (4.4.13) 
64P Jo Jw+ 

where fi(w(r), z) := a(r, z). Notice that W(z, Q;) = <l>(z, Q;) + sxz, where <I! is given by 
(3.4.13). Thus, for the steady state solution determined by Q;, the eigenvalues z are the roots 
of equation (4.4.13). Analogous to the stability theory of ordinary differential equations, the 
following stability criteria apply: The steady state solution is unstable if there is at least one 
eigenvalue z with a positive real part (Rez > 0), whereas the steady state solution is stable 
if all eigenvalues z have a negative real part (Rez < 0). 

To find the eigenvalues z we set z = x + iy with x, y E IR in ( 4.4.13 ), and solve numeri­
cally 

Re {W(x + iy, Q;)} = 0, Im {W(x + iy, Q;)} = 0, (4.4.14) 

by means of a program package for solving nonlinear equations. Since W(z, Q;) = W(z, Q; ), 
the eigenvalues are either real or appear as complex conjugate pairs. The numerical compu­
tations reveal that, for the range of flow rates Q; we explored, equation (4.4.13) has three 
eigenvalues z: one real eigenvalue z = Xo < 0, and two complex conjugate eigenvalues z = 

z~ A.o±in. 
In Table 4.5 the computed eigenvalues z = xo and z ~ = A.o ± iO are presented for 

flows driven by a constant inlet flow rate Q;, varying from Q; = 0.19 > Qcrit to Q; 3.0, in 
cases = 0.02, x = 1. In this table also the radial coordinate r* at which the steady state veloc­
ity gradient w(r) is discontinuous, and the steady state pressure P = limHoo P(t) are listed; 
cf. Figures 4.6 and 4.7. We observe that all eigenvalues have a negative real part (xo < 0 and 
Rez~ < 0). Hence, the steady state solution is stable for each value of Q;. This stability re­
sult corresponds precisely to the result of Section 4.3, where we found that for s = 0.02 and 
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Q; r• p xo z~ 
0.19 0.9954 0.10122 -0.825 -0.980 ± 0.256i 
0.20 0.9934 0.09347 -0.859 -1.126 ± 0.070i 
0.25 0.9834 0.07725 -3.275 -0.682 ± 8.178i 
0.30 0.9762 0.07526 -4.724 -0.360 ± 7.314i 
0.40 0.9650 0.07562 -6.202 -0.181 ± 7.603i 
0.50 0.9562 0.07730 -6.972 -0.197 ± 8.381i 
0.60 0.9486 0.07933 -7.551 -0.249 ± 9.188i 
0.80 0.9354 0.08372 -8.509 -0.371 ± l0.694i 
1.00 0.9238 0.08818 -9.345 -0.491 ± 12.049i 
2.00 0.8750 0.10845 -11.209 -0.770 ± 14.961i 
3.00 0.8314 0.12546 -15.944 -1.048 ± 21.719i 

Table 4.5 The computed eigenvalues z = Xo and z = z~, which are the roots of the 
eigenvalue equation llf(z, Q;) = 0, for flows driven by a constant inlet flow rate Q;, and 
e = 0.02, x = 1. The radial coordinate r• signifies the position of the discontinuity 
in the steady state velocity gradient w(r), and P = liffit ... Hx> P{t) is the steady state 
pressure. 

x = 1 the transient flow shows damped oscillations and tends to a steady state for each value 

ofQ;. 

In Table 4.6 the computed eigenvalues z = Xo and z = ~ = A.o ± m are presented for 
flows driven by a constant inlet flow rate Q;, varying from Q; = 0.18 > Qcrit to Q; = 3.0, in 
case e = 0.005, x = 1. In this table also the radial coordinate r• at which the (steady state) ve­

locity gradient is discontinuous, and the steady state pressure P = limt-Hx> P(t) (if attained) 
are listed. The numerical values of P and r• versus Q; are in accordance with Figures 4.13 
and 4.14. We observe that for Q; :::; 0.35 and Q; ~ 0.90 all eigenvalues have a negative real 
part (x0 < 0 and Rez~ < 0), whereas for 0.40 :::; Q; :::; 0.80 the eigenvalues z = ~ have a 
positive real part (Re~ > 0). Hence, the steady state solution is stable for 0:::; Q; :::; 0.35 
and Q; ~ 0.90, whereas the (fictitious) steady state solution is unstable for 0.40:::; Q:::; 0.80. 
For comparison we quote the result of Section 4.3 in case £ = 0.005, x = 1: The transient 
flow shows damped oscillations and tends to steady state for 0 :::; Q; :::; 0.35 and Q; ~ 0.90, 
whereas persistent oscillations occur and no steady state is attained for 0.40 :::; Q; :::; 0.80. 
Thus we conclude that stability of the steady state solution corresponds precisely to the tran­
sient flow tending to a steady state, whereas instability of the steady state solution agrees 
with the occurrence of persistent oscillations. The gap in the flow curve of Figure 4.13 and 
the dots ( o) in Figure 4.14 correspond to steady state solutions that are unstable. 

The transition from a spurt steady state to a state of persistent oscillations and vice versa 
takes place at the flow rates Q; = Qm and Q; = QM. Using the results of the linearized sta­
bility analysis, we now determine Qm and QM as the flow rates at which the transition from a 
stable steady state solution to an unstable fictitious steady state solution and vice versa takes 
place. To that end the following procedure is adopted. Starting from a numerical computa­
tion of the transient flow for given values of Q;, £and x. we determine the radial coordinate 
r* at which the (steady state) velocity gradient shows a numerical discontinuity. Next, we 
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Q; r* p xo z~ 
0.18 0.9982 0.07482 -0.916 -1.110±62.641i 
0.20 0.9962 0.05446 -2.238 -0.980±35 .571 i 
0.25 0.9922 0.04301 -4.737 -0.588±22.915i 
0.30 0.9894 0.04127 -6.564 -0.254±20.612i 
0.35 0.9870 0.04084 -7.981 -0.029±20.067i 
0.40 0.9850 - -8.974 0.073±20.413i 
0.50 0.9818 - -10.249 0.093±22.084i 
0.60 0.9789 - -11.342 0.078±23.696i 
0.70 0.9762 - 12.336 0.051±25.194i 
0.80 0.9738 - 13.172 0.001 ±26.747i 
0.90 0.9718 0.04772 -13.802 -0.076±28.487 i 
1.00 0.9694 0.04877 -14.697 -0.102±29 .603i 
1.40 0.9618 0.05381 -17.306 -0.322±34.677 i 
2.00 0.9514 0.06002 -20.959 -0.632±40.578i 
3.00 0.9366 0.06909 -26.072 -1.038±49.010i 

Table 4.6 The computed eigenvalues z xo and z z~, wbich are the roots of the 
eigenvalue equation '-II (z, Q;) = 0, for flows driven by a constant inlet flow rate Q1, and 
e 0.005, x = 1. The radial coordinate r* signifies the position of the discontinuity in 
the (steady state) velocity gradient, and P = limHoo P(t) is the steady state pressure. 
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calculate Qm and QM as the values of Q; for which the eigenvalue equation 'lt(z, Q;) = 0 
has two purely imaginary roots z = ±in. In this way we find, for example, that Qm ~ 0.36 
and QM ~ 0.81, if E: = 0.005 and x = 1. 

The range !!{ ( Qm, QM) of inlet flow rates Q1 for which persistent oscillations occur 
depends on the parameters E: and x. Starting from numerical computations of the transient 
flow for various values of Q;, E: and x, we determine the transition points Qm and QM by the 
procedure described above. In Figure 4.16 the range!!{ obtained is plotted forE: 0.005, and 
x = 1, 2, 3, 4, 5, 6. The dotted line corresponds to Q; = Qcrit = 0.1678, and the transition 
points Qm and QM of!!{ are marked by dots (o ). The dots lie on the boundary of a region 
in the (X, Q; )-plane. For parameters (x, Q;) inside this region the flow shows persistent os­
cillations, whereas for (X, Q;) outside this region the flow tends to a (stable) steady state. 
We observe that Qm ~ 0.35, whereas QM strongly depends on x. Furthermore,!!{ becomes 
smaller with increasing X· The numerical computations reveal that!!{= 0, for x = 6. Hence, 
a critical value Xcrit• dependent on the value of E:, exists below which persistent oscillations 
may occur. In conclusion, if x ::: Xcrit = 6 and E: = 0.005, the flow driven by a constant inlet 
flow rate Q; tends to a steady state for each value of Q;; if x < Xcrit = 6, the flow tends to a 
steady state if Q1 ¢ !!{, whereas the flow shows persistent oscillations if Q; E !!{. 

In Figure 4.17 the range!!{ obtained from the numerical computations is plotted for x 1, 
and E: 0.001 (0.001) 0.010. The dotted curve corresponds to Q; Qcrit• and the transition 
points Qm and QM of!!{ are marked by dots (o). The dots lie on the boundary of a region 
in the (e, Q; )-plane. For parameters (e, Q1) inside this region the flow shows persistent os­
cillations, whereas for (e, Q;) outside this region the flow tends to a (stable) steady state. 
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Figure 4.16 The range 1( = (Qm, QM) of inlet flow rates Q; for which persistent 
oscillations occur, fore = 0.005 and x = 1, 2, 3, 4, 5; 1( 0 for x = 6. The transition 
points Q; = Qm and Q; = Q M are marked by dots ( o). The dotted line corresponds 
to Q; Qcrir = 0.1678. 
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Figure 4.17 The range 1( = (Qm, QM) of inlet flow rates Q; for which persistent 
oscillations occur, for x 1 and e 0.001 (0.001)0.010; 1( = 0 fore 0.011. The 
transition points Q; = Qm and Q; = QM are marked by dots ( o ). The dotted curve 
corresponds to Q; = 12crir· 
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We observe that Qm ~ 0.35, whereas QM strongly depends on 8. Furthermore, !.!{becomes 
smaller with increasing 8. The numerical computations reveal that !.!{ 0, for 8 = 0.011. 
Hence, a critical value 8crit, dependent on the value of x. exists below which persistent oscil­
lations may occur. In conclusion, if 8 ?: 8crit = 0.011 and x = 1, the flow driven by a constant 
inlet flow rate Qi tends to a steady state for each value of Q;; if 8 < 8crit 0.011, the flow 
tends to a steady state if Q1 rt !.!{, whereas the flow shows persistent oscillations if Qi E !.!{. 

8 X Q; Xo zi fJ.j2rt \) 

0.005 1 0.4 -8.974 0.073 ± 20.413i 3.25 3.23 
0.005 1 0.5 10.249 0.093 ± 22.084i 3.51 3.50 
0.005 1 0.6 11.342 0.078 ± 23.696i 3.77 3.77 
0.005 1 0.7 -12.336 0.051 ± 25.194i 4.01 4.00 
0.005 1 0.8 -13.172 0.001 ± 26.747i 4.26 4.27 
0.005 2 0.4 -7.327 0.046 ± 17 .573i 2.80 2.81 
0.005 2 0.5 -8.296 0.066 ± 19.078i 3.04 3.06 
0.005 2 0.6 -9.067 0.039 ± 20.614i 3.28 3.30 
0.005 1 0.6 -11.342 0.078 ± 23.696i 3.77 3.77 
0.004 1 0.6 -12.023 0.098 ± 27.772i 4.42 4.37 
0.003 1 0.6 -13.035 0.130 ± 33.918i 5.40 5.37 
0.002 1 0.6 -14.781 0.197 ± 44.502i 7.08 7.10 
0.001 1 0.6 -17.575 0.160 ± 73.459i 11.69 11.42 

Thble 4.7 The eigenvalues z = Xo and z zi A.o ± if:J, the frequency f:2/2rr, 
and the main frequency v of the persistent oscillations, for several values of e, x and 
Q; E '1(. 

In all cases considered we found that the eigenvalue equation (4.4.13) has three solutions: 
one real eigenvalue z = xo < 0, and two complex conjugate eigenvalues z = zg= Ao ± ifJ.. 
If J..0 < 0, the steady state solution is stable which was found to correspond precisely to the 
transient flow tending to a steady state. If Ao > 0, the (fictitious) steady state solution is 
unstable and correspondingly the transient flow shows persistent oscillations. The solution 
of the linearized system of equations (4.4.4) and (4.4.2Y~·5 corresponding to the eigenvalues 
z = 4 = Ao ± ifl has a frequency:fl/2rr. In Table 4.7 the eigenvalues z xo and z zt, 
and the associated frequency fJ.j2rr are listed for several flows showing persistent oscilla­
tions; part of the results have been taken from Table 4.6. In the final column of Table 4.7 
we have listed the main frequency v of the persistent oscillations, computed by the discrete 
Fourier transform; the results for v have been taken from Tables 4.3 and 4.4. From Table 4.7 
we conclude that fJ.j2rr ~ v for the flows considered. 

4.5 Loading and unloading 

In Section 4.3 we have computed the transient flow of the extrusion process, starting from 
rest at timet = 0 and driven by a constant inlet flow rate Qi. In this section we consider 
experiments in which the flow is in a steady state corresponding to Qi = Qi0

), whereupon 
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at time t = to the inlet flow rate is suddenly changed to Q1 = Qj0> + .1. Q;. If .1. Q1 > 0, we 
call this process loading, otherwise unloading. On the basis of numerical calculations of the 
transient flow we will demonstrate the influence of the deformation history in some loading 
and unloading processes. In the processes considered the flow starts from rest at time t = 0, 
and the parameters 8 and x have the values 8 = 0.005 and x = 1. 
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Figure 4.18 The pressure P(t) as function of time t for a loading process, in which 
at times t = 30j, j = 1, 2, ... , 8, the inlet flow rate is increased by a loading step 
A Q1 = 0.1 from Q; = 0.1 up to Q; = 0.9; parameter values s = 0.005 and x 1. 

We start with a loading process, in which at times t = 30 j, j = 1, 2, ... , 8, the inlet flow 
rate is successively increased by a loading step .1.Q; = 0.1 from Q1 = 0.1 up to Q1 = 0.9. In 
Figure 4.18 the computed pressure P(t) is plotted as function of time t for this loading pro­
cess. We observe that the time interval between successive loadings is sufficiently long for 
P(t) to attain a steady state value. From the numerical results that underlie Figure 4.18 we 
determine the steady state pressure P attainedjust before the next loading step is imposed; 
the values of Pare listed in Table 4.8. The computations reveal that the steady state attained 
is classical if Q1 = 0.1, whereas the steady states show a discontinuous velocity gradient w(r) 
with exactly one jump at some radial coordinate r = r* if Q; 0.2. The .values of r*, found 
from the place of the discontinuity in the computed steady state velocity gradient w(r), are 
listed in Table 4.8. It has been checked that the steady state values Q = Q;, P and r* satisfy 
equation (4.2.10). We observe that P increases while r* remains fixed, when Q; increases 
from Q; = 0.2 up. to Q; = 0.5. Hence, the boundary of the spurt layer remains fixed after 
loading, which is referred to as shape memory (cf. Section 2.5). For Q; = 0.6, however, we 
observe that both r* and P have become smaller. Hence, the boundary of the spurt layer has 
moved further away from the wall, and the shape memory is lost. The reason for the loss of 
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shape memory is that no value of P exists that satisfies equation (4.2.10) with Q; 0.6 and 
r* = r0 = 0.9962. When Q; increases from Q; = 0.6 up to Q; = 0.9, the radial coordinate r* 
again remains fixed while P increases, so that again shape memory occurs. From the numeri­
cal results presented in Table 4.8, we surmise that the occurrence of shape memory with fixed 
r* r0 is inherent to the existence of a steady state pressure P that satisfies equation (4.2.10) 
with Q; Qi0> + Ll Q; and r* r0. Hence, the occurrence of shape memory depends on the 
initial flow rate Q; = Q>0

> and on the loading step LlQ1• Notice that under gradual increase 
of the inlet flow rate up to Q1 = 0.6, by loading steps Ll Q1 = 0.1, the resulting transient flow 
tends to a steady state. This is in contrast to the case of Figure 4.9 where the flow starts from 
rest at t 0 and is driven by the inlet flow rate Q1 = 0.6 suddenly imposed; then the transient 
flow shows persistent oscillations. Thus we conclude that the deformation history affects the 
transient flow behaviour and the steady state attained. 

Q; p r* Q; p r* 

0.1 0.09060 - 0.6 0.08633 0.9922 
0.2 0.05446 0.9962 0.7 0.09917 0.9922 
0.3 0.07686 0.9962 0.8 0.11173 0.9922 
0.4 0.09907 0.9962 0.9 0.12365 0.9922 
0.5 0.11956 0.9962 

Table 4.8 The steady state pressure P and the radial coordinate r* at which w(r) is 
discontinuous, for a loading process in which at times t = 30j, j = l, 2, ... , 8, the 
inlet flow rate is increased by a loading step ll Q1 = 0.1 from Q; = 0.1 up to Q; = 0.9; 
parameter values e 0.005 and x = 1. 

Next, we consider a process of unloading where the flow is driven by a supercritical in­
let flow rate Q1 Qf0> 0.3, which at time t = 40 is suddenly lowered to the supercriti­
cal value Q1 = Q}0> + LlQ1 0.25. Hence, LlQ; = -0.05 (unloading). In Figure 4.19 the 
computed pressure P(t) is plotted as function of timet. We observe that P(t) has attained 
a steady state value at t 40. From the numerical results that underlie Figure 4.19 we de­
termine the steady state pressure P 0.04127 at t 40. The computations disclose that the 
steady state at t = 40 shows a discontinuous velocity gradient w(r) with exactly one jump at 
r = r0 = 0.9894. Fort> 40, we observe that P(t) slightly decreases and after some time os­
cillations appear. We computed the transient flow up tot = 100, at which time the amplitude 
of the oscillations in P(t) is still the same as at t = 80. Thus, persistent oscillations occur 
and no steady state is attained after unloading to the supercritical value Q1 = 0.25. Further­
more, the computations reveal that for sufficiently large t (> 40) the velocity gradient w(r. t) 
shows a numerical discontinuity also at r r0 = 0.9894. Hence, the boundary of the spurt 
layer remains fixed after unloading, so that shape memory occurs. Shape memory is possible 
because of the existence of a fictitious steady state pressure P = 0.03789 that satisfies equa­
tion (4.2.10) with Q1 0.25 and r* r0 0.9894. Thus, the occurrence of shape memory 
after unloading affects the transient flow behaviour, and persistent oscillations may occur. 

An explanation for the occurrence of persistent oscillations after the unloading to Q1 = 0.25 
can be given by means of the linearized stability analysis described in Section 4.4. For the fic­
titious steady state solution corresponding to Q; = 0.25, the eigenvalue equation \]!(z, Q;) = 0 
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Figure 4.19 The pressure P(t) as function of time t for an unloading process, 
in which at time t = 40 the inlet flow rate is lowered from Qi = Q}0) 0.3 to 
Q1 Q}0) + b. Q; 0.25 > Qcr11 ; parameter values e 0.005 and X = 1. 

(see (4.4.13)) is found to have the solutions z = .xo = -7.924 and z = zt' = J.o ± iQ = 
0.347 ± 15.279i. Hence, the two eigenvalues z = zt' have a positive real part(Rezt' > 0), im­
plying that the fictitious steady state solution is unstable. This instability result corresponds 
precisely to the transient flow showing persistent oscillations. The main frequency v of the 
persistent oscillations depicted in Figure 4.19, computed by the discrete Fourier transform, 
equals v 2.44. Notice that Qj2n = 2.43, which agrees quite well with the value of v. 

Finally, we consider an unloading proces~ where the flow is driven by a supercritical in­
let flow rate Q1 Q}0> = 0.22, which at time t 40 is suddenly lowered to the subcritical 
value Q; = Q?) + !:1Q1 = 0.142. Hence, LlQ; -0.078 (unloading). In Figure 4.20 the 
computed pressure P(t) is plotted as function oftime t. We observe that P(t) has attained 
a steady state value at t 40. From the numerical results that underlie Figure 4.20 we de­
termine the steady state pressure P = 0.04614 at t = 40. The computations disclose that the 
steady state att = 40 shows a discontinuous velocity gradient w(r) with exactly one jump at 
r ro = 0.9942. For t > 40, we observe that P (t) first decreases and after some time oscil­
lations appear. We computed the transient flow up tot= 100, at which time the amplitude 
of the oscillations in P(t) is still the same as at t = 80. Thus, persistent oscillations occur 
and no steady state is attained after unloading to the subcritical value Q1 = 0.142. Further­
more, the computations reveal that for sufficiently large t ( > 40) the velocity gradient w (r, t) 
shows a numerical discontinuity also at r r0 = 0.9942. Hence, the boundary of the spurt 
layer remains fixed after unloading, so that shape memory occurs. Shape memory is possible 
because of the existence of a fictitious steady state pressure P = 0.03663 that satisfies equa-
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tion ( 4.2.1 0) with Q; = 0.142 and r* = r0 = 0.9942. Thus, the occurrence of shape memory 
after unloading affects the transient flow behaviour, and persistent oscillations may occur, 
even for a subcritical flow rate Q; < Qcrit. 
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Figure 4.20 The pressure P(t) as function of time t for an unloading process, in 
which at time t = 40 the inlet flow rate is lowered from Q; = Q~0) = 0.22 to 

Q; = Q~O) + tl.Q; = 0.142 < Qcrit; parameter values s = 0.005 and X= 1. 

An explanation for the occurrence of persistent oscillations after the unloading to Q; = 
0.142 can be given by means of the linearized stability analysis described in Section 4.4. 
For the fictitious steady state solution corresponding to Q; = 0.142, the eigenvalue equation 
\ll(z, Q;) = 0 is found to have the solutions z = xo = -5.728 and z = z~ = 0.148 ± 12.178i. 
Hence, the two eigenvalues z = z~ have a positive real part (Rez~ > 0), implying that the 
fictitious steady state solution is unstable. This corresponds precisely to the subcritical tran­
sient flow showing persistent oscillations. 

4.6 Conclusions 

Stability analysis and numerical calculations have been used to analyze the flow of a poly­
meric melt in an extrusion process. In order to find a theoretical explanation for the phe­
nomenon of persistent oscillations, as observed in experiments of Kalika and Denn [23], Lim 
and Schowalter [31], and El Kissi and Piau [12], an extrusion flow combined with compres­
sion has been considered. The extruder consists of a wide cylindrical barrel connected to a 
narrow cylindrical capillary. The melt is compressed in the barrel by a plunger moving at 
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constant speed V0 • Both the volumetric flow rate Q(t) in the capillary and the pressure P(t) 

in the barrel are unknown. 

The constitutive behaviour of the polymeric melt is described by the JSO-model sup­
plemented with an extra Newtonian viscous term. This extra term accounts either for the 
response of a small-molecule solvent, or for the unhindered motion of the polymer chains, 
described by a very fast relaxation rate (cf. Malkus et al. [33]). The JSO-model used here de­
scribes the characteristic behaviour of viscoelastic concentrated polymer solutions and pure 
molten polymers with fading memory, by a differential equation. The addition of the New­
tonian viscous term is essential in our analysis, since it leads to a nonmonotone relation be­
tween the steady state shear stress F (r) and the steady state velocity gradient or shear strain­
rate w(r). We have shown by numerical computations of the transient flow that persistent 
oscillations in the pressure as well as in the volumetric flow rate may occur, as observed in 
experiments. Recall that in the piston-driven shear flow considered in Chapter 3 persistent os­
cillations may occur in the pressure gradient only, and not in the volumetric flow rate. Hence, 
internal material properties of the fluid itself account for persistent oscillations, instead of a 
global external effect such as 'wall slip', because in our model the no-slip boundary condition 
at the wall of the capillary is maintained. 

A theoretical explanation for the occurrence of persistent oscillations in the pressure has 
been given before by Malkus et al. [35], [36], in the piston-driven flow ofaJSO-fluid through 
a slit die. In fact, this chapter deals with the analogous problem of the flow of a JSO-fluid 
through a cylindrical capillary combined with compression in a barrel. By taking into ac­
count the compression we obtain a model for the extrusion process that admits persistent 
oscillations both in the pressure and in the volumetric flow rate. By numerical computations 
of the transient flow we have found critical conditions for the onset of persistent oscillations, 
in terms of the plunger speed Vo, the dimensions of the extruder, and the material parameters 
of the polymeric melt. 

In the description of the flow considered here, the plunger speed, the dimensions of the 
extruder, and the material parameters of the polymeric melt are included in three dimension­
less parameters E, x and Q;. Here, E is equal to the quotient of the solvent viscosity 'Is and 
the shear viscosity f.J,j).; xis proportional to the melt compressibility 1/ K; and Q; is the 
dimensionless inlet flow rate, proportional to the plunger speed Vo. The equations (4.1.47) 
governing the flow can be viewed as a continuous family of quadratic ordinary differential 
equations coupled by one non-local constraint and one non-local ordinary differential equa­
tion that describes the compression in the barrel. The non-local constraint expresses the pres­
sure P(t) in terms of the flow rate Q(t) and an integral of the extra shear stress S(r, t) over 
the cross-section of the capillary. The non-local ordinary differential equation couples Q(t) 
to P(t) and the coupling involves the parameters x and Q;. The quadratic ordinary differen­
tial equations relate the stresses S(r, t) and Z(r, t) to P(t) and the velocity gradient w(r, t) 
for each radial coordinate r, whereby w is determined in terms of S and P by the balance of 
linear momentum. 

The steady state flow is described by a nonmonotone relation between the steady state 
shear stress F(r) and the steady state velocity gradientw(r), ifO < E < 1/8. This nonmono­
tone relation gives rise to three distinct steady state solutions w if Fm < F < FM. As shown 
by Malkus et al. [33, Sec. 3], the solution w with WM < w < Wm is unstable, whereas the, 
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solutions (J) with (J) < (J)M or (J) > (J)m are stable. The steady state pressure P = lim1...,.00 P(t) 
and the steady state velocity gradient (J)(r) depend on the inlet flow rate Q1 in the following 
manner: 

• If. 0 :::; Q; :::; Q0, P is unique and (J)(r) is continuous in r; the flow is referred to as 
classical flow. 

• If Q0 < Q;:::; Qcriro Pis not unique, and(J)(r) iseithercontinuousinr(classical flow) or 
(J)(r) is discontinuous with a jump from (J): < (J)M to (J)~ > (J)m at some radial coordinate 
r = r*; the latter case is referred to as spurt flow. 

• If Q1 > Qcrito Pis not unique and (J)(r) is discontinuous at r = r*, corresponding to 
spurt flow. 

In the case of classical flow, Pis uniquely determined by Q1 only, as expressed by (4.2.9). 
In the case of spurt flow, Pis uniquely determined by Q1 and r*, as expressed by (4.2.10). In 
spurt flow, the jump in (J)(r) results in a kink in the steady state velocity profile v(r) at r = r*, 
and a spurt layer, of thickness 1 - r*, with large velocity gradients forms near the wall. 

By numerical computations we have examined whether or not the transient flow tends to 
a steady state. If a steady state is attained, the computations yield the value of P and, in the 
case of spurt flow, the value of r* where (J)(r) is discontinuous. Fore 0.02 and x = 1, 2, 
4, the calculations of the transient flow revealed that for each inlet flow rate Q1 a steady state 
is attained, showing the following characteristics: 

• If Q1 < Qcrit (subcritical flow), the flow tends to a classical steady state with 
P Pctas(Qi). 

• If Q1 > Qcrit (supercritical flow), the flow tends to a spurt steady state with 
Pbottom ( Q;) :::; P :::; Ptop ( Q;) · 

• The flow curve of P versus Q; is S-shaped, shows a kink at Q; = Qcrin and tends to 
the curve P Prop(Q;) for Q; sufficiently large, independent of x. 

• The spurt layer becomes thicker with increasing Q; > Qcrit· 

• The spurt layer becomes thicker with increasing x. 

The transient flow behaviour was found to crucially depend on the values of e, x and Q;. 
For s = 0.005 and x 1, 2, we observed that for a certain bounded range'.!{ (Qm, QM) 
of supercritical inlet flow rates Q;, persistent oscillations in P(t), Q(t), w(r, t), S(r, t) and 
Z(r, t) occur, for each value of the radial coordinate r. These persistent oscillations do not 
die out and have constant amplitude after a certain instant. For Q1 ¢ '.!{, a steady state is 
reached after sufficient time. At Q; = Qm and Q; = QM, the transition from a steady state 
to a state of persistent oscillations and vice versa takes place. From additional computations 
we conclude that 
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• iff: = 0.005 and x < Xcrit = 6, a bounded range :1{ = ( Q,., QM) of inlet flow rates Q; 
exists for which persistent oscillations occur; 

• iff: = 0.005 and x ~ Xcrit 6, the flow tends to a steady state for each inlet flow rate 
Q;; 

• if x = 1 and f: < E:crit = 0.011, a bounded range :1{ = (Q,., QM) of inlet flow rates Q; 
exists for which persistent oscillations occur; 

• if x = 1 and f: ~ E:cra = 0.011, the flow tends to a steady state for each inlet flow rate 
Q;; 

• the range :1{ becomes smaller with increasing x; 

• the range :1{ becomes smaller with increasing f:. 

In the case of persistent oscillations we have found that after sufficient time the velocity gra­
dient w(r, t), calculated at r = rk = kb.r, shows a numerical discontinuity between r = rk 
and r = rk+l for some specific index k. Then the value of r* is taken as r* = (rk + rk+1 ) /2. 
In this manner, we have been able to assign a value to the radial coordinate r* at which the 
(steady state) velocity gradient is discontinuous, for each inlet flow rate Q;. 

The occurrence of persistent oscillations has been explained by means of a linearized sta­
bility analysis of the steady state solution. By numerical computations we have verified that 
the transient flow tending to a steady state for some value of Q;, corresponds precisely to the 
steady state solution being stable. Likewise, if the transient flow shows persistent oscillations 
for some value of Q;, then correspondingly the steady state solution is found to be unstable. 

The frequency of the persistent oscillations has been determined by means of a Fourier 
spectral analysis of the functions P (t) and Q(t), considered as time-dependent signals. The 
actual calculation uses the discrete Fourier transform of the sampled signals P(t) and Q(t), 
which is conveniently evaluated by a fast Fourienransform algorithm. The main conclu­
sions are that the frequency v of the persistent oscillations increases with increasing flow rate 
Q; E :1{, whereas v decreases with increasing E: and/or x. Furthermore, it has been verified 
that v ~ Qj2TC, where Q is the imaginary part of the complex eigenvalue that comes up as a 
solution of (4.4.13) in the stability analysis of the steady state solution. 

The influence of the deformation history of the melt has been elucidated by some ex­
amples of loading and unloading processes. In the unloading process where the prescribed 
inlet flow rate is suddenly lowered from Q; = Q~0> to Q; Q}0> + b. Q; with b. Q; < 0, the 
following peculiarities are observed: 

• the boundary r r0 of the spurt layer remains fixed after unloading, which is referred 
to as shape memory; 

• persistent oscillations may occur after unloading to supercritical as well as to subcrit­
ical flow rates Q;. 

It was found that the occurrence of shape memory depends on the initial flow rate Q; = Q~0) 
and on the loading step b.Q;. The examples of loading and unloading processes considered 
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illustrate that the deformation history of the fluid affects the transient flow behaviour and the 
steady state attained. 

By fitting the dimensionless parameters e, x and Q; to the material parameters of the 
polymeric melt, the dimensions of the extruder, and to the plunger speed V0 , the dimensional 
steady state pressure P attained can be determined as a function of the plunger speed V0 • 

The plunger speed is of great practical interest in polymer processing, since it determines 
the production rate of the extrusion process; a higher plunger speed leads to more extrudate 
produced per unit of time. The dimensional critical flow rate Qcrit beyond which spurt flow 
ensues, and the range 1{ = (Qm, QM) of dimensional flow rates for which persistent oscil­
lations occur, can be estimated in terms of the material parameters 1Js, J.L, ).., a, K, the radius 
R and the length L of the capillary, and the area A of the plunger. Furthermore, the values 
Bcrit and Xcrir determine directly the critical quotients 1JsA/ J.L and 8AloJ.LL/ K7i ~ of material 
parameters and extruder dimensions below which persistent oscillations occur, dependent on 
whether Q; E 1{. Thus, for an extruder and a polymeric fluid with dimensions and material 
parameters such that e 2: Bcrit and x 2: Xcrit, no persistent oscillations occur and the transient 
flow tends to a steady state for each inlet flow rate Q;. In Chapter 5 we will compare the crit­
ical conditions for the onset of persistent oscillations predicted by our theory, to the critical 
conditions found in the experiments of Kalika and Denn [23], Lim and Schowalter [31], and 
ofEl Kissi and Piau [12]. 
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Chapter 5 

Validation and perspective 

In the previous chapters we have analyzed the capillary flow of a polymeric melt under var­
ious driving mechanisms. The main goal was to provide a theoretical explanation for the 
occurrence of flow instabilities. In the present chapter we want to validate our theoretical 
analyses by a comparison with experimental results. More specifically, the phenomena of 
spurt and hysteresis occurring in a pressure-driven flow (Chapter 2) are compared to their 
counterparts as observed in experiments of Vinogradov et al. [52], [53], and El Kissi and 
Piau [ 12]. Spurt flow accompanied by persistent oscillations in the pressure was found to oc­
cur in a piston-driven flow (Chapter 3) and in an extrusion flow combined with compression 
(Chapter 4). These oscillations are compared to certain pressure oscillations as observed in 
experiments by Kalika and Denn [23], Lim and Schowalter [31], and El Kissi and Piau [12]. 
Likewise, we compare the critical conditions for the onset of flow instabilities predicted by 
our theory, to the critical conditions found in the experiments referred to. For a survey of 
experimental results we also refer to Section 1.5. 

5.1 Validation of the models 

We start with a validation of the theoretical analysis of Chapter 2 by a comparison with ex­
perimental results for pressure-driven flows, due to Vinogradov et al. [52], [53], and El Kissi 
and Piau [ 12]. In these experiments the spurt phenomenon shows up through a discontinuous 
increase of the volumetric flow rate at the slightest increase of the driving pressure gradient 
beyond a critical value. El Kissi and Piau [12] also observed the occurrence of hysteresis 
in an experiment in which the driving pressure gradient is successively raised and lowered. 
Characteristic for hysteresis is that the loading and unloading paths in the flow curve (plot of 
steady state flow rate versus steady state pressure gradient) do not coincide. 

In Chapter 2 we have analyzed the flow of a polymeric melt through a cylindrical capillary 
of radius R, driven by a prescribed constant pressure gradient f. The characteristic behaviour 
of the polymeric melt was described by the KBKZ-model supplied with an extra Newtonian 
viscous term. This extra term accounts either for the response of a small-molecule solvent, 
or for the unhindered motion of the polymer chains. The extra term leads to a nonmonotone 
relationship between the steady state shear stress and the steady state velocity gradient. We 
have established that the KBKZ-model with one main relaxation rate and supplemented with 
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a Newtonian viscous term, is a good approximation to the KBKZ-model with two widely 
spaced relaxation rates. Under neglect of the inertia forces, the flow is governed by two di­
mensionless parameters, namely 

- R 
!= r;;f. 

ltvC 

lJsA 
S=-. 

It 
(5.1.1) 

Here, 7 is the dimensionless and f the dimensional pressure gradient; 1/s (solvent.viscosity), 
It (shear modulus), A (relaxation rate) and c are material parameters of the polymeric melt. 

For the KBKZ-model considered, we have found that the spurt phenomenon can only oc­
cur if 0 < s < s1 = 0.02886. In that case, the dimensionless volumetric flow rate Q is a con­
tinuous increasing function of the pressure gradient f, for f < fcrit = 2FM. For 7 > fcri~> 
the flow develops a spurt layer near the wall in which the velocity gradient is very large com­
pared to the velocity gradient in the rest of the capillary. The occurrence of this spurt layer 
follows immediately from the nonmonotone relationship between the steady state shear stress 
and the steady state velocity gradient. When the spurt layer forms for 7 = fcri~> the flow be­
comes nearly plug-like and Q increases substantially at a slight increase of f. Furthermore, 
we have found that hysteresis in the flow curve occurs for a quasi-static loading-unloading 
cycle, and that the hysteresis loop is due to shape memory; see Section 2.5. We conclude that 
there is qualitative agreement between the theoretical results of Chapter 2, and the observed 
spurt phenomenon and hysteresis in the experiments of Vinogradov et al. [52], [53], and El 
Kissi and Piau [12]. Notice that the additional Newtonian viscous term plays a crucial role in 
the theoretical explanation of spurt. Furthermore, we have maintained the no-slip boundary 
condition at the wall of the capillary. In our approach the spurt phenomenon is referred to 
as a constitutive instability that is associated with internal properties of the polymeric melt. 
This is in contrast to the explanation of spurt as being due to wall slip, that is, the failure of 
the fluid to adhere to the wall. 

To further validate the analysis of Chapter 2, we compare the critical conditions for the 
onset of spurt predicted by our theory, with the critical conditions found in experiments. 
Vino gradov et al. [52] report on the spurt phenomenon in the capillary flow of certain monodis­
perse polybutadienes and polyisoprenes at room temperature. To fit our material parameters 
1J,, /t. A and c, to Vmogradov's experimental fluid samples PI-1 to PI-8 of polyisoprene of 
different molecular weights M ( cf. Table 5.1), we use the following features of the fluid sam­
ples, taken from [52] and Malk:us et al. [32]: 

• The shear modulus It is independent of the molecular weight M. 

• The shear viscosity It/A depends on the molecular weight M according to the well­
known empirical power law 

(5.1.2) 

where B is independent of M. 

• There is a critical molecular weight below which the material does not show the spurt 
phenomenon; the samples PI-1 and PI-2 do not exhibit spurt. 
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• For the samples PI-3 through PI-8 the critical wall shear stress Trz,crit at the onset of 
spurt is independent of the molecular weight M. 

• For the samples PI-3 through PI-8 the critical wall shear strain-rate Ycrit at the onset of 
spurt depends on M according to 

. AT. M-3.3 
Ycrit = - rz crit CX • 

ll ' 
(5.1.3) 

Kolkka et al. [24] have fitted the power law (5.1.2) to the data ofVinogradov et al. [52], and 
they found that 

B = 9.6 * 10-12 cgs units, (5.1.4) 

The corresponding values of the shear viscosity !l/A are presented in Table 5.1. Kolkka et 
al. [24] mention that their fit has a maximum error in relaxation rate A of about 50 percent 
for fluids PI-2 and PI-3, whereas the error is less than 12 percent for fluids PI-4 through PI-8. 

Next we determine the solvent viscosity 1Js ofVinogradov's fluid samples within the KBKZ­
model, by a calculation similar to that of Kolkka et al. [24] within the JSO-model. We as­
sume that sample PI-2 is just subcritical for the onset of spurt, and that 1Js does not vary with 
M, or equivalently, that the secondary (very fast) relaxation rate is independent of M. In the 
KBKZ-model the onset of spurt occurs ate = TfsA/ ll = Bt = 0.0289, while the fluid sample 
PI-2 has a shear viscosity !l/ A 0.11 * 106 Nm-2s (see Table 5.1). Thus we find that 

(5.1.5) 

By use of (5.1.5) and the values of !l/ A from Table 5.1, we calculate the dimensionless pa­
rameter e = TfsA/!l for the samples PI-1 through PI-8. The resulting values of e are listed 
in Table 5.1. We observe that e « 1 for each of the polyisoprene samples of Vinogradov et 
al. [52]. Obviously, the samples PI-1 and PI-2 have e :=::: e1, which corresponds to no spurt, 
whereas the samples PI-3 trough PI-8 have e < Bt. which corresponds to spurt. Furthermore, 
we note that e decreases with increasing M. 

PI-8 

6.02 
11 

0.028 

Table 5.1 The shear viscosity f.L/"A and the dimensionless parameter e fitted to the 
polyisoprene samples of Vinogradov et al. [52] of different molecular weights M. 

The key result in the observations of Vinogradov et al. [52], [53], is that the critical wall 
shear stress Trz,crit at the onset of spurt is independent of the molecular weight M, whereas the 
corresponding shear strain-rate Ycrit strongly depends on M. We compare the critical values 
as predicted by our analysis to these observations, under the assumption that the material 
parameter c is independent of M. In Section 2.2 we have found that the dimensionless critical 
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pressure gradient equals 7 = 7crit 2FM, so that the dimensional critical pressure gradient 
/era is given by 

fcriJ = (5.1.6) 

From (2.1.34) and (5.1.6) the dimensional critical wall shear stress Trz.crit follows as 

By using the approximations (see (A.8) of Appendix A) 

(t)M (t)* + O(e), FM = J((t)*) + O(e), 

with (t)* = 1.2979 and l((t)*) = 0.3479, we find that 

Trz,crit = 0.3479 MJc. 

e--+ 0, 

(5.1.7) 

(5.1.8) 

(5.1.9) 

under neglect of the O(e)-term. Since c and fJ, are independent of M, we conclude that Trz,crit 

is independent of M, which is in accordance with the observations ofVinogradov et al. [52], 
[53]. The independence of Trz,crir on M has also been found in experiments by El Kissi and 
Piau [12], and Ramamurthy [46]. From (5.1.9) with M = 0.6 * 105 Nm-2 by (5.1.4)2, and 
Vinogradov's value Trz,crit = 0.151 * 106 Nm-2 [52, Table II], we may determine the dimen­
sionless material parameter c as c = 52.3. Alternatively, Kolkka et al. [24] have used Vino­
gradov's value of T,.z,crit to determine the slip parameter a in the JSO-model as a 0.98. 

The dimensionless critical volumetric flow rate Qcrit at the onset of spurt is computed by 
means of (3.2.11) with 7 = 7crir = 2FM and W [0, (t)M], that is 

Qcrit = :~ 1())M ::f2 ((t))::J'((t))(t)c/(J), (5.1.10) 

where :F((t)) is given by (2.2.11). By using (5.1.8) and the approximations (see (A 7) of Ap­
pendix A) 

:F((t)) = J((t)) + O(e), :F'((t)) = J'((t)) + O(e), e--+ 0, (5.1.11) 

we find that 

Qcrit = /((t)*) + O(e), e--+ 0, (5.1.12) 

where I ( (t)*) stands for the integral 

1 1())' /((t)*) = ~( ) J2((t))l1 ((t))(t)d(t) 
J (t)* 0 

(5.1.13) 

and l((t)) is given by (2.2.9). The value of /((t)*) is readily determined by numerical integra­
tion. Since Q = rrR3 )...,.jC Q, where Q denotes the dimensionless flow rate, the dimensional 
critical flow rate Qcrit is found to be 

(5.1.14) 
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under neglect of the O(s )-term. In view of the power law (5.1.2) it follows that 

(5.1.15) 

since J.t, Band care independent of the molecular weight M. For a capillary flow, the critical 
wall shear strain-rate Ycrit is proportional to the critical volumetric flow rate Qcrit· Hence, 
Ycrit is proportional to M-3

·
3

, which is in accordance with the experimental result (5.1.3) of 
Vinogradov et al. [52]. Also El Kissi and Piau [12] found a strong dependence of the critical 
volumetric flow rate Qcrit on the molecular weight M. In particular, they observed that Qcrit 

is smaller for a fluid with larger M, which is in correspondence with (5.1.15). 
In their experiments, El Kissi and Piau [12] observed that the hysteresis loop in the flow 

curve gets wider for larger values of the molecular weight M of the polymeric melt. In Fig­
ure 2.10 we have presented the theoretical flow curve as a plot of the dimensionless volu­
metric flow rate Q versus the dimensionless pressure gradient f, calculated for a quasi-static 
loading-unloading cycle. From this figure we derive that the hysteresis loop has a dimen­
sionless width l.lf = 2FM 2Fm. Consequently, the dimensional width of the loop is found 
as 

(5.1.16) 

From (5 .1.8) it follows that F M is almost independent of s, whereas Table A.1 of Appendix A 
indicates that Fm decreases with decreasing s. The dependence of FM and Fm on s, together 
with the dependence of son M according to Table 5.1, demonstrate that FM is almost inde­
pendent of M, whereas Fm decreases strongly with increasing M. Thus we conclude from 
(5.1.16) that l.lf increases with increasing M, which is in accordance with the observation 
of El Kissi and Piau [12]. 

We now recapitulate the main theoretical results bearing on the phenomena of spurt and 
hysteresis in a pressure-driven flow: 

• The critical wall shear stress Yrz,crit at the onset of spurt is independent of the molecular 
weight M. 

• The critical volumetric flow rate Qcrit at the onset of spurt is proportional to M-3·3• 

• The width !::;.f of the hysteresis loop in the flow curve increases with increasing M. 

These results agree quite well with the experimental results due to Vinogradov et al. [52], 
[53], El Kissi and Piau [12], and Ramamurthy [46]. The agreement observed supports our 
point of view that spurt is a constitutive instability. 

Next we turn to a validation of the theoretical analysis of Chapter 3 by a comparison with 
experimental results for piston-driven flows, due to Kalika and Denn [23], Lim and Schowal­
ter [31], and El Kissi and Piau [12]. In these experiments spurt flow is found to be accom­
panied by persistent oscillations in the pressure. These persistent oscillations show up for a 
bounded range of flow rates. 
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In Chapter 3 we have analyzed the flow of a polymeric melt through a cylindrical capil­
lary of radius R, driven by a piston that moves at constant speed and induces a constant volu­
metric flow rate Q. The characteristic behaviour of the polymeric melt was described by the 
JSO-model supplied with an extra Newtonian viscous term. The inclusion of the Newtonian 
viscous term leads to a nonmonotone relationship between the steady state shear stress and 
the steady state velocity gradient. Under neglect of the inertia forces, the flow is governed 
by two dimensionless parameters, namely 

1/sA 
E=-. 

J1 
(5.1.17) 

Here, Q is the dimensionless and Q the dimensional flow rate; 1/s (solvent viscosity), J1 (shear 
modulus),>.. (relaxation rate) and a (slip parameter) are material parameters of the polymeric 
melt. 

For the piston-driven flow of a JSO-fluid considered, we have shown by numerical com­
putations that there exists a bounded range !!( of dimensionless flow rates Q for which the 
pressure gradient f shows persistent oscillations. This theoretical result corresponds pre­
cisely to the observed spurt flow accompanied by pressure oscillations in the experiments of 
Kalika and Denn [23], Lim and Schowalter [31], and El Kissi and Piau [12]. Notice that the 
additional Newtonian viscous term is essential in the theoretical explanation of spurt. Fur­
thermore, we have maintained the no-slip boundary condition at the wall of the capillary. 
Accordingly, spurt flow is associated with internal properties of the polymeric melt, and is 
therefore referred to as a constitutive instability. 

To further validate the analysis of Chapter 3, we compare the critical conditions for the 
onset of spurt flow and persistent oscillations, predicted by our theory, to the critical con­
ditions found in experiments. The experiments on piston-driven flows by El Kissi and Piau 
[12], and Lim and Schowalter [31], give rise to the following additional observations: 

• The flow curve (i.e. the plot of steady state pressure gradient versus steady state flow 
rate) is S-shaped and shows a kink at a certain critical flow rate. 

• The flow curve for a piston-driven flow is similar to the flow curve for a pressure-driven 
flow for sufficiently large flow rates. 

• The critical flow rate at which the flow curve has a kink, is larger for a wider capillary. 

• Persistent oscillations occur only for polymeric melts with a sufficiently large molec­
ular weight M. 

• Persistent oscillations are observed for a wider range of flow rates when the polymeric 
melt has a larger molecular weight M. 

These observations are now compared with the theoretical results of Chapter 3 for a piston­
driven flow. In the Figures 3.5 and 3.10 it is seen that the flow curve is indeed S-shaped 
with a kink at Q Qcrit· Furthermore, we have found that the flow curve tends to the curve 
7 frop(Q), corresponding to top-jumping, for Q sufficiently large. Since in a pressure­
driven flow always top-jumping occurs (cf. Figure 2.10, or Malkus et al. [33, Sec. 3]), the 
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curve 7 frop(Q) represents the flow curve for a pressure-driven flow. In conclusion, the 
flow curve based on our numerical computations shows qualitative agreement with the flow 
curve experimentally found by El Kissi and Piau [12]. As found in (3.2.14), the dimension­
less critical flow rate Qcrir equals Qcrir = 1/6 + 0(8), 8 --7- 0. Correspondingly, the dimen­
sional critical flow rate Qcrir is given by 

rr)..R3 

Qcril = r:;---::;
2 

, 
6v 1- aw 

(5.1.18) 

under neglect of the 0(8 )-term. Hence, Qcrir is proportional to R3
• Thus, the critical flow 

rate Qcrir at which the flow curve shows a kink is larger for a wider capillary, which is in 
accordance with the observation of El Kissi and Piau [ 12]. 

Both in the KBKZ-model and in the JSO-model the parameter 8 for Vinogradov's fluid 
samples decreases with increasing molecular weight M of the samples; see Table 5.1 and 
Malkus et al. [32, Table I]. In Section 3.4 we found that the bounded range 2( of flow rates 
Q for which persistent oscillations occur, is non-empty if 0 < 8 < 8crir 0.007. Thus, per­
sistent oscillations occur only for polymeric melts with a sufficiently large molecular weight 
M, corresponding to 8 sufficiently small. Furthermore, we observe in Figure 3.13 that 2( be­
comes wider with decreasing 8. Hence, for a melt with larger molecular weight M, i.e. with 
smaller 8, the persistent oscillations occur for a wider range 2( of flow rates Q. In conclusion, 
our predictions about the dependence of the onset of persistent oscillations on the molecular 
weight Mare in accordance with the observations of Lim and Schowalter [31] listed above. 

This completes the reflection on Chapter 3: our theoretical model for piston-driven flow 
of a I SO-fluid fits quite well to the experiments considered. The agreement observed sup­
ports again our point of view that spurt flow is due to constitutive instabilities. 

In Chapter 4 we have analyzed the extrusion flow of a polymeric melt that is compressed 
in a wide barrel by a plunger moving at constant speed Vo. The barrel is connected to a nar­
row cylindrical capillary and the compression in the barrel forces the melt to flow through 
the capillary. The polymeric melt in the barrel is taken to be compressible according to an 
elastic constitutive model. The characteristic behaviour of the polymeric melt in the capil­
lary is described by the JSO-model supplied with an extra Newtonian viscous term. This 
extra term leads to a nonmonotone relationship between the steady state shear stress and the 
steady state velocity gradient. Under neglect of the inertia forces, the flow is governed by 
three dimensionless parameters, namely 

X Q
. _ AVoJT=a2 
'- rr)..R3 . 

(5.1.19) 

Here, Q; is the dimensionless inlet flow rate; K (compression modulus), l/s (solvent viscos­
ity), f.L (shear modulus),).. (relaxation rate) and a (slip parameter) are material parameters of 
the polymeric melt; while lo (initial length of the barrel), A (area of the plunger), R (radius 
of the capillary) and L (length of the capillary) are the dimensions of the extruder. Notice 
that x contains material parameters as well as dimensions of the extruder, whereas Q; is pro­
portional to the plunger speed Vo. 
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In Sections 4.3 and 4.4 we have shown that also the extrusion process combined with 
compression gives rise to the occurrence of spurt flow accompanied by persistent oscillations. 
More specifically, we have found by numerical computations that there exists a bounded 
range !!{ of inlet flow rates Q;, for which the pressure P inside the barrel and the volumet­
ric flow rate Q in the capillary show persistent oscillations. In the Figures 4.6 and 4.13 it 
is seen that the flow curves are S·shaped with a kink at Q; = Qcrit· These theoretical results 
agree quite well with experimental results for pressure oscillations and flow curves found for 
a piston-driven flow by Kalika and Denn [23], Lim and Schowalter [31], and El Kissi and Piau 
[12]. Notice again that the additional Newtonian viscous term plays a crucial role in the the­
oretical explanation of spurt flow accompanied by persistent oscillations. Accordingly, spurt 
flow is associated with internal properties of the polymeric melt (constitutive instability). 

To further validate the analysis of Chapter 4, we make a comparison with the following 
additional experimental observations: 

• The critical flow rate at which the flow curve shows a kink and beyond which spurt 
flow occurs, is independent of the length L of the capillary (El Kissi and Piau [12]). 

• The amplitude of the persistent oscillations is constant in time (Kalika and Denn [23]). 

• The span of the persistent oscillations goes through a maximum with increasing flow 
rate (Lim and Schowalter [31]). 

• The frequency of the persistent oscillations increases with increasing flow tate (Kalika 
and Denn [23], Lim and Schowalter [31]). 

The flow curves in Figures 4.6 and 4.13 show a kink at the critical flow rate Q; = Qcrit> in­
dependent of x; here Qcrit = 1/6 + O(s) by (3.2.14). According to the definition of X in 
(5.1.19)2, independence of x implies independenoe of 1/ K and of L. Henoe, the dimensional 
flow rate Qcrit. given by (5.1.18), is independent of 1/K and of L. The independence of L 
is in accordance with the observation of El Kissi and Piau [ 12]. From Figure 4.11 it is clear 
that the amplitudes of the persistent oscillations in the pressure P and in the volumetric flow 
rate Q are constant in time, which is in accordance with the observation of Kalika l!lld Denn 
[23]. Furthermore, we have computed the span of the persistent oscillations for several val­
ues of Q; E !!{, and givens and x. The computations (which are not included in Section 4.3) 
indicate that the span attains a maximum somewhere in the middle of the range !!{, which 
corresponds to the observation of Lim and Schowalter [31]. Finally, looking at Table 4.3 we 
notice that the main frequency v of the persistent oscillations increases with increasing Q;, 
which is in accordance with the observations of Kalika and Denn [23], and Lim and Schowal­
ter [ 31]. Thus, we conclude that there is qualitative agreement between the results predicted 
by our model and the experimental results listed above. 

In the extruder shown in Figure 4.1 the entrance of the capillary forms a narrow con­
traction. The influence of the contraction on the capillary flow is ignored in the model of 
Chapter 4, so that this model is only valid for relatively long capillaries. Consequently, it 
does not make sense to compare the critical conditions for the onset of persistent oscillations 
predicted by our theory to the critical conditions found in experiments with a short capil­
lary. The critical conditions predicted by our theory are that no persistent oscillations occur 
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if the parameter x exceeds the critical value Xcrit 6, or equivalently, if the length L of the 
capillary exceeds a critical value. This is in contrast to the observations of Kalika and Denn 
[23], and Durand [10], who experimentally found that no persistent oscillations occur for a 
relatively short capillary. 

By comparing the results of Chapters 3 and 4, we may assess the influence of the melt 
compressibility li K. In Figure 4.16 we observe that the range !!(becomes smaller with in­
creasing x. As a consequence, the melt compressibility 1/ K affects the onset of spurt flow 
accompanied by persistent oscillations. On the other hand, persistent oscillations also oc­
cur in the piston-driven flow discussed in Chapter 3, where no compression is taken into ac­
count. Thus, we conclude that polymer compressibility in the barrel is not crucial for the 
onset of spurt flow, although it has some effect. This is in harmony with a comment of Lim 
and Schowalter [31] that melt compressibility in the reservoir is not important in their exper­
iments. 

In this section we have provided a theoretical explanation for the occurrence of spurt 
and persistent oscillations as observed in various experiments involving both pressure-driven 
and piston-driven flows. In this explanation the flow instabilities are associated with internal 
properties of the melt (constitutive instabilities). We have examined the critical conditions 
for the onset of the flow instabilities in terms of both the material parameters of the melt and 
the dimensions of the extruder. The results predicted by our model are found to be consistent 
with the critical conditions observed in experiments. The agreement between theory and ex­
periment supports the explanation of spurt in terms of constitutive instabilities. Notice that 
in our model spurt cannot be explained in terms of wall slip, because the no-slip boundary 
condition at the wall of the capillary is maintained. 

5.2 Perspective 

For more than 40 years it has been known that a polymeric melt passing through a capillary 
may exhibit flow instabilities leading to distortions of the extrudate. One would think that 
after these years of studying melt fracture in polymer inelts and solutions, there would be 
at least some consensus among rheologists, polymer engineers, theoreticians, and others, on 
what is happening. The reason that no such consensus exists may be that different mecha­
nisms are responsible for sharkskin, for spurt and for gross-melt fracture. 

In this thesis we have explained spurt phenomena in terms of constitutive instabilities. 
Our model for extrusion does not involve wall slip, circulations in the barrel caused by the 
contraction, or singularities at the outlet edge of the capillary. By use of an appropriate con­
stitutive model we demonstrated the occurrence of spurt by macroscopically observable phe­
nomena, like a substantial increase of the steady state flow rate at a slight increase of the driv­
ing pressure gradient (see Chapter 2), or persistent oscillations in the pressure gradient for 
a certain range of flow rates (see Chapters 3 and 4). The relation between these phenomena 
and the extrudate distortions, however, is still not clear and remains a challenging subject for 
further research. 
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In the constitutive models used, the additional Newtonian viscous term accounts for the 
effect of a small-molecule solvent. In Section 2.6 we have shown that this term may also be 
interpreted as being due to a secondary (very fast) relaxation rate. The transient and steady 
state flow behaviour of a polymeric melt described by a constitutive equation involving two 
(or more) relaxation rates still needs to be investigated. By numerical computations the pre­
cise influence of two widely spaced relaxation rates on the transient and steady state flow can 
be examined, whereupon the effect on the onset of the flow instabilities can be clarified. 

In the extrusion process considered in Chapter 4, the compression in the barrel has been 
taken into account. The melt is compressed in the barrel by a moving plunger. We have ne­
glected the decrease of the length l of the barrel, by putting l (t) = 1 (i.e. l (t) = lo in dimen­
sional form) in (4.1.34)2. This decrease, however, can easily be incorporated in a modified 
model with (4.1.34)2 left unchanged. We expect that also for the modified model persistent 
oscillations will occur, and that only the critical onset of the persistent oscillations might be 
affected. 

In the model described in Chapter 4, also the effects of the contraction are neglected. By 
taking into account the contraction, the flow inside the extruder would be more accurately 
described. However, we expect that the influence of the contraction is only noticeable in the 
flow near the inlet of the capillary. We note that the computation of the flow through the 
contraction is very complicated. Thus, for rather short capillaries the contraction should be 
taken into account; for longer capillaries the model described in Chapter 4 is adequate. 

In Section 5.1 we have validated our theoretical analyses by a qualitative comparison with 
experimental results. For a quantitative comparison, however, it will be necessary to incor­
porate sufficient relaxation rates in the constitutive equation, to render possible a satisfactory 
fit to experimental data. In this respect, we would like to emphasize the importance of correct 
and trustworthy constitutive equations which are also valid under extremely high shear-strain 
rates. 

We conclude that many questions about the flow instabilities shown by polymeric melts 
and the related extrudate distortions are still open. Despite the agreement about the occur­
rence of flow instabilities, there remains substantial disagreement about the origin of these 
instabilities. This thesis contributes to the discussion about flow instabilities and, especially, 
provides a better insight into the constitutive instabilities. The ongoing research activities 
on the rheology of polymeric melts and concentrated solutions may build up within maybe 
another 40 years an integrated understanding of the origin of flow instabilities and the re­
lation to extrudate distortions. The best way to obtain this understanding is to connect the 
experimental results to models that predict flow instabilities and extrudate distortions. Thus, 
following Kurtz [26], "old and new theories need to address what is known experimentally, 
both in terms of what fits and what does not fit". 



Appendix A 

Properties of J(w) and L(w) 

For convenience we repeat the definitions (2.2.9) and (2.4.10) of the functions J(w) and 
L(w), viz. 

1
oo 'l'e-r: 

J(w) =w 1 2 2d'l', 
0 +w r 

L(w) 

These functions may be expressed in terms of the sine and cosine integrals, as 

J(w) = g(ljw)jw, L(w) f(lfw)jw, 

where g and f are auxiliary functions defined by 

g(z) = -Ci(z) cos z (Si(z) 

f(z) = Ci(z) sinz- (Si(z) 

2 
sinz, 

T( 

2') cosz; 

(A.1) 

(A.2) 

(A.3) 

see Abramowitz and Stegun [3, p. 232]. By means of the latter reference we have the follow­
ing expansions: 

and 

lnw C TC 
J(w)=---+ 

w w 
TC lnw 

L(w) = 2w -
w2 

lnw 1 
-2 3 + 0(3), w-+ 00, w w 

C I 
+ 0(3), w-+ 00, 

w 

(A.4) 

(A.5) 

Here, C = 0.57721 ... is Euler's constant. The derivative J' of the function J is determined 
by differentiation under the integral sign and integration by parts, yielding 

1
00 2 

J'(w) = T T 
0 1+ 

= ---1-L(w) J(w) 
(A.6) 

Numerical calculations reveal that on the interval [0, oo) the function J is non-negative with 
one maximum J(w*) 0.34794 at w = w* = 1.2979. The derivative J' has one minimum 
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Figure A.l The function J((l)) for (I)~ 0. 

J' (w**) = -'0.02886 atw = w** = 2.6255. Hence, J' decreases strictly on the interval [0, w**] 
with J' (0) 1, whereas on [w**, oo) J' increases strictly to zero. In Figure A.l the function 
J(w) is plotted. 

If 0 < s < s1 . - J' (w**) = 0.02886, the functions + J' (w) has two zeros denoted by 
WM and Wm.. Lei WM < Wm, then it/' < WM < w•• < Wm. Thus, if 0 < s < St. the function 
:J(w) = sw + J(w) has two extreme values, a maximum FM = swM + J(wM) at w = WM 
and a minimum Fm = SWm + J(Wm) at W = Wm· In addition tOW= WM and W = Wm, both 
equations :f(w) = FM and :f(w) = Fm have a second solutionw = WM and w = Wm, respec­
tively; see Figure 2.1. Numerical values of WM, FM, WM, Wm, Fm, Wm for s = 0.010, 0.020, 
0.025 are presented in Table A.l. 

to 

s WM FM WM Wm Fm Wm 
(= SWM +f(WM)) (: SWm + J(wm)) 

0.010 1.4519 0.36164 25.4974 9.9609 0.28661 0.4703 
0.020 1.7063 0.37730 9.0094 5.2439 0.35867 0.9242 
0.025 1.9463 0.38637 5.5151 3.9248 0.38149 1.3454 

Table A.l The zeros (J)M and (J)m of the function :F'((J)) for different values of E: 

(0 < E: < c1). the maximum FM = :F((J)M) and the minimum Fm = :F((J)m). and the 
zeros ii>M of !f((J)) FM and ii>m of :F((J))- Fm, where :F((JJ) f:(J) + J((J)). 

For small s we may approximate the function :F ( w) and its derivative :F' (w) according 

:J(w) = J(w) + O(s), :J'(w) = J'(w) + O(s), s ~ 0, (A.7) 

valid for 0 ~ w ~ WM. Consequently, we have the following approximations for the values 
WM and FM: 

WM = w* + O(s ), FM = J(w*) + O(s), s~o. (A.8) 

In Table A.l we observe that Wm and Fm strongly depend on s, in such a way thatwm decreases 
while Fm increases with increasing s. 



Bibliography 

[1] A.C.T. AARTS AND A.A.F. VAN DE VEN, Transient behaviour and stability points of 
the Poiseuille flow of a KBKZ-fluid, Journal of Engineering Mathematics 29 (1995), 
371-392. 

[2] A.C.T. AARTS AND A.A.F. VAN DE VEN, Instabilities in the extrusion of polymers 
due to spurt, Progress in Industrial Mathematics at ECMI 94, H. Neunzert (Ed.), Wiley 
and Teubner, Chichester (1996), 216-223. 

[3] M. ABRAMOWITZ AND I.A. STEGUN (Eds.), Handbook of Mathematical Functions, 
with Formulas, Graphs and Mathematical Tables, Dover Publications, New York 
(1965). 

[4] B. BERNSTEIN, E.A. KEARSLY AND L.J. ZAPAS, A study of stress relaxation with 
finite strain, Transactions of the Society of Rheology 7 (1963), 391-410. 

[5] R.B. BIRD, R.C. ARMSTRONG AND 0. HASSAGER, Dynamics of Polymeric Liquids, 
Volume 1, Fluid Mechanics, Second edition, Wiley, New York (1987). 

[6] J.M. BOWNDS AND J.M. CUSHING, On preserving stability of Volterra integral equa­
tions under a general class of perturbations, Mathematical Systems Theory 9 (1975), 
117-131. 

[7] E.O. BRIGHAM, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs (1974). 

[8] P. BRUNOVSKY AND D. SEVCOVIC, Explanation of spurt for a non-Newtonian fluid 
by a diffusion term, Quarterly of Applied Mathematics 52 (1994), 401-426. 

[9] M.M. DENN, Issues in viscoelastic fluid mechanics, Annual Review of Fluid Mechan­
ics 22 (1990), 13-34. 

[10] V. DURAND, Ecoulement et Instabilite Oscillante des Polyethylenes Haute Densite, 
Ph.D.Thesis, l'Ecole Nationale Superieure des Mines de Paris (1993). 

[11] D.F. ELLIOTT AND K.R. RAO, Fast Transforms: Algorithms, Analyses, Applications, 
Academic Press, London (1982). 

[12] N. EL KISSI AND J.M. PIAU, The different capillary flow regimes of entangled poly­
dimethylsiloxane polymers: macroscopic slip at the wall, hysteresis and cork flow, 
Journal of Non-Newtonian Fluid Mechanics 37 (1990), 55-94. 

145 



146 BIBLIOGRAPHY 

[13] J.D. FERRY, Viscoelastic Properties of Polymers, Third edition, Wiley, Chichester 
(1980). 

[14] A. GOUBLOMMB, B. DRAILY AND M.J. CROCHBT, Numerical prediction of extru~ 
date swell of a high-density polyethylene, Journal of Non-Newtonian Fluid Mechanics 
44 (1992), 171-195. 

[15] A. GOUBLOMMB AND M.J. CROCHET, Numerical prediction of extrudate swell of a 
high-density polyethylene: further results, Journal of Non-Newtonian Fluid Mechanics 
47 (1993), 281-287. 

[16] J.M. GRBBNBBRG ANDY. DEMAY, A simple model of the melt fracture instability, 
European Journal of Applied Mathematics 5 (1994), 337-358. 

[17] G. GRIPBNBERG, S.-0. LONDBN AND 0. STAFFANS, Volterra Integral and Func­
tional Equations, Cambridge University Press, Cambridge (1990). 

[18] J.K. HUNTER AND M. SLEMROD, Viscoelastic fluid flow exhibiting hysteretic phase 
changes, Physics of Fluids 26 (1983), 2345-2351. 

[19] T. W. HUSBB Y, Hypothesis on a certain flow instability in polymer melts, Transactions 
of the Society of Rheology 10 (1966), 181-190. 

[20] G.S. JORDAN AND R.L. WHBELBR, Structure of resolvents of Volterra integral and 
integrodifferential systems, SIAM Journal on Mathematical Analysis 11 (1980), 119-
132. 

[21] D.D. JOSEPH, Fluid Dynamics of Viscoelastic Liquids, Springer, New York (1990). 

[22] D.D. JOSEPH AND Y. JoE LIU, Letter to the editor: Steep wave fronts on extrudates 
of polymer melts and solutions, Journal of Rheology 40 (1996), 317-319. 

[23] D.S. KALIKA AND M.M. DENN, Wall slip and extrudate distortion in linear low­
density polyethylene, Journal of Rheology 31 (1987), 815-834. 

[24] R.W. KOLKKA, D.S. MALKUS, M.G. HANSEN, G.R. lERLEY AND R.A. WOR­
THING, Spurt phenomena of the Johnson-Segalman fluid and related models, Journal 
of Non-Newtonian Fluid Mechanics 29 (1988), 303-335. 

[25] E. KREYSZIG, Introductory Functional Analysis with Applications, Wiley, New York 
(1978). 

[26] S.J. KURTZ, Comment on: "Letter to the editor: Steep wave fronts on extrudates of 
polymer melts and solutions", Journal of Rheology 40 (1996), 319-320. 

[27] V. LAKSHMIKANTHAM, S. LEELA AND A.A. MARTYNYUK, Stability Analysis df 
Nonlinear Systems, Dekker, New York (1989). 

[28] R.G. LARSON, Constitutive Equations for Polymer Melts and Solutions, Butterworths, 
Boston (1988). 



BIBLIOGRAPHY 147 

[29] R.G. LARSON, Review: Instabilities in viscoelastic flows, Rheologica Acta 31 (1992), 
213-263. 

[30] A.I. LEO NOV, A linear model of the stick-slip phenomena in polymer flow in rheome­
ters, Rheologica Acta 23 (1984), 591-600. 

[31] F.J. LIM AND W.R. SCHOWALTER, Wall slip of narrow molecular weight distribution 
polybutadienes, Journal of Rheology 33 (1989), 1359-1382. 

[32] D.S. MALKUS, J.A. NOHEL AND B.J. PLOHR, Dynamics of shear flow of a non­
Newtonian fluid, Journal of Computational Physics 87 (1990), 464-487. 

[33] D.S. MALKUS, J.A. NOHEL AND B.J. PLOHR, Analysis of new phenomena in shear 
flow of non-Newtonian fluids, SIAM Journal on Applied Mathematics 51 (1991), 899-
929. 

[34] D.S. MALKUS, Y.C. TSAI AND R.W.KOLKKA, New transient algorithms for non­
Newtonian flow, Finite Elements in Fluids 8 (1992), 401-424. 

[35] D.S. MALKUS, J.A. NOHELAND B.J .. PLOHR, Approximatingpiston-drivenflowofa 
non-Newtonian fluid, Differential Equations, Dynamical Systems, and Control Science, 
K.D. Elworthy, W. Norrie Everitt and E. Bruce Lee (Eds.), Dekker, New York (1994), 
173-192. 

[36] D.S. MALKUS, J.A. NOHEL AND B.J. PLOHR, Oscillations in piston-driven shear 
flow of a non-Newtonian fluid, IUTAM Symposium on Numerical Simulation of Non­
isothermal Flow of Viscoelastic Liquids, J.F. Dijksman and G.C.D. Kuiken (Eds.), 
Kluwer, Dordrecht (1994), 57-74. 

[37] J. MEISSNER, R.W. GARBELLA AND 1. HOSTETTLER, Measuring normal stress dif­
ferences in polymer melt shear flow, Journal of Rheology 33 (1989), 843-864. 

[38] R.K. MILLER, Nonlinear Volterra Integral Equations, W.A. Benjamin, Menlo Park 
(1971). 

[39] J. MOLENAAR AND R.J. KOOPMANS, Modelingpolymermelt-flowinstabilities, Jour­
nal of Rheology 38 (1994), 99-109. 

[40] Z. NEHARI, Introduction to Complex Analysis, Revised edition, Allyn and Bacon, 
Boston (1968). 

[41] J.A. NOHEL AND R.L. PEGO, Nonlinear stability and asymptotic behaviour of shear­
ing motions of a non-Newtonian fluid, SIAM Journal on Mathematical Analysis 24 
(1993), 911-942. 

[42] J.A. NOHEL AND R.L. PEGO, On the generation of discontinuous shearing motions 
of a non-Newtonian fluid, Archive for Rational Mechanics and Analysis (to appear). 



148 BIBLIOGRAPHY 

[ 43] J. M. PIAU AND N. EL KISS I, Measurement and modelling of friction in polymer melts 
during macroscopic slip at the wall, Journal of Non-Newtonian Fluid Mechanics 54 
(1994), 121-142. 

[44] G. POMAR, S.J. MULLER AND M.M. DENN, Extrudate distortions in linear low­
density polyethylene solutions and melts, Journal of Non-Newtonian Fluid Mechanics 
54 (1994), 143-151. 

[45] V.F. PULYAEV AND Z.B. TSALYUK, Admissibility of certain pairs of spaces forlinear 
operators and Volterra spaces, Differential Equations 19 (1983), 509-516. 

[ 46] A. V. RAMAMURTHY, Wall slip in viscous fluids and influence of materials of contruc­
tion, Journal of Rheology 30 (1986), 337-357. 

[47] M. RENARDY, Short wave instabilities resulting from memory slip, Journal of Non­
Newtonian Fluid Mechanics 35 (1990}, 73-76. 

[48] M. RENARDY, W.J. HRUSA AND J.A. NOHEL, Mathematical Problems in Viscoelas­
ticity, Longman, Essex (1987). 

[49] Y.Y. RENARDY, Spurt and instability in a two-layer Johnson-Segalman liquid, Theo­
retical and Computational Fluid Dynamics 7 (1995), 463-475. 

[50] R.I. TANNER, Engineering Rheology, Revised edition, Clarendon Press, Oxford 
(1988). 

[51] P.P. TAS, FilmBlowing,fromPolymer to Product, Ph.D.Thesis, Eindhoven University 
of Technology (1994). 

[52] G.V. VINOGRADOV, A.Y. MALKIN, Y.G. YANOVSKII, E.K. BORISENKOVA, B.V. 
YARLYKOV AND G.V. BEREZHNAYA, Viscoelastic properties and flow of narrow dis­
tribution polybutadienes an polyisoprenes, Journal of Polymer Science Part A-2 10 
(1972), 1061-1084. 

[53] G .V. VINOGRADOV, V.P. PROTASOV AND V.E. DREVAL, The rheological behavior of 
flexible-chain polymers in the region of high shear rates and stresses, the critical process 
of spurting, and supercritical conditions of their movement at T > T8 , Rheolo gica Acta 
23 (1984), 46-61. 



. LIST OF SYMBOLS 149 

List of symbols 

Vectors are printed in bold-face type. Tensors and operators are printed in caligraphic type. 
An overbar (-) denotes the steady state value, or the complex conjugate. The Laplace trans­
form is denoted by an asterisk(*). A caret (/\) over a symbol denotes the dimensionless 
form. The trace of a tensor Jif. is denoted by tr Jif., and the transpose of Jif. by Jif.T. Vectors and 
tensors are given both in direct (e.g. a) and component (e.g. a;) notation. Symbols which 
have more than one meaning are listed with a semi-colon seperating the meanings. 

Roman symbols 

a 
A 
b (b;) 
c 
C (C;j) 
']) (D;j) 

f 
F 
'.f (F;j) 

G 
H 
I 
K 
l, lo 
L 
£ (L;j) 
m 
M 
N1 
N2 
p, po, Po 
p 

Phydr 

Q 
Q; 
r 
R 
Rb 
5 
Sp (S;j) 
t 
'I (T;j) 
v (v;) 

slip parameter 
area rrR~ of the cross-section of the barrel 
body force vector per unit mass 
material parameter 
strain tensor '.fT '.f 
rate-of-deformation tensor ! (£ + £T) 
pressure gradient -apjaz 
steady state shear stress 
deformation gradient tensor IJXjax; 
functions defined by (2.2.11), (3.2.6) and (4.2.6) 
stress relaxation function 
Heaviside step function 
unit tensor 
compression modulus 
length of the barrel 
length of the capillary 
velocity gradient tensor av ;ax 
memory function; ratio of two shear moduli 
molecular weight 
first normal stress difference 
second normal stress difference 
pressure 
pressure inside the barrel 
hydrostatic pressure - ~tr 'I 
volumetric flow rate 
inlet flow rate AV0 ; dimensionless inlet flow rate 
radial coordinate 
radius of the capillary 
radius of the barrel 
extra stress tensor 'I + pI 
extra non-Newtonian stress tensor 'I+ pi- 2TJs'lJ 
time 
stress tensor 
velocity vector 
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Vo plungerspeed 
w velocity gradient or shear strain-rate -ovfor = ar ;at 
x (x;) position vector 
z axial coordinate; complex number 

Greek symbols 

a ratio of the inertia forces to the elastic forces 
fJ ratio of two relaxation rates 
y, r shear strain 
y wall shear strain-rate 
8(t) delta function of Dirac 
e ratio of the solvent viscosity to the shear viscosity 
t]s solvent viscosity 
.A relaxation rate 
11. shear modulus 
v frequency 
p fluid density 
e azimuthal coordinate 
x dimensionless parameter 
w steady state velocity gradient 

Special symbols 

Ic first invariant (trace) oftensor C 
dfdt material derivative a;at + VjOjfJxj 
'V gradient operator 
1111 norm 

Function spaces 

C[O, T] 
BC 
BCo 
Lt 

continuous functions defined on [0, T] 
bounded continuous functions defined on JR.+ with sup-norm 
functions in BC that tend to zero at infinity 
measurable functions defined on JR+ with finite normf0

00 
l¢(t)idt 
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Summary 

Extrusion of polymeric melts is employed to produce, e.g., plastic wires, pipes and plates. 
The principle of extrusion is that the polymeric melt is forced to flow through a die, e.g., by 
the action of a driving pressure gradient or a moving piston. At high flow rates, often flow 
instabilities observed as surface distortions of the extrudate occur. Since the distortions make 
the product worthless, it is of great practical importance to know what causes the distortions 
and how they can be avoided. The aim ofthe research presented in this thesis is to get a better 
insight into the relation between the characteristic behaviour of polymeric melts and the flow 
instabilities. For three different flows of a strongly viscous non-Newtonian fluid, especially 
the flow instability 'spurt' is investigated. Spurt in pressure-driven flows is experimentally 
observed through a substantial increase of the volumetric flow rate at a slight increase of the 
pressure gradient beyond a critical value, while spurt in piston-driven flows is accompanied 
by persistent oscillations in the pressure. Specific questions are: What causes spurt, and how 
does spurt depend on the processing conditions and on the polymer used ? 

In this thesis spurt is explained in terms of constitutive instabilities (mechanical failure 
of the polymeric fluid itself), while the no-slip boundary condition at the wall of the die is 
maintained. This is in contrast to the explanation of spurt as being due to wall-slip (failure 
of the polymeric fluid to adhere to the wall of the die). The explanation is based on balance 
laws combined with either of two constitutive models: (1) the so-called KBKZ (Kaye, Bern­
stein, Kearsly and Zappas) integral model for the elastic part of the extra stress tensor, or (2) 
the JSO (Johnson, Segalman and Oldroyd) differential model for the evolution of the shear 
and normal stresses. To aeeount for the response of a small-molecule solvent, an extra New­
tonian viscous term is added to the constitutive model employed. This extra term leads to a 
nonmonotone relation between the steady state shear stress and the steady state velocity gra­
dient or shear-strain rate. It is shown that the Newtonian viscous term may also be interpreted 
as accounting for the effect of a secondary (very fast) relaxation rate. 

For a pressure-driven flow of a KBKZ-fluid through a cylindrical capillary, the occur­
rence of spurt is demonstrated. It is shown that the steqdy state solution is not unique if the 
steady state pressure gradient exeeeds a critical value. The asymptotic stability of the possi­
ble steady states is established by means of a perturbation analysis of a nonlinear Volterra in­
tegral equation of non-convolution type. Numerical computations determine which specific 
steady state the fluid attains. The steady state attained is found to depend on the deformation 
history, and this explains phenomena like shape memory and hysteresis. 

For a piston-driven flow of a JSO-fluid through a cylindrical capillary, spurt accompanied 
by persistent oscillations in the pressure gradient is found for a bounded range of prescribed 
flow rates. Numerical computations disclose that the onset of the persistent oscillations de­
pends on the material parameters of the polymer. The occurrence of the persistent oscillations 
is explained by a linearized stability analysis. 

The influence of compression on the onset of spurt is investigated for an extrusion process 
that is modelled by the flow of a JSO-fluid through a contraction from a wide barrel into 
a narrow cylindrical capillary. The fluid in the barrel is compressed by a moving plunger, 
and is thus forced to flow into the capillary. Numerical computations disclose that persistent 
oscillations in the pressure as well as in the volumetric flow rate occur for a bounded range of 
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prescribed plunger speeds. The onset of the persistent oscillations is found to depend on both 
the material parameters of the polymer and the dimensions of the barrel and the capillary. The 
frequency of the persistent oscillations is determined by a Fourier spectral analysis, while 
the occurrence of the persistent oscillations is explained by a linearized stability analysis. 
Numerical computations on loading and unloading processes, in which the plunger speed is 
gradually raised or lowered, clarify the influence of the deformation history. 

Finally, the theory is validated by a qualitative comparison with experimental results. 
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Samenvatting 

Extrusie van polymeersmelten wordt toegepast om bijvoorbeeld plastic draden, buizen en 
platen te produceren. Het principe van extrusie is dat de polymeersmelt geforceerd door een 
capillair stroomt, aangedreven door bijvoorbeeld een drukgradient of een bewegende zuiger. 
Bij hoge snelheden treden vaak instabiliteiten op in de stroming, die waargenomen worden 
als vervormingen van het oppervlak van het extrudaat. Omdat de vervormingen het produkt 
waardeloos maken, is het van groot praktisch belang te weten wat de vervormingen veroor­
zaakt en hoe ze vermeden kunnen worden. Het doel van het onderzoek beschreven in dit 
proefschrift is een beter inzicht te verkrijgen in de relatie tussen het karakteristiek gedrag 
van polymeersmelten en de instabiliteiten in de stroming. Voor drie verschillende stromingen 
van een sterk viskeuze, niet-Newtonse vloeistof wordt in het bijzonder de instabiliteit 'spurt' 
onderzocht. Spurt in een stroming aangedreven door een drukgradient wordt experimented 
waargenomen in de vorm van een enorme toename van het debiet bij een geringe toename van 
de drukgradient boven een kritische waarde, terwijl spurt in een stroming aangedreven door 
een bewegende zuiger gepaard gaat met persistente trillingen in de druk. Specifieke vragen 
zijn: Wat veroorzaakt spurt, en hoe hangt spurt af van de procescohdities en het gebruikte 
polymeer? 

In dit proefschrift wordt spurt verklaard in termen van constitutieve instabiliteiten (gere­
lateerd aan de reologie van de polymere vloeistof), terwijl de 'no-slip' randvoorwaarde aan 
de wand van het capillair wordt aangehouden. Dit is in tegenstelling tot de verklaring van 
spurt als gevolg van 'wall-slip', d.i. het loslaten van de v loeistof aan de wand van het capillair. 
De verklaring is gebaseerd op balanswetten gecombineerd met een van de volgende constitu­
tieve modellen: (1) het zogenoemde KBKZ (Kaye, Bernstein, Kearsly and Zappas) integraal­
model voor het elastische deel van de extra spanningstensor, en (2) het JSO (Johnson, Segal­
man en Oldroyd) differentiaal-model voor de evolutie van de afschuif- en normaalspannin­
gen. Om de responsie van een laag-moleculair oplosmiddel in rekening te brengen wordt 
een extra Newtonse viskeuze term toegevoegd aan het gebruikte constitutieve model. Deze 
extra term leidt tot een niet-monotoon verband tussen de stationaire afschuifspanning en de 
stationaire snelheidsgradient of afschuifsnelheid. Aangetoond is dat de Newtonse viskeuze 
term ook geinterpreteerd mag worden als een beschrijving van het effect van een tweede (zeer 
hoge) relaxatiesnelheid. 

Voor een stroming van een KBKZ-vloeistof door een cylindrisch capillair, aangedreven 
door een drukgradient, wordt het optreden van spurt aangetoond. Vastgesteld wordt dat de 
stationaire toestand van de stroming niet eenduidig is indien de stationaire drukgradient een 
kritische waarde overschrijdt. De asymptotische stabiliteit van de mogelijke stationaire toe­
standen wordt onderzocht met behulp van een storingsanalyse aan een niet-lineaire Volterra 
integraalvergelijking van niet-convolutie type. Numerieke berekeningen bepalen welke spe­
cifieke stationaire toestand de strorning bereikt. De bereikte stationaire toestand blijkt af te 
hangen van de vervormingsgeschiedenis, en dit verklaart verschijnselen als vormgeheugen 
en hysterese. 

Voor een stroming van een JSO-vloeistof door een cylindrisch capillair, aangedreven door 
een bewegende zuiger, wordt spurt gepaard gaand met persistente trillingen in de drukgra­
dient gevonden voor een bepaald bereik van voorgeschreven waarden van het debiet. Nu-
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merieke berekeningen tonen aan dat de aanvang van de persistente trillingen atbangt van de 
materiaalparameters van bet polymeer. Het optreden van de persistente trillingen wordt ver­
klaard aan de hand van een gelineariseerde stabiliteitsanalyse. 

De invloed van compressie op de aanvang van spurt wordt onderzocht voor een extru­
sieproces dat gemodelleerd is als een stroming van een JSO-vloeistof door een contractie 
van een wijd vat in een nauw cylindrisch capillair. De vloeistof stroomt door bet capillair, 
aangedreven door een bewegende zuiger die de vloeistof in bet vat samendrukt. Numerieke 
berekeningen tonen aan dat persistente trillingen in de druk alsmede in bet debiet optreden 
voor een bepaald bereik van voorgeschreven zuigersnelheden. De aanvang van de persis­
tente trillingen blijkt af te hangen van zowel de materiaalparameters van bet polymeer als van 
de afmetingen van het vat en bet capillair. De frequentie van de persistente trillingen wordt 
bepaald met een Fourier spectraalanalyse, terwijl bet optreden van de persistente trillingen 
verklaard wordt aan de hand van een gelineariseerde stabiliteitsanalyse. Numerieke bere­
keningen aan processen waarin de zuigersnelheid geleidelijk wordt verhoogd en verlaagd, 
maken de invloed van de vervormingsgeschiedenis duidelijk. 

Tenslotte is.de theorie gevalideerd door een kwalitatieve vergelijking met experimentele 
resultaten. 
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1. In de bescbrijving van bet karakteristieke gedrag van een viscoelastiscbe smelt 
door een KBKZ-model, kan bet KBKZ-model met twee ver uit elkaar Hggende 
relax.atiesnelbeden A.2 » A. 1 benaderd worden door bet KBKZ..model met de do­
llinanterelax.atiesnelbeid A.1 bebouden en een Newtonse viskeuze term met vis­
cositeit 11-z/A.z toegevoegd; bierbij is 11-z de afscbuifmodulus beborend bij A.2 • 

• Hoofdstuk 2 van dit proefschrift. 

2. Gegeven de niet-lineaire Volterra integraalvergelijking van niet-convolutie type 

(;(f)+ fo' k(t, r);('r)dr = <P(t) + :J{ (;)(t), t ~ 0, (1) 

waarin k(t, r) = c(t) + b(t - r), 0:::; r :::; t. Veronderstel dat b E L1, c E L1, 

suptlc(t)l < oo, 
t~O 

lim sup(t- T)lc(t)l 0 
T-+oo t~T 

en dat b aan de Paley-Wiener voorwaarde 

voldoet. Veronderstel verder dat de operator :J{ : BC0 n L1 -+ BCo n L1 van 
bogere or de is en dat <P E BC0 n L 1 . Dan bestaat er voor elke e > 0 een o > 0 
zo dat,indien II <PI I :::; o, vergelijking(l) een uniekeoplossing; E BCo n L1 beeft 
met I lsi I :s e. 

• Hoofdstuk 2 van dit proefschrift. 

3. Het extrusieproces voor een polymere smelt is te modelleren door een compres­
siestrolling van een JSO-vloeistof in een wijd vat gekoppeld aan een afscbuif­
strolling door een nauw cylindriscb capillair, waarbij de strolling wordt aange­
dreven door een bewegende zuiger. In deze strolling treden persistente trilling en 
op in de druk alsmede in bet debiet, voor bepaalde waarden van de zuigersnel­
beid, de afmetingen van bet vat en bet capillair, en de materiaalparameters van 
de vloeistof. 

• Hoofdstuk 4 van dit proefschrift. 



4. De frequenties van de persistente trillingen die optreden in een volgens Stelling 
3 gemodelleerd extrusieproces voor een JSO-vloeistof, komen overeen met de 
eigenwaarden berekend door middel van een stabiliteitsanalyse van bet rondom 
de stationaire toestand gelineariseerde model. 

• Hoofdstuk 4 van dit proefschrift. 

5. In hun extrusiemodel gaan Molenaar en Koopmans [1] uit van een gepostuleerd 
verb and tussen druk en debiet, dat beschreven wordt door een stelsel autonome 
differentiaalvergelijkingen. In de oplossing van dit stelsel treden relaxatietril­
lingen op. Onder toepassing van bet constitutieve JSO- of KBKZ-model blijkt 
dat bet verband tussen druk en debiet beschreven wordt door een stelsel niet­
autonome differentiaalvergelijkingen. In de numerieke oplossing van dit laatste 
stelsel treden geen relaxatietrillingen op. 

[1] J. MOLENAAR AND R.J. KOOPMANS, JournalofRheology38(1994), 99-109. 

6. Een dunne cirkelvormige plaat met dikte 2h en straal R bevat een concentrisch 
cirkelvormig gat met straal a. De plaat is aan de buitenrand opgelegd en wordt 
aan de binnenrand in haar vlak belast door een uniforme druk p. Voor de knik­
druk Pknik van deze plaat geldt 

2 (1- v) +a
2

(1 + v) ( h )
2 

Pknik =A 3a2(1 - v)(l + v)2 E R ' 

waarbij E de elasticiteitsmodulusis, v de dwarscontractiecoefficienten a = af R. 
Voorts is x = A de kleinste wortel van de vergelijking 

[xi~ (x) + vlp. (x)][axY~ (ax)+ vYp. (ax)] 

- [xY~ (x) + vYp. (x)][axl~ (ax) + vlp. (ax)] = 0, 

waarin J1. = Jl - (1 - v)x2 f(l + v), terwijl lp. en Yp. deBesselfuncties zijn van 
respectievelijk de eerste en tweede soort van orde Jl.. 

7. Zij de rij {a,} monotoon stijgend met a, > 0 en I:;;;:1 a;;2 convergent; zij a > 0. 
Dan geldt voor x = (x1, x2, X3, ... ) E h. 

waarin x = A1 bet kleinste positieve nulpunt is van de functie xP' (x) + a P(x), 
en P(x) = n~1 (1- ;il ;a;). Gelijkheid treedt op indien x, = a,;(a;,- Ar}. 



8. Ben conisch capillair met halve tophoek a heeft een instroomopening met straal 
R1 en een uitstroomopening met straal R2 ( < Rt). Door het capillair stroomt 
een power-law vloeistof met een voorgeschreven debiet Q. De viscositeit van 
de vloeistof wordt gegeven door 

waarin C en n constanten zijn, terwijl n~ de tweede invariant is van de deforma­
tiesnelheidstensor 1J. Dan geeft de formule ( ontleend aan [2, form. ( 4.110)] met 
daarin n vervangen door (n + 1}/2) 

!:J.P=-- ---- 1- -. 2C (3n+1 Q )n( (R2 )
3n) 

3nsina n rrRi R1 

. een betere benadering voor de drukval over het capillair dan de oorspronkelijke 
formule van Cogswell [3]. 

[2] A.C.T. AARTS, Afstudeerverslag, TUEindhoven (1992); 
[3] F.N. COGSWELL, Polymer Engineering and Science 12 (1972), 64-73. 

9. Met de 'Gelijke Kansen Studiefinancieringsmaatregel' riskeert de Technische 
Universiteit Twente dat vrouwelijke studenten niet volledig door hun omgeving 
worden geaccepteerd. 

10. De herzieningen in de omschrijving van de sport volleybal in opeenvolgende 
drukken van 'Van Dale: Groot Woordenboek der Nederlandse Taal', duiden op 
een toegenomen populariteit van deze sport in de loop der jaren. 




