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Summary 

Realistic simulations of practical flows of viscoelastic polymerie liquids may benefit the 
development and optimization of industrial processing techniques (like injection molding, 
film blowing, mixing and compounding), improve the quality of the final product and 
rednee production costs. For example, the accurate prediction of frozen-in flow induced 
molecular orientation in injection molded products depends strongly on the adequacy of 
the modelling of the viscoelastic behavior of the melt during flow. This orientation, that is 
associated with the flow induced stress distribution, determines the anisotropy of physical 
properties and the long-term dimensional stability of the product. 

Usually, constitutive equations are tested in simple shear flows. However, simple shear 
flows do not contain enough information on the fluid rheology to ensure reliable predictions 
in more complex flows (see for example Donven [32] and Tas [107]). In many cases the vis­
cometric functions can only he measured in a range of shear rates that is smaller than the 
range present in the actual practical flow. Furthermore, measurement of material functions 
in elongational flows are often uureliabie or impossible (Walters [112]). Therefore apart 
from simple shear flow, complex flow should be used to find the (parameters of) constitutive 
equations for polymer melts and solutions. In the past two decades, numerous constitu­
tive equations have been proposed and, with the development of new reliable numerical 
techniques, simulations with viscoelastic constitutive models can be made presently in a 
reasonable range of complex flows. The mission is now to compare numerical simulations 
of these flows with experimental data to investigate the adequacy of the constitutive model 
used. Moreover, the measured data in complex flow can be used to improve the fit of the 
model parameters. 

As a first step to this final goal, in this thesis the benchmark problem of the stagnation 
flow past a circular cylinder is used totest constitutive equations in a more rigorons way. 
Both a symmetrically and an asymmetrically confined cylinder are used. The constitutive 
equations are tested by means of a camparisou of measured data of the velocity and/or 
stress field with finite element simulations. To facilitate the analysis both experimentally 
and computationally, model fluids are used instead of polymer melts in the main part of this 
study. Most results are obtained fora shear-thinning salution of 5% (w/w) polyisobutylene 
in tetradecane (referred to with 5% PIB/C14). In case of a low density polyethylene 
(LDPE) melt, a preliminary analysis is made using the same geometry. 

First, model parameters arefittedon data measured in simple shear for two viscoelastic 
constitutive equations, the Phan-Thien Tanner (PTT) and Giesekus models. Both single 
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IV Summary 

and four mode versions of these models are fitted, and their overall behavior is evaluated 
(in small strain oscillatory shear, steady shear and start-up of steady shear flow after a 
step in shear rate). 

Second, for two polymer solutions pointwise measured velocity (with laser Doppier 
anemometry) and stress field ( with flow induced birefringence) in the flow past a confined 
cylinder are compared with finite element simulations. Measured veloeities and stresses 
agree well to excellently with the results of fini te element computations. In case of the 5% 
PIB/014 solution a comparison is made at five Deborah numbers between 0.25 and 2.31. 
Models with four modes instead of a single mode improve the agreement significantly. 
Differences between the four mode PTT and Giesekus equation are small. In case of 
a 9%(wfw) solution, larger differences are observed. For reference, simulations with a 
generalized Newtonian model (Carreau-Yasuda) are made as well. This model describes 
the velocity field excellently, implying that no pronounced effect of elongational stresses on 
the velocity field is present in the flows investigated. However, normal stresses can not he 
described realistically with a generalized Newtonian model, not even in a qualitative way. 

Third, a preliminary analysis of the flow past a confined cylinder of a LDPE melt is 
made by comparing finite element simulations with (fieldwise) measured isochromatic bire­
fringence patterns. The simulations with viscoelastic constitutive models were performed 
at Deborah numbers as high as 9.8. Measured fringe patterns agree moderately with the 
computed patterns. Most remarkably, in all cases the measured fringes are more concen­
trated near the cylinder surface and the downstream (stress) 'weld line' compared to the 
computed fringes. 

The main conclusions and recommendations can he summarized as follows. (i) The 
experimental methods used proved to he powerful tools. (ii) The planar flows of the 
polymer solutions as investigated can he simulated quantitatively well. In future work on 
polymer solutions it is recommended, besides using higher Deborah numbers, to search a 
flow situation where normal stresses have a more pronounced influence on the velocity field, 
such that the flow discriminates more between the different models. (iii) In case of the 
LDPE melt, the observed discrepancy between experiments and computations is attributed 
to a deficiency of the models used. Evidently, in future studies these models should he 
improved. Moreover, apart from measurements of the stress field, the velocity field should 
he determined experimentally. (iv) Extension to the analysis of the transient rheological 
behavior of the fluid during start-up of the flow around the cylinder is promising as an 
even more rigorous test for the models. 



Chapter 1 

Introduetion 

1.1 Context of this study 

Numerical simulations of complex fl.ows of viscoelastic polymerie fl.uids are of practical 
relevanee to develop and optimize polymer processing techniques. Examples are extrusion, 
(multi-layer) injection moulding, film-blowing and mixing. However, the application of 
such simulations in an industrial engineering environment is not widespread yet. The main 
reasous for this are the oomplexity of (i) the rheological behavior which has to be captured 
in a realistic constitutive equation, (ii) the adequate determination of its parameters, and 
{iii) the numerical problem that is obtained with the constitutive equation, which requires 
sophisticated numerical techniques and extended computer facilities. 

The non-Newtonian behavior of polymerie liquids is related to their structure and is 
manifest in a number of physical phenomena that can not be observed in a Newtonian fl.uid 
( examples are shear thinning viscosity, normal stresses in simple shear and die swell; see 
Larson [70], Tanner [106]). The rheological behavior of macromolecular polymerie fl.uids 
has appeared to he so complex that attempts to describe their behavior has lead to the 
proposition of numerous and diverse constitutive equations. The choice of an appropriate 
constitutive equation is a central problem in rheology of complex fluids. 

A comparison of oomputed results, obtained after choosing a constitutive equation with 
its proper material parameters, with measured (macroscopie) data must reveal whether the 
constitutive equation is adequate. In this thesis, the benchmark problem of visooelastic 
flow past a cylinder with R/h = 1/2 (R: radius cylinder, h: half height of the channel) 
is used totest constitutive equations. It is one of the benchmarks problems for numerical 
techniques (Hassager [49]), and which was particularly recommended at the 'Cape Cod'­
meeting [17] in 1993. It is the two dimensional analog of the benchmark problem of the 
'falling sphere in a tube' problem, but it has the advantage of having the possibility of 
measuring the stress distribution around the cylinder with birefringence. 

Complex flows can not only he used to test constitutive equations, but also to improve 
the choice of the model parameters. Usually parameters are determined using viscometric 
fiows (i.e. simple shear) or elongational fiows, where the kinematics are (partially) known 

1 



2 Chapter 1 

Shear Flow 

Figure 1.1: Schematic classi:fication of D.ows: horizontal axis relers to simple shear D.ows, ver­
tical axis relers to the elongational D.ows. Complex D.ows have a combination of both types of 
deformation. 

a priori and the stress is measured. The rheology of the :fl.uids are then characterized by 
(scalar) material functions, which can he used to fit model parameters of the constitutive 
equations. It has been found, however, that measurements in elongational :fl.ows oftenare 
impossible, uureliabie or can only be obtained in a very small :flow regime (e.g. Walters 
[112]). On the other hand, using information of shear :fl.ows only does not imply accurate, 
quantitative predictions in complex :fl.ows, i.e. multidimensional :fl.ows with mixed shear 
and elongational behavior (Armstrong et al. [4]). Despite many efforts to improve the 
elongational measurements (Walters (112]), it still can be doubted that behavior in complex 
:fl.ows is fully captured. Figure 1.1 illustrates that shear and elongational :fl.ows are only 
two limitsof a general type of :flow with mixed shear/elongational deformation. Moreover, 
the strain history is missing in this oversimplifying picture. 

Since the complex flow involves mixed shear / elongational behavior, evaluation of consti­
tutive equations in complex flows can give more reliable model parameters and distinguish 
better between the adequacy of the different constitutive equations, than can (at least) 
the viscometric flows 1• Moreover, no a. priori assumptions are made concerning the kine­
matica, which is subject of criticism in elongational :flow experiments. Instead, both the 
velocity and stress field are measured and computed. The choice for viscometric flows by 
the early rheologists was delibera.tely made to be sure the fluid properties and not flow 
properties are measured. Nowadays, it is recognized that viscometric :fl.ows do not contain 
enough information to ca.pture all necessary :fl.uid parameters: the identificability is not 
sufficient (compare the conclusions of Oomens and coworkers ([51], (89] and [110]) on the 
identificability of inhomogeneous, anisotropic solid materials). 

The disadvantage of this strategy is that the comparison between computa.tions and 
experiments will not only be influenced by the accuracy of the cànstitutive equation, but 

1 It is empha.sized that agreement with material functions in simple shear or elongational flows must be 
retained. However, usually the parameter fits are not unique and some other choice may be adequate too. 



Introduetion 3 

also by the accuracy of the numerical method. However, recent progress on numerical 
methods for viscoelastic flows has shown that reliable computations are possible (see Brown 
and McKinley [17]). Nevertheless it requires a constant attention. 

In viscoelastic flows the dimensionless Deborah number is central: it characterizes 
the importa.nce of elasticity in the flow. The number is defined by the ratio De = ?. 

p 

where >.1 is the charaderistic time of the fluid and >.P the characteristic process time. A 
typical range for practical flows of polymerie materials is 1 < De < 100. In the past, 
numerical computations failed to converge at Deborah numbers of order unity. Recent 
developed numerical techniques have shifted this limit to higher values of the Debora.h 
number, typically of;::::: 2 for the upper convected Maxwell model (for the benchma.rk 
problem of a sphere falling in a. tube, see next section) and higher for more realistic models. 

The ideal numerical simulation for practical purposes must be accurate, fast, stable, 
robust and capable of dealing with three-dimensional, time-dependent and non-isothermal 
flow conditions at high Deborah numbers. Such simulation can not be made presently. 
Most publisbed studies on numerical simulations of viscoelastic flows deals with isothermal, 
stationary, two dimensional flow (planar or axisymmetric). In the present study only 
planar flows are considered. Extensions towards non-isothermal flows have been made in 
literature (e.g. Baloch et al. [10], Baaijens [8]). Time-dependent computations in two­
dimensional problems have been reported by for example Baaijens [6] and Olsson [88]. 
Three-dimensional viscoelastic computations are presently hindered by the tremenclous 
computer facilities that are required. 

Confrontation of computations of the complex flow field with experiments can be 
achieved with: 

global data: parameters like 'vortex size', 'reattachment length ', 'entry pressure' (all used 
in 4:1 contractions), a pressure drop, or a 'friction coeflicient' (often used in exper­
iments with spheres falling in a circular tube). Such methods are often used and 
require no ad vaneed experimental facilities. However, data of this kind can be rather 
misleading, because they need not reflect all relevant flow phenomena, nor need they 
be sensitive for the precise form of the constitutive equation in viscoelastic compu­
tations. 

fieldwise data: flow visualization methods as streakline photography (visualizing the 
streamfunction in steady flows), birefringence patterns (visualizing the stress field), 
or deformation patterns. 

pointwise data: pointwise measured stress and velocity fields: variables in the viseoelas­
tic computations. 

The latter type of data contains the most information, and is, therefore, preferred in the 
present study. To achieve a quantitative, accurate comparison with experiments, mea­
surement techniques that can map both the velocity field and the stress field with sufti­
eient resolution are needed. Laser Doppler anemometry (LDA) ena.bles pointwise velocity 
measurements, as demonstrated for polymer solutions by for example the MIT group of 
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Armstrong and Brown ( McKinley [80], Quinzani [93], Quinzani et al. [94], Raiford et al. 
[95]). The flow induced birefringence (FIB) technique for pointwise stress measurements 
in planar flows, developed by Fuller and Mikkeisen [38], completes the experimental tools 
that are required. 

In the sequence of this chapter, first the equations that govern viscoelastic flows are de­
scribed in Section 1.2. Then a compact literature survey is given of work on the evaluation 
of constitutive equations in complex flows of viscoelastic fluids and a review of studies of 
viscoelastic flowspast cylinders (Section 1.4). Finally, Section 1.5 contains the objectives 
and the outline of this thesis. 

1.2 Isothermal flow of incompressible, viscoelastic 
fluids 

Isothermal flow of incompressible fluids is described by the equations for conservation of 
and momenturn (neglecting gravity and body forces) and mass: 

(av - ";;'\ p-+v·vv1 at (1.1) 

(1.2) 

where v denotes the velocity field, pis the density and u the Cauchy stress tensor, defined 
by 

U== -pi+ T (1.3) 

where p(x, t) is the pressure field, and I the unity tensor. The prohlem is defined completely 
when an appropriate constitutive equation is substituted for the extra-stress field -r. For 
Newtonian fluids the relation 

(1.4) 

holds, with D, the rate-of-deformation tensor 2D = L + LT, L = (VV)T. Substitution of 
this simple constitutive equation in Equation 1.1 yields the Navier-Stokes equations. 

Polymerie materials (solutions, melts, dispersions) have in general non-Newtonian flow 
behavior (see for example Tanner [106]) and require, therefore, more complicated con­
stitutive equations. As stated already in the introductory Section (1.1), the search for 
appropriate constitutive equations for polymerie fluids is a major research challenge for 
rheologists. A detailed discussion of the models that have been proposed in the past can 
he found in the hooks of, for example, Bird et al. [13], Larson [70] or Tanner [106]. Gen­
eralized Newtonian models are the most simple class of non-Newtonian models. These 
models have a time-independent viscosity that depends on the second invariant of D, liD: 

(1.5) 

with 
liD= :?D: D. (1.6) 
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In simple shear flow the shear rate .Y equals Vïïi). Many models have been proposed for 
TJ(IlD)· A generalized Newtonian model only describes the shear rate dependenee of the 
viscosity; neither normal stresses in shea.r fl.ows nor any other non-Newtonian effect are 
included. 

Non-linear viscoelastic constitutive models attempt to model the rheological behavior 
of vis eoelastic fl.uids in any flow. Two types of constitutive equations exist: equations of the 
integral type and of the differential type. In this thesis, only those constitutive equations 
of the differential type are considered that have the general form: 

with 

0 1 2q; 
-·+-Y··"f"·=-D .. .x,·.>., i= 1, ... ,N . 

~.= 8~· + ü. V"'";- (L- ÇD). "'";-"'"i. (L- ÇDf 

(1.7) 

(1.8) 

where i is the index for each mode and the tensor function Y is de:fined for some models 
in table 1.1. Note that the PTT and Giesekus equations have a non-linear term for r; 

through their function Y;. The UCM model is a special case of both of these models 
when the parameters e and Ç (in the PTT models) or a (in the Giesekus model) are zero. 
Many other models can be found in for example Larson [70]. When Ç = 0 the ( Gordon-

Constitutive equation Y; e 
PTT-a e~tr("'";) I -1 < e < 1 
PTT-b (1 + ~tr(T,))I -1 < e < 1 
Giesekus (I+~"~";) 0 
UCM I 0 

Table 1.1: Detinition Y; and Ç in Equation 1.7, specifying severa.l constitutive equations ofthe 
di:fferentia.l type. PTT= Phan-Thien Thnner, UCM= upper convected Maxwell. 

Showalter) convected derivative cis usually denoted as v, the upper convected derivative. 
The subscript i denotes a single mode. Often, a Newtonian ('solvent') term 2q.D is a.dded 
to the viscoelastic extra stress tensor, and the total extra-stress tensorfora model with N 
modes is then found from 

N 

"/" = 2TJ.D + L"~"i· 
i 

(1.9) 

The PTT -a model is more suitable for polymer melts than the PTT -b model, because 
of its characteristic elongation rate dependenee of the elongational viscosity. The PTT-a 
model prediets an elongational viscosity that is elongational thickening at lower elongation 
rates, reaches a maximum and then becomes elongational thinning at higher elongational 
rates. In case of the PTT-b model the elongational viscosity goes to a plateau at higher 
elongation rates. The :first type of behavior agrees with the results of e.g. Laun [71] for 
LDPE melts. 
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Dimensionless numbers Dimensionless numbers are helpful to characterize flows. In 
the flows considered in this study the Deborah number and the Reynolds number are of 
importance. 

The Deborah number evokes from non-dimensionalizing viscoelastic constitutive equa­
tions. In general two expressions for the Deborah number are found in literature: 

(1.10) 

where >.1 is a characteristic relaxation time of the fluid (in this thesis the average Maxwell 
time is used defined in Equation 3.8 and ..Yc is a characteristic shear rate. Another definition 
lS 

(1.11) 

with Àc('Yc) = 'I/J1('Yc)/(2rt('Yc)), a shear rate dependent characteristic time constant. In 
literature, not all authors use the same definition for De, and therefore care should be 
taken when camparing results of different studies. The cited De numbers are denoted 
with De1 when it is of the same type as Equation 1.10 and with De2 when it is defined 
according with Equation 1.11. In this thesis the definition of De1 is used because of its 
simplicity. Moreover, Boger et al. ([16]) advocate this definition insteadof De2 • They argue 
that the latter definition does not reflect viscoelastic behavior that is often dominated by 
elongational properties, but merely the non-linear shear properties, because it leads to a 
Deborah number that has an asymptotic bound in elongational flows with increasing flow 
ra te. 

The Reynolds number Re1 is defined as 

Re1 = Udpfrto (1.12) 

with U a characteristic velocity of the flow, d a characteristic lengthof the geometry, p the 
density of the liquid, and rto the zero-shear viscosity. 

Similar to De2, also a definition of the Reynolds number can be made with a variabie 
viscosity, Re2 : 

(1.13) 

The first definition is adhered to in this thesis. The interpretation of the Reynolds number 
is not as straightforward as in the case of a Newtonian fluid, where it evokes by non­
dimensionalizing the balance equation of momenturn and represents the relative importance 
of inertia forces to viscous forces. In case of non-Newtonian fluids, it is notgenerally true 
that inertia termscan be neglected when Re << 1, because very different values can be 
present in different regionsof a flow (see for example the discussion in Hulsen (55], p. 24). 
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1.3 A literature survey on combined experimental 
- numerical studies of viscoelastic complex flow 
fields 

Several complex :flows have been used to compare experiments with numerical simulations 
of viscoelastic polymer melts and solutions: 

contraction fl.ows: abrupt entry and exit flows, tapered dies; 

fl.ows with stagnation points: in partienlar planar :flow past a confined cylinder, ax­
isymmetric flow past a sphere falling in a tube and unbounded :flow past an infinite 
cylinder or past a sphere; 

flow between two rotating eccentric cylinders: the 'journal hearing'; 

and toa lesser extent free surface :flows (e.g. 'die swell') and the 'wavy wall channel'. The 
contraction fl.ows have received far most interest, and for reviews it is referred to Boger [14] 
and to Quinzani [93]. In this section, fust an overview is given of work that combines 
experimental observations with computations of the complex :flow field using viscoelastic 
constitutive equations. After that, a more detailed review is given for the stagnation :flow 
past spherical objects, in partienlar for the planar :flow past a cylinder. 

In table 1.3 an incomplete list is shown of relevant, mostly recent, studies that have 
analyzed experimentally complex flows of viscoelastic polymerie fluids by means of a com­
parison of measurements of velocity and/or stress field with computed results. It appears 
that in case of polymer solutions the streakline photography and LDA measurements are 
the most commonly used experiment al methods. The fact that only in a few cases birefrin­
gence measurements have been used is due to the low birefringence level in flows of solutions 
which makes fieldwise birefringence measurements impossible. An advanced experimental 
apparatus like the Rheo Optica! Analyzer (ROA), developed by Fuller and Mikkeisen [38], 
is required instead. The use of such systems is not widespread yet. 

In case of polymer melts, streakline photography and fieldwise birefringence are the 
most commonly used experimental methods. Both methods are relatively easy to use. 
Fieldwise birefringence studies are usually presented by means of birefringence patterns. 
Only Han and Drexler ([46],[48], [47]) used the (tedious) metbod of constructing off-axis 
stress patterns from fieldwise birefringence measurements. The work of Han and Drexler is 
classica!, since they first measured both the velocity (from short-time streak photographs) 
and stress fields ( constructed from birefringence patterns) experimentally in a complex 
flow. The lack of computational tools at that time prevented a comparison with viscoelastic 
computations. 

A direct way to evaluate constitutive equations is integration of the constitutive equa­
tions along a partiele path where the kinematics are known (from LDA) and comparing 
the results with measured stresses. Mostly, this has been done along lines of symmetry so 
only one velocity component needs to be measured a.nd stresses can he calculated easily 
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ence Geometry Fluid Exp. meth. Comp. meth. Dema.:r; 

Ra.ifor [95] 89 A4:1 PIB/C14 LDA FEM-gn 61 
Georgiou [43] 91 PPAC XG,PAC SP FEM 1.29 
Armstrong [4], [94] 92 P4:1 PIB/C14 LDA, FIB-p IPP 4.15 
Dha.hir [112] 92 PPC XG,PAC SP FEM 0.04 
Ra.ja.goplan [96] 92 EC PS/TCP FIB-p FEM 1.40 
Davidson [27],[28] 94 PWWC PS/TCP LDA, FIB-p FEM, IPP 0.52 
Becker [11] 94 FB PIB/PB/C14 TSV FEM 3.40 
Melts 
Han [46],[48],[47] 73 Pll:l PP,HDPE,PS SP, FIB-f SOF ? 
lsayev [58] 85 EF PIB FIB-f FEM 19.1 
Aidhouse [3], [76] 86 EF HOPE LDA,FIB-f IPP 283 
White [114],[115] 88 P4:1,P8:1 LDPE,PS SP,FIB-f FEM 7.6 
Maders [77] 92 P3.5:1 LDPE FIB-f FEM 30.4 
Galante [41] 93 4:1 PDMS FIB-p SOF 30 
Kiriakidis [64] 93 P8:1 LLDPE FIB-f FEM 14.7 
Kajiwara. [62] 93 EF LDPE FIB-f FEM 2.3 

Table 1.2: Studies that have a.nalyzed complex flows of polymerie fluids by comparing mea­
surements of the velocity andfor stress field(s) with computed results. Dema:r;= maximum 
Deborah number (De defined in Equation 1.10, with i'c = Ufh (U = mean velocity, h=half 
height of downstraam channel in contraction flows or radius cylinder in flowspast cylinders)). 
(P,A)4:1 = planar, axisymmetric abrupt four-to-one contraction, PWWC= planar flow in a wavy 
walled channel, PPAC= planar flow past an array of cylinders, PPC= planar flow past cylinder, 
EC=two eccentric rotating cyUnders, FB= falling ball in a circular tube, EF= (several) en­
try flow(s), PIB=polyisobutylene, C14=tetradecane, PS=polystyrene, TCP=tricresylphosphate, 
XG=aqueous solution of xanthan gum, PAC=aqueous polyacrylamide solution, PB=polybutene 
oil, PP=polypropylene, HDPE=high density polyethylene, (L)LDPE= (linear) low density 
polyethylene, PDMS=polydimethylsiloxane, LDA= laser Doppier anemometry, FIB-(p,f)= bire­
fringence measurements: pointwise/fieldwise, SP= streakline photography, TSV =transient sphere 
velocity, FEM= finite element computations oftbe flow using viscoelastic constitutive equations, 
FEM-gn= FEM computations with generalized Newtonian model, IPP= integration of constitu­
tive equation along partiele path using measured velocity data, SOF= solution forsecondorder 
fluid theory. 
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from measured birefringence data (since the optical orientation is then known a priori). 
Armstrong et al. [4], who used a pointwise birefringence technique, tested in this way sev­
eral constitutive equations and adapted model parameters to obtain the optimal fit. The 
agreement was reasonable. Fairly good agreement was found by Aidhouse et al. [3] ( who, 
in fact, presented the birefringence insteadof stresses). 

Qualitative fieldwise agreement between experiments and viscoelastic FEM simulations 
was found in case of most references in table 1.3 that used FEM. Quantitative reasonable 
agreement was found by Rajagopalan et al. [96], who compared pointwise stress measure­
ments, at most positions. However, agreement was lost on positions where relaxation of 
elongational stresses occurred, i.e. just after the gap between the two rotating cylinders. 
Kidakidis et al. [64] found fairly good quantitative agreement for the stresses along the 
centerline of a contraction flow of a LLDPE melt. However, the stress relaxation in the 
die after the contraction was under-estimated by the computations. In general, agreement 
becomes less good with increasing Deborah numbers. 

Combined pointwise stress and velocity measurements are rare, and in the above list 
(which is incomplete) only two such studies are mentioned, both for polymer solutions: 
Armstrong et al. [4] (which is basedon the workof Quinzani [93],(94]) and Davidsonet 
al. ([27], [28]). Only in the latter study also fieldwise, ftnite element computations were 
performed, although these were mostly Newtonian. 

Most studies do not investigate the sensitivity of their computed results for the choice 
of constitutive models. Of those listed in table 1.3 only Armstrong et al., Rajagopalan 
et al. and Kajiwara et al. used more than one constitutive equation. Out of six models, 
Armstrong et al. found the PTT model to predict centerline stresses ciosest to measured 
stresses, and Rajagopalan et al. showed that a single mode Giesekus model was inferior to 
a four mode fit. The computed stress fields of Kajiwara et al., who measured birefringence 
patterns in entry flow in a tapered die, were only weakly sensitive for the two constitutive 
models used (PTT and Giesekus). 

The studies of Raiford [95] and McKinley et al. ([80], [83], [82]) mapped pointwise 
with LDA the velocity field in complex flows of polymer solutions with elastic instabilities. 
McKinley et al. stuclied experimentally elastic instahilities in planar flow past a cylinder 
and the flow through an axisymmetrical contractionfora PIB/PB/C14 Boger fluid 2• They 
showed the power of LDA and observed, for example, that under steady inflow conditions in 
the axisymmetric contraction a clear time-dependent flow became present at a certain flow 
rate in the LDA velocity signal, while the time-averaged streakline photographs indicated 
no change in the (apparent steady) flow field. Observations on elastic instahilities have also 
been reported by Chmielewski and Jayaraman [24], whostuclied with streak photography 
and LDA the cross flow of the Ml (PIB/K/C14) (K=kerosene) Boger fluid and the Al 
(PIB/Decalin) shear thinning fluid through hexagonal and square arrays of cylinders. 

2'Boger' fluids are a special class of viscoelastic model fiuids, introduced by Boger (e.g. [12]), that have 
a constant shear viscosity and a nearly quadratic dependenee of the first normal stress difference on shear 
rate, like predicted by the UCM model. 
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To the authors knowledge, the stagnation flow of a polymer melt past circular objects 
has not been stuclied in detail yet 3 . In case of polymer solutions, there has also been 
no detailed pointwise, quantitative comparison of measured velocity and stress fields with 
FEM computations. The work of Georgiou et al. [43] merely focussed on the experimental 
observation of instability phenomena that are beyond the capability of current finite ele­
ment methods. Dhahir and Walters showed only some tentative computational results of 
streamline patterns that did not have the same trends as the experiments. 

Stagnation flows past circular boclies have two important characteristics: (i) mate­
rial elements that move near the line of symmetry have a history of deformation with 
subsequently strong compression, high shearing and strong extension, and (ii) no corner 
singularities exist, like those that complicate numerical analysis of entry flows. This makes 
these flows good candidates for testing constitutive equations. The literature on complex 
flows past circular objects will be discussed next. 

1.4 Viscoelastic flow past cylinders 

Viscous flowspast circular objectsis a classica! topic in Newtonian fluid mechanics, in par­
tienlar at high Reynolds numbers where the Von-Karman vortex street is observed. These 
types of flows are beyond the scope of the present study. In the following, the Reynolds 
number is typically « 1, unless otherwise noted explicitly. Furthermore, attention will be 
focussed on planar flows, since these will be used in this study. 

In literature, it is found for polymer solutions that the effect of viscoelasticity on the 
velocity field is influenced by (i) the position of the constraining walls, (ii) by the degree 
of elasticity in the flow (characterized by the Deborah number) and (iii) by the relative 
importance of inertia ( characterized by the Reynolds number). 

In case of the unbounded flow past a cylinder (in an uniform stream, i.e. with an 
uniform velocity field far away of the cylinder) experiments gave, as could be expected, 
only a small effect on the streamline pattem (Manero and Mena [78], Mena and Casweil 
[86], Uitman and Denn [109]). The results seemed contradictory: the streamlines shifted 
either a little upstream or downstream of the cylinder. From their experimental results, 
Manera and Mena [78] suggested that the direction depends on the value of the De number: 
a downstream shift at low elasticity (De < 1) and an upstream shift at high elasticity 
(De> 1) . 

Several full numerical studies solving the planar flow past a cylinder in an uniform 
stream have been reported. Pilate and Crochet [92] applied a second order fluid model at 
low to moderate Deborah numbers (0 <De< 1) and low to high Reynolds numbers (0.1 < 
Re < 100). Townsend [108] considered two Oldroyd models (one representing a constant 
viscosity, elastic fluid, and one representing a viscoelastic fluid with shear thinning) at 
low Deborah numbers. Both studies revealed a small downstream displacement of the 
streamlines as observed experimentally by Manero and Mena [78]. Chilcott and Rallison 

3 Chilcott and Rallison [23] mentioned that Mead [84] had performed such experiments; however, his 
thesis proved to be not available anymore. 
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[23] used a constant-viscosity, elastic model (FENE-P) at zero Reynolds number and high 
Deborah number (De= 8 ). They did notreport results of the streamline pattern. 

The flow past a symmetrically confined cylinder has not been stuclied extensively yet. 
Dhahir and Walters [30] reported some experiments and calculations, but focused merely 
on the eccentric case which will be discussed below. McKinley [80] reported unique LDA 
measurements of the flow past a symmetrically confined cylinder of an organic Boger fluid. 
His observations alluded different flow regimes with a transition from steady two dimen­
sional flow to a steady three dimensional, spatially-periodic cellular structure. The ob­
served patterns were characterized as flow instabilities, which made numerical simulations 
impossible. The point past the cylinder where centerline axial velocity profiles reach fully 
developed flow shifted progressively downstream with increasing Deborah number until 
the flow instability occurred. Stress measurements using a FIB technique appeared to he 
impossible for this fluid (McKinley [81], for unknown reasons the laser beam was deflected 
in a peculiar way). 

On the other hand, the related problem of a falling sphere along the centerline of a 
cylindrical tube has been stuclied rather intensively, both numerically and experimentally. 
In Newtonian fiuid mechanics this flow is used to measure the viscosity of the fluid ('falling 
hall viscometer') by measuring the settling velocity of the hall. In non-Newtonian fluid 
mechanics a.ttempts are made to use the transient motion of the falling baH as a measure for 
the rheological behavior of viscoelastic fluids in a non-homogeneous flow (e.g. Becker et al. 
[11]). The flow is also popular as a test problem for numerical techniques (e.g. Deba.e et al. 
[29], Lunsmannet al. [74], Zheng and Phan-Thien [117], Zheng [118]), afterit was set as 
a benchmark problem (Hassager [49]). At the 'Cape Cod'-meeting (Brown and McKinley 
[17]) in 1993, the numericists showed with this problem that important progress has been 
made with respect to the numerical techniques for viscoelastic flow simulations. The drag 
coefficient for the falling sphere in a 'UCM'-fluid could be computed by widely varying 
methods up to four decimals. Some studies focussed on comparing the drag coefficient of 
the sphere, obta.ined from the mea.sured steady state velocity of the fa.lling sphere, with 
model predictions as a test for constitutive equations (e.g. Chhabra et al. [22], Mena 
et al. [87]). Observations of Sigli and Coutanceau [104] on the velocity field with streak­
photogra.phy at low Deborah numbers around a sphere falling along the a.xis of a cylindrical 
tube fitled with an a.queous polyox solution, showed that the wall proximity (expressed by 
the ratio sphere diameter - cylinder diameter) increased the effects due to the fluids elastic 
behavior: a steeper rise of the axial velocity profile along the centerline downstream of 
the sphere, together with an increase of the oversboot of tha.t velocity. Zheng et al. !118] 
analyzed numerically the effects of inertia. (Newtonia.n model), shear-thinning (Carreau 
model) and ela.sticity (PTT-b model) in the flow past a sphere in a. cylindrical tube. They 
found also a simHar effect on the axial velocity a.t the centerline downstreamof the sphere, 
in contradiction with their previous result for the Maxwell model where a. slower rise was 
found. They concluded that the direction of this shift depends on the exact form of the 
constitutive equation, a.nd suggested that the effect is caused by the combined effect of 
shear thinning and elasticity. 

In the case of the asymmetrically confined, cylinder the effect of viscoela.sticity on the 
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velocity field is more pronounced which is explained by the influence of the stresses on the 
kinematics. This has been demonstrated experimentally by Walters and co-workers ([25], 
[61], [30], [43]). Cochrane et al [25] observed that the streaklines fora viscoelastic fluid were 
much more sensitive for a small asymmetry in the constraining of the cylinder then for a 
purely viscous fluid. Dhahir and Walters [30] visualized streamlines for the planar flow past 
an eccentric confined cylinder and observed that for a ( elongational thickening) viscoelastic 
liquid more material flows through the braader gap compared with a Newtonian liquid. 
Jones and Walters [6l] and Georgiou et al. [43] found the sameeffect in the flow of several 
types of liquids through an anti-symmetrie array of confined cylinders. It is considered 
as a manifestation of the extensional viscosity: molecules entering the narrow gap must 
elangate more strongly than those entering the broad gap, which results in a locally higher 
flow resistance in the narrow gap. Interestingly, Olsson [88] simulated with the Giesekus 
model the start-up of flow past a cylinder that is located near one on the walls. He found 
unstable behavior of the fluid, that was more pronounced if the velocity was increased 
and/or the velocity rise time was shortened. 

In this context, the work of Joseph et al. [72] is of interest, who performed experiments 
with spheres rolling in a viscoelastic fluid down an inclined wall. They observed that the 
sense of the rotation is in the other direction compared with a sphere rolling down an 
inclined plane in a Newtonian fluid (in which case it rotates like in air). Moreover, if 
a sphere was dropped on a small distance from a vertical wall in a viscoelastic fl.uid, the 
sphere moved to the walland rotated in the 'counter' sense. If the same sphere was dropped 
in a Newtonian fl.uid, it moved away from the wall. These effects can he explained with the 
competition of inertia and viscoelasticity and is also more pronounced as the velocity of 
the sphere and thus the Deborah number is increased (for example by a larger inclination 
angle of the wall): the polymer molecules are reluctant to flow through the narrow gap 
between sphere and wall. The net force on the sphere causes it counter rotation compared 
with a Newtonian fluid. 

1.5 Objectives and outline of this thesis 

Since experimental observation of complex flows is the starting point of any improverneut 
of constitutive equations, numerical simulations must be confronted with the results of a 
careful experimentally mapped, if possible, velocity and stress field. A rigorous comparison 
should be based on fieldwise, spatially resolved, quantitative data. The complex fl.ows 
of polymer solutions and melts past a confined cylinder will be used to achieve these 
objectives. This problem is recommended as a benchmark problem for viscoelastic flow 
studies (Brown and McKinley [17]). 

Several features make this type of complex flow geometry interesting. First, it has 
received far lessinterest than contraction fl.ows. In particular, a detailed quantitative map­
ping of the stress and velocity field and a comparison with numerical simulation does not 
exist yet. Most studies act as tests of numerical codes, and the comparison with experi­
ments is only qualitative or restricted to a single overall parameter as a drag coeflicient. 
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Second, finite element computations are presently only feasible in two-dimensional 
flows. Planar flows have the advantage compared with axisymmetric flows, that stresses 
can be measured with birefringence techniques. In non-planar flows the interpretation of 
birefringence measurements in terros of stresses is far more complex if not impossible. 

Third, the flow past a submerged circular object differs in a fundamental way from 
the, almost classica!, 4 : 1 contraction flow. On the surface of the cylinder two stagnation 
points exist: one at the front where the material is compressed, and one at the aft, where 
the material is stretched after being sheared along the side of the surface of the object 
(e.g. Becker et al. [11], Chilcott and Rallison [23]). Polymer molecules in the vicinity of 
the cylinder will have large residence times, which will result in large molecular extensions 
and elastic stresses. Compared with the contraction flows, elongation rates are expected 
to be much higher since the material is accelerated from rest in the rear stagnation point. 
This complex flow field is expected to contain relevant information for testing constitutive 
equations. 

Fourth, numerical simulations of abrupt contraction flows suffer from the complication 
of the presence of singular re-entry corner points. Such difficulties are absent in the flow 
past a cylinder, which is expected to facilitate the computations. 

In the experiments the cylinder will be confined, since it has been observed that the 
effect of viscoelasticity on the velocity field is influenced by the relative position of the 
cylinder to the confining plates (see Dhahir and Walters [30]). 

Veloeities will be measured pointwise with laser Doppier anemometry (LDA), and 
stresses with a flow induced birefringence (FIB) technique. Only a few studies have used 
these two methods simultaneously (Armstrong et al. [4], Davidsonet al. [28]). A 5%(wfw) 
polyisobutylene in tetradecane solution will be used as model fluif to enable a comparison 
with the study of Armstrong et al. [4]. They used also both LDA and FIB to analyze 
the flow of the same fluid in a four to one contraction. The fluid is viscoelastic and shear 
thinning, which behavior is preferred (instead of the (constant viscosity) elastic Boger liq­
uids frequently used) when aiming at making progress towards 'melt-like' behavior (Brown 
and McKinley [17]). Polymer solutions are used as model fluids for roelts to facilitate 
the analysis in both experimental and computational respect. Experimentally, polymer 
roelts require high temperatures (150- 300 °C), and probieros can arise with temperature 
inhomogeneities due to viscous heating. This can disturb the optica! measurements, for 
example by deflection of the laser beams due to refractive index differences. Also, the 
relatively low velocity range (:::; 1 cm/ s) in flows of polymer roelts demands a LDA system 
capable of measuring the low frequencies of the Doppier bursts. Computationally, polymer 
roelts require a broad spectrum of relaxation times with typically a large charaderistic 
relaxation time ( 0( 1) s), and high extensional stresses. This all together severely hampers 
numerical simulations. Nevertheless, some preliminary results for a LDPE melt will be 
presented too. 

Experimental methods used in the complex flow studies in Chapters 4 and 5 are de­
scribed in detail in Chapter 2. Numerical methods are discussed shortly in Chapters 4 and 
5. For details about these techniques it is referred to literature. Chapter 3 contains the 
rheological characterization in simple shear of the materials studied. These data are used 
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to fit constitutive equations that are applied in the computations of the complex flows. The 
Phan-Thien Tanner and Giesekus equation are fitted in a single and a four mode version. 
In Chapter 4, comparisons are made of velocity and stress measurements with numerical 
simulations for the flow past a cylinder for two model fluids (polyisobutylene in tetrade­
cane solutions). In Chapter 5 the flow past a cylinder is a.nalyzed in case of the LDPE 
melt, by camparing measured birefringence patterns with computed results. Finally, in 
Chapter 6 conclusions are made and a general discussion is given. In the present study, 
the ultima.te aim of using experimental data in complex flows to adjust model parameters 
or to extend the constitutive models has not been reached yet. In case of the polymer 
solutions, the level of agreement between experiments and simulations was too satisfac­
tory to perfarm such procedure. In case of the polymer melt, the numerical simulations 
were too time-consuming to attempt to imprave the agreement by an iterative sequence 
of simulations for varying model parameters. Moreover, differences between computations 
and experiment are that large that it seems more meaningful to modify the models itself 
insteadof makinga parameter adjustment. 
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Experimental methods and 
equipment 

2.1 Introduetion 

As made clear in the introductory chapter, two different optical techniques have been 
used: laser Doppier anemometry (LDA) for velocity measurements, and flow induced bire­
fringence techniques (FIB) for stress measurements. A basic introduetion of the theory 
in opties can be found in for example Hecht and Zajac [50]. A profound monographof 
electromagnetism is found in Jackson [59] (the fundamental equations that describe the 
propagation of electromagnetic waves are recapitulated in Appendix A). Propagation of 
polarized light through optical elements is treated in detail in Azzam and Bashara [5] 
(Appendix B contains a summary). 

The principles of the LDA technique and the equipment used are summarized in Sec­
tion 2.2. The theory of the FIB measurements and the equipment used are described in 
Seetion 2.3. In Section 2.4, limitations of the methods used and some alternative techniques 
are discussed. 

2.2 Laser Doppier anemometry 

2.2.1 Introduetion 

Fluid veloeities can he measured accurately with high spa.tial resolution by means of the 
laser Doppier anemometry technique ([33]). This technique is ba.sed on the observation 
tha.t the frequency of the light scattered by a moving partiele depends on its velocity. 
The most eommonly used measurement systems are the reierenee beam technique and the 
differential Doppier or dual beam teehnique. The differential Doppier technique, which 
uses two crossing laser beams of equal intensity, was used in the present study. 

15 
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2.2.2 The differential Doppier technique 

Doppier shift on scattering 

The fundamental physical phenomenon in laser Doppier anemometry is the frequency shift 
of light that is scattered by moving small partieles. This frequency shift, the Doppier shift, 
is proportional to the velocity of the partieles. This will he shown below. 

Consicier a partiele located at position x(t) (relative to an axis frame with its origin 
in the measurement volume) that scatters the light from an incident illuminating uniform 
plane wave that is linearly polarized, as described by Equation A.9. For an observer at 
position r, the scattered light wave is a spherical wave, provided the distance r( = I?J) to 
the observer is much larger than both the wavelength of the light ..\0 and the mean diameter 
of the scattering partiele (Kerker [63]): 

... a Ë; -iklf"-xl 
E. = kif'- xl e ' (2.1) 

where a is the (complex) scattering coefficient that is a function of the scattering angle, 
the phase shift and of the polarization of the scattered wave relative to the illuminating 
wave Ë;. 

Since the illuminated, scattering region (the measuring volume) is very smalllxl « lil, 
and Ir- xl ~ r- x· e-;. , Equation 2.1 can he rewritten to ( after substitution of Equation A.9 
and replacing the frequency w of the incident wave by w0 ) 

E ... = aEo ei(w0 t-kr+kx·(e;.-e"k)) 
• kr · (2.2) 

The factor x· e-;. is neglected in the denominator, while it must he retained in the phase. 
The instantaneous frequency of (nearly) harmonie signals is the time derivative of their 
phase (which is the argument of the exponential in Equation 2.2). With ü(t) denoting the 
velocity of the partiele and using Equation A.9, the angular frequency from Equation 2.2 
is written as 

w. = w0 + kü(t) · (e-;.- eic), 

or in units of frequency ([Hertz]) 

ü(t) · (e-;.- elc) 
v. = vo + À • 

(2.3) 

(2.4) 

The Doppier shift of the scattered light is the result of summing a frequency shift associated 
with the velocity component of the partiele in the opposite direction of the wave vector 
of the incident wave ( = -Ü· eic), and the velocity component towards the observer at r 
(= Ü· e-;.). 
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detector 

Figure 2.1: The differentiaJ Doppier technique: moving particles with velocity ü(t) scatter 
light when crossing the intersection of two beams of equaJ intensity (Ëo1, Ê02). The velocity 
component normal at the bisector ofthe two beams (aJong ë~o1 - ë~o2) is found from the frequency 
of the scattered light (see text). 

The differential Doppier technique 

Consider two intersecting plane light waves Ëo1 and Ë02 with frequencies v0 and v0 +V shift~ 
propagating in two different directions ë~c1 and ë~o2 (Figure 2.1). The superposition to the 
frequency of wave Ëo2 of a shift frequency Vshift enables to distinguish between positive 
and negative veloeities as will be shown below. The scattering volume is the intersection of 
the two focussed beams of similar intensity with incHnation angle 8. The scattered light is 
observed in the direction of detector ër. A partiele moving through the scattering volume 
scatters two waves (Ë81 from Ë01 and Ë82 from Ë02) with frequencies 

V si = 
il(t)·(e-;. 

vo + À 
ëkl) 

(2.5) 

Vs2 
il(t) · (e-;.- ë~c2) 

Vo + Vshift + À · (2.6) 
(2.7) 

The intensity of the scattered light (as function of time) is the only quantity of the scattered 
wave that is measured in a laser Doppier anemometry measurement. The intensity is 
measured with a photodetector, that can not resolve signal frequencies of the order of v0 • 

Such frequencies will contribute to the stationary component of the intensity. Since the 
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two intersecting beams have a small frequency difference, the component of the wave that 
oscillates with the frequency difference ('beating' frequency) 

l
ü(t) · (ek'2 - ek't) I 

Vshift + À ' (2.8) 

is the only component that can he resolved in time. It may he rewritten as (see Figure 2.1) 

2u . I) 
Vsl - Vs2 = Vshift +À sm Z' (2.9) 

where u = lül cos a. Thus u is the velocity component normal to the bisector of the two 
beams. For negative veloeities the frequency difference is smaller than Vshift, whereas for 
positive veloeities this difference is larger than V shift· In this way the sign of the veloeities 
can he determined (provided that the negative veloeities result in a frequency shift less 
than Vshift)· 

The second term represents the frequency difference between the Doppier shifts caused 
by the two beams. It depends linearly on the velocity component of the scattering partiele 
in the direction normalto the bisector ofthe two illuminating laser beams. It is independent 
of the scattering direction e-;. and thus independent of the detector position. This implies 
that a large solid angle can he used to collect the scattered light. Only the intensity of the 
scattered light will be dependent on the scattering direction. 

The result is that the detector generates an output signal which is linear dependent 
on u according to Equation 2.9. After processing of this signa! the velocity of the moving 
partiele is found. 

2.2.3 Laser Doppier equipment 

Figure 2.2 shows a schematic draw of the equipment used for the LDA measurements. A 
dual beam metbod was used in backscatter mode. The system, that is controlled by the 
Flow Velocity Analyzer (Dantec 58N20), is operated from a personal computer with the 
software Floware (Dantec). The incident light beams are generated by an 300 m W Argon­
ion laser (Ion Laser Technology 5500A). The laseremits linearly polarized light and consists 
of three colors: green (À= 514.5nm), blue (À= 488.0nm) and cyan (À= 476.5nm). In 
this study, the lD contiguration with only the green color has been used. A Bragg cell splits 
the single beam from the laser in two equally powerlul beams, while the frequency of one 
of the beams bas been shifted with a shift frequency V shift = 40 M Hz. A color separator 
splits the colors and the two green laser beams are focussed into two separate glass fibers. 
Together with one fiber for the received scattered light, these fibers are bundled together 
and lead to the laser probe. In this pro he a lens with focal length f 80 mm focuses 
the two beams in the measuring volume. The backscattered light is received by the same 
lens that focused the intersecting beams. The received light is transmitted back through a 
fiber to a second color separator after which the signa! is detected by the photomultiplier 
for green light. Here the optica! signals are transformed into electrical signals, that are 
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Figure 2.2: Schematic dra.wing of the lBBer Doppler equipment. L: lBBer, BC: Bra.gg cell, CS: 
color sepa.ra.tor, F: glBBs fiber, P: lBBer probe, PM: photomultiplier, FVA: Flow Velocity AnaJyzer, 
3D-T: three axis traverse, CU: control unit for traverse, PC: personaJ computer, v0 , Vb: frequency 
of green and blue beams (only green used here), VshiJt: frequency (pre-)shift. 

processed by the Flow Velocity Analyzer. The laser probe is fixed on a XYZ-traverse 
{Dantec, Lightweight Traverse), that is controlled by Floware. It has a range of 540 mm 
along each axis, and has an accuracy of 0.05mm. 

The spatial resolution of the laser Doppler measurements is determined by the dimen­
sions of the measuring volume. The measurement volume has an ellipsoidal shape, and its 
dimensions are determined by the angle (} between the two laser beams and the diameter 
of the laser beam in the measuring volume, provided that the waist of the beam is posi­
tioned in the measuring volume (Drain [33]). The distance between the two parallel beams 
emitted by the laser probe is 38 mm. This leads to a measuring volume with dimensions 
50 x 50 x 200 #Lm. 

The resolution of the velocity measurement is determined by the FVA hardware. The 
system has 6 different frequency ranges that can he used, all including zero. Each frequency 
range has 256 discrete frequency levels, or equivalently 256 discrete velocity levels. The 
resolution of the velocity measurement is thus 1/512 of the whole velocity range for the 
specific frequency band used. The smallest frequency band that can be used has a width of 
0.12MHz, and thus the smallest resolvable Doppier frequency is O.l2/512MHz =234Hz. 
In the situation above this implies a resolution of the velocity field of 0.13 mm/ s. 

2.3 Flow lnduced Birefringence 

2.3.1 Principle of birefringence 

Consider a light wave of normal incidence at a birefringent medium. This medium has 
two principal directions along which the propagating light wave experiences two different 
refractive indices ni and nu. The first refractive index corresponds to the component of 
the electric field that is parallel to the optie axis (the 'extra-ordinary' ray), and the second 



20 Chapter 2 

refractive index corresponds to a component of the electric field vector perpendicular to 
the optie axis (the 'ordinary ray'). This optical anisotropy is described by a refractive 
index tensor n. In the simple (but common) case with both principle directions of the 
birefringence perpendicular to the propagation vector, this tensor is relative toa Cartesian 
principle frame given by 

n = [ ~I n~1 ~ ]· 
0 0 nu 

(2.10) 

where n1 corresponds to an electrical field vector polarized parallel to the optie axis and 
nu to an electric field vector polarized perpendicular to the optie axis. 

The single incident wave splits in the birefringent medium in two waves whose electric 
field veetors are mutually orthogonally polarized and that have each a different velocity. 
Since both principle directions of the refractive index tensor are perpendicular to the 
propagation direction of the incident wave, these two waves are coïncident in space. The 
electric field component of the incident wave that has its electric field vector parallel to 
the optie axis propagates through the birefringent medium with a velocity v1 ::_

1
, while 

the other component has a velocity v2 = nc 
1

• On exit of the birefringent medium, the 
two waves will have different phases: the sfower wave lags the faster wave. When the 
birefringence is homogeneons along the wave propagation direction, the phase retardance 
ó is related to the principle refractive index difference, the birefringence .ó.n ( = n1 - nu), 
according to 

(2.11) 

where À the wavelength of light in vacuum, and d the length of the light path in the 
birefringent medium 1• 

2.3.2 Flow Induced Birefringence of polymers 

Numerous studies (e.g. [60], [91],[111)) have shown that flowing polymer melts and solu­
tions are birefringent: this phenomenon is called Flow Induced Birefringence (FIB}. It is 
found that in general the linear stress optical rule applies. This rule can he deduced from 
molecular opties and polymer physics. 

Stress optica} rule 

According to the stress optical rule, the deviatoric part of the refractive index tensor, n, 
n = n- itr(n)I, and the deviatoric part of the Cauchy stress tensor u, û = u- itr(u)I, 
are proportional: 

1 'Retardance' is often used for 
wavelengths 

n=Cû, (2.12) 

= d.ó.n, which expresses the phase retardance as a number of 
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where C is the stress optica! coefficient, tr denotes the trace of a tensor, I is the unit 
tensor. The (intrinsic) birefringence is aresult of the polymer molecular orientation and 
deformation only (see below). For polymer solutions the extra-stress tensor T (D" =-pi+ 
T, p: hydrastatic pressure) is splitted as 

(2.13) 

with Tv a viseaus part (the 'solvent' contributian) and Tp a viscoelastic part (the 'palymer' 
contribution). Then the stress optica! rule is assumed to be valid after subtraction of the 
viscous stress term Tv from the stress D" (giving D"p): 

(2.14) 

In a planar complex flow of a birefringent polymer, the orientation of the (principle) axes 
frame relative to the fixed laboratory frame varies from point to point in the plane per­
pendicular to the direction of the wave propagation. This is illustrated by the diagram in 
Figure 2.3. 

y 

nu, TII 

x 

Figure 2.3: Diagram illustrating the local orientation x of the principle a.xes of the refractive 
index tensor (the principle values are denoted with n1, n11) and of the extra stress tensor (r1 and 
r11) relative to the Iabaratory x, y-frame for a (flow induced) birefringent medium in case that 
the linear stress optie rule applies. 

The local principle axes frame of the birefringence is inclined at an angle x relative to 
the fixed laboratory frame. The stress tensor in the fixed Cartesian laboratory frame T;·ll 
is related to the stress tensor T P in the principle axis frame by 

(2.15) 

where Rx is the rotation matrix, i.e. the matrix that describes the coordinate transforma­
tion between two coordinate frames that have a relative orientation such that their positive 
x-axes make an angle x: 

R= [ co~ x sin x]. 
-smx cosx 

(2.16) 
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Thus for the componentsof the stress tensor Tp it is found: 

'Txy = 
An . 

2 
20 

sm X (2.17) 

N1 = r.,.,- ryy 
An 

(2.18) = 0 cos 2x. 

The calculation of stresses from a birefringence measurement involves the measurement of 
two observable physical parameters: the birefringence An and the local orientation angle 
X· Since the birefringence is an integrated effect along a light beam, only birefringence 
data of two-dimensional fields without birefringence gradients in the propagation direction 
of the light wave can be translated into stresses by a simple calculation. In practice, a 
three-dimensional flow field will exist near the edges of a nominally two-dimensional flow, 
that is obtained in a planar channel with a high aspect ratio of the flow celllength along 
the 3-direction and the length along the 2-direction. 

The validity of the stress optical rule has been proven for various polymerie materials 
in shear flows ([60], [91],[111]) for a wide range of shear rates. In viscometric shear flows 
it is fairly easy to compare optical measurements with mechanical experiments and check 
the linearity of the rule. 

In the review of Mackay and Boger [75], several studies are listed that did attempt to 
validate the stress optical rule in elongational flows. However, despite many efforts, results 
of measurements of mechanical stresses in elongational fl.ows are not reliable or impossible, 
due to inherent experimental difficulties (Walters [112]). Therefore, unfortunately, in such 
fl.ows presently a reliable, direct validation of the stress optie rule by comparison with 
mechanica! measurements is not feasible. 

Nevertheless, it is generally agreed that the stress optical rule breaks down in case of 
large extensional deformation (Fuller [36], Mackay and Boger [75]). This is explained by 
saturation of the polymer orientation and stretching. However, complete orientation of 
polymer segments can not be achieved experimentally with polymer melts or concentrated 
solutions (Fuller [36] mentions several studies of dilute solutions that did observe saturation 
of segmental orientation in strong extensional fl.ows). 

The stress optical rule is predicted by molecular theories for the fluid dynamics of 
polymerie liquids. The basic theory is discussed next. 

Birefringence and stress optical rule from molecular opties 

The macroscopically observed birefringence of fl.owing polymerie materials can he explained 
from microscopical parameters. Two types of birefringence can he distinguished: intrinsic 
(or conservative) birefringence, and form (or consumptive) birefringence. 

The intrinsic birefringence origins from the difference in polarizability of a polymer chain 
segment in two directions: along its backbone and perpendicular to that. The linear stress 
optical rule (2.12) applies to this effect. As will be shown below, this ruleis explained by 
the proportionality of both the stress tensor and the refractive index tensor with < R;Ït; >, 
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where the brackets < · > represent the avera.ging over the distribution function descrihing 
molecular orientations and R. the end-to-end vector of a polymer chain segment. 

The form birefringence is due to a refractive index difference on a much larger length 
scale: it is related to the difference in refractive index between the solute and solvent, 
and to the anisotropy of the shape of the dissolved molecules in the solvent. The effect is 
proportional to the square of the difference in refractive index between dissolved molecules 
and solvent (Copic [26], Doi and Edwards [31]). Form birefringence is not proportional 
with < ii.it >, which causes the stress optica! rule to break down. It also decreases steeply 
with increasing concentration, and for concentrated solutions the effect can be neglected 
(Doi and Edwards [31], Takahashi et al. [105]}. Solutions are considered concentrated 
when their concentration exceeds the critica! concentration c" for polymer-coil overlapping 
as defined by (originally by de Gennes [42], see also Larsou [70] ): 

(2.19) 

where M is the molecular weight of the polymer, < s2 > is the mean square radius of 
gyration of the polymer and NA is Avogadro's number. This definition is valid in both 
theta and good solvents. The critical con centration of a solution of the polyisobutylene that 
is used in this study is c* = 0.11%(w/w) (Quinzani et al. [73]). The form birefringence 
can thus be neglected in the present study. 

In the followin~ the stress optie rule will be d~rived from molecular theory. The dielec­
tric di placement D is related, by definition, to E and P, the electric field in vacuum and 
the polarization in the dielectric respectively (see Appendix A). Assume the dielectric to 
be isotropic, then the dielectric tensor e can be replaced by the scalar e. The polarization 
is the macroscopically averaged induced dipole moment. It is proportional to the average 
dipole moment of the molecules Wmot}: 

P = N(Pmol} (2.20) 

where N is the number of molecules per unit volume. In the dielectric the electric field is a 
summation of the external field Ë and the internal electric field Ëint> so that the molecular 
polarizability a is defined by: 

(2.21) 

The internal field Ê;nt is assumed to be proportional to the polarization vector P (Jackson 
[59]): 

Êint = 1/3eoP 

Equations 2.20, 2.21 and 2.22 can be combined to 

P=xeË 
where Xe is the electrical susceptability defined hy 

aN 
X• = 1 - aN /3eo · 

(2.22) 

(2.23) 

(2.24) 
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Realizing that e = e0 +x., and that e/eo ~ e the Clausius-Mossotti relation is found: 

3eoe -1 
a.=Ne+2' (2.25) 

In the optical frequency range e can be replaced by n2 , with n the refractive index (Equa­
tion 2.25 is then referred to as the Lorentz-Lorentz equation). 

Assume that the Clausius-Mossotti relation is valid for each principle refractive index 
separately, each withits own principle molecular polarizability a;, then n1- nu is related 
to .ó.a. = a.1 - a.2 by 

n12 
- 1 nu2 

- 1 N ( ) - = - O.t - 0.2 • 
n 12 + 2 n u 2 + 2 3eo 

(2.26) 

With ~n << n (nis the mean refractive index) the result is 

N (n2 +2)2 

.ó.n = 8 .ó.a.. 
1 eo n 

(2.27) 

Kühn and Grun ([67]) introduced the description of the optical anisotropy of flexible 
polymer molecules by the use of a conformation distri bution function descrihing orientation 
of chain segments. They assumed the model with freely rotating chain segments to repre­
sent the polymer molecule. The chain consists of N segments of length b that are linked by 
freely rotating joints. Each i-th chain segment has an end-to-end vector R; with length R;, 
while the deformation of each segment is assumed to be within the limit of a Gaussian coil 
(i.e. a Gaussian distri bution function applies for the molecular orientations). It is further 
assumed that the polarizability of each segment is uniaxial with eigenvalues ( a.1, a.2, a.2), 
and that the overall polarizability of the chain is the result of the addition of all segmental 
contributions. The (incremental) contribution o:; of a chain segment to the anisotropic 
part of the overall polarizability of the chain is (Kühn and Grun [67], Janeschitz-Kriegl 
[60]): 

(2.28) 

where nkb2 is the mean square end-to-end distance of the chain segment. From Equa­
tion 2.27 it is found that the principle value difference of the overall refractive index tensor 
IS 

N (n2 + 2)2 

.Ó.n = -
18 

_ .Ó.a.;. (2.29) 
t:o n 

where .Ó.a.; is the principle value difference for the i-th chain segment in the 1, 2 plane of 
the increment in the polarizability tensor. Combining Equation 2.28 with the well-known 
expression for the stress tensor for a Gaussian chain segment (e.g. Larson [70]) 

3kT ...... 
CT; = -b2 < R;R; >, (2.30) 

nk 

it follows that 
1 

CT;= 5kT( )o:;, 
O.t - 0.2 

(2.31) 
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and for the principle stress difference ll.a, 

(2.32) 

From Equations 2.29 and 2.32 the stress optie coeflicient C, such that ll.n = C ll.a, is 
found: 

N (n2 + 2)2 

C = 5kT
18 

(al- a2). 
t:o n 

(2.33) 

Note that C does not depend on molecular weight. 

2.3.3 Fieldwise measurement of birefringence 

Fieldwise measurement of birefringence is a classica! method for studying birefringence 
distributions in solids (Kuske and Robertsou [68]), polymer melts and highly birefringent 
solutions (Mackay and Boger [75]). The stress optical rule enables the interpretation of 
birefringence data in terms of stresses. Fuller [37] describes numerous systems for birefrin­
gence measurements. Detailscan also he found in the hook of Azzam and Bashara [5]. The 
experimental set-up used for such measurements is called a polariscope. In the following, 
two polariscopes and the equipment used in the present study are described. The polar­
iscopes, drawn schematically in Figure 2.4 are in the sequel referred to as polariscope (I) 
and (II). By combining (I) and (II) both x and ó can he measured in a two-step procedure. 

The polariscope (I) consists of two crossed polarizers that have a relative orientation 
of their transmission axes of 90°, with the birefringent sample placed in between. A light 
souree illuminates the sample through the first polarizer and the transmitted light is pho­
tographed or video-recorded after the second polarizer {=analyzer). The light souree can 
emit either white or (quasi) mono-chromatic light. The intensity of light transmitted 
through a cascade of optica! devices that affect the polarization of the light can he calcu­
lated with Müller matrices. The intensity of the light in polariscope (I) after the second 
polarizer is described by 

I= lo sin2 2(x- a) sin2 ~~ (2.34) 

where Io is the intensity of the light source, a is the angle of the transmission axis of the 
polarizer with the positive x-axis of the fixed laboratory frame, x is the (local) orientation 
of the optical axis of the birefringent sample relative to the fixed laboratory frame ( often 
referred to as 'extinction angle'}, and ó is the relative phase retardation between the extra­
ordinary and ordinary ray. This type of polariscope is a 'dark field' polariscope: in the 
absence of flow the whole image is black. 2 In case of a white light souree the image past 
the analyzer contains a pattern of black and colored fringes. These two types of fringes 
contain different information: 

2In case of two parallel polarizers a 'white field' polariscope is obtained with I = lf(l- sin2 2(x­
a)sin2 !). 
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Figure 2.4: Schema's of the polariscopes (referred to with (I) a.nd (II) (from top to bottom)) 
used for whole field measurements of birefringence ('fringe method') with fixed elements. L: light 
souree , F: monochromatic filter, P: polarizer, Q: quarter wave plate, S: birefringent sample, A: 
a.nalyzer. The subscripts denote the angle of rotation between the principle axis frame of the 
element a.nd the principle axis frame of the first polarizer. The dasbed lines denote the fieldwise 
iJlumination of the optical train. 

Isoclinics: The black lines, the isoclinics, are due to the relative orientation of the optie 
axis of the birefringent sample to the orientation of the two polarizers at the position 
of the lines. Equation 2.34 shows that when this angle x - a is zero, the light is 
extinguished. When the two polarizers are rotated simultaneously the isoclinics will 
move too. 

Isochromatics: The colored fringes, the isochromatics, mark the positions where the 
retardation ó = ±k 211', with k = 0, 1, 2, .. .. Since according to Equation 2.11 the 
retardation is wavelength dependent, each color bas its own position where it is 
extinguished in the polariscope. Extinction of a single wavelength results in a specific 
color of the transmitted light at that position, only the zero-order isochromatic line 
(ó = 0) is black (extinction of all wavelengtbs at the same position). Simultaneously 
rotation of the polarizers will not affect the position of the isochromatics. 

To calcula.te the stress levels, both the angle x and the retardation ó have to be mea.­
sured. This requires a. two-step procedure: x a.nd Ó can not be measured fieldwise simulta­
neously. For this purpose, usually the experiment is performed with mono-chromatic light 
such that a single frequency is involved. Both isoclinics and the isochromatics a.ppear then 
as bla.ck lines on a single colored background. 
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In the first step, polariscope (I) is used to measure the extinction angle x. The iso­
clinics and isochromatics can be distinguished from each other by rotating both polarizers 
simultaneously while retaining their crossed orientation: the isoclinics will move while the 
positions of the isochromatics remain stationary. The angle of rotation a determines the 
position of the isoclinics that are measured. The sign of the extinction angle is lost in this 
measurement. 

The second step involves the measurement of the birefringence with polariscope (11). 
In this case only isochromatic fringes are observed and the intensity signal is 

(2.35) 

Instead of the laborious construction of the stresses from the measured distributions 
of x and ó, the birefringence .ó.n itself can be used too for a comparison of experiment 
with computations. In the experiment, the birefringence is obtained using polariscope 
(11) by counting the fringe order (from a zero order fringe that is known by symmetry 
considerations or by counting fringes during start up of the flow). In the computations, 
the relation between .ó.n and the stresses r and N1 is according to the stress optical rule: 

(2.36) 

The technique as described above has some limitations: 

Minimum retardance level: to obtain a fringe pattern, multiple order transitions for 
the retardance are required. For each subsequent order transition the retardance 
must he increased with 27T, which implies an increment of the birefringence equal to 
~ (Equation 2.11). Estimating d = 0(10-2) mand>.= 0(10-6 ) m, the birefringence 
difference between two subsequent fringes is 0(10-4 ). This is a typical resolution 
of a birefringence measurement based on measuring fringes. The birefringence in 
an experiment scales with >., d and also with the stress optical coefficient C and 
the magnitude of the stresses. Since the order of magnitude of C is invariant for 
polymer roelts and solutions (e.g. Funatsu and Kajiwara [39], Wales [111]), and >. 
and d can in practice be varied only in a limited range , the stress level in fl.owing 
polymerie materials determines the number of fringes. For solutions with relatively 
low viscosities it will he impossible to create stress levels such that the birefringence 
exceeds 10-4 • (A typical example is: stresses of 0(102 ) Pa, C of 0(10-9 ) Pa-1 result 
in birefringence of 0(10-7 )). 

Maximum retardance level: In areas with very large stress gradients the number of 
fringes will he so large that subsequent fringes can not be resolved anymore. This 
limits the maximum birefringence level that can be resolved. The limit for the stress 
gradients can he estimated (with a minimal resolvable distance between two fringes 
of 0(10-4 ) m, C = O(lo-9 ) Pa- 1 and difference in birefringence between two fringes 
of 0{10-4 )) to he 0(109 ) Pajm. 
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Absolute measurement of birefringence: In any birefringence measurements a prob­
lem exists with the absolute measurement of the birefringence, since a sinusoidal 
relation exists between measured intensity and retardation ó. The inverse sine op­
eration to calculate the retardance from Equation 2.35 yields a value for ó between 
-11' and 1T'i there will he ambiguity in the value when multiple order transitions exist. 
By counting the fringes during start-up or cessation of flow the absolute value can 
he obtained without ambiguity. 

The optical elements used in the experiments performed in the present study are listed in 
table 2.1. All elements were mounted in line on an optical rail {Melles Griot, 070RN009) 
The fringe patterns were observed through a microscope (Olympus, SZ4045TR) with a 
1.67 - 10 magnification. Photographs through this microscope were made with a photo­
camera , while additionally video recordings were made with a videocamera (Panasonic, 
F15). 

Device Manufacturer Part number 
polarizer Meadowlark Opties DPM-1.5-HN38s 
~-plate Meadowlark Opties NQM-1.5-546 

interference filter 546 nm Spindier and Hoyer 37.1105 
mercury lamp Philips 

Table 2.1: List of elements used in the polariscopes. 

2.3.4 Pointwise birefringence measurement with a polarization 
modulation metbod 

Birefringence techniques that use polarization modulation of light enable simultaneous 
and pointwise measurement of both extinction angle x and phase retardation 8. Fuller [36] 
reviewed this subject. In the present study, the polarization modulation technique is 
applied that uses a rotating half wave plate (as introduced by Fuller and Mikkeisen [38]). 
The measurement system, called Rheo Optical Analyzer (ROA), was provided by Fuller. 
In the following, the theory of the technique and the equipment used are described. 

Theory 

Figure 2.5 shows schematically the measurement system ROA. Neglecting system imper­
fections, the time-dependent intensity signal is described by (Fuller and Mikkeisen (38]) 

I= ~Io(l + R1 sin(4wt) + R2 cos(4wt)) (2.37) 
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Figure 2.5: The measurement system ROA for pointwise birefringence measurements. Top 
figure: scheme of the opticaJ train, the dashed line mustrates the point-wise illumination of the 
sample. Bottom figure: scheme of the whole ROA system. The laser light emitted by a diode 
laser (L) passes successively a polarizer (P) , a rotating half wave plate (R) (w ~ IOos-1 ), a 
collimating lens (CL), the birefringent sample (S, FC: flow cell) and a circular polarizer (CP) 
befare its intensity is measured by a detector (D). Erom the intensity signaJ both the extinction 
angle x and retardation ó are obtained simultaneously. A computer controlled XY-traverse ta.ble 
(2D-T), enables the positioning ofthe optica} rail (OR). The OpticaJ Analyzer Controller (OAC) 
supplies the laser and the electramotor with power, and registers the eneader disc (E) signaJ. 
This signaJ is the reEerenee signaJ that is used in the da.ta.-a.cquisition a.nd processing software. 
Da.ta.-a.cquisition a.nd control of the experiment is performed by a personaJ computer {PC). 
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where 10 is the intensity at the exit of the diode laser, and R1 and R2 are 

R1 = -sin &cos 2x 

R2 sin 8 sin 2x. 

(2.38) 

(2.39) 

R1 and R2 are obtained from the measured intensity signal by means of a Fourier transfor­
mation (Equation 2.37 can be calculated with the Müller matrices listed in Appendix B). 
Assuming that x E [-i,~] the angles x and 8 follow directly from Equations 2.38 and 
2.39: 

X = arctan( -R2/ RI) 

8 = .sign(RI)jR~ + R~. 
(2.40) 

(2.41) 

Stresses can now be found after substitution of Equations 2.40 and 2.41 (and using Equa­
tion 2.11) in Equations 2.18. The system is capable of measuring birefringence as low as 
0(10-8 ), which is orders of magnitudes lower than for the fieldwise method (0(10-4)). 

This is, because the technique does not depend on the existence of fringes. In case of the 
flow of highly birefringent materials like polymer roelts where high stress gradients can 
exist, the finite size of the cross section of the laser beam (measuring area) can be a serious 
limitation. When the measuring area is not small compared with the distance between 
two fringes (=order transitions for the retardance ó), the results will he inaccurate sirree 
averaging will take place over a large range of stresses. In case the measuring area contains 
two or more fringes the results become meaningless. Accurate results are obtained as long 
as stress gradients are of (in a flow cell with d = 0(10-1 m) using a minimal distance 
between two fringes of 0(10-2 m)) 0(107

) Pafm. Details about dimensions and formulas 
that descri he the focusing of laser beams are presented in Appendix C. 

Equipment 

The diode laser (Power Technology Inc.) emits linear polarized light with a wavelength 
>. 672.4nm (at 25°C, for diode lasers the temperature dependenee is reflected in a 
wavelength shift of typically ~ 0.4nm/(°C)). The shape of the originallaser beam, which 
was in general elliptical, was corrected by the manufacturer to produce a beam with circular 
cross section that is approximately Gaussian. The intensity of the laser beam can be 
adjusted by rota.ting the laser in its housing: the plane of polarization of the emitted light 
from the diode laser will change relatively to the fixed polarizer that is mounted in front 
of the rotating wave plate. The original rotating half wave plate (Meadowlark Opties, 
AH M - 0.50 - 672), is achromatic in the range 0.85 < f; < 1.15 around the central 
wavelength Àc ( = 672.4nm ). We observed that the beam deviation of this plate did not 
meetour requirements. It was~ 1 arcmin which resulted in a beam with a spot that traeed 
a circle. Therefore, it was later replaced by a quartz first-order wave plate (Melles Griot, 
02WRQ023-diameter 6.35 mm, À = 672.4 nm) with a toleranee for the beam deviation 
< 1 arcs (see Section 4.5), which functioned properly according to our specifications. The 
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wave plate is rotated by an electromotor at a frequency of l=l:l 100 s-1 , the frequency of 
the polarization modulation heing a four-fold of that (see Equation 2.37). The laser and 
electramotor are power supplied by a separate hardware unit (Optica! Analyzer Controller, 
type 9304), that also transmits the rotation frequency of the wave plate that is registered 
by means of an encoder disc mounted externally on the waveplate device. The circular 
polarizer (Meadowlark Opties, NHM- 0.50- 672) is fixed in the housing of the detector. 
lt is a true circular polarizer, withno optical axis in the plane perpendicular to the laser 
beam. It can be mounted with either side towards the incident beam. 

The flow cell is fixed to the laboratory, while all optica! components of the measurement 
system are mounted on an optica! rail (Melles Griot, 070RN009). This rail is fixed on a 
XV-traverse table (Parker Daedal, 106042 P-10E-LH) driven by two OEM 57-83 stepper 
motors controlled by a 6200 microprocessor based two-axis indexer (Parker Compumotor), 
that can translate the optica! rail in two directions, each over a distance of 100 mm with 
an accuracy of l=l:l O.lpm. The control of the traverse table was not part of the original 
system, and has been incorporated in ROA hy ourselves (Kruijt [66]). Control of the 
experiment and data-acquisition are performed hy the ROA software, that is implemented 
in the package LABView (National Instruments, LABView for Windows), with a personal 
computer {486DX-50 MHz, 8 Mb, 240MB hard disk, 17" SVGA screen (Eizo F550i-W)) 
equiped with a data-acquisition board (National Instruments, AT-MI0-16L9). 

Experimental procedures and the correction for a small imperfection in the half-wave 
plateon R1 and R2 are described in Kruijt [66}. Appendix E contains an analysis of the 
statistica! error in the stresses that are obtained from measurements with ROA. 

2.4 Discussion 

End-effects in birefringence measurements in nominally two-dimensional fields 
In the application of flow induced birefringence measurements described in the previous 
Section, a two-dimensional flow field is assumed that is invariant along the direction of the 
propagating light wave. However, in practice three-dimensional effects will be present along 
constraining walls perpendicular to this direction. A typical rectangular duet is plotted in 
Figure 2.6. Three orthogonal axes can be defined, labeled with 1, 2 and 3: the 1-axis defines 
the mean flow direction, the 2-axis defines the direction of the velocity gradients in the duet 
where the flow is two-dimensional, and the 3-axis defines the direction of the propagating 
lightwave ('neutral direction'). Early workof Wales [ll1] showed by variation of the aspect 
ratio that at aspect ratios W / h larger than 10 the effect is minimized and can be neglected. 
Rajagopalan et al. [96] compared mechanica! and optica} stress measurements in Couette 
flow, and found that the optically measured curve of N1 as function of r was 7% lower 
than the one which was mechanically measured. 

Several studies have theoretically analyzed these effects in more detail (e.g. Burghardt 
and Fuller [19} and Galante [41 ]). The propagating light wave will experience two secondary­
principle refractive indices, that are the projection of the principle axes of the three­
dimensional refractive index ellipsoid on the plane perpendicular to the direction of the 
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Flow 

Figure 2.6: A typical rectangula.r duet for creating a. nominally two-dimensional tlow. The 
labels 1, 2 and 3 denote a.n orthogonal frame. The aspect ratio W /h is chosen suffieiently large 
to assume nominally two-dimensional tlow. 

light wave propagation. For a viscoelastic fluid the effect of a velocity-gradient in the 1 - 3 
plane is a contribution to the normal stress difference N1 in the 1 - 2 plane, that varies 
with position a.long the 3-axis in the edge-region of the confined flow. Also the projection 
of the optica.l axis on the 1-2 plane, the extinction angle x, varies along that axis. Galante 
[41] estimated the measured birefringence in the fully developed flow of an UCM fluid and 
a power-law fluid in a rectangular duet with an aspect ratio of 1 : 10 are 7% too low, due 
to the variatien of the shear in the 1 - 2 plane along the 3-direction. He ignored however 
the contribution of shear in the 1 - 3 plane to r11 • 

In conclusion, the effect of the three-dimensional flow in the edge regions of a rectangular 
duet are sma.ll ifthe aspect ratio Wfh is approximately 10, but may he of roughly 0(10%). 

Analysis of flow birefringence in three-dimensional flelds The analysis of bire­
fringence in terms of stresses in fully three-dimensional fields is still an open problem. The 
measured one-dimensional intensities along a grid of lines in a plane through the flow field 
might be inversely-transformed to obtain the two-dimensiona.l distribution of x and ó in 
that plane, using methods developed in imaging techniques. Catbey and Fuller [21] have 
applied such an inverse-transfarm metbod to calculate stresses in a non-planar birefringence 
measurement, assuming axisymmetry in the stress field. It seems that such ca.lculation of 
stress distributions in non-planar flows could be an interesting topic for future research. 
However, the standard inverse-transformation techniques involve scalar insteadof tensoria.l 
quantities. Therefore, Burghardt [18] advocates the use of op ti cal quantities (i.e. R1 , R2 

in case of ROA), that can be ca.lculated from the computed stress distribution, to campare 
with measured data. 

Alternative techniques The two optical techniques described in this Chapter enable 
detailed quantitative measurements of velocity fields and stress fields in complex flows. 
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Since both techniques are optical, they require a transparent fluid, and a flow cell that is 
accessible for light. 

In case of the velocity measurements with a laser Doppier anemometer information can 
only he obtained point-wise in space. Furthermore, to measure simultaneously more than 
one velocity component the light-patbs of alllaser beams must he symmetrie. This implies 
in practice refractive index matching between flow cell and fluid. This is a major problem 
when studying the rheology of polymerie materials: how can refractive index matching be 
obtained without changing the fluid properties? The recent development of partiele image 
velocimetry (PIV, see for example Adrian [2] for a review) surmounts partly these two 
limitations of the laser Doppier technique: it measures velocity veetors in a whole plane 
(thus two velocity components) without the needof refractive index matching (see Adrian 
[2]). But it is still an optica! technique, which requires a transparent liquid. The latter 
limitation might be surmounted by the Magnetic Resonance Imaging (MRI) technique, 
as demonstrated in Couette flow by Rofe et al. (97] and in capillary flow by Lambert et 
al. [69]. 

The birefringence techniques have the limitation that only information of the sine of 
the retardance is measured. The only accurate way to obtain the retardance when multiple 
order transitions are present, is measuring the birefringence during start-upor cessation of 
flow and counting the number of order-transitions. This is a tedious procedure when using 
the pointwise ROA technique. Hongladarom et al. [53] have developed a white light system 
with crossed polarizers that can analyze samples with multiple orders in retardance without 
ambiguity. In that system, it is necessary to assume that the birefringence is invariant with 
wavelength or to measure its wavelength dependenee ( dispersion) separately. Ho wever, a 
white light souree can not be collimated to an intense beam with a small cross section 
comparable with that of a laser beam. Therefore this metbod is not useful for pointwise 
mapping of stresses in a complex flow of highly-birefringent materials. The two-color 
rotary modulated birefringence metbod of Abetz and Fuller (1], that uses simultaneously 
two laser beams of different wavelengths, enables the measurement of birefringence without 
ambiguity up to approximately 10 order transitions. 
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Chapter 3 

Rheological characterization 
simple shear 

3.1 Introduetion 

• 
In 

A rheological characterization in simple shear flow of three polyisobutylene solutions was 
performed. Two of these solutions will be used as modelliquids in Chapter 4. Modelliquids 
facilitate the analysis both numerically and experimentally (see Section 1.5). These char­
acterizations are necessary to obtain parameters of the non-linear viscoelastic constitutive 
equations that will be used in the complex flow simulations in Chapters 4 and 5. For the 
LDPE melt, measured data and model parameters have been taken from an earlier study 
in our group and also some new fits have been made. Predictions in planar elongational 
flow will be presented too, to illustrate the sensitivity of the models for two dimensional 
elongational deformation. 

Data for three shear thinning polyisobutylene solutions are presented: for a 5%( w J w) 
polyisobutylene (PIB) in tetradecane salution (C14), fora 9%(wfw) PIB/C14 solution and 
for the standard fluid Sl (Sections 3.4, 3.5 and 3.6 respectively). The fust two fluids will 
be referred to as 5% PIB/Cl4 and 9% PIB/Cl4 salution respectively in the sequel, and 
will be used as model fluids in Chapter 4. The 5% PIB/Cl4 salution has also been used 
extensively by the group of Armstrong et al. (e.g. [4], [93]), which provides a reference 
for the present work. They also demonstrated pointwise stress and velocity measurements 
with this fluid. The 9% PIB/C14 salution is used to reach higher Deborah numbers at the 
same flow rate, thus to be closer to the behavior of polymer melts. The Sl fluid is used 
mainly to oompare our viscometric data with reference data of Ferguson and Hudson [34J 
which demonstrates the accuracy of our measurements. 

To illustrate their rheological differences, the material functions 17( i') and N1 (i') in 
steady simple shear are plotted together for the three solutions in Figure 3.1. The steady 
shear viscosity function 17( i') is fitted excellently with the Carreau-Yasuda equation (Equa­
tion 3.1) in all three cases. The parameter values for this viscosity function are tabulated 
in Table 3.1, and the fits are drawn in Figure 3.1 with dashed lines. It appears that the 
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Figure 3.1: Left: master curves for 1J(i') ofthe three solutions used (only dataforT = 25 °C are 
shown to avoid congestion). The dasbed Jin es repreaent the fits with the Carreau-Yasuda model. 
Right: master curves for the first normal stress dUferenee Nl(i'} ofthe same solutions. 

steady shear behavior of the 9% PIB/C14 salution is close to that of the standard salution 
SL The values for 5% PIB/C14 are at all shear rates roughly one order of magnitude 
smaller. 

parameter 5% PIB/C14 9% PIB/C14 S1 
1Jcy 0.96 20 15 
Àcy 0.02 0.24 0.94 
n 0.45 0.44 0.5 

Table 3.1: Parameter values of the Carreau-Yasuda. equation (with a = 1) for the three poly­
isobutylene solutions used. 

3.2 Constitutive equations 

In Chapter 1, the types of constitt~tive roodels that are studied in this study have been 
introduced. For a profound introduetion in oonstitutive roodels for viscoelastic polymer 
melts and solutions, the reader is referred to, for example, the hook of Larson [70]. 

A generalized Newtonian constitutive modeland two non-linear viscoelastic oonstitutive 
equations have been used to fit the rheological data. As a generalized Newtonian model, 
the Carreau-Yasuda model has been used: 

(3.1) 
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The viscoelastic constitutive equations that have been used are of the differential type: 
the Phan-Thien Tanner model (Phan-Thien and Tanner [90], referred to with PTT), and 
the Giesekus model (Giesekus [44]). The definitions of these models have been given in 
Table 1.1 in Chapter 1. In literature, both PTT and Giesekus models have been applied 
to :flows of various polymer solutions and melts, not only in simple shear flow but also in 
elongational and complex fiows (see for example Larson [70]). They were most favored to 
model concentrated solutions and polymer melts at the 'VIIIth International Workshop 
on Numerical Methods in Viscoelastic Flows' in 1993 (Brown and McKinley [17]). These 
models meet the mininum requirements stated at that workshop: they have bounded 
extensional viscosities in straining fiows, shear-thinning viscometric material functions, 
are capable of using a spectrum of relaxation times and can predict a non-zero second 
normal stress coefficient. Furthermore, Armstrong et al. [4], who compared six constitutive 
equations of the differential type, have shown that center line stresses in the flow of the 
5% PIB/C14 solution through a four-to-one contraction were best described by a four 
mode PTT-B model, and second best by a four mode Giesekus model. Tas [107] applied 
the PTT-A model to uniaxial and biaxial elongation :flow of LDPE and found excellent 
agreement with measured data, and also good agreement for the Giesekus model. 

The two versionsof the PTT model {PTT-A and PTT-B) differ most strongly intheir 
prediction of the elongational viscosity: the elongational viscosity of the PTT-A model 
first reaches a maximum and then decreases with increasing elongational rates ( elonga­
tional thinning). The PTT-B model prediets an elongational viscosity that increases with 
increasing elongational rate towards a plateau value at high rates. The first behavior is 
assumed to he valid for polymer melts, while the second type of behavior is more correct for 
polymer solutions (Larson [70]). However, the PTT-B model has also been found to predict 
stresses accuratelyin fiows of LDPE melt through a converging channel by Kajiwara et al. 
[62]. 

Besides multimode also single mode models will be used too. This despite the fact 
that it has been found in literature that multimode versions of these constitutive equations 
not only improve fits of rheological data in one-dimensional fiows such as simple shear 
( e.g Quinzani et al. [93]) but also give better predictions of the flow field in complex 
fiows. This is shown by for example Rajagoplan et al. [96], who stuclied the flow of a 
polymer solution between two eccentric rotating cylinders, and by Becker et al. [11], who 
stuclied the unsteady motion of a sphere falling in a viscoelastic fiuid in a tube. Single 
mode models, however, are attractive for numerical computations since they can reduce 
the required computer time and memory significantly compared with multimode models. 

3.3 Defl.nition of deformation types and material func­
tions 

Experiments have been performed in simple shear fiows, both steady and small amplitude 
oscillatory shear flow, while predictions of the constitutive equations in planar dongation 
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have been analyzed too. These fiows are homogeneous, thus the matrix representation D 
of the rate-of-deformation tensor D is known a priori. In case of simple shear 

D=~[? 7] 
2 I 0 

(3.2) 

with 7 the shear rate. In case of planar elongation: 

D=[t: o.J 0 -f 
(3.3) 

where i is the elongational ra.te. The definitions of the material functions then are: 

steady shear viscosity: 1J T1zh, 

flrst normal stress difference: N1 = Tu - r22 

complex viscosity: q* = ri2h* = q'(w) + iq(wY', (i= v'=f) 

planar elongational viscosity: Tfe = (r11 - r22)ji. 

3.4 5% PIB/C14 solution 

3.4.1 Composition and preparation of Huid 

The composition of the 5% PIB/C14 solution is the same as the solution used by the 
group of Armstrong and Brown ([4], [73], [93], [95]). The polyisobutylene (PIB) (Vistanex­
L120, Exxon Chemical, Mw R:i 1.0 · 106 ) is dissolved in tetradecane (C14) (C14H30 , a linear 
hydracarbon in an isomerie mixturè of 95% purity ). The fiuid was prepared by cutting the 
polyisobutylene first in cubes of R:i 0.5 cm3

, that were added in the appropriate amount to 
tetra.decane in ll bottles, while stirring with a magnetic stirrer at ambient · temperature 
( R:i 24 ° C). · After stirring during at least 5 days the botties were rótated on a rolling 
machine for approximately one week to improve the homogeneity of the solution. 

3.4.2 Determination of parameters of non-linear viscoelastic 
constitutive equations 

An extensive rheological characterization of this fiuid in simple shear has been presented 
by Quinzani et al. [73]. The solution used in the present study was prepared at our 
laboratory, and was tested in simple shear at the Rheometrics-RFS-II visrometer with a 
cone-plate geometry (diameter 50 mm, cone angle 0.0199 rad). Master curves at a reference 
temperature of 25 ac were created after time-temperature superposition (Ferry [35]). 
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Shift factors aT were determined from the plateau values of the steady shear viscosity 
71(1') at zero shear rate (qo): aT= ?Jo(T)/71o(Tre/)· Shift factors as function ofT-1 T0-

1 

could be fitted with an Arrhenius equation 

1 1 
log(aT) =A(---) 

T To 
(3.4) 

with A = 1::.f!, t::..H the 'flow activation energy', R the Boltzmann gas constant, and T0 the 
reference temperature (in K). At the reference temperature the factor A was estimated 
with a least squares fit of Equation 3.4: A = 2443K (see Figure 3.2). 

A=2443 (K) 

10"
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Figure 3.2: Left: Arrhenius fit of the shift factors aT. Right: comparison of steady shear 
viscosity ?J(i') (x) and dynamic viscosity 1/d(w) (o) to check the validity ofthe Cox-Merz rule for 
the 5%PIB/C14 solution. 

The empirica! Cox-Merz ruleis checked in Figure 3.2, where both steady shear viscosity 
as function of shear rate and the modulus of the complex viscosity '1d ( the dynamic viscosity, 
'r/d = v'r/12 + "l'i2) have been plotted together. The ruleis validated well in the measured 
range. 

The upper four plots in Figure 3.3 show that the shifting procedure results in smooth 
master curves for both "1 and N1 in steady shear, and "1' and "111 in small amplitude oscillatory 
shear. The master curve for N1 is shown for the range of shear rates where the data are 
not scattered too much. At shear rates lower than plotted the scatter was unacceptably 
large. 

Two viscoelastic constitutive equations were fitted on these data: the Phan-Thien 
Tanner (PTT) equation with linear factor and the Giesekus equation. First, the Maxwell 
parameters { 11i. A;} were determined by fitting the linear viscoelastic Maxwell model on 
the complex viscosity with a Levenbergh-Marquardt metbod ([119]). The componentsof 
the complex viscosity are for a single mode of a multi-mode Maxwell model: 

N tJ· 

"'' = ~ 1 +~2À;2 (3.5) 
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Figure 3.3: Master curves at Tref = 25 oe in simple shear flow for the 5% PIB/C14 solution. 
Top: steady shear viscosity q(i') and first normal stress dilference N1 (i') together with four fitted 
constitutive equations. Bottom: complex viscosity with fitted Maxwell models. 

N ' 2 
11 _ '"' 1'/iAiW 

1'/ - L-;'1 +w2,\;2 
(3.6) 

where i represents the number of the mode, and N is the number of modes. A one mode and 
a four mode model were fitted. Both results are plotted in Figure 3.3, and the parameter 
valnes are tabulated in Table 3.2. 

Second, the non-linearity parameters in the non-linear viscoelastic PTT and Giesekus 
equations were determined by minimizing 

N Newp ewp 

q = E[( l,j;XJ' l,j )2 + (1Jj if'! ?l (3.7) 
j 1~ J 

where the index j denotes a shear ra te value, N1,j denotes the first normal stress difference, 
1'/i the shear viscosity and the superscript exp denotes the measured value. The residu q was 



RheologieaJ eharacterization in simple shear 41 

minimized with respect to the non-linearity parameters by variation of these parameters 
and eva.luation of q. Stresses were ealculated by solving numerically the non-linear system 
of equations for the constitutive equations in steady simple shear flow with a Gauss-Newton 
metbod as implemented in Matlab (The Math Works Inc., function 'fsolve'). In case of the 
one mode fit, the solvent contri bution to the extra-stress tensor (217.D) was used to adjust 
the zero shear rate viscosity level ( while the viscosity of tetradecane is 0.002 Pa 8 ). In case 
of the four mode fit, the solvent viscosity was neglected (17. = 0). All parameters of the 
non-linear viscoelastic equations used are tabulated in Table 3.2. Fora multi-mode model 
the viscosity average va.lue for the time constant, X, is defined by 

E 17,>., 
x = -· -. (3.8) 

'L11• 
i 

The four mode PTT model fits the measured viscosity best of all four fits that have 
been eva.luated, see Figure 3.3, where the results for the two non-linear viscoelastic roodels 
are shown. The single mode roodels fit the steady shear viscosity equally well as the four 
mode roodels for shear rates up to 40 , i.e. until shear thinnîng has just started. For 
higher shear rates the single mode Giesekus model prediets a too strong shear thinning 
and its prediction of the viscosity is worst of all four fits. The two four mode fits are both 
more accurate than the one mode PTT model for shear rates in between 80 and 500 8-1 . 

At higher shear rates the four mode Giesekus model is again too shear thinning. Although 
the same holds for the one mode PTT model, the effect is less serious and its prediction 
of the viscosity stillagrees fairly well with the measured data. 

Although differences between the fits are small, the normal stress difference N1 is fitted 
best by the one mode PTT model for shear rates below 200 s-1 , while for higher shear 
rates the prediction of the four mode PTT model is best. The differences between results 
for the Giesekus model are larger. 

Quinzani [73] has characterized the rheology of this salution in simple shear flow, and 
our results can be compared with her results. In Figure 3.4 our steady shear viscosity and 

Giesekus 
n 
1 0.21 
4 0.40 

Table 3.2: Parameter vaJues for 1-mode and 4-mode (n: number of modes) non-Jinear vis­
eoelastic constitutive models at the relerenee tempera.ture of 25°G in case of the 5% PIB/Cl4 
solution (zero-shear viseosity a.veraged time constant of 4 mode fit X= 4.31·10-2 s). 
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Figure 3.4: Comparison of our measured steady shear viscosity and Carreau-Yasuda fit wlth 
the Carreau-Yasuda fit of Quinzani {93} for 5% PIB/C14. 

the Carreau-Yasuda fit of Quinzani ( n = 0.4, l7cy = 1.424 Pas, a = 1, Àcy = 0.024 s) are 
plotted together. It clearly reveals differences between the fluids. The zero shear viscosity 
at 25°0 is in our measurements 0.96 Pas, while Quinzani's result is 1.424 Pas. Our data 
proved to he reproducible with each new batch of fluid made, and the large difference 
between our zero shear viscosity and Quinzani's is probably caused by differences in the 
molecular weight distributions of the PIB used. Quinzani also used the Giesekus and PTT 
equations to describe the rheological data. The average time constant of the four mode 
Maxwell fit was 0.060 s in that study, which is 40% larger than our value. Quinzani initially 
assumed that the parameter t: in the PTT equation was small: e < < 1 (it could thus he 
neglected when fitting material functions in simple shear flow) and she obtained e = 0.13 
to fit the steady shear viscosity and first normal stress coefficient with a four mode model. 
Ho wever, measurements of the stresses along the center line in a 4 : 1 contraction made the 
use of a non-zero parameter e necessary, the best fitting value (with e = 0.13) was 0.25. 
The effect of this non-zero value for c: on the fit of the material functions in steady simple 
shear is small . 

In the present study, the parameter e in the PTT equation has not been used, since 
it did not improve any of the fits. Moreover, a non-zero e parameter is known to cause 
oscillations in stresses during start-up of steady shear (see Section 3.6.3). We also aimed 
to fit the data with as less parameters as possible. Therefore the four-mode equations were 
fitted with a single value for e or a for all modes. 

3.4.3 Start-up of simple shear flow 

Shear stresses have been measured during start-up of simple shear flow, for four values of 
the final shear ra te i'o: 10, 30, 60, 100 (1/ s) 1• The transient viscosity function q+ is defined 

1 Unfortunately, no reliable transient measurement of normal stress was possible, due to a too strong 
asciilation in the normal force that depended on the rotation frequency of the plate. 
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T "'+ = -;-. (3.9) 
ÎO 

The measured data have been compared with model predictions with parameters from 
Table 3.2. Stresses were calculated with a fourth and fifth order Runge-Kutta integration, 
with automatic step size control {as implemented in Matlab, The MathWorks Inc.). To 
avoid the singularity in the stresses at t = 0 s, a ramp of 0.02 s has been used in the shear 
rate history during the calculations. To improve the agreement (on the double logarithmic 
plot) with measured data at times below < 0.05 s, shearing was started in the computations 
at t = 0.01 s. The results are shown in Figure 3.5 (single and four mode PTT modeland 
single and four modes Giesekus model). 
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Figure 3.5: Viscosity 11+ (during start-up of steady simple shear :Bow) at T = 25°C lor the 5% 
PIB/C14 solution. Top: single mode (left) and four modes (right) PTT model. Bottom: one 
mode (lelt) and four modes (right) Giesekus equa.tion. 

Differences between computations and measurements are mainly due to differences in 
the steady state value for "'· This steady state value is predicted accurately by all four 
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models at shear rates of 10 and 30 s-1. At higher shear rates (60, 100 s-1) , however, both 
four mode models proved to be more accurate than the single mode models. It also appears 
that for the two highest shear rates all models predict an overshoot, that is largestin case 
of tbe Giesekus models. A small oversboot is also present in the measured data and tbe 
PTT models have an oversboot tbat is closer to tbe measured data than in case of tbe 
Giesekus models. 

3.4.4 Predictions in planar elongational flow 

Model predictions in steady planar dongation are compared in Figure 3.6. Such exper­
iments are practical impossible or unreliable for ( relatively) low viscosity fluids like the 
solutions in this study (see Section 1.1). The model predictions show, however, the typical 
behavior of the models in elongational flows and the inHuence of the model parameters. 
All models show dongation thickening bebavior, i.e. an increase in elongational viscosity 
with increasing elongation rate. The effect is controlled by the value of the non-linearity 
parameters e and a in the PTT and Giesekus model respectively. The smaller these values, 
the stronger the elongation thickening (in the limit e -+ 0 or a -+ 0 the models change into 
the UCM model that bas infinite extensional stresses above a eertaio extension rate). Tbe 
1-mode Giesekus model possesses a higher elongational viscosity than the other models: 
this is due to the relatively low value of the parameter a, see Table 3.2. 
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Figure 3.6: Predictions in plan ar elangation of viscoelastic constitutive equations with param­
eter values fitted in simple shea.r flow for the 5%PIB/C14 solution. 
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3.5 9% PIB/C14 solution 

3.5.1 Preparation and composition of fluid 

This fl.uid was prepared identically to the 5% PIB/C14 solution, with the same constituents, 
but now with a different PIB concentration of 9% (w/w). 

3.5.2 Determination of parameters of non-linear viscoelastic 
constitutive equations 

The fitting procedure has been described in Section 3.4. The same constitutive equations 
have been used, and the parameters found are tabulated in Table 3.3. 

Maxwell parameters PTT Giesekus 
n 'f/i lPasJ À; lsJ ç f a 'f/s [Pas] 
1 1.63. 101 9.28 ·10 -:.! 0.0 0.75 0.55 0.0 
4 2.99 • 10U 7.20 ·10 -;j 0.0 0.75 0.55 0.0 

7.65. 10° 6.40 ·10-2 

7.62. 10° 4.40. 10-1 

8.76. 10-1 3.36. 10° 

Table 3.3: Parameter values for 1-mode and 4-mode (n: number of modes) non-linear vis­
eoelastic constitutive models at the reierenee temperature of 25°C in case of the 9% PIB/C14 
solution(5. = 3.56 ·10-1 s). 

Time-temperature superposition resulted in smooth master curves for TJ( ..Y) and N1 ( ..Y) 
in steady simple shear and for the complex viscosity defined by TJ'(w) and TJ"(w) (see 
Figure 3.8). The Arrhenius fit of the shift factors ar is plotted in Figure 3. 7. The data for 
N1 show relatively large scatter for shear rates below 10 s-1 , due to experimental difficulties 
of normal stress measurements. In Figure 3.7 also the Cox-Merz ruleis checked, which is 
shown to he valid in the range of shear rates and angular frequencies measured. 

The Giesekus model with four modes fits the steady shear material functions best 
over the whole shear rate range, the result is excellent (Figure 3.8). Differences are small 
between all models. As in case of the 5% PIB/C14 solution the PTT and Giesekus model 
have been fitted for both a one and a four mode version. 
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Figure 3.7: Left: Arrhenius fit of the shift factors aT. Right: comparison of steady shear 
viscosity ?J(i') (x) and dynamic viscosity 1Jd(w) (o) to check the validity ofthe Cox-Merz rule for 
the 9%PIB/C14 solution. 
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Figure 3.8: Master curves at Tref = 25 °C in simpJe shear flow for the 9% PIB/C14 solution. 
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3.5.3 Start-up of simple shear flow 

Shear stresses have been measured during start-up of simple shear flow, for three values of 
the final shear rate i'o: 10, 30, 100 (1/ s ). The measured data for TJ+ have been compared 
with the model predictions ( computed as described in Subsection 3.4.3 with model param­
eters as in Table 3.3). The results are shown for all cases in Figure 3.9 (single and four 
mode PTT model and single and four modes Giesekus model). 
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Figure 3.9: Viscosity q+ (during start-up of steady simple shear flow) at T 25°C for the 9% 
PIB/Cl4 solution. Top: single mode (left) and four modes (right} PTT model. Bottom: single 
mode (left) and four modes (right) Giesekus equation. 

The start-up viscosity TJ+ is described excellently by the one mode PTT equation, 
in cl u ding the small oversboot at i'o = 30 s-1

• The single mode PTT and the four mode 
Giesekus model both fit the steady shear viscosity accurately in the range of shear rates 
used in the start-up experiments, which is in agreement with the fits of the steady shear 
viscosity function. The Giesekus models have a too large oversboot compared to the 
measured data. 
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3.5.4 Predictions in planar elongational flow 

The elongational viscosity in planar elongation is plotted for the four models in figure 3.10. 
The plateau at the lowest deformation rates differs for the one and four mode models, since 
the elongational viscosity then is determined hy the zero shear viscosity. For the parameter 
values fitted ahove, both single and multi-mode versions of each model predict elangation 
thinning behavior. This is not in agreement with the elongational thickening behavior 
generally found for polymerie liquids. Fitting the PTT model with Ç = 0.20, e = 0.35 
surmounts this (possihly) non-realistic feature because it prediets weak elongational thick­
ening, while keeping good agreement in simple shear. However, it leads to unrealistic 
oscillations in the shear stress after start-up of steady shear (see Section 3.6.3) and com­
putations in Chapter 4 proved to he impossible when the PTT model with Ç -:/: 0 was used. 
Therefore, this fit has not been worked out here. 
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Figure 3.10: Predictions in pJanar elangation ofviscoelastic constitutive equations with param­
eter values fitted in simple shear flow for the 9%PIB/Cl4 solution. 

3.6 S 1 salution 

The standard fluid 81 ('S' of 'University of Strathclyde') was introduced in 1993 in the 
international project 'The rheometry of polymers: from the solution to the melt'. The 
aim of this project is to create a test fluid whose rheological behavior could he changed 
(by changing the concentration of its constituents) in a wide range ('from solution to the 
melt'). Sl, a solution of PIB in Decalin and polyhutene oil, should be the starting point 
of the project. lts composition was chosen such that the fluid could he used in (most of) 
the existing extensional viscometers. First results of the project were presented in 1993 at 
a meeting in Fontevraud ([113]). 

In the present study only measurements in simple shear flow are reported since the 
toxicological, chemica! and physical properties (mainly evaporation danger) of the Decalin 
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require adjustments of our complex flow system. The material functions in steady simple 
shear of the 9% PIB/C14 solution, as described in the previous Section, will appear to be 
close to those of the Sl fluid. The measurements on the Sl fluid will be compared with 
reference data to show the accuracy of our measurements. 

3.6.1 Composition of :ftuid 

Sl is a ternary solution of 2.5%(w/w) PIB in a mixed solvent of 47.5%(wfw) Decalin 
(decahydronaphtalene) and 50%(w/w) polybutene oil (PBO). The PIB in this solution is 
Vistanex-L140 (Exxon Chem.) with a weight average molecular weight M", :::::l 1.2 · 106 

(Hudson and Ferguson (54]). The PBO was Hyvis 10 (BP Chem.). The fluid used in the 
present study was a sample (0.51) of the original batch for the Fontevraud-meeting, which 
was donated by Ferguson. 

3.6.2 Determination of parameters of non-linear viscoelastic 
constitutive equations 

Master curves of the material functions in steady and oscillatory simple shear are presented 
in Figure 3.13. The shift factors and their Arrhenius fit are plotted in Figure 3.11 (data 
at the lowest temperature (T = 5 °C) did not fit well on the Arrhenius equation, as is seen 
in this figure). 
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Figure 3.11: Left: Arrhenius fit of the shift factors aT. Right: comparison of steady shear 
viscosity q(i') (x) and dynamic viscosity 'lld(w) (o) to check the vaJidity of the Cox-Merz rule for 
the Sl solution. 

The Cox-Merz rule has been checked in Figure 3.11: it shows that the rule is not 
validated. The modulus of the complex viscosity is lower than the steady shear viscosity 
as soon as the shear thinning starts. This effect is also reported by Ferguson and Hudson 
[34]. 

Good agreement is found between our data and those of Ferguson and Hudson [34], 
which have been publisbed as reference data. Some differences exist, as is discussed next. 
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The fit of the Carreau-Yasuda equation made by Ferguson and Hudson on their data at 
T = 25°0 is shifted a little compared with our fit (parameters in Table 3.1), as shown in 
Figure 3.12. It does not represent the optimal fit for our measured data. Differences are 
small however. 

Ferguson and Hudson fitted the relation between shear stress r and fust normal stress 
difference N1 with N1 = ar2, and found a= 0.0577 Pa-1 • For our data, with the factor 2 in 
the exponent of r, the factor a was fitted: a= 0.0580 Pa-1 , i.e. excellent agreement with 
the result of Ferguson and Hudson. The fit of our data is shown in Figure 3.12 (in the case 
that both the exponent and the factor a were fitted, the result was N1 = 0.0483r2•044 ). It is 
noted that the literature data for N1 were obtained in a larger interval (1 < N1 < 104 Pa) 
than was possible in our experiments. 

-fit on EUT data 
- ·fit on data of Ferguson and Hudson 
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Figure 3.12: Left: comparison of our Carreau-Yasuda fit of steady shear viscosity at T 25 °C 
and the fit of Ferguson and Hudson, tagether with. our measured data. Right: N1 as function of 
shear stress (r) tagether with titted relation N1 0.058r2• 

The four mode Giesekus model fits best in steady simple shear, the agreement for the 
viscosity is excellent. Again, both PTT and Giesekus model have been fitted in a single 
mode and a multi-mode version. The single mode PTT model fits the steady shear material 
functions better than the single mode Giesekus model, while the four mode Giesekus model 
fits both functions better than the four mode PTT model. Parameters are tabulated in 
Table 3.4. It is noted that the four mode PTT fit was made with a small value for e ( = 0.05) 
and a non-zero value for Ç (= 0.075). In this way, the steady shear viscosity could be fit 
excellently (both e and Ç control the shear thinning behavior). The fit of N1 is poor for 
all models, however. The interesting aspect of this fit is its strong elongational thickening 
behavior (see Subsection 3.6.4) caused by the small value for e. The disadvantage of Ç f. 0 
is the occurrence of oscillations in the stresses during start-up of simple shear, that are 
physically unrealistic since they have never been observed in experiments (Larson [70]) and 
also not for Sl, as is shown in the next subsection. 
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Maxwell parameters PTT Giesekus 
n TJ; [Pas] À; [s] e t: a 7J8 [Pas] 
1 9.77. 10° 2.19. 10 -l 0.0 0.35 0.21 0.0 
4 0.81·10° 3.60 ·10-;s 0.075 0.05 0.21 0.0 

3.33 ·10° 7.96 .w-2 

7.55 ·10° 8.19. w-1 

2.51 ·10° 6.67 ·10° 

Table 3.4: Parameter vaJues for 1-mode and 4-mode (n: number of modes) non-linear vis­
eoelastic constitutive models at the reEerenee temperature of 25°0 in case of the standard fluid 
Sl (X=1.63s). 

3.6.3 Start-up of simple shear fl.ow 

Shear stresses have been measured during start-up of simple shear flow for four values of 
the final shear rate: 10, 30, 60, 100 1/s. The measured data. have been compared with the 
model predictions ( computed as described in Subsection 3.4.3) with model parameters as 
in Table 3.4 {Figure 3.14). The four mode PTT equation with e =/: 0 results in strong 
oscillations in the stresses after start-up of steady shear. 

The four modes Giesekus model describes the start-up viscosity 11+ well. The over­
sboot in the viscosity is described quantitatively well at the two lowest shear rates ( 1'o = 
10,30 s-1 ), and qualitatively at the two highest shear rates ( .Yo = 60, 100 s-1 ). The other 
models fail: the single mode PTT equation has a to small overshoot, and the single mode 
Giesekus model a too large one. Moreover, the steady state viscosity is, in both cases, 
too low and this effect is strongest for the single mode PTT ( compared with the bottorn 
left plot in Figure 3.13). The four mode PTT equation with e = 0.075 suggests strong 
oscillations after start-up of steady shear that are not present in any of the measured data. 

3.6.4 Predictions in planar elongational fl.ow 

The elongational viscosity in steady planar elangation is plotted for the four model fits in 
Figure 3.15. The four mode PTT fit has the strongest elongational thickening behavior, 
again due to the small value for t:. 
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Figure 3.14: Measured viscosity q+ (during start-up of steady simple shear flow) at T = 25°C 
for the Sl solution. Top: one mode (left) and four modes (right) PTT equation. Bottom: one 
mode (left) and four modes (right) Giesekus equation. 
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3.7 LDPE melt 

3. 7.1 Characteristics of the LDPE 

The LDPE is the same as used by Tas [107]: a commercial grade Stamylan LD 2008XC43 
(DSM). Some of its characteristics are tabulated in Table 3.5. 

Melt index M .. Mw Mz p[kgjm;j] Tc [°C] 
(ISO 1133(A/4)) (ISO 1183(A)) 

8 1.30 ·104 1.55 ·105 7.8 ·10" 9.2 ·10· 98.6 

Table 3.5: Characteristics ofLDPE used (Stamylan LD 2008XC43, (DSM Chem.)). Mn: number 
averaged molecular weight, Mw: weight average molecular weight, Mz: z-averaged molecular 
weight, p: density, Tc: cristallization temperature. 

3. 7.2 Determination of parameters of non-linear viscoelastic 
constitutive equations 

Tas [107] has performed an extensive rheological characterization in simple shear flow 
and in both uniaxial and biaxial extensional flow. Four non-linear viscoelastic constitutive 
equations were fitted (Leonov, Wagner, PTT-Band Giesekus) with eight modes. The result 
was that Giesekus and PTT models fitted the data both fairly well. Only the relaxation 
of first normal stress ditterenee after cessation of steady shear flow distinguished between 
these two models: the PTT model agreed closer with the measured data. It appeared 
necessary to use the Ç parameter in the PTT model to obtain optimal agreement with data 
in simple shear and in extension simultaneously. The parameter valnes of the eight modes 
PTT and Giesekus fits are listed in Table 3.6. 

Here, also a jour mode fit was made for two models, PTT and Giesekus, to reduce the 
number of unknowns in the computations in Chapter 5. In Table 3.6 the model parameters 
are listed, and in Figures 3.16 the fits are plotted together with experimental data of 
Tas [107] 2• The eight mode fit agrees excellently with both the complex modulus and 
the material functions in steady simple shear 17(1') and N1(7). The four mode fits are 
a little less accurate, but good agreement is kept. Unfortunately, data of steady shear 
measurements are available only in a relatively small shear rate interval. 

2For melts usua.lly the complex modulus G* = f. is shown instead of 11•. 
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T Giesekus 
n TJ; as 
4 1.65 ·10 0.1 0.25 

6.60 ·102 

1.37 ·102 

8.50 ·10° 
8 9.28 ·10 0.38 0.0 

1.90 ·101 

7.21·101 

2.20 ·102 

5.07 ·102 

8.25 ·102 

5.84 ·102 

1.23 ·102 

Table 3.6: Parameter values for 4-mode and 8-mode (n: number of modes) non-linear vis­
eoelastic constitutive models in case of the LDPE at T = 190°C (X = 1.10 s ). 
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Figure 3.16: Rheological data for LDPE melt at T = 190°C. Top: complex modulus with iitted 
Maxwell models. Bottom: steady shear viscosity '7(i') and first normal stress ditTerenee N1(t) 
with fitted curves of non-linear viscoelastic constitutive equations. 
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3.7.3 Prediedons in planar elongational flow 

With the eight mode PTT, four mode PTT and four mode Giesekus model the elongational 
viscosity has been computed, the results are shown in Figure 3.17. The bumps in the curves 
are caused by the different modes. The typical behavior of the PTT model with exponential 
factor is found: the elongational viscosity shows a maximum. 

-ptt-a, n=B 
0.5 - • ptt-a, n=4 

·- gies., n=4 

' ' ' 

Figure 3.17: Predictions with fitted non-linear viscoelastic constitutive models for the planar 
elongational viscosity for LDPE melt at T = 190°C. 

3.8 Conclusions and discussion 

Three polyisobutylene solutions {referred to as 5% PIB/C14, 9% PIB/Cl4 and Sl) have 
been rheologically characterized in stea.dy simple shear flow and in small amplitude os­
cillatory shear flow. Master curves for the material functions 1J(i'),Nl(i') and 77*(w) were 
created using the principle of time-temperature superposition. The shift factors could be 
fitted with an Arrhenius equation (except data for the Sl solution at T = 5°C). 

The steady shear viscosity could be fitted excellently for all three solutions with a 
Carreau-Yasuda equation. The material functions in steady simple shear of the 9% PIB/C14 
and Sl solution are roughly similar, while the values for the stresses for the 5% PIB/C14 
solution are approxima.tely one order of magnitude lower at each shear rate compared to 
the other two fluids. The empirical Cox-Merz rule has been validated for the 5% PIB/C14 
and 9% PIB/C14 solution, while in case of the Sl solution this was not the case: the 
modulus of the complex viscosity was lower than the steady shear viscosity as soon as the 
shear thinning started. This effect for SI has also been reported in literature (Ferguson 
and Hudson [34]). 

Two non-linear viscoelastic equations of the differential type, the PTT equation with 
linear factor and the Giesekus equatîon, were fitted on the master curves for both a single 
and a four mode version. The results are summarized in Table 3. 7. Overall, the four mode 
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Material function 5% PIB/014 9% PIB/014 S1 
1J(i') PTT-4 Gies-4 Gies-4 

Gies-4 PTT-1 PTT-1 
Nt(i') PTT-4 Gies-4 -

PTT-1 PTT-1 
7J"~"(i'o, t) PTT-4 PTT-1 I Gies-4 

Gies-4 Gies-4 

Table 3. 7: Evaluation of the non-linear viscoelastic constitutive equations that have been fitted 
for the three polyisobutylene solutions. Por each material function and each salution the best 
fitting model is listed; in case two roodels were bath accurate two roodels are Iisted, with the first 
listed model giving the most accurate fit (the difference ca.n be small). If no accurate fit could be 
ma.de,no model is listed. Abbreviations: PTT-1,4 = one, four mode PTT, and Gies-1,4 = one, 
four mode Giesekus model. 

Giesekus equation is the most satisfactory model, since it fits best the material functions in 
steady simple shear for all three solutions, except N1(i') for 5% PIB/014. The four mode 
PTT model and the single mode PTT model are often accurate too. The single mode 
Giesekus equation clearly fails, such that it is noteven mentioned at all in Table 3.7. 

The parameters of the best fitting models predict a planar elongational viscosity that 
is only moderately elongational thickening or even elongational thinning. This is due to 
the relatively large value for both o (0.21 :5 o :5 0.55) and t (0.35 :5 € :5 0.75). 

In case of the S1 fluid a quantitative comparison with reference data from literature 
was possible, since we used a sample of the same batch as in the reference experiments 
(Ferguson and Hudson [34]). Good agreement is found for the steady shear viscosity, though 
the reference data are a little shifted compared with our data. The relation between steady 
shear stress and fust normal stress difference in our measurements appeared to he described 
with exactly the same equation as in the reference experiments, which demonstrated the 
accuracy of our measurements. 

In case of LDPE, both a four mode PTT and a four mode Giesekus equation fit well 
the complex modulus and the material functions in steady simple shear. 
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Chapter 4 

Steady flow of polyisobutylene 
solutions past a cylinder 

4.1 Introduetion 

The planar flow of two polyisobutylene solutions past a confined cylinder has been inves­
tigated by means of a comparison of finite element (FEM) computations with pointwise 
measurements of veloeities (with LDA) and stresses (with FIB) (these experimental meth­
ocis have been described in Chapter 2). The motivation for this choice has been given in 
Sections 1.1 and 1.5. 

The model fluids used are the 5% PIB/C14 and 9% PIB/C14 solutions, that have been 
rheologically characterized in simple shear in Chapter 3. 

In case of 5% PIB/C14, two types of geometrie variants are studied: the cylinder placed 
symmetrically and asymmetrically between two parallel plates. In case of 9% PIB/C14 only 
the symmetrically confined cylinder has been considered. 

The Phan-Thien Tanner (PTT) constitutive equation of type B (Section 1.2) has been 
used to describe the viscoelastic behavior of the model fluid since it fitted data in steady 
shear best (see Table 3. 7). To analyze the sensitivity of the flow for the precise form of the 
viscoelastic model, both a single and a four mode fit have been used. For the same reason, 
at the highest Deborah number a four mode Giesekus model has been applied as well. The 
separate influence of shear thinning on the velocity field has been analyzed by means of a 
generalized Newtonian model (Carreau-Yasuda). 

The flow loop and flow cell are described inSection 4.2. Subsequently, the results for the 
flow of 5% PIB/Cl4 past the symmetrically confined cylinder are presented (Section 4.3), 
followed by those for the asymmetrically confined cylinder (Section 4.4). The flow of 
9% PIB/C14 past a symmetrically confined cylinder is analyzed in Section 4.5. Finally, 
Section 4.6 contains a discussion on the results and conclusions are made in Section 4. 7. 
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4.2 Flow loop and flow cell 

The flow loop is plotted in Figure 4.1. In the closed flow loop, approximately 2.51 PIB/014 
solution is pumped continuously from a (glass) reservoir by a sanitary rotary pump (Naka­
mura, R0-10-VT) that is driven by a frequency controlled motor (Elsto, 100-L6) through 
flexible tubes (with inner walls made of Viton or NBR rubber) and the flow cell. The 
flow cellis made of PMMA with special, extremely low birefringent glass windows (Schott, 
SF-57) that enable accurate FIB measurements in the low range of stresses ( < 103 Pa) 
which exist in the PIB/C14 solution during flow. Thesewindows were polished and coated 
with a single->. antireflection coating (Ti02) to prevent stain formation. During the ex­
periments, samples of fluid were tested regularly on a Rheometrics-RFS-II viscometer and 
no significant changes were found. 

FC • 

Figure 4.1: Flow loop used in the LDA and FIB experiments: approximately 2.51 of PIB/Cl4 
salution is pumped through the flow cell. Connections between pump (P) , flow cell (F) and 
reservoir (R) are made by flexible tubes (for details see text). 

4.8 Flow of 5% PIB/C14 salution past a symmetri­
cally confined cylinder 

4.3.1 Introduetion 

The flow of the 5% PIB/Cl4 solution past a symmetrically confined cylinder has been 
investigated most extensively. The geometry is defined as in Figure 4.2. In the sequel, 
the numerical method, details of the flow conditions, the measurement procedures and the 
results are discussed. 
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x/R 

Figure 4.2: Schematic cross sectional view of geometry witb symmetrically coniined cylinder. 
Radius R of tbe cylinder is 2 mm, beigbt of tbe cbannel is 4R , deptb D (in tbe direction 
perpendicular to tbe pla.ne of drawing) is 32R a.nd totallengtb in x direction is 200R. Center of 
cylinder is at x = 0, y 0. Mea.n Bow is in positive x directlon. 

4.3.2 Numerical method 

The flow field has been computed with fini te element methods (FEM) that are implemented 
in the package SEPRAN [101]. The definition of the mathematica! problem to be solved 
( equations for conservation of mass and of momenturn and the constitutive equations for the 
stress tensor) are described in Section 1.2. The full equation of conservation of momenturn 
was used, since the Reynolds number ranged between 0.029 and 0.174, and test runs had 
shown that neglecting the convective term (Stokes flow approximation) influenced the 
solution of the velocity field up to approximately 5%. 

Both the Carreau-Yasuda modeland the PTT-B constitutive equation (definitions and 
parameter values as inSection 3.4) have been used at all flow rates in Table 4.2. 

Figure 4.3: Part of FEM mesb in case of geometry with symmetrically coniined cylinder. 
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Method for generalized Newtonian models Computa.tions with the (generalized 
Newtonia.n) Ca.rrea.u-Yasuda model are made with the Galerkin method (with a Picard 
linea.rization of the non-linear viscosity term), see Cuvelier et al. (20]. The velocity and 
pressure were discretized using the Crouzeix-Raviart P2 +- P1 triangular element with ex­
tended quadratic basis functions for the velocity and a piecewise discontinuons linear bas­
isfundion for the pressure. The pressure is eliminated with the penalty function method. 
Convergence of the iterative procedure was checked with 

luk - Uk-dma:v < fc ( 4.1) 
iukim= 

(4.2) 
(4.3) 

with Uk the velocity a.fter the kth iteration, Rk :;:; lf'"k-\lm- the relative residual of the 
Uk-1 ma..z: 

discretized system after iteration ( k - 1) and fc = 1 . w-4 • 

Metbod for viscoelastic models The viscoelastic computations have been performed 
with the method for sta.tionary two dimensional flow of Hulsen and van der Zanden ([55], 
(56], (57]). It is an iterative, decoupled method. The balance equations of mass and 
momenturn are discretized with the standard Galerkin method (with the sameelement as 
in case of the generalized Newtonian method). The extra-stress tensor is computed from 
the last computed velocity field by integration of the viscoelastic constitutive equation 
along the strea.rnlines (that are computed from the velocity field via the streamfunction) 
with a fourth order Runge Kutta scheme. A Picard iteration scheme is used to solve the 
resulting set of non-linear equations. For details about the construction of the streamlines 
and the iterative procedure the reader is referred to Hulsen [55] and Hulsen and van der 
Zanden [57]. 

Convergence is tested after each iteration with 

!uk+l - Uklmaa: < fu 
luk+llmaa: 

( ~T ~)Î < 
[(1' R ér 

(4.4) 

(4.5) 

(4.6) 

where Uk is the velocity after the k iteration, and R is the residual value of system of 
equa.tions for the 'free' degrees of freedom ( thus without the essential boundary conditions) 
for the discretized momenturn equation and fu, ér2 the convergence criteria (both usually 
1. w-3 ). 

Part of the FEM mesh used in all computations is plotted in Figure 4.3, the complete 
mesh has 1900 elements and 3981 noclal points. The resulting problem has 7962 degrees 
of freedom ( veloeities only) in case of both the viscoelastic constitutive equation and the 
generalized Newtonian model. Mesh refinement in both x and y direction with a factor 1.5 
did not influence the solution significantly. 
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Definition of boundary conditions Denote the velocity vector with ü, the outward 
normal on a boundary with n, the tangential vector on the boundary with tand the Cauchy 
stress tensor with u. The boundary conditions are then defined by the symmetry condition 

Ü·ii = 0 

t·(u·n) = o 

along the centerline at yf R = 0, and the no-slip condition 

(4.7) 

(4.8) 

(4.9) 

( 4.10) 

on the wall at y / R = 2 and on the cylinder wall. At the entrance and exit boundaries fully 
developed flow conditions were assumed in case of the viscoelastic computations, which 
were numerically calculated for the model used. In case of the generalized Newtonian 
model, for reasoos of convenience a Newtonian velocity profile was assumed at entrance 
and exit boundaries. This may not he physically realistic, but su:fficiently long entrance 
and exit lengths were used such that the discrepancy between these boundary conditions 
and the fully developed flow did not influence the solution in the flow region of interest 
(i.e. between xj R = -5 and xf R = 15). 

U[m/.s] n;ter PTT-1 n;ter PTT-4 
0.0424 29 13 
0.0633 26 12 
0.0700 22 6 
0.0800 25 8 
0.0868 22 6 
0.1074 33 11 
L: niter 157 56 

Table 4.1: Mean velocity U and number ofiterations niter for the computations with the 1 and 
4 mode PTT equations, in case of the geometry with the symmetrically confined cylinder. The 
solution at each (except the lowest) flow rate was obtained by using the result of the previous 
(lower) flow rate. 

Model parameters Model parameters are used as fitted in Section 3.4 at a reference 
temperature of 25°C. Because the experiments are performed at T = 24 ± 0.5°C, it 
was checked that computations with parameters fitted at a reference temperature of 24°C 
showed no (significant) change compared to those for 25°C. 
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The computations with the viscoelastic roodels were made by step-wise increasing the 
flow rate: first, at the lowest flow rate the solution was obtained with the iterative procedure 
and the result was used as the starting solution for the computation at a higher flow rate. 
The number of iterations for each flow rate is given in Table 4.1. N ote that the use of the 
4 mode model decreased the number of iterations. 

4.3.3 Experimental aspects 

Experimental set-up Figure 4.4 shows schematically the set-up used in the experi­
ments with the position of the two measurement systems (for a detailed description of the 
equipment see Section 2.2.3). FIB and LDA measurements were performed simultaneously, 
but independently. Each system has its own computer controlled traverse: the LDA laser 
probe is mounted on a three axis traverse while the optica! rail of the FIB system is con­
nected to a two-axis traverse. To measure the centerline veloeities near the cylinder, the 
LDA laser probe is positioned along the long side of the flow cell with the laser beams 
in the plane that is perpendicular to the axial (neutra!) direction of the cylinder. This 
configuration also results in a fast data collection, since the light scattered in the whole 
solid-angle of the laser probe is useful for detection of Doppier bursts. 

___.... 
to ROA 

Figure 4.4: Schematic drawing of the set up used during the experiments: the view is along the 
(vertical) mea.n flow direction through the flow cell {FC). The FIB rail (with PMG: pola.rization 
modula.tion generator (laser, polarizer, rotating halfwave plate), L: lens, D: detector with circular 
pola.rizer) is connected toa 2D-traverse (2D-T) and the LDA probe (P) toa. 3D-traverse (3D-T). 
Both messurement systems, induding the traverse tables, are controlled by a personal computer 
(FVA: hardware LDA system, ROA: ha.rdwa.re FIB system). Details of all equipment are given 
in Chapter 2. 

During the LDA experiments the velocity was averaged from 100 acquired samples that 
satisfied the strongest valida.tion criterion ( +3 dB ). Increasing the nurnber of va.lidated 



Steady :flow of polyisobutylene solutions past a cylinder 65 

samples did not change the average velocity. A seeding of small particles (Merck Iriodine 
111, coated rutile crystals, density p ~ 2.5 · 103 kgf m3

, diameter particles dp :::; 15 pm) was 
added in a concentration of approximately O.Olgfl to increase the data rate. The effective 
data rate (= number of validated samples per unit of time) was between 50 and 400Hz. 
The seeding did not affect the birefringence measurements. The laser was operated at a 
power level of 70mW, and the high voltage of the photomultiplier was between 1000 and 
1096V. 
The laser beam of the birefringence measurements is collimated by a lens with focallength 
400 mm, which gave a maximum beam radius of 0.35 mm at the exit and entrance windows 
of the flow cell (see Section 4.6 and Appendix C ). From the measured birefringence param­
eters x and ~n, the stresses were found using the stress optica! rule (Section 2.3.2). The 
stress optica! coefficient as determined by Quinzani [93] in a Couette flow cell was used: 
C = 1.87 · 10-9 Pa-1• In a later experiment, we measured the stress optica! coefficient our­
selves in a Couette cell for simultaneons mechanica! and optica! (with ROA) measurements 
on the Rheometrics-RFS-II (Figure 4.6 and Appendix D): C = 1.86 ·I0-9 Pa-1• 

Demonstration of the measurement accuracy of the LDA and FIB systems 
Figures 4.5 and 4.9 show that at z/ R = -5.0 the flow is fully developed. The agreement 
between calculated veloeities (with the Carreau-Yasuda equation) and the measured veloe­
ities at this position is good. It also shows the accuracy of the LDA experiments at all flow 
rates. The measured veloeities have a maximum error bound of approximately 3% of the 
mean value, hut at most positions it is approximately 1%. In case of the lowest Deborah 
numher these values are a factor two larger. 

Fully developed flow at xfl'l = ·5 
0.2,----~--~--~-----. 

0.15 

~ 
.5. 0.1 
::l 

·1 0 
y/R 

Figure 4.5: Veloeities in the fully developed flow region: measured and computed values 
(Ca.rrea.u- Yasuda. model (solid line)) a.t several De1 numbers, De1 = 0.25, 0.93, 1.36, 1.87, 2.31. 

Though Mackay and Boger [75] warned that a deviation of 15 to 20% in the value for 
the stress optica! coefficient is possible between different batches of any polymerie fluid, the 
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FuHy developed flow at x/R ~ -5 

·2 ·1 0 
y/R 

100 

80 

2 

C: 1.8611f Pà1 

1.5 

0.5tn sin 2x 

Figure 4.6: Lelt: shear stress along a cross sectionalline in the fully developed flow region: (x) 
measured using Jiterature value C = 1.87 ·10-9 Pa-1, and (- -) computed with Carreau-Yasuda 
model at De1 = 2.31. Right: validation of Jinearity of stress optical rule in a Couette cell with 
simultaneous mechanica] and optical measurements (see Appendix D). The mechanical stressris 
plottedas lunetion of tbe slmultaneously measured optical slgnal ~" sin 2x: C = 1.86 ·10-9 Pa-1 • 

literature value used here proved to be accurate. This is shown at the highest flow rate in 
Figure 4.6, where the measured shear stress, along the cross sectionalline at xf R = -5.0 
in the region with developed flow, is plotted tagether with the result for the FEM compu­
tations with the generalized Carreau-Yasuda equation. The agreement is excellent. 
To demonstrate further the accuracy of the op ti cal stress measurements, the stresses mea­
sured in simple shear with the Rheometrics-RFS-2 (cone and plate geometry) in Chapter 3 
are plotted tagether with the stresses as measured in the fully developed flow, which is also 
a simple shear flow. Figure 4. 7 shows Nt as function of r. The measured curve of N1 ( r) on 
the RFS-2 has been fitted with the relation N1 = arb with a = 0.13 Pa<t-b) and b = 1.66. 
A good agreement is found, and the scatter in the optically measured data is of the same 
magnitude as in the mechanically measured data. 

Section 4.6 discusses in more detail the accuracy of the measurements. 

4.3.4 Comparison of computations with experiments 

Experimental conditions and dimensionless parameters Experiments were carried 
out at ambient temperature of 24 ± 0.5°0. Stresses and veloeities were measured along 
five cross sectional lines (center of the cylinder at (x = 0, y = 0), negative x-coordinates 
are upstream of this center): x/ R = -5, -2.0, -1.5, 1.5 and 2.0, and along the centerline: 
y/ R = 0 (see Figure 4.2). 
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• RFS.:!fit • 200 + 08=1.36 
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Figure 4. 7: Normal stress as lunetion of shear stress for 5% PIB/C14. Data of measurements in 
simple shear ('RFS-2') and their fit ('RFS-2 fit', with N1 = aTb see text) tagether with stresses 
measured with FIB aJong a cross section in the fully developed Jlow region in the planar Jlow cell 
at three De numbers. 

U[m/s] U/R[s· 1
] ro [Pa] De1 Dez Re1 Rez 

0.0115 5.750 16.865 0.248 0.268 0.019 0.019 
0.0424 21.200 62.179 0.931 0.667 0.069 0.082 
0.0633 31.650 92.828 1.364 0.699 0.102 0.133 
0.0868 43.400 127.291 1.871 0.737 0.140 0.195 
0.1074 53.700 157.500 2.315 0.769 0.174 0.256 

Table 4.2: Mean velocity U, typical shear ra te U/ R, sealing stress r0 , and dimensionless numbers 
Del> De2, Rel> and Re2 for the cases studied in the geometry with the symmetrically confined 
cylinder (definition ofro see text, definitions of De1,Dez,Re1 and Re2 in Chapter 1). 

Veloeities are non-dimensionalized with the mean velocity U, and stresses with 

To = 3TJoU / R, (4.11) 

where 1Jo is the zero shear viscosity. The factor 3 in this definition of r0 is arbitrary and 
is added only to obtain a sealing that fi.tted nicely in the plots of Figures 4.10 to 4.14. 
Table 4.2 shows the values for the non-dimensionalizing parameters U and r0 , together 
with the dimensionless numbers De1 , De2 , Re1 and Re2 as defined inSection 1.2. The De2 

numbers are calculated from fits of N1(7) and TJ('Y) measured in steady shear. The lowest 
flow rate in Table 4.2 is also the lowest flow rate that can be used in the system. 

Two dimensionality of the flow LDA measurements along the third, 'neutral' direc­
tion at two positions (at xfR = -5 and x/R = 1.5) show the assumption of a nominally 



68 Chapter 4 

two-dimensional flow field is good, see Figure 4.8. 

Two dimensionality of flow 

0~~~----~--~--~----~--~ 
-15 -10 ·5 0 5 10 15 

z/R 

Figure 4.8: Mea.surement of the axial velocity along the neutral (z-)direction at two positions 
(x/R = -5.0,1.5) and three flow rates ('+':U= 0.0118[m/s], 'x': U= 0.0424[m/s] and 'o': 
U= 0.0633 [m/ s]), showing that the flow is nominally two-dimensional. 

Axial velocity field 

Centerline elongation rate The measured veloeities along the center line have been 
fitted with polynomials to calculate the elongational velocity gradient ( dongation rate) 
along this line. The results are plotted in Figure 4.9. It appears that the elongation rate 
is minimal ~ -65 s-1 upstrearn of the cylinder; and maximal ~ 70s-1 downstream of the 
cylinder at the highest flow rate. This magnitude is an order higher than in the study of 
Armstrong et al. [4], where the maximum elangation rate was~ lOs-1

• 

Axial veloeities along cross sections At all Deborah numbers excellent pointwise 
agreement is found between the measured axial veloeities and those computed with the 
Carreau-Yasuda model (Figures 4.10 4.14). 

The results for the single and four mode PTT model agree excellently with measured 
data at the two lowest Deborah numbers (De1 = 0.25, 0.93). The good agreement between 
computed and mea.sured axial veloeities at De1 = 0.25 for all models (Figure 4.10) was 
expected, since the flow at this low Deborah number approximates Newtonian flow, thus 
the veloeities of both the Carreau-Yasuda model and the PTT models should coincide. 

At the higher Deborah numbers the agreement is well for the four mode model and 
fairly well for the single mode model. Largest differences between measured and computed 
data are found downstream near the center line. In case of the single mode model the 
differences are quantitatively and qualitatively most pronounced (this is most evident in 
the plots along the center line, see below). 
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Figure 4.9: Polynomial fit of measured veloeities along centerline past the symmetrically con­
fined cylinder (left) a.nd the deriva.tive of fitted polynom (right) a.t the live Debora.h numbers 
investiga.ted (see Thble 4.2). Top row: upstream of cylinder, bottom row: downstraam of cylin­
der. De1 = 0.25, 0.93, 1.36, 1.87, 2.31. 

Axial veloeities along centerline Along the center line upstream of the cylinder, the 
computed a.xial veloeities a.gree excellently with mea.sured da.ta. for both PTT models a.t 
all Deborah numbers. 

At Deborah numbers la.rger than 1, most pronounood differences exist in the wake of 
the cylinder at the centerline between the computed results for both PTT models and 
the mea.sured velocities. Just downstream of the cylinder, the calculated a.xial veloeities 
rise more steeply for the PTT models. The effect is strongest for the single mode PTT 
model. For this model, at De1 equal to 1.87 and 2.31, an overshoot in the velocity profile is 
observed, which is ( almost) notpresent in case of the four mode PTT model. The overshoot 
is completely absent in the mea.sured veloeities and in the results for the Carreau-Yasuda 
model. This difference qetween computed and measured veloeities indicates a model error 
of the PTT model, which is most severe in case of the single mode model. The results for 



70 Chapter 4 

the four mode model show a. remarkable improvement, but a. difference with the mea.sured 
veloeities remains. 

Stress field 

Good agreement is found between computed a.nd mea.sured stresses at all flow ra.tes with 
both PTT models, a.nd sometimes the agreement is excellent (Figures 4.10- 4.12 a.nd 4.15 
- 4.16). The oomparison is discussed in detail below. In the plots along cross lines, the 
profiles of N1 at xf R = 2.0, -2.0 areleftout to improve the la.y-out of the plots. 

Computed va.lues of the stress field are only presented for the viscoelastic constitutive 
equa.tion (PTT model), since the mea.sured stresses were determined using the stress opti­
ca! rule which is only supported by theory for (visco-)ela.stic materials (see Section 2.3.2). 
Moreover, such model ca.n not describe normal stresses in shear flow, which gives non­
realistic predictions. A comparison with data for the Carreau-Y a.suda equation is never­
theless madeinSection 4.6. 

Stresses along cross sections The stress mea.surement a.t the lowest Debora.h number 
(0.25) were not accurate, since the birefringence of the fluid wa.s of the sa.me magnitude a.s 
the (small) spa.tial varia.tion in the background signa.l (see Section 4.6.2). However, fairly 
well agreement is still observed (Figure 4.10). 

At De1 = 0.93 a.nd 1.36 excellent agreement is found between computed and mea.sured 
stressesalong all cross sections in Figures 4.11 a.nd 4.12. Differences between the two PTT 
models are negligible at these two Debora.h numbers, except for the maximum value of N1 

at x/ R = 1.5. At that position the single mode PTT model ha.s a higher maximum tha.n 
the four mode model. 

At De1 = 1.87 and 2.31 more differences are found. As will also be shown below for 
the center line stresses, the presence of the cylinder is manifest further upstream of the 
cylinder tha.n in the computations. The minimum normal stress difference at x/ R = -1.5 
is lower for the mea.sured data tha.n for both PTT models. The differences between the two 
roodels are largest in the extrema of the profiles of the normal stress difference: upstream 
of the cylinder the four mode model is closer to the measured data, while downstrea.m the 
agreement is excellent in case of the single mode model a.nd somewhat less for the four 
mode model. Both roodels predict the shear stress profiles well downstrea.m of the cylinder, 
but upstrea.m of the cylinder the agreement is only qualitative. 

Stressesalong center line Figures 4.15- 4.16 show along the centerline for De1 = 0.93 
and 1.36 good pointwise agreement between mea.sured and computed stresses with both 
models. Small differences can be seen between the single a.nd the four mode PTT model: 
the maximum value of the downstrea.m stress profile is somewhat larger for the single 
mode model. Note the excellent agreement for the measured and computed normal stress 
differences upstrea.m of the cylinder. 

At the two highest Deborah numbers ( De1 = 1.87, a.nd 2.31) pronounced differences are 
observed between mea.sured a.nd oomputed normal stress differences. Also, the two model 
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Figure 4.10: Measured (o) and computed (-: 4-mode PTT model, --: 1- mode PTT 
model, - · -: Carreau Yasuda model (velocities only)) results for the planar flow of the 5% 
PIB/014 salution at De1 = 0.25 past a cylinder confined symmetrically between two parallel 
plates: velocity (top), first normal stress difference (middle) , shear stress (bottom). Veloeities 
are non-dimensionaJized with the mean velocity U, and the stresses with r0 (see text). 
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Figure 4.11: As in Figure 4.10, now with De1 = 0.93. 
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Figure 4.12: As in Figure 4.10, now with De1 = 1.36. 
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Figure 4.13: As in Figure 4.10, now with De1 = 1.87. 
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Figure 4.14: As in Figure 4.10, now with De1 = 2.31. 



76 Cha.pter 4 

oe-0.2451 
2.---~----~------~------~~ 

xJR 

De 0.9309 
2.---~----~------~------~. 

xJR 

De 1.361 
2.---~----~------~------~· 

xJR 

Dec 0.2451 

3 

2 

0 

.!:: ol----_.fili.,--,--..ll~~~~~t----------l 
;i 

·1 

·2 

3 

·2 

·3 

0 

x/R 

0e=0.9309 

0 

~--~----~----
·5 0 

x/R 

De= 1.361 

3 

·2 

·3 

5 10 

~--~------~----~------~~ 
·5 0 5 10 

x/R 

Figure 4.15: Measured (o) a.nd computed (-: 4-mode PTT model, --: 1-mode PTT , 
- · -: Ca.rrea.u-Yasuda. (velocity only)) velocity (left) and first normal stress difference (non­
dimensiona.Iized with stress To (see text)) (right) a.Iong the centerline for the flow of the 5% 
PIB/Cl4 salution past a symmetrica.lly confined cylinder, for De1 = 0.25, 0.93, 1.36. 
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Figure 4.16: As in Figure 4.15, now with De1 = 1.87, 2.31. 

predictions are quantita.tively different. Upstream of the cylinder, the mea.sured profile of 
the normal stress difference is shifted upstream compared with the computations, and the 
four mode model is closer to the mea.sured data than the single mode model. Downstreamof 
the cylinder, the agreement with measurements is for the four mode PTT model excellent. 
Fairly well agreement is found for the single mode model, it ha.s however a maximum that 
is too high compared with measured data. 

Comparison with results of Baaijens et al. [9] The above results for the stresses 
are not in a.ccordance with those presented in our earlier study Baaijens et al. [9] (see a.lso 
Note added in proof in [9]). In that paper, we presented for the same fluid in the same 
geometry normal stress measurements at De = 0.22, that were much higher (a factor 2 for 
the maximum va.lue along the centerline) and, more important, relaxed much slower: after 
7 cylinder radii, the stresses on the center line downstreamof the cylinder were stillabout 
50% of their maximum va.lue (tha.t wa.s located at a.bout 3 radii past the cylinder). We 
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now a.rgue that the discrepancy between the results in [9] and those in this thesis can only 
he explained by a change in the rheological behavior during the older experiments. 
In [9], we have discussed all possible systematic errors (influence of the subtraction proce­
dure to account for the parasitic birefringence in the glass windows, failure of stress optica! 
rule) that might have affected the stress measurements. All these effects were expected to 
he of minor relevance. However, we feit uncomfortable with the procedure we had to use 
to eliminate the influence of the pa.rasitic stresses in the flow cell windows. Therefore, the 
SF-57 glass has been used in the present study. 
Other changes were made as well in the experimental setup used in this thesis: a flow cell 
with smaller dimensions (factor 2), other tubing and a different type of pump. Also, the 
stress measurements have been performed with our own, new ROA system. 
After replaeing in the present experimental setup the new flow cell with the older one 
(used in [9]), we measured along the centerline (using the measurement procedure as in 
[9]) essentially the same stress distribution at De ~ 0.22 as shown above in this section 
at De = 0.25 (Figure 4.15). This proves, that there was no influence of the flow cell or 
measurement procedure in the older experiments. Only a change of the rheological prop­
erties can have caused the observed effects. The question how this has occurred is under 
investigation. 

4.4 Flow of 5 % PIB/C14 past an asymmetrically 
confined cylinder 

4.4.1 Introduetion 

Next, the influence of viscoelasticity on the flow in a channel with an asymmetrically 
confined cylinder has been investigated, since it was expected that this asymmetrical flow 
would be more sensitive for viscoelastic effects such that the veloeities upstream of the 
cylinder are changed (see also Section 1.4). Since in the previous section the four mode 
PTT model was found to be superior to the one mode fit, bere only the four mode fit will 
he used in the viscoelastic computations. 

In the experiments the cylinder has been moved 1 mm towa.rds one of the walls, which 
resulted in a na.rrower gap between the wall and the cylinder of 1 mm at that side of the 
cylinder and a wider gap of 3mm on the other side (see Figure 4.17). 

4.4.2 Experimental and numerical aspects 

Keeping x IR = y IR = 0 in the center of the cylinder, the wall that is dosest to the 
cylinder is at Yl R = 1.5, and the other wall at Yl R = -2.5. Measurements of the ax­
ial veloeities and the stresses have been performed along cross sectional lines at x IR = 
-5.0, ±2.5, ±2.0, ±1.5, 0.0 and along axiallines at Yl R = 0, -1.5. The flow rate was set 
such that the mean velocity was 0.0868mls, and thus De1 = 1.87. The stress measure­
ments were performed with a lens with a focal length f = 200 mm, which resulted in 



0 - -

Steady flow of polyisobutylene solutions past a cylinder 79 

-- -- ---- ~~----- -~.~~ ~:-: f~ 
0 > 

xjR 

Figure 4.17: Geometry with asymmetrically confined cylinder. Radius R of the cylinder is 
2 mm, height of the channel is 4R , depth D (in the direction perpendicular to the plane of 
drawing) is 32R and total length in x direction is 200R. Center of cylinder is at x = 0, y = 0. 
Mean flow is in positive x direction. 

a maximum beam radius at the exit and entrance planes of the flow cell of ::::::: 0.25 mm 
(Section 4.6.2). 

Tbe same numerical metbod was used as in the previous Section. Part of tbe mesh is 
shown in Figure 4.18: it bas 5364 elements and 11014 noclal points and 22028 degrees of 
freedom ( veloeities only). 

Both tbe generalized Newtonian Carreau-Yasuda modeland tbe four-mode PTT equa.­
tion were used, with parameter values as in Subsection 4.3.2. Convergence was obtained 
with tbe convergence criteria as in Section 4.3. In case of tbe PTT equation, computations 
were performed by increasing the flow rate stepwise using each result as a starting value 
for the new computation (Table 4.3). 

U[m/s] niter 

0.0212 13 
0.0415 15 
0.0562 12 
0.0868 21 
:En;ter 61 

Table 4.3: Mean velocity U and number of iterations n;ter for the computations with the 4 mode 
PTT equation, in case of the geometry with the asymmetrically confined cylinder. The salution 
with U = 0.0868 m/ s was obtained by increasing the flow rate stepwise, which resulted in total 
61 iterations. 
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Figure 4.18: Part of mesh used for the geometry with Mymmetrically confined cylinder. 

4.4.3 Comparison of computations with experiments 

Axial velocity field 

Axial veloeities along cross sectional lines Figures 4.19 shows the results for the 
Mymmetrically confined cylinder geometry. For both constitutive equations, the computed 
velocity profiles upstream of the cylinder agree well with those that were measured. This 
is not in accordance with the expectations (as discussed inSection 1.4) that the elongation 
thickening of the viscoelMtic material causes a significantly larger flow through the broader 
gap compared with inelastic fluids. 
Comparison of the computed velocity profiles with the velocity measurements along line 
x IR = 0 in the broader gap shows that both models describe the measured velocity well 
(Figure 4.20). Near the top of the profile, the Carreau-Yasuda model is closer to the 
measured data than the PTT model, which prediets a higher maximum . This might be 
due to the too less shear thinning behavior of the PTT model for shear rates above 100s-1, 

since at this site high shear rates are present with a maximum value >:::l 250 s-1 ( compare 
Figure 3.3). 

Axial veloeities along axiallines The measured velocity profile along line y IR = -1.5 
is closer described by the Carreau-Yasuda model than by the PTT model: the latter bas a 
too high maximum (Figure 4.20). For both models, the rising and deseending parts of the 
computed velocity profile agree well with the measured data. 

Along line yiR = 0 (upstream and downstrea.m of the cylinder), excellent agreement 
is observed between both computed and measured velocities. No oversboot of the velocity 
downstream of the cylinder exists bere. 

Downstreamof the cylinder, the computed velocity profiles for the PTT modelagree 
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Figure 4.19: Measured (o) and computed (-: 4-mode PTT,--: Carreau-Yasuda (velocities 
only)) quantities for the planar flow of the 5% PIB/Cl4 salution at De1 = 1.87 past an asym­
metrically contined cylinder: velocity (top), first normal stress difference (middle), shear stress 
(bottom). Veloeities are non-dimensionalized with the mean velocity U, and the stresses with To 
(see text). 
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Figure 4.20: Lelt column: mea.sured (o) and computed veloeities 4-mode PTT, 
Carreau-Ya.suda) along several lines in the flow of the 5% PIB/Cl4 solution pa.st an a.symmetri­
cally contined cylinder. Right column: measured (x: T, o: N1) and computed stresses (4 mode 
PTT only) along the same lines as the veloeities in the Jeft column. De1 = 1.87. 
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excellently with the measured veloeities and better than those for the Carreau-Yasuda 
equation (Figure 4.19). 

Stress field 

As in the previous case, stresses are non-dimensionalized with To = 3T]oU IR ( = 127.3 Pa 
at the present flow rate). 

Stresses along cross sectional lines The normal stress difference along cross sectional 
lines upstream of the cylinder that is computed with the PTT model agree excellently with 
measured data. 

Downstreamof the cylinder some small differences between computed and measured 
normal stress differences are found near the line Yl R = 0, but the agreement is still 
impressive. 

Excellent pointwise agreement is found between measured and computed shear stresses 
at all sites (Figure 4.19). 

Stresses along axial lines Excellent agreement of computed and measured stresses 
exists along line y IR = 0. 

4.5 Flow past a cylinderfora 9% PIB/C14 salution 

4.5.1 Introduetion 

In the process towards the investigation and characterization of the rheological behavior of 
polymer melts in complex flows, now a model fluid is used with a viscosity and elasticity 
closer to those of a polymer melt than the 5% PIB/C14 solution. The same PIB and 
tetradecane as in the previous section of this chapter are used, but now in a 9%(wlw) 
PIB/C14 solution. The rheology in simple shear flow has been described in Section 3.5. 
To account for changes in rheology during the experiments, the characterization of fluid, 
after being used in the experiments, is described below in Section 4.5.2. Only results 
are presented for the flow past a symmetrically confined cylinder, and show qualitatively 
simHar flow phenomena as in case of the 5% PIBIC14 solution at the highest flow rate 
(Section 4.3). 

4.5.2 Rheological parameters during the experiments 

During the experiments with the 9% PIB/C14 solution changes in the rheology of the 
fluid occurred. After two days of experiments, for example the zero-shear viscosity was 
0. 75 times the value for fresh fluid. Most probably, these changes are caused by polymer 
degradation, which may he caused by high shear and elongation rates in the flow loop. 
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The present solution appears to be more sensitive for that than the 5% PIB/Cl4 solution 
used in the previous part of this chapter, where no changes were found. 

The changes have been quantified by measuring the steady shear viscosity and the 
complex viscosity. Three samples were studied: the original (fresh) sample, a sample after 
one day of experiments, and a sample after two da.ys of experiments. The results are 
shown in Figure 4.21. The effect was strongest during the first day of the experiments. 
Relatively little changes occurred during the second day (a change of approximately 5%), 
which justifies the use of the experimental data acquired on the second day. However, it is 
emphasized that such rheological changes are undesirable in the experiments. The question 
how to avoid this must he dealt with in future research. 

10·~------~--------~-------, 

o original fluid 

x sample after 1 st day 

+ sample after 2nd day 

- 4-modes Maxwell fit 
10~~------~--------~------~ 
~~ ~~ 1~ ~~ 

., (s ·1 ) 

10" 

x sample alter 1 st day 

+ sample alter 2nd day 

- 4-modes Maxwell fit 
10 .. '-:-------'-:---------'-::---------' 
~~ ~~ 1~ ~~ 

"' (s ·1 J 

Figure 4.21: Components of the complex viscosity measured at three moments in time during 
the experiments with the 9% PIB/C14 salution tagether with a four mode Maxwell fit on the 
data measured alter the second day. Large changes are observed between data for a fresh sample 
and alter the first day ofthe experiments. Only little differences exist between data ofthe sample 
taken alter the first da.y of the experiments and the sample taken after the second day. 

The material fundions in steady shear of the sample taken after the second day of the 
experiments have been used to fit the PTT and Giesekus roodels (following the procedure 
as described in Section 3.5.2). The results are plotted in Figure 4.22, and the fitted model 
parameters are listed in Table 4.4. The steady shear viscosity has been fitted with a 
Carreau-Yasuda. equation with parameters {a,n,Àcy,'l]cy} = {1,0.46,0.18[s],l4.9[Pas]}. 
The four mode roodels agree excellently with the data, for both the Giesekus and the PTT 
model, the Giesekus model being a little better. The one mode versions suffer of too large 
normal stresses combined with a too strong shear thinning. 

4.5.3 Experimental and computational aspects 

For details of the experimental set-up and measurement technique it is referred to Sec­
tion 4.3.3. As already stated in Section 2.3.4, one change was made in the hardware of the 
FIB measurement system: the rotating halfwave plate was replaced by a quartz halfwave 
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Maxwell parameters PTT Giesekus 
n 'f/i lP a sj À; lsJ ç € a 
1 13.1 1.06. 10 1 0.0 0.65 0.43 
4 4.91. wu 1.61 . 10 2 0.0 0.75 0.50 

7.10. W0 2.01. w-1 

1.60. W0 1.41 . W0 

1.43. W0 9.90. W 0 

Tab1e 4.4: Model parameters of the non-linear viscoelastic constitutive equations for the 9% 
PIB/Cl4 solution during the experiments (n: number of modes). 
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Figure 4.22: Fits of the steady shear viscosity (left) and first normal stress difference (right) 
for the degraded 9% PIB/C14 solutio:I. The number n is the number of modes. 

plate with a beam deviation less than 1arc s. This increased the spatial resolution: the 
beam radius at the entrance and exit planes of the :flow cell was now 0.15 mm with a lens 
with focallength 800 mm, which is in good agreement with the theoretically expected value 
(0.12 mm, Appendix C). 

Flow conditions The steady :flow conditions during the measurements are characterized 
by the Deborah number De1 and Reynolds number Re1 listed in Table 4.5. Temperature 
was 26 ± 0.5°C. 

Demonstration of the FIB measurements Figure 4.23 shows the accuracy of the FIB 
measurements with the current measurement system and model :fluid. Stresses measured in 
simple shear (on the Rheometrics-RFS-2) and the fit with N1 = arb, a = 0.19([Pa1-1.46]), b = 
1.46[-]) are compared with stresses measured with FIB in the fully developed :flow region 
in the planar :flow cell. The scatter in the optically measured data is now smaller than 



86 Chapter 4 

Table 4.5: Mea.n velocity U, typical shear rate U/ R, sealing stress ro, a.nd dimensionless numbers 
De1 a.nd Re1 for the cases studied in the geometry witb the symmetricaJly confined cylinder 
(definition ofr0 = 811oU/R (see Section 4.3.4), definitions of De1 a.nd Re1: see Beetion 1.2). 

the scatter in the mechanically measured data. The accuracy of the stresses measured 
with FIB are increased compared with the data in Figure 4.7. This is probably due to the 
increased spatial resolution of the FIB laser beam using the new halfwave plate combined 
with the higher birefringence level in the 9% PIB/C14 solution. 

500 r------, 
x RFS·2 

400 · -RFS-2111 
'I 0 De = 5.59 
;;. 300 . .___ __ ___, 

-z 
200 

100 

100 150 200 250 

~ {Pa) 

Figure 4.23: Normal stress as function of shear stress for 9% PIB/C14. Data of measurements 
in simple shear ('RFS-2') and their fit ('RFS fit', N1 = arb, see text) tagether with stresses 
measured with FIB along a cross section in the fully developed :flow region in the pla.nar :flow cell. 

Computational method The same computational method (including boundary con­
ditions and mesh) has been used as in case of the 5% PIB/Cl4 solution (Section 4.3), 
together with a four mode PTT equation, a four mode Giesekus equation, and a Carreau­
Yasuda (CY) equation. Single mode roodels were not used, since the fits of the rheological 
data in steady simple shear of the four mode roodels were much better, as illustrated in 
Figure 4.22. 

4.5.4 Comparison of computations with experiments 

FUlly developed fiow The measured and computed velocity profiles and stress profiles 
along a cross section in the fully developed flow region agree excellently (Figure 4.24). 
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Figure 4.24: Veloeities {left) a.nd stresses (right) a.Jong cross section xjR = -10 in the fully 
developed flow region for the 9% PIB/C14 solution. Lines are results of computa.tions, -: 
4-mode Giesekus equa.tion, - · -: (in velocity plot only): Carrea.u-Yasuda. equa.tion, --: 4-
mode PTT. Veloeities non-dimensionalized with mean velocity U, stresses with To = 3rtoU J R = 
236 (see Thble 4.5). 

The stress optica! coefficient was determined by fitting the measured 'optical' shear stress 
(Ll.n sin2x) on the shear stress for the Carreau-Yasuda computation: C = 1.47 ·10-9 Pa-1• 

This value is surprising, in the sense that it is lower than for the 5% PIB/C14 solution, 
while molecular theories predict an increase in the stress optica! coefficient with increasing 
concentration (Equation 2.33). We have tried to use our Couette cellas described in Ap­
pendix D, but had difficulties with the experiment due to the high stresses (Schoonen [98]). 

Axial veloeities along cross sections Good agreement is found between measured and 
computed axial veloeities along cross sectionallines in case of all three models (Figure 4.25). 
Some differences exist near the downstream centerline, which will be discussed next. 
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Figure 4.25: Measured (o) a.nd computed velocity (top), :first normal stress ditference (middle) 
, shear stress (bottom) (-: 4-mode Giesekus model, - · -: Carreau-Yasuda model (velocities 
only), - -: 4-mode PTT) for 9% PIB/C14 solution. Veloeities are non-dimensionalized with 
the mean velocity U, and the stresses with To = 31]oU / R 236 (see Table 4.5). 
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Axial velocity along axial lines The upper left plot in Figure 4.26 shows measured 
and computed axial center line velocities. Upstream of the cylinder, the viscoelastic com­
putations agree well with the measured data and better than the Carreau-Yasuda equation. 
Downstream of the cylinder, the reverse situation is observed: here the Carreau-Yasuda 
equation agrees excellently with the measured data, while the viscoelastic models have a 
smal! oversboot that is not present in the measured axial velocities. However, differences 
are small. 

The lower left plot in Figure 4.26 shows the results along the line at Yl R = 1.5. Only 
small differences exist between the model predictions, and fairly good agreement exist 
between those data and the measured velocities. It appears that the computed data is 
somewhat shifted compared with the measured data. 

Stresses along cross sections Along both upstream and downstream cross sections, 
the computed normal stress difference for the PTT and the Giesekus model agree well with 
measured normal stress differences, except near the centerline (Figure 4.25). Upstream of 
the cylinder, the predicted normal stress differences near the centerline are smaller tha.n the 
measured stresses, while downstrea.m of the cylinder they are larger in a small region along 
the centerline. Only small differences exists between the two viscoelastic computations at 
any position. 

The most pronounced differences between computations and measurements are found 
along the cross sections at xl R = 0: the predicted normal stress differences near both 
the confining walls and the cylinder walls are much larger than for the measured data. 
In particular near the cylinder wall the differences are remarkable: the measured stress is 
then decreasing towards the wall while the computations predict a strong rise. One should 
be careful with the interpretation this discrepancy is an error of the viscoelastic models. 
Some marginal notes must be made with respect to the measurements here. The measured 
stresses near the cylinder wall might be less accurate due to the averaging of the large 
stress gradients over the measuring area. This area has a dimensionless diameter 0.3012 = 
0.15, which corresponds precisely with the region near the cylinder where stresses are 
decreasing towards the wall. Possibly, the birefringence measurements have been infiuenced 
by refiections on the dielectric surface of the cylinder, that caused phase disturbances of 
the measured light. Also, partial occlusion of the laser by a wall ( either the cylinder or 
the confining wall) ca.n have infl.uenced the measurement. The computed result seems to 
be physically more realistic sirree the high shear rates near the cylinder surface would give 
high normal and shear stresses. However, the computations may suffer from an inadequacy 
of the model parameters in the viscoelastic models. From the computed velocity field at 
x IR = 0, the shear rate at the cylinder wall was determined here at 300 s-1 and at the 
confining wall it was 200 s-1 . These values are far beyond the range in which the non­
linearity parameters have been fitted ( there i' < 70 s-1

, see Figure 4.22). 
The differences near the confining wall at x IR = 0 are probably at least partly due to 

the high stress gradient at this position relative to the size of the measuring area of the 
laser beam. 



Figure 4.26: Veloeities (left) and stresses (right) along line of symmetry yf R = 0 (top row) 
and along line yfR = 1.5 (bottom row) for the 9% PIB/C14 solution. Lines are results of 
computations, -: 4-mode Giesekus equation, - · -: Carreau-Yasuda equation (velocity only), 
- - : 4- mode PTT. Veloeities non-dimensionalized with mean velocity U, stresses with ro = 
3UfR. 

The computed and measured shear stresses agree excellently downstream of the cylin­
der. Upstream of the cylinder some sma.ll differences are found, but agreement is still good. 
Along the line at x/ R = 0 differences exist near the walls, as was also the case for the 
normal stress di:fferences. 

Stresses along axiallines Along the centerfine upstream of the cylinder, good agree­
ment between both computations and measured data is observed (right upper plot in 
Figure 4.26). Downstreamof the cylinder, both models predict a too large maximum of 
the normal stress di:fference. Here, the di:fference between the two roodels is evident: the 
Giesekus model shows larger stresses than the PTT model. The plots along the cross 
sectional lines have shown that this large difference between experiment and models is 
local. 
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Both shear stress and normal stress difference as computed with the viscoelastic models 
along the line y f R = 1.5 agree excellently with the measured data. Between the two models 
only small differences are found, the PTT model is now closer to the measured data. 

Normal stress ditterenee 

Figure 4.27: Measured (o) and computed first normal stress difference (-: 4-mode Giesekus, 
- · -: Carreau Yasuda., - -: 4-mode PTT) . Stress is non-dimensionalized with r0 = 3'qoU / R = 
158Pa. 

4.6 Discussion 

This section consistsof two parts: first some additional results for the flow of 5% PIB/C14 
past a symmetrically confined cylinder are presented (Subsection 4.6.1). Second, a mea­
surement analysis is given in Subsection 4.6.2. 

4.6.1 Additional results for the flow of 5% PIB/C14 past a 
symmetrically con:fined cylinder 

Stresses for four mode Giesekus model and Carreau-Yasuda model In Sec­
tion 4.3, in case of the four mode PTT model the differences between computed and 
measured flow fields were most pronounced and De1 > 1.36. In Figures 4.27 and 4.28 
results of two additional computations are presented. 

First, to investigate further the sensitivity for the choice of the constitutive equation, 
the four mode Giesekus equation has been applied (with parameters as ln Table 3.2) at the 
highest Deborah number (De1 = 2.31). Only the results for the stress field are shown in 
Figures 4.27 and 4.28: the results for the velocity field could not been distingulshed from 
those of the four mode PTT model (Figure 4.14) and are not presented here. 



92 Chapter4 

Second, to illustrate the typical stress patterns as predicted by the Carreau-Yasuda 
model these have been plotted too in Figures 4.27 and 4.28, although the stress optical 
rule can only he understood by viscoelastic theory (see Section 2.3.2). The plotted stresses 
are the results of the same computation for which the veloeities have been presented in 
Figure 4.14. 
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Figure 4.28: Measured (o) and computed first normal stress difference along the center line 
in the geometry with the symmetrical confined cylinder (-: 4-mode Giesekus, - · -: Carreau 
Yasuda., - -: 4-mode PTT) (non-dimensionalized with To = 3'f/OU / R = 158 Pa). 

Both Figure 4.27 and 4.28 show that the differences between the four mode versions 
of the PTT and Giesekus roodels are small. Downstreamof the cylinder, the four mode 
Giesekus model improves the agreement somewhat for the first normal stress difference. 

The profiles for the normal stress difference of the Carreau-Yasuda model differ in two 
ways from the viscoelastic models. First, in regions with simple shear deformation (i.e. in 
the fully developed flow region and near a wall with a no-slip condition) the model prediets 
zero normal stress difference, as expected. 

Second, the maximum of the normal stress difference along the center line downstream 
of the cylinder is approximately 40% of the value measured and also predicted by the 
viscoelastic computations. This confirms the expectation that higher normal stresses are 
found in elongational flows in the presence of viscoelasticity. 

Influence of a small asymmetry The measured veloeities show a small asymmetry in 
the velocity profiles downstreamof the cylinder. This is explained by an asymmetry in the 
geometry, i.e. the center of the cylinder is closer to one of the side walls. To investigate 
this in detail, a simulation has been carried out with the center of the cylinder shifted 
0.1 mm towards one of the side walls. The four mode PTT model has been used for the 
5% PIB/Cl4 solution with the sameparameters as before (De1 = 2.31). The mesh used 
has 2407 elements with 5108 nodes. The results are compared with measured data in 
Figure 4.29. 
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Figure 4.29: Influence of a small asymmetry in the numerical simulation (5% PIB/C14 solution, 
De1 = 2.31, (o): experiment, -: 4 mode PTT): (top Jeft) velocity at :cf R = 1.5, (top right) first 
normal stress difference along the same line, (bottom) velocity along center line. 

Evidently, the asymmetry in the computed velocity profile at x/ R = 1.5 is larger than 
in the measured data. The velocity appears to he very sensitive for the asymmetry. It is 
concluded that a cylinder displacement of less than 0.1 mm relative to the exact symmetrie 
case causes a larger asymmetry in the flow field than observed in the measured velocity 
profiles. Such a small error is within the toleranee of the construction of the flow cell. The 
computation also shows that the first normal stress difference along the cross sectionalline 
x/ R = 1.5 is less sensitive for the asymmetry (figure 4.29} than the axial velocity profile. 

Infiuence of numerical metbod The results of the finite element computations for 
the viscoelastic models can be affected by the accuracy of the numerical metbod (see for 
example Debae et al. [29]). Therefore, a comparison has been made for three different 
numerical techniques in case of the flow of a 5% PIB/C14 solution past a symmetrically 
confined cylinder at De1 = 2.31. The four mode PTT fit was used. 
Some of the results are shown in Figure 4.30. The metbod used in the previous sections of 
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of this chapter is referred to with 'SI' {'Streamline Integration') , one technique is referred 
to with 'DG' ('Discontinous Galerkin'), and the third technique is referred to with 'OS' 
('Operator Splitting'). Details of the definition and implementation of these latter two 
methods can be found in Baaijens [6] and Baaijens [9] respectively. The results with 'DG' 
presented bere are from Selen [102]. The 'OS' metbod will also be used in Chapter 5, where 
it will be described in more detail. 
From Figure 4.30 it is concluded that excellent agreement is found between all three meth­
ods. This gives confidence that the viscoelastic finite element simulations are accurate. 
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Figure 4.30: Results for three different numerical methods (DG: Discontinuous GaJerkin, SI: 
stream line integration, OS: operator splitting, see text), in case of flow of 5% PIB/Cl4 so­
Jution past a symmetricaJJy confined cylinder at De1 = 2.31. Velocity and stresses are non­
dimensionalized with mean velocity U and r0 = 3'f/OU f R respectively. 
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4.6.2 Measurement-error analysis 

Spatial resolution of FIB measurements Stresses were measured with the pointwise 
FIB technique described inSection 2.3. Measurements were clone with a lens with focal 
length 400mm, which would (according to Gaussian theory) result in a beam radius of 
::::i 0.16 mm at the entrance and exit planes of the flow cell (see Appendix C). In the 
first experiments (Sections 4.3 and 4.4), this resolution was not achieved, and with a 
'knife-edge' experiment ( see also Galante [40]) the maximum beam radius was found to be 
::::i 0.35mm in case of the lens with f = 400mm (Section 4.3) and ::::i 0.25mm in case of 
the lens with f = 200 mm (Section 4.4). This large deviation from theory is partly due to 
the non-Gaussian behavior of the beam of the diode laser (i.e. the intensity distribution 
over a cross section is not Gaussian), as was measured with the Optical Beam Profiler 
(Melles Griot). However, the primary cause was a too large beam deviation of the rotating 
halfwave plate. The beam deviation is defined as the angle between the direction of the 
beam after passing through the op ti cal element with the direction of an incident beam that 
is normalto the plane of the element. Nevertheless, the accuracy of the measurements was 
still good, as has been demonstrated in the fully developed flow region. 
In later experiments (Section 4.5) this problem was solved by replacing the rotating 
halfwave plate with one that had a much smaller beam deviation (see Section 2.3.4). The 
result was, in combination with a lens with f = 800 mm, a beam with a cross sectional 
radius of ::::i 0.15 mm at the exit and entrance planes, close to the expected value (0.12 mm, 
Appendix C); note that the beam radius decreases along the axial direction of the laser 
beam towards the center of the flow cell withafactor :72). 

N oise level of FIB measurements In terros of the dimensionless ra ti os R1 and R2 ( see 
Equations 2.38 and 2.39), the resolution of the birefringence measurements was ±0.01[-]. 
In the present experiments this resulted in a noise level for the birefringence of ::::i ±2.3 · 
w-s [ -]. This is a noise of ::::i ±10 Pa for the first normal stress difference and for the shear 
stress of ::::i ±5 Pa. 

Inftuence of viewing windows on FIB measurements As a result of the damping 
of the flow cell windows, stresses are distributed non-homogeneously in these windows. 
This might introduce an offset in the birefringence measurement that varies with position. 
In the absence of flow, no significant spatial variation of the off-set levels was observed in· 
the signals R1 and R2, due to the special, extremely low birefringent glass that was used 
1

• This enabled elimination of these off-sets by simply measuring them in several points 
and subtracting the average from the measured signal during flow (see also Galante [40]). 
The correctness of this procedure was confirmed by the fact that the offsets, measured 
as described here, corresponded perfectly to the measured signals at the centerline in the 

1 Except at the Iowest flow rate used (Figure 4.10), where the birefringence level was so low that it 
had the sarne magnitude as the background signa!; no special procedure to account for thls small spatial 
variatien was used, however. 
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developed flow region where theoretically both R1 and R2 are zero (because stresses are 
then zero). These signals at the center line were also invariant with flow rate, as expected. 

Spatial resolution of the LDA measurements The measuring volume is an ellipsoid 
with dimensions of 50 x 50 x 200 p.m (see Section 2.2.3). The longest dimension of the 
ellipsoid is directed along the bisector of the two intersecting beams. In the present set-up 
this implies that the longest side of the measuring volume is lying in the 2-direction, i.e. 
along the gradient of the velocity field. This is not optima! for the velocity measurements 
itself, but it was chosen because then the velocity in the 1-direction could be measured in 
the areas just upstream and downstream of the cylinder. Moreover, it enabled the (quasi­
)simultaneous measurement with LDA and FIB, since the FIB system analyzes a laser 
beam that has been transmitted through the flow cell along the 2-direction. 

The spatial resolution is also affected by the accuracy of the traverse system, which is 
according to its specifications 0.01 mm. 

Resolution of the velocity measurements The spatial gradient of the velocity field in 
the measuring volume results in a statistica} distribution of the measured samples around 
a central value. The measured distributions were Gaussian, and the average velocity was 
estimated with the root-mean-square value. Only near the bounding walls of the flow cell 
near the cylinder, where large velocity gradients were present, significant distortions of the 
ideal Gaussian shape of the histogram of the acquired samples were observed. This made 
the mean value less accurate at those positions. 

The error bound for the velocity measurements was estimated with 3u/VN, with u 
the standard deviation of the mean value for the velocity and N the number of samples 
(N = 100). This error bound was :::; 3% and mostly < 1% for the four highest Deborah 
numbers. In case of the lowest Deborah number, these numbers were a factor two higher. 
Near the confining walls (within ::::i 0.25 mm) relatively large errorsexist that can rise up 
to 100%. This is due to the large velocity gradients combined with low velocities. 

The LDA signa! is created by the scattered light from particles that are moved by the 
surrounding fluid. The quality of this signal depends on the properties of the particles: 
(i) for backscatter measurements, the reflecting area of the particles must be large enough 
to detect the scattered light ( 0(10) p.m, Goldstein (45]), (ii) when the size of the particles 
is much larger than the fringe spacing in the measuring volume, the signal-to-noise ratio 
diminishes, (iii) particles might not follow the motion of the :fl.uid due to slipping and/or 
to buoyancy forces. 

The buoyancy force on a partiele is aresult of the density difference between partiele and 
surrounding fluid. The steady rise velocity Ur depends on the balance between buoyancy 
force and the drag force on the particle, and is for a Newtonian fluid given by {Schraub et 
al. [100]): 

u = (PJ- p")gd 
r 181] p 

(4.12) 

where PJ and p" represent the density of the fluid and the particles respectively, d" the 
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diameter of the particle, g the gravitational acceleration and 'Tl the viscosity. For the high 
viscosity fluids ('Tl = 1 Pas) and the Iriodine particles, it follows that Ur ::::! 2 · 10-7 m/ s. 
Thus the effect of the buoyancy forces can he neglected. 
The response of the particles to a change in the fluid velocity can he expressed by the 
maximum frequency fmax that they can follow (Hinze (52]): 

35'f/ 
fma:c = 0.023 (2pp + PJ )dp, (4.13) 

which is here (with data as above) approximately 4 ·1012 Hz. Thus slippage can bene­
glected ( again by the small size of the particles and the high viscosity of the fluid). 
The Doppier signals are processed binary in the LDA hardware with a minimum resolu­
tion for the velocity of 0.26 mm/ s (Section 2.2.3). The overall resolution of the velocity 
measurements has been shown in Section 4.3.3. 

4.7 Summary and conclusions 

The flow of well-characterized polyisobutylene solutions has been stuclied for the steady 
planar flow past a confined cylinder. Two model fluids were used: a 5% PIB/C14 solution 
and a 9% PIB/C14 solution. In case of the 5% PIB/C14 salution both a symmetrically 
and an asymmetrically confined cylinder geometry were used. 

Stable, nominally two dimensional flow was established in a flow cell through which the 
fluid was pumped continuously, with constant rheological properties as measured in simple 
shear flow. The experimental methods that were used (FIB and LDA) enabled spatially 
resolved, pointwise measurement of stresses and veloeities respectively. Computations were 
performed with finite element methods fora generalized Newtonian constitutive (Carrea.u­
Yasuda.) and two non-linear viscoelastic constitutive equation (the Phan-Thien Tanner 
B (PTT-B) equation and the Giesekus equation). Accuracy of the measurements was 
demonstrated in the fully developed flow region by comparison with the computed velocity 
and shear stress profiles for the Carreau-Yasuda equation. 

In case of the flow of the 5% PIB/C14 solution past the symmetrically confined cylin­
der, downstreamof the cylinder the results of the axial veloeities for the single mode PTT 
model deviated qualitatively at all Deborah numbers between 0.93 and 2.31 from the mea­
sured velocities. On the other hand, the simple (generalized Newtonian) Carreau-Yasuda 
equation agreed well. The single mode PTT equation gave an oversboot in the centerline 
velocity (approximately 1.5 cylinder radii past the cylinder), which wasnotpresent in the 
measurements nor in the results for the generalized Newtonian model. The precise origin 
of this oversboot is not clear. The agreement was significantly improved by the four mode 
PTT model, which predicted (almost) no oversboot of the axial velocity. However, some 
difference still remained. Both single and four mode PTT equations predicted stresses well 
at Deborah numbers :5 1.36 at all sites. At higher Deborah numbers (1.87, 2.31), some 
differences exist between the two predictions, but both agree well with the measured data. 
The mentioned deviation between measured veloeities and those computed with the single 
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mode PTT equation demonstrate the extra information that is obta.ined by measuring both 
stresses a.nd velocities: for this fit the differences between computations and measurements 
of the velocity field are larger than in case of the stress field. The four mode Giesekus 
equation gave simila.r results as the four mode PTT equation. The results for the normal 
stresses as presented in this chapter are not in accordance with those from our earlier study 
(Baaijens et a.I. (9]). It was found that differences were not caused by differences between 
the :flow cells, but that the only explanation left is a change of the :B.uid properties in the 
earlier experiments. The cause of this change has not yet been traeed back. 

In case of the :flow of 5% PIB/C14 past the asymmetrically confined cylinder, the four 
mode PTT modelagrees excellently with a.lmost all measured data. The overall agreement 
is impressive. Differences that exist at some sites in the velocity field can (at least) partly 
be attributed to the inaccuracy of the viscosity fit for the PTT model at higher shear 
rates. Unexpectedly, a.lso the Carreau-Yasuda model describes the velocity profiles well, 
a.lthough some significant differences exist downstreamof the cylinder. There is no effect 
of viscoelasticity on the velocity field upstream of the cylinder, contrary to expectations 
that were raised by results in literature (see Section 1.4). This is probably due to the 
competition of shear thinning and elongationa.l thickening that counteract in the narrow 
gap between cylinder and wall. 

In case of the :flow of a 9% PIB/Cl4 salution past a symmetrica.lly confined cylinder 
at a Deborah number as high as 5.6, good agreement with measured axial veloeities was 
found in case of the computations with the four mode PTT and Giesekus equations and the 
Carreau-Yasuda equation. The results for velocity field of the two viscoelastic computations 
agree within 1%. The maximum of the computed normal stress difference a.long the center 
line was approximately a factor two higher than in case of the measured data. Here, the 
predictions of the two viscoelastic models were practically the same. Differences between 
measured and computed stresses were remarkably large near the confining wa.lls of the gap 
between the cylinder and the outer wa.ll. In case of this :B.uid, the rheologica.l properties 
were changed after an initia.l period of use in the complex :flow system. This problem 
was pragmatica.lly solved by fitting model parameters of the constitutive equations on 
viscometric data obtained with the used :B.uid. However, such changes are undesirable and 
in future research the question how to avoid this should be dealt with. 

Overall, it is concluded: 

• The experimenta.l methods used (LDA and FIB) proved to be powerful tools to study 
the rheologica.l behavior in the complex fiows investigated. 

• The agreement between three different finite element techniques confirms the accu­
racy of the viscoelastic computations. 

• Typica.lly, at higher Deborah numbers (De > 1) near the line of symmetry just up­
stream and downstreamof the symmetrically confined cylinder, significant differences 
are found between the computations with the single and four mode PTT model. The 
four mode PTT model gives more realistic predictions of the velocity field and the 
stress field than the one mode model and should therefore be preferred. 
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• In the geometry with the asymmetrically confined cylinder, the agreement between 
viscoelastic computations with a four mode PTT or Giesekus model and measured 
veloeities and stresses is excellent. This is impressive, since such excellent agreement 
has not been shown in literature before. 

• The generalized Carreau-Yasuda model can describe the velocity field accurately 
in the flows investigated. Since the Carreau-Yasuda model can not describe normal 
stresses realistically, this implies, for the combination of materialand flow considered, 
there is no strong influence of elongational stresses on the velocity field. 
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Chapter 5 

Flow of LDPE melt past a confined 
cylinder 

5.1 Introduetion 

Isothermal flowsof a low density polyethylene melt (LDPE) melt at 190°C past a confined 
cylinder are stuclied at two Deborah numbers by means of romparing mea.sured isochro­
matic birefringence patterns with those that are computed with a fini te element method 1• 

Both a symmetrically and an asymmetrically confined cylinder are used. To evaluate the 
adequacy of viscoelastic constitutive equations, two different equations have been used: the 
Phan-Thien Ta.nner-A model (PTT-A) and the Giesekus model (see Section 1.2). To the 
author's knowledge, the preliminary results presented below constitute for a polymer melt 
the first detailed comparison of finite element computations with measured birefringence 
patterns in the (strong) flow past a cylinder. 

5.2 Experimental aspects 

5.2.1 Experimental set-up 

The flow cell is fed with the LDPE melt by a corota.tional twin screw extruder (Werner 
and Pfleiderer ZSK-25). During all experiments, the melt tempera.ture was controlled at 
190°C. Fringe patterns were observed with optical systems for fieldwise measurements of 
birefringence patterns. 

The flow cell was designed and manufactured in our group. lt is made of steel (100 
MnCrW4) and has four changeable windows in the lateral walls, two on each side, that 
are made of BK-7 glass (Schott [99]) and have radius 50 mm and thickness 15 mm. The 
height of the channel is 5 mm and the depth in the neutral direction is 40 mm giving an 
aspect ratio of 1 : 8. This ratio is assumed to be sufficiently large to create a nominally 
two dimensional flow and small enough to yield relatively high Deborah numbers, given 

1This chapter is based on the master's thesis of Kruijt [65]. 
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Figure 5.1: Schematic cross sectional view of geometry with symmetrically confined cylinder. 
Radius R of the cylinder is 1.25 mm, height of the channel is 4R , depth D (in the direction 
perpendicul&r to the plane of drawing) is 32R and totallength in x direction is 256R. Center of 
cylinder is at x = 0, y = 0. Mean flow is in positive x dîrection. 

the maximum throughput of the extruder and the minimal size of the cylinder (necessary 
to resists the force of the melt without bending more tha.n a few percent of the cylinder 
radius). The length of the cha.nnel in the mea.n flow direction is 320 mm. 

A rod of Wolfram with radius R = 1.25 mm was placed in blind holes in two opposite 
windows. To avoid damage due to contact between the cylinder a.nd the glass, Teflon was 
used between the rounded ends of the cylinder and glass. In the asymmetrie geometry, the 
rod was positioned 0.6R towards the upper wall. The center of the cylinder is kept (by 
definition) at xf R = yj R = O.O. The flow domain of interest is illustrated schematically 
in Figure 5.1. 

The flow cell is heated with eight heating elements (Hasco ZllO, 400 W), that are 
located in pairs directly under and above the slit and near the entrance a.nd exit of the 
flow cell. These elements are controlled by a four channel temperature control unit (Hasco 
Z126) a.nd four thermocouples (Hasco Z1295/5) that are located between two elementsin 
the walls of the flow cell. Isothermal flow conditions are assumed in the sequel. 

The fieldwise measurement of birefringence is described in Chapter 2, which also con­
tains details about the equipment used. 

Results will be presented for each geometry at two flow rates, that are listed in Table 5.1. 

5.3 Computational aspects 

5.3.1 Constitutive equations and parameters 

Details of the rheology of the LDPE (DSM, Stamyla.n LD 2008XC43) are described in 
Section 3. 7, tagether with values of fitted parameters. Here, four mode versions of the 
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U [m/s] U/R[s- 4
] De1 

symmetrie 
8.06 ·10-3 6.45 ·10° 4.8 
1.49. 10-2 1.19 · 101 8.0 

asymmetrie 
9.94. ~f-17.95 . 10° 5.1 
1.64 · 1 1.31 · 101 9.8 

Table 5.1: Parameters characterizing flow conditions during the experiments with LDPE in the 
symmetrically and asymmetrically confined cylinder geometry: mean velocity U, characteristic 
shear rate U/ R (R: radius of cylinder), Deborah number De1 according to Definition 1.10. 

PTT model and of the Giesekus model have been used, both having proved to be capable 
of fitting the material functions in steady shear (Section 3. 7). Four mode fits instead of 
the eight mode fit of Tas [107] (that were also listed inSection 3.7) were used to reduce 
computation times. 

In case of the PTT model, two parameter sets have been used in the sequel: ( Ç = 0, e = 
0.2), and (Ç = 0.1, e = 0.1). Both sets fit 77(1') and N1(7) equally well, but differ intheir 
prediction of elongational viscosity (see Figure 5.2). For the Giesekus model o: = 0.25 has 
been used. Also, computations with a (generalized Newtonian) Carreau-Yasuda model have 
been performed with parameters '17cy, Àcy 1 nc11 , a = {2.45 ·103 Pa, 1.64 ·10-1 s, 3.66 ·10-1 , 1 }. 
The results fortheupper convected Maxwell model (UCM) are plotted for reference. 

5.3.2 Numerical metbod 

The finite element methad of Baaijens [6) has been used as implemented within the code of 
the SEPRAN package by Selen [102]. Details can he found also in Baaijens [7]. Operator 
splittingis used to create two ( coupled) problems that are solved via an iterative procedure 
in a decoupled fashion. 

The operator splitting refers to a special treatment of the material time-derivative of 
the extra-stress tensor in the constitutive equation. This derivative, defined by 

DT; 8T; .... 
--=-+v·V'T· nt at • (5.1) 

is approximated by 

(5.2) 

where p is the position of a partiele at time t,._1 that is at position x at time t,. and 
ó.t = t,.- tn-l• 



104 Cha.pter 5 

10
4 

10
8
.-----......-----.-------, 

4 

10"" 

Figure 5.2: Materia.l functions for LDPE a.t 190°C in steady simple shea.r flow (top lelt: viscosity 
q(i'), top right: first norma.l stress difference N1(i')) tagether with fitted models a.nd (bottom 
figure) predictions in plana.r elonga.tiona.l flow (-: PTT model with ~ = 0.0 and E = 0.2, - -: 
PTT model with ~ = 0.1 a.nd E = 0.1, - · -: Giesekus model, · · ·: UCM model). 
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The stress Tp,; = r;(ji, t,._1) is found by integration of the adveetion (or transport) 
equation on the interval [t,._1, t,.] with the previously calculated velocity field 11: 

Dr; • (... ) (... ) Dt = 0, T; x, tn-1 = T; X, tn-1 (5.3) 

with Tp,i = r;(i, t,.). This integration was performed using the time-discontinuous/Galerkîn 
least squares metbod (TD/GLS), which uses space-time finite element approximations of 
the stress field (see Baaijens (7]). 

Once r p,i is known, the stress, velocity, and pressure fields are found using the standard 
Galerkin metbod that is applied to the constitutive equation, conservation of momenturn 
equation and conservation of mass equation. The non-linear system of equations obtained 
after the usual procedure ( deriving the weak formulation of the problem, substitution 
of the fini te element approximation and integration over the elements) is solved with a 
Newton-Raphson iteration. Usually one iteration step sufficed. 

The fini te element approximation was made with bi-quadratic polynomials for the stress 
field that are discontinuons over element boundaries, bi-quadratic polynomials for the 
velocity field and the pressure field was discretized discontinuously with a constant value 
in each element. 

The metbod is întrinsically unsteady: a steady solution can only he obtained by using 
as many time increments as necessary to obtain a solution that is constant in time. The 
sequence of time increments used is listed in Table 5.2. The initial time step size is chosen 
so that it is not too small ( to avoid too many time increments) and not too large ( to avoid 
convergence problems ). The computations are finished after 400 increments, correspondîng 
with 2.228 8 (which is 2.228 times the maximum Maxwell relaxation time of the LDPE 
(Table 3.6; the minimum time increment was equal to 0.316 times the smallest Maxwell 
relaxation time). 

To monitor the change of the solution with time, the relative change (referred to as() in 
the sequel) of the maximum norm of the solution vector ( containing stresses, veloeities and 
pressures in all noclal points) over each increment has been calculated. A typical example 
is shown in the left plot of Figure 5.3; the 'spikes' in the curve correspond with changes in 
value of the time increment. This plot illustrates that 0 becomes small ( < 1 ·10-2 ) aftera 
certain numher of time steps with a given increment. Also, in the same figure, the result 
for N1 along the center line at t = 1 8 and after t = 2.228 s is plotted. The differences 
between the two computations are insignificant. 

5.3.3 Mesh 

In Figure 5.4, (part of) the meshes are plotted in case of both the symmetrically and 
asymmetrically confined cylinder. In the first case, the total mesh has 1000 elements with 
4221 nodes. The problem solved at each time-step has 8442 degrees of freedom for the 
veloeities and 12663 degrees of freedom for the stresses. In the asymmetrical geometry, 
these numbers are subsequently 4780, 1148, 9560 and 14340. In the latter case, the mesh is 
relatively coarse. A typical computation time was 157171 s ( 43,4 hours) with the mesh used 
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n;ter t:J.t 
200 1.00 ·10 '2 

50 3.16. 10-3 

50 1.00 ·10-3 

50 3.16 ·10-4 

50 1.00. 10-4 

Table 5.2: Time increments used during the tinite element computa.tions. In total 400 time 
steps were used. 
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Figure 5.8: Left: a typical example of the rela.tive difference of the maximum norm of the 
salution vector as function of number of time increments. Right: N1 along the centerline after 
two different numbers of increments (step 100: t = ls, 400: t = 2.228 s). 

here, which for practical reasons hindered strong mesh refinement. In the symmetrically 
confined cylinder geometry (using the PTT model with Ç = t: = 0.1 with De = 8.0), a 
computation on a refined mesh showed no significant difference with the coarser mesh. The 
refined mesh has approximately 50% more elements than the original; it is in particular 
refined near the cylinderwalland near the centerline. 

5.3.4 Boundary conditions 

On rigid walls, the no-slip condition is used. In case of the symmetrically con:fined cylinder 
geometry, the symmetry condition along the centerline is prescri bed. On the in- and outflow 
boundaries, a Newtonian velocity profile is prescribed (for convenience) while choosing 
entrance and exit sections of the computational domain sufficiently long to have fully 
developed flow regions upstream and downstreamof the cylinder. The center of the cylinder 
is at x IR = y IR = 0 ( R radius of the cylinder), the entrance boundary at x IR = -20 
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Figure 6.4: Top: part of mesh used during the computations for the Dow of LDPE at 190°C 
through the geometry with the symmetrically confined cylinder. Bottom: same, but now in 
geometry with asymmetrically confined cylinder. 

and the exit boundary at x/ R = 30. In case of the symmetrically confi.ned cylinder 
the confining wall is at y / R = 2 and in the asymmetrical case the lateral walls are at 
yfR = -2.6 and y/R = 1.4. 

5.4 Results 

5.4.1 Determination of stress optica! coefficient 

The stress optical coeffi.cient was determined in fully developed flow by comparing bire­
fringence measurements with computed shear stresses, using the fi.eld-wise measurement 
of birefringence (Section 2.3.3). This method involves multiple experiments. First, the 
isochromatic pattem (according to equation 2.35) in the fully developed slit flow is pho­
tographed (using only the spectralline at 546 nm ofthe high-pressure mercury light source). 
Second, the two quarter wave plates are removed. Then also the isoclinics are observed 
superposedon the isochromatic pattem (Equation 2.34). The polarizer is set parallel with 
the symmetry axis of the slit. The (single) isoclinic line then coincides with the zero-order 
isochromatic that is located at this symmetry line. Next, after rotating both polarizer 
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and analyzer in unisonover 10°, a photograph was taken of the shifted isoclinic line (the 
isochromatic pattem remains unchanged). This has been repeated for subsequent rotations 
of 10° up to a total rotation relative to the symmetry line of 90°. 
The isochromatic lines correspond with extinction of the light at discrete values of the 
retardation ó (Equation 2.35): 

ó = k21r, k = 0, ±1, ±2, ... (5.4) 

where k is the isochromatic fringe order. From the photograph, the retardation is obtained 
as a function of the cross sectional position. 
The photographs with the isoclinic line as function of the rotation angle give the orientation 
(or isoclinic or extinction) angle x as a function of the position. Following McHugh et al. 
[79], the position of the isoclinic lines has been measured at the edge of the fringe nearest 
to the symmetry line. 
By combining these two sets of data, the quantity Topt = .o..; sin 2x has been evaluated at 
the position of each isochromatic line. The result for the shear stress of a finite element 
computation with the four mode PTT equation is plotted as function of this measured 
parameter Topt· The result is shown in the Figure 5.5 for two sets of data at different De1 

numbers. The stress optica} coefficient C follows from a least squares fit of a fust order 
polynom: C = 1.53 · 10-9 Pa-1• 
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Figure 6.5: Determination of stress optical coefflcient for the LDPE at 190° by fitting the shear 
stress computed in fully developed flow on measured birefringence data. Experimental data. from 
isochromatic a.nd isoclinic photogra.phs (see text) obtained at two different flow rates. Fitted 
stress optical coefflcient C: 1.53 · w-9 Pa- 1• 
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Figure 5.6: Measured and computed isochromatic patterns at De1 = 4.8 for the flow past a 
symmetrically confined cylinder of a LDPE melt at 190°C (flow from left to right). From top 
to bottom: (i) experiment, (ii) PTT-a model with Ç = 0.1 and e = 0.1, (iii) PTT-a model with 
Ç = 0.0 and l = 0.2, (iv) Giesekus model with a:= 0.25. 
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Figure 5.7: Measured and computed isochromatic patterns at De1 = 8.0 for the flow past a 
symmetrically contined cylinder of a LDPE melt at 190°C (flow from left to right). Erom top 
to bottom: (i) experiment, (ii) PTT-a model with Ç = 0.1 and é = 0.1, (üi) PTT-a model with 
Ç = 0.0 and E = 0.2. 

5.4.2 Flow past a symmetrically confined cylinder 

A comparison of computations with experimentsis presented at two Dehorah numhers, 
De1 = 4.8 and De1 = 8.0, in Figures 5.6 and 5.7 respectively (note that only a part 
is shown of the spatial domain used in the computations). The photographs are made 
using the polariscope set-up that gives the isochromatic pattem (Equation 2.35), which 
corresponds with levels of retardance J according to Equation 5.4. Since the hirefringence 
.ó.n = >tf (2rri)J (Equation 2.11), the isochromatics correspond with a level of hirefringence. 
The isochromatic patterns of the computations are computed from the solution of the stress 
field with (using the stress optical rule) .ó.n = Cj4r2 + N1

2 (Equation 2.36). The results 
for hoth situations are discussed next. 

De1 = 4.8 At first sight, the computed patterns agree qualitatively well with the mea­
sured isochromatic pattern. However, some distinct differences are ohserved too. The PTT 
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model with { = e = 0.1 and Giesekus model with a = 0.25 agree reasonably well with 
the experiment, while in case of the PTT model with { = 0, e = 0.2 the agreement is only 
moderate. 

Most remarkably, fringes on the photograph are more concentrated near the surface of 
the cylinder and near the downstream center line than in case of the corresponding contour 
lines in any of the computed plots. This is evident from several details. For example, in 
the computations just upstream of the cylinder a larger number of contour lines is observed 
than in the photographed pattern. Most probably, in the photograph the corresponding 
isochromatic lines are concentrated near the cylinder surface. They can not he resolved 
because of their concentration and because they are covered by the 'shadowed' boundary 
around the cylinder surface that is caused hy perspective error in the photograph. Also, 
in the gap between cylinder and wall the measured fringe starting from the confining wall 
at vl R ::::::J -2.0 nearly touches the cylinder wall before it curves back to the upper wall 
downstream of the cylinder. In the computations, this fringe does not get that close to 
the cylinder. Also on the photograph, a closed fringe is observed near the cylinder wall 
just downstream of the center of the cylinder near x IR ::::::J 0.5, y IR ::::::J 1, whereas on the 
computed plots its position is shifted in the direction of the oonfining wall. Furthermore, 
downstream of the cylinder the fringes on the photograph are more concentrated along 
the center line compared with the computations and are directed more parallel with the 
centerline. 

The contour patterns in the wake that are computed with the PTT model ({ = f = 0.1) 
and the Giesekus model both resembie the photographed results reasonably well. On the 
contrary, for the PTT model with Ç = 0 and f = 0.2 only a few contour lines are present 
near the downstream center line and the agreement is poor. 

De1 = 8.0 At this Dehorah number, only predictions for the two fits of the PTT model 
could he oomputed. In case of the Giesekus model, the computations failed after a number 
of time steps (due to the appearance of a singularity in the system matrix). When oom­
paring the computations with the experiment, qualitatively the same condusions can he 
drawnat the lower Dehorah number. 
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Figure 5.8: Measured and computed isochromatic patterns at De1 = 5.1 for the flow past an 
asymmetdcally conlined cylinder of a LDPE melt at 190°. Top: experiment. Bottom: PTT 
model with e = 0.1 and e = 0.1. 
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Figure 5.7: (Continued:) Top: PTT model with { = 0.0 and l:::: 0.2. Bottom: Giesekus model 
with a= 0.25. 
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Figure 5.8: Measured and computed isochromatic patterns at De1 = 9.8 for the flow past an 
asymmetrica.Ily confined cyflnder of a LDPE melt at 190°0. Top: experiment. Bottom: PTT 
model with e = 0.1 and t: = O.L 
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5.4.3 Flow past an asymmetrically confined cylinder 

In the asymmetrical geometry, the cylinder is placed 0.6R closer to the upper wall. The 
results are presented at the two Deborah numbers (listed in Table 5.1): in Figure 5.8 for 
the lower Deborah number and in Figure 5.8 for the higher Deborah number. 

De1 = 5.1 Qualitatively, the computations all agree with the experiment. The differences 
between the computations are small. The biggest difference between computations and 
experiment is observed upstream of the cylinder around x/ R R$ -1.5, y / R R$ -1.5. Here, 
the computations show a number of curved contour lines that can not he observed in the 
experiments. Most probably, simHar to the symmetrical case, these lines can not he seen 
in the photograph, because they are concentrated to close near the cylinder surface. This 
means that at this site, the measured stresses have larger gradients and that the transition 
of fully developed flow to the compressive deformation is located more closer to the cylinder 
surface. Furthermore, in the computations the stress wake is directed more towards the 
upper wal! compared with the experimental result. Thus in the computations the stress 
relaxation downstreamof the cylinder is slower than in the experiment. 

De1 = 9.8 In the asymmetrical case, only a solution was obtained in case of the PTT 
model with ç = E = 0.1 ( computations for the PTT model with e = 0, f = 0.2 and the 
Giesekus model failed due to the appearance of a singular matrix in the computations). 
As at the lower Deborah number, qualitative agreement with experiments is observed in 
case of the PTT model. 

5.5 Conclusions and discussion 

Photographs of isochromatic birefringence patterns were compared with results of finite 
element simulations. Two geometries were used: a symmetrically and an asymmetrically 
confined cylinder. Two viscoelastic constitutive models with four modes were used: the 
Phan-Thien Tanner model and the Giesekus model. The numerical simulations agreed 
qualitatively with the experiments, the differences between the models were smal!. Gom­
pared with the computations, the measured contour lines were concentrated doser to the 
cylinder surface, and downstream of the cylinder the stress relaxation was slower. The 
agreement might be improved by adjusting the model parameters of the constitutive mod­
els. If this is not sufficient, the models should be modified. 

The finite element computations could not be verified by other numerical techniques, 
as was clone in Section 4.6. The Discontinuons Galerkin technique and the streamline 
integration method used in that section did not work here. This certainly needs further 
investigation. 

In the present study, it was not possible to measure the velocity field to check the ab­
sence of significant three-dimensional effects (because no laser Doppler system was available 
that could safely be used at the site of the extruder ). This should be done in a continuation 
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study. The birefringence patterns observed were stabie and time-independent. Therefore, 
it is unlikely that time-dependent effects are present in the flows considered. 

The tempera.ture distribution was not measured. It is, however, strongly recommended 
to do this. The addition of a static mixer in between the extruder and the flow cell will 
improve the homogeneity of the melt temperature in the flow cell. 

The fieldwise measurement of the birefringence is particularly suitable to ana.lyze tran­
sient flows likestart-up of steady flow. To a.chieve this, a by-pass loop with a three-way 
va.lve with a drain and a gear pump should he installed between extruder and flow cell to 
control the throughput through the flow cell independently of the extruder screw speed. 
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Conclusions and recommendations 

After the rheological characterization in simple shear flows (Chapter 3), constitutive equa­
tions for polymer melts and solutions were evaluated in the complex flow past a confined 
cylinder ( Chapters 4 and 5). This evaluation was accomplished by means of a comparison of 
measured data of the velocity and/or stress field with results of finite element simulations. 
Model fluids were used insteadof polymer melts in the main part of this study (Chapter 4), 
which facilitated the analysis both experimentally and computationally. Most results for 
the complex flow past a cylinder were obtained for a 5% (w/w) solution of polyisobuty­
lene in tetradecane (referred to with 5% PIB/C14). In case of a low density polyethylene 
(LDPE) melt, a preliminary analysis was made in the samecomplex geometry (Chapter 5). 

6.1 Conclusions 

Spatially resolved, pointwise measurements of veloeities and stresses were obtained with 
laser Doppier anemometry and flow induced birefringence measurements respectively. The 
experimental methods used prove to he powerful tools to investigate the complex flow 
experimentally and enable a quantitative validation of finite element simulations. The 
numerical method of Hulsen and van der Zanden [56] was used, as implemented in the 
finite element package SEPRAN [lOl]. The accuracy of the viscoelastic computations was 
demonstrated by a oomparisou with results of two other numerical techniques (as proposed 
by Baaijens [6] and Baaijens [9] respectively), which show good agreement. Measured 
veloeities and stresses agree well with the results of finite element computations with two 
constitutive equations of the differentlal type: the Phan-Thien Tanner equation of type B 
(PTT-B) and the Giesekus equation. Models with four modes instead of a single mode 
improve the agreement remarkably. Differences between the four mode PTT and Giesekus 
equation are small. In general, the generalized Newtonian model describes excellently the 
velocity field, implying that for the specific flows investigated little effect of the normal 
stresses on the velocity field is present. The displacement of the cylinder towards one of the 
confining walls did not change this observation of the velocity field essentially ( although 
some differences are now found downstreamof the cylinder), which is in contradiction with 
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the expectations ra.ised in literature (e.g Dhahir and Walters [30]). However, a generalized 
Newtonian model can not predict normal stresses realistically, not even in a qualitative 
way. 

In case of a LDPE melt at 190 °, fieldwise measured isochromatic birefringence patterns 
were compared with results of fini te element simulations with viscoelastic constitutive rood­
els (PTT-A and Giesekus). These simulations, performed with the metbod as introduced 
by Baaijens [6], gave solutions at Deborah numbers as high as 9.8. In case of the PTT model 
a salution was obta.ined at all Deborah numbers, while in case of the Giesekus model the 
computations fa.iled at the higher Deborah numbers. It was attempted to use the numer­
ical techniques from [56] and [9] as well, but did not give convergent solutions. Measured 
fringe pattems agreed moderately to well with the computed pattems. Most remarkably, 
the measured fringes were concentrated near the cylinder surface and the downstream cen­
terline clea.rly more than were the computed fringes. Most probably, these differences are 
caused by deficiencies in the roodels used. In case of the PTT model, it was shown which 
of two parameter sets, tha.t fitted data in simple shear equally well, produced the most 
realistic results in the complex flows. 

6.2 Recommendations 

Recommendations for future research on the use of complex flows to test constitutive 
equations for viscoelastic liquids and to determine their parameters are listed as follows. 

• The discrepancy between the results for the normal stresses found in our earlier study 
([9]) on the flow of the 5% PIB/C14 past the symmetrically confined cylinder and 
those in this thesis ca.n only he explained by a change in the rheology of the fluid in 
the older experiments. It should be investigated what caused these changes that had 
such a drastic effect. 

• In case of the 9% PIB/C14 solution, a change in the viscometric functions in steady 
simple shear was observed for fluid used in the experiments with the confined cylinder 
geometry. This is attributed to the degradation of the polymer due to high elonga­
tional and shear rates in the flow loop. It should be investigated how this degradation 
can be prevented. 

• At the higher Deborah numbers (De > 1) in the flows of the polymer solutions, 
differences increased between the measured stresses and those computed with the 
(four mode) viscoelastic models. Parameter adjustments using the measured data 
might imprave this agreement. 

• The cause of the failure of the finite element simulations, that occurred for the LDPE 
melt at higher Deborah numbers (De > 8), should be investigated. 

• The setup for the complex flow experiments with roelts should be extended with a 
by-pass loop with a drain and a gear pump to ensure that the throughput through 
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the flow cell is not influenced by va.riations of the extruder screw rotation. A static 
mixer should also be used to guarantee a homogeneons temperature distribution in 
the melt. 

• In case of the polymerie model fluids, a flow should be searched with a pronounced 
influence of the stress field on the velocity field. Such flow will distinguish better 
between the viscoelastic constitutive models. In this search, not only the geometry, 
but also the fl.uid should be va.ried. A fluid with a larger relaxation time, such as 
the 9% PIB/C14 solution used tentatively in Chapter 4, enables larger Deborah 
numbers at the sameflow rate. Also, different constituent polymers should he used 
in these solutions to find out how much va.riation in rheological behavior is typical 
among polymer solutions ( compare the drastically different behavior in a circular 
contraction of two Boger fluids as reported by Boger and Binnington (151). 
Numerical simulations should be used to help design the experiments. lnitially, the 
simple technique of flow visualization with reflecting tracer particles is preferred to 
the pointwise techniques to have fast, qualitative fieldwise answers. When the level of 
birefringence is suflident the fieldwise birefringence technique should he used for the 
same reason. Subsequently, the pointwise techniques should he used for a detailed, 
quantitative comparison as demonstrated in this thesis. 

• Complementary to planar fl.ows, axisymmetric flows should he stuclied in the same 
way. The birefringence measurements can then not be translated in terms of stresses, 
but the optically measured quantities can easily be computed from the finite element 
simulations (at perhaps the cost of some loss of information) (Burghardt (18]). Ax­
isymmetric flows have the property of being strongly 'aligning' (Larson [70], p. 196), 
while planar flows are neutrally aligning like simple shear flows. The sensitivity of 
constitutive models for such flow va.ries (Larson [70]), and therefore they seem useful 
to discriminate between models. 

• The results in this thesis show that compared with the velocity field the stress field is 
more sensitive for the partienlar combination of model and fitted model parameters. 
It would be interesting to consider industrial applications in which relevant product 
properties are influenced by the stress field. An example is the injection moutding of 
compact discs, where residual stresses can undesirably affect the optica! properties 
of the disc (Wimberger-Friedl [116]). 

• Any iterative procedure that uses field quantities of a complex flow to optimize 
parameters of viscoelastic constitutive equations will be hampered by the time­
consuming character of the computations. Though significant progress on this prob­
lem can be expected by the evolution of computer science, methods that circumvent 
the use of fieldwise numerical simulations are intrinsically faster. A powerlul metbod 
is computing the stress fields by integration of the constitutive equation along stream­
lines using the spatial deriva.tives of the measured velocity field. This method does 
not make the finite element computations superfluous, since both velocity and stress 
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field are determined by the constitutive equation. It will, however, help to discrimi­
nate between constitutive equations and to find the most realistic model. Also, prior 
to a full computation of the flow, parameters can be fit with data from elongational 
flow in an efficient way. 
This hybrid metbod requires an experimental metbod that can measure all velocity 
components that are of interest (two or three). In case more than one component 
bas to be measured, the laser Doppier metbod bas the disadvantage of requiring re­
fractive index matching of the fiuid with the transparent flow cell. The metbod also 
measures the velocity in a single point at a moment in time, which is a disadvantage 
when studying time-dependent flows. 
The partiele image velocimetry (PIV) technique (Adrian [2)) surmounts these prob­
lems: it can measure two or three velocity components simultaneously and also dy­
namically. This technique seems of primary relevanee when developing the hybrid 
technique as described above. 

• Compared with polymer solutions, several experimental problems will complicate the 
experimental analysis of polymer melt flow. The use of the pointwise birefringence 
technique can be hampered by the presence of large stress gradients relative to the 
size of the measuring volume. In case the distance between two order transitions of 
the retardance é is smaller than the beam diameter, the results will be useless, since 
a.veraging will take place over two (or more) orders. In this common situation, the 
fieldwise birefringence technique must be preferred, unless the fringe separation is so 
small they can not be resolved anymore. The pointwise birefringence technique is 
particularly suitable for (relatively low birefringent) polymer solutions. 

• In polymer melts, non-isothermal flow conditions ( tha.t are at higher Deborah num­
bers intrinsically present due to viscous dissipation) will disturb any optical metbod 
tha.t is sensitive for variation of the mean refra.ctive index. This is particularly the 
case when laser beams are used, beca.use these are deflected by gradients in the mean 
refra.ctive index and the laser will even not reach the detector anymore. The relatively 
simple techniques of streakline visualization with tracer particles and the fieldwise 
birefringence metbod are expected to be less sensitive. But the observation can also 
be disturbed resulting in a poorly defined image. Other, non-optical techniques may 
he necessary as for example magnetic resonance imaging (MRI) for velocity measure­
ments (e.g. Rofe et al. [97]). The applicability of this latter metbod to complex flow 
studies should be investigated. For the stress measurements, no alternative technique 
is known to the author. 

• The analysis should be extended towards the start-up of steady complex flows. These 
flows contain more information on the fluid rheology and will be more rigorous tests 
for the constitutive equations. 
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Electromagnetic description of light 

A.l Introduetion 

The theories of the optical techniques (LDA and FIB) used in this thesis are formulated 
within the theoretica! frameworkof electromagnetism. Below, a short recapitulation of the 
basic equa.tions is given. It will he shown that an electromagnetic wave is the salution of 
the Maxwell equation. The most simple salution is the so called 'transverse electric' pla.ne 
wave. Such waves are used when expla.ining the principlesof LDA a.nd FIB measurement 
techniques (Section 2). Furthermore, the molecular theory that explains the linear stress 
optica! rule uses the electromagnetic theory also (Section 2.3.2). 

A.2 Maxwell equations 

Light can he regarcled as an electromagnetic wave. Electromagnetic phenomena are gov­
erned by the Maxwell equations, which for sourees in vacuum are ([59]): 

V·D=p 
V·Ë=D 

- - 8Ë "VxE+7it 0 

(A.1) 

(A.2) 

(A.3) 

(AA) 

with D the dielectric displacement, Ë the electric field, Ïi the magnetic field, Ë the mag­
netic induction, J the current density, p the charge density. In this thesis the SI units are 
adopted, but in literature on electromagnetism often the Gauss units are used {[59]). 

Additional to the Maxwell equations , three constitutive equations are needed for J, D 
a.nd H respectively. With some assumptions1 linear behavior is found, expressed by the 

1neglecting multipole contributions ofthe charge distribution and excluding ferroelectric, ferromagnetic 
and optica! a.ctive media and assuming weak enough fields 
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relations: 
J =uË 

D =eË 
ii = p.-ljj, 

(A.5) 

(A.6) 

(A.7) 

where u is the conductivity tensor, e the dielectric tensor and p.-1 thJl invers~ ma~netic 
permeabili!J tensor. The latter two equations are also written as D = e0 E + P and 
H = p0 -l B - M respectively, with e0 the dielectric constant in vacuum, J.to the magnetic 
permeability in vacuum, P and M the polarization a.nd magnitization in the dielectric 
respectively. For isotropie media the tensors u 1 e and p. can be replaced by er, e a.nd p: 
the conductivity, the dielectric constant and the magnetic permeability respectively. In 
Section 2.3.2 the polarization Pis expressed explicitly in Ë. 

A.3 The electromagnetic wave equation 

Consicier an isotropie dielectric for which constitutive equations A.5- A. 7 apply with scalar 
er, e and p. The Maxwell equations ca.n then be reduced to a set of two equations with 
two unknown variables Ë and Ë. Interaction of electromagnetic waves with matter is 
dominated by the interaction of the electric field vector with oscillating electrans in the 
dielectric. Therefore, the contribution of the magnetic field is usually neglected: 

"""'2- EPË aË ... p 
V' E-pe at2 -perat =V'(;) (A.8) 

For non-conducting media (er= 0) free of charge (p = 0) Equa.tion A.8 is a wave equa­
tion. The simplest solution of Equation A.8 is a transverse electric (TE) monochromatic 
plane wave, i.e. a field tha.t is propagating in a single direction parallel with k = keï., the 
wave vector (planes of constant phase are perpendicular to this direction), and that has a 
single frequency (w) and is linear polarized. Such a plane wave is represented by 

(A.9) 

where k is the wave number, defined by k = ';, with v the phase velocity of the wave. Ê0 is 
constant in space and time. The velocity of light in vacuum is c = . ~. and the refractive 

y4'01' 

index n = ;. 
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Müller matrices 

Stokes parameters The polarization state of light can be represented with the Stokes 
parameters (see fora comprehensive treatment Azzam and Bashara [5]}. The four Stokes 
parameters, denoted with S0,S11S2,and S3 are observable quantities with the dimension of 
intensity, defi.ned by 

So = (E~(t)) + (E~(t)) 
St (E~(t)) - (E~(t)) 

S2 = 2{Et(t)E2(t) cos(ó1(t)- ó2(t))) 
S3 2(E1(t)E2(t)sin(ó1(t)- ó"2(t))}. 

(B.l) 

(B.2) 

(B.3) 
(B.4) 

where E1(t), ~(t) represent the time-dependent amplitudes of two orthogonal components 
of the light wave. Here (a) signifies the time average of a with the integration time long 
enough to make the average independent of the integration time itself, allowing the descrip­
tion of quasi-monochromatic waves. Together, the Stokes parameters constitute the Stokes 
vector (actually a column) : S = [So, St, S2, S3JT. The Stokes parametes can he measured 
from simple intensity experiments (see Azzam and Bashara [5]). The interpretation of S0 

is trivia!: it is equivalent with the total intensity of the light. 

Propagation of a wave, represented with a Stokes vector S;, through an optica! device 
is described by 

(B.5) 

where M is the 4 x 4 Mueller matrix. 
Three important Müeller matrices are ( with s2o, c2e for sin(20), cos(20), and ó for the 

retardation of a birefringent material ( ó = 2~d .6-n, d: thickness of sample , À: wave length 
, .6-n: birefringence)), see Fuller [37]: 

Ideal polarizer oriented at 0: 

~] (B.6) 
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Birefringent element oriented at 0: 

Left circular polarizer: 

Right circular polarizer: 

0 0 
(~8 + S~gC&) 82QC2e(1- Có) 

s2llc211(l- Có) (s~6 + c~0Có) 
8208ó -C298ö 

[ 

1 0 0 -1 l 
0 0 0 0 
0 0 0 0 
-1 0 0 1 

-S~QSó l 
-C21J8ó 

es 

(B.7) 

(B.8) 

(B.9) 

Quarter wave plates and halfwave plates are birefringent plates with a known phase retar­
dation: 1r /2, and 1r respectively. Circular polarizers have no principal axes in the plane 
perpendicular to the direction of the wave propagation. 
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Laser beam dimensions 

Laser beams are considered to be Gaussian. Such beams have a Gaussian intensity dis­
tribution as function of the radius of the beam and have contours with a concave shape 
along the axial beam direction. In a single point the beam radius is minimal, this radius 
is called the beam waist. A beam with waist w has a radius at an axial distance z from 
the position of the waist that is described by (Siegman [103]): 

W1 = W \/1 + </J2 (C.1) 

with <P according 

(C.2) 

where À is the wavelength of the light. The transformation of Gaussian beams by lenses is 
expressed by the relation between the beam waist w0 before and the waist w after a lens 
with focallength f: 

V w=--. 
1l'Wo 

(C.3) 

To achieve a high spatial resolution during the pointwise FIB experiments the aim is to 
produce a laser beam with a minimal radius along the whole optical path in the flow cell. 
Equation C.1 implies that the beam is curved along the axial direction. The effective beam 
radius is determined by the beam radius at the entrance and exit planes of the flow cell. 
Focusing a laser with waist w0 with a lens will result in a smaller waist w1 after the lens. 
The waist w1 decreases with decreasing focallengths (Equation C.3) but the curvature of 
the beam in the axial direction increases too (Equation C.1). The optimal beam waist 
such that the beam radius is minimal at a distance z is found by differentiating w1 m 
Equation C.1 with respect to the beam waist w. The result is 
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(C.4) 

(C.5) 
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/[mm] w[mm] w1 [mm] 
200 0.021 0.32 
300 0.032 0.20 
400 0.043 0.16 
600 0.064 0.12 
750 0.083 0.12 

1000 0.11 0.14 

Ta bie C.l: Radius of laser beam (A = 672.4 nm, w0 = 2 mm) in waist (w) and at an axial 
d.istance 10 (= 32 mm) from the position of the waist (w1) as function of focal length f of the 
collimating lens. 

These equations define the Raleigh range of a laser beam: in this situation the radius of a 
beam for a given collima.ted length lc is minima!; a.ccording to Equation C.5 it is maximally 
J2w with w = ..j>.t.j2Tr. The focal length f of the lens tha.t collima.tes the beam with 
initial waist w0 such tha.t the collimated length is the Raleigh range equals ( using Equation 
C.3) f = wwof· 

In the case of the FIB mea.surements in the flow cell for polymer solutions as described 
in Chapter 4, the waist of the Raleigh range is 0.083 mm and the beam radius at the edges 
of the collimated length (= 64mm) is 0.117mm. This Raleigh range is obtained with the 
diode laser beam with an initia! waist wo = 2 mm, if a lens is used with f = 750 mm. 
Table C summarizes the beam radia. at the edge of the collimated length for different 
focal lengths. All the above equations apply to beams in va.cuum. In dense media with a 
refra.ctive index n the a.ctual beam radia are found after substituting ~ for >.. 

Diode lasers do not produce beams that are perfectly Gaussian. In genera!, some opties 
is necessa.ry to correct for several errors; for a description of these errors and the correctional 
opties it is referred to [85]. 
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Measurement of stress optica! 
coefficient in Couette flow 

Camparing mechanica! and optica! data of the shear stress in a simple shear flow gives the 
most rigarous and reliable test of the linearity of the stress optica! rule that can presently 
be performed. A Couette-cell for installation on the Rheometrics-RFS-II was developed 
in our lab: in this system the optical and mechanica! measurements can be performed 
simultaneously. The optica! measurement has been performed with ROA (Section 2.3.4). 

The experimentalset-up is displayed in Figure D.l. The numbers refer to: (1) part 
of Rheometric-RFS-2, (2) torque transducer, ( 4) bob of Couette cel, (5) cup of Couette 
cel, (6) window of SF-57 glass (Schott, [99]), (7) polarization modulation generator of 
ROA (laser, polarizer, rotating halfwave plate, lens), (8) circular polarizer foliowed by a 
mirror to deflect the beam over 90 degrees, (9) detector (in the actual measurements, the 
detector was adapted so that the mirror was not necessary anymore). The details of the 
measurement procedure are described by Schoonen [98]. 

In case of the 5% PIB/Cl4 solution used in Chapter 4, the result of the validation of 
the linearity of the stress optica! rule is shown in Figure 4.6. The stress optica! coefficient 
C is 1.86 · 10-9 Pa-1, which is in excellent agreement with the value of Quinzani [93] who 
found C = 1.87 · 10-9 Pa-1 • 
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Figure D.l: Couette cell installed on the Rheometrics-RFS-II to measure simultaneously me­
chanically (by measuring the mechanica} torque on the inner bob) and optically (with the ROA 
birefringence system) the shear stress.Numbers are explained in the text. 
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Estimation of statistica! error in 
stresses measured with ROA 

In the birefringence measurements with ROA (Section 2.3.4), two parameters are measured: 
R1 and R2 • To obtain the stresses, two steps are made: first, the angles chi and 5 are 
calculated from R1 and R2, and subsequently, from these angles the stresses are obtained. 
The equations are: 

1 -R2 
(E.1) x = 2 arctan~, 

5 = sign(RI)..jR~ + R~, (E.2) 

T = 2~5 sin 2x, (E.3) 

N1 f (E.4) = C5cos2x, 

with C the stress optical coefficient, f = 2;d, with À the wavelengthof the light and d the 
length of the light path through the birefringent sample. 

Denote the standard devitation of R1 with u( RI) and of R2 with u(R2 ). The standard 
deviation in x and 5 then follow from 

ox 1 R2 
8R1 

= -2R~+Rf 
(E.5) 

ox 1 R1 
8R2 

= 
2m+Rr 

(E.6) 

u(x) = ( ox )2u( R1)2 + ( ox )2u( R2)2, 
8R1 8R2 

(E.7) 

and 

85 R1 
8R1 

= j(l- (R~ + RD)(m + m)' 
(E.8) 
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(E.9) 

u(c5) = (E.lO) 

Subsequently, in the same way the standard deviations of the shear stress r and first 
normal stress difference N1 are found with: 

8r f . 2 (E.ll) 
86 = 2sm x, 
8r 

JO cos 2x, (E.12) 
8x = 

8N1 f cos 2x, (E.13) 
8!5 = 

8Nt 
-2fósin 2x. (E.l4) 

8x = 

In all ROA experimentsin this thesis (Chapter 4), the data were averaged from 100 
measurements. As an example, the error bounds have been calculated for the data along the 
line x/ R = 1.5 (in case of the 5% PIB/Cl4 solution with De1 = 2.31, in the symmetrically 
confined cylinder geometry). In Figure E.1, the data points of the three types of data 
are plotted, with the error bounds calculated according 3/..fiiïu, with N the number of 
samples and u the standard deviation. The relative error in the stresses is typically < ±2%. 
Larger errors occur when Rt is near zero, or both R1 and R2 are near zero {i.e. when 
c5 = k1r, k = 0, ±1, ... ), since then the angle x is indefini te. 
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Figure E.l: Example of data with error bounds ofthe birefringence measurements (with ROA, 
see text): (top) R1 and R2, (middle) the angles x, S and (bottom) the shear stress T a,nd first 
normal stress difference N1. 
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Samenvatting 

Het gebruik van rekenprogramma's die geschikt zijn voor stromingsberekeningen a.a.n vis­
coelastische polymere materialen, kan de ontwikkeling en de optimalisatie van industriële 
verwerkingsprocessen bevorderen, de kwaliteit van het uiteindelijke produkt verbeteren 
en de kostprijs reduceren. Een goed voorbeeld is de berekening van ingevroren molecu­
laire oriëntatie in produkten, gemaakt via. het spuitgietproces. De kwaliteit van dit soort 
berekeningen wordt in sterke mate bepaald door de juistheid van de viscoela.stische model­
lering van de stromende smelt via de zogenaamde konstitutieve vergelijkingen. De molec­
ulaire oriëntatie die een gevolg is van de stromingsgeïnduceerde spanningsverdeling, is 
bepalend voor zowel de anisotropie van (mechanische, optische en thermische) eigenschap­
pen van het produkt als voor het konstant blijven van de afmetingen van het produkt op 
de lange termijn. 

In de reometrie is het gebruikelijk konstitutieve vergelijkingen te testen in enkelvoudige 
afschuifstromingen. Het is gebleken dat zulke stromingen niet voldoende informatie bevat­
ten over het reologische gedrag van polymere materialen om betrouwbare voorspellingen te 
kunnen doen in complexe stromingssituaties (zie bijvoorbeeld Douven [32] en Tas [107]). 
Bovendien kunnen in veel gevallen de viscometrische funkties alleen in een relatief klein 
gebied van afschuifsnelheden gemeten worden. Daarbij komt dat het meten van materiaal­
funkties in rekstromingen vaak onbetrouwbaar of onmogelijk is (Walters [112]). 

Daarom zouden naast enkelvoudige afschuifstromingen complexe. stromingen gebruikt 
moeten worden om de (parameters in) konstitutive vergelijkingen voor polymere smelten 
en oplossingen te bepalen. In de afgelopen twee decennia zijn er veel konstitutieve vergeli­
jkingen voorgesteld waarmee tegenwoordig, met de eveneens ontwikkelde betrouwbare nu­
merieke technieken, berekeningen mogelijk zijn in een redelijk ruime klasse van stromin­
gen. De doelstelling van het huidige onderzoek is om simulaties van complexe stromingen 
te vergelijken met experimentele gegevens zodat daarmee de juistheid van de gebruikte 
modellen getoetst kan worden. Daarnaast kunnen de meetgegevens ook gebruikt wor­
den om de modelparameters beter te bepalen. Als eerste aanzet op weg naar dit doel is 
in dit proefschrift gebruik gemaakt van het referentieprobleem van de stagnatiestroming 
rond een symmetrische en een asymmetrische cylinder. Om de vergelijking tussen ex­
perimentele en numerieke resultaten te vergemakkelijken zijn in een belangrijk deel van 
deze studie modelvloeistoffen gebruikt, met name een afschuifverdunnende oplossing van 
5%(g/g) polyisobutyleen in tetradecaan. Daarnaast is voor een smelt van lage-dichtheid 
polyetheen (LDPE) een verkennende analyse uitgevoerd in dezelfde geometriën. 
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Voor alle gebruikte vloeistoffen zijn in enkelvoudige afschuifstromingen de parameters 
bepaald voor twee konstitutieve modellen, het Phan-Thien Tanner en het Giesekus model. 
Vervolgens zijn voor twee polymere oplossingen puntsgewijs snelheids- en spanningsmetin­
gen verricht in de stroming rondom een cylinder bij Deborah getallen tussen 0.25 en 5.61, 
gebruik makend van respectievelijk laser Doppier anemometrie en stromingsgeïnduceerde 
dubbele breking. Deze zijn vergeleken met eindige elementen berekeningen met de twee 
bovengenoemde modellen. In het algemeen is de overeenstemming tussen berekeningen 
en metingen goed. De verschillen zijn groter voor de meer geconcentreerde oplossing 
(9%(gfg)). Ter vergelijking zijn ook berekeningen gedaan met een, relatief eenvoudig, 
gegeneraliseerd Newtons model (Carreau-Yasuda). De goede overeenstemming in de snel­
heden impliceert dat er geen duidelijke invloed is van de normaalspanningen op het snel­
heidsveld. De normaalspanningen kunnen echter door het gegeneraliseerd Newtons model 
niet realistisch worden beschreven. 

Tot slot is in een eerste analyse de stroming van een LDPE smelt rond een begrensde 
cylinder onderzocht. Daartoe is het gemeten dubbele brekingspatroon, bestaande uit con­
tourlijnen van gelijke hoofdspanningen, vergeleken met het resultaat van eindige elementen 
berekeningen. De simulaties zijn uitgevoerd voor Deborah getallen tot 9.8. De berekende 
patronen stemmen redelijk overeen met de gemeten patronen. Het meest opvallende ver­
schil ten opzichte van de berekeningen is, dat de gemeten contouren meer geconcentreerd 
zijn langs de wand van de cylinder en dat er een geconcentreerde 'samenvloeinaad' van de 
spanningen bestaat stroomafwaarts van de cylinder. Deze verschillen zijn waarschijnlijk 
een gevolg van onvolkomenheden in de modellen. 

De belangrijkste conclusies kunnen als volgt worden samengevat. (i) De gebruikte ex­
perimentele methoden bleken krachtige hulpmiddelen om het reologische gedrag te meten 
in deze complexe stromingen. (ii) Voor de 5% polymeeroplossing kunnen de onderzochte 
planaire stromingen (met bijbehorende Deborah getallen) goed gesimuleerd worden. Bij 
de meer geconcentreerde oplossing zijn de verschillen groter. In een vervolgstudie voor 
polymeeroplossingen wordt aanbevolen om naast het gebruik van hogere Deborah getallen 
ook te zoeken naar een stroming, waarin de normaalspanningen een nog grotere invloed 
hebben op het snelheidsveld, zodat de stroming meer discrimineert tussen de verschil­
lende modellen. (iii) In het geval van de LDPE-smelt worden de significante verschillen 
tussen gemeten en berekende spanningspatronen toegeschreven aan onvolkomenheden van 
de gebruikte modellen. In vervolgstudies moeten deze modellen dan ook verbeterd wor­
den. Bovendien moet naast het spanningsveld ook het snelheidsveld experimenteel worden 
bepaald. (iv) Uitbreiding naar de analyse van het tijdsafhankelijke reologische gedrag tij­
dens het opstarten van de stroming rond de cylinder lijkt interessant voor een nog verder 
gaande evaluatie van de konstitutieve modellen. 
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behorend bij het proefschrift 

Evaluation of Constitutive Equations 
for Polymer Melts and Solutions 

in Complex Flows 

1. Rheologen lijken soms theologen: de visie van veel rheologen die integraalmodellen 
verkiezen boven differentiaalmodellen is meer gebaseerd op geloof dan op feiten. 

2. Bager-vloeistoffen zijn oorspronkelijk gecreëerd om rheologisch gedrag te verkrijgen 
dat beschreven wordt door het Upper Convected Maxwell (UCM) model. Nu echter 
gebleken is dat zij zich in stromingen met complexere deformaties dan alleen enkel­
voudige afschuiving niet gedragen zoals het UCl'vl model voorspelt, moeten zij geen 
onderwerp van studie meer zijn. 

• R.A. Brown en G.H. ).1cKinley, Report on the t'I!Ith International Workshop 
on Numerical Mtthoás in Viscoelastic flows, Journal. of I\on-Newtonian Fluid 
Mechanics,52, 407-413, 1994. 

3. In nominaal twee-dimensionale polymeerstromingen kunnen parameters in visco­
elastische constitutieve vergelijkingen relatief snel bepaald worden als het experi­
mentele snelheidsveld en spanningsveld heide langs stroomlijnen bekend zijn. De 
spanningen kunnen dan immers berekend worden via integratie van de constitutieve 
vergelijking en direct vergeleken worden met de gemeten waarden. De ontwikke­
ling van deze hybride numeriek-experimentele methode zal bespoedigd worden als 
velcisgewijze meting van beide snelheidscomponenten mogelijk is. In vergelijking tot 
de laser Doppier methode is de partiele image velocimetry techniek daarvoor heter 
geschikt. 

4. Een constitutief model dat metingen in enkelvoudige afschuiving goed beschrijft, 
garandeert geen goede beschrijving van het rheologische gedrag in complexere stro­
mingen, ook niet als deze planair zijn. 

• R.C. Armstrong, R.A. Brown, L.M. Quinzani, G.H. McKinley and J.A. Byars, 
Measm-ement of velocity and stress fields in complex polymer ilows, In P. Mol­
denaers and R. Keunings, edito1·s, Proc. XI Int. Cong. Rheology, Theoretica/ 
a.nd Applied Rheology, Brussels, pages 16-23. Elsevier, 1992. 

• Dit proefschrift, hoofdstuk 5. 



5. Het gecombineerd gebruik in polymeerstromingen van optische meettechnieken voor 
puntsgewijze snelheidsmetingen {met laser-Doppier anemometrie) en spanningsme­
tingen (via een dubbele brekingstechniek gebaseerd op polarisatie-modulatie), levert 
in isotherme stromingen waardevolle (rheo-optische) informatie waarmee constitu­
tieve modellen grondig getoetst kunnen worden. In niet-isotherme stromingen wordt 
echter de toepassing van deze methoden gehinderd door de ruimtelijke variatie van 
de gemiddelde brekingsindex die wordt veroorzaakt door temperatuursgeïnduceerde 
dichtheidsverschillen. 

• Dit proefschrift, hoofdstuk 4. 

• S.R. Galante, An investigation of planar entry flow using a high resolution flow 
birefringence method, PhD thesis, Camegie Mellon University, Penssylvania, 
USA, 1991. 

6. Zolang bij numerieke stromingsberekeningen met visco-elastische constitutieve mo­
dellen het nog teveel een 'kunst' is om een geconvergeerde oplossing te verkrijgen, 
is een brede toepassing van deze berekeningen niet in zicht. 

7. Het gemak waarmee computersimulaties overtuigende figuren leveren van oplossin­
gen van complexe problemen, maakt een kritische houding ten opzichte van de ver­
kregen resultaten noodzakelijk. Het aanleren van deze houding moet een essentieel 
onderdeel zijn van de ingenieursopleiding. 

8. Wetenschap ontstaat als het niet-begrijpen verwondert. Techniek ontstaat als het 
niet-kunnen hindert. 

9. De trend dat het bedrijfsleven kennisintensief, technologisch onderzoek steeds meer 
structureel 'uitbesteedt' aan universiteiten, en dus aan AIO's, heeft veel overeen­
komsten met de vlucht van arbeidsintensieve banen naar zogenaamde 'lage-lonen 
landen'. 
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