
 

A fluid queue with a finite buffer and subexponential input

Citation for published version (APA):
Zwart, A. P. (1998). A fluid queue with a finite buffer and subexponential input. (Memorandum COSOR; Vol.
9825). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/37fed992-c6a6-464d-8fb4-3b6f0520123f


Memorandum COSOR 98-25, 1998, Eindhoven University of Technology
A Fluid Queue with a Finite Bu�er and Subexponential Input

A�P� Zwart

Eindhoven University of Technology

Department of Mathematics and Computing Science

P�O� Box ���� ���� MB Eindhoven� The Netherlands

email	 zwart
win�tue�nl

ABSTRACT

We consider a �uid model similar to that of Kella and Whitt ����� but with a bu�er having �nite capacity K 	 The

connections between the in�nite bu�er �uid model and the G
G
� queue established in ���� are extended to the �nite

bu�er case� It is shown that the stationary distribution of the bu�er content is related to the stationary distribution

of the �nite dam	 We also derive a number of new results for the latter model	 In particular� an asymptotic expansion

for the loss fraction is given for the case of subexponential service times	 The stationary bu�er content distribution

of the �uid model is also related to that of the corresponding model with in�nite bu�er size� by showing that the two

corresponding probability measures are proportional on ���K� if the silence periods are exponentially distributed	

These results are applied to obtain large bu�er asymptotics for the loss fraction and the mean bu�er content when

the �uid queue is fed byN ono� sources with subexponential onperiods	 The asymptotic results show a signi�cant

in�uence of heavytailed input characteristics on the performance of the �uid queue	

���� Mathematics Subject Classi�cation� ��K��� ��B��	

Keywords � Phrases� ono� processes� �nite bu�ers� �uid queues� loss fractions� proportionality of probability

measures� regenerative processes� regular variation� subexponentiality� Tauberian theorems	

�� Introduction

In this paper we study a �uid model with a bu�er having �nite capacity K� Fluid models�
and more in particular �uid queues fed by a number of on�o� sources� have received much
attention in recent literature� see e�g� �	� 
�� 

� �� and references therein� Most of these
studies are motivated by performance issues arising in modern communication systems� like
the internet and ATM�networks� An important topic in current research is the �uid queue
fed by on�o� sources of which the activity and�or silence periods have heavy�tailed distribu�
tions� The reason for this is that recent tra�c measurements have shown that tra�c in e�g�
Local Area Networks ���� Wide Area Networks ���� and VBR video ��� exhibit phenomena
like self�similarity and long�range dependence � phenomena that can be explained by on�o�
sources with heavy�tailed activity periods and�or silence periods� However� it is generally
assumed that bu�er sizes are in�nite� so that no �uid is lost�

The main purpose of this paper is twofold� Firstly� we analyse these �uid models in the
case that bu�ers are �nite� the case occurring in many practical situations� Secondly� we want
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to investigate the in�uence of heavy�tailed input characterisics on performance measures like
the loss fraction and the mean bu�er content�

A secondary purpose of this study is to establish simple relations between the �uid model
with �nite bu�er size K and the in�nite bu�er model� and between the �nite�bu�ered �uid
model and the G�G�
 queue with �nite capacity K� also known as the �nite dam �see
�
�� ���� The results available for the latter models can then be used to analyse the former�
Although we are particularly interested in the heavy�tailed case as described above� the
relationships established in this paper are also applicable to study �uid models under more
classical assumptions� e�g� when all random variables involved have �nite moment generating
functions�

First results on �uid queues with �nite bu�ers and heavy tails are given in �	�� 	�� ��
where �the asymptotic behaviour of� the expected time to bu�er over�ow is studied� In ��

a discrete time queue with �nite bu�er is studied and the results are then applied to obtain
asymptotic expansions for loss rates in �uid queues with �nite bu�ers� Unfortunately� the
results in ��
 are not valid for the long�range dependent case�

The �uid model considered in this paper is �apart from the �nite bu�er size� the same as
the model studied in ���� where some nice relations between this �uid model and a G�G�

queue are established� It will be shown that some of these relations can be extended to the
�nite bu�er case� The relation between the �uid model with �nite bu�er and the in�nite
bu�er model is shown to hold in the special case that the time during which the bu�er content
decreases is exponentially distributed and that a stationary distribution of the in�nite bu�er
content exists� We show that the two stationary distributions of the respective models are
proportional� see Theorem ��	 below�

Special attention is paid to the analysis of the �uid model in the case that the input
process can be decribed by on�o� sources with heavy�tailed activity period distributions� All
the techniques used can be found in the books ��� 	
� We also refer to the survey �
� on
�uid queues with heavy�tailed activity period distributions�

The asymptotic expansions that are derived for the loss fraction and the mean bu�er
content show that the heavy�tailed input characteristics have a signi�cant in�uence on the
performance of the �uid queue� In particular� loss fractions decay less than exponentially
fast to zero when the bu�er size gets large� This implies that very large bu�ers are needed
to guarantee a small loss fraction� which is contrasting with the case where Cram�er�type
conditions are satis�ed� In the latter case� the loss fraction is known to behave negative
exponentially as function of the bu�er size� Another performance measure which is in�u�
enced by heavy�tailed input is the mean bu�er content� When the activity periods of the
on�o� sources have in�nite second moments �in this case� the input process is long�range
dependent�� the mean bu�er content behaves like a �positive� power of the bu�er size when
the latter gets large�

The paper is organised as follows� In Section 	� we introduce the �uid model and indicate
its relation to the �nite dam model with instantaneous input� We present some new results
for the latter model in Sections � and �� The main results for the �uid model can be found
in Section �� The results obtained in Sections ��� are applied in Section �� where the �uid
queue fed by a number of on�o� sources is discussed� Section � treats the case of overloaded
queues� Concluding remarks are given in Section �� An alternative proof of Theorem ��	
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can be found in the appendix�

�� Preliminaries

In this section we describe the dynamics of the �uid model introduced by Kella and Whitt
��� and we extend this description to a �uid queue with a �nite bu�er� we adopt the notation
of ��� in the sequel of the paper� There are four elements determining the dynamics of the
�uid model� Two collections of random variables fDk � k � 
g and fUk � k � 
g� and two
collections of stochastic processes ffRk�t� � t � �g � k � 
g� and ffSk�t� � t � �g � k � 
g�
both classes having right�continuous sample paths with left limits� In the terminology of ����
Dk and Uk can be interpreted as successive down� and up�times respectively� a terminology
motivated by queues with service interruptions� see ����

Fluid in the bu�er increases according to fRk�t� � t � �g during the k�th downtime �of
the server� and �uid in the bu�er decreases by the stochastic process fSk�t� � t � �g during
the k�th uptime� Therefore we use another terminology� which is motivated by �uid queues�
We shall call Di an activity period �of a global �uid source� and Ui a silence period�

De�ne

Tk � D� � U� � � � ��Dk � Uk� k � 
� �	�
�

and T� � �� The net input process Y �t� and the �in�nite� bu�er content process Z�t� are
then given by� cf� ����

Y �t� � Y �Tk�� �Rk���t� Tk�� Tk � t � Tk �Dk���

Y �t� � Y �Tk�� �Rk���Dk����� Sk���t� Tk �Dk���� Tk �Dk�� � t � Tk���
�	�	�

for k � � with Y ���� � �� and

Z�t� � Y �t��minf�� inffY �s� � � � s � tgg� t � �� �	���

In this paper we assume that the main independence assumption stated in ��� holds� i�e�
f�Dk� Uk� fRk�t� � t � �g� fSk�t� � t � �g� � k � 
g is an i�i�d� sequence� Moreover� it
is assumed that the moments E�D� � E �U� � E�R��D���� and E�S��U��� are �nite� Then�
under the condition E �R��D����E �S��U��� � 
� it is shown in ��� that Z�Tk�� converges
in distribution to a random variable W if k��� Moreover� when D�� U�� and D� �U� are
non�lattice� the bu�er content process Z�t� converges in distribution to a random variable
Z�

It is obvious that the distribution ofW corresponds to the waiting time distribution of the
G�G�
 queue with service times R��D��� and interarrival times S��U���� One of the main
contributions of Kella and Whitt is that they relate the distribution of Z to the stationary
waiting time distribution of a G�G�
 queue� see Theorems ��� in ����

Next� we introduce the �uid model with �nite bu�er size K � �� For each K� the bu�er
content ZK�t� at time t can be described by ZK��� � ZK�T�� � �� and

ZK�Tk���� � maxfminfZK�Tk�� �Rk���Dk����� Kg � Sk���Uk����� �g� �	���
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ZK�t� � minfZK�Tk�� �Rk���t� Tk��� Kg� Tk � t � Tk �Dk���

ZK�t� � maxf��minfZK�Tk�� �Rk���Dk����� Kg � Sk���t� Tk �Dk���g�

Tk �Dk�� � t � Tk��� �	���

The dynamics of the �nite bu�er model are the same as that of the in�nite bu�er model�
except that when the bu�er content reaches level K� all the �uid o�ered to the bu�er during
the remaining activity period will be lost�

It is easily shown that ZK�Tk���� can be identi�ed with the waiting time of the �k�
��st
customer in the G�G�
 queue with �nite capacity K� in which the interarrival times and
service times are distributed as S��U��� and R��D���� Under the condition P�S��U��� �
R��D���� � 
� it is shown in Section III���� of �
� that ZK�Tk���� converges in distribution
to a limiting random variable WK if k ���
We wish to extend the results of Kella and Whitt to �nite bu�er queues� we will establish a

relationship between the stationary distribution of the �nite bu�er model and the stationary
distribution of the G�G�
 queue with a bu�er having �nite capacity K� The latter model is
also known as the �nite dam� cf� Chapter III�� in �
��

First� we make some additional de�nitions� With f�x� � g�x� we mean that f�x��g�x�
converges to one� If the �rst moment � of a non�negative random variable X exists� then
the integrated tail distribution eF of the �excess� random variable eX is de�ned by

eF �x� �



�

xZ
�

�
� F �u��du�

with F being the distribution function of a X� The n�fold convolution F n� of F is de�ned
by� for x � ��

F ���x� � 
�

F n��x� �

xZ
�

F �n�����x� u�dF �u�� n � 
� 	� ��� �

De�ne the environment indicator process by

I�t� � IfTk�Dk���t�Tk�� for some k��g�

so I�t� � 
 if the global �uid source is silent at time t� The amount of time the global �uid
source is silent �resp� active� up to time t� t � �� is de�ned by

Cs�t� �

tZ
�

I�x�dx� �	���
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Ca�t� � t� Cs�t�� �	���

The inverse processes of Cs and Ca are de�ned by

C��
s �t� � inf

x��
fCs�x� � tg� �	���

C��
a �t� � inf

x��
fCa�x� � tg� �	���

Since the random variables Di and Ui are �nite a�s�� we may assume that Cs�t� � � if
t�� everywhere� So the following processes are well�de�ned�

ZK
s �t� � ZK�C��

s �t��� t � �� �	�
��

ZK
a �t� � ZK�C��

a �t��� t � �� �	�

�

Note that ZK
s �U�� � ZK�D� �U� �D��� We similarly de�ne Za�t� and Zs�t� for the in�nite

bu�er model� Cf� ���� we de�ne the r�v� R�� eD�� �which is non�trivial since R� and D� are
dependent in general� by

P�R�� eD�� � x� �



E �D� 
E

�
� D�Z

�


fR��t��xgdt

�
� �

�Z
�

P�R��t� � xjD� � t�dP� eD� � t��

�	�
	�

We are now ready to give the main result of this section� which can be viewed as an extension
of Theorem � in ���� Note that no assumptions on the tra�c load are needed� since the
state space is �nite� Denote convergence in distribution by �	�� and denote equality in

distribution by �
d
���

Theorem ��� Suppose that the main independence assumption holds� that D�� U�� and
D� � U� are non�lattice� and that P�S��U��� � R��D���� � 
� Then there exist r�v��s ZK

s �
ZK
a � Z

K� and I such that� when t���

�� ZK
a �t�	 ZK

a

d
� minfWK �R�� eD��� Kg�

�� ZK
s �t�	 ZK

s �

�� �ZK�t�� I�t�	 �ZK� I�

Here R�� eD�� is independent of W
K� ZK

s

d
� �ZKjI � ��� ZK

a

d
� �ZKjI � 
�� and

P�ZK � x� � pP�ZK
s � x� � �
� p�P�ZK

a � x�� �	�
��

where

p � P�I � 
� �
E�U� 

E�D�  � E�U� 
� �	�
��
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Proof The proof is almost identical to the proof of Theorem � in ���� The processes
�ZK�t�� I�t�� ZK

a �t� and ZK
s �t� are all regenerative with the exit times of state ���
� resp� �

�i�e� the end of idle periods� as regeneration points� The regeneration cycles are non�lattice
when U�� D�� and U� �D� are non�lattice� due to the main independence assumption� Since
all state spaces are �nite� it is trivially seen that all regeneration cycles have �nite means�
The convergence of the processes �ZK�t�� I�t�� ZK

a �t� and ZK
s �t� now follows by the results

on pp� 
	��
	� of ���
By a result of Green �	�� we can study the sequences of activity periods and silence periods

separately� This gives the relationship between the limiting distributions �ZK� I� ZK
a � and

ZK
s � and the characterisation of the distribution of ZK

a � �

Remark ��� The non�lattice conditions can be omitted if U� is exponentially distributed
and independent of D� and fR��t�g� In Theorem 	�
� the condition on U� �D� is imposed
since U� and D� are allowed to be dependent� �

If the out�ow in the bu�er is constant during silence periods� then it is also possible to
specify the limiting distribution ZK

s �

Theorem ��� Suppose the assumptions stated in Theorem ��� hold and that

S��t� 
 t�

Then fZK
s �t�� t � �g is distributed as the workload process in the 	nite dam with capacity

K� interarrival times U�� and service times R��D����

Proof Similarly to the proof of Theorem 	 in ���� Both processes have re�ecting barriers
in the origin and K� decrease linearly at rate 
� and have jumps of size Rk���Dk���� at
times U� � � � �� Uk� �

One can apply Theorems 	�
 and 	�	 to compute �characteristics of� the distribution of ZK

when the steady state distribution for the G�G�
 �nite dam is tractable enough� which is
the case for the M�G�
 and G�M�
 �nite dams� see �
�� ��� In Section �� we will further
specify the distribution of ZK by using Theorems 	�
 and 	�	� Both theorems indicate a
clear relationship between the �uid model with gradual input and the G�G�
 �nite dam
with instantaneous input� we will study the latter model in the next two sections�

In the remainder of the paper� we assume that the bu�er content declines linearly during
silence periods� i�e� we assume that S��t� 
 t� In this case� the �uid model can process one
unit of �uid per unit of time� The amount of �uid o�ered to the system per unit of time�
given by �� equals

� �
E �R��D��� � E�D� 

	�� � E�D� 
�

�� The stationary distribution of the finite dam

The random variable WK in the previous section corresponds to the stationary waiting time
distribution in the �nite dam having capacity K� The relation between the models with



�� The stationary distribution of the �nite dam �

gradual and instantaneous input will turn out to be useful in the rest of the paper� In this
section� we give some new results for the �nite dam� In particular� we give a relationship
between the virtual and actual waiting time which is very similar to the relationship in the
in�nite bu�er case� The latter is well known �see e�g� p� 
�� in ����

First� we introduce some notation in the traditional queueing setting� Customers arrive
at a single server queue �which is initially empty� with interarrival times �An�n��� These
customers have service times �Bn�n��� It is assumed that the interarrival times and service
times are all independent of each other and have the same distributions as random variables
A and B� The means of A and B are denoted by 	�� and 
� respectively� The distribution
function of the service time is denoted by B���� The tra�c load  � is given by  � � 	
 and is
assumed to be strictly positive�
The waiting time of the n�th customer is given by WK

n � When WK
n � Bn exceeds K� a

quantity of WK
n � Bn �K is lost �so we consider partial over�ow�� Hence� WK

n is given by
WK

� � � and �see e�g� Chapter III�� in �
���

WK
n�� � maxfminfWK

n �Bn� Kg � An��� �g� ���
�

Denote the stationary waiting time by WK �cf� Section 	� with Bn 
 Rn�Dn�� and An 

Un�� We also consider the amount of work present in the system at time t� given by V K�t��
its stationary distribution is denoted by V K� Finally� the long�run fraction of work lost is
de�ned by Lq�K �

��� General results
The loss fraction Lq�K can be obtained by a simple renewal argument�

Lq�K �
E �maxfWK �B �K� �g

E �B
� P�WK � eB � K�� ���	�

The second equality� which is quite useful for further analysis as will be shown below� can
be obtained by partial integration� For the virtual waiting time V and the actual waiting
time W in the GI�G�
 queue �with  � � 
�� it is well known that �see e�g� ��� 
�� 
��

V jV � �
d
� W � eB� �����

The following result is very similar to ����� and appears to be new�

Theorem ��� For all  � � � and � � K ���

V K jV K � �
d
� �WK � eB� jWK � eB � K� �����

P�V K � x� �  � P�x � WK � eB � K�� �����

Proof The results can be obtained in a similar way as in the in�nite bu�er queue� namely by
a level crossing argument� cf� �
�� Following the same lines as in �
� we obtain for almost
every � � v � K�

d

dv
P�V K � v� �  �

vZ
�


� P�B � v � u�



dP�WK � u��
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Hence� for � � x � K�

P�V K � x� � P�V K � �� �  �

xZ
�

x�uZ
�

P�B � w�



dwdP�WK � u�

� P�V K � �� �  �P�WK � eB � x��

By Little�s law for a busy server �see e�g� Example ��� in ���� and ���	� we have

P�V K � �� � 
�  ��
� Lq�K� � 
�  �P�WK � eB � K��

Hence� for � � x � K�

P�V K � x� � 
�  ��P�WK � eB � K�� P�WK � eB � x��

� 
�  �P�x � WK � eB � K��

This expression is also valid for x � � and x � K� which yields ����� since eB has a continuous
distribution� It is easily shown from ����� that

P�� � V K � x� �  �P�WK � eB � x��

Hence�

P�V K � xjV K � �� �
P�� � V K � x�

P�V K � ��
�

 �P�WK � eB � x�

 �P�WK � eB � K�

� P�WK � eB � xjWK � eB � K��

This proves ������ �

��� Exponentially distributed interarrival times
If the interarrival times are exponentially distributed� then the following proportionality
relation holds� cf� �
�� 
�� 	��

P�WK � x� �
P�W � x�

P�W � K�
� �����

for � � x � K� Proportionality relations like ����� have been applied in a number of studies
to determine loss probabilities� see e�g� �	�� �
� 	�� 	�� � and references therein� The main
idea applied in these studies is to combine the proportionality result with Little�s formula
for a busy server �see e�g� Example ��� in ����� Applying the latter together with PASTA
to the �nite and in�nite bu�er queue we obtain for � �  � � 
 and  � � � respectively�

P�W � �� � 
�  �� �����

P�WK � �� � 
�  ��
� Lq�K�� �����
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Using the proportionality relation�

P�WK � ��

P�W � ��
�

P�WK � K�

P�W � K�
�




P�W � K�
�

we obtain from ����� and ������

Lq�K �

�  �

 �

�



P�W � K�
� 


�
�


�  �

 �

P�W � K�

P�W � K�
� �����

Remark ��� By PASTA� we have that V K d
� WK� Using this and the proportionality

relation� it is also possible to derive ����� from ���	� and ������ �

Remark ��� Another performance measure is the probability that the work o�ered by
a customer �entering the system in its stationary regime� cannot be accepted completely�
denote this probability by Pq�K� For the GI�G�
 �nite dam� we have

Pq�K � P�WK �B � K�� ���
��

�Note that Pq�K � Lq�K in the GI�M�
 �nite dam�� When  � � 
� we have the following
remarkable relation for the M�G�
 �nite dam� It follows from the proportionality relation
that

Pq�K �
P�W �B � K�� P�W � K�

P�W � K�
� ���

�

But this quantity can be identi�ed with P�Vmax � K�� where Vmax is the maximal content in
the in�nite dam during a busy cycle� see e�g� Section ��� in �
� or �
�� p� 	��� and p� �
��
so we conclude that

Pq�K � P�Vmax � K� �



	

d
dK

P�W � K�

P�W � K�
� ���
	�

�

�� Asymptotic results for the finite dam

For the case  � � 
� we are interested in the asymptotic behaviour of Lq�K when K ��� in
particular when the service time distribution is subexponential� In the case of exponentially
distributed silence periods� it is possible to apply a classical result of Pakes ��� �see also
���� for the GI�G�
 queue with in�nite bu�er size�

Theorem ��� If  � � 
� eB is subexponential� and the interarrival times are exponentially
distributed� then

Lq�K � P� eB � K�� K ��� ���
�
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Proof From ��� we have� if eB is subexponential�

P�W � x� �
 �


�  �
P� eB � x�� x��� ���	�

Theorem ��
 now follows directly from ����� and ���	�� �

When the interarrival times have a general distribution� the proportionality relation does not
hold� so it is not possible to apply results for the in�nite dam directly� However� it is still
possible to extend Theorem ��
 to the case of generally distributed interarrival times� This is
established in the following theorem� under the additional assumption that the service time
distribution is regularly varying �see ����

Theorem ��� For generally distributed interarrival times and  � � 
� 
���� holds if the
service time distribution is regularly varying of index ��� � � 
�

Proof Note that Lq�K � P� eB � K�� so it su�ces to show that

lim sup
K��

P�WK � eB � K�

P� eB � K�
� 
� �����

Let ��K� be a function such that ��K� � � and ��K��K � � if K � �� and let � � ��
Write

P�WK � eB � K� � P��K � P��K � P��K� �����

with

P��K � P�WK � eB � K�WK � �K�� �����

P��K � P�WK � eB � K� �K � WK � K � ��K��� �����

P��K � P�WK � eB � K�WK � K � ��K��� �����

Since P��K � P� eB � �
� ��K� and since eB is regularly varying of index 
� �� we have

lim sup
K��

P��K

P� eB � K�
�

�




� �

����

� �� � �� �����

We can bound P��K using that WK is stochastically dominated by W �

P��K � P� eB � ��K��P�WK � �K� � P� eB � ��K��P�W � �K��

Using ���	� for the GI�G�
 queue and the fact that eB is regularly varying we obtain for each
� � ��

lim
K��

P�W � �K�

P� eB � K�
�

 �


�  �
�����
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which implies� since ��K��� if K ���

lim sup
K��

P��K

P� eB � K�
� �� �� � �� �����

Finally� we deal with the last term� Note that

P��K � P�WK � K � ��K��� ���
��

We make some additional de�nitions� De�ne the random walk �Sn�n�� by S� � �� and for
n � 
�

Sn �
nX
i��

�Bi � Ai�� ���

�

Note that this random walk has negative drift 
 � 	��� We also de�ne the sequence of
random variables � !WK

n �n�� by !WK
� � �� and !WK

n�� � minfmaxf !WK
n � Bn � An��� �g� Kg�

Denote the stationary solution of this recursion by !WK� From the construction of both WK

and !WK it is clear that P�WK � x� � P� !WK � x�� � � x � K� Hence�

P��K � P� !WK � K � ��K��� ���
	�

We now use a representation of the distribution of !WK in terms of an absorption probability
of the random walk �Sn�� which seems to be due to Lindley ���� see also ���� De�ne the
stopping times

�K� � inffn � Sn � K � ��K�g�  ��K� � inffn � Sn � ���K�g�

Then� cf� ���� ���

P� !WK � K � ��K�� � P��K� �  ��K��� ���
��

Rewriting this yields

P� !WK � K � ��K�� � P�S�� ���� S��K��� � ���K�j�K� ���P��K� ����

Since supn Sn can be identi�ed with W � and �K� �� i� supn Sn � K � ��K�� this equals

P�S�� ���� S��K��� � ���K�j�K� ���P�W � K � ��K���

Using ��K��K � �� we have by ���	� that

P�W � K � ��K���P� eB � K��
 �


�  �
� K ���

So we can conclude that P��K � o�P� eB � K�� if

P�S��K��� � ���K�j�K� ���� �� K ��� ���
��
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For this we use a theorem of Asmussen and Kl"uppelberg� see Theorem 
�
 in ��� This result
provides the following conditional limit theorem for S��K��� �which is the last value of Sn
before making a jump to level K���K��� De�ne a�u� �

R�
u
�
�B�z��dz��
�B�u��� Then�

lim
K��

P��S��K����a�K� � xj�K� ��� � �
 � x��� � 
������ x � �� ���
��

Note that a�K� � K��� � 
� if K ��� so ��K��a�K�� � if K ��� Hence�

P�S��K��� � ���K�j�K� ��� � P��S��K����a�K� � ��K��a�K�j�K� ���� ��

This proves ���
��� Hence� we have for each � � � that

lim sup
K��

Lq�K�P� eB � K� �

�




� �

����

� ���
��

which implies ����� by letting �� �� �

Remark ��� Jelenkovi�c ��
 analyses the loss fraction in a discrete time queue� The evolution
of this queueing model �which is equivalent to the G�G�
 queue with uniformly bounded
actual waiting time� see e�g� Chapter III�� in �
�� can be described by the random variables
!WK
n in the proof of Theorem ��	� In this model� the loss fraction equals P� !WK � eB � A �

K�� Using the proof of Theorem ��	� it is not di�cult to show that this expression is

asymptotically equal to P� eB � K�� if the service time distribution is regularly varying and
K � �� This generalizes the result in ��
� where it is assumed that the service time
distribution is regularly varying of non�integer index ��� � � 	� �

�� The stationary distribution of the fluid queue

In this section� we study the distribution of the steady state bu�er content ZK in the �uid
queue� Under certain assumptions� we express the distribution of ZK completely in terms
of WK� thereby extending the results in ��� to the �nite bu�er case� In a special case� it
is also possible to express the distribution of ZK in terms of Z� by showing that the two
probability measures are proportional�

Theorem ��� For � � � and � � x � K�

P�ZK � x� � �
� p�P�WK �R�� eD�� � x� � p �P�K � WK � eR��D�� � x�� ���
�

In particular� if the silence periods are exponentially distributed� then

P�ZK � x� � �
� p�P�WK �R�� eD�� � x� � pP�WK � x�� ���	�

with p given by 
������

Proof In view of Theorem 	�
� we only need to specify the distribution of ZK
s � By Theorem

	�	� we have ZK
s

d
� V K� The �rst part of the theorem now follows from Theorem ��
 and

the second part can be obtained using PASTA� �
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In the case that U� has an exponential distribution and � � 
� one can establish the following
relation between the distributions of ZK � Z� andW � Recall thatW can be identi�ed with the
waiting time distribution of the GI�G�
 queue with service time R��D��� and interarrival
time U��

Theorem ��� If U� is exponentially distributed and if � � 
� then� for � � x � K�

P�ZK � x� �
P�Z � x�

P�W � K�
� �����

Proof Use the second part of the previous theorem� the proportionality relation ������ and

P�Z � x� � �
� p�P�W �R�� eD�� � x� � pP�W � x�� �����

cf� ���� �

Note that ����� is not valid for x � K and note the appearance of the term P�W � K� �and
not P�Z � K�� in ������ An explanation for this is that the probability that the bu�er is full
�P�ZK � K�� is strictly positive� This is not the case when input is instantaneous� cf� ������

In the proof of Theorem ��	� we used the relation between the models with gradual and
instantaneous input �Theorem ��
 and ������� and the proportionality relation ����� between
the two models with instantaneous input� It is also possible to prove Theorem ��	 directly
�without using connections with models with instantaneous input� by a regenerative argu�
ment� for which we refer to the appendix�
In the remainder of this section� we will study two important performance measures� the

long�run fraction of �uid lost� denoted by LK � and the mean bu�er content�

Theorem ��� For all � � ��

LK �
E�R��D���

E�D�  � E�R��D���
Lq�K� �����

where Lq�K � P�WK � eR��D��� � K��

Proof We can establish a relation between the �uid model and the �nite bu�er queueing
model in the following manner� Suppose that both models are fed by the same input process�
The amount of �uid lost during the k�th activity �and silence� period in the �uid model
is identical to the work lost of the k�th customer in the �nite bu�er queue� However�
the amount of �uid o�ered during the k�th activity period is Rk�Dk�� �Dk� whereas the
amount of work o�ered by the k�th customer equals Rk�Dk��� The result now follows by
the renewal reward theorem� see e�g� ���� �

Finally� we investigate the mean bu�er content E �ZK � We restrict ourself to the case � � 

and exponentially distributed silence periods�
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Theorem ��� Under the conditions of Theorem ���

E�ZK  �



P�W � K�

KZ
�

P�Z � x�dx�
KP�W � K�

P�W � K�
�

Proof Use the representation E �ZK  �
R K�
�

P�ZK � x�dx� and the identity

P�ZK � x� �
P�Z � x�� P�W � K�

P�W � K�
�

which follows easily from Theorem ��	� �

Remark ��� Using the proportionality relations ����� and ������ it is possible to formulate
heavy tra�c limit theorems for WK and ZK � based on heavy tra�c limits for the M�G�

queue�

Suppose that silence periods are exponentially distributed� that � � 
 �hence  � � 
�� and
that a function #� �� exists such that #� ��W converges in distribution to a random variable
WHT if  � � 
� This is the case if the second moment of the service time is �nite �cf� the
classical result of Kingman for the GI�G�
 queue� see e�g� �
��� but also if the service time
distribution is regularly varying and has in�nite variance� see e�g� �
	� 
��

Under these assumptions� we can formulate a heavy tra�c limit for WK by letting  �� 

and K �� such that K#� �� � c for some constant c� Using ������ it is not di�cult to see
that� if  �� 
 and #� ��K 
 c�

P�#� ��WK � x��
P�WHT � x�

P�WHT � c�
� �����

for � � x � c� By ������ #� ��Z converges to the same heavy tra�c limit as #� ��W � Hence�
#� ��ZK has the same heavy tra�c limit as #� ��WK using ���	� or ������

These heavy tra�c limits may provide good practical approximations for the distributions
of WK and ZK� since � may be near to one for economic reasons and K may be large to
ensure a small loss fraction� Our conjecture is that the heavy tra�c limit theorem can be
extended to generally distributed silence periods�
For a similar result for the G�G�
 queue with uniformly bounded actual waiting time

�Chapter III�� in �
��� we refer to ��	 and references therein� �

�� Asymptotic results for the fluid queue

In this section� we use asymptotic results for P�Z � x� and P�W � x� �for large x� and
the results derived in the previous sections to obtain asymptotic expansions for various
performance measures of the �nite�bu�ered �uid queue� like the loss probability and the
mean bu�er content� when the bu�er size K gets large� We concentrate on the case where
D� and R��D��� have a subexponential tail� Furthermore� most of the asymptotic results
will be derived in the important special case that the �uid queue is fed by N �
 � N � ��
on�o� sources�
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The general case will be treated in Subsection ��
� In Subsection ��	 we study the simplest
possible �uid model� namely the case of a single on�o� source� The last two subsections treat
the case of multiple sources� where we distinguish the cases N �� and N ��� Throughout
this section� L��� is a slowly varying function�

��� General input
We start with the case of general input� where we assume that R��D��� has a subexponential
distribution� The following result follows immediately from Theorem ��� and the results in
Section ��

Theorem ��� Under the conditions of Theorem ��� or ����

LK �
E �R��D���

E �D�  � E�R��D���
P�eR��D��� � K�� K ��� ���
�

Asymptotics for the mean bu�er content are more di�cult to obtain in general� Such a result
would involve the tail behaviour of R�� eD�� �cf� Theorem ��
� in �
� and �	�
	��� for which
no results are available�

��� A single on�o� source
Suppose that the �uid queue is driven by a single on�o� source� When the source is active� it
sends input with rate r � 
 during a period of D�� O��periods are exponentially distributed
with parameter 	� In terms of the model in the previous sections� this implies that R��t� 

�r � 
�t� In the terminology of ���� this is the linear �uid model with random disruptions�
with the additional assumption that the idle periods are exponentially distributed�

In ��� the following relation is established between the distributions of Z and W �

P�Z � x� � �P�W � �r � 
� eD� � x��

From Theorem ��
 we get for the �nite bu�er case� if � � x � K�

P�ZK � x� � �P�WK � �r � 
� eD� � x�� p �P�WK � �r � 
� eD� � K�� ���	�

where we used the identity � �  �p�
�p� In this case�  � � 	�r�
�E�D� � and p � ���

����E	D� 

�

The asymptotic expansions for the loss probability and the mean bu�er content given
below are based on the following results� Suppose the distribution of eD� is subexponential�
Then �see e�g� �
���

P�W � x� �
 �


�  �
P��r � 
� eD� � x�� x��� �����

P�Z � x� � p
�


� �
P��r� 
� eD� � x�� x��� �����
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Proposition ��� If the distribution of eD� is subexponential and if the o��periods are expo�
nentially distributed� then� for � � 
 and K ���

LK �
r � 


r
P� eD� �

K

r � 

�� �����

When the o��periods are generally distributed and P�D� � x� � L�x�x��� � � 
�

LK �
�r � 
��

r�� � 
�E�D� 
L�K�K��� � K ��� �����

Proof Equation ����� follows immediately from Theorem ��
 �or alternatively� use Theorem
���� ������ and ������� Equation ����� follows from Theorem ��
 and Karamata�s theorem�
For the latter� see Section 
�� in ��� �

Remark ��� Awater ���� p� 
�
� has suggested the following approximation for the fraction
of �uid lost�

LK�app �
�
� ��P�Z � K�


� �P�Z � K�
�

It is shown numerically in �� that LK�app can be a good approximation to LK � Variants
of LK�app have been shown to be exact in various other cases like the loss probability of a
customer in theMX�G�
�B queue �see �	�� and the M�M�c queue with impatient customers
�see ����

If we evaluate the performance of LK�app in the simplest possible case R��t� 
 �r�
�t� then
it is easily shown from Proposition ��
 and ����� that the asymptotic behaviour of LK�app

is not entirely correct� Under the conditions of Proposition ��
� LK�LK�app converges to a
constant which is positive and �nite� but not equal to one� The same conclusion can be
drawn if the activity periods are exponentially distributed� �

We now turn to the mean bu�er content� where we restrict ourself to the �important� special
case of activity periods with in�nite second moments �corresponding to long�range dependent
input� see �
��� It is also assumed that the silence periods are exponentially distributed�

Proposition ��� If P�D� � x� � L�x�x�� � 
 � � � 	 and if the conditions in Theorem ��
hold� then

E�ZK  �
�


� �

�r � 
����

�� � 
�E �D� 

�
p

	� �
�
r � 


r

	
L�K�K��� � �����

if K ���

Proof We will obtain an asymptotic expansion for both terms in the formula for E �ZK 
given in Theorem ����

E�ZK  �



P�W � K�

KZ
�

P�Z � x�dx�
KP�W � K�

P�W � K�
� �����
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For the second term we have� by ����� and the identity ��
����

� �

���
r��
r
�

KP�W � K�

P�W � K�
�

�


� �

�r � 
��

r�� � 
�E�D� 
L�K�K��� � �����

if K ��� The tail behaviour for Z follows straightforwardly from that of eD�� which follows
by applying Karamata�s theorem �see e�g� Section 
�� in ���� This gives for x���

P�Z � x� � p
�


� �

�r � 
����

�� � 
�E�D� 
L�x�x��� � ���
��

Applying Karamata�s theorem once more to the �rst term in the right hand side of ������ we
get

KZ
�

P�Z � x�dx �
p�r � 
����

�� � 
�E�D� 

�


� �




	� �
K���L�K�� ���

�

The proof follows by combining ����� and ���

�� thereby noting that the constant in ���

�
is larger than the constant appearing in ������ This follows from � � 	�r � 
�E�D�  � 
 and

 � � � 	� which implies p��	� �� � p � �r � 
��r� �

Loosely speaking� the mean bu�er content behaves like a power of the bu�er size in case of
long�range dependent input� This shows once more that the impact of long�range dependence
on the performance of �uid queues can be quite substantial � even if bu�ers are �nite�

Remark ��� For the model with a single on�o� source it is also possible to obtain multiterm
asymptotic expansions or even explicit results for the loss fraction� The classes of �heavy�
tailed� service time distributions introduced in �
	� 
 lead to explicit results for the waiting
time distribution in the M�G�
 queue� The results in �
	� 
 may also be used to obtain
more re�ned asymptotics and explicit results for the mean bu�er content� �

��� A superposition of N on�o� sources
The characteristics of this model are described as follows� When source i� 
 � i � N � is on�
it transmits �uid at rate ri � 
 during an activity period Ai having mean �i� The silence
periods Si are exponentially distributed with parameter 	i� The stationary probability of
silence pi equals 
��
 � �i	i�� the mean o�ered load per unit of time o�ered by source i is
denoted by �i and equals ri

�i	i
���i	i

� Note that in our setting� � � ���� � ���N � 	 � 	��� � ��	N �
and p �

Q
i pi� Using this� it is not di�cult to calculate E �D�  and E �R��D���� The following

result is part of Theorem ��� in �
��

Lemma ��� Suppose that the activity periods of the sources ������N are exponentially dis�
tributed and suppose that

P�A� � x� � L�x�x�� �
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for � � 
� Suppose that � � 
 and de	ne c � 
�
PN

i�� �i� Then� the following asymptotics
hold for x���

P�W � x� �
	��r� � c���

c� 	��r� � c���

P��r� � c� eA� � x�� ���
	�

P�Z � x� � p�
��

c� ��
P��r� � c� eA� � x�� ���
��

Note that the asymptotics for P�W � x� and P�Z � x� are the same as in the case of
a �uid queue fed by a single on�o� source and output rate c� The on�o� source with the
heaviest tail dominates the asymptotic behaviour� whereas other sources only contribute to
the asymptotics through their means� In �	� this notion is called a reduced load balance and
is shown to hold for the tail of Z under much more general conditions� The conditions under
which the tail behaviour for W in Lemma ��
 is valid can also be weakened� see �
��

Lemma ��
 leads to the following results for the loss fraction and the mean bu�er content
in the �nite bu�er case�

Theorem ��� Suppose that the conditions stated in Lemma ��� are valid� Then� for K �
��

LK �MP��r� � c� eA� � K�� ���
��

where M is given by

M �

� �

�

	��r� � c���

c� 	��r� � c���
�

If 
 � � � 	� the mean bu�er content satis	es for K ���

E�ZK  �
�r � c����

�� � 
���

�
p�

��

� ��




	� �
�

�


� �
M

	
L�K�K��� � ���
��

Proof The �rst part follows easily from Lemma ��
� Theorem ��
� and Theorem ����
or alternatively� from Theorem ��
 and the tail behaviour of R��D���� which is given in
Theorem ��� of �
�� The proof of the second part follows the same lines as the proof of
Proposition ��	 and is therefore omitted� �

Theorem ��	 can be generalised to more generally distributed activity periods �for all
sources�� as long as Lemma ��
 remains valid under these assumptions� In particular� the
results in �	 show that Lemma ��
 and Theorem ��	 remain true in the case of N regularly
varying sources� as long as the tail activity period of the �rst source is heavier than is the
case for the other sources�
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��� In	nitely many sources
The �uid queue with an in�nite number of on�o� sources can be described as follows� Acti�
vations of sources occur according to a Poisson process with rate 	 and have a duration of
length A with mean ��� Hence� the number of active sources has the same distribution as
the number of customers present in an M�G�� queue� While a source is active� it transmits
�uid at rate r � 
�

It is easily shown that

E�D�  �
e�	� � 


	
� E�R��D��� � r��e

�	� �
e�	� � 


	
� � � r	���

We derive an asymptotic expression for the loss fraction� Instead of using results for the
tail of W � we use an asymptotic result for the tail of R��D��� and Theorem ��
� The most
general result for the former is given in Theorem 
 of ��� and only requires r � 
 and on�
times with an intermediately regularly varying distribution function� Under these conditions
we have that

P�R��D��� � x� �



�
P�A � x��r � 
 � ���� x��� ���
��

so in case of regular variation we have

P�R��D��� � x� �



�
�r � 
 � ���L�x�x�� � x���

Using this result together with Theorem ��
 and Karamata�s theorem gives

Theorem ��� If r � 
� and if

P�A � x� � L�x�x�� � � � 
�

then

LK �
e��	�

r��




� � 





�
�r � 
 � ���L�K�K��� � K ���

For the tail of Z no results are available in this setting� although a conjecture is stated in
���� This conjecture can be used to obtain an asymptotic expansion for the mean of ZK �

Results for a discrete time version of this model can be found in ���� For more results�
like upper bounds for the tail of R��D���� W and Z in this model� which may be used to
obtain upper bounds for the loss fraction and the mean bu�er content in the �nite bu�er
case� we refer to Section ��	 in �
� and to �	�� ���

�� Overloaded queues

In this section we look at the case when the tra�c load is at least 
� i�e� when � � 

�equivalently  � � 
�� If the silence periods are exponentially distributed� it is possible to use
the results for the M�G�
 queue with �nite capacity K given in Section III�� of �
�� For this
model we develop asymptotic expansions for the loss fraction� which can easily be applied




� Overloaded queues �


to the �uid model by means of Theorem ���� Starting point of our analysis is the following
expression for P�WK � ��� given on p� ��� of �
�� which is� just as ������ valid for all  � � ��

P�WK � �� �

�
� 


	�i

i��
Z
s��i��


esK

s� 	� 	
�s�
ds

�
�
��

� ���
�

where 
�s� is the Laplace�Stieltjes transform of the service time B �which will equal R��D���
when applied to the �uid model�� � must be chosen such that all zeroes of s � 	 � 	
�s�
have real part smaller than �� If  � � 
� any � � � su�ces� Note that the Laplace�Stieltjes
transform of P�WK � ���� with respect to K is given by� for Re s � ��

�Z
�

e�sKd


P�WK � ����

�
�

s

s� 	� 	
�s�
� ���	�

We now apply Equation ���	� to derive asymptotic expressions for the loss probability when
� � 
� De�ne 
i as the i�th moment of the service time B� We �rst consider the case � � 

�and hence  � � 
��

Proposition 	�� Let  � � 
�

�� If 
� ��� then

Lq�K �

�
	
�




K
� K ���

�� If P�B � x� � L�x�x��� 
 � � � 	� then

Lq�K �




�

�

sin���� � 
��
L�K�K��� � K ���

Proof Both assertions will be proven by the use of Tauberian theorems� Let 
�s� be the
LST of B� Since  � � 
� ����� reduces to

Lq�K � P�WK � ��� �����

First� we prove Part 
� Since 
� ��� we have


�s� � 
� 
�s�



	

�s

� � o�s��� s � �� �����

Inserting ����� in ���	� yields

�Z
�

e�sKd


P�WK � ����

�
�

	
�

�s

� o�
�s�� s � ��
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which gives Part 
 of Proposition ��
 by using the �classical� Tauberian theorem� see e�g�
�		� and Proposition ��
�

We now turn to Part 	� By Theorem ��
�� in �� �see also ���� if P�B � x� � L�x�x�� �

 � � � 	� 
�s� satis�es


�s�� 
 � 
�s � �$�
� ��s�L�
�s�� s � �� �����

This gives� since  � � 
�

�Z
�

e�sKd


P�WK � ����

�
�


�
�$�
� ��

s����L�
�s�� s � �� �����

Applying the Tauberian theorem 
���
 in ��� we get for K ���

P�WK � ���� �

�

�$���$�
� ��
K����L�K�� �����

Part 	 now follows from $���$�
� �� � �� sin���� and sin�a� � � sin�a� ��� �

Remark 	�� We refrain from discussing the case in which P�B � x� � L�x�x�� �and

� � ��� The Tauberian theorems are now much more delicate� see e�g� Theorem ��
�� in
��� �

Remark 	�� Although the asymptotic formula for the loss probability in the case  � � 

�given in Theorems ��
 and ��	� is independent of  �� it is not valid for  � � 
� as Proposition
��
 shows� However� note that the asymptotic behaviour of the loss probability in the heavy�
tailed �in�nite variance� case is the same for  � � 
 and  � � 
� apart from a constant�
Since sinx � x for x � �� �� sin���� � 
�� � 
��� � 
�� so the constant in the asymptotic
approximation for Lq�K is strictly larger for  � � 
 than for  � � 
� �

When  � � 
� it follows immediately that P�WK � ��� � if K ��� which gives

Lq�K � 
�



 �
� �����

Using a result of Cohen �
�� it is easy to derive the rate of convergence�

Proposition 	�� If  � � 
� then we have for the M�G�� queue with 	nite capacity K�

Lq�K �
 �� 


 �
� ��e
 ����e��K � K ��� �����

where e
�s� � ����s�
��s

� e
 ��s� is the derivative of e
�s�� and � is the unique positive real solution
of

 �e
�s� � 
� ���
��

Proof Follows immediately from ����� and Part �iii� of Theorem 	�� in �
�� �
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	� Concluding remarks

In this study� a �uid model with a �nite bu�er has been studied� It has been shown that the
�uid model under consideration is related to the �nite dam with instantaneous input� and to
the �uid queue with in�nite bu�er� These relations are applied� along with some new results
for the �nite dam� to obtain asymptotic expansions for the loss fraction and the mean bu�er
content in case of heavy�tailed input� The results obtained show that the performance of
the �uid queue is seriously a�ected by heavy�tailed input characteristics� In particular� the
loss fraction decays to zero very slowly when the bu�er size gets large�

There are several topics which may be interesting for further research� The asymptotic
expansions developed in Section � may be of use to estimate the loss fraction and the mean
bu�er content of these models� It also might be possible to generalize these asymptotic
results by generalising Theorem ��	 from regularly varying to subexponential service time
distributions�

A serious limitation of the �uid model discussed in this paper is that it does not cover the
case in which on�o� sources send at a peak rate which is smaller than the output rate� We
note however� that the analysis of this model is already quite di�cult in the in�nite bu�er
case� see e�g� �	� A challenging topic for future research is to obtain asymptotic expansions
for the loss fraction for this practically important case�


� Appendix

In this section we give a direct proof of the proportionality result in Section � �Theorem ��	��
because we believe it is interesting in itself� It is an extension of the proof of Hooghiem�
stra �	� for the proportionality result ����� for the M�G�
 �nite dam� We start with two
preliminary observations�


� Let c and cK be the length of a busy cycle for the in�nite bu�er model and the model
with �nite bu�er K respectively� Then� the laws of Z and ZK are given by� cf� �
�� �

P�Z � x� �



E�c
E

�
� cZ

�


	��x
�Z�t��dt

�
� � ���
�

P�ZK � x� �



E�cK 
E

�
� cKZ

�


	��x
�Z
K�t��dt

�
� � ���	�

	� Let x � K �� and suppose that a downcrossing at level x occurs for the process ZK�t�
for some t� so that the environment process I�t� � 
� Then� since U� is exponentially
distributed� the time that elapses until I reaches zero is distributed as U�� due to the
memoryless property of the silence periods�

We now construct a stochastic process bZK�t� directly from Z�t�� Consider an arbitrary
sample path of Z�t�� e�g� the sample path in Figure 
�
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Figure 
� Construction of a sample path of bZK�t� from Z�t��

The corresponding sample path for bZK�t� is constructed as follows� The parts of the sample
path of Z�t� below level K remain unchanged� Consider the parts of the sample path of Z�t�
between an upcrossing and a consecutive downcrossing of level K� Each of these parts can
be divided into two sub�parts� The �rst sub�part is de�ned as the remaining activity period
and the second sub�part as the remainder of the part� Now delete the second sub�part and
truncate the �rst sub�part to level K� cf� Figure 
�
Since the silence periods in the in�nite bu�er model are exponentially distributed� the

same holds for silence periods in the process f bZK�t� � t � �g� by Observation 	� It follows

immediately from the construction of f bZK�t�g that the durations of the activity periods in

f bZK�t�g have the same distribution as D�� and are all independent and independent of the
silence periods� Finally� the trajectories during activity periods kan be chosen identically �in
distribution� and independent from each other according to the stochastic process fR��t� �

t � �g� Hence� the dynamics as f bZK�t�g satisfy the same dynamics as the process fZK�t�g�

as de�ned by Equations �	��� and �	���� This proves that f bZK�t� � t � �g has the same law
as fZK�t� � t � �g�
To simplify the notation� we now can de�ne the process ZK�t� as

ZK�t� �� bZK�t�� t � ��
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It follows immediately from the construction of ZK�t� from Z�t� that the number of down�
crossings from level x � K is the same for their respective sample paths� which implies that
the number of downcrossings at level x � K of the process ZK�t� during a busy cycle has
the same distribution as that of Z�t� for each � � K ���

A second implication of the construction carried out is that

cKZ
�


	��x
�Z
K�t��dt �

cZ
�


	��x
�Z�t��dt� �����

for � � x � K� This implies the proportionality between the stationary distributions of
ZK�t� and Z�t�� by ���
� and ���	�� De�ne � � E	c


E	cK 

�

We relate � to the loss fraction LK by using variants of Little�s formula� see also Section ��
The amount of work brought into the system per unit of time equals � in the in�nite bu�er
model and ��
� LK� in the �nite bu�er model� Hence� we have by Little�s formula that

P�Z � �� � 
� �� �����

and� for K � ��

P�ZK � �� � 
� ��
� LK�� �����

Consequently�

� �

� ��
� LK�


� �
� �����

A straightforward computation �use ����� and Theorem ���� shows that � � 
�P�W � K��
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