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Mathematical modelling of thermal runaway in semiconductor laser operation

W. R. Smith

Department of Mathematics and Computing Science, Technische Universiteit Eindhoven, PO Box 519, 5600 MB Eindhoven,

The Netherlands

A mathematical model describing the coupling of electrical, optical and thermal effects in semi-

conductor lasers is introduced. Through a systematic asymptotic expansion, the governing system

of differential equations are reduced to a single second-order boundary value problem. This higWy

nonlinear equation describes the time-independent maximum temperature in the boundary layer

adjacent to the mirror facet. The solution of the problem is a multi-valued function of current. The

graph of the maximum steady-state temperature as a function of current gives a fold-shaped re­

sponse curve, which indicates that no bounded steady state exists beyond a critical value of current.

For certain device parameters and initial conditions, thermal runaway occurs. A mechanism for the

sudden mode of semiconductor laser failure is described in terms of thermal runaway.
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I. INTRODUCTION

The basic property of thermal runaway is that the temperature blows up at some point in the domain at a finite time

for the appropriate choices of parameters and initial conditions. The most celebrated example of thermal runaway

occurs in combustion theory (see [1] and references therein). The physical reason for this is the positive feedback

associated with the exponential source term, which occurs in the large activation-energy limit of the Arrhenius law

of chemical kinetics. The use of microwaves to sinter or join ceramics is another application of thermal runaway

(see [2]). In the case of ceramics, the positive feedback in the nonlinear source term is in the model for the effective

conductivity. Other examples include autocatalytic chemical reactions and electrical heating (see [3] and references

therein). In this paper, the failure mechanisms for semiconductor lasers will be studied in terms of thermal runaway.

The physical process providing the positive feedback here will be the highly nonlinear temperature dependence of the

photon absorption.

A schematic cross-section of a typical semiconductor laser is shown in Figure 1. Semiconductor lasers have been

developed for many applications, for example, optical fibre transmission systems. However, these devices suffer from

new types of degradation and failure mechanisms. These degradation modes have been split into three categories,

based on the rate of change of the device characteristics, namely rapid, gradual and sudden (see [4] and references

therein). The gradual mode is attributed to an increase in point defects. This gradual degradation, which takes place

on a time-scale of 10 years, is responsible for a loss of efficiency. Moreover, all three modes are associated with thermal

effects, but this link is not well understood.

There has recently been a considerable amount of work directed at the understanding of this heating process.

Two-dimensional (transverse and lateral) steady-state results have been obtained for the system of equations given

by electrical models (electron continuity, hole continuity and Poisson's equation), optical models (wave equation and

photon rate equation) and thermal models (heat equation); see, for example, [5], [6]. These space-dependent models

are currently exclusively solved by numerical approaches, despite the wide variation of length-scales. The numerical

simulations require extensive computer resources, especially when parameter studies are required.

A fully lumped model, which comprises four ordinary differential equations, has recently been reported [7]. Asymp­

totic solutions of this lumped model explain the link between thermal effects and loss of efficiency. However, the

steady-state temperature is a monotonic function of the current and spatial variation of thermal effects cannot be

described. Subsequently we introduced a one-dimensional model, which comprises four partial differential equations
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and one parametric ordinary differential equation, to describe the longitudinal variation of thermal effects [8]. Asymp-

totic solutions of this model have been obtained on the short and long thermal time-scales as with the lumped model.

The increase in the density of point defects at the mirror (corresponding to degradation) produces a hot-spot over

the short length-scale (in comparison to the cavity length) associated with the thermal conduction. The maximum

steady-state temperature (in the hot-spot) is a monotonic function of current.

The purpose of this paper is to gain a better understanding of the failure mechanisms for semiconductor lasers. We

extend the work done on hot-spots by considering the effect of a new scaling for the higher current, the higher photon

density, the higher density of defects and the higher temperature. These new scalings result in a highly nonlinear

boundary value problem to describe the steady-state temperature in the hot-spot. This equation admits a maximum

temperature which is a multi-valued function of current. A result which explains the runaway phenomenon seen

experimentally when the current is increased [4].

This paper is not concerned with the reduction of light intensity which may be explained by the temperature

dependence of the threshold current

The contents of this paper will now be outlined. A one-dimensional model is formulated in Section II. These

equations are non-dimensionalised in Section III. In Section IV, an asymptotic analysis of the model on thermal

time-scales is undertaken. Section V examines the highly nonlinear boundary value problem which describes the

maximum temperature at steady state. Section VI describes a numerical solution of the full system of equations to

illustrate the predictions of the analysis. Finally, Section VII briefly draws some conclusions.

II. PROBLEM FORMULATION

This section outlines the inclusion of thermal effects into the travelling-wave rate equations (see [9]). We have

aN J
7ft = ed - a(N - Ntexp(-Eint/kBT1»(1+ + 1-)

-N (Anr exp(-El/kBT1 ) + BN exp(-E2 /kBT1 ) + CN2 exp(-E3/kBT1», (1)

(2)

where N(z, t) is the concentration of electrons in the conduction band, I+(z, t) is the light intensity of the wave

travelling in the positive z direction and I-(z, t) is the light intensity of the wave travelling in the negative z direction,

t is time, z is the axial length, the constant J is the current density per unit axial length, e is the charge on an electron,
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d is the thickness of the active layer, C is the velocity of light in a vacuum and J1.g is the group refractive index of the

active layer.

In (1)-(2) the optical gain has been modelled by an expression of the form G(N, TI) = a(N -Nt exp(-Eint/kBT1))

where a is the linear gain rate, kB is Boltzmann's constant, T1 is the temperature per unit axial length of the active

layer, Eint is the activation energy and Nte-EinC/kBTt is the electron density at transparency. The linear dependence

of the optical gain on the carrier density and the Arrhenius temperature dependence of absorption are adopted on

the basis of the experimental evidence (see [10] and [11], respectively). We neglect any temperature dependence of a

(cf. [5]).

The carrier lifetime, Te, is given by (see [7]) l/Te = Anr(z)exp(-EdkBT1) + BNexp(-~/kBT1) +

CN2 exp(-Ea/kBTI) where Anr(z) is a function (discussed below) and B and C are constant. The first term on

the right-hand side represents surface and defect recombination with activation energy Ell the second radiative re­

combination with activation energy ~ and the third Auger recombination with activation energy E3 • The radiative

recombination can be split into spontaneous emission which enters the lasing mode and spontaneous emission which

is absorbed in the surround as heat. The constant (3 represents the fraction of spontaneous radiation which enters the

lasing mode. The electrons lost to the valence band by nonradiative and Auger recombination are assumed to have

converted their energy into heat in the active layer.

The function Anr(z) represents the defects in the semiconductor caused by degradation. The rate of degradation

is governed by mechanisms such as oxidation and fatigue. In general these processes are temperature dependent and

take place over much larger time-scales (10 years) than those considered here; a typical model being an Arrhenius law

(see (3.37) of [4]). The association of degradation with thermal effects indicates that it is appropriate to consider it

on the thermal length-scale. This is in contrast to surface defects which are usually assumed to be on the molecular

length-scale. The function Anr(z) will be assumed to be ofthe form

1 + S(z) z ~ 'Y,

1 'Y < z < L - 'Y,

1 + S(L - z) L - 'Y ~ z,

where L is the cavity length, S(z) represents the increased density of defects in the neighbourhood of the surface, 'Y

is the penetration depth of these defects and Ae is the density of defects in the cavity of the laser. The defects will

be taken to be of the form S(z) =ah - z)h where a represents a measure of the maximum density of defects. In

the analysis which follows, we also take the slightly simpler form S(z) = a in order to obtain asymptotic solutions.
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The rate of scattering loss at heterostructure interfaces is given by OOint/Itg where Q:int is the absorption constant.

The photons in the lasing mode which are scattered at heterostructure interfaces are all assumed to be turned into

heat in the surround. In the absence of experimental data, we neglect any temperature dependence of /3 and Itg·

Thermal effects can then be coupled into the single-mode rate equations via

(4)

where PI is the density, Cl the specific heat capacity and k1 the thermal conductivity of the active layer, E g is the band-

gap energy, Kl is the heat transfer coefficient between the active and the surrounding layers, T2 is the temperature

per unit axial length, P2 the density, C2 the specific heat capacity and k2 the thermal conductivity of the surrounding

layer, K2 is the heat transfer coefficient between the surrounding layer and the material outside the laser, Ta is the

(constant) ambient temperature, 0 1 is the cross-sectional area of the active layer and O2 is the cross-sectional area of

the surround. The first term on the right-hand side of (3) is the energy generated by the nonradiative recombination

of electrons and holes in the active region. The first term on the right-hand side of (4) represents the heat generated

from the absorption of the scattering loss at heterostructure interfaces. The second term on the right-hand side of

(4) represents the heat generated from the absorption of the spontaneous emission which deviates outside the active

region. The remaining terms on the right-hand side of (3) and (4) model the transport of heat.

The boundary conditions for the intensities are given in terms of the reflectivities R(I) at z = °and R(2) at z = L

by the expressions

1+ (0, t) = R(I)r (0, t), (5)

Radiation and convection through the sides of the laser are assumed to be negligible, so we have

(6)

We neglect any temperature dependence of R(I) and R(2). Further details of the modelling are given in [8].

The threshold current (Jth(T1»and electron concentration at threshold (Nth(Tt}) are given by the solutions of the

equations
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The ratio of two threshold currents at different temperatures is given by

An approximation for the characteristic temperature needs to be extracted from the right-hand side of this equation

for each laser.

III. NON-DIMENSIONALISATION

We define Ne and Ie to be representative values for the average electron concentration and the average photon

density at fixed temperature T1 = Ta and current greater than the threshold current (described in [8]). The values of

Ne and Ie are calculated using the formulas Ne = Nt exp(-Eint/kBTa) + C [O:int + In (1/R1R 2 ) /(2L)] /af.J.g and

J 2 gd - Anr exp{-Et/kBTa)Ne - B exp(-E2/kBTa)Ne - C exp{-Eg/kBTa)Ne1 - .",e=---- --:-:--:------:'C:------:----:::---:-::--=--:-:- _

e - 2a (Ne - Nt exp(-Eint/kBTa))
(7)

We define 6. to be a typical steady-state value of the active region temperature rise and calculate it from the formula

We introduce a time-scale Tt which will be chosen shortly. Making the transformation to dimensionless variables

N = NeN, I± = Iej±, Anr = AeA, T1 =Ta + 6.'i't, T2 =Ta + 6.1'2, Z = Lz and t = Td, equations (1)-(6) become

A 2 AaT2 a T2 (A A) A2 A A A A Aat - Se 822 =Ne I+ + r + 'PeN f( -A2 , T1 ) + Qe{TI - T2 ) - eT2 ,

where j(A,':i't} = exp {A/(1 + 61'1) } and g(N, Ii) = N - N* j{r1'I, Tt} with the boundary conditions

6
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(12)

The dimensionless constants A/r, aI, a2, a3, AI, A2 , A3 , B/r, N*, r, 6, v, 'D/v, E/v, gr, IC, £, A, 0'2, Ne, Pe, Qe,

e, R(l), R(2) and Se are defined in Table I; the time-scale chosen being Tt = Plclfh/Kl, giving a balance between the

rate of change of temperature of the active region and the Newton cooling term. The electrical time-scale is defined

by Te = I/Ae (the longest of the two time-scales on the right-hand side of (8». The conditions v« 1, A« 1, e« 1,

r « 1, 0' « 1, 6/r « 1 typically hold in practice. The small parameters are v, representing the ratio of the optical

time-scale to the electrical time-scale; A, the ratio of the electrical to the short thermal time-scale; e, the ratio of

the short thermal time-scale to the long thermal time-scale; 0', the ratio of the thermal boundary layer length-scale

to the cavity length; 6, the typical temperature rise in the active region relative to the ambient temperature; and

r, the dimensionless activation energy for absorption. The value of the applied current (J) and the corresponding

photon density (Ie; see (7» justify the choice of scaling for the dimensionless constants A/r, B/r and gr; this

choice producing the appropriate balance in the analysis which follows. These small parameters will be exploited in

simplifying the thermal problem in Section IV.

IV. ASYMPTOTIC ANALYSIS

A. Introduction

There are several disparate time-scales and two length-scales in the problem (8)-(12). We study these equations on

the short (t = 0(1» and long (t = O(I/e» thermal time-scales. Both of the length-scales are required in the analysis

which follows.

The leading order term for temperature in [8] satisfied an outer problem and an inner problem close to the mirror

facet. The extra term introduced in the boundary layer corresponded to axial thermal conduction. The temperature

was much higher in the boundary layer than in the body ofthe semiconductor due to the heating mechanism associated

with defects in the neighbourhood of the surface, the boundary layer being described as a hot-spot. As the current is

increased, the temperature in the hot-spot also increases. The temperature dependence of the absorption, which was

previously treated as a lower order term [8], now enters the leading order problem. This new balance requires a new

layer in which the temperature and the number of defects are scaled in terms of the small parameter r. In summary,

the leading order problem on the thermal time-scales comprises an outer problem and two layers close to the mirror
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facet.

B. Short thermal time-scale

1. Outer expansion

The required expansions take the form if ,...., No, j+ ,...., Fo, j- ,...., Bo, '1'1 ,...., TJ1) and '1'2 = O(e). We obtain

~ (11

)Bo = Cy RW exp :1:=£ [No - N* - £] dx/V ,

and No given by

where (C "I- a because A "I- 0)

(13)

(14)

Equation (10) implies the general solution TJ1) = [KANoe-A1 + £N3e-Aa] + g(z)e-£. Therefore, the steady state

in this outer problem is stable for all choices of initial condition consistent with these scalings. The first term in the

expansion forTI does not satisfy the boundary conditions, in general, and there are boundary layers at z= a and

z = 1. We consider the layers at z = ain the following two subsections; the layers at z = 1 being similar.

£. Layer I at z=0

We perform the stretching transformation z = aZI in the boundary layer and let if "" no, j+ "" fo, j- "" bo,

'1'1 "" oo/r, '1'2 = O(e) and A "" Ao/r. The scaling on A corresponds to the increased density of defects in the

neighbourhood of the surface. Equation (9) implies fo = Fo(O), bo = Bo(O) and (8) then gives

We thus obtain

(15)

with one boundary condition at ZI =0 given by 800 /8Z1 =0 and the other to be determined by matching. We note

that the exponential nonlinearity on the right-hand side of (15) was not pr~sent in the asymptotic analysis of [8].
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9. Layer II at z=0

We perform the stretching transformation z = a(ln(l/r) + Z2) in the boundary layer and let N '" no, j+ '" fo,

j- '" bo, Tl '" 'l/Jo and T2 = O(e). Equation (8) implies no = (A + 8N*(lo + bo)) /8(10 + bo) and (10) then gives

a'I/Jo a2'I/J0 A - ( ) -3 (A )
-A + 'l/Jo - az2 = KAno exp -Al + £no exp - 3at 2

with boundary conditions determined from matching with layer I and the outer expansion.

c. Long thermal time-scale

This corresponds to the time-scale of conduction in the surround and is the longest time-scale in the problem. In

(8)-(11) we scale t = r/e to give

1. Outer Expansion

(16)

(17)

(18)

(19)

The required expansions take the form N '" No, j+ '" Fo, j- '" Bo, Tl '" ~&l) and T2 '" ~&2). Equation (18)

implies KANoe-A1 + £N~e-A3 + ~&2) - ~&l) = 0, and (19) then gives

a~&2) + .;r,.(2) _ Sa2~&2) (A)ar 'J.'o az2 p z with

where p(z) = -N (Fo + Bo) - 'PN~e-A2 - Q {KANoe-A1 +£N~e-A3}. We obtain

00 (l
~&2) (2, r) =~ An exp{-(1 + Sn27l"2)r} cos(n7l"2) + J~=o G({, z)p({)d{,

where
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A 1 { cosh(~/VS) (sinh(z/VS) - cosh(z/VS) coth(I/VS») ~ < Z,
G(~,z) = VS

s cosh(z/VS) (sinh(~/VS) - cosh(~/VS) coth(I/v'S») z<~.
and An are determined by matching with the short thermal time-scale. The steady state in this outer problem is

stable for all choices of initial condition consistent with these scalings. We now consider the boundary layers at z= 0

in a similar manner to the short thermal time-scale.

2. Layer A at z=0

We perform the stretching transformation z = a Z1 in the boundary layer and let N '" 110, j+ '" 10, j- '" bo,

1'1 '" eo/f, 1'2 = 0(1) and A '" Ao/f. Equation (16) implies

A + BN* exp(eo) (fo + bo)
'fJo = a1Aoexp(-AI) + B (fo + bo)

We thus obtain

(20)

with one boundary condition at Z1 = 0 given by 8eo/8Z1 = 0 and the other to be determined by matching. We

again note the exponential nonlinearity on the right-hand side of (20).

3. Layer B at z=0

We perform the stretching transformation z = a(ln(l/f) + Z2) in the boundary layer and let N '" no, j+ '" 10,

j- '" bo, 1'1 '" W&1) and 1'2 '" W&2). Equation (19) implies W&2) = cp&2) (0, r) and (18) then gives

82w(1)
W~1) - 8Z~ = KAno exp(-A1 ) + .eng exp(-Ag) + W~2)

with boundary conditions determined from matching with layer A and the outer expansion.

V. THERMAL RUNAWAY

A. Introduction

In this section we examine the maximum value of temperature at steady state. Moreover, we are interested in

treating A as a bifurcation parameter which corresponds to varying the current. In [8], the maximum temperature
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at steady state is a monotonic function of current and this does not explain the phenomenon of thermal runaway.

The additional nonlinearities, which are introduced in layer I and layer A, admit a maximum temperature which is a

multi-valued function of current.

We now derive the equation which describes the dependence of the maximum temperature on A, utilising the

equations for the short or long thermal time-scales in Section IV. We use (13) to eliminate the photon densities from

(15) or (20) and note that the function AO(Zl) is only non-zero over a finite length, namely [0, W). For Zl ~ W, the

steady-state temperature, O(Zt}, is given by 0 = Pe-Z1 + QeZ1 where P and Q are constants. Matching with layer II

implies that Q = O. Therefore we can prescribe the boundary condition at Zl = W by dO/dZl = -0. We summarise

the nonlinear boundary value problem which describes the maximum temperature as follows

d
2
0 = 0_ kA A {N +_N* exP(O)}

dZ? 0 aNAo+A

where a= al exp(-At}, k = K:exp(-At} and N = No (0) - N* with boundary conditions

(21)

(22)
dO dO

at Zl = 0 dZ
1

= 0, at Zl = W dZ
1

= -0.

The quantity No(O) is taken to be fixed because the physical solutions of (13)-(14) corresponds to A/e constant and

No independent of the choice of A. In this section, we consider four examples of (21)-(22) for different functions

Ao(Zt} and constants W. In two cases, we will obtain numerical results with the AUTO bifurcation package and, in

the other two cases, we will make asymptotic simplifications.

B. W =0(1), Ao = X(W - Zd

Firstly we consider a particular version of (21)-(22) with Ao = 4(1 - Zt}, W = 1 and the data given in Table I

(the reason for the choice X = 4 will become apparent). The maximum value of () at steady state as a function of the

bifurcation parameter A is shown in Figure 2. It is clear from the figure that there is a current Ac, beyond which no

bounded steady state exists; that is, more power is deposited by non-radiative recombination than is lost by thermal

conduction. The nonexistence of bounded solutions beyond the critical current is mathematically a consequence of

the uniform intensity within the boundary layer and the assumption of Arrhenius temperature dependence in the

expression for absorption. The upper branch of the response curve becomes invalid as () -t 00 because at these high

temperatures the absorption becomes very large and the intensity may no longer be taken as uniform across the

boundary layer. Numerical simulations of (8)-(12), with the appropriate choice of initial conditions, indicate that the

lower branch is stable and the upper branch unstable.
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We now examine the variation of the current, A e, beyond which no bounded steady state exists in response to

changes in W and X. The results of simulations with W = 1 and several values for X are shown in Figure 3. For

X « 1, the figure indicates that no fold bifurcation takes place, that is a bounded steady state solution always exists.

However, for X» 1, the current Ae decreases significantly only leaving a narrow range of currents available for stable

operation. We now consider the results of simulations with X =4 and several values for W (shown in Figure 4). For

W « 1, the figure indicates that a bounded steady state always exists. In the case W » 1, only a narrow range of

currents are available for stable operation. This behaviour is consistent with experimental observations of the sudden

mode of failure [4].

We also note that the maximum temperature is a multi-valued function of the density of defects in the neighbourhood

of the surface. The response diagram for fixed A = 1 with the bifurcation parameter X is shown in Figure 5. The

sudden mode of failure may be explained in terms of the slow increase in X which takes place during aging. The

sudden failure occurring as X passes through Xe the critical defect density beyond which no bounded steady state

exists.

The current is proportional to the optical power at leading order. The response diagram with bifurcation parameter

taken to be optical power is a scaled version of Figure 2.

c. W = 0(1), Ao constant

We consider an autonomous version of (21)-(22) with Ao = 4 and W = 1 for comparison. The response diagram is

qualitatively similar to Figure 2. However, the increase in the number of defects produces a fold at the lower value of

current (Ae ~ 0.2).

D. W « 1, Ao constant

Consider the case where Ao is taken to be a constant and W -+ 0, then problem (21)-(22) is of regular perturbation

type. We take Zl = WZ. Two steady states arise: one given by

and the other given by

where
8 _ k(N + N*)AoA
0- aNAo+A

(J '" In(l/W) + In In(l/W) +80 + W In(1/W)81

12

where 8 = I (aNAo+A)
o n kAoAN* .



The axial thermal conduction balances with the thermal source term, the transverse and lateral thermal conduction

only appears at lower order. We note that no fold bifurcation is present in the response diagram in this case.

E. W:» 1, Ao constant

For W ~ 00 and Ao taken to be a constant, problem (21)-(22) is of singular perturbation type. The transverse and

lateral thermal conduction balances with the thermal source term in the outer problem, the axial thermal conduction

only plays a part in the inner expansion. We take Zl = W Z.

Outer Expansion. The required outer expansion takes the form () '" iiJo which satisfies the nonlinear algebraic equation

A. = kA A{N+N*exP(fPo)}
'1'0 0 aNAo+A .

The fold point, A = A e, is given by the unique positive real root of the equation TN* exp(TN + 1) = 1 where

T = kAoAe/(aNAo + Ae). This outer solution does not satisfy the boundary condition at Z = 1 and there exists a

boundary layer. The transverse and lateral thermal conduction balances with the thermal source term in this outer

expansion, the axial thermal conduction will appear in the boundary layer.

Inner Expansion. We rescale the independent variable Z = l-e/W and introduce an expansion ofthe form () '" ~o(e).

We obtain

with

The response diagram for (21)-(22) with W = 10 and Ao = 4 is again qualitatively similar to Figure 2. The increase

in W produces a fold at a lower value of current than in Subsection VC (Ae ~ 0.1).

VI. NUMERICAL SOLUTION

We discretise the spatial variable in (8)-(11) leading to a system of ordinary differential equations. The convection

terms in (9) are represented by a first-order upwind discretisation. The diffusion terms in equations (10)-(11) are

approximated by the standard conservative central difference. The thermal diffusion coefficient in (10) is sufficiently

small to only become significant in a thin region of space. We select a mesh which (i) accurately models the boundary

13



layers at 2 = °and 2 = 1 and (ii) varies continuously throughout the domain. We chose a Bakhvalov mesh (see

[12] and references therein) in the regions °:$; 2 < 'Y/ L and 1 - 'Y/ L < 2 :$; 1 to satisfy (i). We must be careful, in

addressing (ii), not to significantly increase the number of mesh points. Define a uniform mesh XN, XN+l, ••. , XN+m

on [-7T/2,7T/2] as the starting point. Then define a mapping Zj = f(xj), where f(x) = 1/2 + (1/2 - 'Y/L) sin(x) ,

to produce a progressive refinement towards both boundary layers. The parameter values in Table I indicate that

a number of very different time-scales are present and the stiff ordinary differential equation solver D02EAF was

accordingly selected from the NAG library. Numerical results have been obtained for a variety of meshes but it was

not possible to obtain grid independence in the simulation of thermal runaway owing to the ill-posed nature of the

problem. However, the results did remain qualitatively the same on the various mesh refinements and we present the

results to illustrate the analysis. The numerical simulations, which attained bounded steady states, proved to be grid

independent.

We present the stable steady state attained for the parameter values given in Table I. The steady-state temperature

rise in the active region is shown in Figure 6, higher temperatures being attained there than the surround. We note

that the temperature rise in the surround does not exhibit the sharp maxima seen in the temperature rise of the

active region. The maximum steady-state temperature rise in the active region predicted by the lower branch of

the response diagram in Figure 2 is 13K, similarly a value of 13K is predicted by the numerical solution; the two

approaches showing good agreement. As a result of the temperature rise, the light intensity (shown in Figure 7)

decreases slightly. The electron concentration increases in response to these temperature rises with maxima being

observed in the neighbourhood of both mirrors.

We now seek numerical results for the parameter values given in Table I except that we take A = 1. This choice

of parameter values corresponds to the regime where no bounded steady-state solutions exist (cf. Figure 2). The

simulation is started from the initial condition N(2,0) = 0, j±(2,0) = 0, 1't(2,0) = °and 1'2(2,0) = 0. Numerical

results are given for two spatial meshes: one in which there are 100 points within each Bakhvalov mesh and 280

points in total (mesh A) and one in which there are 80 points within each Bakhvalov mesh and 220 points in total

(mesh B). The results are qualitatively the same for the two meshes. The temperature rise of the active region on the

mirror facet as a function of time is shown in Figure 8. The temperature of the active region shows a gradual increase

and this is accompanied by a gradual increase in electron concentration and a slow decrease in light intensity (shown

in Figure 9). The rate of change of temperature in the active region increases rapidly as the temperature in the

active region attains a value where nonlinear effects dominate. The high temperatures result in a sudden reduction of
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photon density and increase in electron concentration at the mirror due to the strong temperature dependence of the

absorption. The temperature rise in the active region and the surround as a function of longitudinal length is shown

in Figure 10. The temperature rise in the boundary layer is significantly higher than inside the cavity of the laser.

VII. SUMMARY AND CONCLUSIONS

A mathematical model has been introduced to describe the thermal runaway observed during semiconductor laser

operation. The equations are scaled to reflect the effect of high current, photon density, density of defects and

temperature. An asymptotic analysis results in a stable steady state in the body of the laser and in a highly nonlinear

boundary value problem to describe the steady-state temperature in the hot-spot. The response diagram for this

boundary value problem takes the form of a fold in terms of the bifurcation parameter which represents current.

Numerical simulations of the full time-dependent system determines that the lower branch is stable and the upper

branch is unstable. (We may also choose the bifurcation parameter to be the density of defects in the neighbourhood

of the surface and obtain a fold in the response diagram.) We note that fold bifurcations have structural stability.

The fold bifurcations obtained for the leading-order equations will therefore be characteristic of the complete system

of equations. The subsequent terms in the asymptotic expansions merely represent imperfections. Moreover, this

general behaviour should also be observed in other (higher dimensional) models for semiconductor lasers with strong

temperature dependence of the photon absorption.

The length-scale over which the increased density of defects stretches is an important parameter in determining the

critical current beyond which no bounded steady states exist. If this distance is significantly less than the thermal

length-scale (VklOI/Kl) then there is a stable and an unstable steady state. Thermal runaway only takes place when

extreme initial conditions are prescribed. In contrast if this length-scale is significantly greater than the thermal

length-scale then there is only a narrow range of currents over which a stable steady state can be obtained. Similar

comments apply to the magnitude of the increased density of defects in the neighbourhood of the facet relative to the

reference value AekBT: / Eintt:t...

We conclude by offering an explanation of the sudden mode of failure in terms of thermal runaway. The sudden

mode corresponds to the device set-up initially lying inside the region where bounded steady states are allowed but

the slow increase in defects (aging) moves the device parameters out of this region. The instant the device crosses

this boundary a sudden increase in temperature takes place at the mirror facet and a sudden decrease in laser output.

The temperature at the facet can exceed the melting point of the laser crystal leading to the so-called catastrophic

15



optical damage.
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TABLE I. Dimensionless parameters for a typical GaAs laser diode (where some values are reliable and some best estimates).
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B/r

N*

II

V/ll

[/11

gr

'"Y/L

JC

t:.

.Ne

'Pe

Qe

R(I)

R(2)

Se

r

5

A

e
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AeTe

BNeTe

CN;Te

EI/kBTa

E2/kBTa

Es/kBTa

Nt exp(-Eint/kBTa }/Ne

1/ aTeNe

CTe/JJgL

AeNeEgTt/PI CI A.

CN:EgTt/PICIA.

CO:intleEgTtfh / JJgp2c2A.n2

(1 - 2f3}BN;EgTtnl / p2c2A.n2

KITt/p2C2n2

k2Tt/P2C2L 2

EintA./kBT;

A./Ta

Te/Tt

pICInIK2/p2C2n2KI

klnl /KIL
2
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Typical Value

8

3 X 102

1

1

0.3

1

1

1

10

0.7

1 x 10-4

2 X lOs

1 X lOs

8 X 10-2

4 X lO-s

2

0.5

3 x 10-4

2 X 10-4

1 X 10-4

0.3

0.3

2 x 10-5

1 X 10-2

2 X lO-s

0.1

6 x 10-4

2 X 10-5



List of Figures

1 Typical layered structure of a double-heterostructure semiconductor laser. The lateral direction is

denoted by x, the transverse direction by y and the longitudinal (or axial) direction by z. The battery

potential is applied in the transverse direction, the mirrors are located at z = 0 and z = L and Xl = w/2. 20

2 Typical steady-state response diagram for the maximum temperature 8maz plotted against the bifur­

cation parameter A. The parameter values are given in Table I with Ao =4(W - Zl) and W =1. .. 21

3 The decrease in the current beyond which no bounded steady state exists in response to an increase in

the density of defects in the neighbourhood of the surface, using the data in Table I and W = 1. The

parameter region above the curve corresponds to thermal runaway for all initial conditions. . . . . .. 22

4 The decrease in the current beyond which no bounded steady state exists in response to an increase in

the length of the region containing a high density of defects, using the data in Table I and X = 4. The

parameter region above the curve corresponds to thermal runaway for all initial conditions. . . . . .. 23

5 Typical steady-state response diagram for the maximum temperature (Jmaz plotted against the bifur­

cation parameter X. The parameter values are given in Table I except that A = 1, Ao = X(W - Zd

and W = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24

6 The numerical solution for the steady-state temperature rise of the active region and surround. The

parameter values are given in Table I with Ao =4(W - Zd and W = 1. . . . . . . . . . . . . . . . .. 25

7 The numerical solution for the steady-state electron concentration and the light intensities. The pa­

rameter values are given in Table I with Ao = 4(W - Zl) and W = 1, the electron concentration is in

units of 1 X 1Q24m-3 and the light intensity is in units of 1 X 1022m -3. • • • • • . • • . . • • • • . • •• 26

8 Numerical solution for the temperature rise of the active region on the mirror facet using two spatial

meshes; mesh A being finer than mesh B. The agreement between the two meshes indicates a small

relative error. For Ao = 4(W - Zl), W = 1 and the data used to give Table I except that A = 1 to

instigate thermal runaway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 27

9 Numerical solution for electron concentration and the light intensities on the mirror facet. For Ao =

4(W - Zl), W = 1 and the data used to give Table I except that A = 1 to instigate thermal runaway,

the electron concentration is in units of 1 X 1Q24m-3 and the light intensity is in units of 1 X 1Q22m-3. 28

18



10 Numerical solution for the temperature rise of the active region and the surround at t = 1 X 10-7S.

For Ao = 4(W - Zd, W = 1 and the data used to give Table 1 except that A = 1 to instigate thermal

runaway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29

19



d

~.'~::~~~~~c~ ~.." ' _"' ".._ ~ 0

Yj 1

I
I
1
1
7 n-GaAs substrate

I
1..........................: 7···.

.'
1 •••••••••••••••• :;:
.6 n-~aAlAS cladding ....:

I ••" ... .' ...1
., .'.' I

""~,:r''------r ..' :
5 GaAs active layer •••• .':~ ~_______ _~~~ .+x

O· ~ • •.,: :;+. 4p-GaAlAscladding" ••••••••••••••••••••••~

~ ..--::.) ,-0: ''-'''''Ppiog :'.• 2Si~:-""""";jf}
Y

J
I-.~.~--------.....J.l Au-solder Y

Y
o X o Heat sink 10 X J W Xl
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FIG. 2. Typical steady-state response diagram for the maximum temperature (Jma:IJ plotted against the bifurcation parameter

A. The parameter values are given in Table I with Ao = 4(W - Zl) and W = 1.
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FIG. 3. The decrease in the current beyond which no bounded steady state exists in response to an increase in the density

of defects in the neighbourhood of the surface, using the data in Table I and W = 1. The parameter region above the curve

corresponds to thermal runaway for all initial conditions.
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FIG. 4. The decrease in the current beyond which no bounded steady state exists in response to an increase in the length

of the region containing a high density of defects, using the data in Table I and X =4. The parameter region above the curve

corresponds to thermal runaway for all initial conditions.
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FIG. 5. Typical steady-state response diagram for the maximum temperature Omaz; plotted against the bifurcation parameter

x. The parameter values are given in Table I except that A. = 1, Ao = X(W - Zl) and W = 1.
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FIG. 6. The numerical solution for the steady-state temperature rise of the active region and surround. The parameter

values are given in Table I with Ao =4(W - Zt) and W = 1.
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FIG. 7. The numerical solution for the steady-state electron concentration and the light intensities. The parameter values

are given in Table I with Ao = 4(W - Zl) and W = 1, the electron concentration is in units of 1 X 1Q24m -3 and the light

intensity is in units of 1 X 1022m-3 •
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FIG. 8. Numerical solution for the temperature rise of the active region on the mirror facet using two spatial meshes; mesh

A being finer than mesh B. The agreement between the two meshes indicates a small relative error. For Ao = 4(W - Zl),

W =1 and the data used to give Table I except that A. =1 to instigate thermal runaway.
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FIG. 9. Numerical solution for electron concentration and the light intensities on the mirror facet. For Ao = 4(W - Zt},

W = 1 and the data used to give Table I except that A. = 1 to instigate thermal runaway, the electron concentration is in units

of 1 x l024m-3 and the light intensity is in units of 1 x l022m-3.
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FIG. 10. Numerical solution for the temperature rise of the active region and the surround at t = 1 X 10-7s. For

Ao = 4(W - Zl), W = 1 and the data used to give Table I except that A = 1 to instigate thermal runaway.
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