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Chapter 1 

Introduction 

This chapter introduces and provides a motivation for the subject of this 
thesis. The subject is the verification of electronic designs by hierarchy 
reconstruction, and in particular the structure verification of the layout 
design of an IC (Integrated Circuit). The first section introduces briefly 
the notions of IC-design, synthesis and verification. The second section 
describes the main trends in IC-design. In the third section, the IC-design 
process is subdivided into two steps, high level design and layout design, to 
indicate the position of the thesis' subject in this process. Both steps are 
described in some detail. The last section describes the aim, subject and 
structure of the thesis. 

1.1 IC-design, synthesis and verification 

This section introduces the notions of IC-design, synthesis and verifica
tion. IC-design is the implementation of an initial IC-specification into a 
layout, which after processing results in an IC that meets the initial IC
specification. An initial IC-specification describes the required behavior 
of the IC, and constraints of the IC, such as timing, layout size, package 
demands, power consumption, etc. A layout describes the geometrical po
sitions of different materials in an IC, thus forming the basic components, 
such as transistors, resistors and capacitances, and the wiring network con
necting the basic components that determine the IC's behavior and prop
erties. An example of a layout is shown in Figure E.2 of Appendix E. The 
implementation is performed in a number of design steps as indicated in 
Figure 1.1 to keep overview of the large number of details. A design step 
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Figure 1.1: Example of a design trajectory. 
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consists of a synthesis phase and a verification phase. In the synthesis 
phase of a design step, a description which is the result of the previous 
steps, called the specification of the current step, is transformed into a new 
description, that brings the aim, a layout, closer by. The new description 
is called the implementation of the current step. Since synthesis is a com
plicated activity, the implementation may be incorrect with respect to the 
specification. In the verification phase of a design step, it is established that 
the implementation of the current step is consistent with the specification 
of the current step. When the verification is successful, the implementation 
of the current step is accepted as the specification of the next step. When 
the verification is not successful, the errors must be corrected. 

The description of the IC-design process so far is an example of a divide
and-conquer top-down method. This method is applicable only when the 
consequences at the lower levels of high-level choices can be estimated ac
curately. However, when details of an IC-design are not yet filled in, for 
example the size of the design remains hard to predict from the initial 
IC-specification. In addition, details at a lower level may dramatically 
influence the higher levels. Therefore, a strict divide-and-conquer design 
method is impracticable. In current design practice, several complete de
sign iterations from initial specification to layout are necessary, to map out 
the consequences of the choices made during the synthesis phases. Figure 
L 1 shows the hierarchy levels and steps for one example of a design style 
[Veend92.1]. Each level is indicated by a rounded box. A complete iteration 
consists of the traversal of a top-down synthesis trajectory and a bottom-up 
verification trajectory. On a smaller scale, e.g., between two levels, many 
top-down bottom-up iterations are usually made. 

1.2 Trends in IC-design 

This section briefly analyzes the trends in IC-design. Even after four 
decades of IC-design, the main trend remains unaltered: the complexity 
of an IC, i.e., the number of details involved for designing the IC, is larger 
than the complexity of the previous IC. As a consequence, the amount of 
specialization keeps on growing, and the CAD-design environments become 
larger and larger. The relative design effort spent on verification, compared 
to the effort spent on synthesis, grows due to the growing number of details. 
In addition, the permanent flow of newly created synthesis tools shifts the 
design bottleneck even further towards verification. 
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Silicon technology nowadays allows the integration of many millions of 
transistors. However, the number of transistors of an IC is only an indirect 
indicator for the complexity of a design. For instance, a memory IC may 
contain many millions of transistors, but most of them are designed by 
repeating the same pattern millions of times. Because memory ICs require 
little design effort per transistor, the ICs having the largest transistor count 
are usually memories. The main design challenge is not to increase the 
transistor count that can be handled, but to design complex systems with as 
little effort as possible. Complex systems consist of many different functions 
and parts, resulting in a design containing millions of transistors without 
global repetition. 

An additional phenomenon that comes with the complexity growth is 
that todays ICs are no longer designed with a single design method or a 
single design style only. A design is the result of a mixture of design meth
ods and styles, each mastered by a team of specialists. An IC may contain 
parts consisting of standard cells, ROM modules, PLA modules, embedded 
memories, analog parts, macro-cells, and library blocks. Different parts 
may be designed by logic synthesis, manually, by application specific syn
thesis tools, or be copied from another design etc. All parts are integrated 
into one layout. This involves the placement and connection of many thou
sands of terminals. Whether the right parts are present, whether they are 
implemented correctly, and whether the parts are connected correctly to 
each other, has become a major verification question and is therefore the 
main subject of this thesis. 

1.3 High level design and layout design 

Two major steps can be identified in a design process, i.e., 

• high level design and 

• layout design. 

In the following, both steps are briefly described, with emphasis on the 
verification phases. 

High level design 
The aim of high level design (see also Figure 1.2) is to take the initial 
IC specification that describes input output behavior and a set of con
straints, to find a high level structure that implements the specification 
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( Initial IC specification ) 

High level 
Verification synthesis 

( High level structure 

Figure 1.2: High level design. 

correctly. A structure refers to a set of interconnected components that 
make up the design. In general, a structure or network can be given at 
various levels of abstraction, relating to. various levels of detail. Since high 
level design deals with the properties as present at the levels close to the 
initial IC-specification, the outcome is a high level structure that contains 
no lower level details. The high level structure description may consist of 
macro-cells, standard-cells, analog cells, etc. Different parts of the initial 
IC specification may be synthesized by different design methods and styles. 
Like all design steps, high level design consists of a synthesis phase and a 
verification phase. In the high level synthesis phase, the top-down step is 
performed. In the high level verification phase one establishes the consis
tency between the initial IC specification and the high level network. This 
is mainly done by simulation, although for specific steps, better alternatives 
exist [Malik88], [Koste93], [Genoe92]. Much of research is done in this area 
[AFMC89], [TPCD92], [CHAR93], but many methods have not been as 
successful in the design practice as their creators hoped. 

Layout design 
Figure 1.3 shows the layout design phase. In this part of the design tra
jectory, the high level structure resulting from high level synthesis is trans
formed into a layout. A layout describes the geographical position of dif-
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ferent materials in an IC. The different materials represented in the layout 
are usually referred to as the "layers" of a design. By using floor planning, 
placement and routing tools, various libraries, macro-cell generators and 
usually some manual editing, etc., a complete layout is generated. Dur
ing this process, not only many different libraries and complicated CAD 
tools are used, but also the different design parts are brought together and 
usually some manual modifications are made. Verification is therefore an 
essential part of this design step, taking a major part of the layout design 
effort. These facts have motivated the subject described in this thesis, i.e., 
the improvement of verification in the layout design. The aim of the layout 

High level structure 

Standard-cell 
Structure libraries Placement 

Verification 
Macro-cell Routing 
generators 

Hand layout Macro-cell 

libraries generation 

Layout 

Figure 1.3: Layout design. 

verification phase is to check whether the high level structure description 
has been implemented appropriately in the layout. In the following sec
tion, this process is described bottom-up, starting with the layout. The 
verification is subdivided into three steps. 

In order to produce operational basic components such as transistors, 
resistors and capacitors, the layout must obey technology dependent de-
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sign rules [Veend92.2] that prescribe geometrical constraints on the layers. 
Therefore, the first verification step is to verify the layout design rules. 
Commercial layout extraction tools such as DRACULA, or Philips' LO
CAL45, are well capable of verifying the absence of layout design rule vio
lations. Since this verification step is common and widely used, it will not 
be described in further detail here. 

A second step consists of the extraction of basic components ( transis
tors, capacitors, resistors) from layout, as shown in Figure 1.3. The tools 
for design rule checking are able to perform this task as well and it is done 
simultaneously with the design rule checking. Most of the components are 
transistors at this level, only for some analog parts may capacitors and re
sistors be extracted a.<> well. The effect of parasitic capacitors and resistors, 
e.g., resulting from long wires in the layout, are usually checked by timing 
verifiers or by circuit simulation. Neither timing verification nor parasitics 
are subjects of this thesis. 

The third verification step, called structure verification, consists of 
checking whether a high level structure description has been implemented 
correctly at the transistor level. The focus of this thesis is on an effective 
method of performing structure verification. This method, called "hierar
chy reconstruction", is introduced in the next section. 

1.4 Hierarchy reconstruction 

This section describes the subject, motivation, relevance and structure of 
this thesis. The subject is an effective method of performing structure ver
ification, called "hierarchy reconstruction". The first paragraph describes 
the need for structure verification. The second paragraph derives the prop
erties that a structure verification method should have. The third para
graph explains briefly the verification method including the relevance of the 
method compared with other approaches. The final paragraph describes the 
structure of the thesis. 

The need for structure verification 
As indicated in Section 1.2 and elaborated in Section 1.3, a modern IC 
design consists of many parts coming from many different sources, put to
gether during the layout design phase. Not only is the design of each part a 
complicated task that needs verification, but also putting the parts together 
appropriately involves many CAD tools and libraries, and often error-prone 
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manual work. Furthermore, every non-trivial computer program contains 
bugs, and since many computer programs are involved during layout de
sign, one cannot rely on the result without checking afterwards whether 
the right components have been connected correctly. 

Structure verification requirements 
Any structure verification method must check whether the transistor level 
structure is connected correctly according to the high level structure. To 
get a reliable verification method, it should not rely on information added 
during the synthesis phase, but start from the final result, i.e., the layout. 
The aim of IC-design is a correct layout where a processed IC will meet the 
initial IC-specifications. This implies that both synthesis and verification 
by itself are not aims of IC-design, but inevitable steps, performed to get a 
reliable layout. A structure verification tool should therefore require little 
designer effort and few computer resources. The tool should also be able 
to handle current industrial designs, i.e., a design composed of a million 
transistors. A structure verification tool should not only signal the pres
ence of an error, but it should indicate the cause of errors, to diminish 
the extra design effort in correcting the errors. With the growing num
ber of components and connections in IC-designs, the importance of error 
indication grows as well. The common practice of combining different (per
haps slightly modified) parts coming from different sources in one layout, 
indicates that connectivity errors at the high structure level are likely to 
occur, so especially errors at different structure levels should be indicated 
appropriately. 

Hierarchy reconstruction 
Existing structure verification methods are simulation, functional abstrac
tion, netlist comparison at the transistor level and rule-based recognition. 
As will be shown in Chapter 2, these methods fail to combine complete 
verification, reasonable run times and appropriate error indication. The hi
erarchy reconstruction method as described in this thesis however succeeds 
in combining complete verification, reasonable run times and appropriate 
error indication. 

Hierarchy reconstruction is a method that starts with a transistor level 
netlist that has been extracted from a layout. By identifying clusters of ba
sic components forming a higher level unit, one can reduce the size of the 
netlist, and obtain a netlist consisting of higher level components. By per-
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forming this recognition process repeatedly, and on subsequent levels, one 
can obtain a netlist at the top level, allowing a high level netlist comparison 
to verify the correctness of the high level structure with the actual layout. 
When successful, the original high level structure has been reconstructed by 
the method. An advantage of the method is that any hierarchy that leads 
to the same top-level structure can be used, i.e., the verification hierarchy 
can be chosen independently to the one used in the layout synthesis phase. 

The aim of this thesis is to describe the hierarchy reconstruction method, 
and to show that the method works in practice. Basically, the hierarchy 
reconstruction method is implemented as a sequence of different sub-circuit 
recognition operations. The core of the thesis describes the recognition al
gorithm in detail, to explain why the method works. The algorithm will 
be shown to combine high run time efficiency, flexibility and effective error 
indication. 

Based on this work, an environment called Vera [Koste89], [Koste88], 
[Deloor90], [Koste91], [Koste92.2], [Koste92.3] has been developed that sup
ports the hierarchy reconstruction method. Vera is an acronym for VERi
fication Assistant. 

Overview 
The thesis is subdivided as follows. Chapter 2 describes existing structure 
verification methods found in literature. Chapter 3 describes the hierarchy 
reconstruction method, and the tools needed to make the method oper
ational are inventorized. The main part of thesis is found in Chapter 4, 
where the recognition algorithm is described. Chapter 5 describes other 
tools, in addition to the sub-circuit recognition, needed to make the hierar
chy reconstruction method work. In this chapter especially the verification 
of parameterized macro-cells such as a Random Access Memory layout part 
will be described. Chapter 6 shows some results of the method. The con
clusions and suggestions for future work are given in Chapter 7. 





Chapter 2 

Literature on structure 
verification 

The literature on structure verification is partitioned into a section describ
ing different methods on structure verification, and a section on structure 
recognition algorithms. Structure recognition is the core of the hierarchy 
reconstruction method. The strong and weak points of the methods and 
algorithms are summarized and compared with the structure verification 
requirements of Section 1.4. A conclusion finishes this chapter. 

2.1 Structure verification methods 

Existing methods to verify a high level structure description versus the 
transistor level structure are simulation, functional abstraction and netlist 
comparison. 

2.1.1 Simulation 

The classic verification method, simulation, aims at predicting the behav
ior of a circuit for a given set of input patterns. After simulating the 
structure at high level and at the transistor level, the resulting behaviors 
should be the same. When every input pattern leads to similar behavior 
for both levels, the structures are proven correct. The prediction of behav
ior is based on models for component interconnection, and an algorithm 
that combines the models and input patterns. Therefore many distinct 
simulators exist, supporting various kind of models [Graaf89] and using 
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different algorithms [Jones94], [VHDL93], [Chua75], [Nagel75], [Feldm92]. 
At the transistor level, a switch-level simulator is used for digital designs, 
and a circuit simulator is used for analog designs. At high level, a VHDL 
simulator [VHDL93] is often used. Figure 2.1 shows a simulation exam
ple in which the Out signal is computed for given input signals A, B and 
C, for the transistor structure as drawn on the left hand side. A simpli
fied switch-level model is used for this example. The depletion transistor 
is modeled as a finite resistance, and the NMOS transistors are modeled 
as ideal switches. A modern switch-level level simulator is described in 
[Jones94]. The predictive value of the computation depends on the models 
used and the numerical simulation algorithm. Except for several analog 
circuits, existing models and simulation algorithms in general lead to re
liable predictions of circuit behavior. However, for verifying all possible 
input patterns the run time grows exponentially with the number of inputs 
and memory-cells, so even for small designs, simulation leads to excessive 
run times when used for structure verification. Also, the interpretation 
of simulation results, tracing back the origin of faulty behavior, is usually 
hard and time-consuming. Furthermore, a side effect of the specialization 
in IC-design mentioned in Section 1.2 is that the designer who combines all 
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parts into a complete IC has little knowledge of the details that are needed 
when searching for errors. 

We conclude that simulation is an expensive and ineffective method for 
structure verification. 

2.1.2 Functional abstraction 

The functional abstraction method as described in [Apte82], [Boehn88], 
[Bryant87] computes the behavior of a transistor network by transforming 
the network into a set of Boolean operations. The advantage of this method 
with respect to simulation is that the complete behavior of a transistor 
level structure is derived in one step. Input patterns are not needed. The 
functional abstraction method is based on path-tracing. For each net, the 
paths leading to the ground or supply nets are analyzed. The rules to 
derive the Boolean function differ per technology. For instance (Figure 

Vdd 

Out 

A ~ .. Out= not ((A and C) or B) 

c ~ 
B ~ 

Gnd Gnd 

Figure 2.2: Functional abstraction. 

2.2), in NMOS circuits [Apte82], a depletion transistor connects the supply 
net called Vdd with the intended Boolean output net called Out. Assume 
that the Gnd net has a constant potential of 0 Volt, and is also associated 
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with the Boolean False value, and the V dd net has a constant potential of 
5 Volt, associated with the Boolean True value. The pull-down function 
of the output net defines when the output has zero potential, i.e, when 
the Boolean output value is False. The pull-down function is found by 
interpreting parallel branches to Gnd as an OR function, and serial paths 
to Gnd as an AND function. The actual Boolean function of the Out net 
is now given by the Boolean negation of the pull-down function. For full 
CMOS, both a pull-down function and pull-up function are identified, which 
must be the Boolean negation of each other. As described in [Ramme92], 
[Bolse89], the functional extraction method has recently been elaborated 
for CMOS, in which special attention was paid to timing and clocking
strategies. 

The functional abstraction method has been popular for some time now. 
The premise of the method is that the mapping of electronic functions into 
layout can be formalized by a simple set of mathematical rules. Although 
for a limited set of functions this is indeed the case, such as for some 
combinatorial gates in pure CMOS, this is certainly not the case for all im
plementations. For digital design parts, one needs additional manual hints 
for memory-cells. Also, pass gate logic, such as wired-ORs, are a prob
lem [Veend92.3]. The modelling of sized transistors as Boolean networks 
remains an issue [Verli92]. In [Dever92], a mixed approach of functional 
abstraction and structure recognition is presented. Functional abstraction 
so far is limited to Boolean gate level. For instance, no general functional 
abstraction method exists that abstracts any set of Boolean gates forming 
ann-bit adder. Also, no automatic functional abstraction method is known 
for analog designs, at present. 

Summarizing we conclude that the maturity of known functional ab
straction methods is insufficient for structure verification, especially when 
different design styles are combined in one layout. 

2.1.3 Netlist comparison 

The netlist comparison method such as in [Ebeli83], [Waten83], [Spick83], 
[Ebeli88], compares the transistor level net list extracted from layout with 
a reference netlist, by proving or disproving graph isomorphism between 
the netlists. Figure 2.3 shows how netlist comparison is used. The result 
of netlist comparison is either a cross-reference list or a discrepancy list. 
For this particular example, the result is a cross reference list. The cross
reference list indicates which elements are isomorphic to one another, as 
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indicated by Figure 2.3. A discrepancy list indicates the elements that 
contradict isomorphism between the netlists. 

Existing algorithms for proving graph isomorphism are based either on 
depth-first search [Spick83J, or on refinement [Ebeli83]. The aim of both 
approaches is to derive an isomorphism function¢, i.e., a bi-jective mapping 
from the elements (nets &nd components) of the reference netlist, to the 
transistor level netlist, which preserves adjacency and other properties of 
every element. 

Depth-first search 
The depth-first search algorithm for sub-graph isomorphisms will be ex
plained extensively in Chapter 4. This paragraph describes briefly the 
depth-first search version of a graph isomorphism algorithm. The algo
rithm first defines a search tree that represents the set of all mappings 
between the netlists. Each path from the root to a leaf of the search tree 
represents one particular mapping. Next, the depth-first search algorithm 
constructs an isomorphism function ¢, by traversing the search tree start
ing from the root, to determine a path that corresponds to an isomorphism 
function. The traversal downwards continues until the partial function asso
ciated with the current path is inconsistent with preservation of adjacency 
or other properties of every netlist element. In that case, backtracking 
occurs to find alternative paths. 

Proving graph isomorphism by depth-first search, works appropriately 
for small netlists. For medium and large netlists, this approach leads to 
unacceptable run times. Therefore, all modern algorithms for proving graph 
isomorphism are based on refinement. 

Refinement 
The principle of refinement (see also [Read77]) is informally explained as 
follows. First it is established that the number of components and number 
of elements are equal in both netlists. Next, the elements, i.e., components 
and nets, in the two netlists are iteratively partitioned into sets of elements 
having equal properties. The initial partitioning is based on initial prop
erties. The initial properties are defined by local features of the elements, 
such &'l the type of a component and the number of connections of a net. In 
every iteration that follows the initialization, the property of every element 
is reassigned to a value computed by combining (see [Ebeli83]) the current 
property and the current properties of the neighbors. In this way charac-
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teristics of the neighborhood around every element, at a distance equal to 
the iteration step number, are combined. The partition can now be refined 
based on the updated element properties. When both netlists are parti
tioned into sets of one element (singleton sets), the pair of elements having 
equal properties in both netlists are assumed to be isomorphic. Unfortu
nately, it is not always possible to reach a partition consisting of singletons . 

. When a net list is symmetrical (or to state it exactly: when the number of 
automorphisms [Harar72.1] is larger than one), refinement into a partition 
of singletons is not possible. For the example in Figure 2.4, refinement can-

Resistor1 ResistorS 

Net1 Net2 Net3 Net4 

Resistor2 Resistor4 

Netlist1 Netlist2 

Figure 2.4: Example for which netlist comparison by refinement fails. 

not be used to determine isomorphism. After initialization, the nets and 
resistor components of the netlists have exactly the same role, also when 
the neighborhood is taken into account, so refinement until a partition of 
singletons is reached is not possible. The refinement algorithm will con
clude that netlistl is not isomorphic to netlist2. This means that when 
errors are given by the method, based on not reaching two partitions of 
singletons, the netlist may still be isomorphic. In other words, this method 
may result in false negatives. 

Despite this disadvantage, netlist comparison based on a refinement 
algorithm is widely used because it is available, and the run times are ac
ceptable. Netlist comparison is often referred to as LVS (Layout Versus 
Schematics), since the method is often embedded in a graphical CAD
environment. Obviously, next to the extracted transistor netlist, one re
quires a reference transistor netlist for comparison. This leads us to an
other weak point of the method~ the need for a reference netlist. Often, 
a complete netlist is not available, or it is copied from the corresponding 
transistor level in the synthesis trajectory. In the latter case only errors 
occurring between transistor level and layout are noticed, the synthesis 
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steps between transistor level and high level netlist remain unverified. As 
a method to check the transistor level versus the layout however, net list 
comparison is very efficient when no errors are found. When a discrepancy 
is signalled by netlist comparison, the cause of discrepancy may be indi
cated poorly, as was shown in a recent study [Rovers93]. For example, in a 
small design of 780 components (see color figures E.1 and E.1a in Appendix 
E) two wires were accidently interchanged. Instead of reporting that two 
wires were interchanged, a massive and unstructured error report of 43 
pages resulted. Figure E.1 (Appendix E) shows the nets and components 
mentioned in the report. The figure shows that for a single exchange of 
wires, in a small layout, errors are indicated at many places in the design. 
For VLSI designs, this is even worse, due to the size of the netlists at the 
transistor level. 

In [Batra92], a hierarchical netlist comparison program is described. 
The program uses extra hierarchy information that is manually added in 
virtual layout layers, to indicate the intended hierarchy. In this way expan
sion of all structure levels down to the transistor level is partly omitted. 
The disadvantage of this method, as mentioned by the authors as well, is 
that the addition of hierarchy information is cumbersome. Additionally, it 
adds a new source of errors to the design trajectory. 

We conclude that the netlist comparison method for structure verifica
tion is too restricted, because it needs a reliable reference netlist. Further
more, the error indication is ineffective, and false negatives are inherent to 
the main algorithm. 

2.2 Literature on structure recognition 

This section describes the state of art with respect to sub-circuit recogni
tion. In the 1960s and early 1970s, structure recognition was studied by 
discrete mathematicians focussing on graph theory. They referred to it as 
the problem of identifying sub-graph isomorphisms. They showed that the 
problem of identifying sub-gr~ph isomorphisms is NP-hard [Read77], which 
lead to very pessimistic views on the possibility of applying sub-graph recog
nition algorithms [Berzt73]. The exponential growth of computer power in 
the last decades made worst case computation feasible for small problems. 
Furthermore, the usefulness of sub-circuit recognition was recognized in var
ious other sciences, including electronics. Especially for rule-based systems, 
several recognition programs have been developed. However, the effort in 
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this area was mainly spent on the possible applications. Developing an 
effective sub-circuit recognition algorithm was usually not the main focus. 
On the other hand, other work has been published, whose intention is sim
ilar to our work, but whose efficiency is limited. The rest of this section 
describes first some rule-based systems, followed by several other systems. 

2.2.1 Rule-based systems 

Rule-based systems as described in [Dever92], [Ramme92], [Bolse89], 
[Rubic84], [Spick88], use structure recognition in addition to functional 
abstraction (see Section 2.1.2), mainly to check electrical design rules. Al
though only the structure recognition aspect of these systems is considered 
here, the intended functionality is more general. The employed recogni
tion methods are all rule-based, consisting of a user-defined set of clauses 
(goals), and a depth-first search algorithm that tries to find solutions that 
satisfy these goals. The set of clauses specifies a pattern that represents 
a sub-circuit. For these methods, sub-circuit recognition is not considered 
as a single problem, but recognition is directly subdivided into a set of 
sub-problems, the clauses. This immediate subdivision of the recognition 
problem the search order of depth-first search algorithms, and the ef
ficiency of the search process strongly depends on the incidental ordering 
of the clauses. Since the problem is not analyzed before applying depth
first search, the order usually results in a bad performance. Other speed 
improving techniques as will be described in Chapter 4 are absent as well. 
Therefore, these methods are usually inefficient, and the execution time is 
very to the actual definition of a rule, leaving a large responsibil
ity to the user. The results with respect to efficiency are poor, and they 
are only given for small designs. Regarding another important issue, error 
indication, little is known, as it is not mentioned in the papers. 

We conclude that the efficiency of these systems with respect to struc
ture recognition is insufficient. The merits of these systems are the explo
ration of applicability of rule-based techniques. We have described struc
ture verification by hierarchy reconstruction as a possible application for 
the Vera environment in [Koste88], [Koste89]. The method includes both 
standard-cell structure recognition and macro-cell structure recognition. 
We have published more results and details in [Deloor90], [Koste91], and 
showed a complicated design containing 140 000 transistors that was ver
ified in reasonable time on a common workstation. However, we did not 
explain any details of the structure recognition algorithm, because a patent 
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was pending at that time [Koste92.4]. Part of this thesis is therefore de
voted to the information missing in these articles. 

2.2.2 Other systems 

The method for verifying a layout versus a top level structure by means of 
layout extraction followed by hierarchy reconstruction is nicely described 
in [Nebel86]. However, the structure recognition algorithm is not very 
clear. According to the conclusions, the speed of the structure recognition 
algorithm needs to be improved, and the error indication needs refinement. 
A corresponding paper [Nebel87] indeed shows that the performance of 
the structure recognition algorithm is poor. The computational efficiency 
behaves experimentally as O(n2), where n denotes the number of transistors 
in a design. 

A standard-cell structure recognition algorithm, to be used for hierarchy 
reconstruction, is briefly described in [Pelz91]. It is based on a depth-first 
search algorithm, in which the search order is determined from the signal 
flow through a MOS-circuit [Jouppi87], and some limited heuristics. In 
addition, the problem of ambiguity when matching a library (see Section 
5.4) is briefly explained. The problem of partly overlapping matches, that 
may lead to ambiguity, is not mentioned (see also Section 4.51). The work 
does not include macro-cell recognition and the size of the structures that 
are recognized seems rather smalL Unfortunately, run times are only given 
for 7 small designs. Five designs contained less than 2 500 transistors, and 
the largest two contained about 33 000 and 61 000 transistors. Explicit 
error indication was not mentioned. 

Article [Pelz94] is an elaborated version of the previous paper, [Pelz91]. 
After explaining the hierarchy construction method, the article claims to · 
have proven the following theorem: 

The expected run time complexity of the hierarchy construction 
method is O(n.p.j), where n is the number of components and 
nets of the transistor level netlist, p is the average number of 
components and nets of the sub-structures used for recognition, 
and j is the number of sub-structures that is being recognized. 

The proof given for this claim first reduces the efficiency computation to a 
formula depending on several characteristics of the sub-structures. Next, 
12 designs of the ISCAS '89 benchmark [ISCAS89] are selected and the 
characteristics are evaluated. Based on the trend of these 12 designs it 
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is concluded that the claim holds. In my opmwn, giving 12 examples 
for which the theorem holds is not a general proof. Further, the article 
advocates a hybrid structure verification approach, by combining hierarchy 
construction, limited high level cell expansion, and netlist comparison, as 
indicated schematically in Figure 2.5. The expansion is limited down to 

0 
0 

CJCJCJCJCJ 

Component 

Basic component 

j Expansion 

Comparison 

/\ l /" \ \"' I Hierarchy ;r IT 7f 1\ 1\\ 1\ ~ reconstruction 

000000000000000 
Figure 2.5: Hybrid approach for structure verification. 

some intermediate level, the hierarchy construction is limited up to the same 
intermediate level, followed by a comparison of the top-down and bottom
up structures. The author claims to combine the benefits of both methods, 
i.e., hierarchical error location, the use of different hierarchies for synthesis 
and verification, and limited run times. The brief results of [Pelz91] are 
repeated. In addition, the results when applying the hybrid approach for 
the same designs is given. The hybrid approach is up to 33 % faster. The 
motivation for a hybrid approach indicates that the author is not satisfied 
with the performance of the structure recognizer. In my view, a gain of 33 
% in run time efficiency is too little to justify the use of such a complicated 
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method. Perhaps an unmentioned argument for introducing the method 
is the inability to handle macro-cell recognition. It also remains unclear 
what level should be selected as the intermediate level at which expansion 
and hierarchy construction should meet. The error indication becomes very 
complicated, because the error indication of netlist comparison is weak by 
itself (Section 2.1.3), and has to be translated back to the original top level 
structure for interpretation as well. Another disadvantage of the hybrid 
approach is that one relies on a part of the synthesis phase, the expander, 
to be correct without checking. 

2.3 Conclusion 

Several attempts in the past have aimed at tackling the structure verifica
tion problem. So far none of the methods in Section 2.1 meet the require
ments as stated in Section 1.4. Not only do run time performance and error 
indication still present problems, but also several methodological questions 
remain unsolved. 

With respect to the structure recognition algorithms for applying a 
structure reconstruction method (Section 2.2), the performance of the sys
tems is either insufficient, or unknown. Explicit error indication has not 
been described. 

For the structure recognition based systems, the best results have been 
reported by the author in [Deloor90], [Koste91], but the recognition al
gorithm was not described. Of the other papers, [Pelz91] and [Pelz94] 
are the most interesting, although only results for small designs are given, 
macro-cell hierarchy reconstruction was not included, and no explicit error 
indication was mentioned. 



Chapter 3 

The hierarchy 
reconstruction method 

This chapter describes the hierarchy reconstruction method. After giving a 
global introduction, the required information and the tools needed to make 
the method operational are derived from existing hierarchy constructs. The 
requirements are summarized and ordered into an operational model. The 
model shows that in addition to a sub-circuit recognizer, other tools are 
also needed. The remaining chapters of this thesis focus on the imple
mentation of the operational model and on the results obtained with the 
implementation. 

3.1 Introduction 

Hierarchy reconstruction aims at verifying consistency between the transis
tor level structure and a high level structure. The transistor level structure 
has been extracted from a layout, as described in Section 1.3. The high level 
structure consists of standard cells and macro-cells. In order to simplify 
terminology, we also call a fixed analog block a standard cell. Macro-cells 
are instances of parameterized modules. For example, an n-bits adder is 
a module with parameter n, and a 7-bits adder is a macro-cell, generated 
by the adder's module generator instantiated with n=7. Standard cells are 
not parameterized with respect to their structure. The hierarchy recon
struction method is based on stepwise bottom-up abstraction. By using a 
sub-circuit recognizer, the simplest sub-structures in the transistor netlist, 
such as inverters, nands, etc., are identified first. Next, the higher level 
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sub-structures, such as memory-cells, etc., are found, as indicated in Fig
ure 3.1. Recognition and abstraction of increasingly complex structures 
takes place, until no further abstraction is possible, and the highest level 
structure has been reached. By using netlist comparison at the top level, 
the constructed high level structure description can now be compared (see 
Figure 1.3) with the initial top level structure, to establish consistency. 

The following information is needed for the construction process: 

• a non-parameterized component library describing higher level com
ponents as a network of connected lower level components, and 

• a parameterized module library, describing how a module instance (a 
macro-cell) is composed of interconnected lower level components, for 
given parameter instances. 

In these libraries, layout related information is not included. The following 
tools are needed as well to be able to perform the construction process: 

• a fast sub-circuit recognizer for performing structure recognition, 

• a netlist comparison tool, and 

• a tool, called the controller, that supervises the reconstruction pro
cess. 

The latter should interpret the library information, and order the sequence 
of structures to be recognized. 

Since there is no layout information required for hierarchy reconstruc
tion, the effort to set up the library is limited. Compared to the effort spent 
on making (writing) a module generator and a standard cell library, our 
library effort is negligible. Since the information is set up differently and in
dependently from the top-down library and synthesis tools, the probability 
of errors slipping through unnoticed is very small. In the remaining sec
tions of this chapter, the method is elaborated into an operational model, 
that shows the prerequisites and their relations that must be implemented. 

3.2 Hierarchy and structure parameters 

This section describes the hierarchy reconstruction method in more detail 
by considering the role of structure parameters in a design hierarchy. De
pending on the role of structure parameters, hierarchy is partitioned into 
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four categories. The requirements for constructing hierarchy are derived 
for each category. As indicated in the introduction of this chapter, the 
main distinction is between macro-cells that are instances of parameterized 
modules, and standard cells that are not parameterized. In theory, little 
can be said about the semantics of the structure parameters of a module. 
However, for a module to be usable, the semantics of a structure parameter 
should not be complicated. Therefore, our partitioning is based on actual 
semantics of parameters that are used in IC-design [Wouds90]. In all cases, 
parameters indicate either repetition of some structure, or a function, rep
resented by a table. 

Category 0: Non-parameterized modules 
A non-parameterized module is a module that has a fixed structure. The 
reconstruction of non-parameterized modules such as standard cells is the 
first, and most important, step in reducing the complexity of a large circuit. 
For example replacing all transistor pairs forming an inverter circuit, by an 
inverter component can be performed as follows: 

1. retrieve the inverter structure, to act as the template, 

2. identify alltransistor pairs matching the template, 

3. replace the identified transistor pairs by inverter components. 

After the matched inverter transistors have been abstracted, other or higher 
level components can be constructed in the same way. Figure 3.1 illustrates 
the hierarchy construction steps of an inverter structure, followed by the 
construction of a memory cell. 
In summary, hierarchy construction for Category 0 modules requires 

(a) a library, containing the structures of all non-parameterized 
(sub-)modules, 

(b) a pattern-matcher, capable of finding matches of a given library tem
plate in a large network, and 

(c) an "abstractor", to replace found matches by the corresponding higher 
level component. 
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Category 1: Singly parameterized modules 
A singly parameterized module is a module of which the structure of a 
corresponding macro-cell is determined by the value of one structure pa
rameter, k, that indicates structure repetition. The parameter value is a 
number of a limited integer domain. When two values are allowed only, the 
parameter indicates the absence or presence of some part of the structure. 
When the parameter has more than two acceptable values, it indicates se
rial or parallel repetition of some part of the structure. Obviously, when 
the parameter has one possible value, the parameter has no meaning for 
the structure of the module. The parameter may be associated with the 
number of bits in a data or control word. The hierarchy construction pro
cess of this category is explained for the abstraction of all memory words 
in a memory core (first step in Figure 3.2). After the reconstruction of the 
memory cells (see Category 0), the following is performed: 

1. the value k, i.e., the number of memory cells connected in parallel to 
the same r/w select line, is derived from the network, 

2. a parameterized module generator produces a structure template for 
the k-bit memory word instance, 

3. the circuit components, matching this template, are replaced by a 
k-bit memory word. 

Compared to Category 0 modules, Category 1 modules require: 

(d) a structure-repetition detector, capable of recovering parameter val
ues from the repetition in a network, 

(e) a library of parameterized structure template generators. 

Category 2: Multiple parameterized modules 
A multiple parameterized module is a module of which the structure of a 
macro-cell is determined by multiple parameter values. A RAM module is 
an example having multiple parameters. The structure of a RAM macro-cell 
may be a function of four parameters: x-decoder depth, y-decoder depth, z
decoder depth and word-length. Hierarchy reconstruction of these modules 
is performed by repeating singly parameterized hierarchy reconstruction. 
Figure 3.2 illustrates the reconstruction process of the core of a RAM. The 
number of bits in a word is determined first from the number of memory 
cells connected to the r jw select lines. All memory words can now be 
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abstracted, as described for Category 1 modules. Secondly, the memory 
core depth, i.e., the number of memory words, is determined by the number 
of parallel connections to both bit line {bl, b2, ... } and inverse bit line 
{b1,b2, ... } signals. The complete memory core can now be abstracted. 
Compared to Category 1 modules, Category 2 modules have no additional 
requirements. 

Category 3: Modules having a table parameter 
This category is defined by modules that have a table parameter. Typical 
examples of this category are ROM and PLA modules. Their functionality 
is determined by a (truth) table. As an example, the reconstruction of 
ROM modules is briefly described. The ROM module is implemented as a 
row decoder, a column decoder and a core. The data contents in the core of 
the ROM are represented by the presence or absence of a transistor at the 
crosspoint of a word and a bit line. The row decoders and column decoders 
can be reconstructed in the same way as Category 2 modules. In addition 
to Category 2 modules, Category 3 modules require: 

(f) a table-extractor, to retrieve the function of the macro-cell. 

3.3 The operational model 

In Figure 3.3 the requirements derived in the previous section are sum
marized in the operational model of Figure 3.3. The operational model 
indicates the tools, libraries and relations between them to transform the 
transistor level structure, or circuit, into a top level structure. The cell 
library, at the left-hand side of Figure 3.3, stores component definitions 
as a non-parameterized or a parameterized structure of connected lower 
level components. The tools that operate on the circuit, shown at the 
right-hand side of Figure 3.3, are a sub-circuit recognizer, an abstractor, 
a structure-repetition detector and a table extractor. The sub-circuit rec
ognizer identifies occurrences of a circuit pattern, called a template, the 
abstracter replaces a match of a template by the corresponding higher 
level template component, the structure repetition detector identifies it
erative structure parameter values, and finally the table extractor derives 
the function related to table parameter of a module. 

The controller organizes the interaction between the tools, the library 
and the circuit. For hierarchy reconstruction of non-parameterized mod
ules, only the objects connected by bold lines are needed. The order of 
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abstraction is determined by the controller. For parameterized modules, 
the other objects are needed as well. For every module generator, a ver
ification controller is created, which describes how a macro-cell can be 
reconstructed. By activating the associated controller, the user starts the 
reconstruction process of all instances of that specific module generator in 
the design. The controller determines the order in which the tools operate 
on the network, and gathers and provides the necessary information. 

Control and libraries are set up separately and independently from the 
module generator, since they require a different view, namely bottom-up 
instead of top-down. By separating the information used in the top-down 
and bottom-up path, the probability of the same error occurring in both 
descriptions, thus escaping detection, is very small. 

In the following chapters, the model of Figure 3.3 is elaborated. Some 
interesting tools are elaborated in more detail than other, less interesting 
tools. The sub-circuit recognizer is the most important tool to make hi
erarchy reconstruction operational. As described in Chapter 2, a suitable 
sub-circuit recognition tool has not yet been presented. The next chap
ter describes our sub-circuit recognition tool. Since the subject is subtle 
but crucial for the applicability of hierarchy reconstruction, it is described 
thoroughly, starting from formal definitions, and explaining the algorithm 
in detail, including the crucial efficiency enhancements. Chapter 5 describes 
the implementation of the remainder of the operational model, followed by 
Chapter 6, showing the results of the method for a typical design. 
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Chapter 4 

The sub-circuit recognizer 

4.1 Introduction 

In the previous chapter, it has been shown that a sub-circuit recognizer is 
the main tool needed for making the hierarchy reconstruction method op
erationaL This chapter discusses the sub-circuit recognizer in detail. When 
the casual reader is interested in the hierarchy reconstruction method, but 
not that much in the algorithms supporting it, this chapter can be omitted. 

The sub-circuit recognition problem is informally described as the prob
lem of finding all occurrences of a template circuit in a usually larger main 
circuit. Sub-circuit recognition is identical to the problem of finding all 
isomorphic sub-graphs in a graph [Read77]. In the mathematical literature 
it is an example of an NP-hard problem, implying that no method ex
ists that solves each instance of the problem in polynomial time [Read77]. 
Every algorithm shows exponentially growing run times for some set of 
problem instances, unless the very unlikely condition known as "P = NP" 
holds. Therefore, the hope of finding a useful algorithm had V'anished for 
some mathematicians [Berzt73]. From a practical point of view however, it 
still makes sense to search for algorithms that efficiently solve many often 
encountered sub-graph isomorphism problem instances, although no guar
antee of run times can be given. In fact, without a powerful sub-circuit 
recognizer, the hierarchy reconstruction method cannot be employed. 

The remainder of this chapter is organized as follows. Section 4.2 defines 
the sub-circuit recognition problem in a formal way. Section 4.3 describes 
the primary algorithm. Section 4.4 describes the post processing of the 
results of the primary algorithm. Section 4.5 shows some extensions that 

33 



34 The sub-circuit recognizer 

enhance the usability and flexibility of the primary algorithm. Section 4.6 
describes diagnosis feedback when the recognition finds fewer matches than 
expected. Section 4. 7 shows experimental results and an analysis of the run 
times. Section 4.8 finishes the chapter with conclusions. 

4.2 Definitions 

Section 4.2.1 enumerates notational conventions and several general no
tions. Section 4.2.2 defines formally a circuit. Based on the definition of a 
circuit, Section 4.2.3 defines the template circuit and the main circuit, fol
lowed by the sub-circuit recognition problem. To allow accurate efficiency 
argumentation for the algorithms in the next chapters, Section 4.2.4 briefly 
describes the data representation of a circuit in a computer. 

4.2.1 General notions and notation 

A set is a collection of elements, in which each member occurs once. 

A multi-set is a collection in which elements may occur multiple times. 

The multiplicity of an element a of a multi-set B, i.e., the number of oc
currences of a in B, is denoted by fla(B). 

For a (multi-)set B, IBI denotes the number of elements in B. 

For a set B, 2B denotes the set of all sets over B, i.e., the power set of B. 

For a set B, IN B denotes the set of all multi-sets over B. 

An ordered (multi-}set is denoted by (XI, x2, ... ) . A shorthand notation for 
the ordered (multi-)set is x, i.e., by using boldface fonts. Xj denotes the 
prefix (xi. ... , Xj ). An ordered multi-set is also called a sequence. 

For a set B, B+ denotes the set of all non-empty sequences over B. 

An unordered (multi-}set is denoted by {xi, x2, .. . }. 

The set operators for union, intersection and set-minus are denoted by the 
symbols U, nand\. The result of a set operator is an unordered set. An 
operand is either an unordered set, or it is interpreted as an unordered set, 
when the operand is an (un)ordered multi-set or an ordered set. 

For sets A, B and a function F, F : A ----> B, A is called the domain and B 
is called the co-domain offunction F. Furthermore, F(A) denotes a subset 
of B called the image. 
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For sets A, B, BA denotes the set of all functions having domain A and 
co-domain B. 

In definitions, the first character of the notion being defined are written 
uppercase. 

Definition 4.1 Restriction of a Function 
For a function F, F : A ---+ B, and a subset C of A, the Restriction of 
Function F to Cis the function denoted by Fie, defined as Fie: C---+ B, 
for all a E C: Flc(a) = F(a). D 

Definition 4.2 Equivalence Set 
For a, bE A, a is called equivalent to b when F(a) = F(b). The Equivalence 
Set of a E A with respect to the function F: A---+ B, denoted by [a]p, is 
defined by [a]p = {x E A I F(x) = F(a)}. D 

Definition 4.3 Quotient Set 
For a function F : A -+ B, the Quotient Set A/F is defined by 
A/ F = {[a]p I a E A}. A/ F is a partition of set A. 

Definition 4.4 Canonical Map 

D 

For a function F : A -+ B, the Canonical Map g : A -+ A/ F is defined 
by g(a) = [a]p. Hence, the canonical map maps an element onto the 
equivalence set of which it is a member. D 

Definition 4.5 Characteristic Function 
For a function F :A-+ {True, False}, F subdivides set A into the equiva
lence sets [True]p and [False]p, called the true-set and false-set. Therefore, 
A/ F = {[True]p, [False]p }. Since F can be used to define a set and its 
complement, F is called the Characteristic Function of set [True]p. D 

The true-set of a characteristic function D : A -+ {True, False}, i.e., 
[True]D, is denoted by 'D. The true-set of a characteristic function d: A-+ 
{True, False}, [True]d, is denoted by 15. Hence calligraphic fonts are 
used for the true-set of a function denoted in uppercase, and Greek fonts 
are used for functions denoted in lowercase. 

Definition 4.6 Pair Function 
For k E IN, ordered sets A = (a1, ... ,ak), B = (b1, ... ,bk), the Pair 
Function A • B: A-+ B is defined by A • B(ai) = bi fori 1, ... , k. D 
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The (multi-)sets and functions of the main circuit are denoted in boldface, 
for example G = (V, T, A, E, TC). The (multi-)sets and functions of a 
template circuit are denoted emphasized, for example G = (V, T, A, E, TC). 
The (multi-)sets and functions of a sub-circuit of the main circuit are de
noted calligraphically, for example Q = (V, T, A,£, TC). 

For an undirected edge e, vert( e) denotes the unordered pair of vertices 
{ u, v} that are connected by e. 

4.2.2 The circuit definition 

Vdd 

In Out 

Gnd 

( 

(MOS m1 vdd in out vdd 2e-6 2e-6 pmos) 
(MOS m2 out in gnd gnd 1e-6 2e-6 nmos) 

) 

Figure 4.1: Schematics, graph picture and netlist representation of a circu-it. 
The attribute names and attribute values of m1 and m2 are not included in 
the graph. 

An example 
Figure 4.1 shows an example of a circuit. The figure displays the schemat
ics, a picture of the circuit as a bipartite graph, and a netlist representation 
of a circuit. The schematic representation is normally used by electronic 
engineers. Since the circuit will formally be defined as a labeled bipartite 
multi-graph, the graph picture represents best the formal circuit definition. 
A netlist representation is a textual representation that can be used to store 
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a circuit in a computer file. Before formally defining a circuit, the relation 
between schematics, the picture of the graph and the netlist is explained. 
The schematics of Figure 4.1 consist of transistor components ml and m2, 
and nets vdd, in, out and gnd. In the picture of the circuit graph, the com
ponents are depicted by squares, the nets are depicted by ovals. Together, 
the squares and ovals are the vertices of the graph. The connections of 
the schematics are depicted· by lines, determining the undirected edges of 
the graph. Note that the graph is bipartite since ovals are only connected 
to squares and vice versa. Note also that the graph contains multi-edges, 
such as the connections between component ml and net vdd. In order to 
distinguish between different kinds of connection, each edge of the graph 
is labeled with a terminal class. Both ml and m2 are instances of the 
component type MOS. A component type defines the properties (property 
name and property value pairs) of a component, such as the number and 
kind of connections, the possible attribute names, etc. Figure 4.2 shows 
the MOS component type definition. The list of terminal classes defines 
the connections of MOS, i.e., one terminal of class gate, two terminals of 
class sd- short-hand for "source or drain", which are considered equivalent 
terminals - and one terminal of class bulk. The three attributes of MOS 
are named width, length and model. The attributes are not included in the 
graph of Figure 4.1. Figure 4.3, shows another component type definition, 
having other properties in addition to those of Figure 4.1. 

The netlist representation is component oriented. It enumerates the 
component type, the component name, the connections to nets and at
tribute values corresponding to the attribute names. The connections and 
attribute values are ordered according to the terminal classes and attribute 
names found in the description of a component type; see Figure 4.2. For ex
ample, the last attribute, named model, is used to indicate a pmos attribute 
value for ml, and nmos for m2. 

The formal definition of a circuit 
The definitions are based on the following basic notions: 

• T denotes a non-empty set of types, 

• r denotes a non-empty set of terminal classes, 

• a denotes a set of attribute names, 

• {3 denotes a set of attribute values. 
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(MOS 

) 

( Terminal-classes 
Attribute-names 

) 

The sub-circuit recognizer 

(sd gate sd bulk) 
(width length model) 

Figure 4.2: Example of a component type, defining TTC{MOS) = (sd, gate, 
sd, bulk) with property name Terminal-classes a.nd TA(MOS) = (width, 
length, model) with property name Attribute-names 

The empty set, denoted by 0, is not a member of r, r, a or /3. A circuit will 
be defined as an interconnected set of components and nets. Every compo
nent will have a type label, which will be defined by the type function. The 
"type terminal classes" function and the "type attributes" function will be 
defined on types, to prescribe the labels of connections to a component and 
the attribute names of a component. A component has a second label, the 
attribute, that will be defined by the attribute function to assign attribute 
values for corresponding attribute names. A net will not have an associated 
type labeL The distinction between components and nets will therefore be 
defined based on the type function. The edges between components and 
nets will be labeled by a terminal class. The multi-set of terminal classes 
that are labels of the edges between. two vertices will be defined as the 
terminal classes function which will used extensively in Section 4.2.3. 

Definition 4.7 Type Terminal Classes 
For each type t E r, the Type Terminal Classes function TTC : r ---* r+ 
assigns to each type a sequence of terminal classes. 0 

For example, in Figure 4.2, TTC(MOS) = (sd, gate, sd, bulk). Note that a 
sequence is an ordered enumeration of items in which repetition may occur. 

Definition 4.8 Type Attributes Function 
For each type t E r, the Type Attributes Function TA: r- 2o: assigns a 
set of attribute names to a type. 0 

For example, in Figure 4.2, T A(MOS) = (width, length, model). 

Definition 4. 9 Type Function 
For a set of vertices V, the Type Function T : V - r U 
a type or 0 to a vertex. 

{ 0} assigns either 
0 
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Definition 4.10 Set of Components 
For a set of vertices V and a type function T, the Set of Components C is 
defined by { v E VI T(v) E T}. D 

Definition 4.11 The Set of Nets 
For a set of vertices V and a type function T, the Set of Nets N is defined 
by { v E v I T ( v) = 0}. D 

Obviously, N = V \ C, since 0 tf_ T. 

Definition 4.12 Attribute Function 
For a set of vertices V and a type function T, the Attribute Function 
A : V--+ 2ax(3 assigns to each component a set of ordered attribute name, 
attribute value pairs, and 0 to a net. For a component v E C C V, every 
attribute name of A(v) must be a member of TA(T(v)), i.e., a member of 
the attribute names of the corresponding type of v, and only one attribute 
value is associated. D 

For example, A(ml) ={(width, le-6), (length, le-6), (model,pmos)} in 
Figure 4.1. 

Definition 4.13 Set of Multi-edges 
For a vertex set V and a type function T, an edge connects a component 
u E C C V and a net v E N C V. The connected vertices { u, v} of an edge 
e are denoted by vert( e). A Set of Multi-edges is a set of edges for which 
several edges may connect the same vertices. D 

Definition 4.14 Terminal Class Function 
For a set of multi-edges E, the Terminal Class Function TC : E --+ r 
assigns a label to each edge, called the terminal class. It indicates what 
kind of connection is meant. D 

Definition 4.15 Terminal Classes Function 
For a set of vertices V, a set of multi-edges E and a terminal class func
tion TC, the Terminal Classes Function TCS : V x V --+ JNr is defined 
by TCS(u,v) = { TC(e) I e E E : vert(e) = {u,v} }. It assigns the 
multi-set of all terminal class labels to a vertex pair { u, v }. Hence, it rep
resents the edges connecting u and v, including their multiplicity. When 
TCS(u,v) = 0, no edges connect u and v. Since an edge is undirected, 
TC S is a symmetric function. D 
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In Figure 4.1 for example, we see two edges connecting vdd and ml, having 
labels sd and bulk, so TOS(vdd,m1) = {sd,bulk}. 

Definition 4.16 Degree Function 
For a set of vertices V, a set of multi-edges E and a terminal class function 
TO the Degree Function DEGREE: V x r IN assigns to a vertex v and 
a terminal class c the number of edges incident ·with v having a terminal 
cla'.ls label c. D 

Definition 4.17 Circuit 
A Circuit G is an undirected labeled bipartite multi-graph, defined by a 
5-tuple G = (V, T, A, E, TO), for which 

• V is a set of vertices, 

• T is a Type function as defined in Definition 4.9, 

• A is an Attribute function as defined in Definition 4.12, 

• E is a set of multi-edges as defined in Definition 4.13, 

• TO is a Terminal Class function as defined in Definition 4.14. 

The set of components 0 is defined in Definition 4.10. The set of nets N 
is defined in Definition 4.11. The degree function DEGREE is defined in 
Definition 4.16. The terminal classes function of G is defined by Definition 
4.15. Furthermore, for any component v E 0 c V, any terminal class c E r 
the following must hold: 

DEGREE(v,c) = J..tc( TTO( T(v)) ). ( 4.1) 

In other words, the number of edges per terminal class of a component v is 
determined by the type of the component v. The size of the circuit, denoted 
by IGI, is defined by the number of edges plus the number of vertices, i.e., 

lEI+ lVI· D 

4.2.3 The sub-circuit recognition problem 

The sub-circuit recognition problem aims at finding all occurrences of a 
template circuit, called the matches, in a usually larger main circuit. Every 
match is a sub-circuit of the main circuit. The sub-circuit recognition prob
lem will be defined slightly more specifically than the abstract sub-graph 
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isomorphism problem. In the first place, the general sub-graph isomor
phism problem is usually described for unlabeled graphs. In our case, the 
edges of a graph are labeled by the terminal class function (see Definition 
4.14), and the vertices have two labels, defined by the type function (see 
Definition 4.9) and the attribute-function (see Definition 4.12). The la
bels of matching sub-circuits must correspond to the labels of the template 
circuit. Secondly, for a template circuit we want to distinguish between 
external nets whose match may have more connections than specified, and 
internal nets whose match must have the same connection pattern. 

The primary sub-circuit recognition problem will be defined by succes
sively defining the main circuit, the template circuit, isomorphism func
tions, and a sub-circuit. Next, the relation between the isomorphism func
tions and the solution set of problem, called the matches, is described. An 
example of a template finishes the problem definition. 

Definition 4.18 Main Circuit 
The Main Circuit is defined as a circuit G= (V, T,A,E, TC), as defined 
in Definition 4.17 of Section 4.2.2. The component set and net set of G are 
denoted by C and N, respectively. The terminal classes function of G is 
denoted by TCS. The degree function of G is denoted by DEGREE. D 

Note the use of a boldface font for the notions relating to the main circuit. 

Definition 4.19 Template Circuit 
The Template Circuit is defined by 

• a connected non-empty circuit G = (V, T, A, E, TC) as defined in Def
inition 4.17, and 

• a subset of the net set of G, N E, called the external net set. 

The component set and net set of G are denoted by C and N, respectively. 
The set V\N E, denoted by N I, is called the internal net set. The terminal 
classes function of G is denoted by TCS. The degree function of G is 
denoted by DEGREE. D 

Note the use of an emphasized font for the notions relating to the template 
circuit. 

Definition 4.20 Isomorphism Predicate 
For a main circuit G = (V, T, A, E, TC), a template circuit 
G (V, T, A,E,TC) with external net set N E, the Isomorphism Predicate 

S:VV {True, False} 
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is defined by S(¢) =True for any function¢,¢: V-----> V if and only if the 
conditions 

¢ is one-to-one, ( 4.2) 

Vc E V: T(c) = T(¢(c)), (4.3) 

Vc E V: A(c) = A(¢(c)), (4.4) 

VeE E, vert(e) = {u,v} : TCS(u,v) = TCS(¢(u),¢(v)), (4.5) 

Vn EN I, Vc E r: DEGREE(n, c)= DEGREE(¢(n), c), (4.6) 

Vn ENE, Vc E r: DEGREE(n, c)::; DEGREE(¢(n), c) (4.7) 

hold. When S( ¢) = True, ¢ is called an isomorphism1. S is a characteristic 
function whose true-set is the set of all isomorphisms, denoted by S. D 

Conditions 4.3 and 4.4 require that both the type and the attribute name, 
attribute value pairs of the matched components and corresponding tem
plate components are equal. The type and the attribute name, attribute 
value pairs of a net are equal by definition (see Definition 4.11, Definition 
4.12). Condition 4.5 requires the existence of a separate equally labeled 
main circuit edge for each labeled template edge. Condition 4.6 requires 
that mappings of internal nets in G are exclusively connected to compo
nents as specified by the template, whereas Condition 4. 7 requires that 
mappings of external nets in G have at least connections as specified by 
the template G. 

Definition 4.21 Sub-circuit 
For a main circuit G = (V, T, A, E, TC), a subset V of V, 
the Sub-circuit Glv=(V, T, A,£, TC) is defined by 

(4.8) 

(4.9) 

1 Strictly speaking, ¢ is called an isomorphism only when lVI = lVI. When lVI < 
lVI, ¢ is called a monomorphism. Monomorphism, isomorphism and other notions are 
described as a special case of the homomorphism in [Stanat77]. According to Definition 
4.22, for an isomorphic sub-circuit Glq,(V)=(V, T,A,£, TC), the function¢': V-> V, 
defined by ¢'(v) = ¢(v) for each v E V, is an isomorphism for which lVI = lVI with 
respect toG and Glq,(V)· So when¢ is a monomorphism, an isomorphism can always 

be defined by changing the co-domain V into ¢(V). Therefore, we ignore the difference 
between monomorphism and isomorphism. 
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£ = {e E E I vert(e) = {u,v} 1\u,v E V}, 

TC = TCit:· 
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(4.10) 

(4.11) 

Obviously, Glv is a circuit. The component set and net set of Glv are 
denoted by C and N, respectively. The terminal classes function of Glv is 
denoted by TCS. The degree function of Glv is denoted by Dt:QR££. D 

Note the use of a calligraphic font for the notions relating to a sub-circuit. 
According to Equations 4.8, 4.9, 4.11, the functions in sub-circuit Glv are 
equal to the equivalent functions in G, when restricted to V. The set of 
multi-edges£ (see Equation 4.10) is defined by the subset of multi-edges E 
that connect any two vertices of V. 

Definition 4.22 Isomorphic Sub-circuit 
For a main circuit G = (V, T, A, E, TC), a template circuit 
G = (V, T, A, E, TC) with external net set N E, their isomorphism predi-
cate S, isomorphism function ¢; : V V, the Isomorphic Sub-circuit is 
defined by Glq,(V)' D 

Since¢; is one-to-one (Equation 4.2), lVI lVI· Since the number of edges 
connected to a component is fixed (see Equation 4.1), 1£1 jEj. The 
sub-circuit recognition is defined next. 

Definition 4.23 Sub-circuit Recognition Problem 
For a main circuit G (V, T, A, E, TC), a template circuit 
G (V, T, A, E, TC) with external net set N E, the isomorphism set S as 
defined in Definition 4.20, the Sub-circuit Recognition Problem is to find 
the set of matches M defined by 

M = {Giq,(V) I ¢; E S}. 

D 

In other words, the solution to the sub-circuit recognition problem is given 
by the set of all sub-circuits of the main circuit that are isomorphic to the 
template circuit. The isomorphism predicate S implicitly defines the true
set S, and thus the matches M. For a given isomorphism function ¢;, an 
isomorphic sub-graph g can easily be constructed according to Definition 
4.21. 

In summary, the problem of finding all matches of template circuit in 
a main circuit is equivalent to finding the set of isomorphism functions S 
based on the isomorphism predicate. The set of matches can be constructed 
easily from S. 



44 The sub-circuit recognizer 

( NOR 
( Terminal-names (in1 in2 out) 

Terminal-classes (in in out) 
Network ( (MOS t1 vdd in1 out vdd 3e-6 ? ptype) 

(MOS t2 vdd in2 out vdd 3e-6 ? ptype) 
(MOS t3 gnd in1 h gnd 1e-6 ? ntype) 
CMOS t4 h in2 out gnd 1e-6 ? ntype) 

) 

Restrictions ( () ; fixed nets 
((in1 in2) (out) (vdd) (gnd)) 

; external nets 
() ; common components 
T ; reduce symmetry 

) 

Global-nets (vdd gnd) 
) 

) 

Figure 4.3: The NOR type, describing both the external component view 
(represented by the property named Terminal-classes) and internal tem
plate view (represented by the properties named Network, Restrictions, 
Global-nets). 
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An example of a template circuit 

In Figure 4.3, the type NOR is described. One can distinguish an ex
ternal and an internal view in the NOR type description. The external 
view is given by the terminal classes property, describing the NOR as one 
component having two equivalent terminals (the inputs) and one other ter
minal (the output). The absence of an attribute names property indicates 
that the NOR component has no attributes. The internal view describes 
the constituent parts of a NOR, as given by the network, restrictions and 
global nets properties. When used in a template circuit for recognition, the 
NOR network property and the NOR restrictions are used. The restric
tions of a type should not be confused with the restriction of a function, 
as defined in Definition 4.1. The template NOR network property has the 
same format as the main circuit, and describes most of the template. To 
show some of the flexibility of this entry, the width of every MOS transistor 
is prescribed in the template network, whereas the length is left unspeci
fied. The restrictions property specifies details of the template circuit not 
present in the network entry. Most of the restrictions will be explained in 
Section 4.5.2, but the external nets {inl, in2, out, vdd, gnd} are indicated 
by the second item in the restrictions. The reason why the external net 
set is partitioned will be explained in Section 4.5.2. The internal nets of 
the template are the nets that are not external, such as {h} for a NOR. 
The terminal names property relates, the template level (the internal view) 
to the component level (the external view), via the consecutive terminal 
classes. The global nets entry enumerates external nets that are not in the 
terminal names list. 

4.2.4 The internal data representation of a circuit 

To represent a circuit in a computer, different data structures may be used 
(e.g., see [Reingol77]). Depending on the ease of implementation, the mem
ory usage and the corresponding efficiency of the applied graph algorithms, 
a choice has to be made. For our problem, the adjacency list representation 
fits closely to the recognition algorithm, because it supports fast access to 
edges related to a vertex. Within this representation, the set of vertices 
V of a circuit G = (V, T, A, E, TC) is explicitly represented as a set. The 
set of multi-edges E, however, is represented by using the present classes 
function and the adjacency function defined as follows. 
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Definition 4.24 Present Classes Function 
For a circuit G = (V, T, A, E, TC), the Present Classes Function 'Y: V---+ 2r 
is defined as 

'Y(v) = { TC(e) I e E E: v E vert(e) }. 

The function 'Y associates a set of terminal classes with each vertex. D 

Definition 4.25 Adjacency Function 
For a circuit G = (V, T, A, E, TC), the Adjacency Function Adj: V x r---+ 
IN v is defined as 

Adj(v,c) = { u IeEE: vert(e) = {u,v} ATC(e) = c }. 

The function Adj associates a multi-set of adjacent vertices with each vertex 
and terminal class. D 

So the connectivity and label information that has so far been accumulated 
into the function TC S (Definition 4.15) is actually stored in the function 
Adj. From the definitions of Adj, TCS and DEGREE the following can 
be derived for a circuit G = (V, T, A, E, TC). For every u, v E V, c E r: 

J.Lu(Adj(v, c))= J.Lc(TCS(u, v)) 

DEGREE(v, c)= I Adj(v, c) I 
J.Lu(Adj(v, c))= J.Lv(Adj(u, c)) 

(4.12) 

(4.13) 

(4.14) 

Equation 4.14 shows the symmetry of the Adj function. The function Adj 
is stored as a set of argument, value pairs. This implies that each edge is 
stored twice, firstly in the adjacency list of the connected component, and 
secondly in the adjacency list of the connected net. For every component 
vertex v, no storage is required to implement the present classes function 
"(, since this information can be derived directly from the associated com
ponent type's terminal classes, by mapping the sequence TTC(T(v)) to a 
set. For a net vertex, the present classes set is stored explicitly as a list. 
We can conclude that the memory usage is O(IVI + 3IEI). The advantage 
of this representation is that at the cost of extra memory usage (2IEI), the 
related classes and edges of every vertex can be accessed directly with the 
functions 'Y and Adj. 
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4.3 The primary algorithm: backtracking 

Based on the definitions of the previous sections, this section describes a 
backtracking algorithm to find the matches of the sub-circuit recognition 
problem. There are many methods to find all matches of a given template 
circuit in a main circuit. We will first discuss a simple brute-force method, 
that links directly to the definition of the primary sub-circuit recognition 
problem. After this introduction, a more efficient method will be described 
that is based on backtracking. After a short description of this well known 
problem solving method, the sub-circuit recognition problem will be trans
formed to fit a backtracking approach. Since efficiency is crucial for the 
recognition process, the main part that follows highlights efficiency criti
cal elements, finally leading to the primary recognition algorithm. In this 
algorithm, the search order of backtracking plays a major role. 

4.3.1 The brute-force approach 

The set of isomorphism functions S (see Definition 4.20) directly leads to 
all matches of the sub-circuit recognition problem, according to Definition 
4.23. Therefore, the aim is to findS, i.e., the true-set of the isomorphism 
predicate S. The brute-force approach consists of the following two steps 
to findS. 

1. In the first step, the set Y of all one-to-one functions in vV, called 

the candidate is generated. Obviously, S C Y c vV. 

2. In the second step, S is derived from Y by removing the elements 
¢ E Y that do not obey the isomorphism predicateS. 

After Step 1 and Step 2, the matches are now given by the isomorphic 
sub-circuit (see Definition 4.22) of each isomorphism¢ inS. Since Step 2 
only entails the evaluation of S (see Definition 4.20), only Step 1 will be 
described briefly. 

Let o be an ordered set, enumerating all elements in V. Every ordered 
set w of !VI elements of V corresponds to a mapping ¢ E Y of s and vice 
versa. Step 1, the generation of Y, can therefore be implemented by enu
merating every ordered set w. The number of elements in Y is equal to the 
number of ordered sets of !VI elements of V, i.e., 

lVI! 
IYI = (lVI -!VI)!. (4.15) 
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This implies that Step 2 has to be applied IYI times. 
The advantage of this approach is that every isomorphism is identified. 

The disildvantage is that the order of the algorithm, dominated by the 
order of the first step, both for typical case and worst case, is equal to IYI, 
multiplied by the ordered set size. Hence, 

. !Vi X lVI! 
O(brute force algonthm) = 0( (lVI lVI)!. (4.16) 

Obviously, this algorithm has little practical relevance because of its inef
ficiency, but a refinement of this method, called backtracking, is directly 
related. For a backtracking algorithm, the test for a successful match (Step 
2) is applied during the selection of a candidate set Y (Step 1). It has 
the advantage that all isomorphisms are still identified, but unsuccessful 
sets of candidates in Yare excluded earlier, which allows far better average 
run-times than can be expected in the worst case. 

4.3.2 Backtracking in general 

Backtracking is a well-known method to solve a certain class of search prob
lems. In this section, the backtracking solution method is described for a 
general problem. It forms the framework, in which the sub-circuit recogni
tion problem will be embedded in subsequent sections. 

After stating the definition of a general search problem, the concept of a 
general search tree will first be described. Next, a description of the back
tracking method to find the solution set of the problem is given. Finally, 
some remarks on the performance of the method are given. 

Definition 4.26 Search Problem 
A Search Problem is defined by 

1. finite sets ~j, j 1, ... , k, that define a search spaceY = Y1 x ... x Yk, 

2. a search predicateD: Y---+ {True, False}. 

The set of solutions of the problem is equal to the true-set 'D of D. D 

'D can be computed by evaluating D for every tuple y E Y. This method, 
the general brute-force method, is usually very expensive, since IYI is large. 
The backtracking method may skip large parts of Y by using a general 
search tree, based on a permutation p of ( 1, ... , k). Figure 4.4 shows an 
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0 {} 

1 Y2={C,d} 

2 v1 = {a, b} 

3 Y
3
={e,f} 

cae caf cbe cbf dae daf dbe dbf 

Level Coordinate Searchtree 

Figure 4.4: A search tree, for Y = {a, b} x { c, d} x { e, !}, and p = (2, 1, 3). 
The levels associated with the vertices are indicated on the left side, includ
ing the relevant coordinate of Y. 

example of a search tree for which Y = {a, b} x { c, d} x { e, f}, and p 
( 2, 1, 3). For j in { 1, ... , k}, the number Pi assigns the coordinate YPi to 
level j, e.g., the set lp1 = Y2 = { c, d} is associated to level 1. We see that 
starting from the root vertex 0 at level 0, each vertex represents a sub-space 
of Y. The sub-space is recursively partitioned, at every proceeding level. 
Each leaf represents a permuted tuple ofY, e.g., the vertex cae corresponds 
to tuple ace. 

Definition 4.27 General Search Tree 
For a search problem (Definition 4.26), for any permutation p = (p~, ... ,pk) 
of (1, ... , k) called a search order, a General Search Tree is a directed non
cyclic graph Gp (Vp, Ep)· The set of vertices Vp is given by 

( 4.17) 
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Vj is called the set of vertices at level j. Vo is defined by { 0}, and 0 is called 
the root. The vertices at level j, j = 1, ... , k, are given by 

j 

Vj =II YPi' (4.18) 
i=l 

At each vertex v = (Yl, ... , Yi) at level j, 0 :::; j < k, a set of edges points 
at the vertices of the set { (Yl, ... , Yi)} x YPJ+I. Hence, the edge set is given 
by . 

k 

Ep U U { (v,w) I 'WE {v} x YPj+t}. 

j=O vEVj 

(4.19) 

For every vertex v E Vp, a unique path exists from root 0 to vertex v. 0 

The backtracking method described next, uses a search tree traversal to 
examine Y selectively. To employ a backtracking method for a search 
problem, the fur1ction D is decomposed according to the following defini
tion. 

Definition 4.28 Demand Function Decomposition 
For a search problem (see Definition 4.26), a search tree (see Definition 4.27) 
with search order p, a Demand Function Decomposition of the function 
D is defined by an ordered set of functions d = (d1, ... , dk), di : Vi -
{True, False}, called demand functions, for which for every tuple y = 
(yl,· .. ,yk) E Y 

holds. 0 

For example, suppose k = 3 and Yi = {0, 1} for i = 1, 2, 3. Suppose 
0,1 correspond to False,True. Suppose for any tuple (yl,Y2,Y3) E Y, 
D(y1,y2,y3) = (Yl Vy2)1\y3. The brute force method would evaluateD for 
all tuples in Y. However, from the definition it is clear that when Y3 = 0, D 
evaluates to False. To examine the third coordinate of Y first, we use the 
search tree resulting from p = (3, 2, 1). Figure 4.5 shows the corresponding 
search tree, including the chosen set of demand functions d = ( d 1, d2, d3). 

In general, for a vertex v = (y1, ... ,yj) at level j, 1 s; j s; k, dj(v) 
indicates whether any of the leaves reachable from v may represent an 
element of the solution set D. Hence, when dj(v) = False, the sub-set 
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:=True 

000 001 

Searchtree 

Figure 4.5: A search tree, for Y = {0, 1 }3, p = (3, 2, 1), and D(y1, Y2, Y3) = 
(Yl V Y2) 1\ Y3· On the left, a decomposition of the search predicateD into 
d = { d1, d2, d3} is given. The bold edges indicate the traversed edges, the 
thin parts of the tree are skipped. The encircled leaves represent the three 
solutions of the set D. 

{ (Yl, ... , Yj)} X YPHl ... X YPk is not part of the solution set D. This of
fers the possibility to skip the related parts of Y when computing D. For 
Figure 4.5, at level 1, d1(0) = False implies that the total left part of 
the search tree can be ignored, since the leaves are not part of D. The 
backtracking method exploits this property by traversing the search tree 
as follows. Starting from the root 0, each path 0, ... , v in Gp is followed, 
until at some level j, dj(v) =False. In this way, only a sub-tree of Gp is 
traversed, as indicated with the bold edges in Figure 4.5. The different co
ordinates Y1, ... , Yk are entered in the order p, explaining the name search 
order for p. The leaves that are reached during the traversal constitute D. 
For Figure 4.5, D = {101,011, 111}. 

Definition 4.29 Partial Search Predicate 
For a partial demand set d = (db ... , dj) of a search predicate D and 
search order p, 1 ::; j ::; k, the Partial Search Predicate is defined by 
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Dj: Yp1 x ... x Ypi---> {True, False} for Yi E Yp1 x ... x Yp, by 

The true-set of Dj is denoted by 'Dj. By using the inverse permutation 
function p~1 : Yp1 x ... x YPk ---> Y1 x ... x Yk that maps a leaf vertex to 
its corresponding tuple in Y, the relation between D~c and D is given by 
D(y) = Dk(P~ 1 (y)) for y E Y. This implies that 

(4.20) 

see Definition 4.28. D 

The set of vertices at level j that is encountered during search tree traversal 
by backtracking is equal to 'Dj. Note the difference between D~c and D. 

Definition 4.30 Traversal Size 
For a search order p, a search tree Gp of k levels (Definition 4.27), partial 
search predicates Di, i = 1, ... , k (Definition 4.29), the Traversal Size of 
Gp, denoted by jGpj, is defined by 

IGpl = I: I'Dil· 
i=l, ... ,k 

A Partial Traversal Size of Gp up to level j, j ::; k, denoted by jGpjj, is 
defined by 

jGplj = I: IVil· 
i=l, ... ,j 

0 

The traversal size of a search tree is equal to the total number of search tree 
vertices that are visited during the application of a backtracking method. 
The backtracking method is defined as follows. 

Definition 4.31 Backtracking Method 
For a search space Y and search predicate D (Definition 4.26), a search 

order p, the search tree Gp (Definition 4.27), a demand function decompo
sition d ( dt., ... , dk) and partial search predicates D1, ... , Dk (Definition 
4.29), the Backtracking Method is defined by the following steps. 

1. Find the first candidate set Y1 of D1, i.e., the true-set V1 = 81• 

Initialize 'Dj = 0 for j E {2, ... k }. 
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2. For every j E {1, ... , k -1} find for every Yj {y1, ... , Yj} E 'Dj the 
candidate set 

(4.21) 

to construct 
(4.22) 

3. Use Equation 4.20 of Definition 4.29 to compute the solution set V 
from vk. 

0 

During a sequential execution of this method, a candidate set may become 
empty. This means that the current path of the search tree need not be fol
lowed further. So one retreats from this branch, and continues with another 
path. This pattern explains the name of the method, backtracking. The 
proof by induction that every solution set Vj, j 1, ... , k, is generated, 
is straightforward, since Step 1 and Step 2 correspond directly to the basis 
and induction step of the proof. Since one backtracks when a candidate set 
YHl is empty, the method requires !Gpl steps. 

Some remarks on the method 
For any search problem defined by a search space, a search predicate D, 
and a search order p, one can always define a set of demand functions. 
For example, the trivial decomposition d1 = . . . dk-1 = True_function, 
and dk(v) D(p-1 (v)) can always be defined, but obviously leads to a 
complete traversal of Gp, and is not useful. Therefore, the "quality" of the 
decomposition determines the ability of skipping large parts of Y. Also, the 
chosen search order usually strongly effects the size of the traversed part. 
Figure 4.6 shows a variant of Figure 4.5, with p' (1, 2, 3). In Figure 4.6, 
the best decomposition still traverses a larger part than in Figure 4.5. This 
shows that one order allows better demand functions than others. When 
the most discriminating coordinates are first in the search order, the most 
selective demands are near to the top of the search tree, and the number 
and size of unsuccessful paths is reduced. Note that a permutation of 
coordinates is not simply equivalent to a permutation of demand functions. 
Also, the encircled leaves corresponding to the solution set V are different 
for Figure 4.5 and Figure 4.6. 

We conclude that the efficiency of backtracking depends firstly on the 
search order, and secondly on a proper decomposition of D into a demand 
set {d1, ... ,dk}· 



54 The sub-circuit recognizer 

:=True 

= Y1 Vy2 

\ 

000 001 

Searchtree 

Figure 4.6: Alternative backtracking search tree and traversed sub-tree for 
different search order p'. The sub-tree is larger than in Figure 4. 5, and 
other leaves {the encircled vertices) represent the same solution set V. 

4.3.3 Backtracking and sub-circuit recognition 

After having described the backtracking method in general, this section de
scribes the first steps towards the transformation of the sub-circuit recog
nition problem as described in Section 4.2.3 into a backtracking problem. 

According to Definition 4.31, Definition 4.26 and Definition 4.27 in the 
previous section, a backtracking process is characterized by 

1. sets }i, i = 1, ... , k, that define the search spaceY, 

2. a search predicate D : Y -+ {True, False}, whose true-set V is the 
solution set, 

3. a search order p defining a general search tree, 

4. a decomposition of D into a demand set dk = (d1, ... , dk)· 

By specifying these characteristics for the case of sub-circuit recognition, 
the sub-circuit recognition problem can be solved by backtracking. 
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In Section 4.2.3, the sub-circuit recognition problem definition (Defini
tion 4.23) is based on the isomorphism predicate S (see Definition 4.20) 
defined by the isomorphism conditions (Equations 4.2, ... ,4.7). The iso
morphism predicate S implicitly defines the solution set 

s {¢ E vV 1 S(¢)}. 

The search spaceY is defined as follows. 

Definition 4.32 Search space 
V is the template vertex set. Vis the main circuit vertex set. The Search 
Space Y has k = lVI dimensions. The coordinate sets are defined by 

Y; V, i = 1, ... ,k. Hence Y = v!VI. 0 

Since the coordinate sets are equal, the search tree (see Definition 4.27) 
is equal for any search order p. Therefore, we define p to be the iden
tity permutation (1, ... , k). This implies that 1) = 1Jk, so Step 3 of 
the backtracking method (Definition 4.31) is trivial. For an ordered set 
s ( v~, ... , vk), called the search list, enumerating the elements of V, ev
ery tuple w = ( w1, ... , Wk) E Y corresponds to a pair function ¢ : V -+ V, 
denoted by s • w, according to Definition 4.6 defined by ¢( Si) = Wi for 
i 1, ... , k. When S(¢) True, it is part of the solution setS. For differ
ent search lists, the search tree remains the same, but the function ¢ that 
corresponds with a tuple w E Y is different. This means that the selection 
of a search order p, is now transformed into a selection of an ordered set s, 
the search list. 

Definition 4.33 D 
For an isomorphism predicate S (see Definition 4.20), the search space Y 
(see Definition 4.32), for an ordered set of template vertices (v1, ... ,vk) 
called the search list s, the search predicate D : Y -+ {true, false} is 
defined for w E Y by 

D(w) = S(s • w). 

For j ~ k, a prefix (VI, ... , Vj) is called a partial search list, denoted by Sj, 

and sk=s. 0 

The following questions have remained: 

1. how to order the template vertices V into a search list s, 

2. how to decomposeD into an ordered set of demands d (db ... , dk), 
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3. how to traverse the search tree efficiently, for a given set of demands 
d, 

4. how to find the candidate sets YJ+l efficiently during the search tree 
traversal. 

Two aspects are important for efficiency: the cost of the ordering and 
decomposition method, and the cost of the backtracking process. The cost 
for ordering and decomposition must be less than the gain in backtracking 
to be justified. 
These four questions are addressed in the next sections. To understand the 
consequences of the search list order, one must know the decomposition and 
remainder of the backtracking process. Therefore, the search list ordering 
will be addressed after the other three, in Section 4.3.7. 
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4.3.4 The decomposition of the sub-circuit recognition prob
lem 

After reviewing briefly the starting point of sub-circuit recognition by back
tracking as given in the previous section, this section describes the decom
position of the problem into a set of demands d = (d1, ... , dk), for a given 
search list s. In addition to the decomposition, it will be shown that the 
demand set d actually defined is equivalent to the isomorphism predicate 
S (Definition 4.20, Section 4.2.3), that defines the search predicateD (Def
inition 4.33). 

The starting point 
A given main circuit G = (V, T, A, E, TC) is defined as in Definition 4.18, 
Section 4.2.3, including components set C, nets set N, terminal classes 
function TCS and degree function DEGREE. A given template circuit 
G = (V, T, A, TC) with external nets N E is defined as in Definition 4.19, 
Section 4.2.3, including components set C, the nets set N, internal nets set 
NI, terminal classes function TCS and degree function DEGREE. Note 
that the template circuit G is connected and non-trivial. Figure 4.7 shows 
the schematics and the graph of the template circuit example introduced in 
Section 4.2.3, Figure 4.3. The number of template vertices is k. Since we 
want to exploit connectivity to reduce the traversed part of a search tree, 
we will demand that the search list is prefix connected, defined as follows. 

Definition 4.34 Prefix Connected 
For a circuit G = (V, T, A, E, TC) defined according to Definition 4.17, 
k = !VI, an ordered set of vertices (vi, ... , vk) is Prefix Connected when 
for i = 2, ... , k Vi is connected to some predecessor Vj, (j < i). D 

A given search lists is an ordered prefix connected set (v1, ... ,vk), enu
merating all template vertices. For search list s, the partial search lists 
Si = (v~, ... , vi) for i E {1, ... , k }. For the main circuit G, the template 
circuit G and the search list s, the isomorphism predicate S is defined by 
Definition 4.20, Section 4.2.3, based on the equations 4.2, ... , 4.7. The 
search list s and isomorphism predicate S together define the search pred
icate D according to Definition 4.33. In the previous section, the role of 
the search order p has been taken over by the search list s. Therefore, the 
general search tree Gp (Definition 4.27) translates into the following search 
tree definition. 
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Vdd 

Gnd 

Figure 4.7: The schematics and circuit of a NOR template, introduced in 
Figure 4.3 of Section 4.2.3. The internal net set is given by NI = {h}, and 
the external net set is given by NE = {Vdd,In2,0ut,Gnd,Inl}. 

Definition 4.35 Search Tree 
For the main circuit vertex set V, the template circuit vertex set V and a 
search list s, the Search Tree is a directed non-cyclic graph Gs (Vs, Es) 
according to Definition 4.27. The set of vertices V8 is given by 

k 

Vs = u Vj. (4.23) 
j=O 

Vj is called the set of vertices at level j. Vo is defined by {0}, and 0 is the 
root. The vertices at level j, j = 1, ... , k, are given by Vj = Vi. The edge 
set Es is given by 

k 

Es=U U{(v,w)lwE{v}xV}. 
j=O 

(4.24) 

Each vertex w E V8 at level j is associated with a function t/Jj = Sj • w. 0 
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1: Vdd 2:p2 3:h 

4:p1 5: ln2 6:0ut 

S:Gnd 9: n1 10: ln1 

Figure 4.8: The sub-circuits Glsi, j = 1, ... , 10 of the NOR tem
plate circuit (Figure 4. 7}, when the search list is given by s = sw 
(Vdd, p2, h, pl, in2, out, n2, gnd, nl, inl). Apart from the internal net h, 
each net is an external net. The new edges in Glsi with respect to Glsj-u 
are drawn in bold lines. At the bottom of each graph, j and Vj are given. 
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Decomposition 
The decomposition of D into set d = ( d1, ... , dk) is described, starting 
from the above definitions. Based on partial search lists Sj, j = 1, ... , k, 
the decomposition will correspond to the sub-circuits Glsj of the template 
circuit. Figure 4.8 shows a search list and the sub-circuits for the template 
circuit of Figure 4.7. It shows that each proceeding vertex Vj introduces 
new edges. Based on these new edges, we will associate with each search 
tree level j a demand function dj : Yj ---+ {True, False}, that checks for a 
candidate w1 E V the following properties. 

• With regard to the labeled new edges between Vj and the elements of 
Sj -1 ( v1, ... v j -1), corresponding edges must be present between w j 
and w1, ... , Wj -1· This part of dj is called the connectivity demand. 
Figure 4.8 shows, per level j, the relevant edges of the template in 
bold lines. For example, for j = 3, a candidate net W3 that matches 
v3 = h should be connected to match w2 of v2 = p2, with an sd 
labeled edge. 

• The attributes A( Wj) must be equivalent to the attributes A( Vj), and 
corresponding degree per class must be similar. Also for a component, 
the types must be equal. For example, for a match w2 of v2 = p2, d2 
checks whether type M 0 S, width = le- 6, and model = PTY P E. 
For V3 = h, d3 checks whether W3 has exactly two sd connections, 
since h E N I. This part of dj is called the local demand, since it is 
independent of the search list order. 

Therefore each function dj will be composed of a connectivity demand 
function Fj and a local demand function Lvj . Also the relation to the 
isomorphism predicate S is explained. 

Definition 4.36 Local Demand Function 
For each v E V, a Local Demand Function Lv: V---+ {True, False} has 
the following definition for w V: 

{ 

(A(v) A(w)) 1\ (T(v) T(w)) if v E C 
Lv(w) = Vc E T: DEGREE(v,c) = DEGREE(w, c) if v E NI 

Vc E T: DEGREE(v,c) s; DEGREE(w, c) if v ENE 

D 

For a template component v, the local demand function Lv checks equality 
of attribute-name, attribute-value pairs and types of v with a component 
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candidate w. For a net v EN and wEN, A(v) A(w) = T(v) = T(w) 
0 by definition. With respect to isomorphism predicate S, this can be 
used to check Conditions 4.3 and 4.4 of Section 4.2.3. For a net candidate 
w, the local demand function checks the number of connections per class, 
which is different for internal nets versus external nets. Since the number 
of connections per component type is fixed, a component v E C and w E C 
bavingT(v) = T(w) imply that DEGREE(v,c) = DEGREE(w,c) for any 
class c. Therefore, Lv can be used to check Conditions 4.6 and 4. 7 (Section 
4.2.3). When v E C and wEN, or v EN and wE C, Lv(w) =False. 
In summary, each Lv can be used to check Conditions 4.6, 4.7, 4.3 and 4.4 
of S for the given main circuit vertex. As will be shown next, the remaining 
two Conditions 4.2 and 4.5 of S can be checked by the connectivity demand 
functions. 

Definition 4.37 Connectivity Demand Function 
For each j 1, ... , k, a Connectivity Demand Function Fj : yi ---t {True, 
False} is defined for a search tree vertex Wj = (w~, ... , wj) (see Definition 
4.35) by: 

if j 1 
if 1 < j ::; k 

Fj depends on the ordering of s. 0 

Fj checks whether the new edges between Vj and Sj-I, as indicated in 
Figure 4.8 have corresponding edges between Wj and Wj-I· Figure 4.9 
illustrates the definition of Fj(Wj-1, Wj ). Since components and nets are 
treated equally, they are both drawn by bullets in the figure. Based on Lj 
and Fj, the demand functions can now be defined. 

Definition 4.38 Demand Function 
For j = 1, ... , k a Demand Function dj : yi ---t {True, False} is defined 
for a search tree vertex w j = ( w1, ... , Wj) at level j by 

0 

When the backtracking method as defined in Definition 4.31 is applied with 
the current decomposition d ( d 1l ... , dk), the relation between Gs, dj, 
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Figure 4.9: Relation between the outlined restricted template graphs Gj-1, 
Gj and connectivity demand function Fj. Both components and nets are 
represented by small bullets, because they are treated equally. 

Fj and S is as follows. 

Let j E {1, ... , k} be a level in the search tree G8 . 

For j = 1, the sub-circuit GJ81 of the template, consists of a single vertex v1. 
No new connectivity is associated with the traversal from the root vertex 0 
of the search tree to level 1 vertices, so F1 = True_function, and matches 
of GJ81 should only satisfy Lv1 • 

For j > 1, a unique path from root 0 to the vertex Wj-1 = (w1, ... , Wj-d 

is traversed according to Definition 4.31 of the sub-tree of G8 , for which 
all di(wi) True (i < j). In other words, Fi(wi) = Lv;(wi) = True 
for i 1, ... ,j - 1, and every Wi E V is a corresponding candidate of 
Vi. Hence Wj-1 E Dj-1· Let Gj-1 denote the sub-circuit GJ 8 i_1 of the 
template. Let the function c/>j-b associated with Gj-b be equal to the pair 
function •wj-1· Since Wi ft Wi-1 according to Definition 4.37, c/>j-1 is 
one-to-one. Fi(wi) =True implies that the connectivity Condition 4.5 and 
Condition 4.2 of S are met by c/>j-1· Since also all Lv; ( wi) = True, c/>j-1 is an 
isomorphism of the template sub-circuit Gj-1· In Figure 4.9, the dotted line 
encircles on the left the connections between every v E Sj-l· On the right 
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it also includes connections to Vj. The difference is represented in Fj. Fj 

checks for a candidate Wj E V whether the corresponding connectivity per 
terminal-class between Vj and its predecessors is present. In other words, 
Fj checks the Conditions 4.2 and 4.5 of S related to the edges between Vj 

and Sj-1· 

We see that when for a Wj E Vj, LvJ = Fj = True, all conditions of S 
are met with respect to Gj. This implies that t/>j sj•Wj is an isomorphism 
of Gj. By using recursion, it follows that for j = k, tPk = sk•wk = s•w is an 
isomorphism of the complete template G. This concludes the decomposition 
of D into the given set of demands d = (d1, ... ,dk), composing of a local 
demand functions Lv, for every v E V, and search list order dependent set 
of connectivity functions Fj, j = 1, ... , k. 

4.3.5 Search tree traversal 

This section focusses on search tree traversal and efficiency. Two known 
tree traversal methods that implement the backtracking method (Definition 
4.31), called depth-first and breadth-first, are briefly introduced, to provide 
a motivation for why depth-first has been selected as the most efficient 
method. Next, the depth-first search algorithm will be described. 

Figure 4.10: Depth-first and breadth-first tree traversal. Depth-first and 
breadth-first order are respectively indicated by arabic numbers on the left 
side and roman numbers on the right side of each point. 

Breadth-first and depth-first traversal 
Breadth-first and depth-first tree traversal are both shown in Figure 4.10. 
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When performing breadth-first search, the tree is traversed with "hori
zontal" preference, and for depth-first search, the tree is traversed with 
"vertical" preference. Starting from the root (the top), the preferred di
rection is advanced as far as possible, then the non-preferred direction is 
advanced one step and next the preferred direction is tried again, see also 
Figure 4.10. The traversal algorithm efficiency depends on the chosen data 
structure. When the graph is represented as adjacency lists (see Section 
4.2.4), the traversal algorithm is linear in the size of the search tree for 
both methods[Sedge88]. However, depth-search and breadth-search differ 
in their storage use. Eventually after the traversal, every solution (match) 
of Dk given by a search tree vertex wk = (w1, ... , wk) must have been 
stored. Each vertex Wk represents the unique path 0, WI, .•• , Wk connect
ing the root with the vertex. 

Breadth-first traversal, traverses level by level. At level j, 0 s j < k, all 
reached vertices must be remembered to know which paths should be con
tinued at the next level j + 1. Therefore, for each level j, the partial solution 
set Vj of Dj must be stored, including the vertices that will eventually not 
lead to a solution at level k. 

For depth-first traversal, one path is considered at a time and advanced 
until it leads either to a match or it cannot be completed. Only one vertex, 
one partial solution, need be stored, together with the previously found 
matches. 

Therefore, depth-first traversal is to be favored over breadth-first be
cause it uses storage more efficiently, which also results in better run times. 
Although the argument suggests that depth-first is always better, some
times breadth-first traversal is preferred for other backtracking problems. 
For instance, for the shortest path problem, the breadth-first method is 
preferred. 

Depth-first search algorithm 
In Figure 4.11 the pseudo-code for the recursive depth-first search algorithm 
is shown. STORE_PATH saves a full match satisfying dk (d1, ... , dk) 
into the global data structure. The function FIND_CANDIDATE_SET 
returns a set of candidates for which each element w, dj+l ( w j, w) is .True, 
i.e., it computes Yj+I (Equation 4.21). It is fully explained in the next 
section. MARK and UNMARK allow a quick check at the proceeding 
recursion levels to prevent candidates from occurring more than once in a 
partial match. The recursion depth is obviously limited to k !VI, and is 
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Procedure DEPTH_FIRST _5EARCH (j) 

if j = k 
then STORE_FATH(wk) 
else for all cand E FIND_CANDIDATE_SET(dj+l, Wj) 

Wj+l:=cand 
MARK(cand) 
DEPTH..FIRST _SEARCH(j+ 1) 
UNMARK( cand) 

endfor 
endif 

endproc 

Figure 4.11: The depth-first search algorithm. 

independent from the main circuit G. 

4.3.6 Finding a candidate set for a demand 

65 

The previous section described the depth-first search algorithm for travers
ing the search tree, based on the FIND_CANDIDATE_SET algorithm, that 
implements the computation of the candidate set YHl (see Equation 4.21). · 
This section describes how FIND_CANDIDATE_SET can be computed ef
ficiently. In this section the computational complexity will also be given, 
followed by an enhancement for a special case that often occurs. 

FIND_CANDIDATE_SET 
In the depth-first search algorithm of Figure 4.11, 
FIND_CANDIDATE_SET(dj+l,wj) must return all vertices of the main cir
cuit for which the demand dj+l holds, after arriving at vertex Wj E 'Dj, for 
which the corresponding search tree path 0, ... , Wj has been traversed. For 
the sub-circuit recognition probl<?m YpH1 V, 1 ::; j < k, (see Definition 
4.32), so the actual candidate set Yj+l is given by 

( 4.25) 
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A brute-force direct implementation of the above definition evaluates 
dj+l(Wj,w) for every wE V, hence leading to !VI evaluations of dj+l at 
every traversed vertex of the search tree. For reasonably sized circuits, this 
implementation becomes impracticable, so FIND_CANDIDATE_SET will 
be defined in a different way. 

Template circuit 

Main circuit 
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Figure 4.12: Example of FIND_CANDIDATE_SET. Both components and 
nets are drawn by bullets. The multi-sets Adj(wi, classi), i E {1, 2, 3}, 
enumerate the vertices that are connected via edges to Wi, labeled classi. 
Candidates matching V4 must be part of the inter·section of the multi-sets 
Adj(wi,classi) (i = 1,2,3), to have the required connections to all three 
vertices. 
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An example 
To introduce a better approach to compute Yj+b consider the following 
typical example (see Figure 4.12). In the example, there are no multi
edges. Suppose that for j = 3, the depth-first search algorithm has arrived 
at the partial match w3 = (wt,w2,w3) for s3 = (v1,v2,v3). Obviously, 
for i 1, 2, 3, Wi = rp3( Vt)· Given this context, we want to compute the 
set of candidates Y4 for v4, satisfying d4 for each candidate. First, we will 
consider connectivity. Let :.F4, called the tentative candidates, be the set 
of candidates that match the connectivity demand function F4. Since v4 is 
connected to v1, v2, V3, with edges labeled class1, class2, class3, each element 
w E :.F4 should be connected to Wt, w2, w3, with corresponding labeled 
edges. According to the definition of the adjacency function of Section 
4.2.4, Equation 4.25, each Adj(wi, classi) (i = 1, 2, 3) enumerates the multi
set of neighbor vertices of Wi, with label classi. Therefore, for i = 1, 2, 3, 
wE Adj(wi,classi)· Hence :.F4 c ( Adj(w~,class1) n Adj(w2,class2) n 
Adj(w3,class3)) . Each element w of the right-hand side that is not one 
of Wt,W2,w3, satisfies the connectivity demand, i.e., F4(w3,w) =True. 
When also Lv4 (w) =True, d4(w3,w) =True. Therefore, 

:.F4 = n Adj(rj>(vi), classi) \ W3 ( 4.26) 
i=1,2,3 

and 
(4.27) 

and 
FIND_CANDIDATE_SET(d4, w3) = Y4· (4.28) 

This computation utilizes local information of the template graph, the main 
graph and the depth-search procedure, and the size of Vis of no concern. 

General case 
With the previous example in mind, the FIND_CANDIDATE_SET algo
rithm will be described for the general case. For the general case, the depth
first search algorithm has arrived at a partial match w j = (WI, ... , Wj) of 
Sj, given by wi = r/>j(vi) (i = 1, ... ,j). Now it is known which elements 
of Wj have to be connected to any unknown vertex Wj+I that matches 
Vj+I· For Figure 4.12, the vertices { v1, v2, v3} are connected to v4, and 
the corresponding matching vertices {WI, w2, w3} have to be connected to 
any candidate w4 • In the general case, multi-edges are allowed, so the 
multiplicity must be taken into account as well. 
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Definition 4.39 Template Neighbor Function 
For j E {1, ... , k-1}, for each i E {1, ... ,j}, a Template Neighbor Function 
bi : V 28 ixrxAV+ is defined by 

bi(v) = {(u, c, m) I u E si, c E 'Y(v) : m J.lu(Adj(v, class)) Am> 0}. 

0 

Each template neighbor function bi enumerates for a template vertex argu
ment v a set of (partial search list vertex, label, multiplicity) triples that 
represents the labeled multi-edges between v and Si. For example for Figure 
4.12, b3(v4) {(v1,classl, 1), (v2,class2, 1), (v3,class3, 1) }. 

Definition 4.40 Main Circuit Neighbor Set 
For a level j E {1, ... , k- 1}, a search tree vertex Wj (w1, ... , wj) E Vj 
(see Definition 4.31), a function cPj = Sj • 'Wj, the Main Circuit Neighbor 
Set is defined by 

Pj = {(ifJj(u), c, m) I (u, c, m) E bj(VJ+l)}. 

The template neighbor function bj is defined by Definition 4.39. 0 

Pj is the corresponding main circuit neighbor set of bj(Vj+I) describing the 
required edges of a candidate. Pj is a set of (main-circuit vertex, label, mul
tiplicity) triples. For each triple ( w, c, m) E Pj, any candidate Wj+l should 
be adjacent tow via exactly m edges labeled with class c. For example in 
Figure 4.12, P4 { (w1,class1, 1), (w2,class2, 1), (w3,class3, 1) }. This is 
defined as follows. 

Definition 4.41 Tentative Candidate Set 
For a level j E {1, ... , k- 1}, a search tree vertex Wj E Vj and the main . 
circuit neighbor set Pj (Definition 4.40), the Tentative Candidate Set Fj+l, 
a subset of V, is defined by 

n Adj(u,c)\wi i\i(u,c,m) E Pj: m ttw(Adj(u,c))}. 
(u,c,m)EPj 

0 

The m ftw ( Adj ( u, c) part of Definition 4.41 checks the multiplicity of a 
candidate. Fj+l is the true-set of Fj+1, restricted to {wj} x V. For Figure 
4.12, the tentative candidates for F4 are given by 

n Adj(ifJ(vi), classi, 1) \ W3, 

i=l,2,3 
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since it contains no multi-edges. Only LvH1 is left to be evaluated for 
each vertex in Fj+l to become a member of Vj+b so we arrive at. a new 
equivalent definition of FIND_CANDIDATE_SET. 

Definition 4.42 FIND_CANDIDATKSET 
For a level j E { 1, ... , k - 1}, a search tree vertex w j E V j, the tentative 
candidate set Fj+l (Definition 4.41), the algorithm for 
FIND_CANDIDATEJ3ET is defined by 

FIND_CANDIDATEJ3ET(dj+b wj) ={wE Fj+l I (w)}. 

0 

The computational complexity 
The computation of FIND_CANDIDATE_SET(dj+l) as described above 
takes IFj+ll evaluations of LvJ+ 1 • cost of computing the triples Pj for 
Fj+l depends only on the local graph structure of the neighbors of Wj+I, 

and the efficiency of the intersection operation, because the computation 
of the template neighbor functions bj ( Vj+I) only has to be done once for 
each level j, and computing fj(v) for v E Sj has complexity 0(1). Since 
the candidates Wj are marked by the depth-first search procedure (Figure 
4.11), they are efficiently omitted. 

The relevant Adj ( w, class) are directly accessible in the circuit data 
structure (Section 4.2.4, Equation 4.25). The order of the 
FIND_CANDIDATE_SET algorithm is therefore given by 

0( L IAdj(p)l) 0( L DEGREE(p)), (4.29) 
(u,c,m)EPj (u,c,m)EPj 

i.e., the number of edges connected to the neighbors of vi's matches. This 
result is much better than the direct FIND_CANDIDATE_SET implemen
tation mentioned in the beginning of this section. For Figure 4.12, the 
algorithm is only 0 (I Adj (VI, class1) I + I Adj ( v2, class2) I + I Adj ( v3, class3) I), 
and lVI is of no concern. 

An enhancement 
A simple but effective improvement is described next. It prevents the ex
pensive computation of intersections of large sets in the formula of Fj+l 
where possible. 
Suppose that for a certain FIND_CANDIDATEJ3ET computation, a set of 
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Figure 4.13: Example of an improvement of FIND_CANDIDATE_8ET, 
with Adj(wi,cl) = 81 ={a} and Adj(wi,cl) = 81, 1811 = 100. It shows 
that by using a detour, the fact that {a} = 81 n 82 can more efficiently be 
computed by checking whether w2 E Adj(a, c2), when IAdj(w2, c2)1 is large. 

candidates Fj+l is determined by two adjacency lists 81 = Adj(w1, cl) and 
82 = Adj(w2,c2), as shown in Figure 4.13. Suppose that 81 ={a} and 
l82l = 100. The described method for FIND_CANDIDATE_SET would 
take the intersection of 81 and 82, a computation of on average 50 steps. 
This seems inefficient, knowing that only one vertex a might survive. There
fore, FIND_CANDIDATE_SET is further improved by making a detour 
in this case. Instead of intersecting 8 1 and 82 , it simply checks whether 
w2 E Adj(a,c2). This is a computation of IAdj(a,c2)l = 1 step for the 
example. The detour is only applied when for some i < j : l8il << l8il· 
In this way, the typical case order FIND_CANDIDATE_SET is strongly 
improved. 
For example, when using the recognition algorithm for a circuit at the tran
sistor level, sets that are nearly always bypassed via this detour, are the 
adjacency sets of ground and supply nets of the source-drain class, because 
their degrees are large. On the other hand, the degrees of the gate connec
tions of these nets are usually low, so these sets are hardly ever bypassed. 
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4.3.7 The ordering of a search list 

The previous sections describe the decomposition of the sub-circuit recog
nition problem into a set of demands for a given search list and efficient 
backtracking for a given set of demands. This section highlights issues 
concerning the best ordering method for demand set d. We have argued 
in Section 4.3.2, that the size of the traversed part of the search tree is 
strongly influenced by the chosen permutation called the search order p. 
For the sub-circuit recognition problem, the search order p has been trans
formed into the order of the search list sk. Indeed, in the actual sub-circuit 
recognition implementation, the search list ordering method has been the 
most decisive part for the efficiency. The outcome of the ordering method 
called search list generation, is a prefix connected ordering of the tern
plate vertices V (see Definition 4.34, Section 4.3.4), the actual search list 
sk = (v1, ... , vk), k =!VI, which directly corresponds to the demand func
tion set d as described in Section 4.3.4. In general, there are k! orderings 
of V. For a typical template circuit, considering every order is therefore 
impracticable. 

The aim of the ordering is to reduce the traversal size of the correspond
ing search tree (see Definition 4.35, Definition 4.30). By placing strongly 
selective demands at the beginning of the search list, and the barely se
lective demands towards the end, the traversed part of the search tree will 
start off narrow, and most branches deeper in the tree are likely to lead to a 
recognized instance of the template. For algorithms found in the literature, 
the search list is either determined by the user, or based on characteristics 
of the template circuit G only. The first option requires a very experi
enced user, while the later may lead to an algorithm that works for one 
main circuit and fails for another. In our approach, the search list depends 
on both the template G and the main circuit G. This is realized by es
timating heuristically the selectivity of each demand, based on G and G. 
The selectivity of a demand will be formalized as the branching factor of 
a coordinate, i.e., a vertex. A high branching factor corresponds to low 
selectivity. The search list is therefore ordered from low branching factor 
values to high branching factor values. 

The branching factor, an example 
To introduce the branching factor, we reconsider the problem of Figure 4.5 
and Figure 4.6. Suppose we must determine the best search order p for 
this problem. In analogy to assigning branching factors to vertices, we will 
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assign branching factor values to the variables Yl, y2, Y3· Recall that for 
every search order p, the search tree Gp(Vp, Ep) (see Definition 4.35) is 
interpreted differently, and thus the traversal differs. The branching factors 
Ul('t), (i = 1, 2, 3) are equal to the minimum traversal size of any search 
tree, starting from level 0, when Pl = i. In order to compute U1, each 
variable Yi is considered at the first level, and the other two are considered 
at the next level. For k = 3, this leads to 3! = 6 possibilities. However, 
since the problem is symmetrical w;r.t. Y1 and y2, Figure 4.5 shows that 
U1(3) = 6 and Figure 4.6 shows that U1(1) = U1(2) ·= 8. Therefore, a 
decision based on Y3 at level 1 is preferred. After having selected PI = 3, 
our next concern is P2· The branching factors U2(i), (i = 1, 2) are equal 
to the number of traversed edges of the search tree, starting from level 
1, when P2 i, assuming Pl 3. Figure 4.6 shows that U2(2)=5, and 
from the symmetry between Yl and Y2 follows that U2(1)=5. Indeed, the 
sylllmetry indicated directly that the choice for P2 leads to the same number 
of traversed edges. After having chosen P2 2 at random, there is only one 
alternative for p3, P3 = 1, making the evaluation of branching factor U3(2) 
superfluous. So for the example, p = (3, 2, 1) is the final choice. 

The example that has just been described, shows that every search tree 
should be traversed to determine an efficient search order. This method 
obviously puts the cart before the horse, since we want to use the search 
order to select a single search tree with a small traversal sub-tree. There
fore, one must rely on estimates of the branching factors that necessitate 
neither search tree enumeration nor search tree traversal. 

For the given example, one may for example approximate the branching 
factor ul ( i), i = 1, 2, 3, by the number of traversed edges when going from 
level 0 to 1 only. Let an approximation of U1 (j) be denoted by U1 (j). 
Now U1 (3) = 1, and U1 (1) = U1 (2) = 2 (see first level of Figure 4.5 and 
Figure 4.6). This leads to the same conclusion: PI = 3, and from the Yl> Y2 
symmetry follows that p = (3, 2, 1) isa good choice, without traversing any 
search tree explicitly. 

The branching factor functions 
After informally having introduced the branching factor, the branching 
factor function will now be defined as follows. 

Definition 4.43 Branching Factor Function 
For a main circuit G, a template circuit G, the search predicate D (Def
inition 4.33), a partial search order Sj-1 (v1, ... ,vj-1), j E {1, ... ,k} 
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which is a prefix connected subset of V, the Branching Factor Function 
Uj : V \ --+ IN is defined for a vertex v as 

Uj(v) = min . ( IGsi-IGslj ), 
SE{Sj-d x {v}xvk-J, 

s is prefix connected 

i.e., the minimum traversal size at levels j, ... , k, when Vj 

tree G8 having Sj = (VI, ..• , , v). 
v in any search 

0 

The domain of the function is the set of vertices excluding the vertices of 
the partial search order. In this definition, the number IGslj is constant, 
since is constant. When Uj(P) > Uj(q) for a given Sj-1 and for some 
p, q E V \ Sj-b a search tree G8 o, sOj = (s1, ... , Sj-1, q) with a smaller 
traversal size exists than the traversal size of any search tree G8 1 with 
partial search order slj ( s1, ... , Sj -I, p). In other words, the demand 
function dj associated with template vertex q is more selective. 

To compute a branching factor function value Uj ( v) for some vertex at 
some level j, every search tree should be traversed. Since the computation 
is impracticable, approximate functions Uj : V \ --+ JRU{O} of the 
branching factor functions are used to efficiently find a search order with 
a search tree having a small traversal size. When Uj(P) > Uj(q), it should 
imply that Uj(P) > Uj(q), so only the relative function values of Uj should 
resemble Uj, the function values of a Uj should maintain the order of Uj. In 
the rest of this thesis, the notion branching factor will refer to Uj, i.e., an 
approximation of Uj. The co-domain of Uj, the non-negative real numbers, 
is an extension of the co-domain of Uj to allow real number approximations 
of natural numbers. 

The example and notion of branching factor that were shown above 
suggest a recursive approach to compute the search list s = sk. Therefore, 
in the following section, the definition of Ut, called the initial branching 
factor estimate, is described first to determine v1, including an efficient 
computation method. In the next section, the rest of the search list is 
determined during a recursive traversal of the template circuit, by defining 
the branching factors Uj, j 2, ... , k along the way. It is also shown how 
these can be computed efficiently. At every level j, the vertex having lowest 
branching factor is selected as Vj. The approximations of branching factors 
used are crucial for the eventual recognition algorithm and are therefore 
explained in detail, including supportive examples. 
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4.3.8 The first search list element 

The ordering of a search list is guided by a set of functions called branching 
factor estimates, introduced in the last section. The subject of this section 
is the initial branching factor. An efficient computation method is included, 
based on equivalence sets. The vertex having the minimum initial branching 
factor is considered as having the most selective demand di, and is therefore 
selected to be VI. Finally, an improvement of the initial branching factor 
is given, called the clock heuristic. , 

The initial branching factor UI 

According to the definition of the first demand function di (Definition 4.38), 
di = Lv1 • Therefore, we will consider the true-set function of the local 

demand functions Lv, v E V, £: V---+ 2 V. 

Definition 4.44 Initial Candidates Function 
For a main circuit G, template circuit G, the local demand functions Lv for 
v E V defined according to Definition 4.36, the Initial Candidates Function 
£ : V ---+ 2 V is defined for a template vertex v by 

£ ( V) = { W E V I Lv ( W) } . 

D 

C(v) assigns the elements ofV to a template vertex v that satisfy Lv. Since 
l£(v)l equals the number of traversed edges when going from level 0 to 1, 
assuming VI = v, a reasonable estimate for UI is 

(4.30) 

Whether this function can be computed efficiently is addressed next. 

An efficient computation for UI 

The computation of UI is dominated by the initial candidates function £. 
The computation of£ takes O(IVI * lVI) operations when implemented as 
evaluating every Lv (v E V) for every w E V, and assuming that Lv(w) 
can be evaluated in 0(1) operations. However, as will described next, the 
computation can be done much more efficiently. According to Definition 
4.36, two local demand functions Lp and Lq represent the same relation, 
when the attribute function A, the type function T and the degree function 
for every class of p and q are equal. In that case, £(p) = C(q), and the 
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computation of U1 (p) makes computing U1 ( q) superfluous. According to 
Definition 4.3, Section 4.2.1, the quotient set VIC is a partition of V into 
equivalence sets. The vertices in an equivalence set have equal local demand 
functions Lv. Hence only one computation of C(v) per set of the quotient 
set VIC is necessary. 

According to Definition 4.36, every Lv function, v E V is uniquely 
defined by the 3-tuple (T(v), A(v), { (c, DEGREE(v, c)) I c E 7(v) } ). 
Therefore, by computing every 3-tuple per v E V, the quotient set VIC 
can be computed without explicitly evaluating any C(w). This results in 
O(IGI) O(IVI + lEI) operations to compute VI C. 

To compute U1, we must compute one C( v) explicitly per set of the 
quotient set VI C. Since for electronic circuits many similar constructions 
are used in a design, the number of equivalence sets in VIC is small, typ
ically O(log lVI) or even less. For instance, a CMOS template of an adder 
will only contain PMOS and NMOS transistors, with only a few variations 
in width and length attributes. The number of different degree values for 
nets is also limited, because of fan-in and fan-out restrictions. 

In total, the computation of U1, involves computing VI£, and for each 
set we must compute one £(v). Therefore, the number of operations is 
O(IGI) + O(IV I Cl * lVI). By assuming that IGI < lVI and O(IV I Cl) Ri 

O(log lVI), this reduces to 

O(U1) Ri O(log lVI * lVI), (4.31) 

which is much better than O(IVI * lVI). For the implemented recognition 
algorithm, this computation forms a major part of the run time, so the 
computational speedup by using equivalence sets is of great importance. 

The search list initialization algorithm 
The algorithm that initializes the search list generation process and com
putes the initial branching factor U1 is given in Figure 4.14. It computes a 
partitioning of V over equivalence sets, VI£, the initial branching factors 
U1(v), the 3-tuple per vertex, the start vertex v1 and its candidates Yl· 
In the first for-loop the equivalence sets with respect to the initial candi
dates C, being the true-set of Lv, are computed. The 3-tuples associating 
a vertex to its local demand Lv are also computed. 
In the second for-loop, the candidates for any vertex of an equivalent set 
are computed. The function ANY applied to a set returns one item of the 
set. The first vertex of the search list, v1 is set to a vertex having a mini
mum branching factor U1. When U1 (vi) = 0 for this vertex, the number of 
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Procedure INITIALIZE_SEARCH_LIST _GENERATION 

for all v E V do /* Compute VIC *I 

3_tuple[v] := ( T(v), A(v), {(c, DEGREE(v,c)) IcE l'(v)}) 
eqset[3_tltple[v]] := eqset[3..tuple[v]] U { v} 

endfor 

Umin := +oo 

for all set E eqset do /* Compute Y = C( v) and U1 
per equivalence set and ... *I 

v :=ANY( set ) 
L := Lv /* assign a function *I 
Y :={wE VIL(w)} 
u1 !YI 

if U1 < Umin 

then 
Umin U1 
VI V 

Y1 :=Y 
endif 

endfor 

/* ... select v1 and Y1 in passing. *I 

if U1 0 then exit("No matches") 

end procedure 

Figure 4.14: Initialization for search list generation. 
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possible matches is zero, and the recognition process exits. The actual set 
of candidates Y1 for v1, .C(v1), is also stored for later use in the depth-first 
search process. 

The clock heuristic 
An improvement for the U1 estimate, called the clock heuristic, is now 
described. The improvement was introduced as a result of inefficient recog
nition, that was caused by a circuits clock net. 

Although Equation 4.30 seems a natural choice for estimating the rel
ative size of the traversal sub-tree, it ignores the different traversal sizes 
of the search trees as a result of connectivity permutations, as shown in 
Figure 4.15. When the template vertex VI is selected for s1 in this figure, 
both the main circuit vertices WI and w2 are a matching candidate. In 
the figure, only the indices of the main circuit vertices are indicated. The 
traversal size of search tree sprouting from w1 is 3 times larger (6 : 2) than 
for w2. This directly relates to the permutation of class x connections 

between v1, v2 and v~, v3. Starting from w1, ( ~) = 3 combinations 

are possible, i.e., (w3, w4), (w3, w5), (w4, w5) for (v2, v3). Starting from w2, 

only ( ~) = 1 continuation is possible, i.e., (w6, W7) for (v2, v3). Since 

different labels (classes) are independent, the branching effect is multiplied 
for different classes. Therefore, each candidate in V is weighted according 
to the product of the number of possible connections for each class in the 
improved definition for the initial branching factor function: 

U ( ) = ""' IT (DEGREE(w,c)) 1 v ~) DEGREE(v,c) 
wE.C(v 

( 4.32) 

For components and internal nets, the weight is equal to 1, since the degree 

per class, d, in template and main circuit must be the same and ( ~) = 1. 

Therefore, the weight factor only enhances the branching factor for external 
net vertices. 

In the algorithm of Figure 4.14, the addition of the clock heuristic is 
simple. Only the right-hand side of the assignment of U1 should be replaced 
by the right-hand side of Equation 4.32. The efficiency of the algorithm is 
hardly affected by the improvement. 
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class x 
~ 

Template circuit (partly) Main circuit (partly) 

27 

1~4 1~5 143 145 1~3 1~4 2~7 2~6 
I 1 I I 1 I I 

Traversed part of a search tree (partly) 

Figure 4.15: The clock heuristic factor. Part of the traversed search tree 
is shown for S3 = ( v~, v2, V3). The numbers in the tree denote the main 
circuit vertices, i.e., 13 denotes (w1,w3). When S3 (v1,v3,v2), a similar 
partial tree would result. Since the traversed part sprouting from w1 is 

( 32·) 3 times larger than the traversed part from w2, the contribution 

of candidate WI to the initial branching factor U1 should be 3 times larger 
than the contribution of candidate w2. 
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4.3.9 Ordering the rest of the search list 

Starting from v1, the rest of the search list is determined by traversing 
recursively the rest of template circuit. At every recursion level j, the 
next, as yet unselected, vertex having minimum branching factor Uj+l is 
selected. The focus of this section is on the definition of the branching 
factors Uj+l· An efficient algorithm computing the factors is described 
in the next section. 

After defining the induction step for finding the next in global 
terms, we will describe two estimation heuristics, called the search list con
nection count heuristic, and the parallel heuristic. Since the heuristics are 
essential for the efficiency of the recognition algorithm, they are explained 
in detaiL Based on these heuristics and on the the already defined initial 
branching factors U1 ( v ), the branching factors Ui+l ( v) definition will be 
giVen. 

The induction step 
This part describes the global scheme of the recursive search list generation, 
based on the selection of VI as described in the previous section. The 
induction step entails finding a suitable Vj+l· Candidates for selection are 
defined as follows. 

Definition 4.45 Border Set 
For a template circuit G, for j E {1, ... , k -1}, a partial search list Sj, the 
Border Set Bj, Bj C V is defined by 

Bj = U U ( Adj(v,c) \ Sj ). 

'VESJ cE')'( V) 

The adjacency function Adj of a circuit is defined in Definition 4.25. The 
present classes function function "' of a circuit is defined in Definition 4.24. 

0 

The border set Bj enumerates all neighbor vertices adjacent to the vertices 
of the partial search list Sj. Since every v E s must be connected to at least 
one of its predecessors, Vj+l must be a member of Bj. 

Suppose the definition for the branching factor function Uj+l : Bj ~ 

JR+ U {0} is given. Since Uj+l estimates the minimum traversal size for 
level j + 1, ... , k. the induction step computes Vj+l by selecting an element 
of Bj having minimum Uj+l· 
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The rest of this section concerns the actual definition of the branching 
factors Uj+b j 1, ... , k 1. Two estimation heuristics form the basis 
of Uj+l, called the search list connection count heuristic and the parallel 
heuristic. They are described first. 

The search list connection count heuristic 
In the backtracking algorithm, the FIND_CANDIDATE_SET call mainly 
computes intersections of adjacency sets of the main circuit 'set Pj, (see 
Section 4.3.6, Definitions 4.40, 4.42). Since the intersection of two sets is 
in general smaller than the original sets, the number of intersected sets 
has a negative correlation with the size of the resulting set. The number 
of intersected sets is equal to the number of pairs in Pj. So statistically 
one may assume that the more elements in Pj, the less branching may be 
expected. However, Pj itself is unknown, since this heuristic is applied 
during the determination of the search list, i.e., before the backtracking 
starts. This can be solved since IPil = lbj(Vj+I)! by definition (Definition 
4.39), so the number of connections to Sj for a vertex v, called the search 
list connection count, is equal to lbj(v)!. 

The parallel heuristic 
A second estimation heuristic is called the parallel heuristic. For this heuris
tic, the border set Bj (Definition 4.45) is partitioned into sets, called par
allel sets. A parallel set has the property that the elements in a parallel 
set, being a member of Bj are not only candidate for Vj+l, but all lead to 
the same demand function is similar to the partitioning V \ £ 
of the previous section, in which each set also contained vertices with equal 
demand function d1. Since two vertices in a parallel set lead to the same 
demand function, they have equal local demand functions, and they have 
equal connectivity to Sj (see Definitions 4.38, 4.36, 4.37). This explains 
why the sets are called parallel sets, since they appear to be parallel for the 
neighbors in the partial search list Sj. The following example introduces 
both the notion of a parallel set, and the effect for traversed sub-tree of a 
search tree. 

Example 
Consider the example of Figure 4.16, showing a template circuit, a main 
circuit, and the traversed sub-trees of two search trees corresponding to 
two search list orders. The identification of the search tree vertices are 
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Template circuit Main circuit 

(W,A,B,C,D) 

w w 

Order v abc d 

D 

A A 
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c 

(W,D,A,B,C) 

Order v dab c 

Figure 4.16: Example showing the influence of the parallel heuristic. At 
the bottom, the traversed part of the search trees are shown for two search 
orders. The two bold lines correspond to the resulting match. The second 
search list needs less branching tq find the match. 
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only given explicitly for the equivalent solutions (W, A, B, C, D) and (W, 
D, A, B, C). The vertices are equal to the names enumerated along the 
paths of search tree. Suppose the search list for the template drawn at 
the top left-hand side is ordered (v, a, b, c, d). Starting from v mapped 
toW, the search tree will grow rapidly during the backtracking process as 
shown on the bottom left-hand side, since all v~rtices A,B,C are equally 
acceptable, although in the end only one branch will result in a match (W, 
A, B, C, D). Coming from W, the vertices A,B,C are not distinguishable, 
since they are all connected in parallel. Therefore, the branching size is 
equal to 3!, the factorial of the number of parallel neighbors (a,b,c) of v. 
Suppose the search list is ordered (v, d, a, b, c), as is drawn in Figure 
4.16 (right-hand bottom). Starting from v, the match (W, D, A, B, C) 
is found without superfluous branching, because after having selected d, c 
has different connections to s2 than a and b, and will therefore not lead 
to parallel branching. The aim of the parallel heuristic is therefore, to 
select non-parallel neighbors of the selected partial search list Sj first, to 
omit branching caused by parallel neighbors. For the current example, the 
parallel heuristic should lead to the second search list. 

Definition of the parallel heuristic 
With this example in mind, the parallel heuristic will be defined for a 
general case. The general definition that will be given is applied again to 
the example of Figure 4.16. We want to partition the border set elements 
Bj of Sj into sets of vertices leading to equal demand functions dj+l, to 
be able to count the number of parallel neighbors. In Section 4.3.6, we 
have seen that connectivity demand part of dj+t, Fj+b is determined by 
the template neighbor function call bj(vj+l) (Definition 4.39, 4.40, 4.41), 
enumerating the relevant labeled (multi-)edges between Vj+ 1 and Sj. Recall 
the definitions of the search tree vertices \lj Vi (Section 4.3.4). Since 
Vj+I has not yet been chosen, dj+l (see Definition 4.38), is not yet defined. 
Therefore, we define proto-demand functions as follows. 

Definition 4.46 Proto-demand Function 
For a main circuit G, a template circuit G with external net set N E, for 
a j E {1, ... ,k 1}, a partial search list Sj, a vertex v E Bj, the Proto
demand function d(j+l,v) : Vi {True, False} is defined to be equal to 
the function dj+b when Vj+l v. 0 
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The definition of a demand function dj+l is determined by the functions 
Lv and Fj+l, see Definitions 4.36, 4.37 .. Lv is determined by the 3-tuple 

(T(v), A(v), { (c, DEGREE(v, c)) I c E 'Y(v) } ), 

as described in the previous section. The definition of Fj+l is determined by 
the template neighbor function call bj(v), Definition 4.39, which enumerates 
the relevant labeled (multi-)edges between v and Sj. Therefore, a function 
d(j+I,v)' is completely determined by the 3-tuple of Lv and bj(v). 

Definition 4.4 7 Parallel Function 
Let a main circuit G, a template circuit G with external net set N E, 
a j E {1, ... , k - 1 }, a partial search list Sj be given. Let the true-set 

J+l 
function Dj+l : Bj -+ 2 V assign the true-set of d(i+l,v) to DJ+I(v) for a 
vertex v E Bj, i.e., the set of all search tree vertices at level j + 1 satisfying 
d(j+l,v)· The quotient set BjiDj+l partitions Bj into sets of equal d(j+l,v) 

functions (see Section 4.2.1). The canonical function Parj : Bj-+ BjiDJ+l, 
called the Parallel Function, is defined by 

0 

In analogy to the quotient set VI£ (Section 4.3. 7) partitions V into sets of 
vertices having equivalent local demand functions L,, Parj assigns to each 
border set element v a subset of the border set where the elements have 
equivalent proto-demand functions. 

For a vertex v E Bj, !Parj(v)l indicates the number of indistinguishable 
vertices, with respect to d(j+I,v)· Therefore, the higher !Par1(v)!, the larger 
the traversal size that may be expected. 

Example reviewed 
Figure 4.16 illustrates the above definitions. In Figure 4.16, the initial par
tial search list s1 = ( v) and B1 = {a, b, c, d}. The template neighbor func
tion is given by b1 (a) = b1(b) b1 (c) = {(v, Ct, 1)} and b1 (d) = {(v, c2, 1)}. 
The parallel set functions are given by Par1(a) Par1(b) Par1(c) 
{a,b,c} and Par1(d) {d}. The template vertices a,b,c are connected in 
parallel to v, hence B1 I Dz = { {a, b, c}, { d}}. With the parallel heuristic, for 
the first induction step to compute vz, it is noted that IPar1(d)! < !Par1 (x)l 
for x = a, b, c, hence selection sz = ( v, d) is made. 
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At this point, B2 = {a,b,c} and B2/83 = {{b,c},{a}}. Vertex a is not 
equivalent to b and c, since it is also connected to v2 d. In the next 
induction step, we compute v3. Now !Par2(a)! < !Par2(x)! for x = b, c, 
and 83 = (v, d, a). 
Repeating this process twice more results in ss = ( v, d, a, b, c). On the 
left side of Figure 4.16 we see that this complete search order prevents 
branching due to temporal parallelism. 

The branching factor function estimates 
After having defined several estimation parameters, we will now define the 
branching factor functions Uj+l· From the discussion so far, the following 
conclusions can be drawn. For v E Bj, the branching factors Uj+l ( v) should 
be increased when the initial branching factor ul ( v) is high, and when 
the number of vertices in the associated parallel set, !Parj(v)!, is large. 
The branching factors Uj+l (v) should be decreased when the number of 
connections to predecessors, lbj ( v) I, is large. The following definition agrees 
with these requirements. 

Definition 4.48 Branching Factor Estimate 
Let a main circuit G, a template circuit G with external net set NE, a 
j E {1, ... , k- 1 }, a partial search list Sj be given. The template neighbor 
function bj is defined according to Definition 4.39, the parallel function 
Parj is defined according to Definition 4.47, the initial branching estimate 
U1 is defined according to Equation 4.32. The Branching Factor Estimate 
Uj+l : Bj -t JR+ U {0} is defined for each border set vertex as 

U· 
1 

v = { UI/!bj(v)! if !Parj(v)! = 1 
J+ ( ) U1 * !Parj(v)!! if !Parj(v)! > 1 

0 

The following section describes the algorithm to generate the search list. 
It will be shown that despite their complex definitions, the factors lbj(v)l 
and !Parj(v)! can be computed efficiently. 

4.3.10 The iterative search list generation algorithm 

This section describes in more detail how the rest of the search list 1s 
ordered according to the description of Section 4.3.9, and focusses on an 
efficient implementation to compute the branching factor functions Uj+1 , 

j = 1, ... , k - 1. After the ordering algorithm is described the special case 
of template vertices having only one initial candidate is briefly explained. 
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Introduction 
After having selected 81 (vi) according to the algorithm in Figure 4.14, 
Section 4.3.8, the rest of the search list can be generated in a for-loop, 
j 1, ... , k 1, whereby each iteration produces the next element of the 
search list, Vj+b and its demand function dj+l· Before selecting the next 
vertex Vj+I and dj+b the information needed to compute the required 
branching factor estimate Uj+l (see Definition 4.48), the functions bj (see 
Definition 4.39) and Parj (see Definition 4.47) are computed with respect 
to the current 8j. 

When describing the initialization of the search list generation (Section 
4.3.8), we have shown that the quotient set V /Cis efficiently computable by 
using selection based on the 3~tuple (T(v), A(v), { (c, DEGREE(v, c)) IcE 
1( v)}) per v E V, without explicitly evaluating any C( w). Likewise, the 
quotient set Bj/6j+l (see Definition 4.47), and thus Parj, can be computed 
efficiently by selecting on a 4~tuple_j, consisting of bj ( v) and the (already 
computed) 3~tuple, per v E Bj, without explicitly evaluating any Dj+I(v). 

The algorithm 
The total search list generation algorithm is described in Figure 4.17, and is 
illustrated in Figures 4.18 and 4.18a. The notions Bj, Parj, bj, 4~tuplej+l 
for different j values, all share respectively the same variables, B, Par, b, 
4~tuple in the algorithm. Parj(v) is implemented by an indirect reference 
Par[4~tuple[v]]. After the initialization of the search list generation (Sec~ 
tion 4.3.8, Figure 4.14), the borderset B variable, the argument-value tables 
of the parallel set functions Par and template neighbor functions b are ini
tialized. The 4_tuplel ( v) are defined by assignment to (0,3_tuple( v)) for all 
v E V. The 3~tuple( v) values, 81 = (vi), U1. and the initial candidates of v1 
Y1, have been defined by the INITIALIZE~SEARCH..LIST~GENERATION 
procedure (see Figure 4.14). In the main for~loop, v2, ... , vk and d2, ... , dk 

are determined. 
The following notions are computed incrementally in the body of the 

loop: 

• the border set Bj, stored in variable B, 

• the template neighbor function bj, stored in variable b, 

• the parallel sets function Pari, stored in variable Par, 



86 The sub-circuit recognizer 

Procedure SEARCH_LIST_GENERATION(G, G) 

INITIALIZE_SEARCH.LIST _GENERATION I* See text *I 

B := 0 
b := 0_table 
Par := 1/Ltable 

for v E V do 

4_tuple[v] := (0, 3_tuple[v]) 

endfor 

for j = 1 to k - 1 do 

Par[4_tuple[vj]] := Par[4_tuple[vj]] \ { Vj} 
.6.B := UcE')'(vj) Adj( Vj, c) \ Sj 

for all v E .6.B do 

Par[4_tuple[v]] := Par[4_tuple[v]] \ { v} 

/* Var initializations *I 

/* Assign 4_tuplel *I 

/* Main for loop *I 

b[v] :=b[v]U{(vj,c,m) I CE')f(v)l\m=lhvj(Adj(v,c))l\m>O} 
4_tuple[v] := (b[v], 3_tuple[v]) 
Par[4_tuple[v]] := Par[4_tuple[v]J U {v} 

endfor 

B := B U .6.B \ { Vj} 
if B 0 then exit(" G is not connected") 
Vj+l := ANY(minu(B)) /*see Equation 4.48 *I 
d[j + 1] :=MAKE..FUNCTION(4_tuple[v1+1]) 

endfor 

endproc 

Figure 4.17: Search list generation algorithm. 
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• the 4_tuplej+1 relation (corresponding to Dj+l), 
stored in variable 4_tuple. 
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This means that each computation is based on the results of the previous 
step, Bj-1, bj-1, Parj-1 and 4_tuplej. This approach utilizes the local 
character of every update, as illustrated in Figures 4.18 and 4.18a, showing 
all variable values during the execution of the algorithm, for the example 
of Figure 4.16. In Figures 4.18 and 4.18a, the bold dots indicate the search 
list, and the hollow dots indicate the border set Bj. To show the effect of 
the connectivity, the example ignores the 3_tuple, so that 4_tuplej+l bj. 
For Pari, first the vertex vi is removed from the set corresponding with 
the old value of 4_tuple.Each jth main loop iteration must compute bi, 
4_tuplei and Parj for every v E Bi. But many of the argument-value pairs 
of the functions of step j are equal to the argument-value pairs computed in 
previous steps. Only for the vertices adjacent to Vj, and of course vi itself, 
need the function value be recomputed. Therefore, we will only consider the 
vertices of the set variable b..B. The variable b..B enumerates the affected 
neighbors of Sj. By using the functions I'( vi) and Adj ( Vj, c) Section 
4.2.1), b..B is quickly found based on local data only. In the tables on the 
right side of Figures 4.18 and 4.18a, the border edges that are not connected 
to the previously selected v.i are surrounded by square brackets, since their 
4_tuple and b values are unchanged and therefore not recomputed. For 
example in step j=2, b..B = {a}, so 4_tuple[b], 4_tuple[c], b[b], b[c] are not 
recomputed. Although the example shows only a few unchanged vertices, 
most of the border sets are unchanged for a typical template, because the 
average template is larger. 

Next, the variable b..B is used in the second level for-loop to update 
only the relevant argument-value pairs of bj, 4_tuplej+l, and Pari. Figures 
4.18 and 4.18a show the values for the current example. 

After the loop, the border set is constructed, from which the next search 
list vertex Vj+l will be selected. When Bi becomes empty before j k 1, 
the template graph G is not a connected graph, which is a violation of 
the sub-graph recognition precondition, leading to a premature exit of the 
program. 

Now, the branching factors Uj+l can be computed using Equation 4.48. 
For example in Figures 4.18 and 4.18a, in step j=2 both cases of Equation 
4.48 are used. For a, IPar2(a)l = 1, hence U3(a) = Ul(a)/l~(a)l = 3/2. 
Forb, IPar2(b)l = 2, hence U3(b) = U1(b) * !Par2(b)j! = 3*2! = 6. Similarly 
for c, U3(c) 6. Although it has not been elaborated in the algorithm, 
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obviously only the branching factors of vertices with changed bj and Parj 
parameters need to be recomputed. 

Hereafter, the next Vj+I is computed with the function minu, returning 
the set of vertices having minimum branching factor. MAKE_FUNCTION 
creates the corresponding demand function di+l from a 4_tuple. dj+l 
will be used by the FIND_CANDIDATE_SET fu:action in the backtracking 
algorithm (Figure 4.11). 
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I 

v E B2: 

4_tuple3 ( v) : 

Par2(v) : 

U3(v): 
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abc d 

{(v, cl, 1)} {(v, c2, 1)} 

{a,b,c} {d} 

3 X 3! = 18 1/2 

f-- 82 = (v,d) 

Step j=2 

a [b] [c] 

{(v,cl,l),(d,c3,1)} {(v,c1,1)} 

{a} {b,c} 

3/2 3 X 2! = 6 

f-- 83 (v, d, a) 

Figure 4.18: The iteration steps for the search list generation algorithm of 
Figure 4.17. The figure is continued in Figure 4.18a. The iteration starts 
from v1 = v, with 4_tuplej bj and assumes U1(a) = U1(b) U1(c) = 3 
and U1(d) = 1. The selected partial search lists Sj for each step j are 
indicated by bold dots, open dots are members of Bj. The uninterrupted 
lines are the edges of partial template graph Gj. The dashed lines represent 
the template neighbor function bj. The 4-tuple values of vertices between 
square brackets are unchanged in an iteration. 
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Singly initial candidates 
Although it has not been included in the pseudo-code of Figure 4.17, ver
tices that have only one initial candidate after the initialization are bet
ter processed slightly differently. Since they don't cause branching in the 
traversed part of the search tree, they can be successively chosen at the 
beginning of the search list. For these vertices, the demand that each ver-

c Q 
Step j=3 

I 
IC1 _..Q b 
I ct...- I 

VI I 
IC3 

v E B3: b [c] 

4_tuple4(v) : {(v,c1,1),(a,c3,1)} {(v,c1,1)} 

c1 Par3(v) : {b} {c} 

a U4(v) : 3/2 3/1 = 3 

c3 
d f- 84 = (v,d,a,b) 

c ~ ... 
I Step j=4 
I 
IC1 b v E B4: c 

4_tuple5 ( v) : {(v,c1,1),(b,c3,1)} 

Par4(v) : {c} 

U5(v) : 3/2 

f- 85 = (v,d,a,b,c) 

Figure 4.18a: Figure 4.18 continued. 

tex must be connected to at least one of its predecessors is dropped. The 
demand was only useful for being able to apply FIND_CANDIDATE_SET 
in an efficient way (see Section 4.3.4). In this case, the only possible candi
date for a vertex has already been identified, and their mutual connectivity 
is checked immediately. This means that the singly matching vertices and 
their candidates are checked during search list generation, and are there
fore removed from the search list on which depth-first search will be applied 
later. The v1 and Y1 relate to the first multiple matching vertex having 
minimum initial branching factor ul' with more than one candidate. 
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4.3.11 The primary algorithm, an overview 

The primary sub-circuit recognition algorithm will be completed in this 
section, after reviewing briefly the algorithms developed so far. 

The algorithm in retrospect 
The primary sub-circuit recognition problem is specified by a main circuit 
and template circuit. The solution set of the problem, called the matches, 
is a set of sub-circuits of the main circuit, that is implicitly defined by 
the true-set of the characteristic function called the isomorphism predicate 
(Definition 4.20). \Ve have chosen backtracking by depth-first search as 

Procedure PRIMARY _RECOGNIZE (G, G) 

SEARCH_LIST_GENERATION (G, G) 

for all cand E Y 1 

w1:=cand 
MARK(cand) 
DEPTH_FIRST _SEARCH( 1) 
UNMARK ( cand) 

endfor 

endproc 

Figure 4.19: The primary recognition algorithm. The backtracking top level 
is performed here, .~ince the search list generation algorithm computes the 
top level candidates Yt for v1. 

the main method to compute the matches explicitly, since the method al
lows skipping of large parts of the search space (i.e., the domain of the 
isomorphism predicate). The translation of sub-circuit recognition into a 
backtracking problem, i.e., an ordered set of demand functions based on a 
search list, has been described in detail in Sections 4.3.3, 4.3.4 and 4.3.5. 
During backtracking, the demand functions are evaluated one by one, lead-
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ing to a partial traversal of the associated search tree. The importance 
of the search list order for efficiency was emphasized. In Section 4.3.6 an 
efficient method and algorithm for finding candidates at every level in the 
search tree has been described. The subsequent section, Section 4.3.7, de
scribed how an efficient search list order can be achieved, by reducing the 
estimated traversal size of the search tree. In the ordering algorithm, the 
computations are organized to identify equivalent calculations before per
forming them, thus preventing the execution of equal computations where 
possible. 

The remaining envelop algorithm 
Now the parts can be put in place to make the overall 
PRIMARY_RECOGNIZE algorithm, see Figure 4.19. In the algorithm, 
the search list generation algorithm not only computes the search list, but 
also handles vertices that match only once (::>ee previous section). Since 
the search list generation algorithm also ccmputes the set of candidates 
for v1, Yt (see Figure 4.14), the algorithm also performs the first level 
of backtracking. The depth-first search process continues from v2 onwards. 
Eventually, tl1e complete set of iccJmorphisms is stored in the data structure, 
as the set oi complete paths of the search tree. To get the solution set 
M, the set of isomorphic sub-circuits must be derived from the set of 
isomorphisms, as described in Section 4.2.3, Definitions 4.21, 4.23. This 
operation is one of the topics of the next section. 
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4.4 Post-processing 

In the next sections, several extensions will be discussed that enhance the 
primary algorithm from a fast but rigid algorithm into a flexible, fast and 
complete tool. This section describes the transformation of the set of iso
morphism functions S (Definition 4.20, Section 4.2.3) into a set of matches 
M. Sis represented as a set of complete paths of the search tree, resulting 
from the primary recognize algorithm. According to the primary recog
nition problem definition, a match g is equal to the sub-circuit Glt(V) 
of the main circuit G for an isomorphism f E S. Hence the set of all 
matches M of the template circuit G in the main circuit G is given by 
M {GI¢(V) I cp E S}. However, different isomorphisms may result into 
the same sub-circuit, i.e., IMI = lSI need not be true. In general, two 
matches in M that may be partially, or completely overlapping. Suppose 
that the recognition algorithm is used to partition the main circuit into 
a set of sub-circuits, then clearly common vertices in overlapping matches 
complicate the partitioning. This section classifies this phenomenon, and 
shows classified matches may be processed depending on a simple user con
trol mechanism. Furthermore, the run time consequences of the different 
cases are briefly described. 

Definition 4.49 Overlap 
Let 91 , 02 be elements of the set of matches M, with sets of component 
vertices C1. Cz. The matches Yl and Y2 Overlap when some of the compo
nent vertices in g 1 are also component vertices of Y2, i.e., C 1 n Cz /: 0. The 
set C1 n Cz is called the common components set. D 

Definition 4.50 Touch 
Two matches Yl: Oz EM Touch when some of the net vertices N1 in Yl 
are also net vertices Nz of G2, i.e., N1 nN2 f: 0. D 

Since a template circuit is connected, a match is also connected. When 
every component vertex is connected to at least one net vertex, the following 
observations are valid. 

1. When two matches Y1 and Oz overlap, they also touch, because the 
nets connected to any component, as prescribed via its type property, 
are also part of the match. 

2. When two matches Y1 and Oz touch, they may or may not overlap. 
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In this respect, overlap is a stronger property than touch. 
The remainder of this section describes the following two cases. Firstly, 

we describe the case when two matches overlap completely, i.e., the matches 
are identical. Secondly, we describe the case when the matches overlap 
partially. 

4.4.1 Automorphisms 

Definition 4.51 Automorphisms 
An Automorphism is an isomorphism of a graph onto itself [Harar72.1]. 
The automorphism set of a graph is the total set of different isomorphisms 
of a graph onto itself. 0 

For example, PRIMARY ...RECOGNIZE(G, G) computes the set of auto
morphisms of a template circuit G. When the automorphism set of G 
contains more than one element, G contains symmetry. Since a template G 
and all its matches 9 E M are isomorphic, it is obvious that if G contains 
symmetry, all matches contain symmetry as well. Let l be the number of 
automorphisms of G. Obviously each match of Gin G is also found exactly 
l times. So the setS of isomorphisms can be partitioned into \S\/l subsets 
of which each subset leads to one identical match, Gj, j = 1, ... , IMI/l. 
Depending on the application of the sub-circuit recognizer, the user might 
be interested not only in the set of matches, but also in S, i.e., including 
all automorphisms. The user indicates his preference in the fourth list of 
the restrictions (see Figure 4.3), where a "nil" indicates no deletion of 
isomorphisms, and a "T" indicates deletion of all but one automorphism in 
the isomorphism set. In the latter case, "T", the post-processing procedure 
partitions the isomorphisms according to equal component sets, and erases 
all but one element of these sets. Equal component sets imply equal net 
vertices sets, because the net connections are prescribed by the template 
circuit. 

Now, the run time effect of automorphisms is briefly described. The 
sub-circuit recognizer will be slow when many automorphisms are present. 
In general, the size of the automorphism set can be large. The largest sets 
relative to the number of vertices are given by complete graphs [Harar72.2]. 
A complete graph is a graph in which each vertex is connected to every other 
vertex. A complete graph of n vertices has an automorphism set of n!. 
Fortunately, electrical circuit template circuits are rarely complete graphs. 
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Figure 4.20: Example of overlapping matches Ql and Qz, when searching 
for an NMOS inverter in an NMOS NOR 

4.4.2 Partially overlapping matches 

Fully overlapping matches have been described in the last section. Partially 
overlapping matches are the subject of this section. Partially overlapping 
matches are the second class of common vertices. 

Definition 4.52 Partial overlap 
Let Ql and Q2 be matches of a template G, with component sets C1,Cz 
respectively. gl and Q2 Partly Overlap when C1 I Cz and C1 n C2 #0. D 

Depending on the intention of the recognition user, the partially overlapping 
matches might either be rejected or accepted. 

Two cases, i.e., rejection and acceptance, of common components are 
now described by an example. In Figure 4.20, a rejection situation is de-
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picted. The matches gl and 92 can be identified in an NMOS NOR gate, 
but they should not be identified as NMOS inverters because they have a 
common NMOS transistor. Therefore, the post-processing should eliminate 
both matches for having a forbidden overlap. 

Main 
Circuit 

and 
Matches 

Template 
Circuit 

schematic 

schematic 

circuit matches 

circuit 

Figure 4.21: Example of overlapping matches gl and g2, when searching 
for a memory cell 

In other cases, overlap is allowed. Figure 4.21 shows a situation with 
accepted overlap. A flipflop in combination with a sense-amplifier forms a 
single bit memory-cell in a large memory block. In order to distinguish from 
ordinary flipflops in a design, one can add the sense-amplifier in the descrip
tion of a memory-cell. Different memory-cells share the sense-amplifier, so 
the two matches gl and 92 may overlap with the sense-amplifier compo
nent. 

The user sets his requirement with respect to rejection or acceptance 
of overlap in the third list of the restrictions (see Figure 4.3, Section 
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4.2.3). This list enumerates the allowed common components. They de
scribe whether for different matches, the matching main circuit components 
of template components allow overlap. Other component matches should 
not overlap. The algorithm that rejects or accepts a match on the basis 
of whether the overlapping components are all members of the common 
components is straightforward. For example, for two (primary recognize) 
matches {h and !h with component sets components cl and c2 respec
tively, a set of common components CC might be specified .. During the 
post-processing, the following condition is tested: 

(4.33) 

When Equation 4.33 is true, both ~h and 92 are accepted, otherwise, they 
are rejected as a match. 

4.5 Extensions to the primary algorithm 

This section describes the following extensions, adding more flexibility to 
the primary algorithm. 

• Partially prescribed matches. 

• External net merging. 

• Exchangeability of terminal-classes groups. 

• Diagnosis feedback. 

The first extension allows the remaining part of a partially prescribed match 
to be found. The second and third extensions allow recognition of a com
bination of different versions of similar template circuits simultaneously. A 
family of templates can be recognized in a single execution, starting from 
one specification. The last extension shows how valuable feedback can 
be given when the actual recognition result is different from the expected 
recognition result. The extensions have proven to be very useful in practice. 

4.5.1 Partially prescribed matches 

A first extension to the primary algorithm is to allow a partial match to 
be prescribed beforehand. When a partial match is known, and one is 
interested in the full match, this is fully supported by the algorithm. In 
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a component type definition, net vertices present in the first list of a re
striction, called fixed nets indicate that a template net vertex matches a 
main circuit net vertex with the same name, see Figure 4.3 (Section 4.2.3). 
Without describing it in more detail, any partial match can be prescribed 
and the algorithm can find the rest of the matches. 

The adaptation of the PRIMARY _RECOGNIZE implementation to re
alize this extension is trivial, and is not included. 

Main 
Circuit 

Combined 
Template 

Circuit 

a1 

b1 

a2 

b2 

a3 

b3 

carry-in 

in1 

in2 

_9nd vdd sum 

carry-out 

Figure 4.22: Example of a merged net vertex in a 3-bits adder component. 
The carry-in and the gnd net are connected (merged) for Full Adder 1 and 
separate for the other components. 

4.5.2 External net merging 

A second extension to the primary algorithm allows merged nets. A typical 
example of a situation where nets are merged, is given in Figure 4.22, 
showing a simple n-bits adder, composed of 3 full-adder cells. Because the 
carry-in of the least significant bit is connected to the ground net named 
gnd, this structure deviates from the other full-adder cells. When using the 
described primary algorithm only, one would have to define one template 
G1 for the least significant bit full-adder, and another template G2 for the 
other full-adders of then-bits adder. It would be beneficial if this deviation 
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could be denoted more easily, and also if the recognition algorithm could 
handle both cases simultaneously. 

The net vertices of a template, consisting of external net vertices N E 
and internal net vertices N I, are therefore grouped into sets of mergable 
nets. In a template definition, the external nets are defined in the second 
part of the restrictions, and directly grouped to indicate an optional merg
ing. For Figure 4.22, the external nets groups are given by ((carry-in 
gnd) ( vdd) (sum) (in1) (in2)). Figure 4.3, Section 4.2.3, shows another 
example of inputs (in1, in2) that might be merged. 

Implementation 
The following indicates how the extensions to the primary algorithm to 
incorporate optional merged net vertices can be implemented. The merged 
nets option entails extension of the FIND_CANDIDATES algorithm, that 
is called by the the DEPTH_FIRST _SEARCH algorithm. In the primary 
version, any vertex of the main circuit was only allowed to be a candidate 
for one template vertex in a match. This was indicated by marking every 
candidate during the search tree traversal. However, when a potential 
candidate cand of a vertex Vj is already matched by a predecessor template 
vertex Vi (i < j), but Vj and Vi are members of the same external nets group, 
cand is still acceptable as a candidate according to the current extension, 
provided it has the required neighbors, and the local demand call Lvi ( cand) 
returns true. The implementation of this extension only requires a small 
adaptation of the FIND-CANDIDATES routine, but makes the use of the 
sub-circuit recognizer more general. 

The number of circuits when merging nets 
The number of different template circuits that are recognized simultane
ously when merging nets can be very large. Figure 4.23 shows an example, 
only for a cmos inverter, of all 12 circuits that are recognized simultane
ously when the external net vertices {in, out, gnd, vdd} are considered as 
one merge-able group. In general, k merged net vertices in a group of n 

leads to ( ~) different circuits, when the circuits do not contain symmetry. 

In total, including the original unmerged circuit, the number of different 
circuits equals 

t (~) + 1 = 2n- n. 
k==2 

(4.34) 
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In 

Vdd 

Out 

Gnd . . . . ........................................................................... 

Original Two net vertices merged 

. . . . .................... ··············································" 
Three net vertices merged 

Four net 
vertices 
merged 

Figure 4.23: The set of represented circuits when merging all net vertices 
of an inverter circuit. The bold lines are the short-cuts, to merge the nets. 
The circuits are subdivided into 3 gmups having 2, 3 or 4 merged nets. 

For Figure 4.23, the external vertices are {in, out, gnd, vdd}, son equals 4, 
and therefore 12 different circuits are shown. Equation 4.34 indicates that 
one must be selective when using merged nets. When a circuit contains 
symmetry, the number of different circuits is less than indicated in Equation 
4.34. 
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4.5.3 Exchangeable terminal groups 

The third extension concerns groups of exchangeable connections. It will 
be introduced by first reviewing the possibilities of exchangeability offered 
by the terminal classes definition, as included in the primary algorithm. 
Next, an example will show exchangeability that cannot be modelled by 
terminal classes. Hereafter the exchangeable terminal groups extension is 
defined, and the additions to the algorithm are discussed. 

Review of terminal classes 
As has been described in Section 4.2, several connections to a component 
can have the same terminal class. For example, aMOS (Figure 4.2, Section 
4.2.2) may have an SD terminal class, relating to both the source and the 
drain connection. Which of the two connections is actually the source or the 
drain is not specified; they are exchangeable. A second example is shown 

Figure 4.24: Example of exchangeable inputs 

in Figure 4.3 (Section 4.2.3), describing a NOR having both inputs ex
changeable. Both circuits in Figure 4.24 are equivalent by definition. This 
illustrates a terminal class that relates to multiple exchangeable terminals. 
The definition allows different sets of multiple exchangeable terminals for 
a component type. 

Another exchangeability example 
A component type whose connection exchangeability cannot be modelled 
by the terminal classes is a set-reset flip-flop (SRFF) for example. For a 
SRFF (see Figure 4.25), the R terminal and S terminal can be exchanged 
(switched) only when the Q terminal and Q-not terminal are switched at 
the same time. The ordered terminal sets {R, Q} and {S, Q-not} are 
exchangeable. The lower level implementation (Figure 4.26) of the SRFF 
shows why only pair-wise exchanging the SRFF connections is allowed: m 
this way the same graphs are found at the implementation level. 

Definition 4.53 Terminal-groups 
For a component type t E T with type terminal classes TTC(t) according 
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R Q ----1>--- -----t R Q 1----

SRFF 
----+ S Q-not 1----

SRFF 
S Q-not ----!>--= 

R QI----

SRFF 
----+ S Q-not ----!>--

Figure 4.25: Allowed (=) and forbidden (=I=) exchangeability of a set-reset 
flip-flop 

R 

s 

Figure 4.26: Implementation of a set-reset flip-flop 

to Definition 4.15, a Terminal Group is an ordered subset of TTC(t). A 
terminal grouping of component type t is an unordered set of equally sized 
terminal groups. A terminal grouping set oft is an unordered set of terminal 
groupings. For any two terminal groupings A and B of t, the union of 
all terminal classes in the terminal groups of terminal grouping A must 
be disjoint from the union of all terminal classes in the terminal groups of 
terminal grouping B. The total number of occurrences of any terminal class 
c in a terminal grouping set may not exceed the number of occurrences of 
c in TTC(t). D 

In this way, exchangeability described by A is independent from the ex
changeability described by B. For the set-reset flip-flop (SRFF) example of 
Figure 4.27, the terminal groups set consists of only one terminal grouping, 
( (R S) (Q Q-not)). Terminal group exchangeability can be generalized 
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(SRFF 

) 

(Terminal-names 
Terminal-classes 
Terminal-groups-sets 

Network 

Restrictions 

) 

The sub-circuit recognizer 

(R S Q Q-not) 
(R S Q Q-not) 
( 

((R S) (Q Q-not)) 
) 

((NOR N1 R Q-not Q) 
(NOR N2 S Q Q-not)) 

(() 

((R)(S)(Q)(Q-not)) 
() 

T) 

Figure 4.27: The set-reset flip-flop component type, showing an example of 
the terminal gr·oups sets property. 

to exchangeability of terminal groupings, and beyond. 

The implementation 
The extension to the basic recognition algorithm to handle terminal group 

exchangeability is sketched below. Basically, there are two possible direc
tions to incorporate the extension. In one direction, the data representa
tion should be changed in such a way that terminal group exchangeability 
is dealt with automatically, just like the current data representation solves 
the exchangeability of connections having equal terminal classes. In the 
second direction, the algorithm should model explicitly the terminal group 
exchangeability, by iterating over all allowable connection cases as described 
by the terminal grouping sets of all components. 

A solution in the first direction, a convenient data representation, invari
ant to exchanging terminal groups, is still unknown at present. Another 
data representation would also demand modification of the current data 
representation of both the main circuit and the template circuit. It is very 
likely that the modified data representation will require more computer 
storage than used for the current data representation, and storage is a very 
important item for current applications. 
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Figure 4.28: Partial traversal sub-tree for exchangeable terminal groups. 
The demand functions associated with each level are related to the tem
plate vertices on the left side. Note the difference between the free (branch
ing) terminal group { R, Q} and the frozen (non-branching) terminal group 
{S,Q- not}. 
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A solution in the second direction has a clear disadvantage: it deterio
rates the current run time efficiency. The number of terminal class combi
nations may be very large. Suppose a component v of type t has j terminal 
groupings {TGi(v) I i 1, ... ,j}. In the worst case, every component v 
adds the following multiplication factor to the run time: 

n 

IT ITGi(v)l! (4.35) 
i=l 

Therefore, the exchangeability must be modelled as economically as 
possible, and the worst case must be omitted whenever possible. Figure 4.28 
shows how the iteration is incorporated during depth-first search. When 
a component has exchangeable terminal groups, an extra level for each 
terminal group is added to the depth-first search algorithm when any of the 
connections in a terminal group is under consideration (see Figure 4.28). 
The figure shows that in this search order, {R, Q} is free, but {S, Q-not} is 
already frozen, since the other combination is already in use. This implies 
that {R, Q} creates extra branching, unlike {S, Q-not }. 

The recognition algorithm consists mainly of the search list generation 
part and of the depth-first search part. The number of traversed edges dur
ing depth-first search strongly depends on the search list order. The search 
list order is determined by the procedure GENERATE_SEARCH_LIST, 
based on the branching factor functions Uj, j = 1, ... , k (see Sections 4.3.7 
and 4.3.9). 

For the current extension, the formula given in Equation 4.48 that com
putes Uj is extended with an extra factor that computes the potential 
growth of the traversal size, introduced by the terminal group exchange
ability. In this way, 'frozen' terminal groups have no effect on the old 
method of determining the search list order, but freely exchangeable ter
minal groups tend to be found at the end of the search list. This effect is 
stronger when the terminal groups are larger. 

The depth-first search part depends strongly on effective selection of 
candidates at every level in the search tree. The algorithm to find can
didates for a terminal group of a component uses the connectivity infor
mation of the related nets and component, both in the template and the 
main circuit, and resembles the FIND_CANDIDATE_SET of the primary
recognition algorithm. 
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4.6 Diagnosis feedback 

In the event of a search for a particular template using the recognize algo
rithm not resulting in the number of matches that was expected) the reason 
why the recognition seems to have failed should be explained by the system 
as well. This section describes how valuable information can be retrieved 
after the execution of the recognition algorithm. Some examples of how 
this information is presented are shown as well. 

Before discussing how diagnosis feedback is given when no matches 
are found, the fact that the situation when fewer (but more than zero) 
matches than expected are found can be translated into the problem when 
no matches are found. 

The recognition algorithm consists of search list generation (see Figure 
4.14 and Figure 4.17), a depth-first search procedure (see Figure 4.11 and 
Figure 4.19) and post-processing (see Chapter 4.4). The diagnosis feedback 
will be described in the following paragraphs for each step. 

Diagnosis when finding fewer matches than expected 
When fewer matches are found by the recognition algorithm than expected, 
the recognition monitor indirectly offers help. The recognition monitor only 
displays information in the case when zero matches are found, so a direct 
invocation doesn't work. If one removes the matching components first, 
before applying the same recognition again, the recognition monitor will 
then be able to display the diagnostics and suggestions as to why no more 
matches are found. The removal of matching components is a standard 
command in the implementation. 

Diagnosis for the search list generation phase 
The algorithm of search list generation (Figure 4.17) consists of an initial
ization (Figure 4.14) that computes the number of candidate main circuit 
vertices per template vertex, when considering the local demand function 
of the template vertex only, and a procedure to order the vertices into a 
search list. As indicated in the initialization algorithm (Figure 4.14, the 
line if ul = 0 then exit ("No matches II) indicates that when a template 
vertex has no candidate vertex satisfying the local demand function, the 
recognition algorithm can be aborted. Obviously, in this case the diagnosis 
of why no match was found should feed back the vertex under consideration 
to the user. As an example, the following could be the result of a failure. 
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Note that in the actual implementation the notions "node" and "element" 
are used for the notions "net" and "component" of this thesis. 

> (rg-monitor 'why) 

DIAGNOSTICS: 

The used template is equal to the network of 
type-description: DFFL 

- At least for the template element N1 no initial 
match. could be found. 

SUGGESTIONS: 

- Substitute all attribute-values of template 
element N1 by ''?''· 

The information displayed above is the result of the "recognition monitor" 
call given in the first line, after a recognition resulted into zero matches. 
The information is split in a "diagnostics" part explaining why the recog
nition resulted in zero matches, and a "suggestions" part, containing sug
gestions how the template should be changed to come to a match. 

Diagnosis for the depth-first search phase 
During the depth-first search procedure (see Figure 4.11 and Figure 4.19), 
the search tree is traversed. At every preceeding level j + 1 in the search 
tree, a partial isomorphism is extended with another (template vertex, main 
circuit vertex) pair, provided that the required connectivity demands and 
local demand are valid. When such an extension does not exist, the cur
rent computation of FIND_CANDIDATE_SET (see Equation 4.42) results in an 
empty set, implying that either Equation 4.41, called the tentative candi
dates, result in an empty set, or no element of the tentative candidates :Fj+l 

satisfied the local demand Lvj+l" When a partial isomorphism canriot be 
extended, backtracking occurs, and at a later stage, another partial isomor
phism might be extendable beyond level j + 1. Therefore, when no match 
is forthcoming, the partial isomorphism mapping relating to the maximum 
level reached, i.e., the one which comes closest to a possible match, is the 
most interesting one. The diagnosis information should display the largest 
partial isomorphism, and it should explain for the non-matchable vertex, 
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which of the conditions (see Equations 4.42, 4.41, 4.36 and 4.37) cannot be 
satisfied. As an example, the following is the result of a failure. 

> (rg-monitor 'why) 

DIAGNOSTICS: 

The used template is equal to the network 
of type-description: DFFL 

- The template could not be matched completely. 
The biggest match found was up to and including 
template object number 9 of a total of 19 objects 
(i.e. 47.4 percent is matched). 

- The last template element that could be matched 
was: P2 ---> MP2 

- The last template node that could not be matched 
was: N18 

- To see the list of template objects type: 
(rg-monitor 'search_list) 

SUGGESTIONS: 

- The connectivity of the template node N18 does 
not match with the connectivity in the network. 
Check connectivity using (rg-monitor 'candidates) 
or remove node from template and recognize again. 

- In the restrictions node N18 is not specified as 
an external node. Specify it as an external node. 

In addition, the partial isomorphism can also be retrieved, by using the 
recognition monitor again. 
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> (rg-monitor 'search_list) 

Nr. Type Template Net list Remarks 
---------------------------------------------------------

1 node PHI1 ---> PHI1 fixed object 
2 node PHI2 ---> PHI2 fixed object 
3 node VDD ---> VDD fixed object 
4 node GND ---> GND fixed object 
5 element N7 ---> MN7 
6 element N5 ---> MN5 
7 node DIN ---> MDIN 
8 node N17 ---> MN17 
9 element P2 ---> MP2 

10 node N18 ---> matching failed 
11 element N2 ---> -
12 element N1 ---> -

etc. 

Finally, a detailed explanation of why element N18 failed to be matched is 
given by enumerating all candidates that failed, i.e., all vertices connected 
to the partial template G10 (see Definition 4.21). Gg is the sub-circuit of 
the template with respect to the partial search list Sg. The failed candidates 
are sorted according to the number of conditions that are fulfilled, in this 
way the most likely intended candidates are shown first. This information 
is presented by the recognition monitor as follows: 

> (rg-monitor 'candidates) 

Objects between {} are not matched. 
Objects between <> are matched but to the wrong objects. 

prob. node nr-con. class elements 

{N18} 2 MOS-GATE P2 {N2} 
3 Mos-so N7 {P1} {N1} 

======================================================= 
0.90 {MN18} 2 MOS-GATE MP2 {MN2} 

4 Mos-so MN7 <MN7> {MP1} {MN1} 

The "probability" measures the number of conditions that are fulfilled. 
The first vertex description describes the template vertex, the main circuit 
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vertices are displayed below the "====" line. The example only shows one 
main circuit vertex. Every line shows the Adj(vertex, class) value for a 
class, i.e., the number of connections, the class and the adjacent vertices. 
In this example, main circuit vertex MN18 has one SD connection too many 
(4 instead of 3), and a wrong connection to MN7. Apparently when removing 
the connection to MN7, this match seems to be correct. 

Diagnosis for the post-processing phase 
In the post-processing phase (see Section 4.4), zero matches can only be 
the result of partially overlapping matches. Although symmetry conditions 
can lead to a rejection of matches, at least one survives in that case, so it 
cannot be the cause of zero matches found. The following diagnosis and 
suggestions are given by the recognition monitor resulting from the partially 
overlapping matches occurring for the example of Figure 4.20, Section 4.4.1. 

> (rg-monitor 'why) 

DIAGNOSTICS: 

The used template is equal to the network of 
type-description: INVERTER 

- All 2 initial matches where rejected due to common elements. 
At least the following template elements where found 
to be common but not defined as such: T1 

SUGGESTIONS: 

- Add elements: T1 
to the common elements in the restrictions. 

4.7 Results 

In this section, some results of the recognition algorithm will be shown. The 
function implementing the algorithm is called RECOGNIZE, and is part 
of the Vera environment. No standard benchmark set exists for sub-circuit 
recognition, so we must select appropriate recognition examples ourselves. 
Many designs have been verified by our hierarchy reconstruction method, 
so we could have taken the largest (over a million transistors), show the 
set of run times for every recognition during the hierarchy reconstruction 
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process (about 2 hours in total on a HP-9000/750) and argue that the 
recognition algorithm is fast enough. However, such an example would 
not be representative, since designs having large numbers of transistors 
are usually dominated by a large Random Access Memory part. As will be 
shown in this section, RAM-cells are easily recognized, so large designs give 
an optimistic view for the average case. Furthermore, a non-representative 
example would reveal little about the run times of different parts of the 
recognition algorithm. Therefore, a moderate, representative, industrial 
design has been chosen, that contains many different modules. 

The selected design, called the TDA-1307 [Deloor92], is composed of 
130 000 transistors (see Figure E.2), and is introduced more elaborately in 
Chapter 6. The hierarchy reconstruction verification process has been ap
plied to this design, and the 134 recognition calls in the non-parameterized 
hierarchy reconstruction process will be analyzed paying special attention 
to the top 36 in CPU time. In the hierarchy reconstruction process, many 
other recognition calls are applied as well, being part of a parameterized 
hierarchy reconstruction process. Although large in number, these calls are 
not considered here, since they depend strongly on the context of usage, 
and they are usually so fa:;;t that accurate timing information can hardly 
be obtained. 

The recognition algorithm consists of two parts, the primary recogni
tion algorithm (Section 4.3.11) and post-processing (Section 4.4). Both 
algorithms are extended according to Section 4.5. As shown in Section 
4.3.11, Figure 4.19, the primary recognition algorithm consists of search 
list generation and a depth-first search procedure. The search list gener
ation procedure itself consists of an initialization (the algorithm of Figure 
4.14) and the actual search list generation algorithm (Figure 4.17). The 
initialization computes mainly C( v ), i.e., the set of main circuit candidates 
for each template vertex v, that satisfy the local connectivity demand func
tion Lv. So for the run time analysis, the following parts of the recognition 
algorithm will be distinguished: 

• Initialization of search list generation (ISG), 

• Actual search list generation (ASG), 

• Depth-first search (DFS), 

• Post-processing (Post). 
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Template lVI lVI Match Total ISG ASG DFS Post 
count (sec.) (sec.) (sec.) (sec.) (sec.) 

Noiseshaper 80014 1103 2 120.75 20.02 2.07 96.78 1.72 
Nor3 56182 14 0 86.81 0.92 0.01 85.87 0.00 
Nand4 78744 18 0 76.98 1.63 0.01 75.32 0.01 
Dobm_ori 83564 1085 1 63.29 27.96 2.33 32.25 0.60 
Axu_ori 84543 690 1 30.73 21.02 0.56 7.28 1.78 
Pin Lori 82356 472 1 24.95 21.98 1.01 1.78 0.09 
IisinpuLori 77736 323 1 14.48 13.95 0.42 0.04 0.02 
Myespa_ctrl 83914 375 1 13.80 13.13 0.33 0.22 0.05. 
Decoder2 47644 15 43 13.47 1.35 0.01 12.10 0.01 
Ram-cell 173132 13 6300 13.35 3.98 0.00 7.91 1.43 
Decoder3 47386 18 35 12.77 1.41 0.01 11.33 0.01 
Decoder4 47106 21 50 11.14 1.47 0.01 9.64 0.01 
Cs_29_sum 12729 27 255 10.79 0.32 0.01 10.36 0.08 
Alignment 77868 125 1 10.06 9.61 0.39 0.02 0.01 
Tcb_ori 84769 240 1 9.10 8.66 0.16 0.20 0.03 
C3_nand 103351 10 673 9.02 1.77 0.01 7.16 0.07 
Nand2 79861 10 256 7.46 1.42 0.00 6.00 0.03 
C3_inv 119333 6 15472 6.39 1.59 0.00 3.66 1.11 
Clockdiv 78699 101 1 6.09 6.02 0.04 0.00 0.01 
Synchron 77812 90 1 6.06 5.96 0.06 0.02 0.00 
Decoder1 46606 12 16 5.63 1.20 0.00 3.56 0.86 
Invertor 92331 6 10936 4.71 1.20 0.00 2.75 0.74 
Nand3 78828 14 12 4.65 1.51 0.01 3.10 0.01 
Glbclock 103798 93 1 4.49 4.41 0.04 0.01 0.01 
Cuinc 58423 73 1 4.34 4.29 0.03 0.01 0.00 
Cs_24_mux 12905 14 20 4.16 0.29 0.01 3.86 0.00 
Clockphins 103861 69 1 4.10 4.03 0.03 0.00 0.00 
Acuslice 56624 53 16 3.92 3.77 0.02 0.06 0.06 
C3_hlatch 91097 22 238 3.55 3.24 0.01 0.24 0.04 
Dtn12tac 103711 36 12 3.29 3.24 0.01 0.02 0.00 
C3_mux 97376 13 433 3.10 2.22 0.00 0.82 0.05 
C3Jatch 88003 20 294 3.01 2.66 0.00 0.27 0.07 
Nand2_cinp 100659 8 3 2.86 1.55 0.00 1.29 0.00 
Nand5 78744 22 6 2.83 1.74 0.01 1.05 0.01 
Muxreg-top 39587 44 1 2.83 2.76 0.03 0.02 0.00 
Reg-cell 52524 18 964 2.58 1.38 0.01 0.27 0.90 

Table 4.1: Performance of recognition algorithm. 
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Apart from the cpu run-times associated with the algorithmic parts, Ta
ble 4.1 enumerates per recognition call the component type, the number of 
main circuit vertices (lVI), the number of template circuit vertices (lVI), 
the number of found matches (Match count) and the total recognition time. 
Since the run time samples have been taken during a hierarchy reconstruc
tion process, the number of main circuit vertices decreases gradually. Table 
4.1 is ordered according to decreasing run-times, and only the 36 worst cases 
out of 134 are shown. The total recognition time for all component types is 
707 seconds. The hierarchy reconstruction job ran on a"HP-9000/735. The 
following trends can be derived: 

1. Most recognition calls (most of them are not enumerated in the table) 
take less than a second, few ( <3%) take :';leveral minutes. 

2. 5% of the recognition calls take 50% of the run time. 

3. On average, the search list generation (ISG + ASG) consumes more 
cpu-time than the depth-first search tree traversal, although for the 
worst cases, the depth-first search is dominant. These worst cases are 
found mainly in the top 15. On the average it seems that a reasonable 
balance between ordering heuristic and tree traversal computations 
has been obtained. 

4. The search list generation initializatio11 (ISG) dominates the total 
search list generation process. 

5. The number of matches has little correlation with the run times e.g. 
26000 inverters ( C3_inv and Inverter) are found in 11 seconds, 6300 
memory-cells are found in 13 seconds, whereas to establish that Nor3 
and Nand4 have no matches takes 154 seconds. 

6. Large templates (lVI) correlate with longer run times. 

7. Post-processing time is never substantiaL 

Although the algorithm performs very well on the average, the Nand4 and 
Nor3 component types illustrate that the heuristics of the algorithm show a 
large variation in effectiveness. When comparing the run times with others 
[Bolse89], [Spick88], [Nebel87], [Papas88], [Hirsch88], the algorithm is at 
least an order of magnitude better. 
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4.8 Conclusions 

A recognition algorithm to find all occurrences of a template circuit in a 
main circuit has been described in detail. 

The algorithm is based on a depth-first search backtracking. Most of 
the benefits of the algorithm result from a careful ordering of the search list. 
The algorithm to order the search list has been described in detail. It is 
based on estimates of the branching factor function. In this way the size of 
the traversed part of every search tree during the actual depth-first search 
process is predicted, before actually performing the traversal. This allows 
the selection of a search tree that needs little traversal. The computations 
of the branching factor function values are performed efficiently by grouping 
the computations first, before actually computing the values. In this way 
only one computation is needed per group. 

The post-processing step, after the backtracking process, handles matches 
that overlap depending on the user requirements. Finally, some important 
extensions of the algorithm are described that enhance the flexibility. A 
self-explanatory help facility called the recognize monitor provides clear 
diagnostic information when less is recognized than expected. 

The worst case run time efficiency of the algorithm has been shown for 
recognitions that occurred during a typical hierarchy reconstruction job. 
The results indicate that a reasonable balance between ordering heuristic 
and tree traversal computations has been obtained. In general, the perfor
mance of the algorithm is very good for recognizing electrical sub-circuits 
present in IC-designs. 
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Chapter 5 

The hierarchy 
reconstruction 
implementation 

In Chapter 3, the required tools and libraries have been derived that are 
needed to make the hierarchy reconstruction method operational, as sum
marized in the operational model, Figure 3.3. The main tool, the sub-circuit 
recognizer, has been described separately in Chapter 4. This chapter de
scribes the implementation of the hierarchy reconstruction method as it 
has been embedded in the Vera environment. Since the other tools are not 
as spectacular as the recognition tool, their description will be less elabo
rate. The sub-circuit recognizer will also be recapitulated, to summarize 
it's functionality and to show the coherence with the other tools and the 
Vera environment. 

Vera [Koste89], [Koste88], [Deloor90] is an acronym for VERification 
Assistant, a rule-based environment for the analysis and manipulation of 
electrical circuit designs. The schematic representation of Vera's architec
ture is given in Figure 5.1. As will be shown in this chapter, Figure 5.1 is 
the implementation view of the operational model (Figure 3.3). 

The inputs for Vera consist of a network description, component type 
descriptions and a rule base, all supervised by the user. 

The Network Description (see Figure 5.1) describes the main circuit 
which will be verified or modified, see Definition 4.18, Section 4.2.2. The 
description is component-oriented and based on the component types de-
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fined in the type descriptions. 
The Type Descriptions (see figure 5.1) contain the general character

istics of component types, including the template circuit. Examples are 
given in Figures 4.2 (Section 4.2.2) and 4.3 (Section 4.2.3). In general, a 
type description enumerates a number of properties and their values, see 
Sections 4.2.2 and 4.2.3. The Rule Base contains definitions of rules. A 
rule defines a situation (IF part) and the action to be taken when such 
a situation occurs (THEN part). Examples of rules are given in the next 
section. For our application; the rules describe the control of the recon
struction process. Rules are defined hierarchically in terms of other (lower 
level) rules and actions. At the lowest level, rules are bases! on a flexible 
and easily extendible set of ~~imitives such as: a sub-circuit recognizer, an 
abstracter, etc. 

Internally, Vera consists of an inference engine and a separate set of 
tools called primitives (see Figure 5.1). The inference engine handles the 
interaction between the rule base, the primitives and the user. With respect 
to the primitives, a distinction is made between match primitives, which 
are used in the IF-part of a rule, and action primitives which are used in the 
THEN-part. Match primitives search for the presence of facts or patterns 
in a circuit, while primitive actions modify, add or delete circuit compo-
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nents/nets or generate messages. Vera is implemented in Common_LISP. 
More details on Vera can be found in [Koste91], [Koste92.2], [Koste92.3]. 

5.1 The RECOGNIZE primitive 

The sub-circuit recognizer primitive is called RECOGNIZE. In addition 
to chapter 4, where the tool is described formally and in-depth, this sec
tion briefly reviews the functionality. In this way, the embedding of the 
algorithm in the Vera environment will become clear. 

In general, the recognize primitive finds all occurrences of a specified 
template in the current main circuit and returns them to the inference 
engine. The template is specified by two arguments, the circuit and the 
restrictions. 

A circuit describes most of the template. It's components and nets indicate 
how a matching cluster of components and nets must be connected, and the 
values per attribute that a component match should have. For a component 
type, the network-entry defines the circuit, see Figure 4.3. 

A set of four restrictions prescribe the remaining details of the template. 
See also Figure 4.3. 

1. The fixed-nets is a list of those template nets that must match the 
identically named actual nets in the circuit, thus reducing the set of 
acceptable occurrences. For more details, see Section 4.5.1. 

2. External-net-groups. By default, nets are internal, meaning that 
a matching net must have exactly the same connectivity as its coun
terpart in the template. When a net has more actual connections 
than is indicated, it is external. This is indicated when the net is 
mentioned in any external-net-group. Furthermore, the user can indi
cate that different external-nets may be short-circuited by grouping 
possibly connected nets together. For example, in an inverter, the 
in net and gnd may be connected in some cases. For more details, 
see Section 4.5.2. 

3. Common-components. By default, when occurring matches partly 
overlap, they are all rejected. For instance, if the user defines a mem
ory cell as a flipflop plus a sense-amplifier, the sense-amplifier may 
be the same for a whole column of different ftipftops and thus all 



118 The hierarchy reconstruction implementation 

memory cells are rejected. When however the overlapping compo
nents (like the sense-amplifier) are mentioned in the list of common
components, no rejection occurs. In this way, a casual flipflop without 
sense-amplifier, used for its driving capability is not recognized as a 
memory-cell. Common-components allow the facility of adding some 
external environment to the circuit template thus making it more 
specific. For more details, see Section 4.4. 

4. Symmetry may be given two main values: T (true) and nil (false). 
Symmetry occurs when a template maps several times onto exactly 
the same components but in a different order, being a permutation 
of the same match. This phenomenon is called automorphism. For 
example a circuit of two parallel resistors can be interchanged and still 
reflect the same circuit. When symmetry is true, only one match is 
returned of the completely overlapping set, otherwise all permutations 
are returned. For more details, see Section 4.4. 

5.2 Hierarchy reconstruction for various hierar
chy categories 

In this section, the implementation of hierarchy reconstruction will be de
scribed for all hierarchy categories enumerated in Section 3.2. 

Category 0: non-parameterized modules 
For the architecture reconstruction of non-parameterized modules, there
quirements mentioned in Chapter 3 are met as follows. The non-paramete
rized module library is stored in type descriptions. The pattern matching 
is performed by the recognize primitive described above. The next step 
is to replace the recognized pattern by a higher level component. This is 
handled by the action primitive Abstract. The following rule called FIND
AND-ABSTRACT performs the reconstruction. 

RULE FIND-AND-ABSTRACT (abelt) (type) 
IF RECOGNIZE (circuit) {1} 

(NETWORK(type), 
RESTRICTIONS( type)) 

FIND-NAME (abelt)(type) {2} 
THEN ABSTRACT (circuit, abelt)(type) {3} 

END 
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When find-and-abstract is activated by the user as follows: 

ACTIVATE (FIND-AND-ABSTRACT ('inverter)), 

this rule will replace all transistors in the network description forming an 
inverter network, by inverter components (see Figure 3.1). The activate 
gives type the actual value inverter. The abelt is not used by the activate 
calL When the rule is used hierarchically as a match call, the (abelt) in 
the first line acts as an external variable, with which information can be 
passed to and from other rules or primitives. In the current example it 
stores the names of the abstracted components. 
In the IF part of the rule, the network of the inverter is used as a template 
by the match primitive recognize { 1} which will find all matching sub
circuits. For every match the primitive find-name {2} will generate a name 
for the new inverter component. The action part is applied to the resulting 
set of [sub-circuit, abelt] pairs, so the abstract primitive {3} will replace 
all sub-circuits by corresponding inverter components. 
Hereafter the same rule can be activated again with a different type such as 
a memorycell, whose network is described in terms of inverters, etc., thus 
raising the circuit level gradually up to a description in terms of modules. 
In this way the complexity of the circuit can be reduced enormously. 

Category 1: singly-parameterized modules 
For Category 1 modules, a structure repetition detector and parameter
ized template generators are required. The Vera primitive matches CHAIN 
and FORK detect respectively serial and parallel repetition in connectiv
ity. Also, two related abstract action primitives have been created called 
ABSTRACT-CHAIN and ABSTRACT-FORK which generate the appro
priate component type description, and abstract the repetitive structures. 
The rule fork-and-abstract can abstract parallel structures: 

RULE FORK-AND-ABSTRACT (abelt, nr)(typ, con) 
IF FORK (eset, nr) (typ, con) {1} 

FIND-NAME (abelt) ( concat (typ, nr, '-)) {2} 
THEN ABSTRACT-FORK (abelt, eset)( typ, con) {3} 

END 

The rule fork-and-abstract strongly resembles find-and-abstract. 
When the rule is activated as follows: 

ACTIVATE (FORK-AND-ABSTRACT ('memorycell '(r/w))) 
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the result is that memory cell typ) components are considered that have 
the terminal r/w con) connected in parallel. In addition, the abelt and 
nr are only important in the case of hierarchical rules, where they are 
used to pass information between rules and primitives. The memory cell 
is a component that may have been abstracted by find-and-abstract in 
previous steps. In the IF-part, fork {1} will find sets of memorycell com
ponents that are all connected to the same net via a r/w terminaL The 
sets are accumulated in eset, and the corresponding repetition parameter 
(the word length) in nr. Per set, find-name {2} will generate a name, 
e.g., memorycell3-1. In the THEN-part, abstract-fork {3} will replace 
every set by a new higher level component of type FORKMEMORYCELL
<nr> generated by abstract-fork itself, derived from nr, typ and con. 
It combines type description generation and non-parameterized module ab
straction. For the example of Figure 3.2, the result will be a component of 
type FORKMEMORYCELL-3 called MEMORYCELL3-l. 

Category 2: multiple parameterized modules 
Multiple parameterized hierarchy reconstruction is performed by repeating 
singly parameterized hierarchy reconstruction. Although no additional re
quirements are formulated, the rules that are used are more complex. A 
typical example is the hierarchy reconstruction of a memory core (see Fig
ure 3.2). It can be reconstructed by the hierarchical rule find-mem-core 
which calls the fork-and-abstract rule twice: 

RULE FIND-MEM-CORE (me, wl, wn) () 
IF FORK-AND-ABSTRACT (regw, wl) {1} 

('memorycell, 
'(r/w)) 

FORK-AND-ABSTRACT (me, wn) {2} 
( concat ('forkmemorycell-, wl), 

r-1-a-i ('(in out), wl}) 
THEN MESSAGE (memory core me {3} 

is abstracted) 
END 

When the rule is activated as follows: 

ACTIVATE (FIND-MEM-CORE) 

the memory cells are grouped and merged into register words which are 
themselves grouped and merged into memory cores. Register words regw 
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consist of wl memory-cells connected in parallel via the r/w terminal, as 
explained in the previous section. Memory cores me are register words con
nected in parallel via all in< k > and out< k > terminals ( k 0, ... , wl-1). 
The iteration is performed by r-1-a-i (Repeat-list-and-increment, more de
tails are found in Section 5.3). The word length parameter wl is recovered 
in the first fork-and-abstract, and the number-of-words wn is recovered 
in the second step. 

A complete memory (a RAM) also has address decoders and buffers. 
They have not yet been abstracted. Category 1 modules often consist also of 
a repetitive core plus some extra circuitry. How these parts are abstracted 
in a following reconstruction step, is explained in the next section. 

The reconstruction of modules consisting of repetitive structures 
and extra sub-blocks. 
The hierarchy reconstruction of modules consisting of repetitive structures 
and extra sub-blocks is explained by the reconstruction of a bit slice pro
cessor (Figure 5.2). 

A (bit )slice is a component that is composed of full-adders, shifters, 
registers, multiplexors, etc. These components may have been abstracted 
by find-and-abstract beforehand. The extra sub-block is control. Before 
describing the automatic reconstruction, a simpler, but manual, method is 
first explained. Starting from situation (a), the command 

ACTIVATE (FORK-AND-ABSTRACT ('slice '(cO c1))) 

performs the operations to get to situation (b). The slice components 
connected in parallel via cO and c1 terminals are reconstructed to a fork
slice-4 block, similar to the reconstruction of a memory word. To get 
from (b) to (c) by using the rule find-and-abstract is not possible, 
since the rule only operates for simple non-parameterized type descriptions. 
However, when parameter values are known, parameterized type descrip
tions can generate a simple non-parameterized instance. During the step 
from (a) to (b), the parameter value or repetition number is detected, so 
find-and-abstract can be used after all. The user can start the operation 
interactively by the command 

ACTIVATE 
(FIND-AND-ABSTRACT 

( LOAD-TD (PROCESSOR (4) ))), 
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Slice 

a) Slice 

Slice 

Slice 

j Control I 

' i 
b) 

Forkslice-4 

c) Processor-4 

Figure 5.2: Hierarchy reconstruction of bit slice processor a) after Category 
0 abstraction b) after fork-and-abstract c) after find-and-abstract. 
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in which load-td adds the instance processor-4, generated by the param
eterized type description processor ( n), to the non-parameterized type 
descriptions. Hereafter, Find-and-abstract performs the reconstruction 
operation. 

The method described above requires manual interventions by the user 
during the reconstruction process. It can be completely automated by the 
construction of a hierarchical rule £-and-a-processor which controls all 
reconstruction steps, from (a) to (c). It is defined as follows: 

RULE F-AND-A-PROCESSOR (proc-e, nr) 
IF FORK-AND-ABSTRACT (slice, nr) {1} 

('slice, 
'(cO cl)) 

FIND-AND-ABSTRACT (proc-e) {2} 
(LOAD-TD ( PROCESSOR (nr))) 

THEN MESSAGE (processor proc-e {3} 
is abstracted) 

END 

The major difference with the manual method is that the repetition num
bers nr detected by fork-and-abstract are automatically passed to the 
find-and-abstract by Vera's inference engine. The activation 

ACTIVATE (F-AND-A-PROCESSOR) 

reconstructs any number of processors of any parameter value, and message 
signals to the user which processors are abstracted. The parameterized type 
description processor (n) is explained in Section 5.3. 

Category 3: Parametrized modules having a variable functional
ity 
Category 3 contains the hardest modules for hierarchy reconstruction, be
cause their structure is difficult to predict. In general it is no longer a 
one-dimensional repetition of a fixed structure. For PLA and ROM mod
ules, the various decoders can be reconstructed by using the Category 2 
reconstruction method. The number of addresses, inputs and outputs is 
derived during this stage. The table extractor is a primitive which derives 
the contents of the module core. Internally it uses the recognize primitive 
to notice the presence or absence of transistors, and fills the table accord
ingly. When the module is reconstructed, the functionality in the table is 



124 The hierarchy reconstruction implementation 

automatically compared to the intended functionality. This method has 
been elaborated in [Kuppe89.1] and [Kuppe89.2]. 

For Category 3 modules that are not described by a table, a different 
and dedicated solution might be needed. 

5.3 An example of a parameterized type descrip
tion 

In the previous section, parameterized type descriptions were used for hi
erarchy reconstruction of macro-cells. In this section an example of a pa
rameterized type description implementation is given. Parameterized type 
descriptions are regarded as non-parameterized type description generators. 
From a parameterized type description, a simple, non-parameterized type 
description can be instantiated. In Vera, a parameterized type description 
is a function which looks like a simple type description template. It is writ
ten in Common_LISP format. Often occurring constructs are supported by 
Vera functions. 

The parameterized processor of Section 5.2 is defined as follows: 

Function PROCESSOR (nr) 
'(,(concat 'processor nr) 

) 

(terminal-classes (cin ,@(r-1-a-i '(x y out) 
nr)) 

network ((control element! cin cO cl) 
(,(concat 'forkslice- nr) f cO cl 

,@(r-1-a-i '(x y out) 
nr))) 

) 

restrictions (() 

() 

()) 

Some remarks on details of the generator definition: 
The parameterized processor has a variable number of terminals and con
sists of a control element and a fork-slice-<n>. The backquote "'" indicates 
that everything is meant literally, except for the expressions starting with 
a comma ",",which must be evaluated. Concat (s) is a function for string 
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concatenation. The at operator "@" removes the outer set of parenthesis 
in the outcome of an expression. The function r-1-a-i (1 n) is short 
for Repeat-List-And-Increment, which returns a list containing n copies of 
l, concatenated with the iterative number. For example: r-1-a-i ('(in 
out) 2) returns ( inO outO in1 out1). For Figure 5.2 the following non
parameterized type will be generated: 

(processor4 
(terminal-classes (cin 

network ((control cin 
(forkslice-4 

) 

) 

restrictions (() 

() 

()) 

xO 
x1 
x2 
x3 
cO 
f 

yO outO 
y1 out1 
y2 out2 
y3 out3) 
c1) 

cO c1 
xO yO outO 
x1 y1 out1 
x2 y2 out2 
x3 y3 out3)) 

Parameterized type descriptions are straightforward and easy to write, for 
they only contain connectivity information. 

5.4 Reconstruction order and hidden hierarchy 

After having described different reconstruction methods for various hier
archy constructs in 'the last section, this section discusses the problem of 
reconstruction order and hierarchy in the type descriptions. Since any 
reconstruction rule only searches occurrences of one (parameterized) tem
plate at a time, a given set of templates should be ordered, to apply the 
reconstruct rules one-by-one. One speaks of hidden hierarchy when a 
template of a component type contains structures that are a template of 
another component type. 
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An example 
The following example will show that the reconstruction order, the type 
descriptions and hidden hierarchy are strongly related. 

Suppose one starts with the following set of type descriptions. 

(INVERTER 
(Terminal-names (in out) 
Terminal-classes (in out) 
Network ((mos t1 out in vdd vdd ? ? ptype) 

(mos t2 out in gnd gnd ? ? ntype)) 
Global-nets (vdd gnd) 
Restrictions ((vdd gnd) ((in)(out)(vdd)(gnd)) () ()))) 

(MEMORY-CELL 
(Terminal-names (b binv r/w) 
Terminal-classes (b b r/w) ; b and binv permutable 
Network ((mos t1 b r/w b1 gnd ? ? ntype) pass trans. 

(mos t2 b2 b1 vdd vdd ? ? ptype) inverter p 
(mos t3 b2 b1 gnd gnd ? ? ntype) inverter n 
(mos t4 b1 b2 vdd vdd ? ? ptype) inverter p 
(mos t5 b1 b2 gnd gnd ? ? ntype) inverter n 
(mos t6 b2 r/w binv gnd ? ? ntype)) pass trans. 

Global-nets (vdd gnd) 
Restrictions ((vdd gnd) ((b)(binv)(r/w)(vdd)(gnd)) () T))) 

In this case, both the inverter and the memory-cell type have the same 
hierarchical level, since their template consists of transistors only. Since 
two inverters (t2,t3 and t4,t5) can be recognized in the template of the 
memory-cell, this set of type descriptions contains hidden hierarchy. There 
are two ways to proceed. 

The first solution is to reconstruct the memory-cells in a main circuit 
before reconstructing the inverters, i.e., by using the above type descrip
tions, and the following 

reconstruction order (memory-cell • inverter). 

A second solution is to remove the hidden hierarchy, i.e., change the 
type description into 

(INVERTER 
(Terminal-names (in out) 
Terminal-classes (in out) 



5.4 Reconstruction order and hidden hierarchy 127 

Network ((mos t1 out in vdd vdd ? ? ptype) 
(mos t2 out in gnd gnd ? ? ntype)) 

Global-nets (vdd gnd) 
Restrictions ((vdd gnd) ((in)(out)(vdd)(gnd)) () ()))) 

(MEMORY-CELL 
(Terminal-names (b binv r/w) 
Terminal-classes (b b r/w) 
Network ((mos t1 b r/w b1 gnd 

(inverter i1 b2 b1) 
(inverter i2 b1 b2) 

; b and binv permutable 
? ? ntype) pass trans. 

(mos t6 b2 r/w binv gnd ? ? ntype)) ; pass trans. 
Global-nets (gnd) 
Restrictions ((gnd) ((b)(binv)(r/w)(gnd)) () T))) 

and use the 

reconstruction order (inverter , memory-cell). 

This example shows that for a set of hierarchy reconstructions, the levels 
used in the templates and the reconstruction order are strongly related, 
and should be chosen with care. 

Ambiguity 
As a first step to get an reconstruction order, a component type should be 
matched only after its children in the hierarchy (i.e., the component types 
in its network entry) have been reconstructed. This leads to a partial order. 
Secondly, if more than one type has all its children reconstructed, the types 
with the highest component number should be selected first. In this way, 
smaller templates are not accidently recognized in larger templates. 

However, there is no guarantee, even if we use the above guidelines, 
that the intended hierarchy of a correct main circuit is reconstructed. The 
reason is that the matching process is ambiguous because the result may 
be different when different reconstruction orders are applied. This means 
that when a verification by hierarchy reconstruction is not successful, the 
main circuit may or may not contain an error. The following ambiguity 
problems might be encountered. 

1. Hidden hierarchy. In this case isomorphic structures might have dif
ferent hierarchical levels. For example, a type might contain an in
verter as a component, and two transistors forming a component next 
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to it. When this type is searched for, after the reconstruction of an 
inverter, the type is not reconstructible, since reconstruction of the 
two inverters leaves a structure non-isomorphic to this type. Alterna
tively, when the type is ordered before the reconstruction of inverters, 
no inverters are present, also preventing the recognition of the struc
ture. 
As another example, different types might have isomorphic templates, 
i.e., have isomorphic network and restriction entries. 

2. Partially overlapping matches. A structure C might be recognizable 
at the borders of a structure A and B. When C is reconstructed 
first, neither A nor B are reconstructible. When either A or B are 
reconstructed first, C is not recognizable. 

The first ambiguity problem is solvable, by transforming the type templates 
and reconstruction order according to order-irreducibility [Pelz91], [Pelz94]. 
For a given hierarchy of n templates H, described by a set of type de
scriptions, and a reconstruction order 0 = (tl, ... 'tn), order-irreducibility 
means that every template ti E 0 is not isomorphic to any of the templates 
ti+l, ... , tn. In other words, there should not be a hidden match in there
mainder of the reconstruction order. In the inverter/memory-cell example 
shown above, both indicated solutions are order-irreducible. Similarly, the 
examples for the first ambiguity problem can be solved by changing the 
types, or by removing isomorphic types completely. 

In Vera, an analysis tool called the TD-MONITOR [Koste92.1] is present, 
capable of generating an irreducible order for the current type templates, 
or of interactively helping to remove hidden hierarchy from the type de
scriptions. In addition, a given reconstruction order can be checked for 
irreducibility. A complication, however, is the possibility of having isomor
phic templates, where one might be more rigidly defined than the other. 
For example, the template networks 

((mos p1 out1 in1 vdd vdd ? ? pmos) 
(mos n1 gnd in1 out1 gnd ? ? pmos)) 

and 

((mos p1 out1 in1 vdd vdd ? 1e-6 pmos) 
(mos n1 gnd in1 out1 gnd ? 1e-6 pmos)) 

are isomorphic, but the first one matches to more structures (including 
those with different length values) than the second. In a reconstruction 
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order, the more specific structures are obviously put before the more general 
structures. The same strategy applies to templates having equal networks, 
but different restrictions. 

The implementation of the TO-MONITOR is based on the RECOG
NIZE primitive, and it uses signaturing to prevent searching for every tem
plate in every other template. The run times of this tool are very good, 
even with type-description libraries of hundreds of types. 

The second ambiguity problem however, the case of partially overlap
ping matches, cannot be solved easily. Although one could think of an 
exhaustive algorithm, searching for any template in any imaginable combi
nation of templates, this algorithm would have very large run times. Fortu
nately, only several combinations of components makes a rea..<;onable circuit, 
so the problem seldomly arises. The experience with applying the hierarchy 
reconstruction method so far ha..'l confirmed the rare occurrence of and the 
limited harm caused by this problem. 

5.5 Layout positions and very large designs 

This section shows a simple approach to handle layout positions during hi
erarchy reconstruction. The starting point for this approach is the inclusion 
of layout positions per component in a network description. This informa
tion is also the starting point for a simple but powerful extension of the 
method to reconstruct hierarchy by using parallel hierarchy reconstruction 
processes, each operating on:small sub-designs. 

Layout positions in a network description 
Layout extraction generates a transistor network from the layout. The 
layout extractor computes various attributes per MOS-transistor. For ex
ample, for a component type definition 

(MOS 

) 

( Terminal-classes 
Attribute-names 

) 

(sd gate sd bulk) 
(width length model) 

the width, length and model of every MOS is extracted from layout. By 
adding an extra attribute, named position, to the MOS type 
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(MOS 

), 
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Terminal-classes 
Attribute-names 

(sd gate sd bulk) 
(width length model position) 

and all other component types, any information can be stored as an attribute
value for the position. The position of each component can be indicated 
in the form of a pair representing the x and y position of a point, or a 
4-tuple representing the xl, yl, x2, y2 position of a rectangle. Obviously, 
this form is primitive, since 1-shapes etc. cannot be modeled correctly. It 
does however serve as a first approach to gain experience when coupling 
layout with network information. For the transistor network, the position 
is computed by the layout extractor. 

Layout positions and hierarchy reconstruction 
From a global point of view, hierarchy reconstruction consists of matching, 
and abstraction. In the Vera environment, abstraction is performed by 
the primitives abstract, abstract-fork, abstract-chain, etc. Every 
abstraction replaces a set of matched components by a single component 
of a higher leveL By computing the bounding box of each set of matched 
components, and assigning this rectangle as position to the associated new 
component, the layout positions can be taken into account as welL Figure 

..... EJ 
A2 

. : . . . .. '1.:1 
: : : ~ 
~ : : : .. ; . . . . . . . 

A 

§J ...... El I 

B 

Figure 5.3: Abstraction including position information based on rectangular 
shapes 

5.3 shows a small example of how Al, A2, A3 and Bl, B2, B3 are replaced 
by A and B. The figure also indicates the main disadvantage caused by 
the rectangular shapes. When lower level components do not overlap, the 
abstracted components might overlap. Despite its simplicity, the approach 
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still indicates the layout position the abstracted components stem from 
rather well. 

Layout positions and large designs 
In the current implementation on an HP 9000, a transistor network of 
250 000 transistors can be stored in main memory. For larger designs the 
execution speed drops dramatically because of a drastic increase of the 
number of page faults, eventually leading to thrashing, i.e., the situation 
when every memory access leads to a page fault. 

One solution could be to cut the network into chunks of 200 000 tran
sistors, before starting hierarchy reconstruction. In that case the following 
problems might arise during reconstruction into a chunk: 

1. A match of a template might not be found because it is split up. It 
is even possible that no matches of any template can be found. 

2. A template might lead to an invalid match, because the part that 
would prevent the match from recognition in the total network is 
part of a different chunk. 

By splitting the network based on position information, the first problem 
can be solved. Since a designer knows the intended positions of the orig
inal high level network (Figure 1.3), one can cut along the borders of the 
high level cells, where low level layout cells are not split up. This way 
of splitting a design also solves the second problem partly. However, the 
matching net of an internal net should have an equal number of connec
tions per class. If one knows that a net appears in one chunk only, this 
is guaranteed. Therefore, during the network splitting, nets appearing in 
different network chunks are stored in a separate file. Figure 5.4 shows the 
method for a two chunk case. First the design is split ·into two chunks and 
nets present in both chunks are administered. Next, two separate hierarchy 
reconstruction processes are run, that both use the information present in 
the administration. This results in two reconstructed chunks. The merge 
operation combines the separate parts into one network. The advantage 
of this method are that the result is identical to reconstruction of the to
tal network, only thrashing is prevented. If required, the reconstruction 
processes can run in parallel, on separate CPUs. 
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Figure 5.4: Splitting a large design and applying hierarchy reconstruction 



Chapter 6 

Results of the hierarchy 
reconstruction method 

The verification method presented, has been used for many IC-designs in 
many design environments. This chapter discusses the results of hierarchy 
reconstruction method. In the first section, the hierarchy reconstruction 
process is taken of a representative design, to illustrate the method. The 
properties of the hierarchy reconstruction method, are then described in 
the second section. 

6.1 The hierarchy reconstruction process for the 
TDA-1307 

In the introduction, Chapter 1, the design process was partitioned into 
a high level design step, resulting in a high level structure, and a layout 
design step. The layout design step was shown in Figure 1.3, Section 1.3. In 
Figure 6.1, this figure has been redrawn, this time with the emphasis on the 
verification process of the layout generation part. According to Figure 6.1, 
the consistency between the layout and the high level structure is verified 
in three steps. 

1. The first step consists of the extraction of the layout into a transistor 
level netlist. 

2. Secondly all macro-cell instances must be reconstructed by using hi
erarchy reconstruction. If an instance is reconstructible, it's connec
tivity is correct. 
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Figure 6.1: Verification of layout versus original high level structure 
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3. Finally, the connectivity between the high level components is verified 
by comparing the original, with the hierarchically reconstructed, high 
level structure. 

'iVhen these steps have been performed successfully, the complete top-down 
trajectory from the highest structure level to layout is verified fully auto
matically. 

To illustrate these steps, we have taken the design of the TDA-1307. 
The TDA-1307 performs the digital filtering of a decoded stereo digital au
dio signal prior to D /A conversion. It generates the 1-bit stereo input signal 
for a bit-stream DAC, for application in Compact Disk, Digital Compact 
Cassette, and Digital Audio Broadcasting. A detailed description of the 
design process of the TDA-1307 can be found in [Deloor92]. The layout of 
the design is given in Figure E.2 (see Appendix E). The TDA-1307 was de
signed by using the PIRAMID silicon compiler [Wouds90]. The TDA-1307 
is a commercial product of Philips Semiconductors. 

In the following, all jobs that will be mentioned ran on an HP-9000/735. 
The original high level structure of the TDA-1307 that has been mapped 
onto the layout, consists of 320 high level components. 

1. The extraction of the TDA-1307 layout resulted in a network of 130 
000 transistors, and took 45 minutes CPU-time. 

2. The hierarchy reconstruction of the TDA-1307 takes in total 30 min
utes CPU-time. 

3. Comparing the connectivity of the original high level structure with 
the hierarchically reconstructed high level structure, in this case by 
using RECOGNIZE once again, takes 40 seconds CPU-time. 

In the following, step 2 above, the hierarchy reconstruction from the tran
sistor network to the high level structure is described in more detail. The 
reconstruction of a macro-cell instance usually consists of a mixture of 
non-parameterized and parameterized cell reconstruction. Just as has been 
described for the example in Figure 5.2, Section 5.2, the hierarchy recon
struction process starts with a number of non-parameterized hierarchy re
constructions by using FIND-AND-ABSTRACT, then continues with the 
parameterized reconstructions by using rules, and finally some FIND-AND
ABSTRACTs are applied, to collect the various high level sub-blocks that 
make up the macro-cells. In the following, the hierarchy reconstruction 
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is first described per parameterized macro-cell. Next, the hierarchy re
construction is further analyzed by focussing on the non-parameterized 
reconstruction, i.e., all FIND-AND-ABSTRACT runs. 

Results per parameterized macro-cell 
As indicated in Chapter 3, one needs a parameterized cell library and a 
controller to perform the reconstruction for macro-cells of Category 1, 2 
and 3. As described in Chapter 5, the controller is implemented in the 

macro-cell 
generator 

RAM 
AXU 

CU/INC 
ACU 
ALU 

MUX Register 
ROM 
PLA 
MAC 

category number of man weeks required 
(0,1,2 or 3) parameters 

layout verification 
view rule base 

2 5 104 3 
1 1 3 0.4 
1 1 5 0.4 
3 2 52 1 
2 8 52 2 
2 4 52 2 
3 3 52 2 

3 3 15 3 
2 4 52 2 

Table 6.1: Characteristics of the macro-cell generators and man weeks re
quired for the generation of their layout view (including electrical design) 
and verification rule base 

Vera environment as a rule base. For the PIRAMID environment, a rule 
base has been developed for each macro-cell generator. Table 6.1 shows the 
characteristics per macro-cell type, the category, the number of parameters 
ami the effort spent on each macro-cell generator. Note that this table does 
NOT enumerate the effort spent on the TDA-1307, but rather the effort 
spent on the PIRAMID macro-cell generators, that have been reused many 
times for different designs. The table shows that the extra effort needed to 
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implement the verification method, ranges from a day up to some weeks for 
complex parameterized macro-cells. In comparison with the effort spent on 
making the macro-cell generator's layout view, this effort is negligible. 

Table 6.2 shows the run time effort spent on the verification of the 
actual TDA-1307 design. It enumerates the order of reconstruction, the 
number of instances reconstructed, the number of calls to RECOGNIZE, 
the number of components left after the current reconstruction step and 
the CPU time required per step. During this process, RECOGNIZE was 

reconstruction number of calls to components CPU 
order instances recognize left (sec.) 

Transistors 129804 
standard cells 6313 42 70511 479 

RAM 3 486 46283 260 
AXU 18 25 42144 12 

CU/INC 1 8 41824 15 
ACU 2 32 40457 49 
ALU 2 62 38537 122 

MUX Register 15 364 30197 513 
ROM 4 697 12530 113 
PLA 
MAC 

Analog, I/0 cells 

total 7601 

Table 6.2: Hierarchy reconstruction pr-ocess per macro-cell for TDA-1307. 

called 7601 times. Of these calls 6645 did not find matches. In total, 
RECOGNIZE consumed 1257 seconds CPU. 

The following can be derived from Tables 6.2 and 6.1. 

1. The total reconstruction time is less than the layout extraction time. 
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2. The total reconstruction time is dominated by the RECOGNIZE calls. 

3. The run times correlate neither with the number of parameters per 
macro, the category per macro, nor with the number of recognize 
calls. 

4. The table extractors of the PLA and ROM .have the largest RECOG
NIZE call count. 

5. Most of the calls do not lead to matches. 

The resulting high level structure is identical to the original high level struc
ture, thereby proving the correctness of the implementation. Fabrication 
of the IC resulted in first time right silicon. 

As has been described in Chapter 5, the reconstruction also records, 
per component, the bounding box, allowing a layout-like view of the recon
structed high level structure. In Figure 6.2 the bounding box views of the 
remaining network is shown. Obviously, the bounding box reconstruction 
is a simplified way of positioning the macro-cells, but even then Figures 6.2 
and E.2 (see Appendix E) look rather similar. Since the bounding box ex
tractors did not support table-extractor rules, the PLAs and ROMs are not 
shown in the figure. The many overlapping bounding boxes just below the 
center of the figure are the result of an extensive placement optimization, 
that led to a layout in which parts of different cells are strongly interleaved. 

Results for non-parameterized hierarchy reconstruction 
In order to analyze the results even further, this paragraph describes the re
sults with respect to the rule FIND-AND-ABSTRACT (see Section 5), that has 
been applied at different places during the hierarchy reconstruction process. 
For the current design, Table 6.3 enumerates the worst case part of the run 
times relating to 144 component types to which FIND-AND-ABSTRACT has 
been applied. Like Table 4.1, the items are ordered according to the recog
nition effort. The total reconstruction time for non-parameterized cells is 
949 seconds. The following remarks can be made. 

1. A comparison between the total FIND-AND-ABSTRACT reconstruction 
time (949 seconds) and the total recognition time (707 seconds) illus
trates that the recognition dominates the hierarchy reconstruction 
process. 

2. Only for a few commonly occurring component types, such as RAM
cells and inverters, the recognition is not the dominating factor. 
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Figure 6.2: Reconstructed high level structure of TDA-1307. 
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Component 
Type 

Noiseshaper 
Nor3 
Nand4 
Dobm_ori 
Axu_ori 
PinLori 
Iisinput_ori 
Myespa_ctrl 
Decoder2 
Ram-cell 
Decoder3 
Decoder4 
Cs_29..sum 
Alignment 
Tcb_ori 
C3_nand 
Nand2 
C3Jnv 
Clockdiv 
Synchron 
Decoder1 
Invertor 
Nand3 
Glbclock 
Cuinc 
Cs_24_mux 
Clockphins 
Acuslice 
C3lllatch 

' Dtn12tac 
C3__mux 
C3Jatch 
Nand2_cinp 
Nand5 
Muxreg-top 
Reg-cell 

Results of the hierarchy reconstruction method 

lVI 

80014 
56182 
78744 
83564 
84543 
82356 
77736 
83914 
47644 

173132 
47386 
47106 
12729 
77868 
84769 

103351 
79861 

119333 
78699 
77812 
46606 
92331 
78828 

103798 
58423 
12905 

103861 
56624 
91097 

103711 
97376 
88003 

100659 
78744 
39587 
52524 

lVI 

1103 
14 
18 

1085 
690 
472 
323 
375 

15 
13 
18 
21 
27 

125 
240 

10 
10 
6 

101 
90 
12 
6 

14 
93 
73 
14 
69 
53 
22 
36 
13 
20 
8 

22 
44 
18 

Match 
count 

2 
0 
0 
1 
1 
1 
1 
1 

43 
6300 

35 
50 

255 
1 
1 

673 
256 

15472 
1 
1 

16 
10936 

12 
1 
1 

20 
1 

16 
238 

12 
433 
294 

3 
6 
1 

964 

Recognize 
(sec.) 

120.75 
86.81 
76.98 
63.29 
30.73 
24.95 
14.48 
13.80 
13.47 
13.35 
12.77 
11.14 
10.79 
10.06 
9.10 
9.02 
7.46 
6.39 
6.09 
6.06 
5.63 
4.71 
4.65 
4.49 
4.34 
4.16 
4.10 
3.92 
3.55 
3.29 
3.10 
3.01 
2.86 
2.83 
2.83 
2.58 

Reconstruc-
tion (sec.) 

120.98 
86.82 
76.98 
63.48 
30.88 
25.00 
14.54 
13.84 
16.52 
38.87 
15.50 
15.48 
12.28 
10.09 
9.13 

12.44 
8.71 

. 64.10 
6.10 
6.07 
6.49 

66.15 
5.40 
5.45 
4.69 
4.48 
4.87 
4.03 
5.00 
5.78 
6.20 
4.73 
2.94 
3.65 
2.85' 
8.01 . 

Table 6.3: Non-parameterized hierarchy reconstruction results. 
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3. In the total reconstruction time (30 minutes), the FIND-AND-ABSTRACT 

calls are dominant. 

6.2 Error location 

Error location is an important issue for verification. It will therefore be 
explained in more detail in this section. 

A connectivity error can appear in the following ways. 

1. Within a macro-cell, preventing it from being recognized as a macro
cell. 

2. Within a macro-cell, preventing it from being recognized as the right 
macro-cell. 

3. At the top-level, a..<J a connectivity error among macro-cells. 

r/wl r/w2 r/w3 

bt-F============~~--r-1 

b2 -+------~3~x~2~--~~--4 Memory Core 

b3 

Figure 6.3: Error location 

The first case is the most frequent one, because the number of connections 
inside all macro-cells is the largest, and macro-cells generally are not very 
much alike. This also makes the second case unlikely. The hierarchical 
approach of the reconstruction process is essential in enabling location of 
the first kind of errors quickly. Figure 6.3 shows a reconstruction result 
of a 3x3 memory core containing an error illustrating the first two cases. 
The error induces both the recognition of an unexpected macro-cell (a 2x3 
memory core instead of a 3x3 memory core) and a small part of the circuit 
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remaining at intermediate levels: a 2-bit word, some inverters and tran
sistors. It can quickly be seen that one inverter input is not connected, 
because all understandable parts are represented by high level elements. In 
this context it is easy to see that the inverter must be part of a memory 
cell, and the correct connection is now obvious (see also Figure 3.1). 

Errors are located at the lowest level at which the reconstruction is 
stuck. This property is called hierarchical convergence. 
Case 2 can be solved by comparing the number of expected instances per 
macro-cell to the occurring number. 
For the third case, hierarchical convergence doesn't improve error location, 
because all hierarchy is already extracted. In this case errors can be found 
by netlist comparison at the highest structure level, since a reference net
work description is available at this level. Only a small number of macro-cell 
instances are left, compared to the number of transistors at the transistor 
level. It is therefore much easier to do the netlist comparison at this level. 

With respect to PIRAMID, errors were found in the macro-cell gen
erator descriptions, the macro-cell generator router, the leaf cell layouts 
and the highest level structure. In other environments, many errors have 
been detected as well, in all parts of the design trajectory. In general the 
hierarchy reconstruction method has proven to be both an efficient method 
of guaranteeing the absence of connectivity errors, and to be an· efficient 
method of detecting connectivity errors. 

6.3 Properties of the hierarchy reconstruction 
method 

In this section the properties of the presented verification method are sum
marized. Structure verification by hierarchy reconstruction has been ap
plied to many designs in different design environments. Based on this 
experience, a summary of properties resulted, described as follows: 

• The error coverage of the verification method is complete, provided 
that the rule base and type descriptions are correct. By separating 
the writing of the macro-cell layout generator code and the writing 
of the macro-cell verification rule base, the probability that the same 
error occurs in both descriptions and thus escapes detection by the 
verification process, is very small. 
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• The verification process can be performed automatically. The prob
lems relating to hidden hierarchy (see Section 5.4) are rarely encoun
tered. When compared with simulation, this method is not burdened 
with the generation and interpretation of input and output patterns. 

• The run times are less than the run times needed for layout extraction, 
even for very large circuits. 

• Both digital and analog cells can be abstracted. 

• The rule base is insensitive to technology changes (layout rules, elec
trical parameters), because the bottom-up description of a macro-cell 
is purely graph based. 

• A verification rule base is fairly simple to construct, as it is indepen
dent of topology and other layout aspects. The effort spent in writing 
the rule base (up to a few weeks) is orders of magnitude smaller than 
the effort needed to create the layout generator view (several years). 

• The hierarchical partitioning used during the reconstruction is inde
pendent from the hierarchical partitioning used for generating the 
layout. This means that any hierarchical view that may be imposed 
can be reconstructed. For the application, this is employed to im
pose a functional subdivision during the reconstruction, instead of a 
rectangular /layout like approach. 

• Error location is straightforward due to the "hierarchical conver
gence" principle. Also, the RECOGNIZE primitive produces effective 
feedback when no matches are found. 





Chapter 7 

Final conclusions and future 
work 

Verification has become a major bottleneck of the design process, if based on 
traditional techniques. Therefore, a recently proposed verification method 
called hierarchy reconstruction has been elaborated in this thesis. Starting 
from a layout, the method reconstructs hierarchically the highest structure 
level, in a bottom-up process. 

The hierarchy reconstruction method can prove 100% correctness with 
respect to connectivity, in a very short time. It allows the automation of the 
verification process for a given design environment. Error location in the 
result of the verification process is easy due to an intrinsic property of the 
method called hierarchical convergence. In addition, the structure recog
nizer produces effective feedback when matching fails. The effort needed to 
set up the required rule base and component libraries is negligible compared 
to the effort in creating the layout view of a macro-cell generator. 

The method has been implemented in the Vera environment. The flex
ibility and performance of this environment are crucial to the successful 
implementation. The efficiency of the method is mainly determined by the 
structure recognizer. The recognition algorithm is the core of the method, 
and its description forms the core of this thesis. 

The application of the method to many designs, in several IC design 
environments, has highlighted the above mentioned advantages. So far, no 
connectivity error has passed the verification. The execution of a recon
struction job takes less time than the execution of the layout extraction job, 
that was done anyway to check the layout design rules. Designs containing 
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over a million transistors are verified without any difficulties. Numerous 
design errors have been signalled efficiently. With respect to the digital 
parts of a design, alternative verification means, such as switch-level sim
ulation and transistor level netlist comparison, have been abandoned, or 
are applied only rarely in design environments that use hierarchy recon
struction. The method has become an important.means to design correctly 
operating, complex IC-designs with limited effort. 

The Vera environment in general combines structure analysis, recog
nition and structure manipulation. Therefore, it also 'supports structure 
synthesis, and additional electrical rule checking at any intermediate level. 
So far, this has only been applied from time to time. In the future, this 
might become more important. 

The current trend in design is for the relation between layout and struc
ture to become more and more important. Not only does the technological 
shrinking of typical layout dimensions contribute to a stronger relation be
tween layout and structure, but also the design of combined analog and 
digital functions imposes strong demands between the network and layout 
of a design. Therefore, a future requirement will be to combine layout and 
structure recognition, enabling the checking of complex rules composed of 
layout and structure demands. 

Other verification needs relate to high level design. In this area behav
ioral verification is at present mainly done by using a partial simulation. In 
the future, techniques must be developed to reduce the high level verifica
tion bottle-neck as well. Some formal verification techniques have proven 
very useful [Koste93], [Malik88], but still much work has to be done in this 
area. 
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Appendix A 

Summary 

Verification of electronic designs 
by reconstruction of the hierarchy 

This thesis describes an effective method to find errors in an electronic 
circuit design, prior to production. Complicated electronic circuitry, such 
as integrated circuits, are designed in a number of steps, to elaborate all 
aspects in a divide and conquer manner. A synthesis phase and a verifi
cation phase can be distinguished in each step. Synthesis is the activity 
to transform a specification into a design. Verification is the activity to 
check a design for possible errors. Complicated electronic circuitry may 
consist of millions parts. Therefore, verification is cumbersome and time
consuming. In the last decade many CAD-programs have been created 
that automate many of the tedious synthesis steps. The number of new 
verification programs has lagged behind, so most design effort is currently 
spent on the verification phases. The verification method described in this 
thesis is called hierarchy reconstruction. 

Hierarchy reconstruction is a method to verify the structure of an elec
tronic circuit. A circuit structure describes the network, consisting of basic 
components such as transistors, resistances and their interconnections. The 
method is based on pattern recognition. Based on a given sub-network with 
a given function, such as a memory-cell for example, a pattern recognizer 
is used to identify all sub-networks occuring in a design forming a memory
cell. As a next step, every sub-network is replaced by a single "function
component", such as a memory component. This step is called "abstrac
tion". A combination of recognition followed by abstraction is called "re-
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construction". By applying reconstruction for all intended sub-networks 
(functions), checks can be performed whether all basic components are used, 
and whether all connections within each function are correct. Hereafter, 
the recognizer can be u~ed again to find and abstract new sub-networks, 
consisting of function-components, forming more complicated higher level 
functions. In this way a complete hierarchy of structures can be recon
structed, for which presence and connections of all functions are checked. 

The pattern recognizer is the main tool to allow hierarchy reconstruc
tion, and is therefore described in detail in this thesis. hierarchy recon
struction of structures with repetitive patterns, such as "RAMs" (Random 
Access Memories) is described as well. When a reconstruction is not suc
cessfully completed, the structure of a design contains errors. An error can 
appear because of the following. 

• Too many components are present in the design, or 

• some functions are not implemented as intended, 
i.e, components are missing, connections are missing, 
unintended connections (short-circuits) are present. 

An important advantage of the hierarchy reconstruction method is that 
correct parts of the design are reconstructed as intended, independent from 
errors at other places. By viewing parts that are reconstructed only par
tially, the cause of an error can quickly be traced. 

The method has been implemented in a program called "Vera", an 
acronym of VERification Assistant. Vera is a general program for struc
ture analysis and manipulation. It has been used for several years now 
by many designers within Philips. A representative verification example is 
elaborated, to show that very complex designs can be verified efficiently. 
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N ederlandse samenvatting 

Verificatie van ontwerpen van electronische 
schakelingen door reconstructie van de hierarchie 

Dit proefschrift beschrijft een effectieve methode om een antwerp van een 
electronische schakeling op fouten te controleren, voordat het antwerp ge
bruikt wordt om de schakeling te fabriceren. Het controleren van een ant
werp op fouten wordt "verificatie" genoemd. Het proces om van een ont
werpdoeL Je specificatie, tot een on twerp te komen wordt "synthese" ge
noemd. ~ngewikkelde schakelingen worden stapsgewijs ontworpen, waarbij 
in elke stap een deelaspect wordt uitgewerkt. Binnen een stap worden syn
these en verificatie direct na elkaar toegepast, om na afloop zeker te zijn 
van het resultaat. Ingewikkelde schakelingen, zoals die zich bijvoorbeeld 
in een IC (een "chip") kunnen bevinden, zijn opgebouwd uit miljoenen 
onderdelen. Hiervoor is verificatie vanzelfsprekend een moeizame en tijd
rovende taak. Doordat sinds enige jaren allerlei computer programma's 
gebruikt kunnen worden die de synthese vereenvoudigen, vergt nu verifi
catie de meeste inspanning voor de ontwerper. Voor verificatie zijn er tot 
dus ver relatief weinig bruikbare programma's ontwikkeld. De in dit proef
schrift beschreven methode om een antwerp van een electronische schakeling 
te verifieren heet hierarchie reconstructie. 

Hierarchic reconstructie is een methode waarmee de netwerkstructuur 
van een schakeling verifieerd kan worden. Een netwerkstructuur beschrijft 
de opbouw van een schakeling, bestaande uit basiscomponenten zoals tran
sistoren, weerstanden, etc., en hun onderlinge verbindingen. De methode 
maakt gebruik van een patroonherkenner. Uitgaande van een gegeven deel-
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structuur met een bepaalde functie, zoals bijvoorbeeld een geheugenschake
ling, kan de patroonherkenner in een ontwerp alle dergelijke deelstructuren 
identificeren. Elke op deze manier herkende deelstructuur kan vervangen 
worden door een "functie" -component, bijvoorbeeld een geheugencompo
nent. Dit wordt "abstractie" genoemd. De combinatie van her kenning 
gevolgd door abstractie noemen we "reconstructie". Door reconstructie toe 
te passen voor alle beoogde deelstructuren ( functies), kan gekeken worden of 
alle basiscomponenten gebruikt worden en of de verbindingen binnen een 
functie goed zijn. N adat alle basiscomponenten gereconstrueerd zijn tot 
functie-componenten, kan de patroonherkenner opnieuw gebruikt worden 
om een andere gegeven deelstructuur bestaande uit functie-componenten, 
die samen een ingewikkeldere functie vormen, te herkennen en te abstra
heren. Zo kan een hele hierarchic van structuren gereconstrueerd worden, 
waarvoor de aanwezigheid van en de verbindingen tussen alle functies gecon
troleerd worden. 

De patroonherkenner is de basis van de hierarchic reconstructie me
thode, en wordt in dit proefschrift daarom in detail beschreven. Ook wordt 
hierarchic reconstructie beschreven voor deelstructuren waarin repeterende 
patronen voorkomen, zoals bijvoorbeeld in zogenaamde "RAMs". Als in 
een ontwerp de reconstructie niet lukt, dan is de opbouw van het antwerp 
onjuist. Hieraan kunnen de volgende oorzaken ten grondslag liggen: 

• Er zitten overbodige componenten in het ontwerp, of 

• sommige functies zijn niet geimplementeerd zoals beoogd. 

In dit laatste geval kunnen componenten missen, verbindingen missen, of er 
zijn niet-bedoelde verbindingen (kortsluitingen) aanwezig. Een belangrijk 
voordeel van de methode is dat de deelstructuren waar zich geen fouten 
voor doen, hierarchisch gereconstructueerd kunnen worden onafhankelijk 
van eventuele fouten elders. Door die deelstructuren te bekijken die maar 
gedeeltelijk zijn gereconstrueerd, kunnen oorzaken van fouten snel opge
spoord worden. 

De methode is geimplementeerd in het computer programma "Vera", 
wat een acroniem is voor VERificatie Assistent. Vera is een algemeen 
programma waarmee structuuranalyse ( o.a. herkenning) en -manipulatie 
gedaan kan worden. Vera wordt al enige jaren met succes gebruikt door 
vele ontwerpers binnen Philips. Een representatief verificatie voorbeeld 
is uitgewerkt, om aan te tonen dat met deze methode zelfs de meest in
gewikkelde ontwerpen effectief geverifieerd kunnen worden. 
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Appendix D 

List of symbols 

Sets and multi-sets 

(xi, x2, .. . ) 

{xi,X2, ... } 
J-La(B) 
2B 
JNB 
B+ 

lEI 
u 
n 
\ 

Functions 

F:A--+B 
F(A) 
BA 

Fie 
[a]F 
A/F 
[True]p, F 
A•B 

Ordered (multi-)set 
Unordered (multi-)set 
Multiplicity of element a in set B 
Powerset over B 
Set of all multi-sets over multi-set B 
Set of all non-empty sequences over B 
Number of elements in (multi-)set B 
Union set operator 
Intersection set operator 
Set-minus set operator 

Function F with domain A and co-domain B 
Image of set A for function F 
Set of all functions with domain A and co-domain B 
Restriction of function F to set C (Def. 4.1) 
Equivalence set of a for function F (Def. 4.2) 
Quotient set of A with respect to function F (Def. 4.3) 
True-set of function F (Def. 4.5) 
Pair function of sets A, B (Def. 4.6) 
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Functions and sets of a circuit 

T 

r 

/3 
TTC 
TA 
T 
vert( e) 
G 
v 
T 
c 
N 
A 
E 
TC 
TCS 
DEGREE 
IGI 
I 
Adj 

Non-empty set of types 
Non-empty set of terminal classes 
Set of attribute names 
Set of attribute values 
Type Terminal Classes function (Def. 4. 7) 
Type Attributes function (Def. 4.8) 
Type function (Def. 4.9) 
Pair of vertices connected by edge e 
Circuit (Def. 4.17) 
Set of vertices 
Type function (Def. 4.9) 
Set of components (Def. 4.10) 
Set of nets (Def. 4.11) 
Attribute function (Def. 4.12) 
Set of multi-edges (Def. 4.13) 
Terminal Class function (Def. 4.14) 
Terminal Classes function (Def. 4.15) 
Degree function (Def. 4.16) 
Size of circuit G (Def. 4.17) 
Present classes function (Def. 4.24) 
Adjacency function (Def. 4.25) 

List of symbols 
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Sub-circuit recognition definition 

G Main circuit (Def. 4.18) 
V, T, A, E, TC Sets and functions of a main circuit (Def. 4.18) 
C, N, DEGREE Sets and functions of a main circuit (Def. 4.18) 
G Circuit of a template circuit (Def. 4.19) 
N E Set of external nets of a template circuit (Def. 4.19) 
V, T, A, TC Sets and functions of a template circuit (Def. 4.19) 
C,N,NI,DEGREE 

w 
v 

GJv,Q 

Sets and functions of a template circuit (Def. 4.19) 
Main circuit vertex 
Template circuit vertex 
Sub-circuit (Def. 4.21) 

V, 'T,A,£, TC 
C,N, V£QR££ 
s 

Sets and functions of a sub-circuit (Def. 4.21) 
Sets and functions of a sub-circuit (Def. 4.21) 
Isomorphism predicate (Def. 4.20) 

s Set of isomorphisms (Def. 4.20) 
M Set of matches (Def. 4.23) 

Backtracking 

y 

Yj 
Y, YJ 
D 
Dj 
'D 
di 
d, dk 
p, p-1 

Gp,Vp,Ep 
Vj 
jGpj 
jGpiJ 

Search space (Def. 4.26) 
Coordinate of a search space 
Candidate set (Def. 4:31) 
Search predicate (Def. 4.26) 
Partial search predicate (Def. 4.29) 
Solution set of search problem (Def. 4.26) 
Demand function (Def. 4.28) 
Demand set, partial demand set (Def. 4.28) 
Permutation, inverse permutation 
General search tree, its vertex set and edge set (Def. 4.27) 
Vertex set at level j 
Traversal size of a search tree (Def. 4.30) 
Partial traversal size of a search tree (Def. 4.30) 
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Sub-circuit recognition algorithm 

yk 
D,Dj 
S, Sj 

Gs,Vs, 
yi 

W, Wj 

Lv 
Fj 
di 

Gi 
bi 
pi 
:Fj+l 

yj 
Uj 
u1 
Uj 
c 
Bj 
d(j+l,v) 
Parj 

Search space (Def. 4.32) 
Search predicate, partial search predicate (Def. 4.33) 
Search list, partial search list 
Search tree, its vertex set and edge set (Def. 4.35) 
Search tree vertex set at level j (Def. 4.35) 
Search tree vertex 
Local demand function (Def. 4.36) 
Connectivity demand function (Def. 4.37) 
Demand function (Def. 4.38) 
Template sub-circuit 
Template Neighbor Function (Def. 4.39) 
Main circuit neighbor set (Def. 4.40) 
Tentative candidate set (Def. 4.41) 
Candidate set (See Eq. 4.25 and Def. 4.42) 
Branching factor function (Def. 4.43) 
Initial branching factor estimation function (Eq. 4.30, 4.32) 
Branching factor estimation function (Def. 4.48) 
Initial candidates function (Def. 4.44) 
Border Set (Def. 4.45) 
Proto-demand function (Def. 4.46) 
Parallel function (Def. 4.47) 
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Figure E.l: Example of a small layout in which two wires aTe exchanged. 
The error indication Tesulting fmm L VS is given in Figure E.l a. 
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J I I J II 

I I I I II II 

Figure E.la: The layout parts indicated in an L VS error report, as a result 
of the layout shown in Figure E.l. The error messages cover nearly half 
of the design. 
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F igure E .2: The layout of the TDA- 1307. 



Stellingen 
behorende bij het proefschrift 

Verification of electronic designs by 
reconstruction of the hierarchy 

door A.P. Kostclijk 



I_ In het IC ontwcrp proccs kost vcrificatic de mcestc tijd en inspanning. 
Vrc<:rnd g<:nucg worden rc~carch geldcn nog ~teed~ vuornamcli_jk aun 
synlhese projecten besleed_ 

2. Hct hcrkcnncn van st.ructurcn in ccn nctwcr·k is ccn NP-vollcdig 
problccrn; <-ksalnidlemin beslaan geschikle algorilhmen voor 
toepassing hij IC ontwcrp (dit. proefschrift., hoofdstuk 4)_ 

3. Oc waurdc van research voor IC ontwerp programmaluur is van 
generlei waardc /.onder bcproeving in ecn industrieel ontwerp proces. 
Dil<ll'Orn J:ou he! verplicht ge~teld moete;;n worden dat onder:wckc.r~; op 
universiteiten hun programmatuur Iaten beoordelen door de induslric. 
Dit. zou bovcndicn ccn gcsehikt. middcl .-;ijn om bet k:d· van hct. kmcn 
tc schciden in de onafzienbare hoeveelheid publicali<;s. 

4_ Net zoals de constructeur van een auto niet de beste coureur is, 
is de conslruelClH' van ccn progmmma nict de hnndigsre gebruiker_ 

5. Een helangrijk maar minder hekend effect van een globale 
garhage-collector in een programma is dat thrashing (excessiel' 
"pagcn") mirKier gauw oplrcedl. 

6. Hd schrijven van een goede gebruikershandlciding is mccr wcrk 
dan het schrijven van een goed computerprogramma. 

7. Een overeenkomst tussen discrete wiskundc en roddclbladcn is 
da! beide zich bezig houden met relaties en, mogdijkerwijs 
vermeende eigenschappen dam·van. 

8. De lagcrc ~ehool bcoordclingcn voor· "gedrag" en "vli_1t" zouden 
op de rnidddbarc school ook gcgcvcn moctcn worden, 
maar dan zonde1· default waarde, omdat dit belangrijkerc indicatortn 
;;ijn voor de tockornst dan de andere rapponcijfers. 



9. Dat deregulcring door de overheid een farce is, 
blijkt o.a. uit de gang van zaken rn.b.t. het. kenteken Dee! III. 
De rcdcncn om deze in te voeren (o.a. autodiefstal bcmocilijken) 
blijkcn achtcraf niet op te gaan, maar deze regeling daarom weer 
afschaffen kan blijkbaar niet. 

I 0. Naarmate een vakgebied exacter is hcbben de meeste mensen 
cr minder interesse voor. 

11. Een cultuur wordt sterker bepaald door de ontwikkeling van de 
techniek dan door clc ontwikkeling van de kunst. 

12. Er is sprake van beroepsdeformatie, 
als bij het lezen van ceo krant bij de woorden muis, file, bit, 
in eerste instantie gedacht wordt aan klikken i.p. v. piepen, 
gcgcvcns i.p.v. auto's, bytes i.p.v. paarden. 

13. De invoering van "klaag bclasting" zou het geldtekort van 
de overheidsbegroting snel doen verandercn in ccn overschot. 
Bovcndien zou hierna voor elke belasting ambtenaar recursie 
een bekend en vaak tocgepast begrip kunnen worden. 


