

Verification of electronic designs by reconstruction of the
hierarchy
Citation for published version (APA):
Kostelijk, A. P. (1994). Verification of electronic designs by reconstruction of the hierarchy. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR421686

DOI:
10.6100/IR421686

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR421686
https://doi.org/10.6100/IR421686
https://research.tue.nl/en/publications/db80c97d-1bd2-4981-8954-683b97edab6d

Verification of electronic designs by

reconstruction of the hierarchy

A.P. Kostelijk

The work described in this thesis has been carried out
at the PHILIPS RESEARCH LABORATORIES at Eindhoven,
the Netherlands, as part of the Philips Research programme.

CIP-gegevens Koninklijke Bibliotheek, Den Haag

Kostelijk, A.P.
Verification of electronic designs by
reconstruction of the hierarchy
Proefschrift Technische Universiteit Eindhoven,-Met lit. opg.,
-Met samenvatting in het Nederlands.
ISBN 90-7 4445-14-4
Trefw.: IC-ontwerp, verificatie, patroonherkenning, algorithme

@Philips Electronics N.V. 1994
All rights are reserved.

Reproduction in whole or in part is prohibited
without the written consent of the copyright owner.

11

Verification of electronic designs by

reconstruction of the hierarchy

Proefschrift

ter verkrijging van de graad van doctor aan
de Technische U niversiteit Eindhoven, op gezag
van de Rector Magnificus, prof.dr. J .H. van Lint,
voor een commissie aangewezen door het College
van Dekanen, in het openbaar te verdedigen op
woensdag 28 september 1994 te 16.00 uur

door

Anton Pieter Kostelijk

Geboren te Grootschermer

lll

Dit proefschrift is goedgekeurd door de promotoren

prof.dr.Ing. J.A.G. Jess en
prof.dr.ir. W.M.G. van Bokhoven.

iv

Acknowledgements

This work was performed at the IC-design Centre, Philips Research Labo
ratories Eindhoven, since 1985. Many people have contributed to this work.
In particular I owe a lot to the following persons.

The management of the IC-design Centre, especially groupleader Gerard
Beenker, his predecessor Leo Nederlof, and former director Thea Claasen,
for giving me the opportunity and support to perform this work.

Guido Schrooten for being the co-initiator of Vera, and for major contribu
tions to the initial Vera setup.

Brian Lynch and Paul Kuppen (t 1992) for sharing their talents with me
for many years, and creating major parts, manuals and applications.

Bart De Loore, our "super user", for his questions, discussion, enthousiasm,
innovative Vera usage, and joint publications.

Johan Jonkheid for his initiative and endurance power to set up the Vera
support team.

Andries van der Veen, Rene Segers and Marc Verra for their contributions.

Furthermore, I thank all users for their interest in my work and their crit
icism.

I thank all current and former members of the IC-design Centre and the
excellent system support team for a pleasant and cooperative atmosphere.

The following people have given substantial feedback on drafts of this the
sis: Prof. J.A.G. Jess, Prof. E.H.L. Aarts, Prof. W.M.G. van Bokhoven,
Prof. P.M. Dewilde, Gerard Beenker, Andre Slenter, Simon Thorn.

Finally, I am grateful to my wife, Elly Vogelzang, for her support and
encouragement.

v

Contents

1 Introduction
1.1 IC-design, synthesis and verification
1.2 Trends in IC-design
1.3 High level design and layout design .
1.4 Hierarchy reconstruction

2 Literature on structure verification
2.1 Structure verification methods

2.1.1 Simulation
2.1.2 Functional abstraction .
2.1.3 Netlist comparison ...

2.2 Literature on structure recognition
2.2.1 Rule-based systems.
2.2.2 Other systems

2.3 Conclusion

3 The hierarchy reconstruction method
3.1 Introduction
3.2 Hierarchy and structure parameters .
3.3 The operational model

4 The sub-circuit recognizer
4.1 Introduction
4.2 Definitions

4.2.1
4.2.2
4.2.3
4.2.4

General notions and notation
The circuit definition
The sub-circuit recognition problem
The internal data representation of a circuit .

Vll

1
1
3
4
7

11
11
11
13
14
18
19
20
22

23
23
24
29

33
33
34

34

36
40

45

4.3 The primary algorithm: backtracking. 47
4.3.1 The brute-force approach . . . 47
4.3.2 Backtracking in general 48
4.3.3 Backtracking and sub-circuit recognition . 54
4.3.4 The decomposition of the sub-circuit recognition prob-

lem 57
4.3.5
4.3.6
4.3.7
4.3.8

Search tree traversal
Finding a candidate set for a demand
The ordering of a search list
The first search list element

63
65
71
74

4.3.9 Ordering the rest of the search list 79
4.3.10 The iterative search list generation algorithm 84
4.3.11 The primary algorithm, an overview 90

4.4 Post-processing 92
4.4.1 Automorphisms 93
4.4.2 Partially overlapping matches 94

4.5 Extensions to the primary algorithm 96
4.5.1 Partially prescribed matches 96
4.5.2 External net merging 97
4.5.3 Exchangeable terminal groups . 100

4.6 Diagnosis feedback 105
4.7 Results. . . 109
4.8 Conclusions 113

5 The hierarchy reconstruction implementation
5.1 The RECOGNIZE primitive
5.2 Hierarchy reconstruction for various hierarchy categories
5.3 An example of a parameterized type description .
5.4 Reconstruction order and hidden hierarchy
5.5 Layout positions and very large designs

6 Results of the hierarchy reconstruction method
6.1 The hierarchy reconstruction process for the TDA-1307
6.2 Error location .
6.3 Properties of the hierarchy reconstruction method

7 Final conclusions and future work

Bibliography

viii

115
117
118
124
125
129

133
133
141
142

145

147

A Summary 155

B N ederlandse samenvatting 157

c Biography 159

D List of symbols 161

E Layouts 165

ix

Chapter 1

Introduction

This chapter introduces and provides a motivation for the subject of this
thesis. The subject is the verification of electronic designs by hierarchy
reconstruction, and in particular the structure verification of the layout
design of an IC (Integrated Circuit). The first section introduces briefly
the notions of IC-design, synthesis and verification. The second section
describes the main trends in IC-design. In the third section, the IC-design
process is subdivided into two steps, high level design and layout design, to
indicate the position of the thesis' subject in this process. Both steps are
described in some detail. The last section describes the aim, subject and
structure of the thesis.

1.1 IC-design, synthesis and verification

This section introduces the notions of IC-design, synthesis and verifica
tion. IC-design is the implementation of an initial IC-specification into a
layout, which after processing results in an IC that meets the initial IC
specification. An initial IC-specification describes the required behavior
of the IC, and constraints of the IC, such as timing, layout size, package
demands, power consumption, etc. A layout describes the geometrical po
sitions of different materials in an IC, thus forming the basic components,
such as transistors, resistors and capacitances, and the wiring network con
necting the basic components that determine the IC's behavior and prop
erties. An example of a layout is shown in Figure E.2 of Appendix E. The
implementation is performed in a number of design steps as indicated in
Figure 1.1 to keep overview of the large number of details. A design step

1

2

r.t:i
.,...;
00
Q)

...c:l
~
~

CIJ.

System
level

Functional
level

Register transfer
level

Logic
level

Gate
level

Transistor
level

Layout
level

Introduction

Q
0,....
a:l
u
~ ·;:::
Q)

>

Figure 1.1: Example of a design trajectory.

1.2 Trends in IC-design 3

consists of a synthesis phase and a verification phase. In the synthesis
phase of a design step, a description which is the result of the previous
steps, called the specification of the current step, is transformed into a new
description, that brings the aim, a layout, closer by. The new description
is called the implementation of the current step. Since synthesis is a com
plicated activity, the implementation may be incorrect with respect to the
specification. In the verification phase of a design step, it is established that
the implementation of the current step is consistent with the specification
of the current step. When the verification is successful, the implementation
of the current step is accepted as the specification of the next step. When
the verification is not successful, the errors must be corrected.

The description of the IC-design process so far is an example of a divide
and-conquer top-down method. This method is applicable only when the
consequences at the lower levels of high-level choices can be estimated ac
curately. However, when details of an IC-design are not yet filled in, for
example the size of the design remains hard to predict from the initial
IC-specification. In addition, details at a lower level may dramatically
influence the higher levels. Therefore, a strict divide-and-conquer design
method is impracticable. In current design practice, several complete de
sign iterations from initial specification to layout are necessary, to map out
the consequences of the choices made during the synthesis phases. Figure
L 1 shows the hierarchy levels and steps for one example of a design style
[Veend92.1]. Each level is indicated by a rounded box. A complete iteration
consists of the traversal of a top-down synthesis trajectory and a bottom-up
verification trajectory. On a smaller scale, e.g., between two levels, many
top-down bottom-up iterations are usually made.

1.2 Trends in IC-design

This section briefly analyzes the trends in IC-design. Even after four
decades of IC-design, the main trend remains unaltered: the complexity
of an IC, i.e., the number of details involved for designing the IC, is larger
than the complexity of the previous IC. As a consequence, the amount of
specialization keeps on growing, and the CAD-design environments become
larger and larger. The relative design effort spent on verification, compared
to the effort spent on synthesis, grows due to the growing number of details.
In addition, the permanent flow of newly created synthesis tools shifts the
design bottleneck even further towards verification.

4 Introduction

Silicon technology nowadays allows the integration of many millions of
transistors. However, the number of transistors of an IC is only an indirect
indicator for the complexity of a design. For instance, a memory IC may
contain many millions of transistors, but most of them are designed by
repeating the same pattern millions of times. Because memory ICs require
little design effort per transistor, the ICs having the largest transistor count
are usually memories. The main design challenge is not to increase the
transistor count that can be handled, but to design complex systems with as
little effort as possible. Complex systems consist of many different functions
and parts, resulting in a design containing millions of transistors without
global repetition.

An additional phenomenon that comes with the complexity growth is
that todays ICs are no longer designed with a single design method or a
single design style only. A design is the result of a mixture of design meth
ods and styles, each mastered by a team of specialists. An IC may contain
parts consisting of standard cells, ROM modules, PLA modules, embedded
memories, analog parts, macro-cells, and library blocks. Different parts
may be designed by logic synthesis, manually, by application specific syn
thesis tools, or be copied from another design etc. All parts are integrated
into one layout. This involves the placement and connection of many thou
sands of terminals. Whether the right parts are present, whether they are
implemented correctly, and whether the parts are connected correctly to
each other, has become a major verification question and is therefore the
main subject of this thesis.

1.3 High level design and layout design

Two major steps can be identified in a design process, i.e.,

• high level design and

• layout design.

In the following, both steps are briefly described, with emphasis on the
verification phases.

High level design
The aim of high level design (see also Figure 1.2) is to take the initial
IC specification that describes input output behavior and a set of con
straints, to find a high level structure that implements the specification

1.3 High level design and layout design 5

(Initial IC specification)

High level
Verification synthesis

(High level structure

Figure 1.2: High level design.

correctly. A structure refers to a set of interconnected components that
make up the design. In general, a structure or network can be given at
various levels of abstraction, relating to. various levels of detail. Since high
level design deals with the properties as present at the levels close to the
initial IC-specification, the outcome is a high level structure that contains
no lower level details. The high level structure description may consist of
macro-cells, standard-cells, analog cells, etc. Different parts of the initial
IC specification may be synthesized by different design methods and styles.
Like all design steps, high level design consists of a synthesis phase and a
verification phase. In the high level synthesis phase, the top-down step is
performed. In the high level verification phase one establishes the consis
tency between the initial IC specification and the high level network. This
is mainly done by simulation, although for specific steps, better alternatives
exist [Malik88], [Koste93], [Genoe92]. Much of research is done in this area
[AFMC89], [TPCD92], [CHAR93], but many methods have not been as
successful in the design practice as their creators hoped.

Layout design
Figure 1.3 shows the layout design phase. In this part of the design tra
jectory, the high level structure resulting from high level synthesis is trans
formed into a layout. A layout describes the geographical position of dif-

6 Introduction

ferent materials in an IC. The different materials represented in the layout
are usually referred to as the "layers" of a design. By using floor planning,
placement and routing tools, various libraries, macro-cell generators and
usually some manual editing, etc., a complete layout is generated. Dur
ing this process, not only many different libraries and complicated CAD
tools are used, but also the different design parts are brought together and
usually some manual modifications are made. Verification is therefore an
essential part of this design step, taking a major part of the layout design
effort. These facts have motivated the subject described in this thesis, i.e.,
the improvement of verification in the layout design. The aim of the layout

High level structure

Standard-cell
Structure libraries Placement

Verification
Macro-cell Routing
generators

Hand layout Macro-cell

libraries generation

Layout

Figure 1.3: Layout design.

verification phase is to check whether the high level structure description
has been implemented appropriately in the layout. In the following sec
tion, this process is described bottom-up, starting with the layout. The
verification is subdivided into three steps.

In order to produce operational basic components such as transistors,
resistors and capacitors, the layout must obey technology dependent de-

1.4 Hierarchy reconstruction 7

sign rules [Veend92.2] that prescribe geometrical constraints on the layers.
Therefore, the first verification step is to verify the layout design rules.
Commercial layout extraction tools such as DRACULA, or Philips' LO
CAL45, are well capable of verifying the absence of layout design rule vio
lations. Since this verification step is common and widely used, it will not
be described in further detail here.

A second step consists of the extraction of basic components (transis
tors, capacitors, resistors) from layout, as shown in Figure 1.3. The tools
for design rule checking are able to perform this task as well and it is done
simultaneously with the design rule checking. Most of the components are
transistors at this level, only for some analog parts may capacitors and re
sistors be extracted a.<> well. The effect of parasitic capacitors and resistors,
e.g., resulting from long wires in the layout, are usually checked by timing
verifiers or by circuit simulation. Neither timing verification nor parasitics
are subjects of this thesis.

The third verification step, called structure verification, consists of
checking whether a high level structure description has been implemented
correctly at the transistor level. The focus of this thesis is on an effective
method of performing structure verification. This method, called "hierar
chy reconstruction", is introduced in the next section.

1.4 Hierarchy reconstruction

This section describes the subject, motivation, relevance and structure of
this thesis. The subject is an effective method of performing structure ver
ification, called "hierarchy reconstruction". The first paragraph describes
the need for structure verification. The second paragraph derives the prop
erties that a structure verification method should have. The third para
graph explains briefly the verification method including the relevance of the
method compared with other approaches. The final paragraph describes the
structure of the thesis.

The need for structure verification
As indicated in Section 1.2 and elaborated in Section 1.3, a modern IC
design consists of many parts coming from many different sources, put to
gether during the layout design phase. Not only is the design of each part a
complicated task that needs verification, but also putting the parts together
appropriately involves many CAD tools and libraries, and often error-prone

8 Introduction

manual work. Furthermore, every non-trivial computer program contains
bugs, and since many computer programs are involved during layout de
sign, one cannot rely on the result without checking afterwards whether
the right components have been connected correctly.

Structure verification requirements
Any structure verification method must check whether the transistor level
structure is connected correctly according to the high level structure. To
get a reliable verification method, it should not rely on information added
during the synthesis phase, but start from the final result, i.e., the layout.
The aim of IC-design is a correct layout where a processed IC will meet the
initial IC-specifications. This implies that both synthesis and verification
by itself are not aims of IC-design, but inevitable steps, performed to get a
reliable layout. A structure verification tool should therefore require little
designer effort and few computer resources. The tool should also be able
to handle current industrial designs, i.e., a design composed of a million
transistors. A structure verification tool should not only signal the pres
ence of an error, but it should indicate the cause of errors, to diminish
the extra design effort in correcting the errors. With the growing num
ber of components and connections in IC-designs, the importance of error
indication grows as well. The common practice of combining different (per
haps slightly modified) parts coming from different sources in one layout,
indicates that connectivity errors at the high structure level are likely to
occur, so especially errors at different structure levels should be indicated
appropriately.

Hierarchy reconstruction
Existing structure verification methods are simulation, functional abstrac
tion, netlist comparison at the transistor level and rule-based recognition.
As will be shown in Chapter 2, these methods fail to combine complete
verification, reasonable run times and appropriate error indication. The hi
erarchy reconstruction method as described in this thesis however succeeds
in combining complete verification, reasonable run times and appropriate
error indication.

Hierarchy reconstruction is a method that starts with a transistor level
netlist that has been extracted from a layout. By identifying clusters of ba
sic components forming a higher level unit, one can reduce the size of the
netlist, and obtain a netlist consisting of higher level components. By per-

1.4 Hierarchy reconstruction 9

forming this recognition process repeatedly, and on subsequent levels, one
can obtain a netlist at the top level, allowing a high level netlist comparison
to verify the correctness of the high level structure with the actual layout.
When successful, the original high level structure has been reconstructed by
the method. An advantage of the method is that any hierarchy that leads
to the same top-level structure can be used, i.e., the verification hierarchy
can be chosen independently to the one used in the layout synthesis phase.

The aim of this thesis is to describe the hierarchy reconstruction method,
and to show that the method works in practice. Basically, the hierarchy
reconstruction method is implemented as a sequence of different sub-circuit
recognition operations. The core of the thesis describes the recognition al
gorithm in detail, to explain why the method works. The algorithm will
be shown to combine high run time efficiency, flexibility and effective error
indication.

Based on this work, an environment called Vera [Koste89], [Koste88],
[Deloor90], [Koste91], [Koste92.2], [Koste92.3] has been developed that sup
ports the hierarchy reconstruction method. Vera is an acronym for VERi
fication Assistant.

Overview
The thesis is subdivided as follows. Chapter 2 describes existing structure
verification methods found in literature. Chapter 3 describes the hierarchy
reconstruction method, and the tools needed to make the method oper
ational are inventorized. The main part of thesis is found in Chapter 4,
where the recognition algorithm is described. Chapter 5 describes other
tools, in addition to the sub-circuit recognition, needed to make the hierar
chy reconstruction method work. In this chapter especially the verification
of parameterized macro-cells such as a Random Access Memory layout part
will be described. Chapter 6 shows some results of the method. The con
clusions and suggestions for future work are given in Chapter 7.

Chapter 2

Literature on structure
verification

The literature on structure verification is partitioned into a section describ
ing different methods on structure verification, and a section on structure
recognition algorithms. Structure recognition is the core of the hierarchy
reconstruction method. The strong and weak points of the methods and
algorithms are summarized and compared with the structure verification
requirements of Section 1.4. A conclusion finishes this chapter.

2.1 Structure verification methods

Existing methods to verify a high level structure description versus the
transistor level structure are simulation, functional abstraction and netlist
comparison.

2.1.1 Simulation

The classic verification method, simulation, aims at predicting the behav
ior of a circuit for a given set of input patterns. After simulating the
structure at high level and at the transistor level, the resulting behaviors
should be the same. When every input pattern leads to similar behavior
for both levels, the structures are proven correct. The prediction of behav
ior is based on models for component interconnection, and an algorithm
that combines the models and input patterns. Therefore many distinct
simulators exist, supporting various kind of models [Graaf89] and using

11

12

Vdd

c~
Gnd Gnd

Literature on structure verification

Out

t
Q)

~

Vdd

0

g. Vdd

0

Figure 2.1: Simulation.

Out

,___ _ __,, c

B

Time ---+-

different algorithms [Jones94], [VHDL93], [Chua75], [Nagel75], [Feldm92].
At the transistor level, a switch-level simulator is used for digital designs,
and a circuit simulator is used for analog designs. At high level, a VHDL
simulator [VHDL93] is often used. Figure 2.1 shows a simulation exam
ple in which the Out signal is computed for given input signals A, B and
C, for the transistor structure as drawn on the left hand side. A simpli
fied switch-level model is used for this example. The depletion transistor
is modeled as a finite resistance, and the NMOS transistors are modeled
as ideal switches. A modern switch-level level simulator is described in
[Jones94]. The predictive value of the computation depends on the models
used and the numerical simulation algorithm. Except for several analog
circuits, existing models and simulation algorithms in general lead to re
liable predictions of circuit behavior. However, for verifying all possible
input patterns the run time grows exponentially with the number of inputs
and memory-cells, so even for small designs, simulation leads to excessive
run times when used for structure verification. Also, the interpretation
of simulation results, tracing back the origin of faulty behavior, is usually
hard and time-consuming. Furthermore, a side effect of the specialization
in IC-design mentioned in Section 1.2 is that the designer who combines all

2.1 Structure verification methods 13

parts into a complete IC has little knowledge of the details that are needed
when searching for errors.

We conclude that simulation is an expensive and ineffective method for
structure verification.

2.1.2 Functional abstraction

The functional abstraction method as described in [Apte82], [Boehn88],
[Bryant87] computes the behavior of a transistor network by transforming
the network into a set of Boolean operations. The advantage of this method
with respect to simulation is that the complete behavior of a transistor
level structure is derived in one step. Input patterns are not needed. The
functional abstraction method is based on path-tracing. For each net, the
paths leading to the ground or supply nets are analyzed. The rules to
derive the Boolean function differ per technology. For instance (Figure

Vdd

Out

A ~ .. Out= not ((A and C) or B)

c ~
B ~

Gnd Gnd

Figure 2.2: Functional abstraction.

2.2), in NMOS circuits [Apte82], a depletion transistor connects the supply
net called Vdd with the intended Boolean output net called Out. Assume
that the Gnd net has a constant potential of 0 Volt, and is also associated

14 Literature on structure verification

with the Boolean False value, and the V dd net has a constant potential of
5 Volt, associated with the Boolean True value. The pull-down function
of the output net defines when the output has zero potential, i.e, when
the Boolean output value is False. The pull-down function is found by
interpreting parallel branches to Gnd as an OR function, and serial paths
to Gnd as an AND function. The actual Boolean function of the Out net
is now given by the Boolean negation of the pull-down function. For full
CMOS, both a pull-down function and pull-up function are identified, which
must be the Boolean negation of each other. As described in [Ramme92],
[Bolse89], the functional extraction method has recently been elaborated
for CMOS, in which special attention was paid to timing and clocking
strategies.

The functional abstraction method has been popular for some time now.
The premise of the method is that the mapping of electronic functions into
layout can be formalized by a simple set of mathematical rules. Although
for a limited set of functions this is indeed the case, such as for some
combinatorial gates in pure CMOS, this is certainly not the case for all im
plementations. For digital design parts, one needs additional manual hints
for memory-cells. Also, pass gate logic, such as wired-ORs, are a prob
lem [Veend92.3]. The modelling of sized transistors as Boolean networks
remains an issue [Verli92]. In [Dever92], a mixed approach of functional
abstraction and structure recognition is presented. Functional abstraction
so far is limited to Boolean gate level. For instance, no general functional
abstraction method exists that abstracts any set of Boolean gates forming
ann-bit adder. Also, no automatic functional abstraction method is known
for analog designs, at present.

Summarizing we conclude that the maturity of known functional ab
straction methods is insufficient for structure verification, especially when
different design styles are combined in one layout.

2.1.3 Netlist comparison

The netlist comparison method such as in [Ebeli83], [Waten83], [Spick83],
[Ebeli88], compares the transistor level net list extracted from layout with
a reference netlist, by proving or disproving graph isomorphism between
the netlists. Figure 2.3 shows how netlist comparison is used. The result
of netlist comparison is either a cross-reference list or a discrepancy list.
For this particular example, the result is a cross reference list. The cross
reference list indicates which elements are isomorphic to one another, as

2.1 Structure verification methods

Vdd

Out

A ~
Netlist Net list

c

Gnd Gnd

False
:•

Figure 2.3: Netlist comparison.

Gnd

15

Vdd

Out

Gnd

Cross
Reference

A a
B b

Tl T3

16 Literature on structure verification

indicated by Figure 2.3. A discrepancy list indicates the elements that
contradict isomorphism between the netlists.

Existing algorithms for proving graph isomorphism are based either on
depth-first search [Spick83J, or on refinement [Ebeli83]. The aim of both
approaches is to derive an isomorphism function¢, i.e., a bi-jective mapping
from the elements (nets &nd components) of the reference netlist, to the
transistor level netlist, which preserves adjacency and other properties of
every element.

Depth-first search
The depth-first search algorithm for sub-graph isomorphisms will be ex
plained extensively in Chapter 4. This paragraph describes briefly the
depth-first search version of a graph isomorphism algorithm. The algo
rithm first defines a search tree that represents the set of all mappings
between the netlists. Each path from the root to a leaf of the search tree
represents one particular mapping. Next, the depth-first search algorithm
constructs an isomorphism function ¢, by traversing the search tree start
ing from the root, to determine a path that corresponds to an isomorphism
function. The traversal downwards continues until the partial function asso
ciated with the current path is inconsistent with preservation of adjacency
or other properties of every netlist element. In that case, backtracking
occurs to find alternative paths.

Proving graph isomorphism by depth-first search, works appropriately
for small netlists. For medium and large netlists, this approach leads to
unacceptable run times. Therefore, all modern algorithms for proving graph
isomorphism are based on refinement.

Refinement
The principle of refinement (see also [Read77]) is informally explained as
follows. First it is established that the number of components and number
of elements are equal in both netlists. Next, the elements, i.e., components
and nets, in the two netlists are iteratively partitioned into sets of elements
having equal properties. The initial partitioning is based on initial prop
erties. The initial properties are defined by local features of the elements,
such &'l the type of a component and the number of connections of a net. In
every iteration that follows the initialization, the property of every element
is reassigned to a value computed by combining (see [Ebeli83]) the current
property and the current properties of the neighbors. In this way charac-

2.1 Structure verification methods 17

teristics of the neighborhood around every element, at a distance equal to
the iteration step number, are combined. The partition can now be refined
based on the updated element properties. When both netlists are parti
tioned into sets of one element (singleton sets), the pair of elements having
equal properties in both netlists are assumed to be isomorphic. Unfortu
nately, it is not always possible to reach a partition consisting of singletons .

. When a net list is symmetrical (or to state it exactly: when the number of
automorphisms [Harar72.1] is larger than one), refinement into a partition
of singletons is not possible. For the example in Figure 2.4, refinement can-

Resistor1 ResistorS

Net1 Net2 Net3 Net4

Resistor2 Resistor4

Netlist1 Netlist2

Figure 2.4: Example for which netlist comparison by refinement fails.

not be used to determine isomorphism. After initialization, the nets and
resistor components of the netlists have exactly the same role, also when
the neighborhood is taken into account, so refinement until a partition of
singletons is reached is not possible. The refinement algorithm will con
clude that netlistl is not isomorphic to netlist2. This means that when
errors are given by the method, based on not reaching two partitions of
singletons, the netlist may still be isomorphic. In other words, this method
may result in false negatives.

Despite this disadvantage, netlist comparison based on a refinement
algorithm is widely used because it is available, and the run times are ac
ceptable. Netlist comparison is often referred to as LVS (Layout Versus
Schematics), since the method is often embedded in a graphical CAD
environment. Obviously, next to the extracted transistor netlist, one re
quires a reference transistor netlist for comparison. This leads us to an
other weak point of the method~ the need for a reference netlist. Often,
a complete netlist is not available, or it is copied from the corresponding
transistor level in the synthesis trajectory. In the latter case only errors
occurring between transistor level and layout are noticed, the synthesis

18 Literature on structure verification

steps between transistor level and high level netlist remain unverified. As
a method to check the transistor level versus the layout however, net list
comparison is very efficient when no errors are found. When a discrepancy
is signalled by netlist comparison, the cause of discrepancy may be indi
cated poorly, as was shown in a recent study [Rovers93]. For example, in a
small design of 780 components (see color figures E.1 and E.1a in Appendix
E) two wires were accidently interchanged. Instead of reporting that two
wires were interchanged, a massive and unstructured error report of 43
pages resulted. Figure E.1 (Appendix E) shows the nets and components
mentioned in the report. The figure shows that for a single exchange of
wires, in a small layout, errors are indicated at many places in the design.
For VLSI designs, this is even worse, due to the size of the netlists at the
transistor level.

In [Batra92], a hierarchical netlist comparison program is described.
The program uses extra hierarchy information that is manually added in
virtual layout layers, to indicate the intended hierarchy. In this way expan
sion of all structure levels down to the transistor level is partly omitted.
The disadvantage of this method, as mentioned by the authors as well, is
that the addition of hierarchy information is cumbersome. Additionally, it
adds a new source of errors to the design trajectory.

We conclude that the netlist comparison method for structure verifica
tion is too restricted, because it needs a reliable reference netlist. Further
more, the error indication is ineffective, and false negatives are inherent to
the main algorithm.

2.2 Literature on structure recognition

This section describes the state of art with respect to sub-circuit recogni
tion. In the 1960s and early 1970s, structure recognition was studied by
discrete mathematicians focussing on graph theory. They referred to it as
the problem of identifying sub-graph isomorphisms. They showed that the
problem of identifying sub-gr~ph isomorphisms is NP-hard [Read77], which
lead to very pessimistic views on the possibility of applying sub-graph recog
nition algorithms [Berzt73]. The exponential growth of computer power in
the last decades made worst case computation feasible for small problems.
Furthermore, the usefulness of sub-circuit recognition was recognized in var
ious other sciences, including electronics. Especially for rule-based systems,
several recognition programs have been developed. However, the effort in

2.2 Literature on structure recognition 19

this area was mainly spent on the possible applications. Developing an
effective sub-circuit recognition algorithm was usually not the main focus.
On the other hand, other work has been published, whose intention is sim
ilar to our work, but whose efficiency is limited. The rest of this section
describes first some rule-based systems, followed by several other systems.

2.2.1 Rule-based systems

Rule-based systems as described in [Dever92], [Ramme92], [Bolse89],
[Rubic84], [Spick88], use structure recognition in addition to functional
abstraction (see Section 2.1.2), mainly to check electrical design rules. Al
though only the structure recognition aspect of these systems is considered
here, the intended functionality is more general. The employed recogni
tion methods are all rule-based, consisting of a user-defined set of clauses
(goals), and a depth-first search algorithm that tries to find solutions that
satisfy these goals. The set of clauses specifies a pattern that represents
a sub-circuit. For these methods, sub-circuit recognition is not considered
as a single problem, but recognition is directly subdivided into a set of
sub-problems, the clauses. This immediate subdivision of the recognition
problem the search order of depth-first search algorithms, and the ef
ficiency of the search process strongly depends on the incidental ordering
of the clauses. Since the problem is not analyzed before applying depth
first search, the order usually results in a bad performance. Other speed
improving techniques as will be described in Chapter 4 are absent as well.
Therefore, these methods are usually inefficient, and the execution time is
very to the actual definition of a rule, leaving a large responsibil
ity to the user. The results with respect to efficiency are poor, and they
are only given for small designs. Regarding another important issue, error
indication, little is known, as it is not mentioned in the papers.

We conclude that the efficiency of these systems with respect to struc
ture recognition is insufficient. The merits of these systems are the explo
ration of applicability of rule-based techniques. We have described struc
ture verification by hierarchy reconstruction as a possible application for
the Vera environment in [Koste88], [Koste89]. The method includes both
standard-cell structure recognition and macro-cell structure recognition.
We have published more results and details in [Deloor90], [Koste91], and
showed a complicated design containing 140 000 transistors that was ver
ified in reasonable time on a common workstation. However, we did not
explain any details of the structure recognition algorithm, because a patent

20 Literature on structure verification

was pending at that time [Koste92.4]. Part of this thesis is therefore de
voted to the information missing in these articles.

2.2.2 Other systems

The method for verifying a layout versus a top level structure by means of
layout extraction followed by hierarchy reconstruction is nicely described
in [Nebel86]. However, the structure recognition algorithm is not very
clear. According to the conclusions, the speed of the structure recognition
algorithm needs to be improved, and the error indication needs refinement.
A corresponding paper [Nebel87] indeed shows that the performance of
the structure recognition algorithm is poor. The computational efficiency
behaves experimentally as O(n2), where n denotes the number of transistors
in a design.

A standard-cell structure recognition algorithm, to be used for hierarchy
reconstruction, is briefly described in [Pelz91]. It is based on a depth-first
search algorithm, in which the search order is determined from the signal
flow through a MOS-circuit [Jouppi87], and some limited heuristics. In
addition, the problem of ambiguity when matching a library (see Section
5.4) is briefly explained. The problem of partly overlapping matches, that
may lead to ambiguity, is not mentioned (see also Section 4.51). The work
does not include macro-cell recognition and the size of the structures that
are recognized seems rather smalL Unfortunately, run times are only given
for 7 small designs. Five designs contained less than 2 500 transistors, and
the largest two contained about 33 000 and 61 000 transistors. Explicit
error indication was not mentioned.

Article [Pelz94] is an elaborated version of the previous paper, [Pelz91].
After explaining the hierarchy construction method, the article claims to ·
have proven the following theorem:

The expected run time complexity of the hierarchy construction
method is O(n.p.j), where n is the number of components and
nets of the transistor level netlist, p is the average number of
components and nets of the sub-structures used for recognition,
and j is the number of sub-structures that is being recognized.

The proof given for this claim first reduces the efficiency computation to a
formula depending on several characteristics of the sub-structures. Next,
12 designs of the ISCAS '89 benchmark [ISCAS89] are selected and the
characteristics are evaluated. Based on the trend of these 12 designs it

2.2 Literature on structure recognition 21

is concluded that the claim holds. In my opmwn, giving 12 examples
for which the theorem holds is not a general proof. Further, the article
advocates a hybrid structure verification approach, by combining hierarchy
construction, limited high level cell expansion, and netlist comparison, as
indicated schematically in Figure 2.5. The expansion is limited down to

0
0

CJCJCJCJCJ

Component

Basic component

j Expansion

Comparison

/\ l /" \ \"' I Hierarchy ;r IT 7f 1\ 1\\ 1\ ~ reconstruction

000000000000000
Figure 2.5: Hybrid approach for structure verification.

some intermediate level, the hierarchy construction is limited up to the same
intermediate level, followed by a comparison of the top-down and bottom
up structures. The author claims to combine the benefits of both methods,
i.e., hierarchical error location, the use of different hierarchies for synthesis
and verification, and limited run times. The brief results of [Pelz91] are
repeated. In addition, the results when applying the hybrid approach for
the same designs is given. The hybrid approach is up to 33 % faster. The
motivation for a hybrid approach indicates that the author is not satisfied
with the performance of the structure recognizer. In my view, a gain of 33
% in run time efficiency is too little to justify the use of such a complicated

22 Literature on structure verification

method. Perhaps an unmentioned argument for introducing the method
is the inability to handle macro-cell recognition. It also remains unclear
what level should be selected as the intermediate level at which expansion
and hierarchy construction should meet. The error indication becomes very
complicated, because the error indication of netlist comparison is weak by
itself (Section 2.1.3), and has to be translated back to the original top level
structure for interpretation as well. Another disadvantage of the hybrid
approach is that one relies on a part of the synthesis phase, the expander,
to be correct without checking.

2.3 Conclusion

Several attempts in the past have aimed at tackling the structure verifica
tion problem. So far none of the methods in Section 2.1 meet the require
ments as stated in Section 1.4. Not only do run time performance and error
indication still present problems, but also several methodological questions
remain unsolved.

With respect to the structure recognition algorithms for applying a
structure reconstruction method (Section 2.2), the performance of the sys
tems is either insufficient, or unknown. Explicit error indication has not
been described.

For the structure recognition based systems, the best results have been
reported by the author in [Deloor90], [Koste91], but the recognition al
gorithm was not described. Of the other papers, [Pelz91] and [Pelz94]
are the most interesting, although only results for small designs are given,
macro-cell hierarchy reconstruction was not included, and no explicit error
indication was mentioned.

Chapter 3

The hierarchy
reconstruction method

This chapter describes the hierarchy reconstruction method. After giving a
global introduction, the required information and the tools needed to make
the method operational are derived from existing hierarchy constructs. The
requirements are summarized and ordered into an operational model. The
model shows that in addition to a sub-circuit recognizer, other tools are
also needed. The remaining chapters of this thesis focus on the imple
mentation of the operational model and on the results obtained with the
implementation.

3.1 Introduction

Hierarchy reconstruction aims at verifying consistency between the transis
tor level structure and a high level structure. The transistor level structure
has been extracted from a layout, as described in Section 1.3. The high level
structure consists of standard cells and macro-cells. In order to simplify
terminology, we also call a fixed analog block a standard cell. Macro-cells
are instances of parameterized modules. For example, an n-bits adder is
a module with parameter n, and a 7-bits adder is a macro-cell, generated
by the adder's module generator instantiated with n=7. Standard cells are
not parameterized with respect to their structure. The hierarchy recon
struction method is based on stepwise bottom-up abstraction. By using a
sub-circuit recognizer, the simplest sub-structures in the transistor netlist,
such as inverters, nands, etc., are identified first. Next, the higher level

23

24 The hierarchy reconstruction method

sub-structures, such as memory-cells, etc., are found, as indicated in Fig
ure 3.1. Recognition and abstraction of increasingly complex structures
takes place, until no further abstraction is possible, and the highest level
structure has been reached. By using netlist comparison at the top level,
the constructed high level structure description can now be compared (see
Figure 1.3) with the initial top level structure, to establish consistency.

The following information is needed for the construction process:

• a non-parameterized component library describing higher level com
ponents as a network of connected lower level components, and

• a parameterized module library, describing how a module instance (a
macro-cell) is composed of interconnected lower level components, for
given parameter instances.

In these libraries, layout related information is not included. The following
tools are needed as well to be able to perform the construction process:

• a fast sub-circuit recognizer for performing structure recognition,

• a netlist comparison tool, and

• a tool, called the controller, that supervises the reconstruction pro
cess.

The latter should interpret the library information, and order the sequence
of structures to be recognized.

Since there is no layout information required for hierarchy reconstruc
tion, the effort to set up the library is limited. Compared to the effort spent
on making (writing) a module generator and a standard cell library, our
library effort is negligible. Since the information is set up differently and in
dependently from the top-down library and synthesis tools, the probability
of errors slipping through unnoticed is very small. In the remaining sec
tions of this chapter, the method is elaborated into an operational model,
that shows the prerequisites and their relations that must be implemented.

3.2 Hierarchy and structure parameters

This section describes the hierarchy reconstruction method in more detail
by considering the role of structure parameters in a design hierarchy. De
pending on the role of structure parameters, hierarchy is partitioned into

3.2 Hierarchy and structure parameters 25

four categories. The requirements for constructing hierarchy are derived
for each category. As indicated in the introduction of this chapter, the
main distinction is between macro-cells that are instances of parameterized
modules, and standard cells that are not parameterized. In theory, little
can be said about the semantics of the structure parameters of a module.
However, for a module to be usable, the semantics of a structure parameter
should not be complicated. Therefore, our partitioning is based on actual
semantics of parameters that are used in IC-design [Wouds90]. In all cases,
parameters indicate either repetition of some structure, or a function, rep
resented by a table.

Category 0: Non-parameterized modules
A non-parameterized module is a module that has a fixed structure. The
reconstruction of non-parameterized modules such as standard cells is the
first, and most important, step in reducing the complexity of a large circuit.
For example replacing all transistor pairs forming an inverter circuit, by an
inverter component can be performed as follows:

1. retrieve the inverter structure, to act as the template,

2. identify alltransistor pairs matching the template,

3. replace the identified transistor pairs by inverter components.

After the matched inverter transistors have been abstracted, other or higher
level components can be constructed in the same way. Figure 3.1 illustrates
the hierarchy construction steps of an inverter structure, followed by the
construction of a memory cell.
In summary, hierarchy construction for Category 0 modules requires

(a) a library, containing the structures of all non-parameterized
(sub-)modules,

(b) a pattern-matcher, capable of finding matches of a given library tem
plate in a large network, and

(c) an "abstractor", to replace found matches by the corresponding higher
level component.

26 The hierarchy reconstruction method

Vdd

1 -.{>-

Gnd

2 B B

I

I _Gnd~

3 B B

RIW

B- Memory Cell - B

Figure 3.1: Non-parameterized hierarchy reconstruction

3.2 Hierarchy and structure parameters 27

Category 1: Singly parameterized modules
A singly parameterized module is a module of which the structure of a
corresponding macro-cell is determined by the value of one structure pa
rameter, k, that indicates structure repetition. The parameter value is a
number of a limited integer domain. When two values are allowed only, the
parameter indicates the absence or presence of some part of the structure.
When the parameter has more than two acceptable values, it indicates se
rial or parallel repetition of some part of the structure. Obviously, when
the parameter has one possible value, the parameter has no meaning for
the structure of the module. The parameter may be associated with the
number of bits in a data or control word. The hierarchy construction pro
cess of this category is explained for the abstraction of all memory words
in a memory core (first step in Figure 3.2). After the reconstruction of the
memory cells (see Category 0), the following is performed:

1. the value k, i.e., the number of memory cells connected in parallel to
the same r/w select line, is derived from the network,

2. a parameterized module generator produces a structure template for
the k-bit memory word instance,

3. the circuit components, matching this template, are replaced by a
k-bit memory word.

Compared to Category 0 modules, Category 1 modules require:

(d) a structure-repetition detector, capable of recovering parameter val
ues from the repetition in a network,

(e) a library of parameterized structure template generators.

Category 2: Multiple parameterized modules
A multiple parameterized module is a module of which the structure of a
macro-cell is determined by multiple parameter values. A RAM module is
an example having multiple parameters. The structure of a RAM macro-cell
may be a function of four parameters: x-decoder depth, y-decoder depth, z
decoder depth and word-length. Hierarchy reconstruction of these modules
is performed by repeating singly parameterized hierarchy reconstruction.
Figure 3.2 illustrates the reconstruction process of the core of a RAM. The
number of bits in a word is determined first from the number of memory
cells connected to the r jw select lines. All memory words can now be

28

bl I
b2 I
b3 I

bl

b2

b3

r/wl

r/wl
I

3-bits
Memory

Word

r/wl
I

1

I

I

The hierarchy reconstruction method

I

I

I

r/w2

I

I

I

r/w2
I

3-bits
Memory

Word

r/w2
I

3x3 Memory Core

J

I

I

r/w3

I bl

I b2

I b3

r/w3
I

bl
3-bits

Memory
Word

b2

b3

r/w3

-bl

-
-b2

-b3

Figure 3.2: Parameterized hierarchy reconstruction

3.3 The operational model 29

abstracted, as described for Category 1 modules. Secondly, the memory
core depth, i.e., the number of memory words, is determined by the number
of parallel connections to both bit line {bl, b2, ... } and inverse bit line
{b1,b2, ... } signals. The complete memory core can now be abstracted.
Compared to Category 1 modules, Category 2 modules have no additional
requirements.

Category 3: Modules having a table parameter
This category is defined by modules that have a table parameter. Typical
examples of this category are ROM and PLA modules. Their functionality
is determined by a (truth) table. As an example, the reconstruction of
ROM modules is briefly described. The ROM module is implemented as a
row decoder, a column decoder and a core. The data contents in the core of
the ROM are represented by the presence or absence of a transistor at the
crosspoint of a word and a bit line. The row decoders and column decoders
can be reconstructed in the same way as Category 2 modules. In addition
to Category 2 modules, Category 3 modules require:

(f) a table-extractor, to retrieve the function of the macro-cell.

3.3 The operational model

In Figure 3.3 the requirements derived in the previous section are sum
marized in the operational model of Figure 3.3. The operational model
indicates the tools, libraries and relations between them to transform the
transistor level structure, or circuit, into a top level structure. The cell
library, at the left-hand side of Figure 3.3, stores component definitions
as a non-parameterized or a parameterized structure of connected lower
level components. The tools that operate on the circuit, shown at the
right-hand side of Figure 3.3, are a sub-circuit recognizer, an abstractor,
a structure-repetition detector and a table extractor. The sub-circuit rec
ognizer identifies occurrences of a circuit pattern, called a template, the
abstracter replaces a match of a template by the corresponding higher
level template component, the structure repetition detector identifies it
erative structure parameter values, and finally the table extractor derives
the function related to table parameter of a module.

The controller organizes the interaction between the tools, the library
and the circuit. For hierarchy reconstruction of non-parameterized mod
ules, only the objects connected by bold lines are needed. The order of

30

Library

Non-parametrized
Cell Library

Parametrized
Cell Library

The hierarchy reconstruction method

Tools

Sub-circuit

Recognizer

Abstractor

Repetition Detector

Table extractor

Figure 3.3: Operational model for hierarchy reconstruction

3.3 The operational model 31

abstraction is determined by the controller. For parameterized modules,
the other objects are needed as well. For every module generator, a ver
ification controller is created, which describes how a macro-cell can be
reconstructed. By activating the associated controller, the user starts the
reconstruction process of all instances of that specific module generator in
the design. The controller determines the order in which the tools operate
on the network, and gathers and provides the necessary information.

Control and libraries are set up separately and independently from the
module generator, since they require a different view, namely bottom-up
instead of top-down. By separating the information used in the top-down
and bottom-up path, the probability of the same error occurring in both
descriptions, thus escaping detection, is very small.

In the following chapters, the model of Figure 3.3 is elaborated. Some
interesting tools are elaborated in more detail than other, less interesting
tools. The sub-circuit recognizer is the most important tool to make hi
erarchy reconstruction operational. As described in Chapter 2, a suitable
sub-circuit recognition tool has not yet been presented. The next chap
ter describes our sub-circuit recognition tool. Since the subject is subtle
but crucial for the applicability of hierarchy reconstruction, it is described
thoroughly, starting from formal definitions, and explaining the algorithm
in detail, including the crucial efficiency enhancements. Chapter 5 describes
the implementation of the remainder of the operational model, followed by
Chapter 6, showing the results of the method for a typical design.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Chapter 4

The sub-circuit recognizer

4.1 Introduction

In the previous chapter, it has been shown that a sub-circuit recognizer is
the main tool needed for making the hierarchy reconstruction method op
erationaL This chapter discusses the sub-circuit recognizer in detail. When
the casual reader is interested in the hierarchy reconstruction method, but
not that much in the algorithms supporting it, this chapter can be omitted.

The sub-circuit recognition problem is informally described as the prob
lem of finding all occurrences of a template circuit in a usually larger main
circuit. Sub-circuit recognition is identical to the problem of finding all
isomorphic sub-graphs in a graph [Read77]. In the mathematical literature
it is an example of an NP-hard problem, implying that no method ex
ists that solves each instance of the problem in polynomial time [Read77].
Every algorithm shows exponentially growing run times for some set of
problem instances, unless the very unlikely condition known as "P = NP"
holds. Therefore, the hope of finding a useful algorithm had V'anished for
some mathematicians [Berzt73]. From a practical point of view however, it
still makes sense to search for algorithms that efficiently solve many often
encountered sub-graph isomorphism problem instances, although no guar
antee of run times can be given. In fact, without a powerful sub-circuit
recognizer, the hierarchy reconstruction method cannot be employed.

The remainder of this chapter is organized as follows. Section 4.2 defines
the sub-circuit recognition problem in a formal way. Section 4.3 describes
the primary algorithm. Section 4.4 describes the post processing of the
results of the primary algorithm. Section 4.5 shows some extensions that

33

34 The sub-circuit recognizer

enhance the usability and flexibility of the primary algorithm. Section 4.6
describes diagnosis feedback when the recognition finds fewer matches than
expected. Section 4. 7 shows experimental results and an analysis of the run
times. Section 4.8 finishes the chapter with conclusions.

4.2 Definitions

Section 4.2.1 enumerates notational conventions and several general no
tions. Section 4.2.2 defines formally a circuit. Based on the definition of a
circuit, Section 4.2.3 defines the template circuit and the main circuit, fol
lowed by the sub-circuit recognition problem. To allow accurate efficiency
argumentation for the algorithms in the next chapters, Section 4.2.4 briefly
describes the data representation of a circuit in a computer.

4.2.1 General notions and notation

A set is a collection of elements, in which each member occurs once.

A multi-set is a collection in which elements may occur multiple times.

The multiplicity of an element a of a multi-set B, i.e., the number of oc
currences of a in B, is denoted by fla(B).

For a (multi-)set B, IBI denotes the number of elements in B.

For a set B, 2B denotes the set of all sets over B, i.e., the power set of B.

For a set B, IN B denotes the set of all multi-sets over B.

An ordered (multi-}set is denoted by (XI, x2, ...) . A shorthand notation for
the ordered (multi-)set is x, i.e., by using boldface fonts. Xj denotes the
prefix (xi. ... , Xj). An ordered multi-set is also called a sequence.

For a set B, B+ denotes the set of all non-empty sequences over B.

An unordered (multi-}set is denoted by {xi, x2, .. . }.

The set operators for union, intersection and set-minus are denoted by the
symbols U, nand\. The result of a set operator is an unordered set. An
operand is either an unordered set, or it is interpreted as an unordered set,
when the operand is an (un)ordered multi-set or an ordered set.

For sets A, B and a function F, F : A ----> B, A is called the domain and B
is called the co-domain offunction F. Furthermore, F(A) denotes a subset
of B called the image.

4.2 Definitions 35

For sets A, B, BA denotes the set of all functions having domain A and
co-domain B.

In definitions, the first character of the notion being defined are written
uppercase.

Definition 4.1 Restriction of a Function
For a function F, F : A ---+ B, and a subset C of A, the Restriction of
Function F to Cis the function denoted by Fie, defined as Fie: C---+ B,
for all a E C: Flc(a) = F(a). D

Definition 4.2 Equivalence Set
For a, bE A, a is called equivalent to b when F(a) = F(b). The Equivalence
Set of a E A with respect to the function F: A---+ B, denoted by [a]p, is
defined by [a]p = {x E A I F(x) = F(a)}. D

Definition 4.3 Quotient Set
For a function F : A -+ B, the Quotient Set A/F is defined by
A/ F = {[a]p I a E A}. A/ F is a partition of set A.

Definition 4.4 Canonical Map

D

For a function F : A -+ B, the Canonical Map g : A -+ A/ F is defined
by g(a) = [a]p. Hence, the canonical map maps an element onto the
equivalence set of which it is a member. D

Definition 4.5 Characteristic Function
For a function F :A-+ {True, False}, F subdivides set A into the equiva
lence sets [True]p and [False]p, called the true-set and false-set. Therefore,
A/ F = {[True]p, [False]p }. Since F can be used to define a set and its
complement, F is called the Characteristic Function of set [True]p. D

The true-set of a characteristic function D : A -+ {True, False}, i.e.,
[True]D, is denoted by 'D. The true-set of a characteristic function d: A-+
{True, False}, [True]d, is denoted by 15. Hence calligraphic fonts are
used for the true-set of a function denoted in uppercase, and Greek fonts
are used for functions denoted in lowercase.

Definition 4.6 Pair Function
For k E IN, ordered sets A = (a1, ... ,ak), B = (b1, ... ,bk), the Pair
Function A • B: A-+ B is defined by A • B(ai) = bi fori 1, ... , k. D

36 The sub-circuit recognizer

The (multi-)sets and functions of the main circuit are denoted in boldface,
for example G = (V, T, A, E, TC). The (multi-)sets and functions of a
template circuit are denoted emphasized, for example G = (V, T, A, E, TC).
The (multi-)sets and functions of a sub-circuit of the main circuit are de
noted calligraphically, for example Q = (V, T, A,£, TC).

For an undirected edge e, vert(e) denotes the unordered pair of vertices
{ u, v} that are connected by e.

4.2.2 The circuit definition

Vdd

In Out

Gnd

(

(MOS m1 vdd in out vdd 2e-6 2e-6 pmos)
(MOS m2 out in gnd gnd 1e-6 2e-6 nmos)

)

Figure 4.1: Schematics, graph picture and netlist representation of a circu-it.
The attribute names and attribute values of m1 and m2 are not included in
the graph.

An example
Figure 4.1 shows an example of a circuit. The figure displays the schemat
ics, a picture of the circuit as a bipartite graph, and a netlist representation
of a circuit. The schematic representation is normally used by electronic
engineers. Since the circuit will formally be defined as a labeled bipartite
multi-graph, the graph picture represents best the formal circuit definition.
A netlist representation is a textual representation that can be used to store

4.2 Definitions 37

a circuit in a computer file. Before formally defining a circuit, the relation
between schematics, the picture of the graph and the netlist is explained.
The schematics of Figure 4.1 consist of transistor components ml and m2,
and nets vdd, in, out and gnd. In the picture of the circuit graph, the com
ponents are depicted by squares, the nets are depicted by ovals. Together,
the squares and ovals are the vertices of the graph. The connections of
the schematics are depicted· by lines, determining the undirected edges of
the graph. Note that the graph is bipartite since ovals are only connected
to squares and vice versa. Note also that the graph contains multi-edges,
such as the connections between component ml and net vdd. In order to
distinguish between different kinds of connection, each edge of the graph
is labeled with a terminal class. Both ml and m2 are instances of the
component type MOS. A component type defines the properties (property
name and property value pairs) of a component, such as the number and
kind of connections, the possible attribute names, etc. Figure 4.2 shows
the MOS component type definition. The list of terminal classes defines
the connections of MOS, i.e., one terminal of class gate, two terminals of
class sd- short-hand for "source or drain", which are considered equivalent
terminals - and one terminal of class bulk. The three attributes of MOS
are named width, length and model. The attributes are not included in the
graph of Figure 4.1. Figure 4.3, shows another component type definition,
having other properties in addition to those of Figure 4.1.

The netlist representation is component oriented. It enumerates the
component type, the component name, the connections to nets and at
tribute values corresponding to the attribute names. The connections and
attribute values are ordered according to the terminal classes and attribute
names found in the description of a component type; see Figure 4.2. For ex
ample, the last attribute, named model, is used to indicate a pmos attribute
value for ml, and nmos for m2.

The formal definition of a circuit
The definitions are based on the following basic notions:

• T denotes a non-empty set of types,

• r denotes a non-empty set of terminal classes,

• a denotes a set of attribute names,

• {3 denotes a set of attribute values.

38

(MOS

)

(Terminal-classes
Attribute-names

)

The sub-circuit recognizer

(sd gate sd bulk)
(width length model)

Figure 4.2: Example of a component type, defining TTC{MOS) = (sd, gate,
sd, bulk) with property name Terminal-classes a.nd TA(MOS) = (width,
length, model) with property name Attribute-names

The empty set, denoted by 0, is not a member of r, r, a or /3. A circuit will
be defined as an interconnected set of components and nets. Every compo
nent will have a type label, which will be defined by the type function. The
"type terminal classes" function and the "type attributes" function will be
defined on types, to prescribe the labels of connections to a component and
the attribute names of a component. A component has a second label, the
attribute, that will be defined by the attribute function to assign attribute
values for corresponding attribute names. A net will not have an associated
type labeL The distinction between components and nets will therefore be
defined based on the type function. The edges between components and
nets will be labeled by a terminal class. The multi-set of terminal classes
that are labels of the edges between. two vertices will be defined as the
terminal classes function which will used extensively in Section 4.2.3.

Definition 4.7 Type Terminal Classes
For each type t E r, the Type Terminal Classes function TTC : r ---* r+
assigns to each type a sequence of terminal classes. 0

For example, in Figure 4.2, TTC(MOS) = (sd, gate, sd, bulk). Note that a
sequence is an ordered enumeration of items in which repetition may occur.

Definition 4.8 Type Attributes Function
For each type t E r, the Type Attributes Function TA: r- 2o: assigns a
set of attribute names to a type. 0

For example, in Figure 4.2, T A(MOS) = (width, length, model).

Definition 4. 9 Type Function
For a set of vertices V, the Type Function T : V - r U
a type or 0 to a vertex.

{ 0} assigns either
0

4.2 Definitions 39

Definition 4.10 Set of Components
For a set of vertices V and a type function T, the Set of Components C is
defined by { v E VI T(v) E T}. D

Definition 4.11 The Set of Nets
For a set of vertices V and a type function T, the Set of Nets N is defined
by { v E v I T (v) = 0}. D

Obviously, N = V \ C, since 0 tf_ T.

Definition 4.12 Attribute Function
For a set of vertices V and a type function T, the Attribute Function
A : V--+ 2ax(3 assigns to each component a set of ordered attribute name,
attribute value pairs, and 0 to a net. For a component v E C C V, every
attribute name of A(v) must be a member of TA(T(v)), i.e., a member of
the attribute names of the corresponding type of v, and only one attribute
value is associated. D

For example, A(ml) ={(width, le-6), (length, le-6), (model,pmos)} in
Figure 4.1.

Definition 4.13 Set of Multi-edges
For a vertex set V and a type function T, an edge connects a component
u E C C V and a net v E N C V. The connected vertices { u, v} of an edge
e are denoted by vert(e). A Set of Multi-edges is a set of edges for which
several edges may connect the same vertices. D

Definition 4.14 Terminal Class Function
For a set of multi-edges E, the Terminal Class Function TC : E --+ r
assigns a label to each edge, called the terminal class. It indicates what
kind of connection is meant. D

Definition 4.15 Terminal Classes Function
For a set of vertices V, a set of multi-edges E and a terminal class func
tion TC, the Terminal Classes Function TCS : V x V --+ JNr is defined
by TCS(u,v) = { TC(e) I e E E : vert(e) = {u,v} }. It assigns the
multi-set of all terminal class labels to a vertex pair { u, v }. Hence, it rep
resents the edges connecting u and v, including their multiplicity. When
TCS(u,v) = 0, no edges connect u and v. Since an edge is undirected,
TC S is a symmetric function. D

40 The sub-circuit recognizer

In Figure 4.1 for example, we see two edges connecting vdd and ml, having
labels sd and bulk, so TOS(vdd,m1) = {sd,bulk}.

Definition 4.16 Degree Function
For a set of vertices V, a set of multi-edges E and a terminal class function
TO the Degree Function DEGREE: V x r IN assigns to a vertex v and
a terminal class c the number of edges incident ·with v having a terminal
cla'.ls label c. D

Definition 4.17 Circuit
A Circuit G is an undirected labeled bipartite multi-graph, defined by a
5-tuple G = (V, T, A, E, TO), for which

• V is a set of vertices,

• T is a Type function as defined in Definition 4.9,

• A is an Attribute function as defined in Definition 4.12,

• E is a set of multi-edges as defined in Definition 4.13,

• TO is a Terminal Class function as defined in Definition 4.14.

The set of components 0 is defined in Definition 4.10. The set of nets N
is defined in Definition 4.11. The degree function DEGREE is defined in
Definition 4.16. The terminal classes function of G is defined by Definition
4.15. Furthermore, for any component v E 0 c V, any terminal class c E r
the following must hold:

DEGREE(v,c) = J..tc(TTO(T(v))). (4.1)

In other words, the number of edges per terminal class of a component v is
determined by the type of the component v. The size of the circuit, denoted
by IGI, is defined by the number of edges plus the number of vertices, i.e.,

lEI+ lVI· D

4.2.3 The sub-circuit recognition problem

The sub-circuit recognition problem aims at finding all occurrences of a
template circuit, called the matches, in a usually larger main circuit. Every
match is a sub-circuit of the main circuit. The sub-circuit recognition prob
lem will be defined slightly more specifically than the abstract sub-graph

4.2 Definitions 41

isomorphism problem. In the first place, the general sub-graph isomor
phism problem is usually described for unlabeled graphs. In our case, the
edges of a graph are labeled by the terminal class function (see Definition
4.14), and the vertices have two labels, defined by the type function (see
Definition 4.9) and the attribute-function (see Definition 4.12). The la
bels of matching sub-circuits must correspond to the labels of the template
circuit. Secondly, for a template circuit we want to distinguish between
external nets whose match may have more connections than specified, and
internal nets whose match must have the same connection pattern.

The primary sub-circuit recognition problem will be defined by succes
sively defining the main circuit, the template circuit, isomorphism func
tions, and a sub-circuit. Next, the relation between the isomorphism func
tions and the solution set of problem, called the matches, is described. An
example of a template finishes the problem definition.

Definition 4.18 Main Circuit
The Main Circuit is defined as a circuit G= (V, T,A,E, TC), as defined
in Definition 4.17 of Section 4.2.2. The component set and net set of G are
denoted by C and N, respectively. The terminal classes function of G is
denoted by TCS. The degree function of G is denoted by DEGREE. D

Note the use of a boldface font for the notions relating to the main circuit.

Definition 4.19 Template Circuit
The Template Circuit is defined by

• a connected non-empty circuit G = (V, T, A, E, TC) as defined in Def
inition 4.17, and

• a subset of the net set of G, N E, called the external net set.

The component set and net set of G are denoted by C and N, respectively.
The set V\N E, denoted by N I, is called the internal net set. The terminal
classes function of G is denoted by TCS. The degree function of G is
denoted by DEGREE. D

Note the use of an emphasized font for the notions relating to the template
circuit.

Definition 4.20 Isomorphism Predicate
For a main circuit G = (V, T, A, E, TC), a template circuit
G (V, T, A,E,TC) with external net set N E, the Isomorphism Predicate

S:VV {True, False}

42 The sub-circuit recognizer

is defined by S(¢) =True for any function¢,¢: V-----> V if and only if the
conditions

¢ is one-to-one, (4.2)

Vc E V: T(c) = T(¢(c)), (4.3)

Vc E V: A(c) = A(¢(c)), (4.4)

VeE E, vert(e) = {u,v} : TCS(u,v) = TCS(¢(u),¢(v)), (4.5)

Vn EN I, Vc E r: DEGREE(n, c)= DEGREE(¢(n), c), (4.6)

Vn ENE, Vc E r: DEGREE(n, c)::; DEGREE(¢(n), c) (4.7)

hold. When S(¢) = True, ¢ is called an isomorphism1. S is a characteristic
function whose true-set is the set of all isomorphisms, denoted by S. D

Conditions 4.3 and 4.4 require that both the type and the attribute name,
attribute value pairs of the matched components and corresponding tem
plate components are equal. The type and the attribute name, attribute
value pairs of a net are equal by definition (see Definition 4.11, Definition
4.12). Condition 4.5 requires the existence of a separate equally labeled
main circuit edge for each labeled template edge. Condition 4.6 requires
that mappings of internal nets in G are exclusively connected to compo
nents as specified by the template, whereas Condition 4. 7 requires that
mappings of external nets in G have at least connections as specified by
the template G.

Definition 4.21 Sub-circuit
For a main circuit G = (V, T, A, E, TC), a subset V of V,
the Sub-circuit Glv=(V, T, A,£, TC) is defined by

(4.8)

(4.9)

1 Strictly speaking, ¢ is called an isomorphism only when lVI = lVI. When lVI <
lVI, ¢ is called a monomorphism. Monomorphism, isomorphism and other notions are
described as a special case of the homomorphism in [Stanat77]. According to Definition
4.22, for an isomorphic sub-circuit Glq,(V)=(V, T,A,£, TC), the function¢': V-> V,
defined by ¢'(v) = ¢(v) for each v E V, is an isomorphism for which lVI = lVI with
respect toG and Glq,(V)· So when¢ is a monomorphism, an isomorphism can always

be defined by changing the co-domain V into ¢(V). Therefore, we ignore the difference
between monomorphism and isomorphism.

4.2 Definitions

£ = {e E E I vert(e) = {u,v} 1\u,v E V},

TC = TCit:·

43

(4.10)

(4.11)

Obviously, Glv is a circuit. The component set and net set of Glv are
denoted by C and N, respectively. The terminal classes function of Glv is
denoted by TCS. The degree function of Glv is denoted by Dt:QR££. D

Note the use of a calligraphic font for the notions relating to a sub-circuit.
According to Equations 4.8, 4.9, 4.11, the functions in sub-circuit Glv are
equal to the equivalent functions in G, when restricted to V. The set of
multi-edges£ (see Equation 4.10) is defined by the subset of multi-edges E
that connect any two vertices of V.

Definition 4.22 Isomorphic Sub-circuit
For a main circuit G = (V, T, A, E, TC), a template circuit
G = (V, T, A, E, TC) with external net set N E, their isomorphism predi-
cate S, isomorphism function ¢; : V V, the Isomorphic Sub-circuit is
defined by Glq,(V)' D

Since¢; is one-to-one (Equation 4.2), lVI lVI· Since the number of edges
connected to a component is fixed (see Equation 4.1), 1£1 jEj. The
sub-circuit recognition is defined next.

Definition 4.23 Sub-circuit Recognition Problem
For a main circuit G (V, T, A, E, TC), a template circuit
G (V, T, A, E, TC) with external net set N E, the isomorphism set S as
defined in Definition 4.20, the Sub-circuit Recognition Problem is to find
the set of matches M defined by

M = {Giq,(V) I ¢; E S}.

D

In other words, the solution to the sub-circuit recognition problem is given
by the set of all sub-circuits of the main circuit that are isomorphic to the
template circuit. The isomorphism predicate S implicitly defines the true
set S, and thus the matches M. For a given isomorphism function ¢;, an
isomorphic sub-graph g can easily be constructed according to Definition
4.21.

In summary, the problem of finding all matches of template circuit in
a main circuit is equivalent to finding the set of isomorphism functions S
based on the isomorphism predicate. The set of matches can be constructed
easily from S.

44 The sub-circuit recognizer

(NOR
(Terminal-names (in1 in2 out)

Terminal-classes (in in out)
Network ((MOS t1 vdd in1 out vdd 3e-6 ? ptype)

(MOS t2 vdd in2 out vdd 3e-6 ? ptype)
(MOS t3 gnd in1 h gnd 1e-6 ? ntype)
CMOS t4 h in2 out gnd 1e-6 ? ntype)

)

Restrictions (() ; fixed nets
((in1 in2) (out) (vdd) (gnd))

; external nets
() ; common components
T ; reduce symmetry

)

Global-nets (vdd gnd)
)

)

Figure 4.3: The NOR type, describing both the external component view
(represented by the property named Terminal-classes) and internal tem
plate view (represented by the properties named Network, Restrictions,
Global-nets).

4.2 Definitions 45

An example of a template circuit

In Figure 4.3, the type NOR is described. One can distinguish an ex
ternal and an internal view in the NOR type description. The external
view is given by the terminal classes property, describing the NOR as one
component having two equivalent terminals (the inputs) and one other ter
minal (the output). The absence of an attribute names property indicates
that the NOR component has no attributes. The internal view describes
the constituent parts of a NOR, as given by the network, restrictions and
global nets properties. When used in a template circuit for recognition, the
NOR network property and the NOR restrictions are used. The restric
tions of a type should not be confused with the restriction of a function,
as defined in Definition 4.1. The template NOR network property has the
same format as the main circuit, and describes most of the template. To
show some of the flexibility of this entry, the width of every MOS transistor
is prescribed in the template network, whereas the length is left unspeci
fied. The restrictions property specifies details of the template circuit not
present in the network entry. Most of the restrictions will be explained in
Section 4.5.2, but the external nets {inl, in2, out, vdd, gnd} are indicated
by the second item in the restrictions. The reason why the external net
set is partitioned will be explained in Section 4.5.2. The internal nets of
the template are the nets that are not external, such as {h} for a NOR.
The terminal names property relates, the template level (the internal view)
to the component level (the external view), via the consecutive terminal
classes. The global nets entry enumerates external nets that are not in the
terminal names list.

4.2.4 The internal data representation of a circuit

To represent a circuit in a computer, different data structures may be used
(e.g., see [Reingol77]). Depending on the ease of implementation, the mem
ory usage and the corresponding efficiency of the applied graph algorithms,
a choice has to be made. For our problem, the adjacency list representation
fits closely to the recognition algorithm, because it supports fast access to
edges related to a vertex. Within this representation, the set of vertices
V of a circuit G = (V, T, A, E, TC) is explicitly represented as a set. The
set of multi-edges E, however, is represented by using the present classes
function and the adjacency function defined as follows.

46 The sub-circuit recognizer

Definition 4.24 Present Classes Function
For a circuit G = (V, T, A, E, TC), the Present Classes Function 'Y: V---+ 2r
is defined as

'Y(v) = { TC(e) I e E E: v E vert(e) }.

The function 'Y associates a set of terminal classes with each vertex. D

Definition 4.25 Adjacency Function
For a circuit G = (V, T, A, E, TC), the Adjacency Function Adj: V x r---+
IN v is defined as

Adj(v,c) = { u IeEE: vert(e) = {u,v} ATC(e) = c }.

The function Adj associates a multi-set of adjacent vertices with each vertex
and terminal class. D

So the connectivity and label information that has so far been accumulated
into the function TC S (Definition 4.15) is actually stored in the function
Adj. From the definitions of Adj, TCS and DEGREE the following can
be derived for a circuit G = (V, T, A, E, TC). For every u, v E V, c E r:

J.Lu(Adj(v, c))= J.Lc(TCS(u, v))

DEGREE(v, c)= I Adj(v, c) I
J.Lu(Adj(v, c))= J.Lv(Adj(u, c))

(4.12)

(4.13)

(4.14)

Equation 4.14 shows the symmetry of the Adj function. The function Adj
is stored as a set of argument, value pairs. This implies that each edge is
stored twice, firstly in the adjacency list of the connected component, and
secondly in the adjacency list of the connected net. For every component
vertex v, no storage is required to implement the present classes function
"(, since this information can be derived directly from the associated com
ponent type's terminal classes, by mapping the sequence TTC(T(v)) to a
set. For a net vertex, the present classes set is stored explicitly as a list.
We can conclude that the memory usage is O(IVI + 3IEI). The advantage
of this representation is that at the cost of extra memory usage (2IEI), the
related classes and edges of every vertex can be accessed directly with the
functions 'Y and Adj.

4.3 The primary algorithm: backtracking 47

4.3 The primary algorithm: backtracking

Based on the definitions of the previous sections, this section describes a
backtracking algorithm to find the matches of the sub-circuit recognition
problem. There are many methods to find all matches of a given template
circuit in a main circuit. We will first discuss a simple brute-force method,
that links directly to the definition of the primary sub-circuit recognition
problem. After this introduction, a more efficient method will be described
that is based on backtracking. After a short description of this well known
problem solving method, the sub-circuit recognition problem will be trans
formed to fit a backtracking approach. Since efficiency is crucial for the
recognition process, the main part that follows highlights efficiency criti
cal elements, finally leading to the primary recognition algorithm. In this
algorithm, the search order of backtracking plays a major role.

4.3.1 The brute-force approach

The set of isomorphism functions S (see Definition 4.20) directly leads to
all matches of the sub-circuit recognition problem, according to Definition
4.23. Therefore, the aim is to findS, i.e., the true-set of the isomorphism
predicate S. The brute-force approach consists of the following two steps
to findS.

1. In the first step, the set Y of all one-to-one functions in vV, called

the candidate is generated. Obviously, S C Y c vV.

2. In the second step, S is derived from Y by removing the elements
¢ E Y that do not obey the isomorphism predicateS.

After Step 1 and Step 2, the matches are now given by the isomorphic
sub-circuit (see Definition 4.22) of each isomorphism¢ inS. Since Step 2
only entails the evaluation of S (see Definition 4.20), only Step 1 will be
described briefly.

Let o be an ordered set, enumerating all elements in V. Every ordered
set w of !VI elements of V corresponds to a mapping ¢ E Y of s and vice
versa. Step 1, the generation of Y, can therefore be implemented by enu
merating every ordered set w. The number of elements in Y is equal to the
number of ordered sets of !VI elements of V, i.e.,

lVI!
IYI = (lVI -!VI)!. (4.15)

48 The sub-circuit recognizer

This implies that Step 2 has to be applied IYI times.
The advantage of this approach is that every isomorphism is identified.

The disildvantage is that the order of the algorithm, dominated by the
order of the first step, both for typical case and worst case, is equal to IYI,
multiplied by the ordered set size. Hence,

. !Vi X lVI!
O(brute force algonthm) = 0((lVI lVI)!. (4.16)

Obviously, this algorithm has little practical relevance because of its inef
ficiency, but a refinement of this method, called backtracking, is directly
related. For a backtracking algorithm, the test for a successful match (Step
2) is applied during the selection of a candidate set Y (Step 1). It has
the advantage that all isomorphisms are still identified, but unsuccessful
sets of candidates in Yare excluded earlier, which allows far better average
run-times than can be expected in the worst case.

4.3.2 Backtracking in general

Backtracking is a well-known method to solve a certain class of search prob
lems. In this section, the backtracking solution method is described for a
general problem. It forms the framework, in which the sub-circuit recogni
tion problem will be embedded in subsequent sections.

After stating the definition of a general search problem, the concept of a
general search tree will first be described. Next, a description of the back
tracking method to find the solution set of the problem is given. Finally,
some remarks on the performance of the method are given.

Definition 4.26 Search Problem
A Search Problem is defined by

1. finite sets ~j, j 1, ... , k, that define a search spaceY = Y1 x ... x Yk,

2. a search predicateD: Y---+ {True, False}.

The set of solutions of the problem is equal to the true-set 'D of D. D

'D can be computed by evaluating D for every tuple y E Y. This method,
the general brute-force method, is usually very expensive, since IYI is large.
The backtracking method may skip large parts of Y by using a general
search tree, based on a permutation p of (1, ... , k). Figure 4.4 shows an

4.3 The primary algorithm: backtracking 49

0 {}

1 Y2={C,d}

2 v1 = {a, b}

3 Y
3
={e,f}

cae caf cbe cbf dae daf dbe dbf

Level Coordinate Searchtree

Figure 4.4: A search tree, for Y = {a, b} x { c, d} x { e, !}, and p = (2, 1, 3).
The levels associated with the vertices are indicated on the left side, includ
ing the relevant coordinate of Y.

example of a search tree for which Y = {a, b} x { c, d} x { e, f}, and p
(2, 1, 3). For j in { 1, ... , k}, the number Pi assigns the coordinate YPi to
level j, e.g., the set lp1 = Y2 = { c, d} is associated to level 1. We see that
starting from the root vertex 0 at level 0, each vertex represents a sub-space
of Y. The sub-space is recursively partitioned, at every proceeding level.
Each leaf represents a permuted tuple ofY, e.g., the vertex cae corresponds
to tuple ace.

Definition 4.27 General Search Tree
For a search problem (Definition 4.26), for any permutation p = (p~, ... ,pk)
of (1, ... , k) called a search order, a General Search Tree is a directed non
cyclic graph Gp (Vp, Ep)· The set of vertices Vp is given by

(4.17)

50 The sub-circuit recognizer

Vj is called the set of vertices at level j. Vo is defined by { 0}, and 0 is called
the root. The vertices at level j, j = 1, ... , k, are given by

j

Vj =II YPi' (4.18)
i=l

At each vertex v = (Yl, ... , Yi) at level j, 0 :::; j < k, a set of edges points
at the vertices of the set { (Yl, ... , Yi)} x YPJ+I. Hence, the edge set is given
by .

k

Ep U U { (v,w) I 'WE {v} x YPj+t}.

j=O vEVj

(4.19)

For every vertex v E Vp, a unique path exists from root 0 to vertex v. 0

The backtracking method described next, uses a search tree traversal to
examine Y selectively. To employ a backtracking method for a search
problem, the fur1ction D is decomposed according to the following defini
tion.

Definition 4.28 Demand Function Decomposition
For a search problem (see Definition 4.26), a search tree (see Definition 4.27)
with search order p, a Demand Function Decomposition of the function
D is defined by an ordered set of functions d = (d1, ... , dk), di : Vi -
{True, False}, called demand functions, for which for every tuple y =
(yl,· .. ,yk) E Y

holds. 0

For example, suppose k = 3 and Yi = {0, 1} for i = 1, 2, 3. Suppose
0,1 correspond to False,True. Suppose for any tuple (yl,Y2,Y3) E Y,
D(y1,y2,y3) = (Yl Vy2)1\y3. The brute force method would evaluateD for
all tuples in Y. However, from the definition it is clear that when Y3 = 0, D
evaluates to False. To examine the third coordinate of Y first, we use the
search tree resulting from p = (3, 2, 1). Figure 4.5 shows the corresponding
search tree, including the chosen set of demand functions d = (d 1, d2, d3).

In general, for a vertex v = (y1, ... ,yj) at level j, 1 s; j s; k, dj(v)
indicates whether any of the leaves reachable from v may represent an
element of the solution set D. Hence, when dj(v) = False, the sub-set

4.3 The primary algorithm: backtracking 51

:=True

000 001

Searchtree

Figure 4.5: A search tree, for Y = {0, 1 }3, p = (3, 2, 1), and D(y1, Y2, Y3) =
(Yl V Y2) 1\ Y3· On the left, a decomposition of the search predicateD into
d = { d1, d2, d3} is given. The bold edges indicate the traversed edges, the
thin parts of the tree are skipped. The encircled leaves represent the three
solutions of the set D.

{ (Yl, ... , Yj)} X YPHl ... X YPk is not part of the solution set D. This of
fers the possibility to skip the related parts of Y when computing D. For
Figure 4.5, at level 1, d1(0) = False implies that the total left part of
the search tree can be ignored, since the leaves are not part of D. The
backtracking method exploits this property by traversing the search tree
as follows. Starting from the root 0, each path 0, ... , v in Gp is followed,
until at some level j, dj(v) =False. In this way, only a sub-tree of Gp is
traversed, as indicated with the bold edges in Figure 4.5. The different co
ordinates Y1, ... , Yk are entered in the order p, explaining the name search
order for p. The leaves that are reached during the traversal constitute D.
For Figure 4.5, D = {101,011, 111}.

Definition 4.29 Partial Search Predicate
For a partial demand set d = (db ... , dj) of a search predicate D and
search order p, 1 ::; j ::; k, the Partial Search Predicate is defined by

52 The sub-circuit recognizer

Dj: Yp1 x ... x Ypi---> {True, False} for Yi E Yp1 x ... x Yp, by

The true-set of Dj is denoted by 'Dj. By using the inverse permutation
function p~1 : Yp1 x ... x YPk ---> Y1 x ... x Yk that maps a leaf vertex to
its corresponding tuple in Y, the relation between D~c and D is given by
D(y) = Dk(P~ 1 (y)) for y E Y. This implies that

(4.20)

see Definition 4.28. D

The set of vertices at level j that is encountered during search tree traversal
by backtracking is equal to 'Dj. Note the difference between D~c and D.

Definition 4.30 Traversal Size
For a search order p, a search tree Gp of k levels (Definition 4.27), partial
search predicates Di, i = 1, ... , k (Definition 4.29), the Traversal Size of
Gp, denoted by jGpj, is defined by

IGpl = I: I'Dil·
i=l, ... ,k

A Partial Traversal Size of Gp up to level j, j ::; k, denoted by jGpjj, is
defined by

jGplj = I: IVil·
i=l, ... ,j

0

The traversal size of a search tree is equal to the total number of search tree
vertices that are visited during the application of a backtracking method.
The backtracking method is defined as follows.

Definition 4.31 Backtracking Method
For a search space Y and search predicate D (Definition 4.26), a search

order p, the search tree Gp (Definition 4.27), a demand function decompo
sition d (dt., ... , dk) and partial search predicates D1, ... , Dk (Definition
4.29), the Backtracking Method is defined by the following steps.

1. Find the first candidate set Y1 of D1, i.e., the true-set V1 = 81•

Initialize 'Dj = 0 for j E {2, ... k }.

4.3 The primary algorithm: backtracking 53

2. For every j E {1, ... , k -1} find for every Yj {y1, ... , Yj} E 'Dj the
candidate set

(4.21)

to construct
(4.22)

3. Use Equation 4.20 of Definition 4.29 to compute the solution set V
from vk.

0

During a sequential execution of this method, a candidate set may become
empty. This means that the current path of the search tree need not be fol
lowed further. So one retreats from this branch, and continues with another
path. This pattern explains the name of the method, backtracking. The
proof by induction that every solution set Vj, j 1, ... , k, is generated,
is straightforward, since Step 1 and Step 2 correspond directly to the basis
and induction step of the proof. Since one backtracks when a candidate set
YHl is empty, the method requires !Gpl steps.

Some remarks on the method
For any search problem defined by a search space, a search predicate D,
and a search order p, one can always define a set of demand functions.
For example, the trivial decomposition d1 = . . . dk-1 = True_function,
and dk(v) D(p-1 (v)) can always be defined, but obviously leads to a
complete traversal of Gp, and is not useful. Therefore, the "quality" of the
decomposition determines the ability of skipping large parts of Y. Also, the
chosen search order usually strongly effects the size of the traversed part.
Figure 4.6 shows a variant of Figure 4.5, with p' (1, 2, 3). In Figure 4.6,
the best decomposition still traverses a larger part than in Figure 4.5. This
shows that one order allows better demand functions than others. When
the most discriminating coordinates are first in the search order, the most
selective demands are near to the top of the search tree, and the number
and size of unsuccessful paths is reduced. Note that a permutation of
coordinates is not simply equivalent to a permutation of demand functions.
Also, the encircled leaves corresponding to the solution set V are different
for Figure 4.5 and Figure 4.6.

We conclude that the efficiency of backtracking depends firstly on the
search order, and secondly on a proper decomposition of D into a demand
set {d1, ... ,dk}·

54 The sub-circuit recognizer

:=True

= Y1 Vy2

\

000 001

Searchtree

Figure 4.6: Alternative backtracking search tree and traversed sub-tree for
different search order p'. The sub-tree is larger than in Figure 4. 5, and
other leaves {the encircled vertices) represent the same solution set V.

4.3.3 Backtracking and sub-circuit recognition

After having described the backtracking method in general, this section de
scribes the first steps towards the transformation of the sub-circuit recog
nition problem as described in Section 4.2.3 into a backtracking problem.

According to Definition 4.31, Definition 4.26 and Definition 4.27 in the
previous section, a backtracking process is characterized by

1. sets }i, i = 1, ... , k, that define the search spaceY,

2. a search predicate D : Y -+ {True, False}, whose true-set V is the
solution set,

3. a search order p defining a general search tree,

4. a decomposition of D into a demand set dk = (d1, ... , dk)·

By specifying these characteristics for the case of sub-circuit recognition,
the sub-circuit recognition problem can be solved by backtracking.

4.3 The primary algorithm: backtracking 55

In Section 4.2.3, the sub-circuit recognition problem definition (Defini
tion 4.23) is based on the isomorphism predicate S (see Definition 4.20)
defined by the isomorphism conditions (Equations 4.2, ... ,4.7). The iso
morphism predicate S implicitly defines the solution set

s {¢ E vV 1 S(¢)}.

The search spaceY is defined as follows.

Definition 4.32 Search space
V is the template vertex set. Vis the main circuit vertex set. The Search
Space Y has k = lVI dimensions. The coordinate sets are defined by

Y; V, i = 1, ... ,k. Hence Y = v!VI. 0

Since the coordinate sets are equal, the search tree (see Definition 4.27)
is equal for any search order p. Therefore, we define p to be the iden
tity permutation (1, ... , k). This implies that 1) = 1Jk, so Step 3 of
the backtracking method (Definition 4.31) is trivial. For an ordered set
s (v~, ... , vk), called the search list, enumerating the elements of V, ev
ery tuple w = (w1, ... , Wk) E Y corresponds to a pair function ¢ : V -+ V,
denoted by s • w, according to Definition 4.6 defined by ¢(Si) = Wi for
i 1, ... , k. When S(¢) True, it is part of the solution setS. For differ
ent search lists, the search tree remains the same, but the function ¢ that
corresponds with a tuple w E Y is different. This means that the selection
of a search order p, is now transformed into a selection of an ordered set s,
the search list.

Definition 4.33 D
For an isomorphism predicate S (see Definition 4.20), the search space Y
(see Definition 4.32), for an ordered set of template vertices (v1, ... ,vk)
called the search list s, the search predicate D : Y -+ {true, false} is
defined for w E Y by

D(w) = S(s • w).

For j ~ k, a prefix (VI, ... , Vj) is called a partial search list, denoted by Sj,

and sk=s. 0

The following questions have remained:

1. how to order the template vertices V into a search list s,

2. how to decomposeD into an ordered set of demands d (db ... , dk),

56 The sub-circuit recognizer

3. how to traverse the search tree efficiently, for a given set of demands
d,

4. how to find the candidate sets YJ+l efficiently during the search tree
traversal.

Two aspects are important for efficiency: the cost of the ordering and
decomposition method, and the cost of the backtracking process. The cost
for ordering and decomposition must be less than the gain in backtracking
to be justified.
These four questions are addressed in the next sections. To understand the
consequences of the search list order, one must know the decomposition and
remainder of the backtracking process. Therefore, the search list ordering
will be addressed after the other three, in Section 4.3.7.

4.3 The primary algorithm: backtracking 57

4.3.4 The decomposition of the sub-circuit recognition prob
lem

After reviewing briefly the starting point of sub-circuit recognition by back
tracking as given in the previous section, this section describes the decom
position of the problem into a set of demands d = (d1, ... , dk), for a given
search list s. In addition to the decomposition, it will be shown that the
demand set d actually defined is equivalent to the isomorphism predicate
S (Definition 4.20, Section 4.2.3), that defines the search predicateD (Def
inition 4.33).

The starting point
A given main circuit G = (V, T, A, E, TC) is defined as in Definition 4.18,
Section 4.2.3, including components set C, nets set N, terminal classes
function TCS and degree function DEGREE. A given template circuit
G = (V, T, A, TC) with external nets N E is defined as in Definition 4.19,
Section 4.2.3, including components set C, the nets set N, internal nets set
NI, terminal classes function TCS and degree function DEGREE. Note
that the template circuit G is connected and non-trivial. Figure 4.7 shows
the schematics and the graph of the template circuit example introduced in
Section 4.2.3, Figure 4.3. The number of template vertices is k. Since we
want to exploit connectivity to reduce the traversed part of a search tree,
we will demand that the search list is prefix connected, defined as follows.

Definition 4.34 Prefix Connected
For a circuit G = (V, T, A, E, TC) defined according to Definition 4.17,
k = !VI, an ordered set of vertices (vi, ... , vk) is Prefix Connected when
for i = 2, ... , k Vi is connected to some predecessor Vj, (j < i). D

A given search lists is an ordered prefix connected set (v1, ... ,vk), enu
merating all template vertices. For search list s, the partial search lists
Si = (v~, ... , vi) for i E {1, ... , k }. For the main circuit G, the template
circuit G and the search list s, the isomorphism predicate S is defined by
Definition 4.20, Section 4.2.3, based on the equations 4.2, ... , 4.7. The
search list s and isomorphism predicate S together define the search pred
icate D according to Definition 4.33. In the previous section, the role of
the search order p has been taken over by the search list s. Therefore, the
general search tree Gp (Definition 4.27) translates into the following search
tree definition.

58 The sub-circuit recognizer

Vdd

Gnd

Figure 4.7: The schematics and circuit of a NOR template, introduced in
Figure 4.3 of Section 4.2.3. The internal net set is given by NI = {h}, and
the external net set is given by NE = {Vdd,In2,0ut,Gnd,Inl}.

Definition 4.35 Search Tree
For the main circuit vertex set V, the template circuit vertex set V and a
search list s, the Search Tree is a directed non-cyclic graph Gs (Vs, Es)
according to Definition 4.27. The set of vertices V8 is given by

k

Vs = u Vj. (4.23)
j=O

Vj is called the set of vertices at level j. Vo is defined by {0}, and 0 is the
root. The vertices at level j, j = 1, ... , k, are given by Vj = Vi. The edge
set Es is given by

k

Es=U U{(v,w)lwE{v}xV}.
j=O

(4.24)

Each vertex w E V8 at level j is associated with a function t/Jj = Sj • w. 0

4.3 The primary algorithm: backtracking 59

1: Vdd 2:p2 3:h

4:p1 5: ln2 6:0ut

S:Gnd 9: n1 10: ln1

Figure 4.8: The sub-circuits Glsi, j = 1, ... , 10 of the NOR tem
plate circuit (Figure 4. 7}, when the search list is given by s = sw
(Vdd, p2, h, pl, in2, out, n2, gnd, nl, inl). Apart from the internal net h,
each net is an external net. The new edges in Glsi with respect to Glsj-u
are drawn in bold lines. At the bottom of each graph, j and Vj are given.

60 The sub-circuit recognizer

Decomposition
The decomposition of D into set d = (d1, ... , dk) is described, starting
from the above definitions. Based on partial search lists Sj, j = 1, ... , k,
the decomposition will correspond to the sub-circuits Glsj of the template
circuit. Figure 4.8 shows a search list and the sub-circuits for the template
circuit of Figure 4.7. It shows that each proceeding vertex Vj introduces
new edges. Based on these new edges, we will associate with each search
tree level j a demand function dj : Yj ---+ {True, False}, that checks for a
candidate w1 E V the following properties.

• With regard to the labeled new edges between Vj and the elements of
Sj -1 (v1, ... v j -1), corresponding edges must be present between w j
and w1, ... , Wj -1· This part of dj is called the connectivity demand.
Figure 4.8 shows, per level j, the relevant edges of the template in
bold lines. For example, for j = 3, a candidate net W3 that matches
v3 = h should be connected to match w2 of v2 = p2, with an sd
labeled edge.

• The attributes A(Wj) must be equivalent to the attributes A(Vj), and
corresponding degree per class must be similar. Also for a component,
the types must be equal. For example, for a match w2 of v2 = p2, d2
checks whether type M 0 S, width = le- 6, and model = PTY P E.
For V3 = h, d3 checks whether W3 has exactly two sd connections,
since h E N I. This part of dj is called the local demand, since it is
independent of the search list order.

Therefore each function dj will be composed of a connectivity demand
function Fj and a local demand function Lvj . Also the relation to the
isomorphism predicate S is explained.

Definition 4.36 Local Demand Function
For each v E V, a Local Demand Function Lv: V---+ {True, False} has
the following definition for w V:

{

(A(v) A(w)) 1\ (T(v) T(w)) if v E C
Lv(w) = Vc E T: DEGREE(v,c) = DEGREE(w, c) if v E NI

Vc E T: DEGREE(v,c) s; DEGREE(w, c) if v ENE

D

For a template component v, the local demand function Lv checks equality
of attribute-name, attribute-value pairs and types of v with a component

4.3 The primary algorithm: backtracking 61

candidate w. For a net v EN and wEN, A(v) A(w) = T(v) = T(w)
0 by definition. With respect to isomorphism predicate S, this can be
used to check Conditions 4.3 and 4.4 of Section 4.2.3. For a net candidate
w, the local demand function checks the number of connections per class,
which is different for internal nets versus external nets. Since the number
of connections per component type is fixed, a component v E C and w E C
bavingT(v) = T(w) imply that DEGREE(v,c) = DEGREE(w,c) for any
class c. Therefore, Lv can be used to check Conditions 4.6 and 4. 7 (Section
4.2.3). When v E C and wEN, or v EN and wE C, Lv(w) =False.
In summary, each Lv can be used to check Conditions 4.6, 4.7, 4.3 and 4.4
of S for the given main circuit vertex. As will be shown next, the remaining
two Conditions 4.2 and 4.5 of S can be checked by the connectivity demand
functions.

Definition 4.37 Connectivity Demand Function
For each j 1, ... , k, a Connectivity Demand Function Fj : yi ---t {True,
False} is defined for a search tree vertex Wj = (w~, ... , wj) (see Definition
4.35) by:

if j 1
if 1 < j ::; k

Fj depends on the ordering of s. 0

Fj checks whether the new edges between Vj and Sj-I, as indicated in
Figure 4.8 have corresponding edges between Wj and Wj-I· Figure 4.9
illustrates the definition of Fj(Wj-1, Wj). Since components and nets are
treated equally, they are both drawn by bullets in the figure. Based on Lj
and Fj, the demand functions can now be defined.

Definition 4.38 Demand Function
For j = 1, ... , k a Demand Function dj : yi ---t {True, False} is defined
for a search tree vertex w j = (w1, ... , Wj) at level j by

0

When the backtracking method as defined in Definition 4.31 is applied with
the current decomposition d (d 1l ... , dk), the relation between Gs, dj,

62 The sub-circuit recognizer

....... -.................
·' .. ,.

•• Gl. '-
1 ~

! ' . .
' . . i
I .

i

F:
j

class 1 V class 3
j

Figure 4.9: Relation between the outlined restricted template graphs Gj-1,
Gj and connectivity demand function Fj. Both components and nets are
represented by small bullets, because they are treated equally.

Fj and S is as follows.

Let j E {1, ... , k} be a level in the search tree G8 .

For j = 1, the sub-circuit GJ81 of the template, consists of a single vertex v1.
No new connectivity is associated with the traversal from the root vertex 0
of the search tree to level 1 vertices, so F1 = True_function, and matches
of GJ81 should only satisfy Lv1 •

For j > 1, a unique path from root 0 to the vertex Wj-1 = (w1, ... , Wj-d

is traversed according to Definition 4.31 of the sub-tree of G8 , for which
all di(wi) True (i < j). In other words, Fi(wi) = Lv;(wi) = True
for i 1, ... ,j - 1, and every Wi E V is a corresponding candidate of
Vi. Hence Wj-1 E Dj-1· Let Gj-1 denote the sub-circuit GJ 8 i_1 of the
template. Let the function c/>j-b associated with Gj-b be equal to the pair
function •wj-1· Since Wi ft Wi-1 according to Definition 4.37, c/>j-1 is
one-to-one. Fi(wi) =True implies that the connectivity Condition 4.5 and
Condition 4.2 of S are met by c/>j-1· Since also all Lv; (wi) = True, c/>j-1 is an
isomorphism of the template sub-circuit Gj-1· In Figure 4.9, the dotted line
encircles on the left the connections between every v E Sj-l· On the right

4.3 The primary algorithm: backtracking 63

it also includes connections to Vj. The difference is represented in Fj. Fj

checks for a candidate Wj E V whether the corresponding connectivity per
terminal-class between Vj and its predecessors is present. In other words,
Fj checks the Conditions 4.2 and 4.5 of S related to the edges between Vj

and Sj-1·

We see that when for a Wj E Vj, LvJ = Fj = True, all conditions of S
are met with respect to Gj. This implies that t/>j sj•Wj is an isomorphism
of Gj. By using recursion, it follows that for j = k, tPk = sk•wk = s•w is an
isomorphism of the complete template G. This concludes the decomposition
of D into the given set of demands d = (d1, ... ,dk), composing of a local
demand functions Lv, for every v E V, and search list order dependent set
of connectivity functions Fj, j = 1, ... , k.

4.3.5 Search tree traversal

This section focusses on search tree traversal and efficiency. Two known
tree traversal methods that implement the backtracking method (Definition
4.31), called depth-first and breadth-first, are briefly introduced, to provide
a motivation for why depth-first has been selected as the most efficient
method. Next, the depth-first search algorithm will be described.

Figure 4.10: Depth-first and breadth-first tree traversal. Depth-first and
breadth-first order are respectively indicated by arabic numbers on the left
side and roman numbers on the right side of each point.

Breadth-first and depth-first traversal
Breadth-first and depth-first tree traversal are both shown in Figure 4.10.

64 The sub-circuit recognizer

When performing breadth-first search, the tree is traversed with "hori
zontal" preference, and for depth-first search, the tree is traversed with
"vertical" preference. Starting from the root (the top), the preferred di
rection is advanced as far as possible, then the non-preferred direction is
advanced one step and next the preferred direction is tried again, see also
Figure 4.10. The traversal algorithm efficiency depends on the chosen data
structure. When the graph is represented as adjacency lists (see Section
4.2.4), the traversal algorithm is linear in the size of the search tree for
both methods[Sedge88]. However, depth-search and breadth-search differ
in their storage use. Eventually after the traversal, every solution (match)
of Dk given by a search tree vertex wk = (w1, ... , wk) must have been
stored. Each vertex Wk represents the unique path 0, WI, .•• , Wk connect
ing the root with the vertex.

Breadth-first traversal, traverses level by level. At level j, 0 s j < k, all
reached vertices must be remembered to know which paths should be con
tinued at the next level j + 1. Therefore, for each level j, the partial solution
set Vj of Dj must be stored, including the vertices that will eventually not
lead to a solution at level k.

For depth-first traversal, one path is considered at a time and advanced
until it leads either to a match or it cannot be completed. Only one vertex,
one partial solution, need be stored, together with the previously found
matches.

Therefore, depth-first traversal is to be favored over breadth-first be
cause it uses storage more efficiently, which also results in better run times.
Although the argument suggests that depth-first is always better, some
times breadth-first traversal is preferred for other backtracking problems.
For instance, for the shortest path problem, the breadth-first method is
preferred.

Depth-first search algorithm
In Figure 4.11 the pseudo-code for the recursive depth-first search algorithm
is shown. STORE_PATH saves a full match satisfying dk (d1, ... , dk)
into the global data structure. The function FIND_CANDIDATE_SET
returns a set of candidates for which each element w, dj+l (w j, w) is .True,
i.e., it computes Yj+I (Equation 4.21). It is fully explained in the next
section. MARK and UNMARK allow a quick check at the proceeding
recursion levels to prevent candidates from occurring more than once in a
partial match. The recursion depth is obviously limited to k !VI, and is

4.3 The primary algorithm: backtracking

Procedure DEPTH_FIRST _5EARCH (j)

if j = k
then STORE_FATH(wk)
else for all cand E FIND_CANDIDATE_SET(dj+l, Wj)

Wj+l:=cand
MARK(cand)
DEPTH..FIRST _SEARCH(j+ 1)
UNMARK(cand)

endfor
endif

endproc

Figure 4.11: The depth-first search algorithm.

independent from the main circuit G.

4.3.6 Finding a candidate set for a demand

65

The previous section described the depth-first search algorithm for travers
ing the search tree, based on the FIND_CANDIDATE_SET algorithm, that
implements the computation of the candidate set YHl (see Equation 4.21). ·
This section describes how FIND_CANDIDATE_SET can be computed ef
ficiently. In this section the computational complexity will also be given,
followed by an enhancement for a special case that often occurs.

FIND_CANDIDATE_SET
In the depth-first search algorithm of Figure 4.11,
FIND_CANDIDATE_SET(dj+l,wj) must return all vertices of the main cir
cuit for which the demand dj+l holds, after arriving at vertex Wj E 'Dj, for
which the corresponding search tree path 0, ... , Wj has been traversed. For
the sub-circuit recognition probl<?m YpH1 V, 1 ::; j < k, (see Definition
4.32), so the actual candidate set Yj+l is given by

(4.25)

66 The sub-circuit recognizer

A brute-force direct implementation of the above definition evaluates
dj+l(Wj,w) for every wE V, hence leading to !VI evaluations of dj+l at
every traversed vertex of the search tree. For reasonably sized circuits, this
implementation becomes impracticable, so FIND_CANDIDATE_SET will
be defined in a different way.

Template circuit

Main circuit

I
I

I
I

<P :3
I
I
I
I
I

' I
I

•
I

' ' ' ' '

.
•
I
I

~3
I

I
I

I
I

I

/

' '-' ' ' '
.

\
\

' \
I
I
\

<j>'.
~

I

' '

I
I

I
I

I

' '

Figure 4.12: Example of FIND_CANDIDATE_SET. Both components and
nets are drawn by bullets. The multi-sets Adj(wi, classi), i E {1, 2, 3},
enumerate the vertices that are connected via edges to Wi, labeled classi.
Candidates matching V4 must be part of the inter·section of the multi-sets
Adj(wi,classi) (i = 1,2,3), to have the required connections to all three
vertices.

4.3 The primary algorithm: backtracking 67

An example
To introduce a better approach to compute Yj+b consider the following
typical example (see Figure 4.12). In the example, there are no multi
edges. Suppose that for j = 3, the depth-first search algorithm has arrived
at the partial match w3 = (wt,w2,w3) for s3 = (v1,v2,v3). Obviously,
for i 1, 2, 3, Wi = rp3(Vt)· Given this context, we want to compute the
set of candidates Y4 for v4, satisfying d4 for each candidate. First, we will
consider connectivity. Let :.F4, called the tentative candidates, be the set
of candidates that match the connectivity demand function F4. Since v4 is
connected to v1, v2, V3, with edges labeled class1, class2, class3, each element
w E :.F4 should be connected to Wt, w2, w3, with corresponding labeled
edges. According to the definition of the adjacency function of Section
4.2.4, Equation 4.25, each Adj(wi, classi) (i = 1, 2, 3) enumerates the multi
set of neighbor vertices of Wi, with label classi. Therefore, for i = 1, 2, 3,
wE Adj(wi,classi)· Hence :.F4 c (Adj(w~,class1) n Adj(w2,class2) n
Adj(w3,class3)) . Each element w of the right-hand side that is not one
of Wt,W2,w3, satisfies the connectivity demand, i.e., F4(w3,w) =True.
When also Lv4 (w) =True, d4(w3,w) =True. Therefore,

:.F4 = n Adj(rj>(vi), classi) \ W3 (4.26)
i=1,2,3

and
(4.27)

and
FIND_CANDIDATE_SET(d4, w3) = Y4· (4.28)

This computation utilizes local information of the template graph, the main
graph and the depth-search procedure, and the size of Vis of no concern.

General case
With the previous example in mind, the FIND_CANDIDATE_SET algo
rithm will be described for the general case. For the general case, the depth
first search algorithm has arrived at a partial match w j = (WI, ... , Wj) of
Sj, given by wi = r/>j(vi) (i = 1, ... ,j). Now it is known which elements
of Wj have to be connected to any unknown vertex Wj+I that matches
Vj+I· For Figure 4.12, the vertices { v1, v2, v3} are connected to v4, and
the corresponding matching vertices {WI, w2, w3} have to be connected to
any candidate w4 • In the general case, multi-edges are allowed, so the
multiplicity must be taken into account as well.

68 The sub-circuit recognizer

Definition 4.39 Template Neighbor Function
For j E {1, ... , k-1}, for each i E {1, ... ,j}, a Template Neighbor Function
bi : V 28 ixrxAV+ is defined by

bi(v) = {(u, c, m) I u E si, c E 'Y(v) : m J.lu(Adj(v, class)) Am> 0}.

0

Each template neighbor function bi enumerates for a template vertex argu
ment v a set of (partial search list vertex, label, multiplicity) triples that
represents the labeled multi-edges between v and Si. For example for Figure
4.12, b3(v4) {(v1,classl, 1), (v2,class2, 1), (v3,class3, 1) }.

Definition 4.40 Main Circuit Neighbor Set
For a level j E {1, ... , k- 1}, a search tree vertex Wj (w1, ... , wj) E Vj
(see Definition 4.31), a function cPj = Sj • 'Wj, the Main Circuit Neighbor
Set is defined by

Pj = {(ifJj(u), c, m) I (u, c, m) E bj(VJ+l)}.

The template neighbor function bj is defined by Definition 4.39. 0

Pj is the corresponding main circuit neighbor set of bj(Vj+I) describing the
required edges of a candidate. Pj is a set of (main-circuit vertex, label, mul
tiplicity) triples. For each triple (w, c, m) E Pj, any candidate Wj+l should
be adjacent tow via exactly m edges labeled with class c. For example in
Figure 4.12, P4 { (w1,class1, 1), (w2,class2, 1), (w3,class3, 1) }. This is
defined as follows.

Definition 4.41 Tentative Candidate Set
For a level j E {1, ... , k- 1}, a search tree vertex Wj E Vj and the main .
circuit neighbor set Pj (Definition 4.40), the Tentative Candidate Set Fj+l,
a subset of V, is defined by

n Adj(u,c)\wi i\i(u,c,m) E Pj: m ttw(Adj(u,c))}.
(u,c,m)EPj

0

The m ftw (Adj (u, c) part of Definition 4.41 checks the multiplicity of a
candidate. Fj+l is the true-set of Fj+1, restricted to {wj} x V. For Figure
4.12, the tentative candidates for F4 are given by

n Adj(ifJ(vi), classi, 1) \ W3,

i=l,2,3

4.3 The primary algorithm: backtracking 69

since it contains no multi-edges. Only LvH1 is left to be evaluated for
each vertex in Fj+l to become a member of Vj+b so we arrive at. a new
equivalent definition of FIND_CANDIDATE_SET.

Definition 4.42 FIND_CANDIDATKSET
For a level j E { 1, ... , k - 1}, a search tree vertex w j E V j, the tentative
candidate set Fj+l (Definition 4.41), the algorithm for
FIND_CANDIDATEJ3ET is defined by

FIND_CANDIDATEJ3ET(dj+b wj) ={wE Fj+l I (w)}.

0

The computational complexity
The computation of FIND_CANDIDATE_SET(dj+l) as described above
takes IFj+ll evaluations of LvJ+ 1 • cost of computing the triples Pj for
Fj+l depends only on the local graph structure of the neighbors of Wj+I,

and the efficiency of the intersection operation, because the computation
of the template neighbor functions bj (Vj+I) only has to be done once for
each level j, and computing fj(v) for v E Sj has complexity 0(1). Since
the candidates Wj are marked by the depth-first search procedure (Figure
4.11), they are efficiently omitted.

The relevant Adj (w, class) are directly accessible in the circuit data
structure (Section 4.2.4, Equation 4.25). The order of the
FIND_CANDIDATE_SET algorithm is therefore given by

0(L IAdj(p)l) 0(L DEGREE(p)), (4.29)
(u,c,m)EPj (u,c,m)EPj

i.e., the number of edges connected to the neighbors of vi's matches. This
result is much better than the direct FIND_CANDIDATE_SET implemen
tation mentioned in the beginning of this section. For Figure 4.12, the
algorithm is only 0 (I Adj (VI, class1) I + I Adj (v2, class2) I + I Adj (v3, class3) I),
and lVI is of no concern.

An enhancement
A simple but effective improvement is described next. It prevents the ex
pensive computation of intersections of large sets in the formula of Fj+l
where possible.
Suppose that for a certain FIND_CANDIDATEJ3ET computation, a set of

70

- _.,. --..
1 \c2 •

c1 ~ \ •
- -II()

a

Circuit Direct
method

The sub-circuit recognizer

Detour
method

Figure 4.13: Example of an improvement of FIND_CANDIDATE_8ET,
with Adj(wi,cl) = 81 ={a} and Adj(wi,cl) = 81, 1811 = 100. It shows
that by using a detour, the fact that {a} = 81 n 82 can more efficiently be
computed by checking whether w2 E Adj(a, c2), when IAdj(w2, c2)1 is large.

candidates Fj+l is determined by two adjacency lists 81 = Adj(w1, cl) and
82 = Adj(w2,c2), as shown in Figure 4.13. Suppose that 81 ={a} and
l82l = 100. The described method for FIND_CANDIDATE_SET would
take the intersection of 81 and 82, a computation of on average 50 steps.
This seems inefficient, knowing that only one vertex a might survive. There
fore, FIND_CANDIDATE_SET is further improved by making a detour
in this case. Instead of intersecting 8 1 and 82 , it simply checks whether
w2 E Adj(a,c2). This is a computation of IAdj(a,c2)l = 1 step for the
example. The detour is only applied when for some i < j : l8il << l8il·
In this way, the typical case order FIND_CANDIDATE_SET is strongly
improved.
For example, when using the recognition algorithm for a circuit at the tran
sistor level, sets that are nearly always bypassed via this detour, are the
adjacency sets of ground and supply nets of the source-drain class, because
their degrees are large. On the other hand, the degrees of the gate connec
tions of these nets are usually low, so these sets are hardly ever bypassed.

4.3 The primary algorithm: backtracking 71

4.3.7 The ordering of a search list

The previous sections describe the decomposition of the sub-circuit recog
nition problem into a set of demands for a given search list and efficient
backtracking for a given set of demands. This section highlights issues
concerning the best ordering method for demand set d. We have argued
in Section 4.3.2, that the size of the traversed part of the search tree is
strongly influenced by the chosen permutation called the search order p.
For the sub-circuit recognition problem, the search order p has been trans
formed into the order of the search list sk. Indeed, in the actual sub-circuit
recognition implementation, the search list ordering method has been the
most decisive part for the efficiency. The outcome of the ordering method
called search list generation, is a prefix connected ordering of the tern
plate vertices V (see Definition 4.34, Section 4.3.4), the actual search list
sk = (v1, ... , vk), k =!VI, which directly corresponds to the demand func
tion set d as described in Section 4.3.4. In general, there are k! orderings
of V. For a typical template circuit, considering every order is therefore
impracticable.

The aim of the ordering is to reduce the traversal size of the correspond
ing search tree (see Definition 4.35, Definition 4.30). By placing strongly
selective demands at the beginning of the search list, and the barely se
lective demands towards the end, the traversed part of the search tree will
start off narrow, and most branches deeper in the tree are likely to lead to a
recognized instance of the template. For algorithms found in the literature,
the search list is either determined by the user, or based on characteristics
of the template circuit G only. The first option requires a very experi
enced user, while the later may lead to an algorithm that works for one
main circuit and fails for another. In our approach, the search list depends
on both the template G and the main circuit G. This is realized by es
timating heuristically the selectivity of each demand, based on G and G.
The selectivity of a demand will be formalized as the branching factor of
a coordinate, i.e., a vertex. A high branching factor corresponds to low
selectivity. The search list is therefore ordered from low branching factor
values to high branching factor values.

The branching factor, an example
To introduce the branching factor, we reconsider the problem of Figure 4.5
and Figure 4.6. Suppose we must determine the best search order p for
this problem. In analogy to assigning branching factors to vertices, we will

72 The sub-circuit recognizer

assign branching factor values to the variables Yl, y2, Y3· Recall that for
every search order p, the search tree Gp(Vp, Ep) (see Definition 4.35) is
interpreted differently, and thus the traversal differs. The branching factors
Ul('t), (i = 1, 2, 3) are equal to the minimum traversal size of any search
tree, starting from level 0, when Pl = i. In order to compute U1, each
variable Yi is considered at the first level, and the other two are considered
at the next level. For k = 3, this leads to 3! = 6 possibilities. However,
since the problem is symmetrical w;r.t. Y1 and y2, Figure 4.5 shows that
U1(3) = 6 and Figure 4.6 shows that U1(1) = U1(2) ·= 8. Therefore, a
decision based on Y3 at level 1 is preferred. After having selected PI = 3,
our next concern is P2· The branching factors U2(i), (i = 1, 2) are equal
to the number of traversed edges of the search tree, starting from level
1, when P2 i, assuming Pl 3. Figure 4.6 shows that U2(2)=5, and
from the symmetry between Yl and Y2 follows that U2(1)=5. Indeed, the
sylllmetry indicated directly that the choice for P2 leads to the same number
of traversed edges. After having chosen P2 2 at random, there is only one
alternative for p3, P3 = 1, making the evaluation of branching factor U3(2)
superfluous. So for the example, p = (3, 2, 1) is the final choice.

The example that has just been described, shows that every search tree
should be traversed to determine an efficient search order. This method
obviously puts the cart before the horse, since we want to use the search
order to select a single search tree with a small traversal sub-tree. There
fore, one must rely on estimates of the branching factors that necessitate
neither search tree enumeration nor search tree traversal.

For the given example, one may for example approximate the branching
factor ul (i), i = 1, 2, 3, by the number of traversed edges when going from
level 0 to 1 only. Let an approximation of U1 (j) be denoted by U1 (j).
Now U1 (3) = 1, and U1 (1) = U1 (2) = 2 (see first level of Figure 4.5 and
Figure 4.6). This leads to the same conclusion: PI = 3, and from the Yl> Y2
symmetry follows that p = (3, 2, 1) isa good choice, without traversing any
search tree explicitly.

The branching factor functions
After informally having introduced the branching factor, the branching
factor function will now be defined as follows.

Definition 4.43 Branching Factor Function
For a main circuit G, a template circuit G, the search predicate D (Def
inition 4.33), a partial search order Sj-1 (v1, ... ,vj-1), j E {1, ... ,k}

4.3 The primary algorithm: backtracking 73

which is a prefix connected subset of V, the Branching Factor Function
Uj : V \ --+ IN is defined for a vertex v as

Uj(v) = min . (IGsi-IGslj),
SE{Sj-d x {v}xvk-J,

s is prefix connected

i.e., the minimum traversal size at levels j, ... , k, when Vj

tree G8 having Sj = (VI, ..• , , v).
v in any search

0

The domain of the function is the set of vertices excluding the vertices of
the partial search order. In this definition, the number IGslj is constant,
since is constant. When Uj(P) > Uj(q) for a given Sj-1 and for some
p, q E V \ Sj-b a search tree G8 o, sOj = (s1, ... , Sj-1, q) with a smaller
traversal size exists than the traversal size of any search tree G8 1 with
partial search order slj (s1, ... , Sj -I, p). In other words, the demand
function dj associated with template vertex q is more selective.

To compute a branching factor function value Uj (v) for some vertex at
some level j, every search tree should be traversed. Since the computation
is impracticable, approximate functions Uj : V \ --+ JRU{O} of the
branching factor functions are used to efficiently find a search order with
a search tree having a small traversal size. When Uj(P) > Uj(q), it should
imply that Uj(P) > Uj(q), so only the relative function values of Uj should
resemble Uj, the function values of a Uj should maintain the order of Uj. In
the rest of this thesis, the notion branching factor will refer to Uj, i.e., an
approximation of Uj. The co-domain of Uj, the non-negative real numbers,
is an extension of the co-domain of Uj to allow real number approximations
of natural numbers.

The example and notion of branching factor that were shown above
suggest a recursive approach to compute the search list s = sk. Therefore,
in the following section, the definition of Ut, called the initial branching
factor estimate, is described first to determine v1, including an efficient
computation method. In the next section, the rest of the search list is
determined during a recursive traversal of the template circuit, by defining
the branching factors Uj, j 2, ... , k along the way. It is also shown how
these can be computed efficiently. At every level j, the vertex having lowest
branching factor is selected as Vj. The approximations of branching factors
used are crucial for the eventual recognition algorithm and are therefore
explained in detail, including supportive examples.

7 4 The sub-circuit recognizer

4.3.8 The first search list element

The ordering of a search list is guided by a set of functions called branching
factor estimates, introduced in the last section. The subject of this section
is the initial branching factor. An efficient computation method is included,
based on equivalence sets. The vertex having the minimum initial branching
factor is considered as having the most selective demand di, and is therefore
selected to be VI. Finally, an improvement of the initial branching factor
is given, called the clock heuristic. ,

The initial branching factor UI

According to the definition of the first demand function di (Definition 4.38),
di = Lv1 • Therefore, we will consider the true-set function of the local

demand functions Lv, v E V, £: V---+ 2 V.

Definition 4.44 Initial Candidates Function
For a main circuit G, template circuit G, the local demand functions Lv for
v E V defined according to Definition 4.36, the Initial Candidates Function
£ : V ---+ 2 V is defined for a template vertex v by

£ (V) = { W E V I Lv (W) } .

D

C(v) assigns the elements ofV to a template vertex v that satisfy Lv. Since
l£(v)l equals the number of traversed edges when going from level 0 to 1,
assuming VI = v, a reasonable estimate for UI is

(4.30)

Whether this function can be computed efficiently is addressed next.

An efficient computation for UI

The computation of UI is dominated by the initial candidates function £.
The computation of£ takes O(IVI * lVI) operations when implemented as
evaluating every Lv (v E V) for every w E V, and assuming that Lv(w)
can be evaluated in 0(1) operations. However, as will described next, the
computation can be done much more efficiently. According to Definition
4.36, two local demand functions Lp and Lq represent the same relation,
when the attribute function A, the type function T and the degree function
for every class of p and q are equal. In that case, £(p) = C(q), and the

4.3 The primary algorithm: backtracking 75

computation of U1 (p) makes computing U1 (q) superfluous. According to
Definition 4.3, Section 4.2.1, the quotient set VIC is a partition of V into
equivalence sets. The vertices in an equivalence set have equal local demand
functions Lv. Hence only one computation of C(v) per set of the quotient
set VIC is necessary.

According to Definition 4.36, every Lv function, v E V is uniquely
defined by the 3-tuple (T(v), A(v), { (c, DEGREE(v, c)) I c E 7(v) }).
Therefore, by computing every 3-tuple per v E V, the quotient set VIC
can be computed without explicitly evaluating any C(w). This results in
O(IGI) O(IVI + lEI) operations to compute VI C.

To compute U1, we must compute one C(v) explicitly per set of the
quotient set VI C. Since for electronic circuits many similar constructions
are used in a design, the number of equivalence sets in VIC is small, typ
ically O(log lVI) or even less. For instance, a CMOS template of an adder
will only contain PMOS and NMOS transistors, with only a few variations
in width and length attributes. The number of different degree values for
nets is also limited, because of fan-in and fan-out restrictions.

In total, the computation of U1, involves computing VI£, and for each
set we must compute one £(v). Therefore, the number of operations is
O(IGI) + O(IV I Cl * lVI). By assuming that IGI < lVI and O(IV I Cl) Ri

O(log lVI), this reduces to

O(U1) Ri O(log lVI * lVI), (4.31)

which is much better than O(IVI * lVI). For the implemented recognition
algorithm, this computation forms a major part of the run time, so the
computational speedup by using equivalence sets is of great importance.

The search list initialization algorithm
The algorithm that initializes the search list generation process and com
putes the initial branching factor U1 is given in Figure 4.14. It computes a
partitioning of V over equivalence sets, VI£, the initial branching factors
U1(v), the 3-tuple per vertex, the start vertex v1 and its candidates Yl·
In the first for-loop the equivalence sets with respect to the initial candi
dates C, being the true-set of Lv, are computed. The 3-tuples associating
a vertex to its local demand Lv are also computed.
In the second for-loop, the candidates for any vertex of an equivalent set
are computed. The function ANY applied to a set returns one item of the
set. The first vertex of the search list, v1 is set to a vertex having a mini
mum branching factor U1. When U1 (vi) = 0 for this vertex, the number of

76 The sub-circuit recognizer

Procedure INITIALIZE_SEARCH_LIST _GENERATION

for all v E V do /* Compute VIC *I

3_tuple[v] := (T(v), A(v), {(c, DEGREE(v,c)) IcE l'(v)})
eqset[3_tltple[v]] := eqset[3..tuple[v]] U { v}

endfor

Umin := +oo

for all set E eqset do /* Compute Y = C(v) and U1
per equivalence set and ... *I

v :=ANY(set)
L := Lv /* assign a function *I
Y :={wE VIL(w)}
u1 !YI

if U1 < Umin

then
Umin U1
VI V

Y1 :=Y
endif

endfor

/* ... select v1 and Y1 in passing. *I

if U1 0 then exit("No matches")

end procedure

Figure 4.14: Initialization for search list generation.

4.3 The primary algorithm: backtracking 77

possible matches is zero, and the recognition process exits. The actual set
of candidates Y1 for v1, .C(v1), is also stored for later use in the depth-first
search process.

The clock heuristic
An improvement for the U1 estimate, called the clock heuristic, is now
described. The improvement was introduced as a result of inefficient recog
nition, that was caused by a circuits clock net.

Although Equation 4.30 seems a natural choice for estimating the rel
ative size of the traversal sub-tree, it ignores the different traversal sizes
of the search trees as a result of connectivity permutations, as shown in
Figure 4.15. When the template vertex VI is selected for s1 in this figure,
both the main circuit vertices WI and w2 are a matching candidate. In
the figure, only the indices of the main circuit vertices are indicated. The
traversal size of search tree sprouting from w1 is 3 times larger (6 : 2) than
for w2. This directly relates to the permutation of class x connections

between v1, v2 and v~, v3. Starting from w1, (~) = 3 combinations

are possible, i.e., (w3, w4), (w3, w5), (w4, w5) for (v2, v3). Starting from w2,

only (~) = 1 continuation is possible, i.e., (w6, W7) for (v2, v3). Since

different labels (classes) are independent, the branching effect is multiplied
for different classes. Therefore, each candidate in V is weighted according
to the product of the number of possible connections for each class in the
improved definition for the initial branching factor function:

U () = ""' IT (DEGREE(w,c)) 1 v ~) DEGREE(v,c)
wE.C(v

(4.32)

For components and internal nets, the weight is equal to 1, since the degree

per class, d, in template and main circuit must be the same and (~) = 1.

Therefore, the weight factor only enhances the branching factor for external
net vertices.

In the algorithm of Figure 4.14, the addition of the clock heuristic is
simple. Only the right-hand side of the assignment of U1 should be replaced
by the right-hand side of Equation 4.32. The efficiency of the algorithm is
hardly affected by the improvement.

78 The sub-circuit recognizer

class x
~

Template circuit (partly) Main circuit (partly)

27

1~4 1~5 143 145 1~3 1~4 2~7 2~6
I 1 I I 1 I I

Traversed part of a search tree (partly)

Figure 4.15: The clock heuristic factor. Part of the traversed search tree
is shown for S3 = (v~, v2, V3). The numbers in the tree denote the main
circuit vertices, i.e., 13 denotes (w1,w3). When S3 (v1,v3,v2), a similar
partial tree would result. Since the traversed part sprouting from w1 is

(32·) 3 times larger than the traversed part from w2, the contribution

of candidate WI to the initial branching factor U1 should be 3 times larger
than the contribution of candidate w2.

4.3 The primary algorithm: backtracking 79

4.3.9 Ordering the rest of the search list

Starting from v1, the rest of the search list is determined by traversing
recursively the rest of template circuit. At every recursion level j, the
next, as yet unselected, vertex having minimum branching factor Uj+l is
selected. The focus of this section is on the definition of the branching
factors Uj+l· An efficient algorithm computing the factors is described
in the next section.

After defining the induction step for finding the next in global
terms, we will describe two estimation heuristics, called the search list con
nection count heuristic, and the parallel heuristic. Since the heuristics are
essential for the efficiency of the recognition algorithm, they are explained
in detaiL Based on these heuristics and on the the already defined initial
branching factors U1 (v), the branching factors Ui+l (v) definition will be
giVen.

The induction step
This part describes the global scheme of the recursive search list generation,
based on the selection of VI as described in the previous section. The
induction step entails finding a suitable Vj+l· Candidates for selection are
defined as follows.

Definition 4.45 Border Set
For a template circuit G, for j E {1, ... , k -1}, a partial search list Sj, the
Border Set Bj, Bj C V is defined by

Bj = U U (Adj(v,c) \ Sj).

'VESJ cE')'(V)

The adjacency function Adj of a circuit is defined in Definition 4.25. The
present classes function function "' of a circuit is defined in Definition 4.24.

0

The border set Bj enumerates all neighbor vertices adjacent to the vertices
of the partial search list Sj. Since every v E s must be connected to at least
one of its predecessors, Vj+l must be a member of Bj.

Suppose the definition for the branching factor function Uj+l : Bj ~

JR+ U {0} is given. Since Uj+l estimates the minimum traversal size for
level j + 1, ... , k. the induction step computes Vj+l by selecting an element
of Bj having minimum Uj+l·

80 The sub-circuit recognizer

The rest of this section concerns the actual definition of the branching
factors Uj+b j 1, ... , k 1. Two estimation heuristics form the basis
of Uj+l, called the search list connection count heuristic and the parallel
heuristic. They are described first.

The search list connection count heuristic
In the backtracking algorithm, the FIND_CANDIDATE_SET call mainly
computes intersections of adjacency sets of the main circuit 'set Pj, (see
Section 4.3.6, Definitions 4.40, 4.42). Since the intersection of two sets is
in general smaller than the original sets, the number of intersected sets
has a negative correlation with the size of the resulting set. The number
of intersected sets is equal to the number of pairs in Pj. So statistically
one may assume that the more elements in Pj, the less branching may be
expected. However, Pj itself is unknown, since this heuristic is applied
during the determination of the search list, i.e., before the backtracking
starts. This can be solved since IPil = lbj(Vj+I)! by definition (Definition
4.39), so the number of connections to Sj for a vertex v, called the search
list connection count, is equal to lbj(v)!.

The parallel heuristic
A second estimation heuristic is called the parallel heuristic. For this heuris
tic, the border set Bj (Definition 4.45) is partitioned into sets, called par
allel sets. A parallel set has the property that the elements in a parallel
set, being a member of Bj are not only candidate for Vj+l, but all lead to
the same demand function is similar to the partitioning V \ £
of the previous section, in which each set also contained vertices with equal
demand function d1. Since two vertices in a parallel set lead to the same
demand function, they have equal local demand functions, and they have
equal connectivity to Sj (see Definitions 4.38, 4.36, 4.37). This explains
why the sets are called parallel sets, since they appear to be parallel for the
neighbors in the partial search list Sj. The following example introduces
both the notion of a parallel set, and the effect for traversed sub-tree of a
search tree.

Example
Consider the example of Figure 4.16, showing a template circuit, a main
circuit, and the traversed sub-trees of two search trees corresponding to
two search list orders. The identification of the search tree vertices are

4.3 The primary algorithm: backtracking 81

c c

d D

Template circuit Main circuit

(W,A,B,C,D)

w w

Order v abc d

D

A A

B

c

(W,D,A,B,C)

Order v dab c

Figure 4.16: Example showing the influence of the parallel heuristic. At
the bottom, the traversed part of the search trees are shown for two search
orders. The two bold lines correspond to the resulting match. The second
search list needs less branching tq find the match.

82 The sub-circuit recognizer

only given explicitly for the equivalent solutions (W, A, B, C, D) and (W,
D, A, B, C). The vertices are equal to the names enumerated along the
paths of search tree. Suppose the search list for the template drawn at
the top left-hand side is ordered (v, a, b, c, d). Starting from v mapped
toW, the search tree will grow rapidly during the backtracking process as
shown on the bottom left-hand side, since all v~rtices A,B,C are equally
acceptable, although in the end only one branch will result in a match (W,
A, B, C, D). Coming from W, the vertices A,B,C are not distinguishable,
since they are all connected in parallel. Therefore, the branching size is
equal to 3!, the factorial of the number of parallel neighbors (a,b,c) of v.
Suppose the search list is ordered (v, d, a, b, c), as is drawn in Figure
4.16 (right-hand bottom). Starting from v, the match (W, D, A, B, C)
is found without superfluous branching, because after having selected d, c
has different connections to s2 than a and b, and will therefore not lead
to parallel branching. The aim of the parallel heuristic is therefore, to
select non-parallel neighbors of the selected partial search list Sj first, to
omit branching caused by parallel neighbors. For the current example, the
parallel heuristic should lead to the second search list.

Definition of the parallel heuristic
With this example in mind, the parallel heuristic will be defined for a
general case. The general definition that will be given is applied again to
the example of Figure 4.16. We want to partition the border set elements
Bj of Sj into sets of vertices leading to equal demand functions dj+l, to
be able to count the number of parallel neighbors. In Section 4.3.6, we
have seen that connectivity demand part of dj+t, Fj+b is determined by
the template neighbor function call bj(vj+l) (Definition 4.39, 4.40, 4.41),
enumerating the relevant labeled (multi-)edges between Vj+ 1 and Sj. Recall
the definitions of the search tree vertices \lj Vi (Section 4.3.4). Since
Vj+I has not yet been chosen, dj+l (see Definition 4.38), is not yet defined.
Therefore, we define proto-demand functions as follows.

Definition 4.46 Proto-demand Function
For a main circuit G, a template circuit G with external net set N E, for
a j E {1, ... ,k 1}, a partial search list Sj, a vertex v E Bj, the Proto
demand function d(j+l,v) : Vi {True, False} is defined to be equal to
the function dj+b when Vj+l v. 0

4.3 The primary algorithm: backtracking 83

The definition of a demand function dj+l is determined by the functions
Lv and Fj+l, see Definitions 4.36, 4.37 .. Lv is determined by the 3-tuple

(T(v), A(v), { (c, DEGREE(v, c)) I c E 'Y(v) }),

as described in the previous section. The definition of Fj+l is determined by
the template neighbor function call bj(v), Definition 4.39, which enumerates
the relevant labeled (multi-)edges between v and Sj. Therefore, a function
d(j+I,v)' is completely determined by the 3-tuple of Lv and bj(v).

Definition 4.4 7 Parallel Function
Let a main circuit G, a template circuit G with external net set N E,
a j E {1, ... , k - 1 }, a partial search list Sj be given. Let the true-set

J+l
function Dj+l : Bj -+ 2 V assign the true-set of d(i+l,v) to DJ+I(v) for a
vertex v E Bj, i.e., the set of all search tree vertices at level j + 1 satisfying
d(j+l,v)· The quotient set BjiDj+l partitions Bj into sets of equal d(j+l,v)

functions (see Section 4.2.1). The canonical function Parj : Bj-+ BjiDJ+l,
called the Parallel Function, is defined by

0

In analogy to the quotient set VI£ (Section 4.3. 7) partitions V into sets of
vertices having equivalent local demand functions L,, Parj assigns to each
border set element v a subset of the border set where the elements have
equivalent proto-demand functions.

For a vertex v E Bj, !Parj(v)l indicates the number of indistinguishable
vertices, with respect to d(j+I,v)· Therefore, the higher !Par1(v)!, the larger
the traversal size that may be expected.

Example reviewed
Figure 4.16 illustrates the above definitions. In Figure 4.16, the initial par
tial search list s1 = (v) and B1 = {a, b, c, d}. The template neighbor func
tion is given by b1 (a) = b1(b) b1 (c) = {(v, Ct, 1)} and b1 (d) = {(v, c2, 1)}.
The parallel set functions are given by Par1(a) Par1(b) Par1(c)
{a,b,c} and Par1(d) {d}. The template vertices a,b,c are connected in
parallel to v, hence B1 I Dz = { {a, b, c}, { d}}. With the parallel heuristic, for
the first induction step to compute vz, it is noted that IPar1(d)! < !Par1 (x)l
for x = a, b, c, hence selection sz = (v, d) is made.

84 The sub-circuit recognizer

At this point, B2 = {a,b,c} and B2/83 = {{b,c},{a}}. Vertex a is not
equivalent to b and c, since it is also connected to v2 d. In the next
induction step, we compute v3. Now !Par2(a)! < !Par2(x)! for x = b, c,
and 83 = (v, d, a).
Repeating this process twice more results in ss = (v, d, a, b, c). On the
left side of Figure 4.16 we see that this complete search order prevents
branching due to temporal parallelism.

The branching factor function estimates
After having defined several estimation parameters, we will now define the
branching factor functions Uj+l· From the discussion so far, the following
conclusions can be drawn. For v E Bj, the branching factors Uj+l (v) should
be increased when the initial branching factor ul (v) is high, and when
the number of vertices in the associated parallel set, !Parj(v)!, is large.
The branching factors Uj+l (v) should be decreased when the number of
connections to predecessors, lbj (v) I, is large. The following definition agrees
with these requirements.

Definition 4.48 Branching Factor Estimate
Let a main circuit G, a template circuit G with external net set NE, a
j E {1, ... , k- 1 }, a partial search list Sj be given. The template neighbor
function bj is defined according to Definition 4.39, the parallel function
Parj is defined according to Definition 4.47, the initial branching estimate
U1 is defined according to Equation 4.32. The Branching Factor Estimate
Uj+l : Bj -t JR+ U {0} is defined for each border set vertex as

U·
1

v = { UI/!bj(v)! if !Parj(v)! = 1
J+ () U1 * !Parj(v)!! if !Parj(v)! > 1

0

The following section describes the algorithm to generate the search list.
It will be shown that despite their complex definitions, the factors lbj(v)l
and !Parj(v)! can be computed efficiently.

4.3.10 The iterative search list generation algorithm

This section describes in more detail how the rest of the search list 1s
ordered according to the description of Section 4.3.9, and focusses on an
efficient implementation to compute the branching factor functions Uj+1 ,

j = 1, ... , k - 1. After the ordering algorithm is described the special case
of template vertices having only one initial candidate is briefly explained.

4.3 The primary algorithm: backtracking 85

Introduction
After having selected 81 (vi) according to the algorithm in Figure 4.14,
Section 4.3.8, the rest of the search list can be generated in a for-loop,
j 1, ... , k 1, whereby each iteration produces the next element of the
search list, Vj+b and its demand function dj+l· Before selecting the next
vertex Vj+I and dj+b the information needed to compute the required
branching factor estimate Uj+l (see Definition 4.48), the functions bj (see
Definition 4.39) and Parj (see Definition 4.47) are computed with respect
to the current 8j.

When describing the initialization of the search list generation (Section
4.3.8), we have shown that the quotient set V /Cis efficiently computable by
using selection based on the 3~tuple (T(v), A(v), { (c, DEGREE(v, c)) IcE
1(v)}) per v E V, without explicitly evaluating any C(w). Likewise, the
quotient set Bj/6j+l (see Definition 4.47), and thus Parj, can be computed
efficiently by selecting on a 4~tuple_j, consisting of bj (v) and the (already
computed) 3~tuple, per v E Bj, without explicitly evaluating any Dj+I(v).

The algorithm
The total search list generation algorithm is described in Figure 4.17, and is
illustrated in Figures 4.18 and 4.18a. The notions Bj, Parj, bj, 4~tuplej+l
for different j values, all share respectively the same variables, B, Par, b,
4~tuple in the algorithm. Parj(v) is implemented by an indirect reference
Par[4~tuple[v]]. After the initialization of the search list generation (Sec~
tion 4.3.8, Figure 4.14), the borderset B variable, the argument-value tables
of the parallel set functions Par and template neighbor functions b are ini
tialized. The 4_tuplel (v) are defined by assignment to (0,3_tuple(v)) for all
v E V. The 3~tuple(v) values, 81 = (vi), U1. and the initial candidates of v1
Y1, have been defined by the INITIALIZE~SEARCH..LIST~GENERATION
procedure (see Figure 4.14). In the main for~loop, v2, ... , vk and d2, ... , dk

are determined.
The following notions are computed incrementally in the body of the

loop:

• the border set Bj, stored in variable B,

• the template neighbor function bj, stored in variable b,

• the parallel sets function Pari, stored in variable Par,

86 The sub-circuit recognizer

Procedure SEARCH_LIST_GENERATION(G, G)

INITIALIZE_SEARCH.LIST _GENERATION I* See text *I

B := 0
b := 0_table
Par := 1/Ltable

for v E V do

4_tuple[v] := (0, 3_tuple[v])

endfor

for j = 1 to k - 1 do

Par[4_tuple[vj]] := Par[4_tuple[vj]] \ { Vj}
.6.B := UcE')'(vj) Adj(Vj, c) \ Sj

for all v E .6.B do

Par[4_tuple[v]] := Par[4_tuple[v]] \ { v}

/* Var initializations *I

/* Assign 4_tuplel *I

/* Main for loop *I

b[v] :=b[v]U{(vj,c,m) I CE')f(v)l\m=lhvj(Adj(v,c))l\m>O}
4_tuple[v] := (b[v], 3_tuple[v])
Par[4_tuple[v]] := Par[4_tuple[v]J U {v}

endfor

B := B U .6.B \ { Vj}
if B 0 then exit(" G is not connected")
Vj+l := ANY(minu(B)) /*see Equation 4.48 *I
d[j + 1] :=MAKE..FUNCTION(4_tuple[v1+1])

endfor

endproc

Figure 4.17: Search list generation algorithm.

4.3 The primary algorithm: backtracking

• the 4_tuplej+1 relation (corresponding to Dj+l),
stored in variable 4_tuple.

87

This means that each computation is based on the results of the previous
step, Bj-1, bj-1, Parj-1 and 4_tuplej. This approach utilizes the local
character of every update, as illustrated in Figures 4.18 and 4.18a, showing
all variable values during the execution of the algorithm, for the example
of Figure 4.16. In Figures 4.18 and 4.18a, the bold dots indicate the search
list, and the hollow dots indicate the border set Bj. To show the effect of
the connectivity, the example ignores the 3_tuple, so that 4_tuplej+l bj.
For Pari, first the vertex vi is removed from the set corresponding with
the old value of 4_tuple.Each jth main loop iteration must compute bi,
4_tuplei and Parj for every v E Bi. But many of the argument-value pairs
of the functions of step j are equal to the argument-value pairs computed in
previous steps. Only for the vertices adjacent to Vj, and of course vi itself,
need the function value be recomputed. Therefore, we will only consider the
vertices of the set variable b..B. The variable b..B enumerates the affected
neighbors of Sj. By using the functions I'(vi) and Adj (Vj, c) Section
4.2.1), b..B is quickly found based on local data only. In the tables on the
right side of Figures 4.18 and 4.18a, the border edges that are not connected
to the previously selected v.i are surrounded by square brackets, since their
4_tuple and b values are unchanged and therefore not recomputed. For
example in step j=2, b..B = {a}, so 4_tuple[b], 4_tuple[c], b[b], b[c] are not
recomputed. Although the example shows only a few unchanged vertices,
most of the border sets are unchanged for a typical template, because the
average template is larger.

Next, the variable b..B is used in the second level for-loop to update
only the relevant argument-value pairs of bj, 4_tuplej+l, and Pari. Figures
4.18 and 4.18a show the values for the current example.

After the loop, the border set is constructed, from which the next search
list vertex Vj+l will be selected. When Bi becomes empty before j k 1,
the template graph G is not a connected graph, which is a violation of
the sub-graph recognition precondition, leading to a premature exit of the
program.

Now, the branching factors Uj+l can be computed using Equation 4.48.
For example in Figures 4.18 and 4.18a, in step j=2 both cases of Equation
4.48 are used. For a, IPar2(a)l = 1, hence U3(a) = Ul(a)/l~(a)l = 3/2.
Forb, IPar2(b)l = 2, hence U3(b) = U1(b) * !Par2(b)j! = 3*2! = 6. Similarly
for c, U3(c) 6. Although it has not been elaborated in the algorithm,

88 The sub-circuit recognizer

obviously only the branching factors of vertices with changed bj and Parj
parameters need to be recomputed.

Hereafter, the next Vj+I is computed with the function minu, returning
the set of vertices having minimum branching factor. MAKE_FUNCTION
creates the corresponding demand function di+l from a 4_tuple. dj+l
will be used by the FIND_CANDIDATE_SET fu:action in the backtracking
algorithm (Figure 4.11).

CQ

I

IC1 ,...0 b
1 ct

VI ,.., """

t:, c1
I

1 "o a 1c2
I

I

i d (!)

c Q

I

IC1 ,...0 b
1 ct

VI /

~:, c1
'

c2

"' c3 d ~

v E B1:

4_tuple2 (v) :

Par1(v):

U2(v) :

I

v E B2:

4_tuple3 (v) :

Par2(v) :

U3(v):

Step

abc d

{(v, cl, 1)} {(v, c2, 1)}

{a,b,c} {d}

3 X 3! = 18 1/2

f-- 82 = (v,d)

Step j=2

a [b] [c]

{(v,cl,l),(d,c3,1)} {(v,c1,1)}

{a} {b,c}

3/2 3 X 2! = 6

f-- 83 (v, d, a)

Figure 4.18: The iteration steps for the search list generation algorithm of
Figure 4.17. The figure is continued in Figure 4.18a. The iteration starts
from v1 = v, with 4_tuplej bj and assumes U1(a) = U1(b) U1(c) = 3
and U1(d) = 1. The selected partial search lists Sj for each step j are
indicated by bold dots, open dots are members of Bj. The uninterrupted
lines are the edges of partial template graph Gj. The dashed lines represent
the template neighbor function bj. The 4-tuple values of vertices between
square brackets are unchanged in an iteration.

4.3 The primary algorithm: backtracking 89

Singly initial candidates
Although it has not been included in the pseudo-code of Figure 4.17, ver
tices that have only one initial candidate after the initialization are bet
ter processed slightly differently. Since they don't cause branching in the
traversed part of the search tree, they can be successively chosen at the
beginning of the search list. For these vertices, the demand that each ver-

c Q
Step j=3

I
IC1 _..Q b
I ct...- I

VI I
IC3

v E B3: b [c]

4_tuple4(v) : {(v,c1,1),(a,c3,1)} {(v,c1,1)}

c1 Par3(v) : {b} {c}

a U4(v) : 3/2 3/1 = 3

c3
d f- 84 = (v,d,a,b)

c ~ ...
I Step j=4
I
IC1 b v E B4: c

4_tuple5 (v) : {(v,c1,1),(b,c3,1)}

Par4(v) : {c}

U5(v) : 3/2

f- 85 = (v,d,a,b,c)

Figure 4.18a: Figure 4.18 continued.

tex must be connected to at least one of its predecessors is dropped. The
demand was only useful for being able to apply FIND_CANDIDATE_SET
in an efficient way (see Section 4.3.4). In this case, the only possible candi
date for a vertex has already been identified, and their mutual connectivity
is checked immediately. This means that the singly matching vertices and
their candidates are checked during search list generation, and are there
fore removed from the search list on which depth-first search will be applied
later. The v1 and Y1 relate to the first multiple matching vertex having
minimum initial branching factor ul' with more than one candidate.

90 The sub-circuit recognizer

4.3.11 The primary algorithm, an overview

The primary sub-circuit recognition algorithm will be completed in this
section, after reviewing briefly the algorithms developed so far.

The algorithm in retrospect
The primary sub-circuit recognition problem is specified by a main circuit
and template circuit. The solution set of the problem, called the matches,
is a set of sub-circuits of the main circuit, that is implicitly defined by
the true-set of the characteristic function called the isomorphism predicate
(Definition 4.20). \Ve have chosen backtracking by depth-first search as

Procedure PRIMARY _RECOGNIZE (G, G)

SEARCH_LIST_GENERATION (G, G)

for all cand E Y 1

w1:=cand
MARK(cand)
DEPTH_FIRST _SEARCH(1)
UNMARK (cand)

endfor

endproc

Figure 4.19: The primary recognition algorithm. The backtracking top level
is performed here, .~ince the search list generation algorithm computes the
top level candidates Yt for v1.

the main method to compute the matches explicitly, since the method al
lows skipping of large parts of the search space (i.e., the domain of the
isomorphism predicate). The translation of sub-circuit recognition into a
backtracking problem, i.e., an ordered set of demand functions based on a
search list, has been described in detail in Sections 4.3.3, 4.3.4 and 4.3.5.
During backtracking, the demand functions are evaluated one by one, lead-

4.3 The primary algorithm: backtracking 91

ing to a partial traversal of the associated search tree. The importance
of the search list order for efficiency was emphasized. In Section 4.3.6 an
efficient method and algorithm for finding candidates at every level in the
search tree has been described. The subsequent section, Section 4.3.7, de
scribed how an efficient search list order can be achieved, by reducing the
estimated traversal size of the search tree. In the ordering algorithm, the
computations are organized to identify equivalent calculations before per
forming them, thus preventing the execution of equal computations where
possible.

The remaining envelop algorithm
Now the parts can be put in place to make the overall
PRIMARY_RECOGNIZE algorithm, see Figure 4.19. In the algorithm,
the search list generation algorithm not only computes the search list, but
also handles vertices that match only once (::>ee previous section). Since
the search list generation algorithm also ccmputes the set of candidates
for v1, Yt (see Figure 4.14), the algorithm also performs the first level
of backtracking. The depth-first search process continues from v2 onwards.
Eventually, tl1e complete set of iccJmorphisms is stored in the data structure,
as the set oi complete paths of the search tree. To get the solution set
M, the set of isomorphic sub-circuits must be derived from the set of
isomorphisms, as described in Section 4.2.3, Definitions 4.21, 4.23. This
operation is one of the topics of the next section.

92 The sub-circuit recognizer

4.4 Post-processing

In the next sections, several extensions will be discussed that enhance the
primary algorithm from a fast but rigid algorithm into a flexible, fast and
complete tool. This section describes the transformation of the set of iso
morphism functions S (Definition 4.20, Section 4.2.3) into a set of matches
M. Sis represented as a set of complete paths of the search tree, resulting
from the primary recognize algorithm. According to the primary recog
nition problem definition, a match g is equal to the sub-circuit Glt(V)
of the main circuit G for an isomorphism f E S. Hence the set of all
matches M of the template circuit G in the main circuit G is given by
M {GI¢(V) I cp E S}. However, different isomorphisms may result into
the same sub-circuit, i.e., IMI = lSI need not be true. In general, two
matches in M that may be partially, or completely overlapping. Suppose
that the recognition algorithm is used to partition the main circuit into
a set of sub-circuits, then clearly common vertices in overlapping matches
complicate the partitioning. This section classifies this phenomenon, and
shows classified matches may be processed depending on a simple user con
trol mechanism. Furthermore, the run time consequences of the different
cases are briefly described.

Definition 4.49 Overlap
Let 91 , 02 be elements of the set of matches M, with sets of component
vertices C1. Cz. The matches Yl and Y2 Overlap when some of the compo
nent vertices in g 1 are also component vertices of Y2, i.e., C 1 n Cz /: 0. The
set C1 n Cz is called the common components set. D

Definition 4.50 Touch
Two matches Yl: Oz EM Touch when some of the net vertices N1 in Yl
are also net vertices Nz of G2, i.e., N1 nN2 f: 0. D

Since a template circuit is connected, a match is also connected. When
every component vertex is connected to at least one net vertex, the following
observations are valid.

1. When two matches Y1 and Oz overlap, they also touch, because the
nets connected to any component, as prescribed via its type property,
are also part of the match.

2. When two matches Y1 and Oz touch, they may or may not overlap.

4.4 Post-processing 93

In this respect, overlap is a stronger property than touch.
The remainder of this section describes the following two cases. Firstly,

we describe the case when two matches overlap completely, i.e., the matches
are identical. Secondly, we describe the case when the matches overlap
partially.

4.4.1 Automorphisms

Definition 4.51 Automorphisms
An Automorphism is an isomorphism of a graph onto itself [Harar72.1].
The automorphism set of a graph is the total set of different isomorphisms
of a graph onto itself. 0

For example, PRIMARY ...RECOGNIZE(G, G) computes the set of auto
morphisms of a template circuit G. When the automorphism set of G
contains more than one element, G contains symmetry. Since a template G
and all its matches 9 E M are isomorphic, it is obvious that if G contains
symmetry, all matches contain symmetry as well. Let l be the number of
automorphisms of G. Obviously each match of Gin G is also found exactly
l times. So the setS of isomorphisms can be partitioned into \S\/l subsets
of which each subset leads to one identical match, Gj, j = 1, ... , IMI/l.
Depending on the application of the sub-circuit recognizer, the user might
be interested not only in the set of matches, but also in S, i.e., including
all automorphisms. The user indicates his preference in the fourth list of
the restrictions (see Figure 4.3), where a "nil" indicates no deletion of
isomorphisms, and a "T" indicates deletion of all but one automorphism in
the isomorphism set. In the latter case, "T", the post-processing procedure
partitions the isomorphisms according to equal component sets, and erases
all but one element of these sets. Equal component sets imply equal net
vertices sets, because the net connections are prescribed by the template
circuit.

Now, the run time effect of automorphisms is briefly described. The
sub-circuit recognizer will be slow when many automorphisms are present.
In general, the size of the automorphism set can be large. The largest sets
relative to the number of vertices are given by complete graphs [Harar72.2].
A complete graph is a graph in which each vertex is connected to every other
vertex. A complete graph of n vertices has an automorphism set of n!.
Fortunately, electrical circuit template circuits are rarely complete graphs.

94

Main
Circuit

and
Matches

Template
Circuit

ln1 -i

In

The sub-circuit recognizer

Vdd

~ ln2

Gnd

schematic subcircuits

Vdd

Out

Gnd

schematic subcircuits

Figure 4.20: Example of overlapping matches Ql and Qz, when searching
for an NMOS inverter in an NMOS NOR

4.4.2 Partially overlapping matches

Fully overlapping matches have been described in the last section. Partially
overlapping matches are the subject of this section. Partially overlapping
matches are the second class of common vertices.

Definition 4.52 Partial overlap
Let Ql and Q2 be matches of a template G, with component sets C1,Cz
respectively. gl and Q2 Partly Overlap when C1 I Cz and C1 n C2 #0. D

Depending on the intention of the recognition user, the partially overlapping
matches might either be rejected or accepted.

Two cases, i.e., rejection and acceptance, of common components are
now described by an example. In Figure 4.20, a rejection situation is de-

4.4 Post-processing 95

picted. The matches gl and 92 can be identified in an NMOS NOR gate,
but they should not be identified as NMOS inverters because they have a
common NMOS transistor. Therefore, the post-processing should eliminate
both matches for having a forbidden overlap.

Main
Circuit

and
Matches

Template
Circuit

schematic

schematic

circuit matches

circuit

Figure 4.21: Example of overlapping matches gl and g2, when searching
for a memory cell

In other cases, overlap is allowed. Figure 4.21 shows a situation with
accepted overlap. A flipflop in combination with a sense-amplifier forms a
single bit memory-cell in a large memory block. In order to distinguish from
ordinary flipflops in a design, one can add the sense-amplifier in the descrip
tion of a memory-cell. Different memory-cells share the sense-amplifier, so
the two matches gl and 92 may overlap with the sense-amplifier compo
nent.

The user sets his requirement with respect to rejection or acceptance
of overlap in the third list of the restrictions (see Figure 4.3, Section

96 The sub-circuit recognizer

4.2.3). This list enumerates the allowed common components. They de
scribe whether for different matches, the matching main circuit components
of template components allow overlap. Other component matches should
not overlap. The algorithm that rejects or accepts a match on the basis
of whether the overlapping components are all members of the common
components is straightforward. For example, for two (primary recognize)
matches {h and !h with component sets components cl and c2 respec
tively, a set of common components CC might be specified .. During the
post-processing, the following condition is tested:

(4.33)

When Equation 4.33 is true, both ~h and 92 are accepted, otherwise, they
are rejected as a match.

4.5 Extensions to the primary algorithm

This section describes the following extensions, adding more flexibility to
the primary algorithm.

• Partially prescribed matches.

• External net merging.

• Exchangeability of terminal-classes groups.

• Diagnosis feedback.

The first extension allows the remaining part of a partially prescribed match
to be found. The second and third extensions allow recognition of a com
bination of different versions of similar template circuits simultaneously. A
family of templates can be recognized in a single execution, starting from
one specification. The last extension shows how valuable feedback can
be given when the actual recognition result is different from the expected
recognition result. The extensions have proven to be very useful in practice.

4.5.1 Partially prescribed matches

A first extension to the primary algorithm is to allow a partial match to
be prescribed beforehand. When a partial match is known, and one is
interested in the full match, this is fully supported by the algorithm. In

4.5 Extensions to the primary algorithm 97

a component type definition, net vertices present in the first list of a re
striction, called fixed nets indicate that a template net vertex matches a
main circuit net vertex with the same name, see Figure 4.3 (Section 4.2.3).
Without describing it in more detail, any partial match can be prescribed
and the algorithm can find the rest of the matches.

The adaptation of the PRIMARY _RECOGNIZE implementation to re
alize this extension is trivial, and is not included.

Main
Circuit

Combined
Template

Circuit

a1

b1

a2

b2

a3

b3

carry-in

in1

in2

_9nd vdd sum

carry-out

Figure 4.22: Example of a merged net vertex in a 3-bits adder component.
The carry-in and the gnd net are connected (merged) for Full Adder 1 and
separate for the other components.

4.5.2 External net merging

A second extension to the primary algorithm allows merged nets. A typical
example of a situation where nets are merged, is given in Figure 4.22,
showing a simple n-bits adder, composed of 3 full-adder cells. Because the
carry-in of the least significant bit is connected to the ground net named
gnd, this structure deviates from the other full-adder cells. When using the
described primary algorithm only, one would have to define one template
G1 for the least significant bit full-adder, and another template G2 for the
other full-adders of then-bits adder. It would be beneficial if this deviation

98 The sub-circuit recognizer

could be denoted more easily, and also if the recognition algorithm could
handle both cases simultaneously.

The net vertices of a template, consisting of external net vertices N E
and internal net vertices N I, are therefore grouped into sets of mergable
nets. In a template definition, the external nets are defined in the second
part of the restrictions, and directly grouped to indicate an optional merg
ing. For Figure 4.22, the external nets groups are given by ((carry-in
gnd) (vdd) (sum) (in1) (in2)). Figure 4.3, Section 4.2.3, shows another
example of inputs (in1, in2) that might be merged.

Implementation
The following indicates how the extensions to the primary algorithm to
incorporate optional merged net vertices can be implemented. The merged
nets option entails extension of the FIND_CANDIDATES algorithm, that
is called by the the DEPTH_FIRST _SEARCH algorithm. In the primary
version, any vertex of the main circuit was only allowed to be a candidate
for one template vertex in a match. This was indicated by marking every
candidate during the search tree traversal. However, when a potential
candidate cand of a vertex Vj is already matched by a predecessor template
vertex Vi (i < j), but Vj and Vi are members of the same external nets group,
cand is still acceptable as a candidate according to the current extension,
provided it has the required neighbors, and the local demand call Lvi (cand)
returns true. The implementation of this extension only requires a small
adaptation of the FIND-CANDIDATES routine, but makes the use of the
sub-circuit recognizer more general.

The number of circuits when merging nets
The number of different template circuits that are recognized simultane
ously when merging nets can be very large. Figure 4.23 shows an example,
only for a cmos inverter, of all 12 circuits that are recognized simultane
ously when the external net vertices {in, out, gnd, vdd} are considered as
one merge-able group. In general, k merged net vertices in a group of n

leads to (~) different circuits, when the circuits do not contain symmetry.

In total, including the original unmerged circuit, the number of different
circuits equals

t (~) + 1 = 2n- n.
k==2

(4.34)

4.5 Extensions to the primary algorithm 99

In

Vdd

Out

Gnd

Original Two net vertices merged

. ··"
Three net vertices merged

Four net
vertices
merged

Figure 4.23: The set of represented circuits when merging all net vertices
of an inverter circuit. The bold lines are the short-cuts, to merge the nets.
The circuits are subdivided into 3 gmups having 2, 3 or 4 merged nets.

For Figure 4.23, the external vertices are {in, out, gnd, vdd}, son equals 4,
and therefore 12 different circuits are shown. Equation 4.34 indicates that
one must be selective when using merged nets. When a circuit contains
symmetry, the number of different circuits is less than indicated in Equation
4.34.

100 The sub-circuit recognizer

4.5.3 Exchangeable terminal groups

The third extension concerns groups of exchangeable connections. It will
be introduced by first reviewing the possibilities of exchangeability offered
by the terminal classes definition, as included in the primary algorithm.
Next, an example will show exchangeability that cannot be modelled by
terminal classes. Hereafter the exchangeable terminal groups extension is
defined, and the additions to the algorithm are discussed.

Review of terminal classes
As has been described in Section 4.2, several connections to a component
can have the same terminal class. For example, aMOS (Figure 4.2, Section
4.2.2) may have an SD terminal class, relating to both the source and the
drain connection. Which of the two connections is actually the source or the
drain is not specified; they are exchangeable. A second example is shown

Figure 4.24: Example of exchangeable inputs

in Figure 4.3 (Section 4.2.3), describing a NOR having both inputs ex
changeable. Both circuits in Figure 4.24 are equivalent by definition. This
illustrates a terminal class that relates to multiple exchangeable terminals.
The definition allows different sets of multiple exchangeable terminals for
a component type.

Another exchangeability example
A component type whose connection exchangeability cannot be modelled
by the terminal classes is a set-reset flip-flop (SRFF) for example. For a
SRFF (see Figure 4.25), the R terminal and S terminal can be exchanged
(switched) only when the Q terminal and Q-not terminal are switched at
the same time. The ordered terminal sets {R, Q} and {S, Q-not} are
exchangeable. The lower level implementation (Figure 4.26) of the SRFF
shows why only pair-wise exchanging the SRFF connections is allowed: m
this way the same graphs are found at the implementation level.

Definition 4.53 Terminal-groups
For a component type t E T with type terminal classes TTC(t) according

4.5 Extensions to the primary algorithm 101

R Q ----1>--- -----t R Q 1----

SRFF
----+ S Q-not 1----

SRFF
S Q-not ----!>--=

R QI----

SRFF
----+ S Q-not ----!>--

Figure 4.25: Allowed (=) and forbidden (=I=) exchangeability of a set-reset
flip-flop

R

s

Figure 4.26: Implementation of a set-reset flip-flop

to Definition 4.15, a Terminal Group is an ordered subset of TTC(t). A
terminal grouping of component type t is an unordered set of equally sized
terminal groups. A terminal grouping set oft is an unordered set of terminal
groupings. For any two terminal groupings A and B of t, the union of
all terminal classes in the terminal groups of terminal grouping A must
be disjoint from the union of all terminal classes in the terminal groups of
terminal grouping B. The total number of occurrences of any terminal class
c in a terminal grouping set may not exceed the number of occurrences of
c in TTC(t). D

In this way, exchangeability described by A is independent from the ex
changeability described by B. For the set-reset flip-flop (SRFF) example of
Figure 4.27, the terminal groups set consists of only one terminal grouping,
((R S) (Q Q-not)). Terminal group exchangeability can be generalized

102

(SRFF

)

(Terminal-names
Terminal-classes
Terminal-groups-sets

Network

Restrictions

)

The sub-circuit recognizer

(R S Q Q-not)
(R S Q Q-not)
(

((R S) (Q Q-not))
)

((NOR N1 R Q-not Q)
(NOR N2 S Q Q-not))

(()

((R)(S)(Q)(Q-not))
()

T)

Figure 4.27: The set-reset flip-flop component type, showing an example of
the terminal gr·oups sets property.

to exchangeability of terminal groupings, and beyond.

The implementation
The extension to the basic recognition algorithm to handle terminal group

exchangeability is sketched below. Basically, there are two possible direc
tions to incorporate the extension. In one direction, the data representa
tion should be changed in such a way that terminal group exchangeability
is dealt with automatically, just like the current data representation solves
the exchangeability of connections having equal terminal classes. In the
second direction, the algorithm should model explicitly the terminal group
exchangeability, by iterating over all allowable connection cases as described
by the terminal grouping sets of all components.

A solution in the first direction, a convenient data representation, invari
ant to exchanging terminal groups, is still unknown at present. Another
data representation would also demand modification of the current data
representation of both the main circuit and the template circuit. It is very
likely that the modified data representation will require more computer
storage than used for the current data representation, and storage is a very
important item for current applications.

4.5 Extensions to the primary algorithm 103

a b r--_c _ _, d e

==1: Q-no:l~

a

b

RQ

c

d

Template circuit

A

B

c
D

Free

c Fr---...., G
~-A--+s "s a ~~-o_E_
~ Q-not~

=V].-•s_x__, Y

~ Q-no:l~
Main circuit

......... ·······

X

0
...............••••........•••

S Q-not

e

f

g

RQ Frozen
.

••••••••••••••••••••••••••••• J

E

F

G

Traversal subtree (partial)

Figure 4.28: Partial traversal sub-tree for exchangeable terminal groups.
The demand functions associated with each level are related to the tem
plate vertices on the left side. Note the difference between the free (branch
ing) terminal group { R, Q} and the frozen (non-branching) terminal group
{S,Q- not}.

104 The sub-circuit recognizer

A solution in the second direction has a clear disadvantage: it deterio
rates the current run time efficiency. The number of terminal class combi
nations may be very large. Suppose a component v of type t has j terminal
groupings {TGi(v) I i 1, ... ,j}. In the worst case, every component v
adds the following multiplication factor to the run time:

n

IT ITGi(v)l! (4.35)
i=l

Therefore, the exchangeability must be modelled as economically as
possible, and the worst case must be omitted whenever possible. Figure 4.28
shows how the iteration is incorporated during depth-first search. When
a component has exchangeable terminal groups, an extra level for each
terminal group is added to the depth-first search algorithm when any of the
connections in a terminal group is under consideration (see Figure 4.28).
The figure shows that in this search order, {R, Q} is free, but {S, Q-not} is
already frozen, since the other combination is already in use. This implies
that {R, Q} creates extra branching, unlike {S, Q-not }.

The recognition algorithm consists mainly of the search list generation
part and of the depth-first search part. The number of traversed edges dur
ing depth-first search strongly depends on the search list order. The search
list order is determined by the procedure GENERATE_SEARCH_LIST,
based on the branching factor functions Uj, j = 1, ... , k (see Sections 4.3.7
and 4.3.9).

For the current extension, the formula given in Equation 4.48 that com
putes Uj is extended with an extra factor that computes the potential
growth of the traversal size, introduced by the terminal group exchange
ability. In this way, 'frozen' terminal groups have no effect on the old
method of determining the search list order, but freely exchangeable ter
minal groups tend to be found at the end of the search list. This effect is
stronger when the terminal groups are larger.

The depth-first search part depends strongly on effective selection of
candidates at every level in the search tree. The algorithm to find can
didates for a terminal group of a component uses the connectivity infor
mation of the related nets and component, both in the template and the
main circuit, and resembles the FIND_CANDIDATE_SET of the primary
recognition algorithm.

4.6 Diagnosis feedback 105

4.6 Diagnosis feedback

In the event of a search for a particular template using the recognize algo
rithm not resulting in the number of matches that was expected) the reason
why the recognition seems to have failed should be explained by the system
as well. This section describes how valuable information can be retrieved
after the execution of the recognition algorithm. Some examples of how
this information is presented are shown as well.

Before discussing how diagnosis feedback is given when no matches
are found, the fact that the situation when fewer (but more than zero)
matches than expected are found can be translated into the problem when
no matches are found.

The recognition algorithm consists of search list generation (see Figure
4.14 and Figure 4.17), a depth-first search procedure (see Figure 4.11 and
Figure 4.19) and post-processing (see Chapter 4.4). The diagnosis feedback
will be described in the following paragraphs for each step.

Diagnosis when finding fewer matches than expected
When fewer matches are found by the recognition algorithm than expected,
the recognition monitor indirectly offers help. The recognition monitor only
displays information in the case when zero matches are found, so a direct
invocation doesn't work. If one removes the matching components first,
before applying the same recognition again, the recognition monitor will
then be able to display the diagnostics and suggestions as to why no more
matches are found. The removal of matching components is a standard
command in the implementation.

Diagnosis for the search list generation phase
The algorithm of search list generation (Figure 4.17) consists of an initial
ization (Figure 4.14) that computes the number of candidate main circuit
vertices per template vertex, when considering the local demand function
of the template vertex only, and a procedure to order the vertices into a
search list. As indicated in the initialization algorithm (Figure 4.14, the
line if ul = 0 then exit ("No matches II) indicates that when a template
vertex has no candidate vertex satisfying the local demand function, the
recognition algorithm can be aborted. Obviously, in this case the diagnosis
of why no match was found should feed back the vertex under consideration
to the user. As an example, the following could be the result of a failure.

106 The sub-circuit recognizer

Note that in the actual implementation the notions "node" and "element"
are used for the notions "net" and "component" of this thesis.

> (rg-monitor 'why)

DIAGNOSTICS:

The used template is equal to the network of
type-description: DFFL

- At least for the template element N1 no initial
match. could be found.

SUGGESTIONS:

- Substitute all attribute-values of template
element N1 by ''?''·

The information displayed above is the result of the "recognition monitor"
call given in the first line, after a recognition resulted into zero matches.
The information is split in a "diagnostics" part explaining why the recog
nition resulted in zero matches, and a "suggestions" part, containing sug
gestions how the template should be changed to come to a match.

Diagnosis for the depth-first search phase
During the depth-first search procedure (see Figure 4.11 and Figure 4.19),
the search tree is traversed. At every preceeding level j + 1 in the search
tree, a partial isomorphism is extended with another (template vertex, main
circuit vertex) pair, provided that the required connectivity demands and
local demand are valid. When such an extension does not exist, the cur
rent computation of FIND_CANDIDATE_SET (see Equation 4.42) results in an
empty set, implying that either Equation 4.41, called the tentative candi
dates, result in an empty set, or no element of the tentative candidates :Fj+l

satisfied the local demand Lvj+l" When a partial isomorphism canriot be
extended, backtracking occurs, and at a later stage, another partial isomor
phism might be extendable beyond level j + 1. Therefore, when no match
is forthcoming, the partial isomorphism mapping relating to the maximum
level reached, i.e., the one which comes closest to a possible match, is the
most interesting one. The diagnosis information should display the largest
partial isomorphism, and it should explain for the non-matchable vertex,

4.6 Diagnosis feedback 107

which of the conditions (see Equations 4.42, 4.41, 4.36 and 4.37) cannot be
satisfied. As an example, the following is the result of a failure.

> (rg-monitor 'why)

DIAGNOSTICS:

The used template is equal to the network
of type-description: DFFL

- The template could not be matched completely.
The biggest match found was up to and including
template object number 9 of a total of 19 objects
(i.e. 47.4 percent is matched).

- The last template element that could be matched
was: P2 ---> MP2

- The last template node that could not be matched
was: N18

- To see the list of template objects type:
(rg-monitor 'search_list)

SUGGESTIONS:

- The connectivity of the template node N18 does
not match with the connectivity in the network.
Check connectivity using (rg-monitor 'candidates)
or remove node from template and recognize again.

- In the restrictions node N18 is not specified as
an external node. Specify it as an external node.

In addition, the partial isomorphism can also be retrieved, by using the
recognition monitor again.

108 The sub-circuit recognizer

> (rg-monitor 'search_list)

Nr. Type Template Net list Remarks

1 node PHI1 ---> PHI1 fixed object
2 node PHI2 ---> PHI2 fixed object
3 node VDD ---> VDD fixed object
4 node GND ---> GND fixed object
5 element N7 ---> MN7
6 element N5 ---> MN5
7 node DIN ---> MDIN
8 node N17 ---> MN17
9 element P2 ---> MP2

10 node N18 ---> matching failed
11 element N2 ---> -
12 element N1 ---> -

etc.

Finally, a detailed explanation of why element N18 failed to be matched is
given by enumerating all candidates that failed, i.e., all vertices connected
to the partial template G10 (see Definition 4.21). Gg is the sub-circuit of
the template with respect to the partial search list Sg. The failed candidates
are sorted according to the number of conditions that are fulfilled, in this
way the most likely intended candidates are shown first. This information
is presented by the recognition monitor as follows:

> (rg-monitor 'candidates)

Objects between {} are not matched.
Objects between <> are matched but to the wrong objects.

prob. node nr-con. class elements

{N18} 2 MOS-GATE P2 {N2}
3 Mos-so N7 {P1} {N1}

===
0.90 {MN18} 2 MOS-GATE MP2 {MN2}

4 Mos-so MN7 <MN7> {MP1} {MN1}

The "probability" measures the number of conditions that are fulfilled.
The first vertex description describes the template vertex, the main circuit

4.7 Results 109

vertices are displayed below the "====" line. The example only shows one
main circuit vertex. Every line shows the Adj(vertex, class) value for a
class, i.e., the number of connections, the class and the adjacent vertices.
In this example, main circuit vertex MN18 has one SD connection too many
(4 instead of 3), and a wrong connection to MN7. Apparently when removing
the connection to MN7, this match seems to be correct.

Diagnosis for the post-processing phase
In the post-processing phase (see Section 4.4), zero matches can only be
the result of partially overlapping matches. Although symmetry conditions
can lead to a rejection of matches, at least one survives in that case, so it
cannot be the cause of zero matches found. The following diagnosis and
suggestions are given by the recognition monitor resulting from the partially
overlapping matches occurring for the example of Figure 4.20, Section 4.4.1.

> (rg-monitor 'why)

DIAGNOSTICS:

The used template is equal to the network of
type-description: INVERTER

- All 2 initial matches where rejected due to common elements.
At least the following template elements where found
to be common but not defined as such: T1

SUGGESTIONS:

- Add elements: T1
to the common elements in the restrictions.

4.7 Results

In this section, some results of the recognition algorithm will be shown. The
function implementing the algorithm is called RECOGNIZE, and is part
of the Vera environment. No standard benchmark set exists for sub-circuit
recognition, so we must select appropriate recognition examples ourselves.
Many designs have been verified by our hierarchy reconstruction method,
so we could have taken the largest (over a million transistors), show the
set of run times for every recognition during the hierarchy reconstruction

110 The sub-circuit recognizer

process (about 2 hours in total on a HP-9000/750) and argue that the
recognition algorithm is fast enough. However, such an example would
not be representative, since designs having large numbers of transistors
are usually dominated by a large Random Access Memory part. As will be
shown in this section, RAM-cells are easily recognized, so large designs give
an optimistic view for the average case. Furthermore, a non-representative
example would reveal little about the run times of different parts of the
recognition algorithm. Therefore, a moderate, representative, industrial
design has been chosen, that contains many different modules.

The selected design, called the TDA-1307 [Deloor92], is composed of
130 000 transistors (see Figure E.2), and is introduced more elaborately in
Chapter 6. The hierarchy reconstruction verification process has been ap
plied to this design, and the 134 recognition calls in the non-parameterized
hierarchy reconstruction process will be analyzed paying special attention
to the top 36 in CPU time. In the hierarchy reconstruction process, many
other recognition calls are applied as well, being part of a parameterized
hierarchy reconstruction process. Although large in number, these calls are
not considered here, since they depend strongly on the context of usage,
and they are usually so fa:;;t that accurate timing information can hardly
be obtained.

The recognition algorithm consists of two parts, the primary recogni
tion algorithm (Section 4.3.11) and post-processing (Section 4.4). Both
algorithms are extended according to Section 4.5. As shown in Section
4.3.11, Figure 4.19, the primary recognition algorithm consists of search
list generation and a depth-first search procedure. The search list gener
ation procedure itself consists of an initialization (the algorithm of Figure
4.14) and the actual search list generation algorithm (Figure 4.17). The
initialization computes mainly C(v), i.e., the set of main circuit candidates
for each template vertex v, that satisfy the local connectivity demand func
tion Lv. So for the run time analysis, the following parts of the recognition
algorithm will be distinguished:

• Initialization of search list generation (ISG),

• Actual search list generation (ASG),

• Depth-first search (DFS),

• Post-processing (Post).

4.7 Results 111

Template lVI lVI Match Total ISG ASG DFS Post
count (sec.) (sec.) (sec.) (sec.) (sec.)

Noiseshaper 80014 1103 2 120.75 20.02 2.07 96.78 1.72
Nor3 56182 14 0 86.81 0.92 0.01 85.87 0.00
Nand4 78744 18 0 76.98 1.63 0.01 75.32 0.01
Dobm_ori 83564 1085 1 63.29 27.96 2.33 32.25 0.60
Axu_ori 84543 690 1 30.73 21.02 0.56 7.28 1.78
Pin Lori 82356 472 1 24.95 21.98 1.01 1.78 0.09
IisinpuLori 77736 323 1 14.48 13.95 0.42 0.04 0.02
Myespa_ctrl 83914 375 1 13.80 13.13 0.33 0.22 0.05.
Decoder2 47644 15 43 13.47 1.35 0.01 12.10 0.01
Ram-cell 173132 13 6300 13.35 3.98 0.00 7.91 1.43
Decoder3 47386 18 35 12.77 1.41 0.01 11.33 0.01
Decoder4 47106 21 50 11.14 1.47 0.01 9.64 0.01
Cs_29_sum 12729 27 255 10.79 0.32 0.01 10.36 0.08
Alignment 77868 125 1 10.06 9.61 0.39 0.02 0.01
Tcb_ori 84769 240 1 9.10 8.66 0.16 0.20 0.03
C3_nand 103351 10 673 9.02 1.77 0.01 7.16 0.07
Nand2 79861 10 256 7.46 1.42 0.00 6.00 0.03
C3_inv 119333 6 15472 6.39 1.59 0.00 3.66 1.11
Clockdiv 78699 101 1 6.09 6.02 0.04 0.00 0.01
Synchron 77812 90 1 6.06 5.96 0.06 0.02 0.00
Decoder1 46606 12 16 5.63 1.20 0.00 3.56 0.86
Invertor 92331 6 10936 4.71 1.20 0.00 2.75 0.74
Nand3 78828 14 12 4.65 1.51 0.01 3.10 0.01
Glbclock 103798 93 1 4.49 4.41 0.04 0.01 0.01
Cuinc 58423 73 1 4.34 4.29 0.03 0.01 0.00
Cs_24_mux 12905 14 20 4.16 0.29 0.01 3.86 0.00
Clockphins 103861 69 1 4.10 4.03 0.03 0.00 0.00
Acuslice 56624 53 16 3.92 3.77 0.02 0.06 0.06
C3_hlatch 91097 22 238 3.55 3.24 0.01 0.24 0.04
Dtn12tac 103711 36 12 3.29 3.24 0.01 0.02 0.00
C3_mux 97376 13 433 3.10 2.22 0.00 0.82 0.05
C3Jatch 88003 20 294 3.01 2.66 0.00 0.27 0.07
Nand2_cinp 100659 8 3 2.86 1.55 0.00 1.29 0.00
Nand5 78744 22 6 2.83 1.74 0.01 1.05 0.01
Muxreg-top 39587 44 1 2.83 2.76 0.03 0.02 0.00
Reg-cell 52524 18 964 2.58 1.38 0.01 0.27 0.90

Table 4.1: Performance of recognition algorithm.

112 The sub-circuit recognizer

Apart from the cpu run-times associated with the algorithmic parts, Ta
ble 4.1 enumerates per recognition call the component type, the number of
main circuit vertices (lVI), the number of template circuit vertices (lVI),
the number of found matches (Match count) and the total recognition time.
Since the run time samples have been taken during a hierarchy reconstruc
tion process, the number of main circuit vertices decreases gradually. Table
4.1 is ordered according to decreasing run-times, and only the 36 worst cases
out of 134 are shown. The total recognition time for all component types is
707 seconds. The hierarchy reconstruction job ran on a"HP-9000/735. The
following trends can be derived:

1. Most recognition calls (most of them are not enumerated in the table)
take less than a second, few (<3%) take :';leveral minutes.

2. 5% of the recognition calls take 50% of the run time.

3. On average, the search list generation (ISG + ASG) consumes more
cpu-time than the depth-first search tree traversal, although for the
worst cases, the depth-first search is dominant. These worst cases are
found mainly in the top 15. On the average it seems that a reasonable
balance between ordering heuristic and tree traversal computations
has been obtained.

4. The search list generation initializatio11 (ISG) dominates the total
search list generation process.

5. The number of matches has little correlation with the run times e.g.
26000 inverters (C3_inv and Inverter) are found in 11 seconds, 6300
memory-cells are found in 13 seconds, whereas to establish that Nor3
and Nand4 have no matches takes 154 seconds.

6. Large templates (lVI) correlate with longer run times.

7. Post-processing time is never substantiaL

Although the algorithm performs very well on the average, the Nand4 and
Nor3 component types illustrate that the heuristics of the algorithm show a
large variation in effectiveness. When comparing the run times with others
[Bolse89], [Spick88], [Nebel87], [Papas88], [Hirsch88], the algorithm is at
least an order of magnitude better.

4.8 Conclusions 113

4.8 Conclusions

A recognition algorithm to find all occurrences of a template circuit in a
main circuit has been described in detail.

The algorithm is based on a depth-first search backtracking. Most of
the benefits of the algorithm result from a careful ordering of the search list.
The algorithm to order the search list has been described in detail. It is
based on estimates of the branching factor function. In this way the size of
the traversed part of every search tree during the actual depth-first search
process is predicted, before actually performing the traversal. This allows
the selection of a search tree that needs little traversal. The computations
of the branching factor function values are performed efficiently by grouping
the computations first, before actually computing the values. In this way
only one computation is needed per group.

The post-processing step, after the backtracking process, handles matches
that overlap depending on the user requirements. Finally, some important
extensions of the algorithm are described that enhance the flexibility. A
self-explanatory help facility called the recognize monitor provides clear
diagnostic information when less is recognized than expected.

The worst case run time efficiency of the algorithm has been shown for
recognitions that occurred during a typical hierarchy reconstruction job.
The results indicate that a reasonable balance between ordering heuristic
and tree traversal computations has been obtained. In general, the perfor
mance of the algorithm is very good for recognizing electrical sub-circuits
present in IC-designs.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Chapter 5

The hierarchy
reconstruction
implementation

In Chapter 3, the required tools and libraries have been derived that are
needed to make the hierarchy reconstruction method operational, as sum
marized in the operational model, Figure 3.3. The main tool, the sub-circuit
recognizer, has been described separately in Chapter 4. This chapter de
scribes the implementation of the hierarchy reconstruction method as it
has been embedded in the Vera environment. Since the other tools are not
as spectacular as the recognition tool, their description will be less elabo
rate. The sub-circuit recognizer will also be recapitulated, to summarize
it's functionality and to show the coherence with the other tools and the
Vera environment.

Vera [Koste89], [Koste88], [Deloor90] is an acronym for VERification
Assistant, a rule-based environment for the analysis and manipulation of
electrical circuit designs. The schematic representation of Vera's architec
ture is given in Figure 5.1. As will be shown in this chapter, Figure 5.1 is
the implementation view of the operational model (Figure 3.3).

The inputs for Vera consist of a network description, component type
descriptions and a rule base, all supervised by the user.

The Network Description (see Figure 5.1) describes the main circuit
which will be verified or modified, see Definition 4.18, Section 4.2.2. The
description is component-oriented and based on the component types de-

115

116

u

s

E

R

The hierarchy reconstruction implementation

Network
Description

VERA Inference Engine

1 i
Match

Primitives

Type
Descriptions

ll
Action

Primitives

Figure 5.1: Vera's architecture

Rule
Base

fined in the type descriptions.
The Type Descriptions (see figure 5.1) contain the general character

istics of component types, including the template circuit. Examples are
given in Figures 4.2 (Section 4.2.2) and 4.3 (Section 4.2.3). In general, a
type description enumerates a number of properties and their values, see
Sections 4.2.2 and 4.2.3. The Rule Base contains definitions of rules. A
rule defines a situation (IF part) and the action to be taken when such
a situation occurs (THEN part). Examples of rules are given in the next
section. For our application; the rules describe the control of the recon
struction process. Rules are defined hierarchically in terms of other (lower
level) rules and actions. At the lowest level, rules are bases! on a flexible
and easily extendible set of ~~imitives such as: a sub-circuit recognizer, an
abstracter, etc.

Internally, Vera consists of an inference engine and a separate set of
tools called primitives (see Figure 5.1). The inference engine handles the
interaction between the rule base, the primitives and the user. With respect
to the primitives, a distinction is made between match primitives, which
are used in the IF-part of a rule, and action primitives which are used in the
THEN-part. Match primitives search for the presence of facts or patterns
in a circuit, while primitive actions modify, add or delete circuit compo-

5.1 The RECOGNIZE primitive 117

nents/nets or generate messages. Vera is implemented in Common_LISP.
More details on Vera can be found in [Koste91], [Koste92.2], [Koste92.3].

5.1 The RECOGNIZE primitive

The sub-circuit recognizer primitive is called RECOGNIZE. In addition
to chapter 4, where the tool is described formally and in-depth, this sec
tion briefly reviews the functionality. In this way, the embedding of the
algorithm in the Vera environment will become clear.

In general, the recognize primitive finds all occurrences of a specified
template in the current main circuit and returns them to the inference
engine. The template is specified by two arguments, the circuit and the
restrictions.

A circuit describes most of the template. It's components and nets indicate
how a matching cluster of components and nets must be connected, and the
values per attribute that a component match should have. For a component
type, the network-entry defines the circuit, see Figure 4.3.

A set of four restrictions prescribe the remaining details of the template.
See also Figure 4.3.

1. The fixed-nets is a list of those template nets that must match the
identically named actual nets in the circuit, thus reducing the set of
acceptable occurrences. For more details, see Section 4.5.1.

2. External-net-groups. By default, nets are internal, meaning that
a matching net must have exactly the same connectivity as its coun
terpart in the template. When a net has more actual connections
than is indicated, it is external. This is indicated when the net is
mentioned in any external-net-group. Furthermore, the user can indi
cate that different external-nets may be short-circuited by grouping
possibly connected nets together. For example, in an inverter, the
in net and gnd may be connected in some cases. For more details,
see Section 4.5.2.

3. Common-components. By default, when occurring matches partly
overlap, they are all rejected. For instance, if the user defines a mem
ory cell as a flipflop plus a sense-amplifier, the sense-amplifier may
be the same for a whole column of different ftipftops and thus all

118 The hierarchy reconstruction implementation

memory cells are rejected. When however the overlapping compo
nents (like the sense-amplifier) are mentioned in the list of common
components, no rejection occurs. In this way, a casual flipflop without
sense-amplifier, used for its driving capability is not recognized as a
memory-cell. Common-components allow the facility of adding some
external environment to the circuit template thus making it more
specific. For more details, see Section 4.4.

4. Symmetry may be given two main values: T (true) and nil (false).
Symmetry occurs when a template maps several times onto exactly
the same components but in a different order, being a permutation
of the same match. This phenomenon is called automorphism. For
example a circuit of two parallel resistors can be interchanged and still
reflect the same circuit. When symmetry is true, only one match is
returned of the completely overlapping set, otherwise all permutations
are returned. For more details, see Section 4.4.

5.2 Hierarchy reconstruction for various hierar
chy categories

In this section, the implementation of hierarchy reconstruction will be de
scribed for all hierarchy categories enumerated in Section 3.2.

Category 0: non-parameterized modules
For the architecture reconstruction of non-parameterized modules, there
quirements mentioned in Chapter 3 are met as follows. The non-paramete
rized module library is stored in type descriptions. The pattern matching
is performed by the recognize primitive described above. The next step
is to replace the recognized pattern by a higher level component. This is
handled by the action primitive Abstract. The following rule called FIND
AND-ABSTRACT performs the reconstruction.

RULE FIND-AND-ABSTRACT (abelt) (type)
IF RECOGNIZE (circuit) {1}

(NETWORK(type),
RESTRICTIONS(type))

FIND-NAME (abelt)(type) {2}
THEN ABSTRACT (circuit, abelt)(type) {3}

END

5.2 Hierarchy reconstruction for various hierarchy categories 119

When find-and-abstract is activated by the user as follows:

ACTIVATE (FIND-AND-ABSTRACT ('inverter)),

this rule will replace all transistors in the network description forming an
inverter network, by inverter components (see Figure 3.1). The activate
gives type the actual value inverter. The abelt is not used by the activate
calL When the rule is used hierarchically as a match call, the (abelt) in
the first line acts as an external variable, with which information can be
passed to and from other rules or primitives. In the current example it
stores the names of the abstracted components.
In the IF part of the rule, the network of the inverter is used as a template
by the match primitive recognize { 1} which will find all matching sub
circuits. For every match the primitive find-name {2} will generate a name
for the new inverter component. The action part is applied to the resulting
set of [sub-circuit, abelt] pairs, so the abstract primitive {3} will replace
all sub-circuits by corresponding inverter components.
Hereafter the same rule can be activated again with a different type such as
a memorycell, whose network is described in terms of inverters, etc., thus
raising the circuit level gradually up to a description in terms of modules.
In this way the complexity of the circuit can be reduced enormously.

Category 1: singly-parameterized modules
For Category 1 modules, a structure repetition detector and parameter
ized template generators are required. The Vera primitive matches CHAIN
and FORK detect respectively serial and parallel repetition in connectiv
ity. Also, two related abstract action primitives have been created called
ABSTRACT-CHAIN and ABSTRACT-FORK which generate the appro
priate component type description, and abstract the repetitive structures.
The rule fork-and-abstract can abstract parallel structures:

RULE FORK-AND-ABSTRACT (abelt, nr)(typ, con)
IF FORK (eset, nr) (typ, con) {1}

FIND-NAME (abelt) (concat (typ, nr, '-)) {2}
THEN ABSTRACT-FORK (abelt, eset)(typ, con) {3}

END

The rule fork-and-abstract strongly resembles find-and-abstract.
When the rule is activated as follows:

ACTIVATE (FORK-AND-ABSTRACT ('memorycell '(r/w)))

120 The hierarchy reconstruction implementation

the result is that memory cell typ) components are considered that have
the terminal r/w con) connected in parallel. In addition, the abelt and
nr are only important in the case of hierarchical rules, where they are
used to pass information between rules and primitives. The memory cell
is a component that may have been abstracted by find-and-abstract in
previous steps. In the IF-part, fork {1} will find sets of memorycell com
ponents that are all connected to the same net via a r/w terminaL The
sets are accumulated in eset, and the corresponding repetition parameter
(the word length) in nr. Per set, find-name {2} will generate a name,
e.g., memorycell3-1. In the THEN-part, abstract-fork {3} will replace
every set by a new higher level component of type FORKMEMORYCELL
<nr> generated by abstract-fork itself, derived from nr, typ and con.
It combines type description generation and non-parameterized module ab
straction. For the example of Figure 3.2, the result will be a component of
type FORKMEMORYCELL-3 called MEMORYCELL3-l.

Category 2: multiple parameterized modules
Multiple parameterized hierarchy reconstruction is performed by repeating
singly parameterized hierarchy reconstruction. Although no additional re
quirements are formulated, the rules that are used are more complex. A
typical example is the hierarchy reconstruction of a memory core (see Fig
ure 3.2). It can be reconstructed by the hierarchical rule find-mem-core
which calls the fork-and-abstract rule twice:

RULE FIND-MEM-CORE (me, wl, wn) ()
IF FORK-AND-ABSTRACT (regw, wl) {1}

('memorycell,
'(r/w))

FORK-AND-ABSTRACT (me, wn) {2}
(concat ('forkmemorycell-, wl),

r-1-a-i ('(in out), wl})
THEN MESSAGE (memory core me {3}

is abstracted)
END

When the rule is activated as follows:

ACTIVATE (FIND-MEM-CORE)

the memory cells are grouped and merged into register words which are
themselves grouped and merged into memory cores. Register words regw

5.2 Hierarchy reconstruction for various hierarchy categories 121

consist of wl memory-cells connected in parallel via the r/w terminal, as
explained in the previous section. Memory cores me are register words con
nected in parallel via all in< k > and out< k > terminals (k 0, ... , wl-1).
The iteration is performed by r-1-a-i (Repeat-list-and-increment, more de
tails are found in Section 5.3). The word length parameter wl is recovered
in the first fork-and-abstract, and the number-of-words wn is recovered
in the second step.

A complete memory (a RAM) also has address decoders and buffers.
They have not yet been abstracted. Category 1 modules often consist also of
a repetitive core plus some extra circuitry. How these parts are abstracted
in a following reconstruction step, is explained in the next section.

The reconstruction of modules consisting of repetitive structures
and extra sub-blocks.
The hierarchy reconstruction of modules consisting of repetitive structures
and extra sub-blocks is explained by the reconstruction of a bit slice pro
cessor (Figure 5.2).

A (bit)slice is a component that is composed of full-adders, shifters,
registers, multiplexors, etc. These components may have been abstracted
by find-and-abstract beforehand. The extra sub-block is control. Before
describing the automatic reconstruction, a simpler, but manual, method is
first explained. Starting from situation (a), the command

ACTIVATE (FORK-AND-ABSTRACT ('slice '(cO c1)))

performs the operations to get to situation (b). The slice components
connected in parallel via cO and c1 terminals are reconstructed to a fork
slice-4 block, similar to the reconstruction of a memory word. To get
from (b) to (c) by using the rule find-and-abstract is not possible,
since the rule only operates for simple non-parameterized type descriptions.
However, when parameter values are known, parameterized type descrip
tions can generate a simple non-parameterized instance. During the step
from (a) to (b), the parameter value or repetition number is detected, so
find-and-abstract can be used after all. The user can start the operation
interactively by the command

ACTIVATE
(FIND-AND-ABSTRACT

(LOAD-TD (PROCESSOR (4)))),

122 The hierarchy reconstruction implementation

Slice

a) Slice

Slice

Slice

j Control I

' i
b)

Forkslice-4

c) Processor-4

Figure 5.2: Hierarchy reconstruction of bit slice processor a) after Category
0 abstraction b) after fork-and-abstract c) after find-and-abstract.

5.2 Hierarchy reconstruction for various hierarchy categories 123

in which load-td adds the instance processor-4, generated by the param
eterized type description processor (n), to the non-parameterized type
descriptions. Hereafter, Find-and-abstract performs the reconstruction
operation.

The method described above requires manual interventions by the user
during the reconstruction process. It can be completely automated by the
construction of a hierarchical rule £-and-a-processor which controls all
reconstruction steps, from (a) to (c). It is defined as follows:

RULE F-AND-A-PROCESSOR (proc-e, nr)
IF FORK-AND-ABSTRACT (slice, nr) {1}

('slice,
'(cO cl))

FIND-AND-ABSTRACT (proc-e) {2}
(LOAD-TD (PROCESSOR (nr)))

THEN MESSAGE (processor proc-e {3}
is abstracted)

END

The major difference with the manual method is that the repetition num
bers nr detected by fork-and-abstract are automatically passed to the
find-and-abstract by Vera's inference engine. The activation

ACTIVATE (F-AND-A-PROCESSOR)

reconstructs any number of processors of any parameter value, and message
signals to the user which processors are abstracted. The parameterized type
description processor (n) is explained in Section 5.3.

Category 3: Parametrized modules having a variable functional
ity
Category 3 contains the hardest modules for hierarchy reconstruction, be
cause their structure is difficult to predict. In general it is no longer a
one-dimensional repetition of a fixed structure. For PLA and ROM mod
ules, the various decoders can be reconstructed by using the Category 2
reconstruction method. The number of addresses, inputs and outputs is
derived during this stage. The table extractor is a primitive which derives
the contents of the module core. Internally it uses the recognize primitive
to notice the presence or absence of transistors, and fills the table accord
ingly. When the module is reconstructed, the functionality in the table is

124 The hierarchy reconstruction implementation

automatically compared to the intended functionality. This method has
been elaborated in [Kuppe89.1] and [Kuppe89.2].

For Category 3 modules that are not described by a table, a different
and dedicated solution might be needed.

5.3 An example of a parameterized type descrip
tion

In the previous section, parameterized type descriptions were used for hi
erarchy reconstruction of macro-cells. In this section an example of a pa
rameterized type description implementation is given. Parameterized type
descriptions are regarded as non-parameterized type description generators.
From a parameterized type description, a simple, non-parameterized type
description can be instantiated. In Vera, a parameterized type description
is a function which looks like a simple type description template. It is writ
ten in Common_LISP format. Often occurring constructs are supported by
Vera functions.

The parameterized processor of Section 5.2 is defined as follows:

Function PROCESSOR (nr)
'(,(concat 'processor nr)

)

(terminal-classes (cin ,@(r-1-a-i '(x y out)
nr))

network ((control element! cin cO cl)
(,(concat 'forkslice- nr) f cO cl

,@(r-1-a-i '(x y out)
nr)))

)

restrictions (()

()

())

Some remarks on details of the generator definition:
The parameterized processor has a variable number of terminals and con
sists of a control element and a fork-slice-<n>. The backquote "'" indicates
that everything is meant literally, except for the expressions starting with
a comma ",",which must be evaluated. Concat (s) is a function for string

5.4 Reconstruction order and hidden hierarchy 125

concatenation. The at operator "@" removes the outer set of parenthesis
in the outcome of an expression. The function r-1-a-i (1 n) is short
for Repeat-List-And-Increment, which returns a list containing n copies of
l, concatenated with the iterative number. For example: r-1-a-i ('(in
out) 2) returns (inO outO in1 out1). For Figure 5.2 the following non
parameterized type will be generated:

(processor4
(terminal-classes (cin

network ((control cin
(forkslice-4

)

)

restrictions (()

()

())

xO
x1
x2
x3
cO
f

yO outO
y1 out1
y2 out2
y3 out3)
c1)

cO c1
xO yO outO
x1 y1 out1
x2 y2 out2
x3 y3 out3))

Parameterized type descriptions are straightforward and easy to write, for
they only contain connectivity information.

5.4 Reconstruction order and hidden hierarchy

After having described different reconstruction methods for various hier
archy constructs in 'the last section, this section discusses the problem of
reconstruction order and hierarchy in the type descriptions. Since any
reconstruction rule only searches occurrences of one (parameterized) tem
plate at a time, a given set of templates should be ordered, to apply the
reconstruct rules one-by-one. One speaks of hidden hierarchy when a
template of a component type contains structures that are a template of
another component type.

126 The hierarchy reconstruction implementation

An example
The following example will show that the reconstruction order, the type
descriptions and hidden hierarchy are strongly related.

Suppose one starts with the following set of type descriptions.

(INVERTER
(Terminal-names (in out)
Terminal-classes (in out)
Network ((mos t1 out in vdd vdd ? ? ptype)

(mos t2 out in gnd gnd ? ? ntype))
Global-nets (vdd gnd)
Restrictions ((vdd gnd) ((in)(out)(vdd)(gnd)) () ())))

(MEMORY-CELL
(Terminal-names (b binv r/w)
Terminal-classes (b b r/w) ; b and binv permutable
Network ((mos t1 b r/w b1 gnd ? ? ntype) pass trans.

(mos t2 b2 b1 vdd vdd ? ? ptype) inverter p
(mos t3 b2 b1 gnd gnd ? ? ntype) inverter n
(mos t4 b1 b2 vdd vdd ? ? ptype) inverter p
(mos t5 b1 b2 gnd gnd ? ? ntype) inverter n
(mos t6 b2 r/w binv gnd ? ? ntype)) pass trans.

Global-nets (vdd gnd)
Restrictions ((vdd gnd) ((b)(binv)(r/w)(vdd)(gnd)) () T)))

In this case, both the inverter and the memory-cell type have the same
hierarchical level, since their template consists of transistors only. Since
two inverters (t2,t3 and t4,t5) can be recognized in the template of the
memory-cell, this set of type descriptions contains hidden hierarchy. There
are two ways to proceed.

The first solution is to reconstruct the memory-cells in a main circuit
before reconstructing the inverters, i.e., by using the above type descrip
tions, and the following

reconstruction order (memory-cell • inverter).

A second solution is to remove the hidden hierarchy, i.e., change the
type description into

(INVERTER
(Terminal-names (in out)
Terminal-classes (in out)

5.4 Reconstruction order and hidden hierarchy 127

Network ((mos t1 out in vdd vdd ? ? ptype)
(mos t2 out in gnd gnd ? ? ntype))

Global-nets (vdd gnd)
Restrictions ((vdd gnd) ((in)(out)(vdd)(gnd)) () ())))

(MEMORY-CELL
(Terminal-names (b binv r/w)
Terminal-classes (b b r/w)
Network ((mos t1 b r/w b1 gnd

(inverter i1 b2 b1)
(inverter i2 b1 b2)

; b and binv permutable
? ? ntype) pass trans.

(mos t6 b2 r/w binv gnd ? ? ntype)) ; pass trans.
Global-nets (gnd)
Restrictions ((gnd) ((b)(binv)(r/w)(gnd)) () T)))

and use the

reconstruction order (inverter , memory-cell).

This example shows that for a set of hierarchy reconstructions, the levels
used in the templates and the reconstruction order are strongly related,
and should be chosen with care.

Ambiguity
As a first step to get an reconstruction order, a component type should be
matched only after its children in the hierarchy (i.e., the component types
in its network entry) have been reconstructed. This leads to a partial order.
Secondly, if more than one type has all its children reconstructed, the types
with the highest component number should be selected first. In this way,
smaller templates are not accidently recognized in larger templates.

However, there is no guarantee, even if we use the above guidelines,
that the intended hierarchy of a correct main circuit is reconstructed. The
reason is that the matching process is ambiguous because the result may
be different when different reconstruction orders are applied. This means
that when a verification by hierarchy reconstruction is not successful, the
main circuit may or may not contain an error. The following ambiguity
problems might be encountered.

1. Hidden hierarchy. In this case isomorphic structures might have dif
ferent hierarchical levels. For example, a type might contain an in
verter as a component, and two transistors forming a component next

128 The hierarchy reconstruction implementation

to it. When this type is searched for, after the reconstruction of an
inverter, the type is not reconstructible, since reconstruction of the
two inverters leaves a structure non-isomorphic to this type. Alterna
tively, when the type is ordered before the reconstruction of inverters,
no inverters are present, also preventing the recognition of the struc
ture.
As another example, different types might have isomorphic templates,
i.e., have isomorphic network and restriction entries.

2. Partially overlapping matches. A structure C might be recognizable
at the borders of a structure A and B. When C is reconstructed
first, neither A nor B are reconstructible. When either A or B are
reconstructed first, C is not recognizable.

The first ambiguity problem is solvable, by transforming the type templates
and reconstruction order according to order-irreducibility [Pelz91], [Pelz94].
For a given hierarchy of n templates H, described by a set of type de
scriptions, and a reconstruction order 0 = (tl, ... 'tn), order-irreducibility
means that every template ti E 0 is not isomorphic to any of the templates
ti+l, ... , tn. In other words, there should not be a hidden match in there
mainder of the reconstruction order. In the inverter/memory-cell example
shown above, both indicated solutions are order-irreducible. Similarly, the
examples for the first ambiguity problem can be solved by changing the
types, or by removing isomorphic types completely.

In Vera, an analysis tool called the TD-MONITOR [Koste92.1] is present,
capable of generating an irreducible order for the current type templates,
or of interactively helping to remove hidden hierarchy from the type de
scriptions. In addition, a given reconstruction order can be checked for
irreducibility. A complication, however, is the possibility of having isomor
phic templates, where one might be more rigidly defined than the other.
For example, the template networks

((mos p1 out1 in1 vdd vdd ? ? pmos)
(mos n1 gnd in1 out1 gnd ? ? pmos))

and

((mos p1 out1 in1 vdd vdd ? 1e-6 pmos)
(mos n1 gnd in1 out1 gnd ? 1e-6 pmos))

are isomorphic, but the first one matches to more structures (including
those with different length values) than the second. In a reconstruction

5.5 Layout positions and very large designs 129

order, the more specific structures are obviously put before the more general
structures. The same strategy applies to templates having equal networks,
but different restrictions.

The implementation of the TO-MONITOR is based on the RECOG
NIZE primitive, and it uses signaturing to prevent searching for every tem
plate in every other template. The run times of this tool are very good,
even with type-description libraries of hundreds of types.

The second ambiguity problem however, the case of partially overlap
ping matches, cannot be solved easily. Although one could think of an
exhaustive algorithm, searching for any template in any imaginable combi
nation of templates, this algorithm would have very large run times. Fortu
nately, only several combinations of components makes a rea..<;onable circuit,
so the problem seldomly arises. The experience with applying the hierarchy
reconstruction method so far ha..'l confirmed the rare occurrence of and the
limited harm caused by this problem.

5.5 Layout positions and very large designs

This section shows a simple approach to handle layout positions during hi
erarchy reconstruction. The starting point for this approach is the inclusion
of layout positions per component in a network description. This informa
tion is also the starting point for a simple but powerful extension of the
method to reconstruct hierarchy by using parallel hierarchy reconstruction
processes, each operating on:small sub-designs.

Layout positions in a network description
Layout extraction generates a transistor network from the layout. The
layout extractor computes various attributes per MOS-transistor. For ex
ample, for a component type definition

(MOS

)

(Terminal-classes
Attribute-names

)

(sd gate sd bulk)
(width length model)

the width, length and model of every MOS is extracted from layout. By
adding an extra attribute, named position, to the MOS type

130

(MOS

),

The hierarchy reconstruction implementation

Terminal-classes
Attribute-names

(sd gate sd bulk)
(width length model position)

and all other component types, any information can be stored as an attribute
value for the position. The position of each component can be indicated
in the form of a pair representing the x and y position of a point, or a
4-tuple representing the xl, yl, x2, y2 position of a rectangle. Obviously,
this form is primitive, since 1-shapes etc. cannot be modeled correctly. It
does however serve as a first approach to gain experience when coupling
layout with network information. For the transistor network, the position
is computed by the layout extractor.

Layout positions and hierarchy reconstruction
From a global point of view, hierarchy reconstruction consists of matching,
and abstraction. In the Vera environment, abstraction is performed by
the primitives abstract, abstract-fork, abstract-chain, etc. Every
abstraction replaces a set of matched components by a single component
of a higher leveL By computing the bounding box of each set of matched
components, and assigning this rectangle as position to the associated new
component, the layout positions can be taken into account as welL Figure

..... EJ
A2

. : '1.:1
: : : ~
~ : : : .. ;

A

§J El I

B

Figure 5.3: Abstraction including position information based on rectangular
shapes

5.3 shows a small example of how Al, A2, A3 and Bl, B2, B3 are replaced
by A and B. The figure also indicates the main disadvantage caused by
the rectangular shapes. When lower level components do not overlap, the
abstracted components might overlap. Despite its simplicity, the approach

5.5 Layout positions and very large designs 131

still indicates the layout position the abstracted components stem from
rather well.

Layout positions and large designs
In the current implementation on an HP 9000, a transistor network of
250 000 transistors can be stored in main memory. For larger designs the
execution speed drops dramatically because of a drastic increase of the
number of page faults, eventually leading to thrashing, i.e., the situation
when every memory access leads to a page fault.

One solution could be to cut the network into chunks of 200 000 tran
sistors, before starting hierarchy reconstruction. In that case the following
problems might arise during reconstruction into a chunk:

1. A match of a template might not be found because it is split up. It
is even possible that no matches of any template can be found.

2. A template might lead to an invalid match, because the part that
would prevent the match from recognition in the total network is
part of a different chunk.

By splitting the network based on position information, the first problem
can be solved. Since a designer knows the intended positions of the orig
inal high level network (Figure 1.3), one can cut along the borders of the
high level cells, where low level layout cells are not split up. This way
of splitting a design also solves the second problem partly. However, the
matching net of an internal net should have an equal number of connec
tions per class. If one knows that a net appears in one chunk only, this
is guaranteed. Therefore, during the network splitting, nets appearing in
different network chunks are stored in a separate file. Figure 5.4 shows the
method for a two chunk case. First the design is split ·into two chunks and
nets present in both chunks are administered. Next, two separate hierarchy
reconstruction processes are run, that both use the information present in
the administration. This results in two reconstructed chunks. The merge
operation combines the separate parts into one network. The advantage
of this method are that the result is identical to reconstruction of the to
tal network, only thrashing is prevented. If required, the reconstruction
processes can run in parallel, on separate CPUs.

132 The hierarchy reconstruction implementation

Total ~etwork

a-tao
b: o--=---:-o

I
I
I

I

'

/ Split to~network \

~
~

·----·

Chunk1

Hier!rchy
reconstruction

Abstracted
Chunk1

Chunk2

Hier!rchy
reconstruction

Abstracted
Chunk2

~rgingchu~

Abstracted
total network

Figure 5.4: Splitting a large design and applying hierarchy reconstruction

Chapter 6

Results of the hierarchy
reconstruction method

The verification method presented, has been used for many IC-designs in
many design environments. This chapter discusses the results of hierarchy
reconstruction method. In the first section, the hierarchy reconstruction
process is taken of a representative design, to illustrate the method. The
properties of the hierarchy reconstruction method, are then described in
the second section.

6.1 The hierarchy reconstruction process for the
TDA-1307

In the introduction, Chapter 1, the design process was partitioned into
a high level design step, resulting in a high level structure, and a layout
design step. The layout design step was shown in Figure 1.3, Section 1.3. In
Figure 6.1, this figure has been redrawn, this time with the emphasis on the
verification process of the layout generation part. According to Figure 6.1,
the consistency between the layout and the high level structure is verified
in three steps.

1. The first step consists of the extraction of the layout into a transistor
level netlist.

2. Secondly all macro-cell instances must be reconstructed by using hi
erarchy reconstruction. If an instance is reconstructible, it's connec
tivity is correct.

133

134

Original
high level

Layout
Synthesis

Results of the hierarchy reconstruction method

Step 3:
Structure

Comparison

Step 1:
Layout extraction

Reconstructed
high level
structure

Step 2:
Hierarchy

reconstruction

Transistor level

Figure 6.1: Verification of layout versus original high level structure

6.1 The hierarchy reconstruction process for the TDA-1307 135

3. Finally, the connectivity between the high level components is verified
by comparing the original, with the hierarchically reconstructed, high
level structure.

'iVhen these steps have been performed successfully, the complete top-down
trajectory from the highest structure level to layout is verified fully auto
matically.

To illustrate these steps, we have taken the design of the TDA-1307.
The TDA-1307 performs the digital filtering of a decoded stereo digital au
dio signal prior to D /A conversion. It generates the 1-bit stereo input signal
for a bit-stream DAC, for application in Compact Disk, Digital Compact
Cassette, and Digital Audio Broadcasting. A detailed description of the
design process of the TDA-1307 can be found in [Deloor92]. The layout of
the design is given in Figure E.2 (see Appendix E). The TDA-1307 was de
signed by using the PIRAMID silicon compiler [Wouds90]. The TDA-1307
is a commercial product of Philips Semiconductors.

In the following, all jobs that will be mentioned ran on an HP-9000/735.
The original high level structure of the TDA-1307 that has been mapped
onto the layout, consists of 320 high level components.

1. The extraction of the TDA-1307 layout resulted in a network of 130
000 transistors, and took 45 minutes CPU-time.

2. The hierarchy reconstruction of the TDA-1307 takes in total 30 min
utes CPU-time.

3. Comparing the connectivity of the original high level structure with
the hierarchically reconstructed high level structure, in this case by
using RECOGNIZE once again, takes 40 seconds CPU-time.

In the following, step 2 above, the hierarchy reconstruction from the tran
sistor network to the high level structure is described in more detail. The
reconstruction of a macro-cell instance usually consists of a mixture of
non-parameterized and parameterized cell reconstruction. Just as has been
described for the example in Figure 5.2, Section 5.2, the hierarchy recon
struction process starts with a number of non-parameterized hierarchy re
constructions by using FIND-AND-ABSTRACT, then continues with the
parameterized reconstructions by using rules, and finally some FIND-AND
ABSTRACTs are applied, to collect the various high level sub-blocks that
make up the macro-cells. In the following, the hierarchy reconstruction

136 Results of the hierarchy reconstruction method

is first described per parameterized macro-cell. Next, the hierarchy re
construction is further analyzed by focussing on the non-parameterized
reconstruction, i.e., all FIND-AND-ABSTRACT runs.

Results per parameterized macro-cell
As indicated in Chapter 3, one needs a parameterized cell library and a
controller to perform the reconstruction for macro-cells of Category 1, 2
and 3. As described in Chapter 5, the controller is implemented in the

macro-cell
generator

RAM
AXU

CU/INC
ACU
ALU

MUX Register
ROM
PLA
MAC

category number of man weeks required
(0,1,2 or 3) parameters

layout verification
view rule base

2 5 104 3
1 1 3 0.4
1 1 5 0.4
3 2 52 1
2 8 52 2
2 4 52 2
3 3 52 2

3 3 15 3
2 4 52 2

Table 6.1: Characteristics of the macro-cell generators and man weeks re
quired for the generation of their layout view (including electrical design)
and verification rule base

Vera environment as a rule base. For the PIRAMID environment, a rule
base has been developed for each macro-cell generator. Table 6.1 shows the
characteristics per macro-cell type, the category, the number of parameters
ami the effort spent on each macro-cell generator. Note that this table does
NOT enumerate the effort spent on the TDA-1307, but rather the effort
spent on the PIRAMID macro-cell generators, that have been reused many
times for different designs. The table shows that the extra effort needed to

6.1 The hierarchy reconstruction process for the TDA-1307 137

implement the verification method, ranges from a day up to some weeks for
complex parameterized macro-cells. In comparison with the effort spent on
making the macro-cell generator's layout view, this effort is negligible.

Table 6.2 shows the run time effort spent on the verification of the
actual TDA-1307 design. It enumerates the order of reconstruction, the
number of instances reconstructed, the number of calls to RECOGNIZE,
the number of components left after the current reconstruction step and
the CPU time required per step. During this process, RECOGNIZE was

reconstruction number of calls to components CPU
order instances recognize left (sec.)

Transistors 129804
standard cells 6313 42 70511 479

RAM 3 486 46283 260
AXU 18 25 42144 12

CU/INC 1 8 41824 15
ACU 2 32 40457 49
ALU 2 62 38537 122

MUX Register 15 364 30197 513
ROM 4 697 12530 113
PLA
MAC

Analog, I/0 cells

total 7601

Table 6.2: Hierarchy reconstruction pr-ocess per macro-cell for TDA-1307.

called 7601 times. Of these calls 6645 did not find matches. In total,
RECOGNIZE consumed 1257 seconds CPU.

The following can be derived from Tables 6.2 and 6.1.

1. The total reconstruction time is less than the layout extraction time.

138 Results of the hierarchy reconstruction method

2. The total reconstruction time is dominated by the RECOGNIZE calls.

3. The run times correlate neither with the number of parameters per
macro, the category per macro, nor with the number of recognize
calls.

4. The table extractors of the PLA and ROM .have the largest RECOG
NIZE call count.

5. Most of the calls do not lead to matches.

The resulting high level structure is identical to the original high level struc
ture, thereby proving the correctness of the implementation. Fabrication
of the IC resulted in first time right silicon.

As has been described in Chapter 5, the reconstruction also records,
per component, the bounding box, allowing a layout-like view of the recon
structed high level structure. In Figure 6.2 the bounding box views of the
remaining network is shown. Obviously, the bounding box reconstruction
is a simplified way of positioning the macro-cells, but even then Figures 6.2
and E.2 (see Appendix E) look rather similar. Since the bounding box ex
tractors did not support table-extractor rules, the PLAs and ROMs are not
shown in the figure. The many overlapping bounding boxes just below the
center of the figure are the result of an extensive placement optimization,
that led to a layout in which parts of different cells are strongly interleaved.

Results for non-parameterized hierarchy reconstruction
In order to analyze the results even further, this paragraph describes the re
sults with respect to the rule FIND-AND-ABSTRACT (see Section 5), that has
been applied at different places during the hierarchy reconstruction process.
For the current design, Table 6.3 enumerates the worst case part of the run
times relating to 144 component types to which FIND-AND-ABSTRACT has
been applied. Like Table 4.1, the items are ordered according to the recog
nition effort. The total reconstruction time for non-parameterized cells is
949 seconds. The following remarks can be made.

1. A comparison between the total FIND-AND-ABSTRACT reconstruction
time (949 seconds) and the total recognition time (707 seconds) illus
trates that the recognition dominates the hierarchy reconstruction
process.

2. Only for a few commonly occurring component types, such as RAM
cells and inverters, the recognition is not the dominating factor.

6.1 The hierarchy reconstruction process for the TDA-1307 139

:I I :~ ·· D I

D

- ltKt

Dl I D D - ~ PI
I

0 -
•IIIII QD D

~ o_ =o "
1:::::1-

=:="o •D 0

. I -

Figure 6.2: Reconstructed high level structure of TDA-1307.

140

Component
Type

Noiseshaper
Nor3
Nand4
Dobm_ori
Axu_ori
PinLori
Iisinput_ori
Myespa_ctrl
Decoder2
Ram-cell
Decoder3
Decoder4
Cs_29..sum
Alignment
Tcb_ori
C3_nand
Nand2
C3Jnv
Clockdiv
Synchron
Decoder1
Invertor
Nand3
Glbclock
Cuinc
Cs_24_mux
Clockphins
Acuslice
C3lllatch

' Dtn12tac
C3__mux
C3Jatch
Nand2_cinp
Nand5
Muxreg-top
Reg-cell

Results of the hierarchy reconstruction method

lVI

80014
56182
78744
83564
84543
82356
77736
83914
47644

173132
47386
47106
12729
77868
84769

103351
79861

119333
78699
77812
46606
92331
78828

103798
58423
12905

103861
56624
91097

103711
97376
88003

100659
78744
39587
52524

lVI

1103
14
18

1085
690
472
323
375

15
13
18
21
27

125
240

10
10
6

101
90
12
6

14
93
73
14
69
53
22
36
13
20
8

22
44
18

Match
count

2
0
0
1
1
1
1
1

43
6300

35
50

255
1
1

673
256

15472
1
1

16
10936

12
1
1

20
1

16
238

12
433
294

3
6
1

964

Recognize
(sec.)

120.75
86.81
76.98
63.29
30.73
24.95
14.48
13.80
13.47
13.35
12.77
11.14
10.79
10.06
9.10
9.02
7.46
6.39
6.09
6.06
5.63
4.71
4.65
4.49
4.34
4.16
4.10
3.92
3.55
3.29
3.10
3.01
2.86
2.83
2.83
2.58

Reconstruc-
tion (sec.)

120.98
86.82
76.98
63.48
30.88
25.00
14.54
13.84
16.52
38.87
15.50
15.48
12.28
10.09
9.13

12.44
8.71

. 64.10
6.10
6.07
6.49

66.15
5.40
5.45
4.69
4.48
4.87
4.03
5.00
5.78
6.20
4.73
2.94
3.65
2.85'
8.01 .

Table 6.3: Non-parameterized hierarchy reconstruction results.

6.2 Error location 141

3. In the total reconstruction time (30 minutes), the FIND-AND-ABSTRACT

calls are dominant.

6.2 Error location

Error location is an important issue for verification. It will therefore be
explained in more detail in this section.

A connectivity error can appear in the following ways.

1. Within a macro-cell, preventing it from being recognized as a macro
cell.

2. Within a macro-cell, preventing it from being recognized as the right
macro-cell.

3. At the top-level, a..<J a connectivity error among macro-cells.

r/wl r/w2 r/w3

bt-F============~~--r-1

b2 -+------~3~x~2~--~~--4 Memory Core

b3

Figure 6.3: Error location

The first case is the most frequent one, because the number of connections
inside all macro-cells is the largest, and macro-cells generally are not very
much alike. This also makes the second case unlikely. The hierarchical
approach of the reconstruction process is essential in enabling location of
the first kind of errors quickly. Figure 6.3 shows a reconstruction result
of a 3x3 memory core containing an error illustrating the first two cases.
The error induces both the recognition of an unexpected macro-cell (a 2x3
memory core instead of a 3x3 memory core) and a small part of the circuit

142 Results of the hierarchy reconstruction method

remaining at intermediate levels: a 2-bit word, some inverters and tran
sistors. It can quickly be seen that one inverter input is not connected,
because all understandable parts are represented by high level elements. In
this context it is easy to see that the inverter must be part of a memory
cell, and the correct connection is now obvious (see also Figure 3.1).

Errors are located at the lowest level at which the reconstruction is
stuck. This property is called hierarchical convergence.
Case 2 can be solved by comparing the number of expected instances per
macro-cell to the occurring number.
For the third case, hierarchical convergence doesn't improve error location,
because all hierarchy is already extracted. In this case errors can be found
by netlist comparison at the highest structure level, since a reference net
work description is available at this level. Only a small number of macro-cell
instances are left, compared to the number of transistors at the transistor
level. It is therefore much easier to do the netlist comparison at this level.

With respect to PIRAMID, errors were found in the macro-cell gen
erator descriptions, the macro-cell generator router, the leaf cell layouts
and the highest level structure. In other environments, many errors have
been detected as well, in all parts of the design trajectory. In general the
hierarchy reconstruction method has proven to be both an efficient method
of guaranteeing the absence of connectivity errors, and to be an· efficient
method of detecting connectivity errors.

6.3 Properties of the hierarchy reconstruction
method

In this section the properties of the presented verification method are sum
marized. Structure verification by hierarchy reconstruction has been ap
plied to many designs in different design environments. Based on this
experience, a summary of properties resulted, described as follows:

• The error coverage of the verification method is complete, provided
that the rule base and type descriptions are correct. By separating
the writing of the macro-cell layout generator code and the writing
of the macro-cell verification rule base, the probability that the same
error occurs in both descriptions and thus escapes detection by the
verification process, is very small.

6.3 Properties of the hierarchy reconstruction method 143

• The verification process can be performed automatically. The prob
lems relating to hidden hierarchy (see Section 5.4) are rarely encoun
tered. When compared with simulation, this method is not burdened
with the generation and interpretation of input and output patterns.

• The run times are less than the run times needed for layout extraction,
even for very large circuits.

• Both digital and analog cells can be abstracted.

• The rule base is insensitive to technology changes (layout rules, elec
trical parameters), because the bottom-up description of a macro-cell
is purely graph based.

• A verification rule base is fairly simple to construct, as it is indepen
dent of topology and other layout aspects. The effort spent in writing
the rule base (up to a few weeks) is orders of magnitude smaller than
the effort needed to create the layout generator view (several years).

• The hierarchical partitioning used during the reconstruction is inde
pendent from the hierarchical partitioning used for generating the
layout. This means that any hierarchical view that may be imposed
can be reconstructed. For the application, this is employed to im
pose a functional subdivision during the reconstruction, instead of a
rectangular /layout like approach.

• Error location is straightforward due to the "hierarchical conver
gence" principle. Also, the RECOGNIZE primitive produces effective
feedback when no matches are found.

Chapter 7

Final conclusions and future
work

Verification has become a major bottleneck of the design process, if based on
traditional techniques. Therefore, a recently proposed verification method
called hierarchy reconstruction has been elaborated in this thesis. Starting
from a layout, the method reconstructs hierarchically the highest structure
level, in a bottom-up process.

The hierarchy reconstruction method can prove 100% correctness with
respect to connectivity, in a very short time. It allows the automation of the
verification process for a given design environment. Error location in the
result of the verification process is easy due to an intrinsic property of the
method called hierarchical convergence. In addition, the structure recog
nizer produces effective feedback when matching fails. The effort needed to
set up the required rule base and component libraries is negligible compared
to the effort in creating the layout view of a macro-cell generator.

The method has been implemented in the Vera environment. The flex
ibility and performance of this environment are crucial to the successful
implementation. The efficiency of the method is mainly determined by the
structure recognizer. The recognition algorithm is the core of the method,
and its description forms the core of this thesis.

The application of the method to many designs, in several IC design
environments, has highlighted the above mentioned advantages. So far, no
connectivity error has passed the verification. The execution of a recon
struction job takes less time than the execution of the layout extraction job,
that was done anyway to check the layout design rules. Designs containing

145

146 Final conclusions and future work

over a million transistors are verified without any difficulties. Numerous
design errors have been signalled efficiently. With respect to the digital
parts of a design, alternative verification means, such as switch-level sim
ulation and transistor level netlist comparison, have been abandoned, or
are applied only rarely in design environments that use hierarchy recon
struction. The method has become an important.means to design correctly
operating, complex IC-designs with limited effort.

The Vera environment in general combines structure analysis, recog
nition and structure manipulation. Therefore, it also 'supports structure
synthesis, and additional electrical rule checking at any intermediate level.
So far, this has only been applied from time to time. In the future, this
might become more important.

The current trend in design is for the relation between layout and struc
ture to become more and more important. Not only does the technological
shrinking of typical layout dimensions contribute to a stronger relation be
tween layout and structure, but also the design of combined analog and
digital functions imposes strong demands between the network and layout
of a design. Therefore, a future requirement will be to combine layout and
structure recognition, enabling the checking of complex rules composed of
layout and structure demands.

Other verification needs relate to high level design. In this area behav
ioral verification is at present mainly done by using a partial simulation. In
the future, techniques must be developed to reduce the high level verifica
tion bottle-neck as well. Some formal verification techniques have proven
very useful [Koste93], [Malik88], but still much work has to be done in this
area.

Bibliography

[Veend92.1] H.J.M. Veendrick,
MOS ICs: from Basics to ASICS,
ISBN 1-56081-197-8, VHC Publishers Inc., 1992, p. 338.

[Veend92.2] H.J.M. Veendrick,
MOS ICs: from Basics to ASICS,
ISBN 1-56081-197-8, VHC Publishers Inc., 1992, p. 264-271.

[Veend92.3] H.J .M. Veendrick,
MOS ICs: from Basics to ASICS,
ISBN 1-56081-197-8, VHC Publishers Inc., 1992, p. 242.

[Graaf89] H.C. de Graaf and F.M. Klaassen,
Compact Transistor Modelling for Circuit Design
Springer-Verlag, New York - Wien, ISBN 0-387-82136-8.

[Nagel75] L.W. Nagel,
Spice2: A Computer Program to Simulate Semiconductor Cir
cuits,
Memorandum No. ERL-M520, Electronic Research Labora
tory, College of Engineering University of California, Berkeley
USA, 9 may 1975.

[Feldm92] U. Feldmann et. al.,
Algorithms for Modern Cirwit Simulation,
Allgemeine Electrische Ubertragungen (Hirzel-Verlag Stutt
gart), Vol. 46, 1992, no. 4, p. 274-285.

[Kleih94] E. Kleihorst,
Frequency Domain Analysis for Nonlinear Electronic Circuits,
Thesis TU-Delft, ISBN 90-74445-09-8.

147

148 Bibliography

[VHDL93] A: Hohl,
Proceedings of VHDL-forum for CAD in Europe,
Spring 1993, IFIP WG 10.2/10.5 ECIP Esprit 2072, Innsbruck
Austria.

[Bryant87] R. Bryant,
Boolean analysis of MOS circuits,
IEEE Transactions on CAD, Vol. 6, no. 4, July 1987, p.634-
649.

[Chua75] L.O. Chua and P. Lin,
Computer Aided Analysis of Electronic Circuits: algorithms &J
computational techniques,
Prentice-Hall, Inc., ISBN 0-13-165415-2, 1975.

[Jones94] L.G. Jones, .

[Apte82]

A cache-based method for accelerating switch-level simulation,
IEEE Transactions on CAD, Vol. 13, no. 2, February 1994,
p.211-218.

R.M. Apte et. al.,
Logic function extraction for NMOS circuits,
Proc. Int. Conf. Circuits and Computers, October 1992, p.
324-327.

[Boehn88] M. Boehner,
An automatic logic extractor from transistor to gate level for
CMOS technology,
Proc. IEEE DAC 1988, p. 517-522.

[Bolse89] I. Bolsens,
Electrical correctne.~s verification of MOS VLSI digital circuits
using expert system and symbolic analysis techniques,
PhD thesis 1989, IMEC/ Katholieke Universiteit Leuven.

[Ramme92] W. de Rammelaere,
Static electrical verification of synchronous digital MOS cir
cuits,
PhD thesis 1992, IMEC/ Katholieke Universiteit Leuven.

[Malik88] S. Malik, A.R. Wang et. al.,
Logic Verification using Binary decision Diagrams in a logic

Bibliography

synthesis environment,
Proceedings of ICCAD'88 ..

149

[AFMC89] Internal Workshop on Applied Formal Methods For Correct
VLSI Design,
IMEC-IFIP, Nov. 1989, Leuven Belgium.

[TPCD92] Internal Conference on Theorem Provers in Circuit Design:
Theory, Practice and Experience,
IFIP TClO/WG 10.2, June 1992, Nijmegen The Netherlands

[CHAR93] Correct Hardware Design and Verification Methods,
IFIP WG 10.2, CHARME '93, May 1993, Aries France.

[Genoe92] M. Genoe, L. Claesen et. al.,
Formal Verification of High Level Synthesis by means of SFG
Tracing.
High Level Synthesis Workshop 1992.

[Dever92] F. Deverchere, J.C. Madre et. al.,
Functional abstraction and formal proof of digital circuits,
Proceedings of EDAC '92, p. 458-462.

[Verli92] E. Verlind, L. Claesen, et. al.,
Partial strength ordering applid to symbolic switch level anal
ysis,
Proceedings of EDAC '92, July 1992, p.388-392.

[Ebeli83} C. Ebeling and 0. Zajicek,
Validating VLSI circuit layout by wirelist comparison,
Proceedings of ICCAD 1983, p. 172-173.

[Ebeli88] C. Ebeling,
Gemini II, a second genemtion layout validation program,
Proceedings of ICCAD 1988, p. 322-325.

[Waten83] T. Watanabe, et. al.,
A new automatic logic interconnection verification system for
VLSI design,
IEEE transactions on CAD, vol. CAD-2, p. 70-81, April 1983.

150 Bibliography

[Spick83] R.L. Spickelmier and A.R. Newton,
WOMBAT: A new connectivity verification program,
Proceedings of ICCAD 1983, p. 170-171.

[Batra92] P. Batra and D. Cooke,

[Pelz91]

[Pelz94]

Hcompare: a hieraTchical netlist comparison program,
Proceedings of DAC '92, p. 299-304.

G. Pelz and U. Roettcher,
Circuit comparison by hiemTchical pattern matching,
Proceedings of ICCAD 1991, pp. 290-293.

G. Pelz and U. Roettcher,
Pattern matching and refinement hybird approach to circuit
comparzson,
IEEE Transactions on CAD, Vol. 13, no 2, Februari 1994, p.
264-276.

[ISCAS89] F. Brglez et.al.,
Combinational profiles of sequential benchmark circuits,
Proceedings of ISCAS 1989, p. 1929-1934.

[Jouppi87] N.P. Jouppi,

[Read77]

Derivation of signal flow direction in MOS VLSI,
IEEE Transactions on CAD, Vol. 6, no. 3, p. 480-490.

R.C. Read and D.G. Corneil,
The gmph isomorphism disease,
Journal of graph theory, Vol. 1 (1977) p.363-399.

[Reingol77] E.M. Reingold et. al.,
Combinatorial AlgoTithms, theory and practice,
1977, p. 319-322, Prentice Hall, Inc.

[Sedge88] R. Sedgewick,
Algorithms,
1988, p. 426, Addison-Wesley, Inc.

[Berzt73] A.T. Berztiss,
A backtrack procedure for isomorphism of directed graphs,
Journal of the ACM, Vol. 20, No. 3, july 1973, p.365-377.

Bibliography 151

[Purdom83] P.W. Purdom Jr.,
Search Rearrangement Backtracking and Polynomial Average
Time,
Artificial Intelligence 21 (1983) p.l17-133.

[Harar72 .1] F. Harary,
Graph Theory,
1972, chapter 14, Addison-Wesley, Inc.

[Harar72.2] F. Harary,
Graph Theory,
1972, p. 16, Addison-Wesley, Inc.

[Stanat77] D.F. Stanat,
Discrete Mathematics in Computer Science,
1977, p. 317, Addison-Wesley, Inc.

[Koste89] A.P. Kostelijk,
Vera, a Rule-based Verification Assistant for VLSI Circuit De
sign,
Proc. of the VLSI 89 conference, p. 89-98, August 1989.

[Koste88] A.P. Kostelijk, G.G. Schrooten,
Vera, a Rule-based Verification Assistant for VLSI Circuit De
sign,
Proc. of ESPRIT Technical Week, Brussels 1988, p.263-268.

[Koste91] A.P. Kostelijk and B.J.S. De Loore
Automatic Verification of Library-based IC Designs,
IEEE Journal of Solid State Circuits, march 1991, Vol. 26, nr
3, p. 394-403.

[Koste92.1] A.P. Kostelijk, P.A. Kuppen, B.F. Lynch
Vera User manual,
Internal manual.

[Koste92.2] A.P. Kostelijk, P.A. Kuppen, B.F. Lynch
Vera Reference manual,
Internal manuaL

1[Koste92.3] A.P. Kostelijk, P.A. Kuppen, B.F. Lynch
Vera Rule manual,
Internal manual.

152 Bibliography

[Koste92.4] A.P. Kostelijk,
Method and device for tracking down a prespecified sub-circuit
in an electrical circuit, method for constructing integrated cir
cuit masks using the method,
Patent numbers: EP 05411170, KOKAI 93-233744

[Koste93] A.P. Kostelijk and A. van der Werf,
Functional verification for retiming and rebuffering optimiza
tion,
Proceedings of EDAC '93, p. 99-104.

[Kuppe89.1] P.A. Kuppen,
Functional Verification of Rom Layouts Using Vera,
Internal manual.

[Kuppe89.2] P.A. Kuppen,
Functional Verification of PLA Layouts Using Vera,
Internal manual.

[Deloor90] B.J.S. De Loore and A.P. Kostelijk
Automatic Verification of Library-based IC Designs,
Proc. of the CICC 90 conference, p. 30.6.1-30.6.5, May 1990.

[Deloor92] B.J .S. De Loore et. al.
The design of a competitive ASIC for the consumer market
using the P IRAMID design system
Proceedings of IEEE ASIC 1992 conference, pp. 520-524.

[Wouds90] R. Woudsma et. al.
PIRAMID: an architecture-driven silicon comp·iler for complex
DSP applications Proc. International Symposium on Circuits
and Systems 1990, pp. 2596-2600.

[Rovers93] W.M.H.M. Rovers
Dracula LVS versus Vera, .!AS-Stage at the IC-lab CE, .
Philips' Nat. Lab. Technical Note Nr. NL-TN 268/93, p. 16.

[Rubic84] C. Lob,
RUBICC, A Rule-Based Expert system for VLSI Integrated
Circuit Critique,
Memorandum no. UCB/ERL l\1184/80, University of Califor
nia, Berkeley, September 1984.

Bibliography 153

[Spick88] Rick L. Spickelmier, A. Richard Newton,
Critic:. A Knowledge-Based Program for Critiquing Circuit
Designs,
Proc. of ICCD 1988, p.324-327.

[Nebel86] W. Nebel,
REX - Automatic Extraction of RT-Level Descriptions from
Integrated Circuit Layout Data,
PhD Thesis 1986, University of Kaiserslautern

[Nebel87] W. Nebel and R.W. Hartenstein,
Functional design verification by register transfer net extrac
tion,
COMPEURO 1987, p.254-257

[Papas88] Alexander C. Papaspyridis,
A Prolog based connectivity verification tool
IEEE DAC 1988, p. 523-537.

[Hirsch88] Mark Hirsch and Daniel Siewiorek,
Automatically extracting structure from a logical design,
IEEE ICCAD 1988, p. 456-460.

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

I
j

Appendix A

Summary

Verification of electronic designs
by reconstruction of the hierarchy

This thesis describes an effective method to find errors in an electronic
circuit design, prior to production. Complicated electronic circuitry, such
as integrated circuits, are designed in a number of steps, to elaborate all
aspects in a divide and conquer manner. A synthesis phase and a verifi
cation phase can be distinguished in each step. Synthesis is the activity
to transform a specification into a design. Verification is the activity to
check a design for possible errors. Complicated electronic circuitry may
consist of millions parts. Therefore, verification is cumbersome and time
consuming. In the last decade many CAD-programs have been created
that automate many of the tedious synthesis steps. The number of new
verification programs has lagged behind, so most design effort is currently
spent on the verification phases. The verification method described in this
thesis is called hierarchy reconstruction.

Hierarchy reconstruction is a method to verify the structure of an elec
tronic circuit. A circuit structure describes the network, consisting of basic
components such as transistors, resistances and their interconnections. The
method is based on pattern recognition. Based on a given sub-network with
a given function, such as a memory-cell for example, a pattern recognizer
is used to identify all sub-networks occuring in a design forming a memory
cell. As a next step, every sub-network is replaced by a single "function
component", such as a memory component. This step is called "abstrac
tion". A combination of recognition followed by abstraction is called "re-

155

156 Summary

construction". By applying reconstruction for all intended sub-networks
(functions), checks can be performed whether all basic components are used,
and whether all connections within each function are correct. Hereafter,
the recognizer can be u~ed again to find and abstract new sub-networks,
consisting of function-components, forming more complicated higher level
functions. In this way a complete hierarchy of structures can be recon
structed, for which presence and connections of all functions are checked.

The pattern recognizer is the main tool to allow hierarchy reconstruc
tion, and is therefore described in detail in this thesis. hierarchy recon
struction of structures with repetitive patterns, such as "RAMs" (Random
Access Memories) is described as well. When a reconstruction is not suc
cessfully completed, the structure of a design contains errors. An error can
appear because of the following.

• Too many components are present in the design, or

• some functions are not implemented as intended,
i.e, components are missing, connections are missing,
unintended connections (short-circuits) are present.

An important advantage of the hierarchy reconstruction method is that
correct parts of the design are reconstructed as intended, independent from
errors at other places. By viewing parts that are reconstructed only par
tially, the cause of an error can quickly be traced.

The method has been implemented in a program called "Vera", an
acronym of VERification Assistant. Vera is a general program for struc
ture analysis and manipulation. It has been used for several years now
by many designers within Philips. A representative verification example is
elaborated, to show that very complex designs can be verified efficiently.

Appendix B

N ederlandse samenvatting

Verificatie van ontwerpen van electronische
schakelingen door reconstructie van de hierarchie

Dit proefschrift beschrijft een effectieve methode om een antwerp van een
electronische schakeling op fouten te controleren, voordat het antwerp ge
bruikt wordt om de schakeling te fabriceren. Het controleren van een ant
werp op fouten wordt "verificatie" genoemd. Het proces om van een ont
werpdoeL Je specificatie, tot een on twerp te komen wordt "synthese" ge
noemd. ~ngewikkelde schakelingen worden stapsgewijs ontworpen, waarbij
in elke stap een deelaspect wordt uitgewerkt. Binnen een stap worden syn
these en verificatie direct na elkaar toegepast, om na afloop zeker te zijn
van het resultaat. Ingewikkelde schakelingen, zoals die zich bijvoorbeeld
in een IC (een "chip") kunnen bevinden, zijn opgebouwd uit miljoenen
onderdelen. Hiervoor is verificatie vanzelfsprekend een moeizame en tijd
rovende taak. Doordat sinds enige jaren allerlei computer programma's
gebruikt kunnen worden die de synthese vereenvoudigen, vergt nu verifi
catie de meeste inspanning voor de ontwerper. Voor verificatie zijn er tot
dus ver relatief weinig bruikbare programma's ontwikkeld. De in dit proef
schrift beschreven methode om een antwerp van een electronische schakeling
te verifieren heet hierarchie reconstructie.

Hierarchic reconstructie is een methode waarmee de netwerkstructuur
van een schakeling verifieerd kan worden. Een netwerkstructuur beschrijft
de opbouw van een schakeling, bestaande uit basiscomponenten zoals tran
sistoren, weerstanden, etc., en hun onderlinge verbindingen. De methode
maakt gebruik van een patroonherkenner. Uitgaande van een gegeven deel-

157

158 Nederlandse samenvatting

structuur met een bepaalde functie, zoals bijvoorbeeld een geheugenschake
ling, kan de patroonherkenner in een ontwerp alle dergelijke deelstructuren
identificeren. Elke op deze manier herkende deelstructuur kan vervangen
worden door een "functie" -component, bijvoorbeeld een geheugencompo
nent. Dit wordt "abstractie" genoemd. De combinatie van her kenning
gevolgd door abstractie noemen we "reconstructie". Door reconstructie toe
te passen voor alle beoogde deelstructuren (functies), kan gekeken worden of
alle basiscomponenten gebruikt worden en of de verbindingen binnen een
functie goed zijn. N adat alle basiscomponenten gereconstrueerd zijn tot
functie-componenten, kan de patroonherkenner opnieuw gebruikt worden
om een andere gegeven deelstructuur bestaande uit functie-componenten,
die samen een ingewikkeldere functie vormen, te herkennen en te abstra
heren. Zo kan een hele hierarchic van structuren gereconstrueerd worden,
waarvoor de aanwezigheid van en de verbindingen tussen alle functies gecon
troleerd worden.

De patroonherkenner is de basis van de hierarchic reconstructie me
thode, en wordt in dit proefschrift daarom in detail beschreven. Ook wordt
hierarchic reconstructie beschreven voor deelstructuren waarin repeterende
patronen voorkomen, zoals bijvoorbeeld in zogenaamde "RAMs". Als in
een ontwerp de reconstructie niet lukt, dan is de opbouw van het antwerp
onjuist. Hieraan kunnen de volgende oorzaken ten grondslag liggen:

• Er zitten overbodige componenten in het ontwerp, of

• sommige functies zijn niet geimplementeerd zoals beoogd.

In dit laatste geval kunnen componenten missen, verbindingen missen, of er
zijn niet-bedoelde verbindingen (kortsluitingen) aanwezig. Een belangrijk
voordeel van de methode is dat de deelstructuren waar zich geen fouten
voor doen, hierarchisch gereconstructueerd kunnen worden onafhankelijk
van eventuele fouten elders. Door die deelstructuren te bekijken die maar
gedeeltelijk zijn gereconstrueerd, kunnen oorzaken van fouten snel opge
spoord worden.

De methode is geimplementeerd in het computer programma "Vera",
wat een acroniem is voor VERificatie Assistent. Vera is een algemeen
programma waarmee structuuranalyse (o.a. herkenning) en -manipulatie
gedaan kan worden. Vera wordt al enige jaren met succes gebruikt door
vele ontwerpers binnen Philips. Een representatief verificatie voorbeeld
is uitgewerkt, om aan te tonen dat met deze methode zelfs de meest in
gewikkelde ontwerpen effectief geverifieerd kunnen worden.

Appendix C

Biography

Ton Kostelijk was born in 1961, in Grootschermer, the Netherlands. He
received the MSc degree in physics, at the experimental solid state physics
department of the Free University of Amsterdam, the Netherlands, in 1985,
where he was involved in a project regarding electromigration in metalhy
drides. In 1985 he joined the Philips Research Laboratories, Eindhoven,
the Netherlands. Since then he is involved in CAD for digital and analogue
circuit design, especially in the design verification part. Vera, an environ
ment for structure verification and analysis was created, and also a lot of
effort was spent on support and promotion activities. Since 1991, his focus
is shifted towards behavioral verification, such as functional verification of
retiming and formal verification.

159

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Appendix D

List of symbols

Sets and multi-sets

(xi, x2, .. .)

{xi,X2, ... }
J-La(B)
2B
JNB
B+

lEI
u
n
\

Functions

F:A--+B
F(A)
BA

Fie
[a]F
A/F
[True]p, F
A•B

Ordered (multi-)set
Unordered (multi-)set
Multiplicity of element a in set B
Powerset over B
Set of all multi-sets over multi-set B
Set of all non-empty sequences over B
Number of elements in (multi-)set B
Union set operator
Intersection set operator
Set-minus set operator

Function F with domain A and co-domain B
Image of set A for function F
Set of all functions with domain A and co-domain B
Restriction of function F to set C (Def. 4.1)
Equivalence set of a for function F (Def. 4.2)
Quotient set of A with respect to function F (Def. 4.3)
True-set of function F (Def. 4.5)
Pair function of sets A, B (Def. 4.6)

161

162

Functions and sets of a circuit

T

r

/3
TTC
TA
T
vert(e)
G
v
T
c
N
A
E
TC
TCS
DEGREE
IGI
I
Adj

Non-empty set of types
Non-empty set of terminal classes
Set of attribute names
Set of attribute values
Type Terminal Classes function (Def. 4. 7)
Type Attributes function (Def. 4.8)
Type function (Def. 4.9)
Pair of vertices connected by edge e
Circuit (Def. 4.17)
Set of vertices
Type function (Def. 4.9)
Set of components (Def. 4.10)
Set of nets (Def. 4.11)
Attribute function (Def. 4.12)
Set of multi-edges (Def. 4.13)
Terminal Class function (Def. 4.14)
Terminal Classes function (Def. 4.15)
Degree function (Def. 4.16)
Size of circuit G (Def. 4.17)
Present classes function (Def. 4.24)
Adjacency function (Def. 4.25)

List of symbols

List of symbols 163

Sub-circuit recognition definition

G Main circuit (Def. 4.18)
V, T, A, E, TC Sets and functions of a main circuit (Def. 4.18)
C, N, DEGREE Sets and functions of a main circuit (Def. 4.18)
G Circuit of a template circuit (Def. 4.19)
N E Set of external nets of a template circuit (Def. 4.19)
V, T, A, TC Sets and functions of a template circuit (Def. 4.19)
C,N,NI,DEGREE

w
v

GJv,Q

Sets and functions of a template circuit (Def. 4.19)
Main circuit vertex
Template circuit vertex
Sub-circuit (Def. 4.21)

V, 'T,A,£, TC
C,N, V£QR££
s

Sets and functions of a sub-circuit (Def. 4.21)
Sets and functions of a sub-circuit (Def. 4.21)
Isomorphism predicate (Def. 4.20)

s Set of isomorphisms (Def. 4.20)
M Set of matches (Def. 4.23)

Backtracking

y

Yj
Y, YJ
D
Dj
'D
di
d, dk
p, p-1

Gp,Vp,Ep
Vj
jGpj
jGpiJ

Search space (Def. 4.26)
Coordinate of a search space
Candidate set (Def. 4:31)
Search predicate (Def. 4.26)
Partial search predicate (Def. 4.29)
Solution set of search problem (Def. 4.26)
Demand function (Def. 4.28)
Demand set, partial demand set (Def. 4.28)
Permutation, inverse permutation
General search tree, its vertex set and edge set (Def. 4.27)
Vertex set at level j
Traversal size of a search tree (Def. 4.30)
Partial traversal size of a search tree (Def. 4.30)

164 List of symbols

Sub-circuit recognition algorithm

yk
D,Dj
S, Sj

Gs,Vs,
yi

W, Wj

Lv
Fj
di

Gi
bi
pi
:Fj+l

yj
Uj
u1
Uj
c
Bj
d(j+l,v)
Parj

Search space (Def. 4.32)
Search predicate, partial search predicate (Def. 4.33)
Search list, partial search list
Search tree, its vertex set and edge set (Def. 4.35)
Search tree vertex set at level j (Def. 4.35)
Search tree vertex
Local demand function (Def. 4.36)
Connectivity demand function (Def. 4.37)
Demand function (Def. 4.38)
Template sub-circuit
Template Neighbor Function (Def. 4.39)
Main circuit neighbor set (Def. 4.40)
Tentative candidate set (Def. 4.41)
Candidate set (See Eq. 4.25 and Def. 4.42)
Branching factor function (Def. 4.43)
Initial branching factor estimation function (Eq. 4.30, 4.32)
Branching factor estimation function (Def. 4.48)
Initial candidates function (Def. 4.44)
Border Set (Def. 4.45)
Proto-demand function (Def. 4.46)
Parallel function (Def. 4.47)

Appendix E

Layouts

165

166 Layouts

Figure E.l: Example of a small layout in which two wires aTe exchanged.
The error indication Tesulting fmm L VS is given in Figure E.l a.

Layouts 167

J I I J II

I I I I II II

Figure E.la: The layout parts indicated in an L VS error report, as a result
of the layout shown in Figure E.l. The error messages cover nearly half
of the design.

168 Layouts

F igure E .2: The layout of the TDA- 1307.

Stellingen
behorende bij het proefschrift

Verification of electronic designs by
reconstruction of the hierarchy

door A.P. Kostclijk

I_ In het IC ontwcrp proccs kost vcrificatic de mcestc tijd en inspanning.
Vrc<:rnd g<:nucg worden rc~carch geldcn nog ~teed~ vuornamcli_jk aun
synlhese projecten besleed_

2. Hct hcrkcnncn van st.ructurcn in ccn nctwcr·k is ccn NP-vollcdig
problccrn; <-ksalnidlemin beslaan geschikle algorilhmen voor
toepassing hij IC ontwcrp (dit. proefschrift., hoofdstuk 4)_

3. Oc waurdc van research voor IC ontwerp programmaluur is van
generlei waardc /.onder bcproeving in ecn industrieel ontwerp proces.
Dil<ll'Orn J:ou he! verplicht ge~teld moete;;n worden dat onder:wckc.r~; op
universiteiten hun programmatuur Iaten beoordelen door de induslric.
Dit. zou bovcndicn ccn gcsehikt. middcl .-;ijn om bet k:d· van hct. kmcn
tc schciden in de onafzienbare hoeveelheid publicali<;s.

4_ Net zoals de constructeur van een auto niet de beste coureur is,
is de conslruelClH' van ccn progmmma nict de hnndigsre gebruiker_

5. Een helangrijk maar minder hekend effect van een globale
garhage-collector in een programma is dat thrashing (excessiel'
"pagcn") mirKier gauw oplrcedl.

6. Hd schrijven van een goede gebruikershandlciding is mccr wcrk
dan het schrijven van een goed computerprogramma.

7. Een overeenkomst tussen discrete wiskundc en roddclbladcn is
da! beide zich bezig houden met relaties en, mogdijkerwijs
vermeende eigenschappen dam·van.

8. De lagcrc ~ehool bcoordclingcn voor· "gedrag" en "vli_1t" zouden
op de rnidddbarc school ook gcgcvcn moctcn worden,
maar dan zonde1· default waarde, omdat dit belangrijkerc indicatortn
;;ijn voor de tockornst dan de andere rapponcijfers.

9. Dat deregulcring door de overheid een farce is,
blijkt o.a. uit de gang van zaken rn.b.t. het. kenteken Dee! III.
De rcdcncn om deze in te voeren (o.a. autodiefstal bcmocilijken)
blijkcn achtcraf niet op te gaan, maar deze regeling daarom weer
afschaffen kan blijkbaar niet.

I 0. Naarmate een vakgebied exacter is hcbben de meeste mensen
cr minder interesse voor.

11. Een cultuur wordt sterker bepaald door de ontwikkeling van de
techniek dan door clc ontwikkeling van de kunst.

12. Er is sprake van beroepsdeformatie,
als bij het lezen van ceo krant bij de woorden muis, file, bit,
in eerste instantie gedacht wordt aan klikken i.p. v. piepen,
gcgcvcns i.p.v. auto's, bytes i.p.v. paarden.

13. De invoering van "klaag bclasting" zou het geldtekort van
de overheidsbegroting snel doen verandercn in ccn overschot.
Bovcndien zou hierna voor elke belasting ambtenaar recursie
een bekend en vaak tocgepast begrip kunnen worden.

