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Chapter 1 

Introduction 

The research presented in this thesis addresses a number of aspects relating to 
the perception of place of articulation of prevocalic stop consonants. This research 
topic has received much attention over the years, and a vast amount of literature is 
available. It is the primary purpose of this introductory chapter to summarize the 
findings of a number of relevant past studies and to reason what the present research 
hopes to offer in addition to the existing knowledge. To this end, we will first 
describe the general problem of stop-consonant perception. Next, we will present a 
very general qualitative model for the perception of stop consonants which meets 
most of the assumptions and findings reported in the literature. From the angle of 
the proposed general model, we will discuss 3 major models of speech perception: 
the Haskins Laboratories' motor theory, Blumstein and Stevens' theory of acoustic 
invariance, and Massaro and Oden's fuzzy-logical model of speech perception. We 
will indicate to what extent these theories are relevant to our research. Next, a 
number of experimental studies will be reviewed, again from the perspective of the 
general model. Finally, we will formulate the specific objectives of the research 
presented in this thesis. 

1.1 The problem of stop-consonant perception 

The problem of stop-consonant perception, or indeed of speech perception in gen­
eral, has often been described as a problem of variability and in variance (e.g. 
Liberman and Mattingly, 1985; Perkell and Klatt, 1986; Klatt, 1989; Lahiri and 
Marslen-Wilson, 1991). Utterances which are associated with one and the same 
linguistic class1, be it the distinctive feature2, the phoneme, or larger units, show 
large acoustic variability due to factors such as phonetic context, syllabic stress, 
speaker characteristics (vocal-tract length, articulatory habits, etc.), speaking rate, 
transmission characteristics (background noise, reverberation, filtering, etc.), and 
coincidence (token-to-token variation). Thus, the mapping of the acoustic signals 
to the respective linguistic classes is far from simple. 

The primary problem of variability due to phonetic context has been described 
in terms of the overlapping rather than sequential nature of the speech signal (e.g. 
Liberman et al., 1967; Fant, 1973; Fowler, 1986; Lindblom, 1986). In contrast with, 
for example, printed text, the speech signal cannot be segmented into a sequence 

10nly sub-lexical linguistic classes are considered here. 
2Throughout this chapter we will use the term distinctive feature in a general sense, not discriminating 

between various proposed feature systems (e.g. Jakobson et al., 1952; Chomsky and HaJle, 1968; Stevens 
et al., 1992). 
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of discrete units, each of which uniquely corresponds to one linguistic class. In­
stead, due to the continuous and overlapping movement of the articulators, each 
acoustic segment, however small, generally contains information regarding several 
neighboring phonemes. 

It is in this respect - the acoustic variability with phonetic context - that the stop 
consonant seems to be.the champion of all phonemes. The class of stop consonants 
is defined in the articulatory domain as those phonemes during the production of 
which a complete closure of the vocal tract is realized. The stop consonants of the 
Dutch language are fb, d, p, t, kf. In general, the production of an intervocalic 
stop will consist of the following phases: 

1. Movement of the articulators toward closure position; 

2. Closure; 
3. Release; 
4. Movement of the articulators toward the vowel-target position. 

The major acoustic consequences of these 4 phases are: 
1. Formant transitions from the previous vowel into closure; 
2. Silence or low-frequency low-amplitude vocal murmur; 
3. An initial transient, immediately followed or overlapped by a burst of frication 

noise; 
4. Formant transitions, either voiced or aspirated, into the following vowel. (e.g. 

Fant, 1973; Henton et al., 1992). 
As will be discussed extensively later, perception studies and acoustic analyses 
have shown that (1) the acoustic information in all four phases is relevant for the 
perception of place of articulation, and (2) a majority of the acoustic structures 
in the four phases is highly variable with phonetic context. In addition, due to 
the rapid change of the acoustic properties of the vocal tract immediately prior to 
closure or after release, the resulting acoustic signal is highly dynamic, that is, its 
spectral content changes rapidly over time (e.g. Fant, 1973). This makes it relatively 
difficult to define, let alone measure, a consi~tent set of acoustic descriptors. 

1.2 A general qualitative model for the perception of stop consonants 

In this section we present a general qualitative model for the perception of stop 
consonants. The model is not intended to represent any novel viewpoints, but 
instead provides the author's synthesis of most of the assumptions and findings 
reported in the literature on the perception of stop consonants. Although the model 
is primarily intended to describe the perception of stop consonants, it is generally 
also applicable to the perception of various other consonants. The general setup 
of the model is similar to the "low-level" part of the model of lexical access from 
features (LAFF, e.g. Stevens et al., 1992). It should, however, be stressed that our 
model does not incorporate any lexical effects. 

Figure 1.1 presents a schematic outline of the model. Ovals represent input 
(bottom) and output (top) information, rectangles represent stages in the model 
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speech signal representation(s) 

Figure 1.1: Flow diagram of the general qualitative model of stop-consonant per­
ception. For further explanation, see text. 

3 

where a distinct type of processing takes place. Thick arrows indicate the main 
flow of acoustic and linguistic information, which forms the core of the model. Thin 
arrows indicate additional "control" information, which is used to adjust processes 
in the central branch of the model. We will describe each of the processing stages 
below, working from the speech signal representation(s) upwards. 

1.2.1 Speech signal representation{s) 

The incoming speech signal undergoes one or several initial transformations be­
fore any acoustic properties are extracted. In most studies, some form of spectra­
temporal transformation, like the spectrogram, is assumed to provide the basic 
representation for all subsequent processing. In some studies, on the other hand, 
several sources of information are assumed to be available, such as the spectrogram 
plus the speech waveform envelope (Cole and Scott, 1974), or a combination of a 
spectra-temporal representation which enhances formants and one which enhances 
sudden changes in energy (Seneff, 1988). 

During the last 15-odd years, the representation issue has received much atten­
tion from two major angles. In one approach, representations are sought which 
reflect the properties of the human hearing system more faithfully than the spec­
trogram. The resulting "auditory" speech representations vary in their degree of 
sophistication from relatively basic critical-bands-like filterbanks (e.g. Searle et al., 
1979; Schouten and Pols, 1981; Suomi, 1985, 1987), to models incorporating phase­
locking and adaptation characteristics of the auditory nerve cells (e.g. Delgutte, 
1986; Seneff, 1988; Fox and Feth, 1992). In another approach, the suitability of the 
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traditional quasi-stationary analysis, such as the spectrogram and linear prediction, 
for the analysis of the rapidly time-varying speech signal is questioned. Moreover, in 
some cases it is claimed that the apparent lack of acoustic invariance in stop conso­
nants can be attributed to the inherent unfitness of the classical analysis methods 
for these signals (e.g. Nathan and Silverman, 1991; Velez and Garudadri, 1992). 
Subsequently, novel non-stationary methods are proposed (e.g. Nathan et al., 1991; 
Pitton et al., 1994). Surprisingly, despite the extensive research effort, quantitative 
data on the accuracy of the traditional quasi-stationary techniques are hardly avail­
able. Chapter 2 is devoted to this issue and focuses on the accuracy of measuring 
formant frequencies in highly dynamic speech signals, such as stop consonants. 

Finally, we remark that the separation between representation and cue measure­
ment, although conceptually convenient, is formally difficult to make (Fukunaga, 
1972). In the process of measuring a cue, several subsequent signal transformations 
are usually made, like Fourier transformation, spectral envelope calculation and 
peak picking. It is not evident where the boundary between representation and cue 
measurement is supposed to be situated. In this thesis we will adopt the pragmatic 
definition that the boundary between representation and cue extraction lies at the 
point before which the signal transformations are shared by all cue-measurement 
procedures, and beyond which signal transformations are specialized for each cue 
measurement. 

1.2.2 Extraction of background information 

The background-information module in Figure 1.1 comprises a number of highly 
complex processes which extract information from the speech signal concerning 
transmission conditions, speaker characteristics, and speaking rate. As indicated 
earlier, it is well-known that transmission conditions such as background noise, re­
verberation and filtering have a large influence on speech perception (e.g. Miller and 
Nicely, 1955; Duquesnoy and Plomp, 1988). However, the human hearing system 
seems to be able to partly cancel background noise and reverberation and selectively 
attend to one voice (e.g. Darwin and Gardner, 1987). As far as speaker characteris­
tics are concerned, experiments have shown that confusion in consonant perception 
increases with increasing speaker uncertainty (using several speakers within one lis­
tening session in random order) (e.g. Mullennix and Pisani, 1990). This indicates 
that listeners "tune in" on a certain speaker, that is, cues are measured or inter­
preted differently for different speakers. Rand (1971) showed that listeners perform 
a vocal-tract size normalization in the perception of synthetic stops. Finally, a 
number of acoustic characteristics of stop consonants systematically change with 
changing speaking rate (e.g. Crystal and House, 1988). Listeners seem to adapt to 
these changing cues (e.g. Miller, 1981; Sommers et al., 1992). 

As indicated in Figure 1.1, the background-information module gets input from 
the speech representation. It sends output to the cue-extraction module, indicat­
ing that the details of the cue extraction may depend on information concerning 
transmission, speaker characteristics and speaking rate. Similarly, the outgoing 
connection to the classification module indicates that the classification process may 
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be adjusted to actual background information, e.g. by shifting category boundaries. 

1.2.3 Event detection 

Before any acoustic cue can be measured on the speech signal in a useful way, 
it must be indicated where (along the time dimension) the measurement is to be 
made. The event-detection module performs an initial "bootstrap" of the speech 
signal by locating important acoustic events, such as the onset and offset voicing, 
plosive burst onset, and moments of maximum spectral change. Although in many 
acoustic and perception studies it is often implicitly assumed that the pe~ceptual 
system has the locations of these events at its disposal, some studies make the 
notion of an event detector explicit (e.g. Searle et al., 1979; Blumstein and Stevens, 
1981; Kewley-Port and Luce, 1984; Furui, 1986). The most complete and detailed 
account of an event detector is, however, given in Stevens et al. {1992), Stevens 
(1994), and Liu (1993). They describe an automatic "landmark" detector, which 
locates instances in the speech signal which are associated with major articulatory 
events, such as consonantal closure and release. In addition the landmark detector 
makes a broad phonetic classification of the detected landmark, such as "abrupt 
consonantal closure". 

In our model, the event detector sends information to the cue extraction mod­
ule concerning where and which cues should be measured. Which cues should be 
measured depends on the broad phonetic class of the acoustic event. For instance, 
different place-cue measurements may be needed for a final stop than for an initial 
stop. The event detector is also assumed to send information to the classification 
module, so the classification can be tuned to interpret the incoming cues in ac­
cordance with the broad phonetic class at hand. The event detector receives no 
background information as it is assumed to be able to operate more or less inde­
pendently of speaker identity, speaking rate, and background conditions. 

1.2.4 Extraction of acoustic cues 

The cue-extraction module measures a number of acoustic cues on the speech repre­
sentation(s). A great number of acoustic-phonetic studies have addressed the issue 
which acoustic structures in stop consonants correlate with place of articulation, 
and thus form potential perceptual cues. Besides, a large body of perceptual re­
search has been devoted to the issue whether and how these potential place cues are 
actually used by listeners. These acoustic and perceptual studies will be discussed 
in detail later in this introductory chapter. 

The cue-extraction module is assumed to receive input from the speech represen­
tation(s), the background-information module, the event detector, and the classifier. 
As discussed earlier, background information may be used to adjust details of the 
cue-measurement procedure. The event detector supplies information concerning 
where and what cues are to be measured. Finally, the classifier provides "top­
down" information concerning phonological context, that is, linguistic labels that 
have been determined earlier. Just like the broad phonetic information determined 
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by the event detector, the phonological context may help to determine what cues 
are to be extracted from the speech signal. 

The cue-extraction module outputs the measured cue values to the classifier, 
which will use this information to assign linguistic labels. 

1. 2. 5 Classification 

The classification module determines linguistic labels on the basis of incoming infor­
mation from the cue extractor, the event detector, and the background-information 
module. The cue extractor supplies the actual values of a number of acoustic cues, 
which form an acoustic input vector to some type of classification mechanism. The 
event detector and background-information module supply additional information 
which is used to adjust details in the classification process. For example, classi­
fication boundaries may be shifted according to whether the event is consonantal 
closure or opening, or to suit the speaker's vocal tract length. or speaking rate. 

Many perception experiments have provided descriptive data on the classifica­
tion process, predominantly by describing the shape of the identification functions 
on place-of-articulation continua where one or two cues were systematically varied. 
However, very basic issues in the classification process are still unsettled, such as 
what formal type of classification strategy is used, and what type of linguistic la­
bels are actually determined. With respect to the first. aspect, Kuhl is investigating 
the possible role of prototypes in speech perception. While the prototype seems to 
be a useful concept in modeling vowel perception (e.g. Kuhl, 1992), preliminary 
investigations do not give clear support for the use of prototypes in stop-consonant 
perception (Davis and Kuhl, 1992}. Pisani (1992} recently argued against the as­
sumption of having a single idealized prototype per phonetic category. Instead, he 
promoted the concept of multiple prototypes, or exemplars, per category, covering 
variability due to phonetic context and speaker identity. In the research reported 
in later chapters we will refrain from making assumptions regarding category pro­
totypes. Instead we will make the less restrictive assumption that perception is 
basically governed by category boundaries. This assumption, which is (more or less 
implicitly) also made by a number of other authors (e.g. Lahiri et al., 1984; Jong­
man and Miller, 1991), is a classification-theoretic expression of the fundamental 
axiom that linguistic communication is achieved by transmitting distinctions rather 
than idealized symbols (e.g. Jakobson et al., 1952). 

Another issue which appears to be far from settled is the type of labels which 
form the output of the classifier. Among the proposed linguistic units are distinctive 
features, allophones, segments, and syllables (e.g. Wickelgren, 1976). It is evident 
that the choice of the output units will have important implications for the actual 
structure of the classifier. In our study, it is assumed that the output of the classifier 
is in terms of the place-of-articulation features [labial], [dental], [velar], or in terms 
of the segments /b, d, p, t, k/. Note that for our purpose these two options coincide, 
as we exclusively deal with the perception of place of articulation. 
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1.3 Review of three theories of speech perception 

In this section, three models of speech perception are discussed against the back­
ground of the general qualitative model described earlier (see Figure 1.1). First, we 
will discuss two models which have been highly influential in research on speech per­
ception, the moto-r theory (Liberman et al., 1967; Liberman and Mattingly, 1985), 
and the theory of acoustic invariance (Blumstein and Stevens, 1981; Stevens and 
Blumstein, 1981). The third model that will be addressed is the fuzzy-logical model 
of speech perception (Oden and Massaro, 1978; Massaro and Oden, 1980). Although 
this model has been less influential than the motor theory and the invariance the­
ory, it is discussed here because it will help to put our own research in proper 
perspective. 

1.3.1 The motor theory 

The Haskins motor theory has been expounded in two major theoretical papers: 
Liberman et al. (1967), and Liberman and Mattingly (1985). The primary inspira­
tion to the original formulation of the theory was the finding, in the early Haskins 
research, that the acoustic structures that cue one and the same phoneme can be 
vastly different in different phonetic contexts (e.g. Cooper et al., 1952; Liberman 
et al., 1954). Furthermore, early experiments showed that a sequence of context­
free acoustic segments, each corresponding to a single phoneme, could not convey 
an intelligible message to listeners, unless the rate of information transmission was 
greatly reduced, like in Morse code (e.g. Cooper, 1950; Harris, 1953). This seems 
to indicate that speech is not just coarticulated due to certain articulatory restric­
tion, it needs to be coarticulated in order to be interpretable for listeners. These 
observations led to the concept of the "speech code": in the process of transforming 
a message into sound, the message is encoded in acoustic structures in a non-trivial 
way; perception of speech is the process in which the complex acoustic code is de­
coded and the original message is recovered (Liberman et al., 1967). 

The motor theory explicitly makes the following major claims. 
1. Perception and production of speech are intimately related through common 

processing strategies and representations. 

2. The human nervous system contains a special "speech module", which plays 
a central role in the perception as well as production of speech. Perception 
of speech takes place essentially by correlating the incoming neural patterns 
from the auditory system with outgoing neural patterns that control the ar­
ticulators. 

3. The central linguistic unit of speech perception is the phoneme. 
4. Invariant structures corresponding to the phoneme do not exist at the acoustic 

level. 

5. Invariant structures corresponding to the phoneme exist at the level of the 
neuro-motor commands (original formulation of the theory, Liberman et al., 
1967). 
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6. Invariant structures corresponding to the phoneme exist at the level of the 
intended articulatory gestures (revised formulation of the theory, Liberman 
and Mattingly, 1985). 

Before we discuss these claims from the angle of our general model we make two . 
critical comments. First of all, it is important to realize that part of the claims 
made in the motor theory refer to the neuro-physiological level of speech perception, 
rather than the signal-analytical level, which causes confusion. On the one hand, it 
is claimed that the problem of the acoustic-to-linguistic mapping cannot be solved 
at a signal-analytical level. On the other hand, however, it is claimed that this 
problem is apparently solved by the special speech module. Thus, as Klatt (1989) 
aptly reasons, the difficult problem of the acoustic-to-linguistic mapping is avoided 
by stating where it takes place, rather than how it takes place. The signal-analytical 
formulation of the problem remains open. 

Secondly, in contrast to the two theories which will be discussed next, the motor 
theory is an entirely qualitative theory. The theory only explains or predicts general 
trends rather than quantitative data. 

Let us now briefly review the motor theory from the angle of the proposed 
general qualitative model. First of all, we note that in their discussion of the 
acoustic structure of the speech signal, the motor-theory proponents have always 
concentrated on relatively "detailed" spectra-temporal properties, like formants, 
spectral peaks in the release burst, etc. Obviously, this (implicit) assumption is 
relevant to the cue-measuring module in our model. 

Secondly, it is claimed that the acoustic cues are not directly mapped onto the 
linguistic class, that is, the phoneme, but are instead mapped onto the intended 
articulatory gesture (in the revised motor theory). The phoneme identity is only 
subsequently derived from the intended gestures. In terms of our model this means 
that the classification module actually performs two classifications: one from the 
acoustic cues to the intended gestures, and one from the intended gestures to the 
phoneme. 

Finally, the high variability of acoustic cues with phonetic context and the re­
sulting inevitably high complexity of the decoding process has always been a central 
issue in the motor theory. We can only tentatively translate this view into three 
assumptions in terms of our general model. First of all, it is claimed that no sin­
gle acoustic structure has an invariant relation with the phoneme. Obviously, then, 
more than one acoustic structure, perhaps many, are measured by the cue-extraction 
module in order to identify the phoneme. Next, the emphasis on phonetic context 
may be translated into a large time window within which the cues to a single 
phoneme are extracted. Finally, the complexity of the decoder can be translated 
into the complexity of the classification module, e.g. in terms of the shapes of the 
classification boundaries or multiple prototypes per category. 
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1.3.2 The theory of acoustic invariance 

The theory of acoustic invariance was introduced in a series of experimental studies 
(Stevens and Blumstein, 1978; Blumstein and Stevens, 1979, 1980) and two theo­
retical papers (Blumstein and Stevens, 1981; Stevens and Blumstein, 1981). One 
of the novelties in the approach was the introduction of a new set of acoustic cues 
which capture certain integrative spectro-temporal properties of the speech signaL 
It was argued that the preoccupation in previous studies with detailed acoustic 
structures like release burst and formant transitions was guided by the implicit as­
sumption that " ... the perceptual mechanism operates on the speech signal in much 
the same way as the eye examines attributes of the sound spectrogram", Blumstein 
and Stevens (1980, p. 648). Based on the acoustic theory of speech production 
(Fant, 1960), and previous observations by, amongst others, Halle et al. (1957) and 
Zue (1976), gross spectral characteristics of the initial 20-odd ms after consonan­
tal release were hypothesized to contain context-independent information for place 
of articulation of stop consonants. The onset spectra of labial, coronal, and velar 
stops were assumed to have diffuse falling, diffuse rising, and compact character­
istics, respectively. The terms compact and diffuse refer to the spectrum having 
respectively one, or no, pronounced energy concentrations. The terms falling and 
rising indicate that the spectral energy decreases or increases, respectively, with 
increasing frequency. 

The invariance theory makes the following claims. 

1. The distinctive feature, rather than the phoneme, is viewed as the central 
linguistic unit for perception. 

2. An invariant acoustic property is associated with each value of each of the 
distinctive features. The term invariant was originally defined in the most 
far-reaching sense, that is, independent of phonetic context, speaker identity, 
speaking rate, transmission conditions and language. 

3. The invariant acoustic structures are of an "integrative" nature, which means 
that for the measurement of an acoustic property, a relatively large window is 
used across the time as well as frequency dimension. Acoustic structures such 
as formant onset frequencies typically do not qualify as integrative properties, 
and an explicit distinction between release burst and voiced formants is not 
made. Although the acoustic properties associated with place of articulation in 
stop consonants are the most elaborated, acoustic properties for other features 
have been proposed as well (e.g. Stevens, 1980; Mack and Blumstein, 1983). 

4. The acoustically invariant properties are the primary perceptual cues. The 
term "primary" has two components, namely innate and most important. The 
infant is born with the ability to extract the invariant cues and is thus able to 
cope with the interpretation of linguistic distinctions in all languages. During 
infancy, the listener learns to use, beside the invariant cues, context-dependent 
cues, such as formant transitions, which in natural speech always accompany 
the invariant cues. The context-dependent cues are, however, merely "sec-
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speech signal representation(s) 

Figure 1.2: Flow diagram of the theory of acoustic invariance from the perspective 
of the general qualitative model of stop-consonant perception. 

ondary" cues, and are only of decisive importance when the primary cues 
somehow cannot provide unequivocal information. 

Due to criticism from various angles and new experimental findings, the theory 
of acoustic invariance has undergone revisions in certain aspects. First of all, the 
claim that the gross shape of the static onset spectrum provides the primary cue 
to place-perception in stop consonants has been abandoned. Instead, the change 
in the gross spectral characteristics during the first few tens of milliseconds after 
release has been put forward as the primary place-cue (Lahiri et al., 1984). Sec­
ondly the claim that distinctive features are cued by the same acoustic properties 
in all languages has been weakened. Cross-linguistic acoustic analyses have shown 
that the acoustically invariant property associated with a certain feature is only 
maintained in a language if the feature actually plays a distinctive role ( Jongman 
et al., 1985). 

The high specificity of the theory of acoustic invariance at the signal-analytic 
level allows it to be rather precisely translated in terms of our general modeL In 
its most rigorous form, the theory can be viewed as the most basic instance of the 
general model, as illustrated in Figure 1.2. 

The background-information module has disappeared, as well as the information 
flow from the classifier to the cue-measurement module and from the event detector 
to the classifier. Furthermore, the cue-measurement module is claimed to measure 
one integrative acoustic cue per distinctive feature. The classifier is relatively sim­
ple (the cue space has low dimensionality), and outputs distinctive features. 
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If we compare the theory of acoustic invariance with the motor theory from the 
perspective of our general model, two differences are striking. First of all, the type 
of cues that are hypothesized to be used by listeners are different. In the motor 
theory, relatively detailed, spectrographically explicit structures are viewed as the 
relevant cues, while the invariance theory emphasizes the role of gross, integrative 
acoustic properties. As the distinction is very relevant for the research presented in 
this thesis, it is useful to define the terms detailed and gross cues more formally here. 
We define a detailed spectro-temporal cue as the result of an acoustic measurement 
with high resolution in the time domain (in the order of 1 ms), or in the frequency 
domain (in the order of 50 Hz). Examples of detailed cues are formant frequencies, 
e.g. at voicing onset, formant transition rates, or certain release-burst characteristics 
such as the length of the burst. Gross spectro-temporal cues, on the other hand, 
are defined as the result of integrative acoustic measurements with resolutions in 
time and/or frequency above, say, 10 ms and 500 Hz, respectively. Typical gross 
cues are the global spectral tilt and compactness of a spectrum, and the evolution 
of these quantities over time. Furthermore, both types of cues can be of a static as 
well as dynamic nature. 

A second obvious difference is the hypothesized complexity of the perception 
process. In the invariance theory, linguistic classification is assumed to take place 
on the basis of one cue per distinction, which is invariant across context, speaker, 
speaking rate and language. In the motor theory, linguistic classification takes place 
on the basis of multiple cues per distinction, all of which are highly variable with 
context, speaker, speaking rate and language. 

Finally, it should be noted that, like in the motor theory, speech production 
plays an important role in the invariance theory. We have discussed that in the 
motor theory, speech perception is viewed as the "reverse" of speech production, 
in the sense that the articulatory gesture is recovered which could have produced 
the perceived speech sound. In the invariance theory, speech production theory is 
used to derive robust, invariant acoustic properties associated with a distinctive 
feature. Because the distinctive features have firm roots in articulation, the per­
ceptual mechanism of extracting these robust acoustic properties is actually very 
similar to recovering articulatory information. In contrast with the motor theory, 
however, no claims are made on neurological modules or processes. 

1.3.3 The fuzzy-logical model of speech perception 

The fuzzy-logical model of speech perception (FLMSP, Oden and Massaro, 1978; 
Massaro and Oden, 1980) is an application of the general fuzzy-logical model of per­
ception, which has been used to model various types of human classification behav­
ior, in particular spoken and written text (e.g. Oden, 1979; Massaro and Friedman, 
1990). In contrast with the two previously discussed theories, the FLMSP is not 
intended as a comprehensive linguistic or psychological theory of speech perception. 
Instead, the FLMSP provides a mathematical framework which is mainly used to 
test certain fundamental processing assumptions, such as whether or not acoustic 
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cues are measured independently on the speech signal. The model is discussed 
here because it is one of the very few mathematically fully developed categorization 
models which has been applied to speech perception. In chapter 3 of this thesis we 
will introduce a new general model of human categorization behavior which, like 
the FLMSP, is able to predict quantitative data, but differs from the FLMSP on a 
number of accounts. 

Before we explain how the model works, we briefly discuss the general experi­
mental procedure which is followed in Oden and Massaro (1978) and Massaro and 
Oden (1980). The two papers have large overlap. In both papers, the model is used 
to evaluate whether or not it is formally necessary to assume that two acoustic 
cues, which are relevant to both the place distinction and the voicing distinction, 
are measured independently on the speech signal. To this end, a two-dimensional 
synthetic stop-vowel continuum is created by varying VOT and the onset frequen­
cies of F2 and F3 orthogonally. Listeners classify the stimuli at the four "corners" 
of the two-dimensional continuum reliably as /baej, /dae/, fpaef, and ftaef, re­
spectively. Next, the entire continuum is presented to listeners, who are instructed 
to classify the initial consonant as either B, D, P, or T. The results show that both 
acoustic cues (VOT and formant transitions) are used for perception of both dis­
tinctions, although VOT mainly cues voicing and the formant transitions mainly 
cue place of articulation. 

In the FLMSP the basic assumption is made that each of the possible response 
classes is represented in long-term memory by prototypes, and that classification is 
based on the comparison of an incoming stimulus to each of the prototypes. The 
following steps are made in the model. 

1. The levels of the acoustic parameters in the continuum are mapped onto an in­
ternal representation, which indicate the degree to which a particular acoustic 
property is present in the signal. With respect to this internal representation, 
it must be noted that the separation between acoustic features (cues) and 
distinctive features is somewhat obscured due to the terminology used. The 
fuzzy predicates representing the internal representation of the levels of VOT 
and formant onset frequencies are called respectively VOICED and LABIAL in 
Oden and Massaro (1978), while they are called SHORT VOT and HIGH F2-
F3 TRANSITIONS in Massaro and Oden (1980). Secondly, it should be noted 
that each level of an acoustic parameter in the continuum receives a separate 
model parameter in the internal representation. Generally, after fitting the 
model, the resulting parameter values strongly suggest a sigmoid-like map­
ping of acoustic cue to internal representation (e.g. Massaro and Oden, 1980, 
Table V, p. 1006). Nevertheless, this rather obvious step is not explicitly 
modeled. In our opinion, this greatly reduces the generalizability of particular 
model fits, and leaves a gap in the complete trajectory from acoustic signal to 
perceived linguistic class. 

2. The match of the stimulus to each of the prototypes is evaluated. Each re­
sponse class is represented by a prototype, which is formalized in the form of 
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a fuzzy proposition. The fuzzy proposition is constituted of fuzzy predicates 
- representing the desired internal value of acoustic cues - linked by fuzzy­
logical operators. For example, in Massaro and Oden (1980) the phoneme /t/ 
is represented by the fuzzy proposition 

(HIGH F2-F3 TRANSITIONS) AND (NOT(SHORT VOT)) 

which can be translated into the mathematical expression 

T=HFT·(l SV) 

where T represents the response strength for /t/, HFT is the internal repre­
sentation of the onset frequencies of F2 and F3, and ( 1 - SV) is the internal 
representation of the length of VOT (SV stands for "SHORT VOT", (1- SV) 
stands for "LONG VOT". T, H FT, and SV all have values in the interval 
[0, 1]. 
Thus, for each stimulus, the response strength for all possible responses is 
determined by evaluating the match to each of the prototypes. 

3. The response strength for each of the possible response classes is converted 
into response probabilities using the (unbiased) choice model of Luce (1963): 

Pi 
Si 

Lj Sj 

where Pi represents the probability of choosing response class i, si is the re­
sponse strength of class i, and the summation is made across all possible 
responses. 

In terms of our general model, the assumptions of the FLMSP are almost com­
pletely confined to the classifier. Concerning the cue-measurement module, the only 
claim is that the output values represent the degree to which a particular property 
is present in the signal, which is expressed in a value between zero and one. In 
contrast with the previously discussed models, the classifier is mathematically fully 
developed in the FLMSP. The classification is based on the matching of a stimulus 
to category prototypes. Each prototype is essentially a collection of desirable prop­
erties. Like for the motor theory, the output labels of the FLMSP are phonemes. 

Concerning the relation of the FLMSP to the categorization model used in this 
thesis we note the following. First of all, we use a model which is based on the 
multi-layer perceptron (MLP). Fundamentally, this model differs from the FLMSP 
in that it is based on the concept of linguistic distinctions rather than linguistic 
prototypes. Secondly, in contrast to the FLMSP, our model does account for the 
entire transformation of acoustic cues to linguistic classes. Furthermore, the FLMSP 
is mainly used to study the integration of 2 acoustic cues in the perception of place of 
articulation as well as voicing. We will confine ourselves to studying the integration 
of several acoustic cues in the perception of place of articulation alone. Finally, we 
remark that we will model the perception of (manipulated) natural utterances in 
several phonetic contexts. These stimuli. have a far greater acoustic variability than 
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the highly stylized synthetic stimuli in Oden and Massaro (1978) and Massaro and 
Oden (1980). In their stimuli, only two acoustic parameters are varied, and only 
one vowel context is used. 

1.4 Review of literature on the perception of stop consonants 

In this section, a selection of the large number of research papers on the percep­
tion of place of articulation in initial prevocalic stop consonants. We will restrict 
ourselves to experimental studies which directly pertain to the cue-measurement 
and classification modules in our general model. In most of these studies, the influ­
ence of background information is minimized by fixing transmission conditions or 
using synthetic speech. We will review acoustic analysis studies in which the acous­
tic properties of stop consonants are described and in which potential perceptual 
cues are proposed. Furthermore, a number of perceptual studies will be discussed. 
Roughly, the perceptual studies can be divided into two groups. In one group the 
necessity or sufficiency of certain acoustic segments for the correct perception of 
place of articulation is established by respectively deleting or isolating them from 
natural utterances. In the other group, the influence of acoustic cues to the per­
ception of place of articulation is investigated by systematically varying the values 
of the cues, for example by creating place-of-articulation continua and studying the 
resulting identification functions. 

Rather than reviewing the literature in chronological order, we will discuss the 
relevant literature according to the type of cues under study. Specifically, the 
discussion is divided into two parts, one on detailed cues, and one on gross cues. 

1.4.1 Detailed cues 

Closure 
In this thesis we will deal exclusively with initial prevocalic stops. The closure 
duration as a place cue is therefore of no concern. However, Dutch voiced plosives 
generally do have extensive voice bars, that is, low-frequency vocalic murmur prior 
to consonantal release (Slis and Cohen, 1969). Barry (1984) studied perception of 
place of articulation from voice bars excised from naturally uttered German stop­
vowel syllables. Listeners identified place of articulation significantly above chance 
level. It has been shown by Van Wieringen (1995) that deletion of the voice bar 
from Dutch voiced stops stronglyly reduces correct perception of place of articula­
tion. 

Release burst 
Release bursts carry considerable perceptual weight. This is demonstrated by ex­
periments in which release bursts which are excised from natural speech were played 
back back to listeners, either presented in isolation, or spliced onto stationary vow­
els or formant transitions of conflicting utterances. Furthermore, deleting release 
bursts from stop consonants impairs the perception of place of articulation (Schatz, 
1954; Fischer-J0rgensen, 1972; Cole and Scott, 1974; Dorman et al., 1977; Ohde 
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and Sharf, 1977; Pols and Schouten, 1978; Pols, 1979; Schouten and Pols, 1983; 
Repp and Lin, 1988; Van Wieringen, 1995; see also chapter 5). A number of 
acoustic structures in the burst have been hypothesized to actually carry the place­
of-articulation information. 

First of all, various spectral properties of release bursts have been discussed. 
Acoustic analyses have shown that labial bursts have spectral peaks at low frequen­
cies (below 1 kHz), or show a diffuse-falling shape. Dental or alveolar (henceforth 
coronal) bursts have high-frequency peaks (above 3 kHz), or a diffuse-rising shape. 
The spectral properties of both labial and coronal bursts are generally hardly de­
pendent on the following voweL Velar bursts, on the other hand, display a strong 
energy peak in the mid-frequency range (1 to 4kHz), the position of which highly 
depends on the vowel context. In front-vowel context the energy peak is wide and 
lies in the F3-F4 region, while in non-front vowel contexts the peak is located at 
or slightly above the F2 at the onset of voicing (Fischer-J¢rgensen, 1954; Halle et 
al., 1957; Winitz et al., 1971; Fant, 1973; Zue, 1976; Dorman et al., 1977; Edwards, 
1981; Repp and Lin, 1988; Keating and Lahiri, 1993; Keating et al., 1994). Percep­
tion experiments with synthetic signals and burst-spliced natural utterances have 
shown that the spectral peaks of the burst are indeed perceptually relevant, and 
that they are evaluated in relation to the vowel context (Cooper et al., 1952; Schatz, 
1954; Hoffman, 1958; Ainsworth, 1968). 

Beside the spectral properties, the length and energy of the release burst have 
been found to correlate with place of articulation. Labial bursts are generally 
weaker than coronal and velar bursts (Fischer-J¢rgensen, 1954; Fant, 1973; Zue, 
1976; Dorman et al., 1977; Edwards, 1981; Repp and Lin, 1988). Ohde and Stevens 
(1983) have shown that this energy cue is indeed used in the perception of the 
labial-alveolar distinction. 

The length of the release burst (excluding aspiration) has been found to in­
crease with increasingly backward place of articulation, that is, velar bursts are 
longer than coronal bursts, which in turn are longer than labial bursts (Fischer­
J(!lrgensen, 1954; Winitz et al., 1971; Fant, 1973; Zue, 1976; Dorman et al., 1977; 
Tekieli and Cullinan, 1979; Crystal and House, 1988). The perceptual importance 
of the burst length has been established by Ainsworth (1968). He found that, for 
synthetic stop-vowel syllables, the velar percept was enhanced by a longer burst. 
Notice that Dutch unvoiced stops generally have little or no aspiration, that is, 
the release burst is immediately followed by the onset of voicing (Slis and Cohen, 
1969). Thus, burst length roughly coincides with VOT for Dutch unvoiced stops. 
Therefore we will not further discuss the literature on VOT as a place cue. 

Formant transitions 
Since the early days of speech-perception research, formant transitions have been 
considered to be important carriers of information regarding place of articulation 
(e.g. Cooper et al., 1952). We define formant transitions here as changing vocal 
tract resonances, excited by either glottal vibration or aspiration noise, which are 
associated with the movement of articulators from the place of constriction to a 
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target position corresponding to the intended vowel. Perception of place of articu­
lation is generally moderate to excellent when formant transitions are excised from 
natural speech and presented in isolation or combined with the subsequent ( sta­
tionary) vowel. Furthermore, formant transitions which are preceded by a burst 
of a conflicting consonant will generally still carry considerable perceptual weight 
(Fischer-J0rgensen, 1972; Dorman et al., 1977; Ohde and Sharf, 1977; Pols and 
Schouten, 1978; Pols, 1979; Schouten and Pols, 1983; Van Wieringen, 1995; see also 
chapter 5). 

The place-of-articulation information is generally considered to reside in the fre­
quencies of F2 and F3 at the onset of voicing (or aspiration), and in the direction 
of their initial change. Early research at Haskins laboratories demonstrated that 
perception of /b/, /d/, and /g/ could be induced by stylized synthetic two-formant 
stimuli in which the F2 "pointed at" invariant starting frequencies, or loci, of 720 
Hz, 1800 Hz, and 3000 Hz, respectively. In terms of the initial direction of F2, 
labial, alveolar, and velar stops were found to need a rising F2, a falling F2 and 
a strongly falling F2, respectively (e.g. Cooper et al., 1952; Liberman et al., 1954; 
Delattre et al., 1955). Subsequent work by Ainsworth (1968) showed that the locus 
concept, although adequate as a "minimal rule" in the synthesis of highly stylized 
stimuli (Liberman et al., 1959), needed considerable refinement in more realistic 
stimuli. In particular, Ainsworth stressed the general importance of the release 
burst for the velar percept, and for other stop places in front vowel context. A 
number of acoustic studies showed that the F2-locus could hardly be found in nat­
ural speech signals. Frequencies of F2 and F3 at voicing onset or traced back to 
the instant of consonantal release showed high variability, particularly with vowel 
context (Fischer-J0rgensen, 1954; Halle et al., 1957; Ohman, 1966; Fant, 1973; 
Kewley-Port, 1982). However, it was reported by several authors that the combi­
nation of various formant measures could lead to good clustering of stops according 
to place of articulation, e.g. F2 and F3 at voicing onset (Ohman, 1966; Fant, 1973), 
F2 at onset and in the vowel nucleus (Ohman, 1966; Sussman et al., 1991), and F2 
and F3 at voicing onset and F2 in the vowel nucleus (Ohman, 1966; Kewley-Port, 
1982; Sussman, 1991). A discriminant analysis by Sussman (1991) on the basis of 
F2 and F3 at voicing onset and F2 in the vowel nucleus yielded an overall correct 
classification rate of 76% for voiced prevocalic stops (chance level at 33%). When 
separate analyses were performed for male and female voices and for front and back 
vowels, the average correct classification rose to 85%. 

1.4.2 Gross cues 

As discussed earlier, Blumstein and Stevens proposed a novel set of acoustic cues 
for place of articulation in stop consonants in a series of acoustic and perceptual 
studies (Stevens and Blumstein, 1978; Blumstein and Stevens, 1979, 1980). Based 
on the acoustic theory of speech production (Fant, 1960), and previous observations 
by, amongst others, Halle et al. (1957) and Zue (1976), gross spectral character­
istics of the initial 20-odd ms after consonantal release were hypothesized to con-
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tain context-independent information for place of articulation of stop consonants. 
Labial, coronal, and velar stops were claimed to have diffuse falling, diffuse rising, 
and compact characteristics, respectively. An acoustic study showed that, on the 
basis of these gross spectral characteristics, naturally uttered stop-vowel syllables 
could be classified at a correct rate of 85% according to place of articulation, across 
speakers and vowel contexts (Blumstein and Stevens, 1979). Furthermore, percep­
tion experiments with synthetic stimuli demonstrated that the initial 25 ms of the 
speech signal after release was generally enough for perception of place of articula­
tion, and that the subjects' responses were highly correlated with the gross spectral 
characteristics (Stevens and Blumstein, 1978; Blumstein and Stevens, 1980). 

These results were criticized from three angles. Firstly, subsequent experiments 
demonstrated that formant transition information was perceptually more impor­
tant than the gross onset characteristics. Synthetic stimuli in which formant tran­
sitions corresponded to one place of articulation and the gross onset spectrum cor­
responded to a conflicting place, are generally classified by listeners in accordance 
with the formant information (Blumstein et al., 1982; Walley and Carrell, 1983). 
Secondly, Kewley-Port argued that dynamic, that is, time-dependent, information 
needed to be incorporated, and she added the dynamic cues "late onset of voicing" 
and "persistence of a mid-frequency peak over time" to the existing "static" spec­
tral properties diffuse rising and diffuse falling. Acoustic classification significantly 
improved when the dynamic cues were used (Kewley-Port, 1983; Kewley-Port et 
al., 1984), and perception of place of articulation was better for stimuli which had 
the intended dynamic properties than for stimuli which only had Blumstein and 
Stevens' static properties {Kewley-Port et al., 1983). Thirdly, Suomi {1985, 1987) 
showed that, although the gross spectral characteristics of the first 20-odd ms of 
the speech signal after release were reasonably effective for vowel-independent clas­
sification of stop consonants, they were nevertheless strongly coarticulated. Suomi 
argued against the assumption, made in the invariance theory, that acoustic vari­
ability due to phonetic context is essentially "noise". The same general viewpoint 
was put forward by Elman and McClelland {1986). Suomi (1985) supported his 
claim by showing that automatic classification of stops based on context-dependent 
prototypes (essentially allophone prototypes) was more reliable than classification 
based on context-independent prototypes. 

In perception experiments with synthetic stimuli in which the amplitude of the 
release burst was varied, Ohde and Stevens (1983) demonstrated that the evolution 
of high-frequency energy (above 2.5 kHz) after release was a cue to the labial­
alveolar distinction. An increase in high-frequency energy from burst to voicing 
cues the labial place, a decrease cues the alveolar place. Subsequently, Lahiri et 
al. (1984) introduced an improved, dynamic, cue to the labial-coronal distinction. 
Roughly, the measure was based on the change in high-frequency energy (around 3.5 
kHz), relative to the change in low-frequency energy (around 1.5 kHz) from burst to 
voicing onset. Based on this measure, dentals and alveolars could be separated from 
labials across various languages at a correct rate of 91%. Furthermore, a perception 
experiment employing synthetic stimuli in which the proposed measure cued one 
place of articulation and the formant transitions cued the conflicting place, showed 
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that listeners responded in accordance with the proposed gross measure. 
Lindholm et al. (1988) constructed synthetic stimuli in which global spectral tilt 

and the abruptness of frequency change (roughly corresponding to the gross cues 
proposed by Kewley-Port, 1983) were pitted against formant transitions. Subjects 
classified the stimuli predominantly in accordance with the formant transitions. 

Two large-scale automatic (machine) classification experiments have recently 
shown that it is indeed possible to perform an excellent speaker-independent 
and vowel-independent classification of prevocalic stops using only gross spectra­
temporal information. Forrest et al. (1988) measured the first, third and fourth 
spectral moments (corresponding to spectral center of gravity, tilt and compactness) 
at four moments in the initial 50 ms after consonantal release. Using these gross 
cues, a correct stop consonant classification rate of 93% was obtained. Nossair and 
Zahorian (1991) explicitly tested the power of gross spectro-temporal information 
versus formant-transition information for the purpose of stop-consonant classifica­
tion. The results demonstrated that classification was excellent for the gross cues 
(95% across speakers and vowel contexts), while classification based on formant 
transitions was significantly lower. Furthermore, it was shown that using dynamic 
spectral information improved recognition considerably compared to using static 
spectral information of the first 20 ms after release. 

At present, the issue of the relative importance of detailed versus gross cues in 
speech perception is highly topical, which is demonstrated by the publication of a 
number of studies on this issue. Krull {1990) published a study of the perception 
of stop consonants in which acoustic cues, which were measured on short segments 
of naturally uttered stop-vowel syllables, were explicitly correlated with perceptual 
confusions of the same segments. The results showed that information of F2 and 
F3, combined with the length of the release burst, gave a good account of the 
observed perceptual confusions. Information based on spectral levels, which con­
tained information on the gross spectral characteristics, correlated much less with 
the confusions. In a series of publications, Ter Keurs described the intelligibility of 
sentences and nonsense words in which spectral details were reduced by means of 
spectral smearing (Ter Keurs, 1992; Ter Keurs et al., 1992; Ter Keurs et al., 1993a, 
b). Her results showed that with a spectral smearing larger than 1/3 octave intel­
ligibility was impaired. Confusions occurred mostly in place of articulation. These 
results suggest that in the F2 region (roughly 1 to 2kHz), spectral information at a 
level of detail of 500 Hz or coarser is not sufficient for correct perception of place of 
articulation. Drullman published a number of experimental studies on the percep­
tual effect of reducing rapid or slow fluctuations in the speech signal (Drullman et 
al. 1994a, b; Drullman, 1995a, b). His results show that intelligibility of sentences 
is not impaired when temporal fluctuations higher than 16Hz are canceled. When 
slower fluctuations are deleted, intelligibility decreases. Decreasing slow fluctua­
tions, while preserving rapid fluctuations does not affect sentence intelligibility for 
cut-off frequencies up to 4 Hz. Stop consonants appear to be mostly confused with 
either fricative consonants or glides. Place-of-articulation confusions also occur of­
ten. Thus, spectral changes with a time constant between roughly 50ms and 250ms 
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appear to be crucial for correct perception of place of articulation. 

Before we proceed to motivate the purpose of the research presented in this 
thesis, we briefly summarize the findings and considerations discussed in this intro­
ductory chapter. 

In accordance with the considerations made by other researchers, we have for­
mulated the general problem of stop-consonant perception as a problem of vari­
ability versus invariance. Specifically, the acoustic variability of stop consonants 
with phonetic context is very high. A general qualitative model has been proposed, 
which covers the major findings and assumptions reported in the literature on stop­
consonant perception. In the model several basic stages are discerned: input speech 
representation, background information, event detection, cue extraction, classifica­
tion, and output linguistic representation. 

In the light of the general model three theories of speech perception have been 
discussed. It was concluded that in the motor theory the perceptual importance of 
detailed cues is stressed. Furthermore, this theory emphasizes the high variability 
of these cues with phonetic context. In contrast, the invariance theory assumes that 
perception is principally guided by gross cues which are associated with distinctive 
features, and which are assumed to be invariant across phonetic contexts. The 
FLMSP was shown to be a mathematically well-developed m.odel which is strongly 
focused on the classification problem in speech perception. The model assumes that 
the classification is based on a matching of stimuli to idealized category prototypes. 

Finally, in a survey of the relevant experimental literature, a number of acous­
tic cues that have been investigated over the years have been discussed. The cues 
are summarized in Table 1.1, along with the typical values of each cue for the 
three major places of articulation. Automatic classification studies have shown 
that gross spectro-temporal properties are excellent potential perceptual cues, pro­
vided they contain dynamic information. Automatic classification based on detailed 
spectro-temporal properties has so far yielded less favorable results, although recent 
developments associated with locus equations are encouraging. Perception studies 
have shown that both detailed as well as gross cues are used in the perception of 
stop consonants. With respect to the gross cues, it seems fair to conclude that 
the hypothesis that place-perception of stops is principally guided by the gross 
characteristics of the static onset spectrum is disproved. However, dynamic gross 
information seems to provide strong perceptual cues. The issue whether percep­
tion of place of articulation is principally guided by detailed or gross information is 
far from settled, as studies employing synthetic, conflicting-cue stimuli have so far 
yielded unequivocal results. This issue remains therefore highly topical. 

1.5 The purpose of this study 

It is the purpose of the research presented in this thesis to investigate whether de­
tailed or gross spectro-temporal properties are the primary cues for the perception 
of place of articulation of initial prevocalic stop conso:p.ants. In our study, we will 
emphasize two methodological aspects. First of all, like Krull (1990), we will use 
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Table l.I: List of acoustic cues for the perception of place of articulation of stop 
consonants. The symbols-,±, and+ indicate that the acoustic cue either correlates 
with or induces the perception of the indicated place of articulation when it has a 
relatively low, medium, or high value, respectively. A + for spectral tilt means that 
the energy increases with increasing frequency. A + for change in tilt or HF energy 
means that the tilt or HF energy increases over time. A combination of symbols 
means that all indicated values commonly occur. Absence of a symbol means that 
the cue is thought not to be relevant for the indicated place of articulation. 

detailed cue typical value 
labial coronal velar 

freq. of burst peak - + ±+ 
strength of burst peak - - + 
energy of burst - ± + 
burst length - ± + 

·F20 -± ±+ -±+ 
i direction of F2 + -± -± 
F30 + -
direction of F3 - + 

igross cue typical value 
labial coronal velar 

spectral tilt - + 
change of spectral tilt + -
change of HF energy + 
strength of MF peak + 
persistence of MF peak - + 

(manipulated) natural utterances in our experiments in order to preserve the natu­
ral variability in the speech signal. Thus, we hope to avoid potential unnaturalness 
of the stimuli, which may have been partly responsible for the apparent contradic­
tion in the results of previous studies using synthetic conflicting-cue stimuli (e.g. 
Lahiri et al., 1984, versus Lindholm et al., 1988). Secondly, we aim to model the 
entire process of stop-consonant perception as presented in our general modeL That 
is, we will simulate the classification behavior of the subjects, including initial rep­
resentation, event detection, extraction and integration of cues, and classification. 
Like many previous perception studies, the influence of background information 
will be minimized by fixing transmission conditions, and using a limited number of 
speakers. 

The approach is as follows. We will create a set of stimuli by manipulating 
a number of natural stop-vowel utterances, which will be presented to listeners. 
Next we will simulate the listeners' classification behavior using a formal model. 
Before coming to the perception experiment and subsequent simulation, a number 
of methodological studies are presented. First, in chapter 2, a critical study of the 
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accuracy of the traditional quasi-stationary speech representations is made, which is · 
especially relevant for the extraction of detailed cues, such as formant onset frequen­
cies. The results show that accurate measurements of formant frequencies can be 
made using the spectrogram or linear prediction, provided the settings of the anal­
ysis parameters meet some basic conditions. Next, in chapters 3 and 4, a model 
of human classification behavior is introduced, which is based on the multi-layer 
perceptron (MLP). Chapter 3 focuses on the fundamental properties of the model, 
while in chapter 4 a number of practical issues are discussed which are important 
for the estimation and evaluation of the model. In chapter 5, the perception exper­
iment is presented. First we discuss the procedures for manipulating the natural 
utterances. We encounter the difficulty that it is not possible to manipulate individ­
ual acoustic cues across a continuum in natural speech. Detailed and gross acoustic 
structures generally covary in natural speech, for example, a high F2-frequency at 
voicing onset will often be accompanied by a positive global spectral tilt. We will 
reduce this covariation by creating deleted-cue as well as conflicting-cue stimuli, 
by removing parts of the original utterances or exchanging information between 
utterances. To this end, we use the well-known "burst-splicing" technique (e.g. 
Fischer-J!Zirgensen, 1972). These stimuli are presented to listeners for classification 
of place of articulation. In chapter 6, the actual simulation of the classification be­
havior of the subjects is presented. First, the relevant acoustic events, burst onset 
and voicing onset, are detected and various detailed and gross cues are measured on 
the stimuli. Next, the proposed model is used to map the measured acoustic cues 
onto the observed perceptual data. The best-fitting models are interpreted with 
respect to (1) which cue set gives the better account of the perceptual data, (2) 
how are the cues actually integrated in the model. We remark that in our approach 
all cues are "treated equally", that is, we refrain from associating gross cues with 
invariance and detailed cues with variability. Finally, in chapter 7 the results of the 
study are discussed and some ideas for future research are presented. 
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Chapter 2 

Accuracy of formant-frequency measurement in highly 
dynamic speech using spectrogram and linear prediction1 

Abstract 

In this chapter, the accuracy of the analysis of rapidly varying formants using 
spectrogram and Linear Prediction is assessed. Analysis of various dynamic sig­
nals shows that, when a long analysis window, like 25 ms, is used, the quality of 
the representation may be impoverished. Obvious unwanted effects are staircase­
like formant tracks, flattening-off of formants close to voicing onset, and bending 
of the formant towards a strong energy concentration in the release burst. The 
parameters that have the largest influence on the quality of the representation 
are the length of the analysis window, the transition rate of the formant, the fun­
damental frequency, and the position and energy of the release burst. It is shown 
that the most accurate analysis using a quasi-stationary method is made when 
windows are positioned pitch-synchronously. Finally, a quantitative analysis of 
the influence of the mentioned parameters provides evidence that no deviations 
due to the quasi-stationarity assumption occur when the effective length of the 
analysis window is not larger than the pitch period. The wideband spectrogram 
is expected to be a reliable speech-analysis tool because it meets this condition 
for fundamental frequencies up to 370 Hz. 

2.1 Introduction 

When a stop consonant is produced, the acoustics of the vocal tract immediately 
prior to closure or after release change very rapidly. The resulting acoustic speech 
wave will generally be of a highly dynamic nature, that is, its spectral content 
will change rapidly over time (e.g. Fant, 1973). Among all classes of speech sounds, 
these essentially non-stationary sounds have proven to be the most difficult to define 
acoustically. In particular, it is nearly impossible to find any acoustically invariant 
structure in them. 

In the search for acoustic invariance in stop consonants, roughly two approaches 
can be distinguished. One approach is to concentrate on gross spectral character­
istics, either of a static nature (e.g. Blumstein and Stevens, 1979; Blumstein et al., 
1982) or of a dynamic nature (e.g. Kewley-Port, 1983; Lahiri et al., 1984). The 

1 Based on: Smits, R. ( 1994), "Accuxacy of quasi-stationary analysis of highly dynamic speech signals," 
J. Acoust. Soc. Am. 96, 3401-3415. 



24 Chapter 2 Analysis of highly dynamic speech 

other approach is to look in great detail for invariance in formant frequencies or 
formant transition rates (e.g. Kewley-Port, 1982; Sussman et al., 1991). Two as­
pects of the latter approach are very important: first the definition of a formant 
frequency and transition rate, second the accuracy of the analysis tool that is used 
to measure these quantities. 

Regarding the first aspect, explicit definitions of formant frequency and transi­
tion rate are, unfortunately, seldom found in these studies. Some form of spectral 
peak picking or linear predictive analysis is usually performed without strict defi­
nitions. Throughout this chapter we will use a definition which is related to these 
strategies. We define a formant frequency as a spectral peak which is associated 
with a vocal tract resonance. Ideally, one would require this measure to be more 
or less independent of the analysis technique. In practice, however, this is hardly 
ever the case. The dependence of the measurement result on the adopted analysis 
technique is one of the topics of this chapter. 

Regarding the aspect of the accuracy of the analysis method, it is remarkable 
that, despite the dynamic nature of the signals, quasi-stationary analysis methods 
have nearly always been used, such as the Short Time Fourier Transform (STFT) 
or Linear Prediction (LP). In methods of this kind an analysis window is used 
within which the signal is assumed to be stationary. Despite the large amount of 
research effort invested, the problem of acoustic invariance for stop consonants has 
still not been solved (e.g. Perkell and Klatt, 1986). A reason for this fact may be 
that the type of analysis tools used in most of the studies is less than adequate. 
Indeed, one could argue that the analysis of highly dynamic signals, such as stop 
consonants, with essentially quasi-stationary methods will lead to inaccurate or even 
false estimations of important parameters such as formant frequencies and formant 
transition rates. 

In fact, this line of reasoning has been followed by many researchers, particularly 
in the field of signal processing. During the last decade there has been an increasing 
interest in non-stationary analysis techniques. As a result, many new techniques 
have been developed and published. 

In the next section an overview is presented of new non-stationary techniques 
that show promise, but still have to prove their merits for speech analysis. Next, it 
is argued that little is known about the suitability of the often-used quasi-stationary 
methods for the analysis of highly dynamic speech segments and in the remaining 
part of this chapter these techniques are subjected to a detailed investigation. 

As a general analytic approach is impossible, an empirical approach is followed. 
In section 2.3, a qualitative survey of several problems with the quasi-stationary 
analysis of highly dynamic signals is presented by means of various representations 
of relevant examples. An inventorization is made of the signal and analysis param­
eters that have the largest influence on the accuracy. A quantitative description 
of the influence of these parameters on the accuracy is presented in Section 2.4. 
Finally, in section 2.5, the results are discussed and summarized. 
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2.2 New non-stationary analysis techniques 

In this section, the class of "bilinear" time-frequency representations (TFRs) and 
time-varying LP-analysis will be discussed briefly. For extensive reviews see, for 
example, Boashash (1992), Cohen (1989), Hlawatsch and Boudreaux-Bartels (1992), 
or Loughlin et al. (1992). 

The most thoroughly studied new type of TFRs is the class of bilinear TFRs. 
Based mostly on mathematically desirable properties, the general formulation of this 
class has been reduced to several interesting new TFRs (e.g. Choi and Williams, 
1989; Zhao et al., 1990). Many of these have been discussed in the context of 
speech analysis (Loughlin et al., 1992; Cohen and Pickover, 1986), although few 
have actually been used for speech studies. 

The Wigner Ville Distribution (WVD) is the best known non-stationary member 
of the class of bilinear TFRs. It has often been criticized for being uninterpretable 
when "real life" signals, such as speech, are analyzed, because of its strong interfer­
ence terms and its negative values (Loughlin et al., 1992; Atlas et al., 1990; Riley, 
1989). Still, besides the spectrogram, it is the only member of the bilinear class 
that has been seriously used for speech analysis (Dogil and Wokurek, 1989, 1991; 
Garudadri et al., 1987; Velez and Absher, 1989; Velez and Garudadri, 1992). In all 
these studies a mild smoothing of the WVD is adopted in order to reduce interfer­
ence. The resulting TFR has, strictly speaking, lost its non-stationarity, but still 
preserves a high resolving power simultaneously in time and frequency. Although 
the experience in using the WVD for speech analysis is limited, the results obtained 
so far are encouraging. 

In LP-analysis usually a windowing technique similar to that in the Short Time 
Fourier analysis is applied. Within each windowed segment the signal is supposed 
to be stationary and the filter coefficients are constant. The traditional LP-model is 
therefore quasi-stationary. Recently, some time-varying LP-analysis methods have 
been presented (Grenier, 1983; Casacuberta and Vidal, 1987; Nathan et al., 1991). 
Interestingly, in Nathan et al. (1991), the method was explicitly used to analyze 
highly dynamic final stop consonants. Analyses on the same material were con­
ducted using pitch-synchronous quasi-stationary LP and results were compared. 
It appeared that in the very last part prior to closure the time-varying method 
sometimes showed strongly curving formant slopes, which highly deviated from the 
relatively flat tracks found by the quasi-stationary method. In Nathan and Silver­
man (1991) the F2-frequency and F2-slope prior to closure in vowel-stop syllables 
were calculated by quasi-stationary and time-varying LP and were presented in scat­
ter diagrams. While the quasi-stationary data hardly showed any clustering, the 
time-varying data clustered almost completely into three linearly separable groups, 
corresponding to the consonants fpf, ft/ and /k/. These results suggest that (1) 
there might be some locus-related type of invariance (e.g. Delattre et al., 1955) 
present in the signal, (2) the errors in measurements of formant frequencies by 
quasi-stationary analysis methods could be large enough to obscure the invariance 
that may be present in acoustical details. 
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2.2.1 Previous studies on the adequacy of quasi-stationary and non-stationary 
analysis techniques 

The performance of new non-stationary methods for speech analysis is discussed 
among others by Atlas et al. (1990, 1991, 1992), Casacuberta and Vidal (1987), 
Dogil and Wokurek (1989, 1991), Loughlin et al. (1992), Velez and Absher (1989), 
and Velez and Garudadri (1992). In some of these studies, e.g. Casacuberta and 
Vidal (1987), Atlas et al. (1991) and Velez and Absher (1989), the validity of the 
traditional spectrographic or LP-analyses of dynamic speech signals is rather easily 
dispensed with because of its assumption of quasi-stationarity, and subsequently the 
proposed new method is claimed to be superior. However, it is generally accepted 
that the problem of the representation of time-varying signals by quasi-stationary 
methods is more complex than the well-known 6./ D..t trade-off (e.g. Cohen, 1989). 
Besides, this problem cannot be generally tackled by analytic means and must 
therefore be approached by empirical methods. Surprisingly, however, only a few 
attempts to describe when and how the quasi-stationary methods actually go wrong 
are reported in the literature. 

First of all we mention two papers in which the accuracy of quasi-stationary 
techniques is discussed for analyzing stationary signals. In Lindblom (1961) the 
accuracy of the manual measurement of formant frequencies from sonagrams is de­
scribed. Several signal parameters that may influence the measurement accuracy 
are discussed, especially the importance of the fundamental frequency (F0 ). Next, 
the results of an experiment are briefly described in which five experienced phoneti­
cians were instructed to estimate the formant frequencies of stationary synthetic 
vowels on wideband and narrowband sonagrams. The mean error in a fairly large 
number of measurements was reported to be 40 Hz for male voices. The error tended 
to increase with increasing F0 , but rarely exceeded F0 /4. 

Monsen and Engebretson (1983) compare the accuracy of the spectrogram and 
LP-analysis in measuring the frequencies of the first three formants in stationary 
synthetic vowels. Four signal parameters were systematically varied: F0 , formant 
bandwidths, proximity of formants, and frequency location of formants. The re­
sulting 90 different signals were subjected to automatic LP-analysis and to manual 
analysis by three experienced phoneticians using wideband and narrowband spec­
trograms. The results showed that the accuracy generally depended on all four 
signal parameters. The average accuracy of formant frequency measurement for 
the F1 and F2 was estimated at 60 Hz for both techniques. For the measurement 
of F3, this figure was the same for LP-analysis, but increased to roughly 110Hz for 
the spectrogram. 

In recent years some papers have been published on the accuracy of quasi­
stationary techniques for non-stationary signals. Silverman and Lee ( 1987) claimed 
to have found an anomaly in the spectrographic representation of a rapid sinusoidal 
glide. A few years later, Wokurek (1991) showed that this result was based on 
an erroneous notion of instantaneous frequency. Wokurek subsequently claimed 
that the formant tracks of rapidly time-varying speech are displayed correctly by 
spectrograms. A similar claim was made by Riley (1989). 
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As discussed earlier, Nathan and Silverman (1991) and Nathan et al. (1991) 
describe that strong discrepancies are sometimes found in formant frequencies and 
transition rates measured by quasi-stationary and time-varying LP. However, as the 
speech material in which significant deviations occur is rather limited, it is hard to 
draw general conclusions concerning when and why quasi-stationary LP will give 
bad results. 

Howitt (1991) presented a detailed quantitative comparison of the accuracy of 
naive subjects in measuring formant transition rates by hand from wideband spec­
trograms and unsmoothed WVDs. Synthetic single formant and multiple formant 
initial stop-like stimuli with various transition rates were used. The results show 
that the estimations of transition rates from spectrograms are generally too high 
(too rapid) for transitions up to 100 Hz/ms and too low (too shallow) for faster 
transitions. Deviations from the true transition rates were as large as 50%. The 
results for the WVD-estimations showed the same trend, but were slightly more 
accurate for the single formant situations. 

In Loughlin et al. (1992) the accuracy of the estimation of transition rate from 
a wideband and a narrowband spectrogram was tested on one example of a single 
synthetic formant with a transition rate of 10 Hz/ms. It was concluded that the 
wideband and narrowband spectrogram underestimate the transition rate by 7% 
and 12%, respectively. Besides, it is stated that the WVD-representation of this 
signal is next to exact. 

In summary, it remains unclear whether the traditional quasi-stationary methods 
are suited for the analysis of dynamic speech signals. Therefore, a detailed study 
of the performance of the quasi-stationary methods for dynamic speech signals 
still seems in order. Indeed, it is important for researchers in the area of speech 
analysis and perception to know if past (and future) studies of dynamic speech 
signals using quasi-stationary methods are valid and accurate. It is the aim of 
this chapter to provide qualitative as well as quantitative insight in the accuracy 
of measuring formant frequencies and formant transition rates in highly dynamic 
speech using spectrographic and LP techniques. It is emphasized that the issue 
of the perceptual relevance of various speech parameters, analysis techniques and 
measurement accuracies is not addressed in this chapter. 

2.3 Qualitative experiments 

The purpose of this section is (1) to give an overview of the type of problems that 
may occur when a dynamic signal is analyzed using a quasi-stationary technique, 
and (2) to discuss which signal and analysis parameters have the strongest influence 
on the quality of the representation. First, the methods for generation, analysis and 
display of the signals are presented, then the results are shown and discussed. 
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2.3.1 Method 

Generation of signals 

Tone glide of varying amplitude 
First, we define the instantaneous frequency as the first time derivative of the in­
stantaneous phase of the sinusoid. The first synthetic signal ( S1) is a sinusoid of 
varying frequency. The instantaneous frequency increases linearly with time at a 

. rate of 200 Hz/ms. The signal is multiplied by a Hanning (raised cosine) window 
with a total length of 10 ms. 

Single formant signal 
Signal S2 was created by exciting a time-varying second-order all-pole filter by a 
train of four impulses at time instances t = 9.9, 16.4, 22.9 and 29.4 ms (the fun­
damental period is 6.5 ms). The filter coefficients were adjusted at every sample 
instant in such a way that the resonance (formant) frequency increased linearly 
with time at a rate of 100 Hz/ms. This transition rate is extremely high but may 
still occur in natural speech (Howitt, 1991), although only during very short time 
intervals. The formant bandwidth was kept constant at 100 Hz. 

Nat ural speech signal 
The Dutch utterance /du/, spoken by a male talker, was recorded and filtered at 
4.9 kHz and was sampled at a rate of 10 kHz. The release burst plus the first five 
glottal pulses were excised. The signal had a total duration of 51.2 ms. The signal 
was multiplied at onset by a ramp which rose linearly from zero to one in 2 ms. 
The time-reversed ramp was applied at signal offset. 

Methods of analysis and display 

Spectrogram 
All time signals are transformed into several TFRs. First of all the STFT is per­
formed. The STFT :F( n, eiw) of the discrete-time signal x( m) is defined as (e.g. 
Rabiner and Schafer, 1978): 

00 

L w(nS- m)x(m)e-jwm (2.1) 
m=-oo 

where w(nS- m) is the inverted time window at position nS, and Sis the window 
shift. In all cases a Hanning window was used. As the purpose of the analyses is to 
study the inaccuracy of the methods due to the quasi-stationarity assumption, the 
shift S of the window is kept extremely small in all STFT calculations, viz. 0.2 ms 
(2 samples). In this way we achieve almost the highest accuracy possible, given 
a particular window length. A larger window shift may indeed introduce another 
type of inaccuracy, which is not essentially caused by the quasi-stationarity, but by 
a "subsampling" of the complete analysis. 

The STFT :F was separated into magnitude I:FI and phase L:F. The phase 
was discarded and the magnitude was transformed from linear magnitude I:FI into 
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logarithmic magnitude IFI: 
IFI = 20 log I.FI (2.2) 

jFj, henceforth called the spectrogram, is displayed by means of contour plots. 
The option to use grey-level representations by means of small black dots was not 
used because the resulting representation is less detailed. The dynamic range of 
all contour plots, viz. the maximum displayed value minus the minimum displayed 
value, is 30 dB. 

In many acoustic speech studies spectral peak picking is applied to arrive at 
formant frequencies. We have made the result of such peak picking method explicit 
by drawing an additional line through successive spectral maxima in the contour 
plots. 

In some cases, viz. when the analysis window was larger than the pitch period, 
the resulting spectrograms were dominated by the harmonic structure of the signal. 
It was chosen to present some form of spectral envelope rather than the original 
spectrogram, because a harmonic structure hampers a precise determination of the 
spectral maxima. The spectral envelope was calculated by convolving each individ­
ual magnitude spectrum by a smoothing window. A normalized Hamming window 
with a total width of 332 Hz was used in all cases. it should be stressed that in 
all cases the resulting smoothed spectrum closely followed the original harmonic 
spectra. It was carefully checked that none of the observed effects described in 
the following sections are artifacts of the smoothing operation, but instead are all 
caused by the quasi-stationarity of the analysis method. 

Wigner- Ville Distribution 
The purpose of this research is to assess the accuracy of traditional quasi-stationary 
analysis methods, rather than to make a comparison between quasi-stationary and 
non-stationary techniques. Nevertheless, it is helpful to be able to make a compar­
ison of the analysis results of quasi-stationary and non-stationary methods. There­
fore, beside the STFT, the WVD was calculated for all time signals. The WVD 
W(n, eiw) of a discrete-time signal x(n) is defined as: 

00 

W(n, eiw) = 2 L x(n + m)x*(n- m)e-2jwm (2.3) 
m=-<XJ 

where x( n) is the analytical signal associated with the real signal x( n) and * de­
notes complex conjugation (e.g. Velez and Absher, 1989). In fact, in order to keep 
calculations and data size within limits, the Pseudo-WVD Wp was calculated: 

L 

Wp(n, k) 2 L w(m)w*( -m)x(n + m)x*(n- m)e-2jmk2.i~1 (2.4) 
m=-L 

where w is a time window of length L (e.g. Velez and Absher, 1989). In all our 
calculations w was chosen to be a 25.6 ms Hamming window. The resulting Pseudo­
WVD equals a true WVD which is frequency-smoothed by the Fourier transform 
of the time window w. 
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It is well known that, when applied to non-trivial signals like speech, the WVD 
generally displays marked cross-terms which hamper a straightforward interpreta­
tion. As shown by e.g. Wokurek et al. (1987), light smoothing of the WVD along 
the time axis and the frequency axis effectively suppresses these cross-terms. In the 
case of signal 83 such smoothing appeared to be necessary. Following suggestions 
made by Wokurek et al. {1987), we used a Hanning window with a total width of 
2.1 ms for the time smoothing and a Hamming window with a total width of 215Hz 
for the frequency smoothing. 

The negative parts of the smoothed Pseudo-WVDs are set to zero and the result 
it converted to logarithmic amplitude. Eq. 2.2 was used, with the factor 20 replaced 
by 10, because the WVD is a quadratic quantity, while the STFT magnitude is lin­
ear. The WVDs are displayed by means of contour plots, with a dynamic range of 
30dB. 

Linear Prediction 
Finally, LP-analysis is applied to signals 82 and 83. The LP-coefficients were es­
timated using the autocorrelation method (e.g. Rabiner and Schafer, 1978). As for 
the STFT, Hanning time windows of various lengths were used and the window 
shift was 0.2 ms. The order of the analysis varied between 2 and 14, depending on 
the signal. No preemphasis was used. 

The result of the LP-analyses were visualized in two ways. First, the LP­
coefficients were Fourier transformed for all window positions. The inverse of the 
resulting spectrum is the estimated transfer function of the LP-filter. The Fourier 
transform magnitude was converted to dBs using Eq. 2.2. The result can be viewed 
as an LP-spectrogram and is displayed in the same way as the STFT spectro­
grams. In order to get a better view of the exact pole frequencies estimated by 
the LP-analysis, the Fourier-transform phase spectrum of the LP-coefficients was 
converted to pole frequencies using the group delay method described by Yegna­
narayana {1978). This method is used because the resolution of closely spaced 
formants is higher in group delay spectra than in magnitude spectra, which is rel­
evant for our analyses. The pole frequencies are indicated by means of additional 
lines in the contour plots. 

2. 3. 2 Results 

Sinusoidal signals 
It has been shown by Riley {1989) and Wokurek (1991) that the spectrogram gives 
a correct representation of a sinusoid of constant amplitude and linearly varying 
frequency. Although the quasi-stationarity of the analysis gives a broadening of 
the energy concentration in each individual spectrum, the instantaneous frequency 
of the signal can be accurately recovered from the series of successive spectra by 
picking the spectral peaks. 

Kodera et al. (1978) discussed the problem of recovering the instantaneous fre­
quency of short chirp-tones. They acknowledged that chirps of constant amplitude 
are generally represented accurately by the spectrogram, but subsequently showed 
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Figure 2.1: Hanning windowed linear chirp signal. a. Waveform. b. WVD. c. 
Spectrogram, analysis window length is 1.3 ms. d. Spectrogram, analysis window 
length is 25.6 ms. 

that the representation of signals with both varying amplitude and varying fre­
quency is ambiguous. The apparent transition rates, measured by picking spectral 
peaks, were found to be highly dependent on the length of the analysis window. 
Figure 2.la shows signal Sl. This signal is similar to those used by Kodera et al. 
The unsmoothed WVD is shown in Figure 2.1b. Figure 2.lc and 2.ld are spectro­
grams of the signal using an analysis window of 1.3 ms and 25.6 ms, respectively. 
The line crossing the contour lines indicates the location of the spectral maximum 
as a function of time. 

It is well known that the WVD representation of mono-component signals closely 
follows the instantaneous frequency of the signal, which is defined as the time deriva­
tive of the instantaneous phase. This is also the case in Fig 2.lb. The spectrogram 
with the short window length (2.lc) shows a broadening in the frequency direction, 
but the instantaneous frequency can still be accurately recovered from the spectral 
maxima. The spectrogram for the long window (2.ld), however, gives a deceptive 
representation of the signal. The apparent transition rate, estimated from the line 
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indicating the spectral maximum, varies between 30 Hz/ms and 70 Hz/ms, which is 
clearly too low. This result can be understood in the following way. If the analysis 
window is larger than the time constant describing the amplitude modulation of the 
signal (in this case roughly 3 ms), then some "frequency weighing" due to the signal 
envelope will take place within the analysis window. Thus, the frequency at the 
amplitude maximum will, at many window positions, be weighted more strongly 
than the frequency at the skirts of the signal. As in Kodera et al. {1978), the 
result is a flattened structure, which is smeared in. the time direction, and a highly 
underestimated transition rate. This finding is relevant for speech analysis because 
the speech-signal envelope varies markedly with time. 

Single-formant signal 
Signal 82 is shown in Figure 2.2. Figures 2.2a, b, c and d are the time signal, the 
WVD and the 1.3 ms and 25.6 ms spectrograms. Figures 2.2e, f and g are LP­
analysis results. Figure 2.2e was calculated using a 1.3 ms analysis window, Figures 
2.2f and g were calculated using a 25.6 ms window. A 2-pole model was fitted in 
Figure 2.2e and f, in Figure 2.2g a 10-pole model was fitted. 

The short-window spectrogram and LP-analysis give accurate representations. 
The WVD shows marked interference products, but generally the instantaneous 
frequency and transition rate can still be measured correctly. The long-window 
spectrogram and LP-analyses show some interesting deviatious from the actual 
formant track. First of all, the formant track seems to break up into separate 
horizontal structures in Figures 2.2d and g. At certain time instances, e.g. t = 
13 ms or t = 20 ms, individual spectra (vertical cross-sections) show two or three 
simultaneous formants. It should be noted that these horizontal structures do 
not simply reflect the harmonic structure of the signal. They are caused by the 
fact that successive impulses excite the formant at sufficiently distant frequencies. 
Interestingly, the 10-pole LP-analysis has fitted a single rapidly moving formant by 
several stationary formants, each of which is caused by another excitation. The 
2-pole analysis gives a good impression of the formant movement in the center of 
the signal (better than the 10-pole analysis), but wrongly suggests a flattening-off 
behavior at the on- and offset of the signal. The long-window representations could 
be improved by using the clear definition of onset and offset of the signal offered by 
the oscillogram itself. This means ignoring the parts of the representations before 
t = 10.0 ms and after t = 38.0 ms. The transition rates at onset and offset of the 
signal would still be too low, as can be seen in Figure 2.2f. 
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Figure 2.2: (previous page) Single gliding formant, excited by 4 impulses. a. Wave­
form. b. WVD. c. Spectrogram, analysis window length is 1.3 ms. d. Spectrogram, 
analysis window length is 25.6 ms. e. Second order LP-spectrogram, analysis window 
length is 1.3 ms. f. Second order LP-spectrogram, analysis window length is 25.6 
ms. g. Tenth order LP-spectrogram, analysis window length is 25.6 ms. 

From the above examples it would seem that the use of an extremely short 
analysis window, e.g. 1.3 ms, is optimal. However, when moving from sinusoidal and 
single-formant signals to complex multiple-formant signals, the frequency blurring 
by these windows would be too large. According to Harris (1978), the relation 
between the total length D of a Hanning window, and the associated resolving 
power in frequency D.F, defined as the -6dB bandwidth, is described by 

D·AF=2.0 (2.5) 

A compromise is therefore necessary. The short-window analyses of the next signal 
were made using a window length of 6 ms, corresponding to a resolution of 333 Hz. 
This is close to the resolution of 300 Hz of the traditional wideband spectrogram 
(e.g. Flanagan, 1972, p. 151). 

In the remaining part of the chapter, the "effective length" of an analysis win­
dow will often be used. The effective length of a window is here defined as the 
interval between the two -3dB points of the window, which is half the total length 
in case of a Hanning window. 

Nat ural speech signal 
A Dutch prevocalic voiced stop will generally consist of the following phases: (1) a 
silent or prevoicing phase, {2) the release burst, followed more or less closely by (3) 
formant transitions. Thus, the very first part of the formant transitions, containing 
the most rapid movements, is flanked on the left side by the noise burst. If the 
noise burst is weak or absent, a situation similar to Figure 2d, f and g may be 
expected to occur, i.e. the spectrum at the onset of the formant transitions will be 
strongly smeared in the time direction and will thus dominate the region to the left 
of the onset. In this way a flattening-off effect may be expected to take place at 
the onset of the formant transitions. If, on the other hand, the energy in the noise 
burst is comparable to the energy at the onset of the formant transitions, we may 
expect the formant transitions at onset to be displayed correctly because they will 
not domi~ate the region to the left of the onset. 

Figure 2.3 shows the oscillogram (2.3a), the smoothed WVD {2.3b), the 6 ms 
window and 25.6 ms window spectrograms {2.3c and d), and the 6 ms window and 
25.6 ms window LP spectra (2.3e and f) of a relevant part of the utterance /duj. 
The LP-analyses are of order 14. Figure 2.3g and h show the pole frequencies of 
the 6 ms and 25.6 ms window LP analysis. 
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Figure 2.3: (previous page) Part of a recorded utterance /duj. a. Waveform. b. 
Smoothed WVD. c. Spectrogram, analysis window length is 6.0 rns. d. Spectrogram, 
analysis window length is 25.6 rns. e. LP-spectrogram, analysis window length is 6.0 
ms. f. LP-spectrogram, analysis window length is 25.6 rns. g. LP pole frequencies, 
analysis window length is 6.0 rns. h. LP pole frequencies, analysis window length is 
25.6 rns. 

Before we describe the results, we want to stress the distinction between the 
representation of a formant and the interpretation of this representation. The reason 
for this is that the measurement of formant onset/offset frequencies and transition 
rates in natural speech signals is not a clear-cut problem and needs some additional 
definitions. This point will be addressed more extensively in the next sections. 

In the WVD (Figure 2.3b), the parts of the formant between excitations do 
not appear to be reliable because they tend to split into several lines. The WVD 
representation therefore does not seem to have a clear advantage over the short­
window spectrogram in Figure 2.3c. The most reliable interpretation of the WVD 
and short-window spectrogram would then be to use only the frequency values close 
to the instants of excitation. In this way we would obtain a sampled version of the 
formant track, where the sampling instants are dictated by the glottal pulses. It 
appears that a straight line can be drawn through the excitations at t = 20, 27 
and 34 ms, and the resulting transition rate is 25 Hz/ms. If, on the other hand, 
the energy concentration at 12 ms and 1.5 kHz is assumed to be part of the voiced 
transition rather than of the burst, and if this point and the excitation at 20 ms 
are used, a transition rate of 11 Hz/ms is found. These observations indicate that, 
even if the representation is excellent, still an interpretation step has to be taken 
and the results depend greatly on the exact method of measurement. 

The long-window spectrogram in Figure 2.3d shows some of the staircase-like 
behavior we have already found in Figure 2.2. In contrast with Figure 2.2, however, 
the formant track does not break up into separate horizontal structures. A clear 
flattening-off tendency can be observed at the initial part of the F2. Insufficiently 
careful measurement of the transition rate may therefore yield too shallow a slope. 
However, the formant frequencies at the excitation instants are rather close to 
the values of Figures 2.3b and c. Thus, a transition-rate estimation based on the 
frequencies at excitation instants will give the most accurate interpretation of the 
long-window representation. 

The 6 ms window LP representation in Figure 2.3e looks very much like the 
6 ms window spectrogram (2.3c). In the 25.6 ms window LP spectrogram it can 
be seen that, in contrast to Figure 2.3d, the second formant has merged with a 
frequency peak in the release burst. The respective part (from 8 to 17 ms) suggests 
a transition rate of some 40 Hz/ms. From t = 17 ms on, the second formant track 
closely matches the formant frequencies in Figures 2.3b and c. Thus it seems that, 
even in the case of prevocalic stops with a strong burst portion and no aspiration, 
the formant tracks to the left of the first excitation in long-window representations 
cannot be trusted, because they may be just the connecting line between an energy 
concentration in the release burst and a formant at the first glottal pulse. 



2.4 Quantitative experiments 37 

2.3.3 Discussion 

We have seen that, when a relatively long analysis window, like 25 ms, is used, 
the quality of the quasi-stationary representation of highly dynamic speech signals 
can become rather poor. Formants may seem to have staircase-like tracks or even 
split up into separate horizontal structures. If no burst is present close to voicing 
onset, the formant tracks will flatten off and they will seem to have very low initial 
transition rates. If, on the other hand, the formant is closely flanked by a noise 
burst with a strong energy concentration, the formant track close to the onset of 
voicing may be strongly bent. 

Generally, we find that "short-time" energy concentrations, like glottal excita­
tions or noise excitations of formants, dominate their immediate surroundings in 
time and frequency in the quasi-stationary representation. The exact range of in­
fluence in time and frequency of a certain energy concentration is dictated by the 
analysis window and the tif tit trade-off. A long window will of course cause the 
range to be extensive in time and narrow in frequency, while for a short window 
the reverse will hold. The time-frequency region in which a certain energy concen­
tration dominates the representation, however, also depends on the location and 
energy of neighboring energy concentrations. Thus, it is clear that, when a long 
window is used, the most reliable measurement is made close in time to the actual 
energy concentration, that is, pitch-synchronously. 

Along this line of reasoning, we hypothesize that the following signal and anal­
ysis parameters have a dominant influence on the quality of a representation and 
the accuracy of a measurement on this representation. First, the window length, 
because it determines the range of influence of energy concentrations. A second 
parameter is of course the formant transition rate. For low transition rates the 
deviations will be smaller than for high transition rates. Another signal parameter 
is the fundamental frequency of the voiced speech signal, because an energy concen­
tration due to a glottal excitation of a formant will dominate only within a region 
as large as a pitch period. Finally, for the same reason, the location in time and 
frequency and the energy of a noise burst will be important. 

2.4 Quantitative experiments 

The goal of this section is to give a quantitative description of the deviations due to 
the quasi-stationarity assumption when measuring formant onset frequencies and 
formant transition rates. Two aspects will be emphasized: (1) When do deviations 
occur? (2) If deviations occur, what is their magnitude? The estimations will be 
based on measurements on synthetic single-formant signals. As stated before, it is 
not the purpose of this study to make a quantitative comparison between quasi­
stationary and non-stationary analysis techniques. Because the most important 
qualitative differences between these two types of methods, when applied to speech, 
have been made sufficiently clear in the previous section, the WVD analysis was 
not used in the quantitative experiments. 

Experiment 1 is intended to give a general quantitative description of the devia-
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tions for a wide range of the most relevant signal and analysis parameters suggested 
in the previous section. Experiment 2 zooms in on a subset of the parameter set­
tings used for experiment 1. An analytical model is devised and is fitted on the 
data of experiment 2. This model predicts when deviations occur and how large 
these deviations are. 

fL4 .1 Experiment 1 

Method 

Generation of signals 
In the previous section it was suggested that the analysis and signal parameters that 
have the largest influence on the accuracy of the measurements are (1) the length 
(wl) of the analysis window, (2) the fundamental frequency (Fo) of the signal, (3) 
the transition rate ( R) of the formant, ( 4) the position in time and frequency of the 
main energy concentration in the burst relative to the first glottal pulse and (5) the 
burst energy. It is not realistic to aim at an exhaustive description of the influence 
of these parameters, because the number of necessary signals and measurements 
would be too large. We have therefore chosen to limit the number of parameter 
values for signal generation and analysis, while ensuring that we may still make 
general predictions on when deviations occur and how large they are. 

For the purpose of experiment 1, 45 synthetic signals were created. All signals 
were similar to signal S2. The signals are created by filtering an excitation signal by 
a time-varying second-order IIR-filter. The excitation signal consists of an impulse 
at timet 14.9 ms, followed by 3 or more impulses at periodic intervals. Three 
fundamental periods are used: 12.5, 6.7, and 4.0 ms, corresponding to an F0 of 80.0, 
149.3, and 250.0 Hz, respectively. The IIR-filter (formant) is stationary from the 
beginning of the signal to the instant of the first impulse, and has a frequency of 
1.0 kHz. At the instant of the first impulse (t = 14.9 ms), the formant frequency 
starts increasing linearly with time at various rates. The used rates are 0, 10 and 
100 Hz/ms. As for signal S2, the filter coefficients are adjusted at every sample 
instant. Throughout the signal, the formant bandwidth is 150 Hz. 

To a subset of the signals, a noise burst is added. The noise burst consists of a 
burst of white noise, which starts at t = 4.9 ms and ends at t = 8.8 ms, and which is 
filtered by a stationary second-order IIR-filter with a resonance frequency of either 
1.0 kHz or 1.3 kHz and a bandwidth of 150 Hz. The burst energy was adjusted 
in the following way. Using an analysis window of 6 ms, an STFT was made of 
the signal consisting of a burst and a quasi-periodic part. The burst energy was 
adjusted in such a way that the maximum STFT amplitude due to the burst was 
either 3 dB below or 3 dB above the maximum STFT amplitude due to the first 
excitation. The cases where the burst energy is 3 dB lower or higher then the first 
glottal pulse energy will be referred to as the soft burst and loud burst conditions, 
respectively. 

Thus, we created 5 burst conditions (no burst, soft burst at 1.0 kHz, soft burst 
at 1.3 kHz, loud burst at 1.0 kHz and at 1.3 kHz), 3 fundamental frequencies (80.0 
Hz, 149.3 Hz, 250.0 Hz) and 3 transition rates (0 Hz/ms, 10 Hz/ms and 100 Hz/ms), 
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for a total of 45 signals. 

Method of analysis 
The signals were analyzed using STFT and LP. In both eases, Hanning windows 
were used of 4 different lengths: 3.0, 6.0, 12.5, 25.0 ms. In order to obtain the 
maximum accuracy, given the signal and the window length, a pitch-synchronous 
analysis was used. Note that many possible errors discussed in the previous section, 
e.g. deviations caused by asynchronous window-positioning, are avoided in this way. 

Because we use impulses as glottal excitations, the discontinuities in the signal at 
the instants of excitation are large. These discontinuities cause the pole frequencies 
in the immediate surroundings of the instant of excitation to deviate from the 
general smooth track, especially for short analysis windows (e.g. Figure 2.2c). For all 
analyses we therefore centered the analysis windows not at the instants of excitation, 
but 1.0 ms after the instant of excitation, where the tracks of the pole frequencies 
were again regular. The measurements were corrected for this time shift. For 
example, an exact measurement of the formant onset frequency of a formant starting 
at a frequency of 1000 Hz and increasing at a rate of 100 Hz/ms should yield a value 
of 1100Hz. 

Two measurements were made on all signals: the formant onset frequency F artS 

and the formant transition rate k. In this notation, X refers to a measured value 
as opposed to the true value X. For these 2 measurements, only two windows were 
necessary, one for each of the first two excitations. As for the qualitative experi­
ments discussed in the previous section, the windowed segments were converted into 
Fourier amplitude spectra for the spectrographic measurements and into inverted 
group delay spectra of the LP-coefficients for the LP-measurements. For all LP­
analyses a 2-pole model was used. Again, the formant frequencies were measured 
by picking the peaks from these spectra. . 

Because the amplitude spectra for the spectrographic measurements contained 
harmonics for many of the parameter settings, a spectral envelope needed to be 
calculated before picking the peaks. As in the case of signals S2 and S3, a simple 
smoothing was applied by convolving the amplitude spectrum with a Hamming 
window. The effective bandwidth of the Hamming window was 98 Hz, 234 Hz, 
and 470Hz for signals with an F0 of 80.0 Hz, 149.3 Hz and 250.0 Hz, respectively. 
These figures were arrived at by carefully inspecting the effects of smoothing on 
many signals. The smoothing was applied to all analyses made with a 25.0 ms 
window, to analyses of signals with an F0 of 149.3 Hz and 250.0 Hz, made with a 
12.5 ms window, and to analyses of signals with an F0 of 250.0 Hz, made with a 6.0 
or 3. 0 ms window. 

Fons is defined as the formant frequency for the first window. R is defined as 
the difference between the formant frequencies for the second and the first window, 
divided by the distance between the centers of the two windows (the fundamental 
period). 

The peak picking was carried out by selecting the frequency point which had 
the maximum amplitude. Because in all our cases the frequency axis from 0 Hz to 
5 kHz is represented by 257 points, the between-sample distance equals 19.53 Hz. 
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Thus, the basic measurement error in the F ons lies within the .range of plus or minus 
half the between-sample distance, that is, within [-9.8 Hz, 9.8 Hz]. The basic error 
in R depends on the time interval between the 2 formant frequency measurements, 
which is the fundamental period of the signal. The maximum positive or negative 
measurement error equals the between-sample distance on the frequency axis, di­
vided by the fundamental period. This yields maximal basic measurement errors of 
1.6 Hzfms, 2.9 Hz/ms, and 4.9 Hz/ms for Fans's of 80.0 Hz, 149.3 Hz and 250.0 Hz, 
respectively. Of course, the basic error can be made arbitrarily small by using some 
kind of interpolation technique, e.g. increasing the FFT-size by using zero padding. 
However, our basic errors were small enough compared to the observed effects. 

Results 

The deviations in Fons and R for the no-burst, soft-burst and loud-burst conditions 
are shown in Table 2.I, 2.II, and 2.III, respectively. In all tables, the left column 
shows the parameter settings. In table 2.1, the middle and right columns show 
the measurement deviations for the LP-analysis and the spectrographic analysis, 
respectively. In tables 2.11 and 2.III, columns 2 and 3 show the measurement devi­
ations for the LP-analysis and the spectrographic analysis for the burst frequency 
of 1.0 kHz, columns 4 and 5 show the deviations for the burst frequency of 1.3 kHz. 

The LP-results for the rate of 100 Hz/ms are shown graphically in Figure 2.4. 
As the data are very similar for spectrogram and LP, we chose to display only 
the LP-results, because the LP-data are generally slightly more regular than the 
spectrogram data. All figures on the left display the deviation in R as a function 
of wl, the figures on the right show the deviation in Fons as a function of wl. The 
top, middle and bottom 2 figures contain data for the signals with F0 's of 80.0 Hz, 
149.3 Hz and 250.0 Hz, respectively. 

Let us first discuss the stationary condition, that is, R = 0 Hz/ms and no burst. 
The measurements are very accurate and the basic measurement error is exceeded 
only in very few cases. This compares favorably with the results of Monsen and 
Engebretson (1983), discussed earlier. When R is not zero, in many cases the 
measurement is still accurate. For F0 's up to 149.3 Hz, only the largest window 
length (25 ms) gives a deviation which exceeds the basic error. For the F0 of 250.0 
Hz, however, the accuracy starts deviating from zero earlier, that is, for a window 
of 12.5 ms. Therefore, it seems that both wl and F0 determine whether deviations 
occur or not. 

The data suggest that when significant deviations occur, they increase with 
increasing R, increasing F0 and increasing wl. The dependence on F0 and wl is 
evident in Figure 2.4. 

The noise burst only has a significant influence on the measurements in the loud­
burst condition. Note that in this condition large deviations may occur even for 
the stationary formant (R = 0 Hz/ms) when the burst frequency deviates from the 
formant frequency (see Table 2.III). For wl = 25 ms in the loud-burst condition, 
Figure 2.4 shows a regular pattern. When the burst frequency is 1.3 kHz (sym­
bol 6), Fons is higher than for the no-burst condition (symbol o). On the other 
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hand, when the burst frequency is 1.0 kHz (symbol 'V), Fons is lower than for the 
no-burst condition. So like in Figure 2.3, we find that, when the burst is stronger 
than the· first excitation, the formant measurement of the first excitation is biased 
towards the burst frequency. 

Under maximally unfavorable conditions, deviations are as large as 200 Hz in 
F ons and 50% in .k. 

Table 2.I: Deviations in measured formant onset frequency and transition rate in 
the burstless condition, For further explanation, see text. 

LP spectrogram 
rate FO wl llFons ll rate llFons ll rate 

0 80 3.0 -4 . 0.0 -4 0.0 
6.0 -4 0.0 -4 0.0 

12.5 -4 0.0 -4 0.0 
25.0 -4 0.0 -4 0.0 

150 3.0 -4 0.0 -4 0.0 
6.0 -4 0.0 -4 0.0 

12.5 -4 0.0 -4 0.0 
25.0 -4 0.0 -4 2.9 

250 3.0 -4 0.0 -4 0.0 
6.0 -4 0.0 -23 4.9 

12.5 -4 0.0 -23 0.0 
25.0 -4 0.0 -23 0.0 

10 80 3.0 6 -0.6 -4 0.9 
6.0 -14 0.9 -4 0.9 

12.5 -14 0.9 6 -0.6 
25.0 -14 0.9 -4 0.9 

150 3.0 6 -1.3 -14 1.7 
6.0 -14 1.7 -14 1.7 

12.5 -14 1.7 -14 1.7 
25.0 6 -1.3 6 -1.3 

250 3.0 6 -0.2 -14 -0.2 
6.0 -14 -0.2 -14 -0.2 

12.5 -14 -0.2 -14 -0.2 
25.0 6 -5.1 -14 -5.1 

100 80 3.0 -6 0.0 -6 1.6 
6.0 -26 0.0 33 0.0 

12.5 -26 1.6 72 0.0 
25.0 -6 0.0 72 1.6 

150 3.0 -6 -0.9 -6 2.0 
6.0 -26 2.0 33 -0.9 

12.5 -6 -0.9 33 -0.9 
25.0 72 -24.2 52 -0.9 

250 3.0 -6 2.5 -6 2.5 
6.0 -26 2.5 -6 2.5 

12.5 33 -12.1 13 -2.3 
25.0 150 -46.3 91 -41.4 
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2.4.2 Experiment 2 

The goal of experiment 2 is to focus on the no-burst condition that was part of 
experiment 1 and to derive an analytical expression for when deviations occur and 
how large they are. 

Table 2.II: Deviations in measured formant onset frequency and transition rate, 
soft-burst condition. For further explanation, see text. 

soft burst, 1.0 kHz soft burst, 1.3 kHz 
LP spectrogram LP spectrogram 

rate FO wl t:..F.,... t:.. rate t:..F,... t:.. rate AFons t:.. rate AFons t:.. rate 
0 80 3.0 -4 0.0 -4 0.0 -4 0.0 -4 0.0 

6.0 -4 0.0 -4 0.0 -4 0.0 -4 0.0 
12.5 -4 0.0 -4 0.0 -4 0.0 -4 0.0 
25.0 -4 0.0 35 -3.1 -4 0.0 -4 0.0 

150 3.0 -4 0.0 -4 0.0 -4 0.0 -4 0.0 
6.0 -4 0.0 -4 0.0 -4 0.0 -4 0.0 

12.5 -4 0.01 -4 0.0 -4 0.0 -4 0.0 
25.0 -4 0.0 -4 2.9 -4 0.0 -4 2.9 

250 3.0 -4 0.0 -4 0.0 -4 0.0 -4 0.0 
6.0 -4 0.0 -23 4.9 -4 0.0 -23 4.9 

12.5 -4 0.0 -23 0.0 -4 0.0 -23 0.0 
25.0 -4 0.0 -23 0.0 -4 0.0 -4 -4.9 

10 80 3.0 6 -0.6 -14 0.9 6 -0.6 -14 0.9 
6.0 -14 0.9 -14 0.9 -14 0.9 -14 0.9 

12.5 -14 0.9 6 -0.6 -14 0.9 6 -0.6 
25.0 -14 0.9 25 -0.6 6 -0.6 6 0.9 

150 3.0 6 -1.3 -14 1.7 6 -1.3 -14 1.7 
6.0 -14 1.7 -14 1.7 -14 1.7 -14 1.7 

12.5 -14 1.7 -14 1.7 -14 1.7 -14 1.7 
25.0 6 -1.3 6 -1.3 25 -4.2 6 -1.3 

250 3.0 6 -0.2 -14 -0.2 6 -0.2 -14 -0.2 
6.0 -14 -0.2 -14 -0.2 -14 -0.2 -14 -0.2 

12.5 -14 -0.2 -14 -0.2 -14 -0.2 -14 -0.2 
25.0 6 -5.1 -14 -5.1 i 6 -5.1 6 -10.0 

100 80 3.0 -6 0.0 -6 1.6 -6 0.0 -6 1.6 
6.0 -26 0.0 33 0.0 -26 0.0 33 0.0 

12.5 -26 1.6 52 1.6 -26 1.6 52 1.6 
25.0 -26 1.6 -26 9.4 -6 0.0 72 1.6 

150 3.0 -6 -0.9 -6 2.0 -6 -0.9 -6 2.0 
6.0 -26 2.0 33 -0.9 -26 2.0 33 -0.9 

12.5 -6 -0.9 33 -0.9 -6 -0.9 33 -0.9 
25.0 72 -24.2 52 -0.9 91 -27.1 52 -0.9 

250 3.0 -6 2.5 -6 2.5 -6 2.5 -6 2.5 
6.0 -26 2.5 -6 2.5 -26 2.5 -6 2.5 

12.5 33 -12.1 13 -2.3 33 -12.1 13 -2.3 
25.0 130 -41.4 72 -36.5 150 -46.3 91 -41.4 
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Method 

Generation of signals 
In total, 25 burstless single-formant signals were used in this experiment, 9 of which 
were already used in experiment 1. In order to determine the influence of the 
nal parameters Fo and R more precisely, more values for these parameters were 
used. The fundamental period had values of 12.5 ms, 9.3 ms, 6. 7 ms, 5.2 ms and 
4.0 ms, corresponding to F0 's of 80.0 Hz, 107.5 Hz, 149.3 Hz, 192.3 Hz and 250.0 

Table 2.III: Deviations in measured formant onset frequency and transition rate, 
loud-burst condition. For further explanation, see text. 

loud burst, 1.0 kHz loud burst, 1.3 kHz 
LP spectrogram LP spectrogram 

rate FO wl C.Fons C. rate IJ.Fons C. rate C.Fons C. rate C.Fons C. rate 
0 80 3.0 -4 0.0 -4 0.0 16 -1.6 -4 0.0 

6.0 -4 0.0 16 -1.6 -4 0.0 -4 0.0 
12.5 -4 0.0 55 -4.7 -4 0.0 -4 0.0 
25.0 -4 0.0; 35 -3.1 113 -9.4 -4 0.0 

150 3.0 -4 0.0 -4 0.0 16 -2.9 -4 0.0 
6.0 -4 0.0 16 -2.9 -4 0.0 -4 0.0 

12.5 -4 0.0 16 -2.9 -4 0.0 -23 2.9 
25.0 -4 0.0 -4 2.9 94 -14.6 16 0.0 

250 3.0 -4 O.Oj -4 0.0 16 -4.9 -4 0.0 
6.0 -4 o.o' -4 0.0 -4 0.0 -4 0.0 

12.5 -4 0.0 -4 0.0 -4 0.0 -23 4.9 
25.0 -4 0.0 -23 0.0 55 -14.7 55 -14.7 

10 80 3.0 6 -0.6 -14 0.9 6 -0.6 6 -0.6 
6.0 6 -0.6 6 -0.6 -14 0.9 -14 0.9 

12.5 6 -0.6 45 -3.8 6 -0.6 6 -0.6 
25.0 -14 0.9 25 -0.6 103 -8.4 6 0.9 

150 3.0 6 -1.3 -14 1.7 6 -1.3 6 -1.3 
6.0 6 -1.3 6 -1.3 -14 1.7 -14 1.7 

12.5 6 -1.3 25 -4.2 6 -1.3 -14 1.7 
25.0 -14 1.7 6 -1.3 103 -15.8 25 -4.2 

250 3.0 6 -0.2 -14 4.7 6 -0.2 6 -0.2 
6.0 6 -5.1 -14 -0.2 6 -5.1 -14 -0.2 

12.5 6 -5.1 -14 -0.2 6 -5.1 -14 -0.2 
25.0 -14 0.2 33 -0.2 84 -24.7 64 -19.8 

100 80 3.0 13 -1.6 13 0.0 -6 0.0 -6 1.6 
6.0 -6 -1.6 52 -1.6 -26 0.0 i 33 0.0 

12.5 -6 0.0 33 3.1 -6 o.o' 13 4.7 
25.0 -65 4.7 -45 10.9 72 -6.3 209 -9.4: 

150 3.0 13 -3.8 13 -0.9 -6 -0.9 -6 2.0 
6.0 -6 -3.8 52 -3.8 -26 -0.9 33 -0.9 

12.5 -6 -0.9 52 -3.8 -6 -0.9 33 -0.9 
: 

25.0 -6 -9.6 -84 19.5 130 -33.0 50 -15.5 
250 3.0 13 -2.3 -6 2.5 -6 2.5 -6 2.5 i 

6.0 6 2.5 13 -2.3 -26 2.5 -6 2.5 
12.5 52 -12.1 52 -12.1 52 -17.0 33 -12.1 
25.0 52 -26.8 -26 -12.1 170 -56.1 130 -51.2 
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Figure 2.4: Results of experiment 1 for R = 100 Hz/ms. The deviations in Rare 
displayed in the figures on the left, the deviations in Fons on the right. Deviations 
for F0 = 80.0, 149.3 and 250.0 Hz are presented in the figures at the top, middle and 
bottom, respectively. 

Hz, respectively. For R, the values 0 Hz/ms, 10 Hz/ms, 25 Hz/ms, 50 Hz/ms and 
100 Hz/ms were used. 

Method of analysis 
For experiment 2, only LP-analysis was applied. The window lengths and other 
details of the analysis method were identical to experiment 1. 
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Figure 2.5: Results of experiment 2 for wl = 25 ms. Again, the deviations in Rand. 
Fons are displayed in the figures on the left and right, respectively. In the top figures, 
the deviations are plotted as a function of R, in the bottom figures the deviations 
are plotted as a function of F0 • 
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The deviations for the largest window length (25 ms) are displayed in Figure 2.5. 
The figures on the left and right again show the deviation in R and F ons, respectively. 
In order to make the dependence of the deviations on R and F0 clear, the top figures 
give the deviations as a function of R, the bottom figures contain· the same data, 
now plotted as a function of F0 . 

Figure 2.5 suggests that the deviations in R and Fans depend almost linearly 
on Fa and R when the other parameters are held constant. Furthermore, the lines 
depicting the deviations as a function of R go through the origin (y-intercept 0). 
Different values of the fundamental frequency only have an influence on the slope 
of the lines, not on they-intercept. 

The lines depicting the deviations as a function of Fa clearly have any-intercept 
which is not zero. Different rate-values clearly influence the slope of the lines, but 
whether the y-intercepts are also different is not evident. 

We will now construct a simple analytical model which predicts when deviations 
occur and how large they are. First of all, the numerical data and Figures 2.4 and 
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2.5 show that for a certain subset of realistic parameter values, there is no error in 
the measurement due to the quasi-stationarity assumption. Arguing along the .lines 
of the discussion of the qualitative experiments (section 2.3.3), it seems reasonable 
to suggest that deviations due to quasi-stationarity only occur when there are more 
than a certain number of periods present within the analysis window, each of which 
excites the gliding formant at a different frequency. The number of periods within 
the analysis window is equal to F0 • wl, with F0 expressed in [Hz] and wl in [s]. The 
critical number of periods within the window will be denoted by C0 . If the number 
of periods within the window exceeds C0 , we hypothesize that ( 1) the deviation will 
be proportional toR, and (2) the deviation has a linear relation with the number 
of periods within the window F0 · wl. Thus, the following model arises: 
If (wl· F0) >Co then 

I~RI = cl ·IRI· (wl· Fo- Co), (2.6} 

and 

l.dFonsl = C2 ·IRI· (wl· Fo- Co), (2.7) 

else 

(2.8) 

where C0 , C1 and C2 are parameters, the values of which must be determined by 
fitting the model to the data of experiment 2. If we express Rand ~R in [Hz/ms], 
wl in [s], and F0 and .dF<m& in [Hz], a least-squares model fit yields the following 
parameter values: 
Co 2.2, 
c1 = 0.12, 
c2 = 0.37 ms. 

In order to describe the goodness-of-fit of the model, correlation coefficients 
between observed deviations and predicted deviations were calculated for the data 
points for which ( wl· F0 ) > 2.2, that is, for 30 out of 100 data points for Rand for 30 
out of 100 for F ons· The correlation coefficients are 0.99 for R and 0.97 for F ons· It 
may be hypothesized that this extremely high goodness-of-fit is caused by the fact 
that the density of data points in the region where the deviations are small is higher 
than the density in the region where the deviations are large. This hypothesis was 
checked by recalculating the correlation coefficients for the data points for which 
(wl· F0) > 3.0. This restriction excludes 12 of 30 data points at the high-density 
end of the line both for R and for F ons· The new correlation coefficients were even 
slightly higher: 0.99 for Rand 0.98 for Fons· Thus, we see that the high correlation 
coefficients are not caused by an artifact, and the model fit is truly very good. 

A value of 2.2 for the parameter C0 means that there are no deviations due to the 
quasi-stationarity assumption as long as the analysis window is not wider than 2.2 
pitch periods. This value only holds for the Hanning window. The effective length 
of a window was earlier defined as the interval between the two -3dB points of the 
window, which is half the total length in case of a Hanning window. Therefore, in 



2.5 Conclusions and recommendations 47 

general, it is concluded that effectively there may not be more than 1.1 period in 
the window. Thus, as a general rule of thumb, one should use an analysis window 
that is effectivBly not longer than one pitch period, when analyzing highly dynamic 
spBech signals. This value agrees with the intuitive notion that a good measurement 
of formant frequency is made when one glottal excitation dominates the windowed 

· speech segment. 
Using the parameter value of 2.2, we can make a general statement about the 

adequacy of the wideband spectrogram for analyzing highly dynamic speech. As 
stated earlier, the wideband spectrogram has an analysis window of roughly 6 ms, 
in case a Hanning window is used. Substitution of this value in the expression 

wl· F0 :::; 2.2 

leads to 

F0 :::; 370Hz 

(2.9) 

(2.10) 

Thus, our study indicates that the accurate measurements can be made from the 
wideband spectrogram as long as F0 is smaller than 370Hz. This is always the case 
for male voices, and very often for female voices. 

2.5 Conclusions and recommendations 

Short energy concentrations, like glottal excitations of formants, dominate their 
immediate surrounding area in a quasi-stationary TFR. If a relatively long analysis 
window is used, the influence of each of these concentrations is spread along the time 
dimension, which may corrupt the representation. The most important unwanted 
effects caused by this mechanism are staircase-like formant tracks, flattening-off of 
formants close to voicing onset, and bending of the formant towards a strong energy 
concentration in the release burst. 

The parameters that have the largest influence on the quality of the represen­
tation are the length of the analysis window, the transition rate of the formant, 
the fundamental frequency, the position in time and frequency of the burst and the 
energy in the burst. The most accurate analysis using a quasi-stationary method 
is made when windows are positioned pitch-synchronously. 

A quantitative analysis of the influence of the mentioned parameters shows that 
no deviations due to the quasi-stationarity assumption are to be expected when the 
inequality wl · F0 :::; 2.2 is met, in case a Hanning window is used. This inequality 
can be generalized to the statement that no deviations due to the quasi-stationarity 
assumption are to be expected when the effective length of the analysis window 
is not larger than one pitch period. Expressions predicting the deviations in t::..R 
and t::..P ons are derived for situations where the inequality is not met. Based on the 
results and the derived inequality, it is expected that the wideband spectrogram is a 
reliable tool for making measurements on rapidly moving formants for signals with 
an F0 that is lower than 370 Hz. A word of caution is however in order here. The 
general conclusions are derived from experiments with very simple synthetic single­
formant signals. These signals may differ significantly from natural speech signals 
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in a number of respects, such as glottal source signal, and variations in bandwidth 
within and across fundamental period. 

The following practical recommendations are suggested. First of all, it is im­
portant to be aware of the maximal F0 in the signals that are to be analyzed. In 
the case of stop consonants, extra care is in order, because just after voicing onset, 
where the formants are most dynamic, the F0 may for a short time be much higher 
than in the following less dynamic parts. Ohde {1984) found that the ratio between 
F0 just after voicing onset and in the vowel target may be as high as 1.4. 
Next, an analysis window must be chosen with an effective length of about the 
shortest pitch period in the signals to be analyzed. 
Finally, pitch-synchronous window positioning is recommended. 



Chapter 3 

The multi-layer perceptron as a model ~f human 
categorization behavior. I. Theory1 

Abstract 

A model of human categorization behavior is presented in which the multi-layer 
perceptron (MLP) is the central part. First the modeling behavior of the single­
layer perceptron (SLP) is studied through an analysis of the mathematical ex­
pressions and a discussion of a number of theoretical examples. A number of 
similarities and differences between the SL:P and the well-known similarity-choice 
model (SCM) are discussed and it is shown that the SLP and SCM coincide in 
a certain limit case. Finally, the theory for the SLP is extended to the two-layer 
perceptron (TLP). Itis shown that the TLP has substantial modeling power, but 
it can become hard to interpret. A linearization of the sigmoid functions in the 
hidden nodes is introduced, which facilitates interpretation. 

3.1 Introduction 

Categorization plays an important role in everyday processes of perception and cog­
nition, such as the recognition of spoken and written language. A number of formal 
models for the categorization process have been developed, such as the similarity­
choice model (SCM, Shepard, 1958; Luce, 1963), multi-dimensional scaling (MDS, 
Kruskal, 1964), the fuzzy logical model of perception (Oden and Massaro, 1978), 
multiple-exemplar models (Medin and Schaffer, 1978; Nosofsky, 1986), and general 
recognition theory (GRT, Ashby and Perrin, 1988). 

During the last decade, connectionist models have become very popular, not in 
the least for the modeling of perceptual and cognitive processes (e.g. McClelland, 
Rumelhart and the PDP research group, 1986; Quinlan, 1991). The multi-layer per­
ceptron (MLP) is probably the mathematically best-developed connectionist model 
(e.g. Lippman, 1987; Hertz et al., 1991; Haykin, 1994). Nevertheless, the MLP is 
still met with considerable suspicion as a model for human categorization behavior 
(e.g. Massaro, 1988), predominantly due to lack of understanding of its modeling 
capabilities and because the MLP is often.considered to be a "black box" which 
would not allow for the extraction of knowledge from its parameters. 

· 
1Based on: Smits, R., and Ten Bosch, L. (1994a), "The multi-layer perceptron as a model of human 

categorization behavior. I. Theory," submitted to J. Math. Psych. 
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It is the purpose of this chapter to give a formal description of the MLP as a 
model of human categorization behavior. We will provide insight in the model­
ing behavior and capabilities of the MLP by studying the relevant mathematical 
expressions and a number of examples. Furthermore, we will compare the MLP 
with some alternative models, in particular the SCM. In the next chapter, a num­
ber of important practical issues are addressed, such as how to estimate the model 
(training), and how to evaluate the performance and generalizability of the model 
(testing), and a practical example is elaborated. 

The structure of this chapter is as follows. In the next section the general 
structure of the model is set up. Next, the basic mathematics of the simplest MLP, 
that is, the single-layer perceptron (SLP), are described. The SCM is recapitulated 
in section 3.4 and the modeling behavior of the SLP is compared to that of the 
SCM in section 3.5. Section 3.6 presents an intermediate discussion of the prototype 
concept which is relevant for the comparison of the SLP and the SCM. In section 
3.7, the theory is extended to MLPs with one hidden layer, and in the final section 
the results are discussed and summarized. 

3.2 General model structure 

On each trial in a categorization experiment a subject is presented with one of 
N8 stimuli and is required to assign one of Nr predefined labels to this stimulus. 
Essentially, in a categorization or classification2 task Nr < N,$1 while for identifica­
tion Nr = N8 • For the sake of simplicity, we assume that each of the Ns stimuli 
is presented Np times to the subject. Furthermore, we assume that on each trial 
the categorization of the presented stimulus does not depend on previous trials. 
Based on this assumption, the results of the experiment can, without loss of infor­
mation, be summarized in a stimulus-response matrix consisting of Ns rows and 
Nr columns. Each entry R;,i in the stimulus-response matrix denotes the number 
of times the stimulus Si has been labeled as belonging to category Ci. Note that 
\..1 . • '<i;"Nr D .. _ J\T and '<i;"Ns '<i;"Nr D .. _ J\T J\T 
v~ • L.tj=l .L"iJ - Hp L.ti=l L.tj=l"'"iJ - lYsHp· 

We will now propose a model which simulates the mapping of a set of stimuli 
onto a set of categorical responses. The proposed model consists of 3 steps: 

1. extraction of stimulus features, 
2. evaluation of class probabilities on the basis of stimulus features, 

3. actual choice of a single response class on the basis of class probabilities. 

These steps can be described as a cascade, as is shown in Figure 3.1. 
The model fits into the general framework described by Ashby (1992), which 

consists of 3 stages: the representation stage, the retrieval stage, and the response 
selection stage. Throughout the rest of the chapter we will use this terminology 
introduced by Ashby. Note also that the model corresponds to the central branch of 
the general model for stop-consonant perception presented in chapter 1 (Figure 1.1). 

same paradigm. 
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input: stimulus 

1 

stimulus features 

2 

class probabilities 

3 

output: response frequencies 

Figure 3.1: Schematic representation of the model for perceptual classification. 
1, 2, and 3 indicate the representation stage, retrieval stage, and response selection 
stage, respectively. 
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In the representation stage the stimulus Si is transformed from the physical 
domain into an internal representation, which is a vector containing N F stimulus 
features. Thus, in the representation stage, each stimulus is mapped to a point 
in an N p-dimensional feature space :F. Feature vectors in :F will be denoted by 
F, the value of F for stimulus S; is denoted by Fh and the kth component of 
Fh that is, the value of feature k of stimulus Si, is denoted by Fik· Generally, 
the specific choice of features in a model will be based on either knowledge of 
the potential perceptual relevance of various stimulus features, or on knowledge 
of statistics of the stimulus set. Often, in the preparation of the experimental 
stimuli, a number of stimulus features is explicitly manipulated in order to test 
their perceptual relevance. The feature extraction is assumed to be deterministic, 
which means that each presentation of a particular stimulus will lead to the same 
feature vector, that is, this stage is noiseless. 

In the retrieval stage the feature vector F; of each stimulus S; is mapped to a 
vector p;. of length Nr containing the a posteriori probabilities of choosing each of 
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the response categories. The jth component of the probability vector Pi is denoted 
by Pii· The feature-to-class-probability mapping is assumed to be deterministic. 
Here, it is modeled by an MLP. 

In the response selection stage the actual labeling takes place. This labeling 
is assumed to be probabilistic, and here it -is modeled by a multinomial function. 
Suppose that after Nv presentations of stimulus Si, a subject has generated an 
output vector Ri of length Nr. Each component R;,j of Ri denotes the number 
of times the subject has assigned stimulus Si to class Ci. The multinomial model 
states that the probability p(RiiPi) of generating the response vector Ri after Np 
presentations of stimulus Si, given class probabilities Pi. equals 

Nr pR:-i 
p(RiiPi) = Np! II ~3 _, 

j=l •r 

The 3-stage mapping can be summarized as follows: 

(3.1) 

(3.2) 

We will briefly compare the general assumptions for each of the 3 stages described 
above to two major existing models of human categorization behavior, that is the 
prototype model, e.g. multi-dimensional scaling (MDS, e.g. Kruskal, 1964), or the 
classical Shepard-Luce similarity-choice model (SCM, e.g. Shepard, 1958; Luce, 
1963), and general recognition theory (GRT, e.g. Ashby and Perrin, 1988; Ashby 
and Maddox, 1993). 

The central assumption in prototype models is that a "prototype" or ideal ref­
erence exemplar exists for each response category, and that the categorization of 
each stimulus is based on a calculation of similarity of this stimulus to each of the 
prototypes. Generally, the representation and retrieval stages are assumed to be 
deterministic, while the response selection stage is assumed to be probabilistic. 

In GRT it is assumed that the subject divides the feature space :F into disjunct 
subspaces or "response regions", each of which is associated with a distinct category 
label. On each experimental trial the presented stimulus is mapped to a point in 
the feature space and the stimulus receives the label of the corresponding response 
region. The representation stage in GRT is assumed to be essentially probabilis­
tic, while the retrieval and response selection stages are generally assumed to be 
deterministic. 

As stated earlier, the representation and retrieval stages in the model proposed 
in this chapter are assumed to be deterministic, and the response selection stage is 
assumed to be probabilistic. In this sense, our model is equivalent to the prototype­
based models and differs conceptually from GRT. 

3.3 The multi-layer perceptron 

The MLP is the core of our categorization model. It is used to model the retrieval 
stage, that is, the mapping of stimulus features to class probabilities. In this sec­
tion, we will develop the theory for a "single-layer perceptron" (SLP), which is a 
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F--------

p--------------------

Figure 3.2: Schematic representation of the SLP as it is used in our model. The top 
row of small circles represents the input layer including the bias. The middle row of 
large circles represents the output layer. The symbols E and u represent summation 
and sigmoid transformation, respectively. 
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perceptron consisting an input layer and an output layer, and no hidden layers.3 In 
a later section we will extend this theory to an MLP with one hidden layer. The 
structure of the SLP used in our model is shown schematically in Figure 3.2. 

The stimulus features are clamped to the input nodes, represented as the top row 
of circles in Figure 3.2. The input nodes pass the features unchanged. One input 
node is assigned to each stimulus feature. The SLP in Figure 3.2 has 4 input nodes_ 
The top right circle with the number ~'1" is the bias node. Instead of transferring a 
feature value, this node simply outputs a fixed value 1 (e.g. Haykin, 1994). 

All input nodes, including the bias node are connected to all output nodes. A 
weight is associated with each connection. The feature value traveling through the 
connection is multiplied by the respective weight before reaching the output node_ 
The weights are the parameters of the model. The number of weights Nw, including 
biases, in the SLP equals 

In the output nodes two processing steps are made. First, the weighted feature 
3 A '~two-layer perceptron" may seem to be a more appropriate name for perceptron consisting of an 

input layer and an output layer. Nevertheless, in accordance with other authors (e.g. Haykin, 1994; 
Lippman, 1987), we have chosen to use the term single-layer perceptron because the output layer is the 
only ''real" layer in the sense that it consists of neurons which perform the summation and nonlinear 
activation transfer. 
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values of stimulus Si are summed, yielding a quantity d;.,: 

NF 

dij = b; + E WkjFik (3.4) 
k=l 

where bi is the bias, which is the weight between the bias node and output node j, 
and Wkj is the weight between input node k and output node j. All weights and 
biases are real numbers and can assume negative values. Thus, d,i also is a real 
number and can assume negative values. 

,Next, d;.; is passed through a sigmoid activation function yielding a quantity Sij 

defined by 

1 1 
Sij = = 

1 + exp(-d;.;) 1 + exp( -b; L:f!1 Wk;Fik) 
(3.5) 

Note that v.,j: Sij E (0,1), and limdw-•-oosi;(d.;) = 0 and limd;j-ooSij(dij) = 1. 
Throughout the chapter' Sij will be interpreted as the similarity of stimulus si to 
category Ci. 

Finally, the outputs sii of the output nodes are normalized yielding the quantity 

Pii = 

(3.6) 

This normalization step, which is not part of the actual SLP, is similar to the nor­
malization in the (unbiased) SCM (Luce, 1963). The Pii can now be interpreted as 
probabilities because Vi,; : Pii E (0, 1) and Vi : 2:~1 PiJ = 1. The probability Pii 
is the a posteriori probability of class cj' that is, the probability that the model 
responds with class cj when it is presented with stimulus s •. 

Generally, before being clamped to the input node, the set of values for each 
feature is normalized over all stimuli using 

(3.7) 

where Fik and Fik are the original and normalized value of feature k of stimulus Si, 

and f..tk = ~. L~1 Fik and crk = J N}_1 2:~1 (f..£k- Fik) 2
• 

An important concept in categorization models is the location of decision bound­
aries. The equal-probability boundary Bmn between classes Cm and Cn is defined as 
the subspace of :F where the ratio L of the probability Pm(F) of responding class 
Cm and the probability Pn(F) of responding class Cn is one: 

Pm(F) 
Bmn = {F E :FIL(F) = Pn(F) = 1} (3.8) 
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For the SLP the boundary Bmn is defined by 

Bmn ={FE :FIPm(F) = 1 + exp(-bn- E~~l WknFk) = 1} 
Pn(F) 1 + exp ( -bm - Ek~l WkmFk) 

which reduces to 
NF 

Bmn ={FE :FI(bn- bm) + 2:: Fk(Wkn- Wkm) 0} 
k=l 
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(3.9) 

Equation (3.9) states that the equal-probability boundary between any two 
classes is linear in the SLP model (see also Haykin, 1994; Lippman, 1987). 

3.4 The similarity-choice model 

In order to make a detailed comparison between the SLP and the SCM possible in 
the next section, we will briefly recapitulate the well-known SCM in this section. 

Like the SLP, the SCM actually only models the retrieval stage in the catego­
rization process. For the purpose of the comparison we will use a popular instance 
of the class of distance-based SCMs, that is, the weighted SCM with Euclidean 
distance and exponential decay function. This model will be briefly recapitulated 
below. 

Each response class Ci has one prototype Pj which is a vector containing N F 

components Pik· The weighted Euclidean distance dii of a stimulus Si to prototype 
PJ is defined as 

Np 

dij = I: Wk(Fik - Pjk)2 (3.10) 
k=l 

where Wk is a non-negative parameter representing the attention allocated to feature 
dimension k. For the sake of generality we will not impose the restriction Ef~1 wk 
1. 

It is assumed that the similarity s,i of stimulus S, to category Cj is related to 
the psychological distance dii of stimulus S, to prototype Pj via the exponential 
decay function (e.g. Shepard, 1958): 

,--------

Sij = exp( -d;.i) = exp (- E wk(Fik- Pjk)2
) 

k=l 

(3.11) 

Note that Sij lies within the range {0, 1], with s,i(O) = 1 ("self-similarity"), and 
limd;r"'oo Sij ( d;.i) 0. . 

Finally, the probability Pii of responding class Ci, given stimulus s, is defined 
as (Luce, 1963): · 

Pii 

= 

bjSij _ bi exp( -d;.i) 

E~1 b:su - E~1 bt exp( -du) 

bi exp( -VEf~1 wk(Fik- Pik)2) 

btexp(-VEf~t wk(Fik- ~k)Z) 
(3.12) 
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where b1 E JR+ is the response bias for category C1. Note that this response bias is 
different from the MLP-bias. 

The above defined SCM contains NFNr prototype parameters Pjb NF attention 
weights wk, and Nr 1 response biases4 b1. Thus, the model has (NF+1)(Nr+l) 1 
free parameters in total. 

The equal-probability boundary Bmn between classes Cm and Cn in the SCM is 
defined by 

Bmn = {F E F Pm(F) = bm ~xp ( -/r:.~:t w~c(F~c- Pmk)2) = 1} 
Pn(F) bn exp ( -VEf:1 w~c(Fk- Pnk)2) 

which leads to 

NF 

Bmn = {F E F L Wk(Fk- Pn~c)2 
k=l 

NF b . 
L Wk(H - Pmk)2 +In b n = 0} (3.13) 
k=l m 

If bm = bn this reduces to 

NF 

Bmn ={FE F L w~c((Fk- Pn~c)2 - (Fk- Pm~c)2) = 0} (3.14) 
k=l 

which is a hyperplane passing through the midpoint between prototypes P m and 
Pn (the quadratic term in Fk vanishes). If all w~cs are equal, Eq. (3.14) defines the 
mid-sagittal plane between P m and Pn. 

3.5 Comparison of SLP and SCM 

The purpose of this section is to gain insight in the modeling capabilities and implicit 
assumptions of the SLP through a comparison of the SLP with the SCM. 

In both the SLP and the SCM we can distinguish 3 processing steps, that is, 
the transformations of F to d, of d to s, and of s to p: 

F---+d---+s p (3.15) 

N.B., these steps take place within the retrieval stage, and should not be confused 
with the 3 stages described in section 1. The transformations are summarized in 
Table 3.L 

In order to get a notion of the differences between the processing steps of the 
two models and the influence of the various parameters, we will discuss some exam­
ples. In section 3.5.1, a number of one-dimensional examples are presented which 
illustrate the basic situations. The observations will be generalized in section 3.5.2 
using the analytic expressions. In section 3.5.3, the general model properties derived 
from the analytic forms are further illustrated with a number of two-dimensional 
examples. 

4Without loss of generality we may impose the restriction E;,;-1 bi == I, which brings the number of 
free bias parameters down from Nr to N, - 1. 
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3.5.1 Examples: 1 feature, 2 classes 

First we will consider the simplest case of interest, namely that of one stimulus 
feature and two response classes. Figure 3.3 shows an artificial example (not fitted 
on real data) for the SCM. dJ (symbols x and + ), Sj (symbols- and - ·-), and 
Pj (symbols-- and···) are displayed as a function of the stimulus feature F for 
each of the two categories. 

In all three subfigures the prototypes are located at F1 = -1 and F2 2. In 
Figure 3.3a the biases for both response classes, as well as the attention weight for 
the single stimulus feature are 1. Due to the Luce-normalization, in the regions to 
the left as well as to the right of both prototypes the probabilities of responding 
either class become constant, although both similarities quickly drop to zero. This 
is related to the subject's having to make a forced choice. Although a particular 
stimulus may have very low similarity to both prototypes the subject has to choose 
one of the two. In Figure 3.3b all parameters are the same as in Figure 3.3a, 
only the attention weight is changed to 0.1. The transitions in p become shallower 
and different "saturation probabilities" in the regions to the left and right of both 
prototypes are reached. In Figure 3.3c all parameters are the same as in Figure 
3.3a, except the bias for the right category, which is increased to 8. Note that the 
equal-probability class boundary has shifted to the left. Furthermore, the left and 
right saturation probabilities are now different. 

In Figure 3.4, a number of basic (artificial) situations are shown for the SLP, 
again with one stimulus feature and two response classes. dj, Sj, and Pj are indicated 
by the same symbols as in Figure 3.3. 

In Figure 3.4a both biases are 0 and the weights connecting the input node 
to output nodes 1 and 2 are w 1 = -1 and w2 = 0.5, respectively. A first clear 
difference with the SCM is that the function d in the SLP cannot be interpreted as 
a distance because it can become negative. Secondly, if we define a prototype as a 
point in the feature space where the similarity to the associated category reaches its 
maximum value 1, the SLP's prototypes are located at infinity. Stated differently, 

Table 3.1: The three levels of processing in the SLP and SCM. For further expla­
nation see text. 

model SLP SCM 

"distance" dij = bj + 2:~~1 Wkj Fik dij = /2:,~~1 wk(Fik - Pjk)2 

similarity ' s··- l exp(-d,j) '1 - l+exp( -d;j) Sij 

probability Pii = l:'Jij 
l=l Bil 

Pii = t;frSij 

2:1:1 b!Sil 
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Figure 3.3: The functions d1. d2, s1. s2,p1 and P2 as function of the stimulus feature 
for three examples of the SCM. The parameter values are: Figure 3.3a: P1 = -1, P2 = 
2,b1 b2 = w = 1. Figure 3.3b: P1 = -l,P2 = 2,b1 = ~ = w = 0.1. Figure 3.3c: 
P~=-l,P2=2,b1 8,~=w=l. 

the SLP model essentially supports prototypical directions, rather than prototypes. 
This issue will be extensively discussed in the next section. 

Interestingly, although the shapes of the similarity curves are very different for 
the SCM and the SLP, the shapes of the probabilities are very similar. The clearest 
difference lies in the asymptotic behavior. While the SLP-probabilities approach 
0 or 1 far away from F = 0, the SCM-probabilities are constant outside both 
prototypes. Finally, we note that the equal-probability boundary in Figure 3.4a is 
located at F = 0, as can be easily verified from Eq. (3.9). 

The effect of increasing the absolute value of the weights is illustrated in Fig­
ure 3.4b. Here, w1 = -4 and w2 = 2, while b1 = b2 0. The transitions between 
the two classes become steeper. 
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Figure 3.4: The functions di 1 rk, s11 s2,P1 and p2 as function of the stimulus feature 
for five examples of the SLP. The parameter values are: Figure 3.4a: WI = -1, w2 = 
0.5, bi ~ = 0. Figure 3.4b: w1 -4, w2 = 2, bi b2 = 0. Figure 3.4c: WI 

-1, w2 = 0.5, b1 = -1, ~ = 1. Figure 3.4d: WI = -4, w2 = 2, b1 b2 = 5. Figure 
3.4e: WI= -4,wz = -2,b1 = 2,~ = -2. 

Figure 3.4c illustrates the effect of having different biases for different classes. 
Here, w1 -1 and w2 = 0.5, like in Figure 3.4a, while now b1 = -1 and b2 = 1. 
Clearly, the equal-probability shifts toward class C1, as can be verified from Eq. 
(3.9). 

In Figures 3.4d and e, two situations are presented which have no equivalent in 
the SCM. In both cases there is a substantial area in the feature space where both 
classes have high similarities, which results in an "ambiguous area" where both class 
probabilities are close to 0.5. In Figure 3.4d, w1 = -4 and w2 = 2, and b1 b2 = 5. 
Like in Figure 3.4b, the probability of responding class C1 is high for low feature 
values and the probability of responding class C2 is high for high feature values. 
In the middle region, however, both similarities are high due to the high biases, 
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resulting in ambiguousness. 
The parameter values for Figure 3.4e are w1 = -4, w2 = b1 = 2, b2 = -2. 

Both weights have the same sign, causing the similarities to the two categories to 
be high in the same general area, in this case for negative feature values. After 
normalization we find an ambiguous area for p at low feature values, high P2 for 
high feature values, and high P1 for feature values close to 0. 

In summary, the 1-dimensional examples have shown that, although the similar­
ity functions of the SLP and SCM are very different, the probability curves may be 
very similar. The most striking difference between the probability functions of the 
SLP and the SCM is that for the SLP the probability functions may show extensive 
ambiguous regions where both classes have equal probability. In this sense, the SLP 
is more general than the SCM. 

3.5.2 Generalization of the examples 

In order to generalize these observations we go back to the general analytic forms. 
In general the probability ratio L(F) of responding class Cm and class Cn in the 
SLP equals 

L(F) = 1 + exp ( -bn 2:~!1 W~onF~o) 
1 + exp ( -bm - E~o:1 W~omF~o) 

(3.16) 

Let us now decompose the weights W/om and w~on and the biases bm and bn into an 
average component w~o and b, and a variable component Awk and Ab, respectively: 

Wkm w~o+Aw~o (3.17) 

WJm w~o-Aw~o (3.18) 

bm = b+Ab (3.19} 

bn = b-Ab (3.20) 

1( ) 1( - 1 Note that Wk = 2 Wkm + W~on , Awk 2 Wkm - w~on), and b = 2(bm + bn), Ab = 
~(bm- bn)· 
Now Eq. (3.16) can be rewritten as 

L(F) = 1 + exp (-b) exp (- EJ:1 'ill,.:F~o) exp (Ab + Ef£1 AwkF~o) (3.21 ) 
1 + exp (-b) exp (- E~o:1 wkH) exp ( -Ab- Ek:l Aw~oFk) 

Each of the 3 exponential factors in the numerator and denominator has a distinct 
interpretation. 

The factor exp (-b) can be interpreted as a general "attenuator" of the influence 
of the stimulus features on the probability ratio. If exp (-b) is small compared to 
the other exponential factors (that is, when b is large), we can write 

1 + Et(F) 
L(F) = 1 + €2(F) R! 1 + Et (F) - E2(F) R! 1 (3.22) 
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with 0 < c1(F) ~ 1 and 0 < c2(F) ~ 1. 
This means that both probabilities hardly depend on F, and they are about equaL 
This is the case in Figure 3.4d for feature values close to 0. 
If, on the other hand, exp (-b) is large compared to the other exponential factors 
(b is very negative), we can omit the term 1 and obtain 

exp (-b) exp (- Ef~1 'iihH) exp (Ab + Ef~1 AwkFk) 
L(F) ~ exp (-b) exp Ef~1 wkFk) exp ( -Ab Ef~1 AwkFk) 

Np 

exp {2Ab + 2 L AwkFk) (3.23) 
k=l 

In this case the SLP coincides with a special case of the SCM, as will be shown in 
the next section. 

The second exponential function in Eq. (3.21), that is, exp (- Ef~1 wkFk), can 
be interpreted as an attenuator which, in contrast with exp (-b), depends on Fk. 
In regions of :F where exp (- Ef~1 wkFk) is large compared to the other factors, L 
approximates 1. This is the case for very negative values of F in Figure 3.4e, where 
Wk = -3 and Awk = -1. 

The third exponential function in Eq. (3.21), that is, exp (Ab + Ef~1 AwkFk), 
exclusively determines the location of the equal-probability boundary Bmn· Recall 
from Eq. (3.9) that Bmn is defined by 

Np 

(bn bm) + L Fk(Wkn- wkm) = 0 
k=l 

which is equivalent to 
Np 

Ab + L AwkFk = 0 (3.24) 
k=l 

Thus, we see that, when a constant is added to all outgoing weights of an input node, 
or when a constant is added to all biases, the shape of the probability "landscape" 
will change, but the classification boundaries will be unaffected. 

3.5.3 Examples: 2 features, 3 classes 

Categorization experiments where only one stimulus feature is varied by the exper­
imenter, cq. used by the subject, are rare. Often two or more features have to be 
taken into account in the modeL We will briefly study two examples with N F 2 
and Nr = 3. 

Figure 3.5 represents a basic example of the similarity functions Sj and probabil­
ity functions Pj of the SCM and the SLP. Figure 3.5a shows the SCM's s1 , s2 and s3 

simultaneously, and Figure 3.5b shows the SCM's P1> p 2 and p 3 • Figures 3.5c and 
d show the SLP's s1, s2, sa and P1, P2, Pa, respectively. The two feature dimensions 
are indicated by x andy. For the SCM, the 3 prototypes are located at (-2,0), (1,1), 
and (1,-1). The 3 biases and 2 attention weights are set to 1. The SLP-weights5 

5Recal1 that Wkj indicates the weight between input node kand output node j in the SLP. 
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Figure 3.5: Similarities s1 , s2, 83 (Figures 3.5a and c), and class probabilities 
Pt.P2 ,p3 (Figures 3.5b and d), for the SCM (Figures 3.5a and b), and the SLP 
(Figures 3.5c and d). The parameter values are: Figure 3.5a and b: P 1 = 
(-2,0),P:~ = (l,l),Pa = (1,-l),bt = b2 = ba = Wt w2 = 1. Figure c and 
d: wu -2,wz1 = O,w12 l,w22 = l,w13 = l,w23 = -l,b1 = bz b3 0. x and 
y are the stimulus features. 

y 

are set to wn = w21 = 0, w12 = 1, w22 = 1, w13 1 and W23 = -1, and all 
biases are set to 0. 

Like in the one-dimensional case, we find that the shapes of the similarity func­
tions of the SCM and the SLP are very different. In the SCM, the similarities to 
each of the three prototypes strongly peak at the prototype locations, while the 
SLP-similarities reflect the sigmoid shape. The class-probability functions of the 
two models are, however, rather similar. Note that, in contrast with the SCM, the 
SLP probabilities flatten off in non-prototypical directions, e.g. at feature values 
(5,0). As shown earlier with Eq. (3.21), the amount of flattening-off between two 
categories is controlled by the average bias of the two categories. 

Figure 3.6 shows two basic situations for the SLP which, like Figures 3.4d and 

5 

5 
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Figure 3.6: · Similarities sb s2 , s3 (figures 3.6a and c), and class probabilities 
p1 ,p2 ,p3 (figures 3.6b and d), for two examples of the SLP. The parameter values 
are: Figure 3.6a and b: wu = 0, w21 = 2, w12 = 2, w22 = 2, w13 = 2, wza = 0, b1 = 

bz = 0, ba = -4. Figure c and d: wn = 2, w21 = 2.5, w12 2, Wzz = 2, w1a 

2.5, w23 2, b1 b2 = b3 = 0. x and y are the stimulus features. 

e, have no equivalent in the SCM. The Figures on the left side show the 3 similarity 
functions (Figure 3.6a) and probability functions (Figure 3.6b) for parameter values 
bt b2 = 0, bg -4 and wn = 0, w21 2, w12 2, w22 2, Wt3 = 2 and 
w23 = 0. Figures 3.6c and d show similarities and probabilities for parameter values 
b1 = ~ = b3 0 and Wn = 2, w21 2.5, W12 = w22 = 2, w13 = 2.5 and W23 2. 
Note that for both cases the ws are relatively large. 

In Figure 3.6b, we find that categories 1 and 3 show asymptotic behavior, and 
category C2 peaks for feature values close to the origin. We will calculate the class 
boundaries for this example by substituting the parameter values in Eq. (3.9), which 
leads to 

5 

5 
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B12 = {(x,y)E1Rx1Rjx+2=0} 
B13 {(x,y) E 1R x 1Rix- y = 0} 
B23 = {(x,y) E 1R x IR!y + 2 0} 

In accordance with Ashby and Perrin (1988), we will use the term response region 
to indicate the subspace :Fj of :F where class Cj is the most probable response class: 

(3.25) 

We can establish the response region for each response class by taking the cro..qs 
section of the subspaces defined by the 2 relevant boundaries. For the example of 
Figure 3.6b, this leads to 

:Ft {(x, y) E JR X JRjx + 2 < 01\ X y < 0} 

:F2 = {(x,y)E1Rx1Rix+2>0Ay+2>0} 
:F3 = {(x, y) E JR X JR!y + 2 < 01\ X- y > 0} 

In Figure 3.6d, we find a large ambiguous region for positive x andy, because 
the similarities to all3 categories are close to unity. Note that the counter-intuitive 
situation occurs that p3 Increases with decreasing s3 • This means that, although the 
likeness to category c3 decreases, the likeness to the other categories decreases even 
more, so the subject is more likely to respond with category C3 in a forced choice 
task. A comparison of similarity (or "typicality") ratings to categorization data 
for the same stimuli may indicate whether or not this is a psychologically realistic 
effect. Prototype-based models can only display this behavior when class-dependent 
rate decreasing parameters are used, as proposed by Ashby and Maddox (1993).6 

The classes in Figure 3.6d, as described by their boundaries, are 

:F1 = {(x,y) E 1R x lRjy > 01\x < y} 
:F2 {(x,y)E1Rx1Rix<0Ay<O} 
:F3 = {(x,y) E 1R x IR!x > 01\x > y} 

3.6 The prototype concept in relation to the natural range of feature 
values 

The concept of prototype, as it is used in prototype models of categorization, is 
based on at least 3 assumptions. 

1. The prototype of a category is the most typical member of the category. 
2. The prototype contains the only information concerning the category which is 

memorized. 
3. Prototypes are used as reference exemplars during categorization, that is, re­

sponses are based on a computation of similarity of the stimulus to all relevant 
prototypes. 

6 Distance measure E5, pages 382-383. 
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The general validity of these assumptions has been subject to criticism (e.g. 
Ashby, 1992). Rather than further criticizing these assumptions, we want to discuss 
an assumption which is often made more or less tacitly in prototype models. This 
assumption is that all prototypes must lie within the natural range of feature values, 
that is, stimuli exist or can be synthesized - which coincide with the prototypes. 

Let us look at the following example. Suppose that in an experiment subjects 
are asked to classify adult men into two categories, namely category C1 of tall men 
and category C2 of short men. Fundamentally, the prototype concept is not suited 
to model this problem. The taller the man, the more typical he is of category C1, 

the shorter the man, the more typical of category C2 . However, in a categorization 
task, each stimulus feature has a certain limited natural range. In our example no 
stimuli will be presented with a height below lm or above 2.5m. If we now allow 
the prototypes to lie outside this natural range, e.g. we allow the prototypes of the 
short and long category to be men of O.lm and 10m, respectively, the observed 
categorization data may be well modeled by a prototype model. 

More generally, we want to state that 

1. In some situations it is fundamentally more appropriate to use a concept of 
prototypical direction than of prototype. 

2. These situations may still be accurately modeled with prototype models when 
the prototypes are allowed to lie outside the natural feature range. 

As the SCM is a prototype-based model, these statements should apply. As 
stated in an earlier section, the SLP is a conceptually different model which is based 
on the notion of prototypical direction. In support of the second statement, however, 
it is shown in Appendix 1 that the SCM with prototypes at infinite distance from 
the origin7 coincides with the SLP with biases at minus infinity. Using symbolic 
notation, we may write 

lim SLP = lim SCM 
b;--oo IIP;If-+oo 

(3.26) 

Furthermore, in this situation we can express the SLP-parameters in terms of the 
SCM-parameters as is listed in Table 3.IL 

Figure 3. 7 illustrates the close correspondence of the SLP to the SCM in this 
limit case. Figures 3. 7 a and b represent the similarities and class probabilities for the 
SCM with b1 b2 = b3 = w1 w2 = 1 and the prototypes far away from the origin: 
P1 = ( -20, 0), P2 = (18, 10), Pa = (18, -10). Figures 3. 7c and d represent the 
similarities and class probabilities for the SLP with the parameter values calculated 
by substituting the SCM-parameters in the equations listed in Table 3.1!, yielding 
b1 = -20, b2 = b3 = -20.6, Wn = -1, w21 = 0, w12 = 0.874, w22 = 0.486, w13 = 
0.874 and w23 = -0.486. 

Clearly, in line with Eq. (3.26), the similarities as well as the probabilities of the 
two models are almost identical. 

that usually the stimulus features are normalized to Z-scores using Eq. (3.7), so the feature 
vectors for all stimuli are grouped around the origin. Here the origin has no perceptual interpretation. 
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Table 3.II: The correspondence between SLP-parameters and SCM-parameters in 
the limit case ~j--oo SLP = limiiPJII-oo SCM. 

SLP-parameter Corresponding function in 
terms of SCM-parameters 

We conclude this section with a remark on the GRT. Ashby and Perrin (1988) 
define the unbiased probability Pii of responding with category Ci, when presented 
with stimulus si, as 

Pii = f <Pi(F)dF 
}Rj 

(3.27) 

where Ri is the response region of category Cj, and <Pi(F) is the multivariate normal 
probability density function (pdf) which is associated with the perceptual effect of 
stimulus si. Furthermore, the similarity of stimulus si to response class cj has the 
same definition. When a GRT-model does not have enclosed (finite) response re­
gions, which will often occur when Nr is not much larger than N p, similarities as well 
as class probabilities are cumulative normal pdfs (Ashby and Perrin, 1988). There­
fore, as for the SLP and the SCM with remote prototypes, the CRT-similarities as 
well as probabilities will reach their extreme values at infinity. 

3. 7 Extension to one hidden layer 

In this section, the theory which was developed for the SLP is extended to the MLP. 
We will restrict ourselves to the case of the two-layer perceptron (TLP), that is, the 
MLP with one hidden layer. 

3. 7.1 Definitions 

In the TLP, a layer of N H hidden nodes plus one bias node is situated between 
the input layer and the output layer. All input nodes (including the bias node) are 
connected to each hidden node, and all hidden nodes (including the "hidden" bias 
node) are connected to each output node (e.g. Haykin, 1994; Lippman, 1987). In 
total the number of parameters Nw in the TLP equals 

(3.28) 
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Figure 3.7: Similarities St, s2 , s3 (Figures 3.7a and c), and class probabilities 
P1,p2,p3 (Figures 3.7b and d), for the SCM (Figures 3.7a and b), and the SLP 
(Figures 3.7c and d). The parameter values are: Figure 3.7a and b: P 1 = 
(-20,0),P2 (18,10),P3 = (18,-lO),bl ~ = b3 = w1 = Wz = 1. Figure c and 
d: w11 = -l,w21 = O,w12 = 0.874,Wzz = 0.486,w13 = 0.874,wz3 -0.486,bl = 
-20, b2 ba = -20.6. x andy are the stimulus features. 

y 

The hidden nodes perform the same processing - summation and sigmoid transfor­
mation - as the output nodes. 

The notation is adjusted as follows. The weight connecting node k in layer l 
to node j in layer l + 1 is indicated by Wtkj· The input, hidden and output layers 
have indices l = 0, 1 and 2, respectively. In hidden node j, a weighted sum of input 
feature values Fik of stimulus si is made, yielding a quantity doi{ 

NF 

doij = boj + L Wokj Fik (3.29) 
k=l 

Hidden node j will output a quantity Boij defined by 

Boij (1+exp(-doiJ))-1 (3.30) 

5 

5 
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In output node l, a weighted sum of values soij of stimulus Si is made, yielding a 
quantity dw: 

NH 

dw = bll + L WIJlBoiJ 
J=l 

The output slil of output node l is defined by 

slil = (1 + exp ( -dw))-1 

(3.31) 

(3.32) 

Finally, the outputs of the output layer are again normalized yielding the probability 
Pil of assigning stimulus Si to response class Cz: 

Pil (3.33) 

Depending on the number of hidden nodes, the modeling power of the TLP is 
much larger than that of the SLP, of course at the expense of a number of additional 
parameters. It has been established by several authors (e.g. Weenink, 1991) that the 
TLP is capable of modeling any nonlinear boundary between convex or non-convex 
subspaces. We will refrain from studying the general analytical form which expresses 
the relationship between input features and response probabilities, because it is far 
from translucent. We will confine ourselves to discussing one illustrative example, 
and we will introduce an approximation method which allows us to interpret the 
TLP-model in the same way as the SLP-model. 

3. 7. 2 Example 

It is the purpose of this example to illustrate the processing steps within the TLP 
and to give an impression of the extra modeling power provided by the hidden 
layer. Like in a number of previous examples, N p = 2 and Nr 3. The number 
of hidden nodes is set to N H = 3. For this example, the weights between the 
input layer and the hidden layer are similar to those in the example of Figure 5c: 
Won = -4, wo21 0, wo12 = wo22 = 2, Wo13 2, wo23 = -2. The biases between 
input and hidden layer are bm = bo2 = bos -5. 

The outputs Soj of the 3 hidden nodes are shown in Figure 3.8a as a function of 
the 2 input features x andy. Note that the shapes are similar to those in Figure 
5c. The weights and biases between the hidden layer and the output layer are 
chosen such that the resulting classes are more or less concentric, that is, class C2 

surrounds class C3 , and class C1 surrounds class C2. The parameter values are 
Wnt = W121 W131 = 4.5, W112 = W122 W132 0, Wug = W123 = Wt33 = -4.5, 
and bu = -7, b12 = b13 = -2. The outputs s11 of the three output nodes 
as a function of the 2 input features x and y are shown simultaneously in Figure 

· 3.8b, and are shown separately in Figures 3.8d (sn), 3.8e (s12) and 3.8f (siS). Note 
that output node 1 is positively connected to all hidden nodes, output node 3 
is negatively connected to all hidden nodes, and output node 2 is not connected 
(weights 0) to any hidden node. Thus the functions s11 , s12 and s13 are high in 
the outside region, constant, and high in the inside region, respectively. After 
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Figure 3.8: Various processing levels within the TLP. Parameter values are: w011 = 
-4, wo21 = 0, wo12 = wo22 = 2, wo13 = 2, wo23 = -2, bo1 = bo2 = bo3 = -5; 
WUl = W121 = W131 = 4.5, Wn2 = W122 = W132 = 0, WU3 = W123 = W133 = -4.5, 
b 11 = -7, b12 = -3, b13 = -2. Figures 3.8a shows the functions so1, so2, so3, Figure 
3.8b shows the functions su, s12, s13, Figure 3.8c shows the functions Pl> p2, P3· The 
functions s 11 , s 12 and s 13 are shown separately in Figures 3.8d, e and f, respectively. 
The functions p 1 , p 2 and p 3 are shown separately in Figures 3.8g, h and i, respectively. 
x and y are the stimulus features. 

normalization this leads to the "concentric" response regions: p1 is high in the 
outside region (Figure 3.8g), p3 is high in the inside region (Figure 3.8i), and p2 is 
high in a band in between (Figure 3.8h). p1,p2 and p3 are displayed simultaneously 
in Figure 3.8c. 

Figure 3.9 shows the equal-probability boundaries between class C1 and class 
c2 (outer curve) and between class c2 and c3 (inner curve) for the above example. 
The boundary between class C1 and C3 lies between the two other boundaries, but 
it is not displayed. 

The example shows that the TLP is capable of modeling non-convex classes 

5 

5 

5 
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Figure 3.9: The equal-probability boundaries B12 (outer curve) and B23 (inner 
curve), for the example of Figure 3.8. x andy are the stimulus features. 

with nonlinear boundaries. The hidden layer linearly separates a number of convex 
"auxiliary" classes, which are combined in the output layer to get the output classes. 

3. 7.3 Linearization of hidden nodes 

In general, the interpretation of the categorization behavior of the TLP is much 
more difficult than that of the SLP. The equal-probability boundaries in the TLP 
are nonlinear, and their analytical expressions are- although easy to derive- hard 
to interpret. In this section we will propose a method for the interpretation of 
the TLP which is based on replacing the sigmoid function in the hidden nodes by 
a piecewise linear approximation. The simplest piecewise linear approximation to 
the sigmoid is the well-known Heaviside function or hard-limiter (e.g. Lippman, 
1987; Minsky and Papert, 1969). The Heaviside function equals zero for negative 
input and equals one for positive output. We consider this approximation too 
crude for our purposes because the resulting similarity and probability functions 
are discontinuous and show no transitional regions. We choose the simplest-but­
one piecewise linear approximation to the sigmoid, that is, a continuous function 
consisting of three line segments. We will use it as follows. 

After a TLP has been trained on experimental data8 , the sigmoid a(x) in all 
hidden nodes is replaced by the piecewise linear "pseudo-sigmoid" 9 a( x), defined 
by 

1- b, 

x( b-~·5 ) + 0.5, 

b, 

X E -a], 
x E (-a, a}, 
xE[a,-+) 

!Vlelr,mHis for training and testing of the models are presented in the next chapter. 

(3.34) 

9 The pseudo-sigmoid cannot be used during training because all its derivatives are zero everywhere 
apart from a finite point set. · 
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Figure 3.10: The sigmoid function o-(x) and the pseudo-sigmoid function u(x). 
Parameter values are a= 2.71, b 0.99. 
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where a and bare parameters to be determined. Note that a(x) is continuous and 
always passes through (0,0.5). 

An example of the pseudo~sigmoid a(x) is displayed in Figure 3.10, together 
with the regular sigmoid a(x). For this example, the parameter b was set to 0.99, 
and the value of a was calculated such that the £ 00-norm ja(x) -a(x)j is minimized. 
This leads to the value a = 2. 71. 

The pseudo-sigmoid in each hidden node j divides the range of incoming values 
doj into three subranges, namely doj E {-, -a],doj E (-a,a}, and doj E [a, . In 
each of these subranges, a different linear relation exists between input and output 
of the pseudo-sigmoid. The combined effect of all N H linearized hidden nodes is 
that the feature space :F is divided into (at most) 3NH subspaces. In each of these 
subspaces a different linear relationship exists between the stimulus features F and 
the input of the output nodes d 1 . Thus, we can substitute the TLP by 3NH SLPs, 
each of which processes a different subset of stimuli. For each of the SLPs we can use 
the interpretation method described earlier, that is, define the appropriate linear 
equal-probability boundaries. A few remarks are in order, however. 

First, let us define a hidden node to be saturated when its input x is in a region 
. where dtTJ:l = 0, that is, when x E (-,-a] U [a,-}. We define a hidden node to be 

operational when ~~) :f. 0, that is, when x E (-a, a}. In Appendix 2 it is shown 
that, when 3NH subspaces exist, the number of subspaces Nk where k hidden nodes 
are operational equals 

Nk = ( ~H ) 2NH-k (3.35) 

Thus, we see that in 2NH subspaces, all hidden nodes are saturated (k = 0). This 
means that in all of these subspaces So, d 1 , s1 and pare independent of the stimulus 
features. N.B. although s0 ,d1,s1 ,p are constant on each saturated subspace, they 
are generally different in different saturated subspaces. Class boundaries may only 
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Figure 3.11: Various processing levels of the linearized TLP. Parameters and sub­
figures are the same as in Figure 8. 

exist in the subspaces where the number of operational hidden nodes is larger than 
zero. 

Let us go back to the example of section 6.2. We replace the sigmoids in the hid­
den nodes by the pseudo-sigmoid defined for Figure 3.10 (a= 2.71, b = 0.99). Figure 
3.11 shows the various functions in the linearized TLP. All subfigures correspond 
to the subfigures of Figure 3.8. 

Although all functions are clearly less smooth, the general patterns are very 
similar to those in Figure 3.8. 

Figure 3.12 shows the equal-probability boundaries for the linearized TLP (thick 
lines), and the boundaries between the various subspaces (thin lines). 

The piecewise linear boundaries are good approximators to the nonlinear bound­
aries displayed earlier in Figure 3.9. Note that, because the 3 functions doj are 
dependent, only 19 subspaces are present, which is less than the maximum of 27 for 
3 hidden nodes. Some combinations are not possible here, like all 3 pseudo-sigmoids 

5 

5 

5 
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Figure 3.12: The equal-probability boundaries B12 (outer thick curve) and B2a 
(inner thick curve), for the example of Figure 11. The thin lines indicate the bound­
aries between the subspaces as defined by the linearized hidden nodes. x and y are 
the stimulus features. 
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being operational simultaneously, or all 3 being right-hand saturated (see Figure 
3.11a). 

The piecewise linear approximation to the nonlinear boundaries of the TLP can 
be arbitrarily by choosing an appropriate number of linear segments in 
the pseudo-sigmoid. If we would have used the Heaviside function in our example, 
the boundaries of Figure 3.9 would have been approximated by triangles instead 
of hexagons (that is, Figure 3.12 without the "clipped tips"). The more line seg­
ments used in replacing the sigmoid, the closer the approximation to the nonlinear 
boundaries of Figure 3.9 are. 

3.8 General discussion and summary 

In the present study, a model for human categorization behavior has been devel­
oped, of which the MLP is the central part. The model has been embedded in 
the general 3-stage framework put forward by Ashby (1992). Similar to the SCM, 
the representation and retrieval stages are assumed to be deterministic, while the 
response selection stage is assumed to be probabilistic. 

For the SLP, the analytic expression for the ratio of the probabilities of respond­
ing class Cm and Cn can be rewritten in a basic form (Eq. 3.21) which allows for the 
direct interpretation of the behavior of the model. In this expression, three exponen­
tial factors appear. The first factor, exp (-b), is interpreted as a "global attenuator" 
of the influence of the stimulus features on the class Cm vs. class Cn probability 
ratio. The second factor, exp (- Ef;;'1 wkFk), is interpreted as a "feature-dependent 
attenuator". The third factor, exp (.6-b + Ef,;1 .6-wkFk), solely determines the posi­
tion of the equal-probability boundaries and sets the basic shape of the probability 
space. 
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It is established that, also within our model, the SLP applies linear equal­
probability boundaries between each pair of response classes. The response region 
for each of the classes is demarcated by piecewise linear boundaries. 

We have discussed the fact that the MLP is essentially not a prototype-based 
model: the concept of distance to a prototypical exemplar does not play a role. It 
is shown, however, that, the MLP is similar to a prototype model which has its 
prototypes located outside the stimulus-feature range. In particular, it is proved 
that for a certain limit case the SLP and SCM coincide, which is symbolically 
expressed as 

lim SLP = lim SCM 
br-+-oo IIPill-oo 

The psychologically important concept of similarity appears explicitly in the model 
as the output of the output nodes of the MLP. Like in the unbiased SCM the class 
probabilities are derived from the similarities simply by normalization. 

The theory set up for the SLP is extended to the TLP (the MLP with one hidden 
layer). It is indicated that the modeling power of the TLP can be very large, as 
it is capable of applying nonlinear equal-probability boundaries, and of modeling 
non-convex response regions. Because the equations for the nonlinear class bound­
aries are hard to interpret, a method is introduced in which the sigmoid function 
in the hidden nodes is approximated by a piecewise linear "pseudo-sigmoid". The 
combined effect of all pseudo-sigmoids is that the entire feature space is subdivided 
into a number of non-overlapping subspaces, in each of which the similarities are 
linear functions of the stimulus features, like in the SLP. The resulting class bound­
aries are piecewise linear approximations to the nonlinear boundaries in the original 
TLP. 
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Proof of limit case 
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In this appendix it is shown that the SLP and the SCM coincide in the limit case, 
when the SLP-biases tend to -oo and the distance of all prototypes to the origin 
approach infinity. 

We assume that all stimulus features are normalized using Eq. (3.7), so that 
all values are grouped around the origin. First it is to be shown that the distance 
between F and Pj is linear in F when IIPJII tends to oo. Let Ilp represent the 
orthogonal projection of the feature vector F on the prototype vector Pj of class 
cj, in the vector space with dotproduct 

(x,y) = xtWy 

W denoting the diagonal matrix of attention weights. 
Since {IIF F, PJ) = 0 by definition, it follows that the distance dj ofF to proto­
type PJ equals 

Since 

lim{v'a+x- Vx} =0 
X--+00 

it follows that 

lim { ~ tP(Fb Ilp) + tP(Ilp, PJ) - ~ tP(Ilp, PJ)} = 0 
IIPJII-+oo 

Thus, when IIPJII is large, we find 

d(F,PJ) ~ /d2(IIF,PJ) = d(IIF,PJ) 

Because Ilp and PJ have the same direction 

After some calculation, it follows that 

Np .._..Np p L1 

~ p2 =L..'-'jk:==::::;:l W::;=k =J=· k=r=-k' L...J Wk 'k-
k=l J .jL:r::;_ WtPft 

Hence, d(Ilp, Pj) is a linear function of F. 

If we substitute 

wkPik 
Wk · = ---,=='7F:::::=::===:= 1 )L:r::;_ WtPjl 

(A-1) 

(A-2) 

(A-3) 
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Eq. (A-3) simplifies to 

Np 

d(IIF,Pj) = L WkPJk 
ko:::l 

According to Shepard (1958) and Luce (1963), the biased similarity bisi ofF to Pj 
is defined by 

bisi = biexp(-d(F,PJ)) 

Using Eq. A-2 when IIPJ II is large we find 

b1s1 ~ bjexp(-d(IIF,Pj)) 

= exp(lnbi-d(IIF,PJ)) 

= exp (In b; ~ ~ w,Pj, + ~ w,;Fk) 
If we now substitute 

NF 

f3i = ln b1 - L wkPfk 
ko:::l 

Eq. (A-5) simplifies to 
Np 

b1s1 ~ exp (f3i + L WkjFk) 
k=1 

(A-4) 

(A-6) 

(A-7) 

Let us now turn to the SLP. As stated in Eq. (3.5), the similarity si of F to 
class cj is defined as 

s1 = (1 + exp ( -d1))-1 (A-8) 
NF 

= (1 + exp ( -bi - L WkjFk))- 1 (A-9) 
k=1 

Using 

lim { (1 + exp ( -di))-1} = 1 
d3--oo exp ( di) 

we find that 

lim { (1 + exp ( -bi - ~~.!1 WkjFk))-
1

} 

b,--.-oo exp (bi + I:k;l wkjFk) 

= 1 (A-10) 

Thus, for bi < 0 and lbillarge, Eq. A-9 simplifies to 

NF 

si ~ exp (b1 + L WkjFk) (A-ll) 
k=l 
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Expression (A-11) is equivalent to Eq. (A-7) for the similarity of the SCM 
with the prototypes Pj at infinite distance from the origin. Thus we find that, in 
this limit case, the SLP-biases bi are equivalent to the SCM parameters (3j, which 

stand for In bj - vi:f::l WkPlk, and the SLP-weights Wkj are equivalent to the SCM 

parameters Wkj, which stand for J wkPik (see Table 3.II). 
'"'Np p2 
L.Jt=l Wt jl 
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Appendix 3.B 
Number of subspaces 

In this appendix it is shown that the number of subspaces Nk where k hidden nodes 
are operational is maximally equal to 

Nk = ( ~H ) 2NH-k 

Suppose that in a certain subspace k hidden nodes are operational. Then there are 

( ~H ) combinations possible where k out of N H hidden nodes are operational. 

When k hidden nodes are operational, N H k hidden nodes are saturated. 
Suppose that i out of these NH k hidden nodes are saturated on the left-hand 

side (x ::; -a). Then there are ( NHi k ) possible combinations that i out of 

N H - k hidden nodes are left-saturated. Thus, there are ( ~H ) ( N Hi k ) 

possible combinations where k hidden nodes are operational and i hidden nodes are 
left-saturated. 

In order to calculate the total number of combinations Nk where k hidden nodes 
are operational, irrespective of the number of left-saturated hidden nodes, we sum 
over all possibilities of having i left-saturated hidden nodes: 

(B-1) 

Using 

Eq. (B-1) simplifies to 

Nk = ( ~H ) 2NH-k {B-2) 

Note that, when the doj are dependent, that is, when 
3(.Ao,.\~,- .. ) : doj = >..o + 'Ek#=j >..kdok, the number of subspaces is smaller than 3NH 
because not all combinations are possible. This will always be the case when 
NH > Np. 



Chapter 4 

The multi-layer perceptron as a model of human 
categorization behavior. II. Practical aspects1 

Abstract 

In this chapter practical methods are presented for estimating the model param­
eters and the goodness-of-fit (GOF) of the MLP as a model of human catego­
rization behavior. A measure of GOF is defined which is interpreted as a gener­
alized "percent correct score". The "leaving-one-out method", a cross-validation 
technique which is commonly used in the field of statistical pattern recognition, 
is adopted to estimate the generalizability of a model estimation. Finally, the 
methodology is illustrated by a practical example which deals with the issue of 
the perception of stop consonants. The danger of overfitting is demonstrated, and 
the best fitting model is interpreted using the theory presented in the previous 
chapter. 

4.1 Introduction 

In the previous chapter we presented a model for human categorization behavior 
which is centered around the multi-layer perceptron (MLP). The general purpose of 
using a formal categorization model, like the MLP, for the analysis of categorization 
data, is the extraction of knowledge about. the perceptual process under study. In 
order to achieve this goal, three more or less distinct steps have to be made: 

1. The model parameters have to be estimated in such a way that the best 
possible account is given of the observed behavior. We will call this step the 
model estimation. 

2. The performance of the model in accounting for the observed behavior has to 
be estimated. This step will be called model evaluation. 

3. The model has to be interpreted in order to gain insight into the relevant 
perceptual processes. This step will be called model interpretation. 

The third step of the analysis, the model interpretation, is very specific for the 
model that is used. The model will be interpreted in terms of its assumptions and 
parameters. For example, a similarity-choice model (SCM, Shepard, 1958; Luce, 
1963) will be interpreted in terms of where prototypes lie, what the attention weights 

1 Based on: Smits, R., and Ten Bosch, L. (1994b), "The multi-layer perceptron as a model of human 
categorization behavior. II. Practical aspects," submitted to J. Math. Psych. 
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are, and possibly, through a comparison of the performance of various instances of 
the model, whether or not the response classes should be described by multiple 
prototypes. The specific way of interpreting the MLP is extensively described in 
the previous chapter. 

The present chapter will focus on the first two steps of the analysis, the model es­
timation and evaluation. These two steps have a practical nature and are sometimes 
rather underexposed or treated in an offhand manner, which may reduce the va­
lidity of the model interpretation. Therefore we considered it necessary to describe 
useful estimation and evaluation methods in sufficient detail to allow for implemen­
tation by interested readers. Although the methods presented in this chapter are 
developed particularly for the MLP, they may also be useful for the estimation and 
evaluation of other categorization models, such as the SCM. 

The chapter is organized as follows. In the next section we will present a 
method for estimating the MLP-parameters, which is based on a function mini­
mization technique. Next, we will discuss the evaluation of the MLP-model. A 
cross-validation technique which stems from the field of statistical pattern recog­
nition will be adapted to test the generalizability of our model. Next, an example 
is given where the MLP is estimated, evaluated and interpreted for categorization 
data that are generated in a speech perception experiment. In the final section, the 
findings are discussed and summarized. 

4.2 Model estimation 

Given a particular model architecture, e.g. the topology of the MLP, the parameters 
of the model have to be estimated such that the "best" possible account is given of 
the observed data by maximizing the level of "goodness-of-fit" (GOF). In practice, 
often the "badness-of-fit" (BOF), a monotonously decreasing function of the GOF, 
is minimized. Our specific choice of GOF and BOF are defined later. 

The estimation of MLP-parameters is often called training of the MLP. We 
define the term training here as the iterative adjustment of the weights and biases 
of the MLP, with the purpose of minimizing the BOF. It is important to notice 
that no direct method exists for the computation of the MLP weights and biases 
from the observed data. 2 For a general understanding of the methods used for the 
determination of the optimal MLP-parameter values, it is useful to think in terms 
of a search in a model-parameter space (e.g. Haykin, 1994; Hertz et al., 1991). The 
model-parameter space is spanned by the model parameters, and a cost function 
defines the BOF of the model at each point in this space. Thus, the purpose of the 
training is to search for the absolute minimum in the model-parameter space. For 
the training procedure we need (1) to define a cost function, and (2) to choose a 
search method. 

2 Some alternative models, like general recognition. theory (GRT, Ashby and Perrin, 1988) or discrimi­
nant analysis (DA, e.g. Fukunaga, 1972), do allow for direct computation of their model parameters. 
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4.2.1 Cost function and goodness-of-fit 

In section one of the previous chapter, it was established that, given a vector of 
stimulus features F 1 for stimulus Si, the normalized output of the MLP is a vector 
p 1, of which each component Pii represents the probability of assigning stimulus 
Si to class Ci. Furthermore, it was assumed that the probability P(RiiPi) that a 
model with class probabilities p 1 generates the observed response vector R 1 after 
NP presentations of stimulus Si is given by the multinomial distribution: 

(-1) 

We define the optimal model as the model for which the probability of generating 
the observed response~ is maximal. As is well-known, the class probability vector 
pf of this model is given by 

Pi=~ R; 
p 

Note that 

(-2) 
The ratio Li of the probability of the actual model generating~ and the probability 
of the optimal model generating Ri> given stimulus Si, equals '; 

Li = P(R;Ip!) = IT (NpPij) R;j 

P(~IP1 ) i=l R•i 

Because of Eq. ( -2) Li :S 1. Li is a probability ratio defined for Np presentations of 
stimulus Si. The average value of Li per single presentation of stimulus Si is given 
by 

Lfv =IT (NpP.ij) ~ 
j=l ~J 

(-3) 

Since Li :;; 1 also Li S 1. Note that, if we define pzbs = ~~ then Eq. (-3) can be 
rewritten as 

We now define the GOF Pc of a model as the average of over all stimuli Si: 

!!:it. 
1 N, Nr (Np··) Np 

= - I: II _!!___!1_ 
Ns i=lj=l ~j 

(-4) 
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Clearly, 0 ::; Pc ::; 1 since Li ::; 1. 
Pc is interpreted as the average probability of the model's generating the observed 
response on a single presentation of a stimulus. For the sake of simplicity, we will 
interpret Pc as the probability of a correct response, hence the subscript "c". During 
training, instead of maximizing Pc, we minimized the cost function 1 Pc· This 
cost function can be interpreted as the probability of an incorrect response. 

A few remarks are in order here. 
Firstly, Pc is derived in such a way that it is a generalization of the probability 

of correct classification (or percentage correct) which is widely used in the field of 
statistical pattern recognition (e.g. Fukunaga, 1972). In this field, classification is 
usually "crisp", that is, a classification is either correct or incorrect. This translates 
into the Pii always being either 0 or 1, the ~j always being either 0 or Np, and 
P(Ri jpf) = 1. . 

Secondly, we chose to average the ratio Li over all stimuli Si· Instead of opti­
mizing the average probability of a correct response to a presentation of a single 
stimulus, we could have chosen to optimize the probability of generating the en­
tire response set. For this GOP-measure the summation sign in Eq. (-4) would 
be replaced by a multiplication sign. Although the latter measure is equally in:.. 
terpretable, it makes the model fit particularly sensitive to "outliers". While the 
summation measure optimizes the average fit, the multiplication measure biases the 
fit to the worst cases. 

Finally, we remark that our cost function 1 - Pc differs substantially from the 
sum-of-squared-errors (SSE) cost function used in many studies (e.g. Nosofsky, 1986; 
Massaro and Friedman, 1990; Ashby and Lee, 1991). We define the sum-of-squared­
errors cost function SSE here as 

Ns Nr 

SSE= L 2)Nppij- ~j)2 (-5) 
i=l j=l 

It is our opinion that our measure 1 - Pc has a statistical interpretation which is 
related to the multinomial distribution, while the cost function SSE has a statistical 
interpretation only if the differences between observation and prediction for all 
cells of the confusion matrix can be assumed to be independent and Gaussian. A 
simple example clearly demonstrates an important conceptual difference between 
the function 1 Pc and the SSE cost functions. Suppose that the observed response 
frequencies for a 3-class labeling task are (98, 1, 1) for stimulus S1 and ( 40, 30, 30) for 
stimulus S2, and suppose that a model predicts class probabilities (0.90, 0.05, 0.05), 
and (0.32, 0.34, 0.34) for stimulus S1 and S2 , respectively. SSE is equal for both 
stimuli, namely SSE= (98- 90)2 + (1- 5) 2 + (1 5)2 = (40- 32)2 + (30- 34)2 + 

2 (90)0.98 (5)0.ol (5)0.01 (30- 34) = 96. 1- Pc for stimulus S1 and S2 is 1 98 · 1 · 1 = 0.05, 

(
32)0.40 (34)0.30 (34)0.30 and 1- 4o · 30 • 30 = 0.14, respectively. In other words, when the 

cost function 1 - Pc is used, the closer the response fractions are to 0 or 1, the more 
accurately they must be modeled; the mid-range can be modeled in a sloppier sense. 
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For SSE the differences count equally. An elaborate discussion of these issues is 
given in Ten Bosch and Smits (1994). 

4.2.2 Search Method 

A search method is a numerical technique for finding a mm1mum in an model­
parameter space. The three most widely used search methods are (e.g. Hertz et al., 
1991; Haykin, 1994): 

1. Back-propagation, a technique which is developed particularly for MLPs with 
SSE-type cost functions; 

2. Conjugate-gradient method, a function minimization technique which is espe­
cially efficient for quadratic functions; 

3. Quasi-Newton method, a general-purpose function minimization technique. 

Because of our non-quadratic cost function we used a quasi-Newton method (al­
gorithm by Gill and Murray, 1976) in all minimizations carried out for the examples 
presented in a later section. 

As with each minimization procedure, we here encounter the problem of ending 
up in local instead of global minima (Hertz et al., 1991; Haykin, 1994). Each 
local minimum represents an instantiation of the model that locally performs best. 
The number of local minima in the model-parameter space can be very high and, 
since we do not have additional information on the shape of the cost function, it is 
generally difficult, if not impossible, to decide whether or not the global minimum 
has been reached. A number of practical solutions to this problem are presented in 
the literature, e.g. Aarts and Korst (1989), Haykin (1994). One of the simplest and 
most commonly adapted practical procedures is to randomly choose several initial 
positions in the model-parameter space, train the MLP for each of these initial 
positions and finally choose the model which yields the lowest final cost. It is not 
easy, however, to estimate beforehand how many initial positions have to be tried 
before one can be reasonably confident of having obtained the global minimum, 
because the number of local minima depends on the complexity of the data and on 
the MLP topology. 

In order to overcome this problem, we used a method which is related to the 
bootstrapping technique (Efron, 1982). The essence of the proposed method is that 
several minimizations with different initial positions are carried out, and after each 
minimization it is evaluated whether or not a good estimate of the distribution of 
final costs has been reached. To this end, all final costs obtained so far are binned, 
yielding a cost histogram. This histogram can, after normalization, be viewed as 
giving an estimate of the probability-density function (PDF) of final costs associated 
with all local minima in the model-parameter space. If, after a number of initial 
positions has been tried, the shape of the histogram is stable, it is concluded that 
the probability of finding a new minimum which is lower than the lowest so far 
is acceptably low, and no new initial positions are tried. Otherwise, additional 
training runs are initiated. 
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The decision whether or not the distribution is stable can be made as follows. 
After each training run, the final cost 1 - Pc is binned. In the examples discussed in 
a later section, the interval for 1 - Pc that was spanned by the bins was chosen to 
be [0, 0.5). A bin size of 0.05 was used, which makes the total number of bins Nbins 
= 10. Initially, 2Ni training runs are carried out, before making the comparison 
between the cost distribution of the first Ni runs and the last Ni runs. The value 
of Ni was chosen in such a way that the average number of costs per bin was large 
enough to use a x2-test. Therefore, Ni was chosen to be 6 times the number of bins, 
which makes 2Ni equal to 120 for the bin size of 0.05. 

After the 2Ni initial training runs, the two cost distributions are compared. The 
likelihood ratio test (LRT, Wilks, 1935) is used to test the null-hypothesis stating 
that the two distributions are sampled from the same underlying distribution. Sup­
pose that the number of costs in bin i of distribution 1 and bin j of distribution 
2 are ni and mi, respectively. The maximum probability Ps of finding the two 
distributions under the restriction that they are generated by the same underlying 
distribution is 

N 
,ziT (~f'+mi 

c· I I 
i ni.mi. 

where Nc is the total number of costs per distribution. 
The maximum probability Pd of finding the two distributions without the restriction 
is 

Taking minus twice the logarithm of the ratio ~: yields 

(-£) 

which follows a x2-distribution with (Nbins- 1) degrees of freedom (Wilks, 1935). 
If the probability of a type II error, that is, the probability of falsely accepting 
the null-hypothesis, is larger than a threshold value XFhr• 2 new training runs are 
initiated and the test is performed again. Otherwise, the process is terminated 
and the initialization which yields the best fit is chosen. For all model fits in the 
examples, a threshold f3 for the probability of falsely accepting the null-hypothesis 
of f3 0.10 was used. In almost all cases, after 120 training runs the test value of 
x2 was below x;hr• so the procedure was automatically terminated. 

With an increasing number of training runs, the two distributions will become 
more and more similar. When a small MLP is used, the model-parameter space will 
contain relatively few local minima. Consequently, the cost distribution is simple 
and the training process is terminated early. When, on the other hand, the MLP 
is large, the model-parameter space is complex, and many runs are needed before 
the histograms are stable, as will be shown in some examples in a later section. 
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4.2.3 Treatment of empty cells 

It may occur that a number of cells in the observed response matrix contain zeros. 
This is problematic for two reasons. Firstly, although a zero is highly informative 
on the observed response behavior, the cell does not play a role in the actual model 
estimation due to our particular choice of cost function (Eq. This is caused by 
the fact that an empty cell, ~i = 0, gives a factor 1 in our cost function, irrespective 
of the value of Pij· Secondly, we have observed in practice that the search in the 
model-parameter space is more troublesome when many zeros are present in the 
confusion matrix than when it contains few zeros. 

A practical remedy to these difficulties is to perform a slight smoothing of the 
data before the models are trained (e.g. Agresti, 1990, pp. 249, 250). For the 
calculations for our examples we decided to follow the suggestions made by Agresti 
(1990). If, for a particular stimulus Si, a zero occurred in R1, a small constant 
was subtracted from the component of Ri which has the highest value, and this 
constant was put in place of the zero, thus leaving the total number of responses 
unchanged. In our case, the total number of responses Np for each stimulus is 
equal to 120. Various small constants, ranging from 1 to 10-4, were tried out. A 
value of 0.1 (about 0.08% of Np) appeared to give the best performance in terms of 
goodness-of-fit and was therefore chosen for all calculations. 

4.3 Model evaluation 

In this section we will deal with the question how the performance of a model can 
be estimated. Special emphasis is put on the generalizability of models, and an 
evaluation technique which is commonly used in the field of pattern classification is 
adapted to suit our categorization model. Finally, a note is made on chance-level 
performance of models. 

4.3.1 Generalizability 

In a perception experiment, for practical reasons only a limited set of stimuli can 
be used. Nevertheless, one wants to make claims about the general validity of the 
model. In Fukunaga and Kessell (1971) and Fukunaga (1972) a statistical method 
is presented for estimating the generalizable GOF of crisp categorization models. 
A crisp categorization model is defined as a categorization model which has deter­
ministic representation and retrieval stages and which generates class probability 
vectors which always contain Nr - 1 components equal to zero and one component 
equal to one. Fuzzy categorization models (like the model presented in the previous 
chapter), on the other hand, are defined as models which generate output proba­
bilities that can take on any value between zero and one. We will briefly review 
the evaluation method for the crisp case below and extend it to fuzzy classification 
models. 

First we need to introduce some new notation. Let us indicate a categorization 
model by 9, which stands for a vector of model parameters. Furthermore, we define 
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a data set V as a set of vector pairs {Fb Ri}, i = 1, 2, ... ,where Fi and Ri are the 
feature vector and response vector for a stimulus Si. The term testing is defined as 
determining the GOF of a trained model on a (possibly new) set of data. Finally, 
let P,(8['Dtrain• VtestD indicate the probability that the modele, which is trained 
on a data set 'Dtrain> makes an incorrect categorization of a datum from the test 
set 'Dtest· 

The experimenter aims to estimate the performance of a certain categorization 
model on a general data set Vgen· In other words, ideally, the experimenter wants 
to measure P,(8[Vgen, Vgen]) (the entire set 'Dgen is used as training set as well 
as test set). In general, however, only a representative subset Vsub of 'Dgen is 
available. In Fukunaga and Kessell {1971) and Fukunaga (1972) it is shown that 
lower and upper bounds for P,(O['Dtrain• 'DtestD can be estimated from Vsub· This 
is expressed in the inequality 

E{P,(8['Dsub• 'Dsubl)} ~ P,(O[Vgen, 'Dgen]) ~ E{P,(8[1Jsub• 'Dgen])} (-7) 

where E{x} denotes the expected value of a quantity x. In Eq. -7 the expected 
values of P. are calculated based on the distribution of P, for all possible subsets 
'Dsub C 'Dgen· 

The lower bound can be simply estimated by training and testing the model 
on the entire data set 'Dexp produced in an experiment. Thus we replace 
E{P,(8(Vsub• Vsubl)} by P,(O[Vexp, 'Dexp]). The upper bound can be estimated 
using a cross validation technique. In a cross validation technique the training set 
'Dtrain C 'Dexp and test set 'Dtest C 'Dexp are disjunct: 'Dtrain n Dtest 0. 

The two best-known cross-validation methods are the 'sample partitioning' 
method and the 'Leaving-One-Out' (100) method. In the 'sample partitioning' 
method, the N available data are subdivided into two or more distinct subsets, and 
the model is trained on all but one subsets and tested on the remaining subset. 
In order to get accurate estimates of both the model and the GOF of the model, 
the training sets as well as the test set must be sufficiently large. As this is often 
not the case for perception data, this method may not lead to accurate estimates 
of GOF. In the case that N is not large, the 100-method can be used, which is 
computationally more expensive but gives more accurate GOF estimates. In this 
method, the N data are subdivided into 2 subsets, one containing N 1 data and 
the other subset containing the single remaining datum. The model is trained on 
theN -1 data and tested on the remaining datum. Next, the N data are again sub­
divided into 2 subsets, one containing N - 1 data and the other subset containing 
a different remaining datum. Again, a model is trained and tested as before, and 
the process is carried out N times in total, leaving out each of the N data once in 
the process. The resulting test error is defined as the average of the N test errors. 
As each datum is effectively used as training as well as test item, the method can 
be shown to make optimal use of the available samples, that is, it gives the closest 
possible upper bound approximation of P,(O[Vgen, Vgen]), given a set of N data 
(Fukunaga, 1972). 
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4.3.2 The LOG-method for fuzzy classification 

The method for estimating P,(O[Vgen, Vgen]) described above was developed for 
crisp categorization models. It can, however, be easily generalized to suit fuzzy 
categorization models, like our M1P-based model. The probability of a correct 
response Pc was defined earlier as 

and the probability of an incorrect response P, was simply defined as 

P,=l-Pc 

(-8) 

(-9) 

In the 100-method the model is repeatedly tested on a single datum. The proba­
bility of a correct response pct?st when the model is tested on datum i, that is on 
stimulus-response pair {F;, R;}, equals 

N !!it 
P!,rst = Ii ( NpP~i) Np < -w) 

j=l R;J 

Note that the Pij are calculated by training the model on the set Vgen \Vi, where 
Vi represents the left-out datum {F;, R;}. 
The average probability of a correct response P}est after the entire 100-cycle is 
given by 

ptest 
c 

(-11) 

Note that Eq. ( -11) is identical to Eq. ( -8). 

We summarize the process of estimating Pc(O[Vgen, Vgen]) by the inequality 

Note that, compared to Eq. -7, the inequality signs have changed because Eq. -7 
is expressed in P,, while Eq. -12 is expressed in Pc. 

4.3.3 Chance-level performance 

When the performance of a model is evaluated, it is important to be aware of the 
chance-level performance of the model. The chance-level performance is here defined 
as the highest possible goodness-of-fit that can be obtained without any knowledge 
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of the stimulus features. This means that, at the output of the chance-level model, 
we find a fixed class probability vector p which does not depend on the stimulus. 
In order to determine the chance level P ch, we must find the vector p for which the 
probability of finding the observed responses reaches its maximum value: 

(-13) 

In our examples we have calculated P ch by minimizing 1-Pc. In general, GOF-train 
will always be larger than Pch, but situations may occur where GOF-test is actually 
lower than P ch. 

Note that the chance-level model can be represented by a single-layer perceptron 
(SLP) in which all weights connecting the stimulus features to the output nodes are 
zero and only the biases are nonzero. 

4.4 Example 

In this section, the developed methodology is illustrated by a practical example. 
The data in this example are part of the data set presented in chapter 5. 

4.4.1 Perception experiment 

A set of stimuli used for this example consisted the release bursts, which were 
isolated from natural utterances consisting of an unvoiced stop consonant (/p/, ftf 
or /k/) followed by a vowel (/a/, /i/, /y/ or fu/). These stimuli were presented to 
subjects who responded to each presentation with either P, T, or K (Nr 3). In 
total 24 stimuli (2 tokens x 3 consonants x 4 vowels) were used (Ns 24). Each 
stimulus was presented 6 times to each of 20 subjects. The responses of all subjects 
were summed, yielding a total of 120 responses per stimulus (Np 120). For a more 
extensive presentation of the experimental procedure, see chapter 5. The resulting 
response fractions pzbs are shown in the matrix in Table 4.1. 

4.4.2 Stimulus features 

On the basis of a number of phonetic studies (e.g. Blumstein and Stevens, 1979) it 
was decided to measure the following 5 stimulus features on each of the 24 stimuli: 

1. Energy of the burst (E); 
2. Length of the burst (L); 
3. Global spectral tilt of the burst (T); 
4. Frequency of a broad mid-frequency peak of the burst (Fr); 
5. Height of the broad mid-frequency peak of the burst (H). 

The specific methods for measuring these features are described in chapter 6. The 
stimulus features were converted to Z-scores using Eq. 3.7. 
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Table 4.!: Matrix containing observed response fractions. The fractions are derived 
from the actual responses frequencies by dividing by Np 120. 

stim.no. p T K 
1 0.8250 0.1166 0.0583 
2 0.8333 0.0750 0.0916 
3 0.4333 0.2250 0.3416 
4 0.6083 0.2833 0.1083 
5 0.0083 0.0166 0.9750 
6 0.0083 0.0083 0.9833 
7 0.7916 0.1500 0.0583 
8 0.9000 0.0750 0.0250 
9 0.1916 0.4833 0.3250 
10 0.2916 0.4416 0.2666 
11 0.0083 0.0416 0.9500 
12 0.0008 0.2083 0.7908 
13 0.7166 0.0666 0.2166 
14 0.7750 0.1500 0.0750 
15 0.0250 0.8333 0.1416 
16 0.0166 0.8916 0.0916 
17 0.0166 0.0166 0.9666 
18 0.0083 0.0250 0.9666 
19 0.9083 0.0583 0.0333 
20 0.8916 0.0916 0.0166 
21 0.4416 0.3916 0.1666 
22 0.5083 0.4500 0.0416 
23 0.0250 0.0083 0.9666 
24 0.0416 0.0083 0.9500 

4.4.3 'Praining and testing various topologies 

89 

In order to demonstrate the influence of the model topology on the GOF, various 
topologies were trained and tested on the data: SLPs with 1, 2, 3, or 4 input nodes 
and two-layer perceptrons (TLPs) with 2 hidden nodes and 2, 3, or 4 input nodes. 
For all topologies the number of output nodes was 3. 

The earlier described automatic procedure for terminating the training process 
was carried out many times for estimating the GOF intervals (see Eq. -12), namely 
once to determine the upper bound ("GOF-train") and Ns times to determine 
the lower bound ("GOF-test"). Ideally, we would have trained and tested each 
model on all possible subsets of stimulus features to assess which set gives the best 
generalizable account of the data. However, as the computing cost of the LOG­
method is very high we adopted the following less expensive method. Each model 
having N F input nodes ( N F = 1, 2, 3, 4) was trained on all possible subsets of N F 

features. The 3 subsets that gave the best GOF-train were then used for cross 
validation using the 100-method. Finally, the feature subset which resulted in 
the best GOF-test was selected as the overall best subset of NF features, given the 
model topology. 
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Figure 4.1: Goodness of fit on training and testing for various model fits, expressed 
in%. In each bar, the upper value indicates GOF-train, and the lower value indicates 
GOF-test. The dashed line represents chance level. 

4-4-4 Results 

Chance level for the observed stimulus-response matrix, after the treatment of 
empty cells, was 62.1 %. While the marginal distribution of the stimulus-response 
matrix is (0.387, 0.213, 0.400) for the response classes P, T and K, respectively, the 
chance-level model has fixed output probabilities (0.481, 0.225, 0.294). 

The GOF-levels for training and testing of the various model topologies are 
listed in Table 4.II and are shown graphically in Figure 4.1. In Table 4.II also the 
number of parameters is given for each topology. 

Clearly, with increasing number of parameters, GOF-train keeps increasing. 
GOF-test on the other hand, quickly reaches a maximum with increasing num­
ber of parameters, and then decreases. This is a typical example of overfitting 
(e.g. Haykin, 1994). In general, overfitting, or non-generalizability, occurs when 
the number of model parameters is in the order of or larger than - the num­
ber of data. For our example the number of degrees of freedom of the data is 
(Nr- 1)N. = 48. Apparently, we need to keep the number of model parameters 
in our example roughly below ~ of the number of degrees of freedom of the data in 

Table 4.II: Goodness of fit on training and testing for various model fits, expressed 
in%. 

SLP TLP 
INF 1 2 3 4 2 3 4 
Nw 6 9 12 15 15 17 19 
GOF train 80.7 88.7 92.8 93.8 94.4 96.4 97.0 
GOF test 77.5 84.6 83.0 82.3 73.6 72.3 76.0 
Chance level 62.1 62.1 62.1 62.1 62.1 62.1 62:1 
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Figure 4.2: 4.2a. The functions s1. s2, 83 as function of the stimulus features E and 
H for the SLP with the highest GOF-test. 4.2b. The functions PI.P2,P3 as function 
of the stimulus features E and H for the same model. 4.2c. The equal-probability 
boundaries between classes 1 ("P"), 2 ("T") and 3 ("K") for the same model. 

order to make a generalizable model estimation. 

91 

Let us look more closely at the model fit with the highest GOF-test, that is, the 
SLP with 2 input nodes. GOF-train and GOF-test are 88.7 and 84.6, respectively. 
The optimal stimulus features for this model are the burst energy E and the height 
of the mid-frequency peak H. The model parameters are w 11 = -2.447, w12 

-0.016, w13 = -0.670, w21 = -1.483, w22 = -0.893, w23 = 1.373, b1 = -2.721, 
~ = -3.284, b3 = -2.488. 

Figure 4.2 shows the similarities s1. s2 , s3 (Figure 4.2a), the class probabilities 
p1,p2 ,p3 (Figure 4.2b), and the equal-probability class boundaries (Figure 4.2c). 
Roughly, we find that subjects tend to respond "P" (class 1) to stop-consonant 
release bursts when they have low energy and a weak mid-frequency peak. Bursts 
with high energy and a weak mid-frequency peak are labeled "T" (class 2), and 
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Table 4.III: Matrix containing class probabilities predicted by the SLP with two 
input nodes, using E and H as stimulus features. 

stim.no. p T K 
1 0.8506 0.1293 0.0200 
2 0.7866 0.0864 0.1269 
3 0.6605 0.1006 0.2387 
4 0.3499 0.0746 0.5753 
5 0.0640 0.0818 0.8541 
6 0.1205 0.0590 0.8203 
7 0.8480 0.0694 0.0824 
8 0.7137 0.2060 0.0802 
9 0.1505 0.5717 0.2776 
10 0.4372 0.4011 0.1615 
11 0.0940 0.1516 0.7542 
12 0.0319 0.0880 0.8800 
13 0.6618 0.1241 0.2140 
14 0.8165 0.1654 0.0180 
15 0.0675 0.8443 0.0881 
16 0.0318 0.5575 0.4106 
17 0.0084 0.0724 0.9191 
18 0.0017 0.1000 0.8981 
19 0.8612 0.0821 0.0565 
20 0.8671 0.0870 0.0458 
21 0.2975 0.4544 0.2479 
22 0.0097 0.0808 0.9093 
23 0.0043 0.0384 0.9572 
24 0.0059 0.0099 0.9840 

bursts with a strong mid-frequency peak are generally labeled "K" (class 3).3 These 
findings confirm the results of earlier phonetic studies in which acoustic classification 
experiments were carried out, like Halle et al. (1957) and Blumstein and Stevens 
(1979), as well as the results of phonetic perception studies where synthetic stimuli 
were used, like Blumstein and Stevens (1980) and Kewley-Port et al. (1983). 

The class probabilities predicted by the model with the highest GOF-test are 
shown in Table 4.1II. For a comparison with the observed response fractions, see 
Table 4.L 

4.5 General discussion and summary 

The general process of analyzing categorization data using a formal categorization 
model can be subdivided into 3 steps: model estimation, model evaluation, and 
model interpretation. In this chapter, methods were described for carrying out the 
first two steps of this process when an MLP is used as categorization model. 

that all stimulus features were transformed to Z-scores, so almost all feature values lie within 
the range [-2, 2]. 
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With respect to model estimation, a measure of goodness-of-fit has been intro­
duced which naturally suits categorization models which have class probabilities as 
output. The GOF-measure is based on the multinomial function and is interpreted 
as a generalized "percent correct score" for fuzzy categorization models. A cost 
function is associated with the GOF-measure, which is minimized during training 
of the MLP. A heuristic method is proposed for automatically deciding if sufficient 
initial estimates of the weight vector have been tried. 

With respect to model evaluation, the importance of generalizability of the model 
is stressed. The leaving-one-out method, a cross-validation technique which is reg­
ularly used in the field of statistical pattern recognition, is used to estimate the 
lower bound of the GOF of our model. 

Finally, the methodology is demonstrated by an example dealing with the issue 
of the perception of stop consonants. A comparison of GOF-levels for training and 
testing MLPs of various complexities on a very limited data set clearly demonstrates 
the danger of overfitting. The model with the highest GOF-test is chosen as the 
"best" model in the sense that the best possible generalizable account is given of 
the observed data. The interpretation of the model suggests that the listeners' 
categorization of stop-consonant release bursts is in accordance with findings of 
earlier phonetic studies. 
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Chapter 5 

The perception of burst-spliced prevocalic stop consonants1 

Abstract 

The experiments presented in this chapter and chapter 6 address the basic re­
search question formulated in chapter 1, that is, to evaluate the relative im­
portance of detailed and gross acoustic structures for the perception of place of 
articulation in prevocalic stop consonants. To this end, first a perception experi­
ment is carried out with "burst-spliced stimuli" . This experiment is described in 
this chapter. :From a number of stop-vowel utterances, burst-only, burst-less and 
cross-spliced stimuli were created and presented to listeners. The results of the 
experiment show that the relative perceptual importance of burst and transitions 
highly depends on the stop consonant, the vowel context and whether the stop is 
voiced or unvoiced. Velar bursts are generally much stronger in cueing place of 
articulation than other bursts. The dental transitions appear to be weaker than 
labial or velar transitions. In front-vowel contexts the release burst dominates the 
perception of place of articulation, while in non-front vowel contexts the formant 
transitions are generally dominant. The bursts of unvoiced stops are perceptually 
more important than the bursts of voiced stops. 

5.1 Introduction 

During the last decades various types of acoustic cues to the perception of stop con­
sonants have been proposed. Initially, signal structures were investigated which are 
explicitly visible in waveforms and spectrograms of stop-consonant signals. Release 
burst and formant transitions were treated as essentially separate signal portions, 
and the perceptual relevance of acoustic structures such as burst length, burst fre­
quency and formant onset frequencies were studied (e.g. Cooper et al., 1952; Liber­
man et al., 1954; Schatz, 1954; Hoffman, 1958; Ainsworth, 1968). As indicated in 
the introductory chapter, we will call this type of acoustic properties detailed cues. 

More recently, a number of cues have been proposed which are less clearly visible 
in the spectrogram and are of a more gross nature. In this approach, no explicit 
distinction is made between burst and formant transitions, but instead integrative 
structures are proposed as being the main cues for perception. Initially, the impor­
tance of the gross shape of the static spectrum of the first 20-odd ms of the signal 

1Based on: Smits, R., Ten Bosch, L., and Collier, R. (1995a), "Evaluation of various sets of acoustic 
cues for the perception of prevocalic stop consonants: I. Perception experiment," submitted to J. Acoust. 
Soc. Am. 
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after burst release was stressed (e.g. Stevens and Blumstein, 1978; Blumstein and 
Stevens, 1979, 1980). After a number of critical reappraisals (e.g. Blumstein et al., 
1982; Walley and Carrell, 1983), emphasis shifted towards the dynamic gross spec­
tral shape of the first few tens of ms after release (Kewley-Port, 1983; Kewley-Port 
et al., 1983; Kewley-Port and Luce, 1984; Lahiri et al., 1984). We will call this type 
of acoustic properties gross cues. 

Two studies have explicitly addressed the question whether detailed cues or 
(dynamic) gross cues are more important for perception of place of articulation 
in stop consonants. Both in Lahiri et al. (1984) and Lindholm et al. (1988), 
stylized synthetic stop-vowel stimuli were used, in which the formants cued one 
place of articulation, while the gross cues cued another place. Listeners classified 
the stimuli of Lahiri et al. mainly in accordance with the gross cues, while the 
stimuli of Lindhom et al. were mainly classified according to formant transitions. 
Thus, the issue whether detailed or gross cues are perceptually more important 
remains unsettled. 

Recently, a number of acoustic studies have addressed the question whether it is 
possible to correctly classify a great number of naturally uttered stop-vowel signals 
using only detailed formant information or only gross spectra-temporal information. 
Amongst others, Forrest et al. (1988) and Nossair and Zahorian (1991) have shown 
that it is possible to make an excellent speaker-independent classification based on 
gross spectra-temporal information. In Sussman et al. (1991) and Sussman (1991), 
on the other hand, it was shown that a good classification is possible based on 
formant information only, namely F2-frequency at voicing onset and in the vowel, 
especially when combined with the F3 onset frequency. 

It is the aim of this chapter to evaluate the importance of various cues for the 
perception of initial prevocalic stops. In particular we want to test the perceptual 
importance of detailed· cues versus gross cues. Two methodological aspects will 
be emphasized. First of all, we will use (manipulated) natural utterances in our 
experiments in order to preserve the natural variability in the speech signal. Thus, 
we hope to avoid potential unnaturalness of the stimuli, which may have been partly 
responsible for the apparent contradiction in the results of previous studies using 
synthetic conflicting-cue stimuli (e.g. Lahiri et al., 1984, versus Lindholm et al., 
1988). Secondly, we will make a complete simulation of the response behavior of 
the subjects using a formal model of categorization behavior. The simulation will 
enable us to establish (1) which set of cues gives the better account of the observed 
response behavior, and (2) how are the cues integrated by the listeners in order to 
arrive at their responses. 

The approach is as follows. First we will create a set of stimuli by manipulat­
ing a number of natural stop-vowel utterances. However, here we encounter the 
difficulty that it is not possible to manipulate individual acoustic cues across a con­
tinuum. Detailed and gross acoustic structures generally covary in natural speech, 
for example, a high F2-frequency at voicing onset will often be accompanied by a 
positive global spectral tilt. We will reduce this covariation by creating deleted-cue 
as well as conflicting-cue stimuli, by removing parts of the original utterances or 
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exchanging information between utterances. To this end, we use the well-known 
"burst-splicing" technique (e.g. Fischer-Jysrgensen, 1972). These stimuli will be 
presented to listeners for classification of place of articulation. Next, the relevant 
acoustic events, burst onset and voicing onset, are detected and various detailed 
and gross cues are measured on the stimuli. Before actually measuring the detailed 
cues, a critical study of the accuracy of the traditional quasi-stationary speech rep­
resentations is made, which is especially relevant for the extraction of detailed cues, 
such as formant onset frequencies. Next, the measured cue values are mapped onto 
the observed responses of the listeners using a formal classification model. 

In this chapter the perception experiment is described in which the burst-spliced 
utterances were used. The next chapter presents the model simulations, that is, the 
cue-measurement procedures, and the estimation and interpretation of the catego­
rization models. It is the primary purpose of the burst-splicing experiment to pro­
vide the stimulus-response matrices on which the model fits can be performed for 
the evaluation of the cue sets. We have decided, however, to present and discuss the 
burst-splicing experiment independently, because we think that the perceptual data 
themselves (without the subsequent model fits) deserve special attention. As will 
be discussed later, there is only one previous study in which genuine conflicting-cue 
stimuli are used which are created through burst-splicing on initial stops, namely 
Fischer-Jysrgensen (1972). However, this study is not widely accessible. Moreover, 
the "tape-cutting" technique that was used by Fischer-Jysrgensen (1972) to create 
the stimuli, is possibly less precise than the digital signal processing techniques 
which are currently available. 

The chapter is organized as follows. In the next section, results of previous 
studies using the burst-splicing technique are discussed. The procedure for our 
experiments is discussed in section 5.3. In section 5.4, the results of the experiments 
are presented. The chapter will be concluded with a discussion. 

5.2 Previous studies using the burst-splicing technique 

Before our specific implementation of the burst-splicing technique is described in de­
tail, some results of earlier experiments using burst-spliced utterances of prevocalic 
stops are briefly discussed. For the purpose of our discussion, we define deleted-cue 
stimuli as stimuli from which one or more cues are removed. Conflicting-cue stimuli 
are defined as stimuli in which cues are present which point to different (conflict­
ing) responses. Logically, perception experiments with deleted-cue stimuli generally 
measure the necessity of the deleted cues and the sufficiency of the remaining cues. 
Perception experiments with conflicting-cue stimuli measure the relative importance 
of the conflicting cues. 

5.2.1 Experiments with deleted-cue stimuli 

Experiments in which the formant transitions have been replaced by silence or a 
steady-state vowel have been conducted by Schatz (1954), Halle et al. (1957), 
Fischer-Jysrgensen (1972), Winitz et al. (1972), Cole and Scott (1974), LaRiviere et 
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al. (1975), Dorman et al. (1977), Ohde and Sharf (1977), and Schouten and Pols 
(1983). The results and conclusions of these experiments were at variance with each 
other, as will be shown below. 

Winitz et al. (1972), Cole and Scott (1974} and LaRiviere et al. (1975) found 
almost perfect place of articulation perception from burst-only stimuli. However, in 
all three studies the aspiration noise following the burst was included in the stimuli. 
Halle et al. (1957), Fischer-J0rgensen (1972}, Ohde and Sharf (1977), and Schouten 
and Pols (1983} generally found a good (70% 90% correct) place of articulation 
perception from bursts excised from voiceless stops and a somewhat worse score 
(50%- 80%) for bursts of voiced stops. Dorman et al. (1977) found a rather low 
performance (chance level to 50%) for bursts isolated from voiced stops; 

Schatz (1954}, Cole and Scott (1974} and Dorman et al. (1977) performed 
experiments in which release bursts spoken in various vowel contexts were spliced 
onto other (steady state) vowels. For velar bursts, which show a strongly vowel­
dependent spectral peak, the resulting percept appeared to depend highly on the 
following vowel. Schatz showed that, for example, a release burst excised from 
/ski/ and spliced onto the steady state vowels /i,a,u/ results in clear perception of 
/ki,ta,pu/, respectively. 

Experiments in which the release bursts have been replaced by silence have been 
conducted by Fischer-J~?~rgensen (1972), LaRiviere et al. (1975), Dorman et al. 
(1977), Ohde and Sharf (1977, 1981), Pols and Schouten (1978, 1981), Pols (1979) 
and Schouten and Pols (1983). Correct recognition of place of articulation from 
transitions isolated from voiced stops ranged between moderate and rather high 
(40% to 80% correct). In all cases, when results were not pooled over consonants, 
the results were clearly lower for velars than for labials and alveolars. Performance 
was always close to chance for voiced formant transitions from English unvoiced 
stops, because the formant transitions are generally completed within the aSpiration 
phase. Dutch unvoiced stops, on the other hand, have no aspiration and the correct 
perception of place of articulation from voiced formants may be as high as 66% 
(Pols and Schouten, 1978). 

5.2.2 Experiments with conflicting-cue stimuli 

To our knowledge, Fischer-J0rgensen (1972) was the only one to perform conflicting:... 
cue experiments to determine the relative importance of burst and transitions for the 
perception of place of articulation. She used stimuli in which bursts and transitions 
excised from real speech were combined in such a way that the release burst cued one 
place of articulation and the formant transitions another. Bursts were cross-spliced 
only within the same vowel contexts. One of the most important results of her 
study was that the relative importance of burst and formant transitions was highly 
dependent on the vowel context. This does not appear to be a widely acknowl­
edged phenomenon. The perceptual data showed that the burst determines the 
percept in /if-context, while the transitions determine the percept in /a/-context. 
In /uf-context the jgj-burst and /d/-transitions appeared to be strong cues. For 
unvoiced stops the situation was somewhat different: /t/-transitions were very ro-
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bust, /k/ always needed a /k/-burst and /pf-transitions could only be overridden 
by /k/-bursts. Furthermore, Fischer-J!Zlrgensen found that the perceived place of 
articulation may be different from the place of articulation of burst as well as tran­
sitions in their original contexts: a jtuj-burst spliced onto /ku/-transitions gave a 
clear jpuj-percept. 

In our experiments, deleted-cue stimuli (burst-only and no-burst stimuli) as well 
as conflicting-cue stimuli (mixed-burst stimuli) will be used, together with original 
utterances. 

5.3 Method 

5. 3.1 Stimuli 

Two male Dutch talkers each spoke 2 tokens of all possible CV-combinations con­
sisting of the Dutch stops /b,d,p,t,k/ followed by the Dutch vowels ja,i,y,u/. Dutch 
voiced stops .show extensive prevoicing and unvoiced stops are not aspirated. The 
phoneme / gj does not exist in the Dutch language. The talkers were seated in a 
sound-treated room and spoke into a microphone which was placed at approximately 
30 em from their mouths. All utterances were spoken moderately emphatically and 
in isolation. The material was low-pass filtered at 4.9 kHz and converted into 12-bit 
numbers at a sampling rate of 10 kHz. Thus, 80 original utterances were obtained, 
which were scaled to equal maximum instantaneous amplitude. 

Next, for all utterances, the instant of burst onset was determined by hand with 
the aid of the waveform and the wideband spectrogram. Also the instant of burst 
offset was determined from the waveform and the wideband spectrogram. 

For every utterance the release burst was separated from the rest of the signal. 
Pols and Schouten (1981) have shown that simply cutting a waveform in two may 
cause abrupt onsets and clicks, which can significantly bias the perceptual responses. 
They showed that this can be avoided by using a smooth time window to make a cut. 
For this study it was decided to follow this strategy. The procedure is illustrated 
for the utterances jta/ and /ka/ in Figure 5.1. 
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Figure 5.1: (previous page) Burst-splicing procedure for the unvoiced stops, illus­
trated for the utterances /ta/ and /ka/. The relevant parts of the original utterances 
/ta/ and /ka/ are shown in Figures 5.lb and h. The vertical lines are the burst-onset 
markers and burst-offset markers. Figures 5.la and g show the cutting windows 
centered at the burst-offset markers. Applying these windows to the signals yields 
the burst-only signals, shown in Figures 5.1c and i, and the burst-less signals, shown 
in Figures 5.1d and j. Next, the fta/-burst is aligned at its offset marker with the 
burst-offset marker of the burst-less portion of /ka/ (Figure 5.1k), and likewise for 
the burst of /ka/ and the burst-less portion of /taj. The mixed-burst signals, dis­
played in Figures 5.1f and I, are obtained by adding the signals in 5.1d and e and 
adding the signals in 5.lj and k, respectively. 
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The right half of a Hanning window was centered at the voice-onset marker. The 
total length of the half window was 6.0 ms. The window is shown in Figures 5.la 
and 5.lg. By multiplying the original signal (Figures 5.lb, 5.lh) with the window 
the burst was isolated (Figures 5.lc, 5.1i). Subtracting the isolated burst from the 
original signal yielded the "no-burst" -signal (Figures 5.ld, 5.lj). The conflicting-cue 
stimuli were created by aligning a burst-only signal from one utterance (Figures 5.le, 
5.lk) with a no-burst signal of another utterance at their voice-onset markers and 
adding the two signals (Figures 5.1f, 5.11). 

Conflicting-cue signals were created only within the same vowel-context, speaker 
and token number. For instance, the burst-only portion from the first fpaf-token 
by speaker 1 was only spliced onto the no-burst portion of the first /ta/- and fka/­
token by speaker 1. For all signals, except the burst-only signals, the duration of 
the voiced part was limited to 400 ms. This was achieved by multiplying the signal 
from 380 ms to 400 ms after the voice-onset marker with a linearly falling window. 
As the burst-only stimuli were rather soft, their levels were scaled up by 3.8 dB. 
Thus, from the 48 original utterances containing a voiceless stop, 48 burst-only 
stimuli, 48 no-burst stimuli, and 96 conflicting-cue stimuli were created. 

The procedure for the voiced stops was more complicated because of the clear 
voice bars on which the release bursts are superimposed. The option of using the 
same windowing technique again was discarded, because the voice bar may contain 
place-of-articulation information (Barry, 1984). Moreover, cross-splicing a voice 
bar onto a different utterance may introduce a distracting lack of continuity in 
the signal, even when a smooth time window is used. Therefore, we resorted to 
a time-frequency filtering method which can be viewed as a specific instance of 
the general technique described by Saleh and Subotic (1985). The time-frequency 
filtering technique is similar to the separation of time-frequency "tiles", which has 
recently been used by Ghitza (1993). The procedure is illustrated for the utterances 
/by/ and /dy/in Figure 5.2. 
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Figure 5.2: (previous page) Burst-splicing procedure for the voiced stops, illustrated 
for the utterances /by/ and / dy j. The relevant parts of the original utterances /by/ 
and /dy/ are shown in Figures 5.2a and g, together with their burst-onset and burst­
offset markers. Figures 5.2b and h show contour plots of the wide band spectrograms 
of these signals. The rectangles in the plots indicate the time-frequency areas which 
define the burst-signals. The right side of the area coincides with the burst-offset 
marker, the left side is positioned 3 ms to the left of the burst-onset marker. The 
lower boundary is located at 500 Hz. Setting the amplitudes outside the rectangles 
to zero and applying the resynthesis procedure yields the burst signals, which are 
shown in Figures 5.2c and i. The burst-less signals, shown in Figures 5.2d and 5.2j, 
are obtained by subtracting the burst signals from the original signals. The procedure 
for creating the mixed-burst signals, shown in Figures 5.2e, f, k and l, is identical to 
the procedure used for the unvoiced stops. 
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A Short-Time Fourier Transform (STFT, Rabiner and Schafer, 1978) was made 
of every utterance. A Hanning window with a total length of 6.0 ms and a win­
dow shift of 0.2 ms (2 samples) was used. Figures 5.2b and h show contour-plot 
spectrograms of the waveforms shown in Figures 5.2a and g, respectively. Next, 
all numbers in the STFT-amplitude which were either more than 3 ms left to the 
burst-onset marker or right to the voicing-onset marker or below 500 Hz were set 
to zero. This is the area outside the boxes in Figures 5.2b and h. The resulting 
STFT amplitude was combined with the unchanged STFT phase and the weighted 
overlap addition technique described by Griffin and Lim (1984) was used to syn­
thesize the burst-only signal. 2 As in the case of the unvoiced stops, subtraction 
of the burst-only signal from the original signal yielded the no-burst signal, and 
conflicting-cue stimuli were created by adding burst-only signals to no-burst signals 
originating from an utterance with the same vowel but a different consonant, after 
alignment at the voicing-onset marker. Again, all signals, except the burst-only 
signals, were multiplied with a linearly falling window from 380 ms to 400 ms after 
the voice-onset marker. The burst-only signals were even softer than the burst-only 
signals of the unvoiced stops. Their levels were therefore scaled up by 7.0 dB. Thus, 
from the 32 originals, we created 32 burst-only stimuli, 32 no-burst stimuli, and 32 

. conflicting-cue stimuli. 

5. 3. 2 Subjects and procedure 

Twenty Dutch university students served as subjects. All subjects reported no 
history of any hearing loss. The 20 subjects were divided into 4 groups of five. 
Each group participated in 4 sessions, each of which consisted of 2 parts. The 
stimuli were divided into 8 blocks, according to speaker 1 vs. speaker 2, voiced vs. 
unvoiced, and burst-only vs. original, no-burst and mixed-burst. These blocks were 
distributed over the 4 sessions according to Table 5.1. 

2 The time-windowing method used for the unvoiced stops can be shown to be identical to the time­
frequency technique used for the voiced stops, with a window shift of 0.1 ms instead of 0.2 ms, and no 
lower frequency boundary, instead of the lower frequency boundary of 500 Hz. 
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Table 5.I: Order of presentation of the stimuli over the 4 sessions for the 4 groups 
of subjects. "V" =voiced stops, "UV" =unvoiced stops. 

group 1 group 2 group 3 group 4 
session 1 speaker 1 v speaker 1 uv speaker 2 v speaker 2 uv 

uv v uv v 
session 2 speaker 2 v speaker 2 uv speaker 1 v speaker 1 uv 

uv v uv v 
session 3 speaker 1 v speaker 1 uv speaker 2 v speaker 2 uv 
(bursts) uv v uv v 
session 4 speaker 2 v speaker 2 uv speaker 1 v speaker 1 uv 
(bursts) uv v uv v 

The burst-only stimuli were presented separately from the other stimuli because 
of their special character. Each half of a session consisted of seven randomized 
blocks of stimuli. The first block was intended for familiarization and the results 
were not used for further analysis. Thus, each subject received each of the 368 
stimuli 6 times. 

Subjects were seated in a silent room 3 to 5 at a time. They received the 
stimuli through Sennheiser HD425 headphones. The presentation level was set to a 
comfortable position before the first experiment and was kept constant thereafter. 
In order to alert the subjects, each stimulus was preceded by a soft 500 Hz beep 
with a smooth onset and offset and with a duration of 300 ms. The silent interval 
between the offset of the beep and the onset of the stimulus was 800 ms. After 
the offset of the stimulus the subjects had 3.5 s time to indicate their response on 
an answer sheet, before the next beep was sounded. The subjects could choose 
between Band D for the voiced stops, and P, T, and K for the unvoiced stops. The 
sessions were interrupted every 20 minutes for a 5-minute break. 

5.4 Results 

5.4.1 Unvoiced stops 

In Table 5.II, the stimulus-response matrix is presented for the experiments with 
the syllables containing the unvoiced stops /p,t,k/. Responses are pooled across 
subjects and presented in percentages, with 100% equal to 120 judgements. As 
subjects had 3 response alternatives, chance level corresponds to 33% correct. 

The first eight blocks of four rows show the results for the original, no-burst, 
and burst-spliced stimuli. The first block of four rows contains the results for the 
four tokens of the original utterances /pa/ (first three columns), /pi/ (second three 
columns), fpy/ (third three columns) and jpu/ (fourth three columns). The first 
and second token are spoken by speaker 1, the third and fourth token are spoken 
by speaker 2. The second group of four rows contains the results for the no-burst 
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stimuli from fpaf, fpif, fpyf and fpuf. In the third group offour rows, the results 
are presented for the mixed-burst stimuli containing the bursts of fta, ti, ty, tuf 
and the transitions of fpa, pi, py, puf, respectively. The same holds for the fourth 
group of four rows, except that the bursts are now from /ka, ki, ky, ku/. The 
bottom 12 rows give the results for the burst-only stimuli. 

All original stimuli are recognized correctly at a rate higher than 95%, except 
token 1, 3 and 4 of fpyf (86.7%, 59.2% and 81.7%, respectively), token 3 and 4 of 
ftaf (53.3% and 73.3%, respectively), and token 3 and 4 of /ti/ (85.0% and 93.3%, 
respectively). So, all but one of the less well recognized original utterances were 
produced by speaker 2. Listening analytically to these tokens revealed that the 
lower recognition rates were caused by a less clear pronunciation and not by clicks 
or other disturbances. 

The average rate of correct recognition of the burst-less stimuli is 68.8% (94.8% 
for fpf, 64.2% for jtj, 47.4% for /k/), which is in agreement with results found 
by Fischer-JY~rgensen (1972), LaRiviere et al. (1975), Ohde and Sharf (1977), Pols 
and Schouten (1978, 1981) and Schouten and Pols (1983). In accordance with other 
studies in which burst-less stimuli were presented to subjects, we find a strong pref­
erence for fpf-responses for the burst-less stimuli. This phenomenon is not well 
understood (e.g. Fischer-J0rgensen, 1972). On the one hand, it can be viewed as 
a response bias, which means that when insufficient or ambiguous information is 
present in the stimuli, the decision mechanism has a preference for a response fpf. 
On the other hand, it may be a genuine perceptual effect in the sense that the 
absence of a burst gives the stimuli a fp/-like quality, e.g. because labial bursts are 
often somewhat weak. It is also in agreement with previous studies, like Fischer­
JY~rgensen (1972) and Pols (1979), that the velars are poorly recognized when the 
burst is absent. 

The average rate of correct recognition of the burst-only stimuli is 73.6% (80.0% 
for fpf, 49.6% for ftf, 91.1% for /k/). Although these levels are in agreement with 
those reported by Halle et al. (1957), Fischer-J¢rgensen (1972), Ohde and Sharf 
(1977), and Schouten and Pols (1983), the variation in the recognition levels for 
bursts of fpf, ftf and /k/ are so large that presenting only averages, as in some 
of these studies, seems unwarranted. The performance for /k/-bursts is strikingly 
high. Note that the recognition of the bursts from /ka/, /ky/ and /ku/ are gener­
ally above 95%. 

Overall, the responses to the mixed-burst stimuli corresponded to the burst iden­
tity in 49% of the cases, and to the transitions in 42.8% of the cases. 7.8% of the 
responses corresponded with neither the burst nor the transitions. We performed a 
number of statistical analyses on the data for the mixed-burst stimuli. It was tested 
whether the number of responses which correspond with the burst-identity was sig-
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vowel/&/ vowel /i/ vowel /y/ vowel/u/ 
au TR p t k p t k p t k p t k 

p p 99.2 0.8 0.0 100.0 o.o o.o 86.7 0.0 13.3 100.0 0.0 0.0 
100.0 o.o 0.0 100.0 o.o 0.0 97.5 0.8 1.7 99.2 o.o 0.8 
100.0 o.o 0.0 99.2 0.8 0.0 59.2 5.8 35.0 98.3 0.0 1.7 
100.0 0.0 0.0 99.2 0.8 0.0 81.7 1.7 16.7 100.0 0.0 0.0 

- p 100.0 0.0 0.0 93.3 o.o 6.7 82.5 5.8 11.7 92.5 0.8 6.7 
99.2 0.0 0.8 96.7 1.7 1.7 80.0 5.8 14.2 90.8 2.5 6.7 

100.0 0.0 o.o 99.2 0.0 0.8 89.2 6.7 4.2 100.0 0.0 0.0 
99.2 0.8 o.o 100.0 0.0 0.0 94.2 4.2 1.7 100.0 o.o 0.0 

t p 97.5 2.5 o.o 40.0 60.0 o.o 9.2 90.8 0.0 98.3 1.7 0.0 
100.0 0.0 0.0 52.5 47.5 0.0 o.o 100.0 0.0 100.0 0.0 0.0 
100.0 o.o 0.0 6.7 93.3 0.(} 0.0 100.0 o.o 96.7 3.3 0.0 
100.0 o.o 0.0 3.3 85.0 11.7 0.8 99.2 0.0 98.3 1.7 0.0 

k p 93.3 5.8 0.8 12.5 13.3 74.2 7.5 0.8 91.7 0.0 o.o 100.0 
95.0 4.2 0.8 64.2 35.8 0.0 39.2 6.7 54.2 0.8 0.8 98.3 
97.5 2.5 0.0 4.2 9.2 86.7 0.8 o.o 99.2 0.0 0.8 99.2 
99.2 0.8 0.0 2.5 9.2 88.3 0.0 0.0 100.0 o.o o.o 100.0 

t t 0.8 98.3 0.8 0.0 100.0 0.0 0.8 99.2 o.o o.o 100.0 0.0 
2.5 97.5 0.0 o.o 100.0 o.o 0.0 100.0 0.0 3.3 96.7 0.0 

35.0 53.3 11.7 o.o 85.0 15.0 o.o 100.0 o.o 0.0 100.0 0.0 
23.3 73.3 3.3 0.0 93.3 6.7 0.0 98.3 1.7 0.0 100.0 0.0 

- t 26.7 64.2 9.2 52.5 43.3 4.2 38.3 57.5 4.2 15.0 80.8 4.2 
20.8 67.5 11.7 45.0 41.7 13.3 29.2 65.8 5.0 18.3 79.2 2.5 
55.8 32.5 11.7 21.7 75.0 3.3 41.7 55.8 2.5 0.0 100.0 0.0 
36.7 51.7 11.7 16.7 83.3 o.o 68.3 28.3 3.3 0.0 100.0 0.0 

p t 6.7 92.5 0.8 65.8 34.2 0.0 29.2 35.0 35.8 50.0 49.2 0.8 
10.8 88.3 0.8 52.5 45.8 1.7 51.7 46.7 1.7 41.7 58.3 0.0 
60.8 30.0 9.2 54.2 40.8 5.0 29.2 45.0 25.8 10.8 25.0 64.2 
12.5 72.5 15.0 34.2 65.8 0.0 80.0 5.8 14.2 10.8 81.7 7.5 

k t 0.8 25.8 73.3 0.0 15.0 85.0 o.o 29.2 70.8 0.8 37.5 61.7 
0.0 74.2 25.8 0.0 37.5 62.5 4.2 59.2 36.7 0.8 38.3 60.8 

10.8 28.3 60.8 0.8 3.3 95.8 0.0 3.3 96.7 0.8 10.8 88.3 
4.2 56.7 39.2 1.7 11.7 86.7 0.0 0.8 99.2 0.0 13.3 86.7 

k k 4.2 0.0 95.8 0.0 o.o 100.0 0.0 0.0 100.0 0.0 0.0 100.0 
0.8 0.0 99.2 0.0 0.0 100.0 0.0 o.o 100.0 0.8 0.0 99.2 
0.8 0.0 99.2 0.0 0.8 99.2 0.8 o.o 99.2 0.0 o.o 100.0 
0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 o.o 100.0 

- k 25.8 4.2 70.0 43.3 14.2 42.5 13.3 0.0 86.7 90.0 0.8 9.2 
10.0 5.8 84.2 16.7 10.8 72.5 23.3 1.7 75.0 71.7 2.5 25.8 
0.0 0.8 99.2 39.2 30.8 30.0 44.2 37.5 18.3 95.0 0.0 5.0 
0.8 1.7 97.5 33.3 39.2 27.5 81.7 5.0 13.3 99.2 0.0 0.8 

p k 31.7 3.3 65.0 15.8 4.2 80.0 20.0 o.o 80.0 99.2 0.8 o.o 
1.7 1.7 96.7 12.5 1.7 85.8 49.2 0.0 50.8 100.0 0.0 o.o 
0.8 0.8 98.3 45.0 14.2 40.8 29.2 5.8 65.0 96.7 0.0 3.3 
0.0 o.s 99.2 48.3 31.7 20.0 60.0 3.3 36.7 95.8 0.8 3.3 

t k 8.3 20.8 70.8 0.8 40.0 59.2 4.2 77.5 18.3 95.8 4.2 0.0 
4.2 7.5 88.3 0.0 24.2 75.8 0.0 100.0 0.0 98.3 1.7 0.0 
0.0 3.3 96.7 0.0 65.0 35.0 0.8 97.5 1.7 72.5 27.5 0.0 
0.0 0.8 99.2 0.0 46.7 53.3 0.0 95.0 5.0 87.5 12.5 0.0 

p - 82.5 11.7 5.8 79.2 15.0 5.8 71.7 6.7 21.7 90.8 5.8 3.3 
83.3 7.5 9.2 90.0 7.5 2.5 77.5 15.0 7.5 89.2 9.2 1.7 
93.3 5.8 0.8 96.7 1.7 1.7 36.7 19.2 44.2 55.0 3.3 41.7 
86.7 9.2 4.2 91.7 5.8 2.5 73.3 15.0 11.7 81.7 5.8 12.5 

t 43.3 22.5 34.2 19.2 48.3 32.5 2.5 83.3 14.2 44.2 39.2 16.7 
60.8 28.3 10.8 29.2 44.2 26.7 1.7 89.2 9.2 50.8 45.0 4.2 
72.5 5.8 21.7 16.7 60.8 22.5 0.8 74.2 25.0 10.8 60.0 29.2 
77.5 10.8 11.7 10.0 54.2 35.8 0.8 65.8 33.3 7.5 61.7 3Q.8 

k 0.8 1.7 97.5 0.8 4.2 95.0 1.1 1.7 96.7 2.5 0.8 96.7 

I 

0.8 0.8 98.3 o.o 20.8 79.2: 0.8 2.5 96.7 4.2 0.8 95.0 
1.7 2.5 95.8 5.0 25.8 69.21 0.0 4.2 95.8. 3.3 0.0 96.7 
1.7 5.8 92.5 3.3 36.7 60.0 0.0 4.2 95.8 0.0 3.3 96.7 



5.4 Results 

Table 5.II: (previous page) Stimulus-response matrix for the unvoiced stops. Re­
sults are pooled across subjects and are given in percentages. 100% is equal to 120 
judgements. The identities of the burst portion and transition portion are indicated 
in the columns marked "BU" and "TR", respectively. The first eight groups of four 
rows give the results for the original, no-burst, and burst-spliced stimuli. The bottom 
three groups of four rows give the results for the burst-only stimuli. 
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nificantly dependent on various factors. To this end we used generalized linear 
modeling (GLIM, e.g. Aitkin et al., 1989)3 with factors BUR (consonant place-of­
articulation of the b~rst), TRA (consonant place-of-articulation of the transitions), 
VOW (vowel identity), SPK (speaker), and LST (listener). The only interactions 
which were included in the model were those which seemed phonetically relevant, 
which are BURxTRA, BURxVOW, TRAxVOW, and BURxSPK, TRAxSPK, 
VOWxSPK. Separate GLIM-analyses were carried out for dependent variables NB 
and NT, which indicate the number of responses corresponding to the burst and 
to the transitions, respectively. As the listener was used as a factor, the analyses 
were of course not carried out on the pooled data in Table 5.11 but on the raw data 
which were not pooled across subjects. 

The results of the analyses showed that all main effects and interactions were 
highly significant (p < 0.001), except the main effect TRA (p 0.35) and the in­
teraction TRAxSPK (p = 0.55) for the dependent variable NB, and the interaction 
TRAxSPK (p = 0.31) for the dependent variable NT. The interaction BURxSPK 
for dependent NT was only marginally significant (p = 0.05). The Bonferroni4 test 
for multiple post-hoc comparisons of means gave the following results. 

1. The /k/-burst is significantly stronger in cueing place of articulation than the 
/P/ and /t/-burst. The /t/-transitions are significantly weaker in cueing place 
of articulation than the /p/ and /k/-transitions. 

2. The burst is most effective before vowel /y/, less before vowels /i/ and /u/, 
and least effective before vowel /a/. The effectiveness of the transitions is 
highest before /a/, second highest before /i/, then /u/, and lowest before jyj. 

3. Speaker 2 has significantly more effective bursts and less effective transitions 
than speaker 1. 

4. Although LST was a highly significant factor in both the analysis for NB and 
for NT, the post-hoc grouping of subjects resulted in 3 highly overlapping 
groups. As there was no clear clustering of subjects into more or less disjunct 
groups, we judged that pooling across subjects before performing the model 
fits in the next chapter was reasonable. 

The mixed-burst data are recapitulated in Table 5.111. The left column in Ta­
ble 5.III describes the stimulus, and the three columns on the right-hand side present 

3 A regular AN OVA could not be used because the mixed-burst data contained empty cells for certain 
factor combinations, namely for equal burst and transition identity. 

4The Bonferroni criterion was used because for some factors, like LST, a large number of comparisons 
was necessary (e.g. Hays, 1994). 
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the percentage of responses corresponding to either the burst, the transitions, or 
the remaining category (neither in accordance with the burst nor the transitions). 
This type of response was predominantly given for the stimuli with the burst of 
jtuj and the voiced part of /ku/ (/p/-response). Part of the data of Table 5.III are 
presented visually in Figure 5.3. The bars in Figure 5.3a represent the proportion of 
responses corresponding with the burst, given the consonant identity of the transi­
tions (first 3 bars), the consonant identity of the burst (second 3 bars) or the vowel 
identity (last 4 bars). The dotted line indicates the average proportion of responses 
corresponding to the burst (49%). Non-significant differences, as determined by 
the post-hoc Bonferroni tests, are indicated by the "staples" above the bars. The 
same holds for Figure 5.3b, but here for the proportion of responses corresponding 
with the transitions. Note that the /k/ -burst is relatively strong in cueing place of 
articulation, and that in the /a/-context transitions are much more effective than 
in the other contexts. 

Table 5.1II: Average probabilities, presented in percentages, of responding according 
to the burst, transitions or remaining category for the mixed-burst stimuli of the 
unvoiced stops. For a further explanation see text. 

stimulus response 
burst trans other 

trans= /p/ 52.5 44.4 3.1 
trans= /t/ 54.1 39.4 6.5 
trans= /k/ 41.5 44.6 13.9 
burst= /p/ 40.8 51.3 7.9 
burst /t/ 40.9 47.1 12.0 
burst= fk/ 66.4 30.0 3.6 
vowel= fa/ 15.0 81.9 3.1 
vowel= /i/ 57.0 37.1 5.9 
vowel= /y/ 73.2 22.5 4.3 
vowel= /u/ 52.1 29.8 18.1 
total 49.4 42.8 7.8 

5.4.2 Voiced stops 

In Table 5.IV, the stimulus-response matrix is presented for the experiments with 
the syllables containing the voiced stops /b,dj. Again, the responses are pooled 
across subjects. The results are presented in percentages, with 100% equal to 120 
judgements. As subjects had 2 response alternatives, chance level corresponds to 
50% correct. The upper two groups of four rows give the results for the original 
and no-burst stimuli created from the utterances starting with /b/. The results for 
the stimuli consisting of a /d/-burst spliced onto the syllable starting with /b/ are 
presented in the third group of four rows. The lower eight rows give the results for 
the burst-only stimuli. 
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Figure 5.3: Figure 5.3a presents the percentage of responses to the (unvoiced) 
mixed-burst stimuli corresponding to the burst, given the stop from which the tran­
sitions originate (first bar: transitions from IPI, second bar: transitions from /t/, 
third bar, transitions from /k/), the identity of the burst (second group of 3 bars) 
or the vowel identity (last group of 4 bars). The dotted line indicates the average 
proportion of responses corresponding to the burst ( 49%). Percentages which are not 
significantly different, as determined by the post-hoc Bonferroni tests, are indicated 
by the "staples" above the bars. Figure 5.3b presents the percentage of responses 
corresponding with- the transitions for the same parameters. 
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All original stimuli are correctly recognized at a rate higher than 95%, except 
the third token of /hi/ (90.8%), the fourth token of /dy/ (84.2%) and the second 
token of /du/ (90.8%). Again, these less than perfect scores could be traced to a 
slightly less clear pronunciation. 

The average rate of correct recognition of the burst-less stimuli is 91.9% (96.4% 
for /b/, 87.4% for /d/), which is higher than results reported in the literature. 
This may be the result of our particular method of creating the burst-less stimuli, 
which leaves the part of the burst below 500Hz largely intact. In agreement with 
other studies, recognition of place of articulation from burst-less stimuli seems to 
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be better for voiced stops than for unvoiced stops. As for the unvoiced stops, we 
find the preference for labial responses. 

The average rate of correct recognition of the burst-only stimuli is 61.1%, which 
is only slightly above chance level (50%). This is much lower than the rates for the 
unvoiced stops. It is an often-reported finding that bursts isolated from unvoiced 
stops are more powerful in cueing place of articulation than bursts isolated from 
voiced stops. Note that this figure is based only on the perception of labial and 
dental bursts, while for the unvoiced stops also velars are included. As velar bursts 
generally cue place of articulation more strongly than labial or dental bursts, the 
figure for the voiced stops is relatively deflated. However, the particular rate of 
61.1% is still lower than the usually reported percent correct rates for voiced stops 

Table 5.1V: Stimulus-response matrix for the voiced stops. Results are pooled 
across subjects and are given in percentages. 100% is equal to 120 judgements. The 
identities of the burst portion and transition portion are indicated in the columns 
marked "BU" and "TR", respectively. The first six groups of four rows give the 
results for the original, no-burst, and burst-spliced stimuli. The bottom two rows 
give the results for the burst-only stimuli. 

vowel fa{ vowel /i/ vowel /y/ vowel /u/ 
BU TR b d b d b d b d 

b b 100.0 0.0 98.3 1.7 100.0 0.0 100.0 o.o 
99.2 0.8 100.0 o.o 97.5 2.5 100.0 o.o 

100.0 0.0 90.8 9.2 98.3 1.7 100.0 0.0 
100.0 0.0 96.7 3.3 100.0 0.0 100.0 0.0 

. b 100.0 0.0 96.7 3.3 100.0 0.0 100.0 0.0 
100.0 o.o 100.0 0.0 98.3 1.7 100.0 0.0 

99.2 0.8 80.0 20.0 96.7 3.3 100.0 o.o 
100.0 0.0 0.0 100.0 94.2 5.8 100.0 0.0 

d b 100.0 0.0 0.0 100.0 94.2 5.8 100.0 0.0 
87.5 12.5 7.5 92.5 41.7 58.3 100.0 o.o 

100.0 0.0 0.8 99.2 12.5 87.5 99.2 0.8 
98.3 1.7 8.3 91.7 27.5 72.5 100.0 0.0 

d d 0.0 100.0 o.o 100.0 o.o 100.0 0.0 100.0 
o.o 100.0 0.0 100.0 1.7 98.3 9.2 90.8 
0.0 100.0 0.0 100.0 0.8 99.2 0.0 100.0 
0.0 100.0 0.8 99.2 15.8 84.2 0.8 99.2 

. d 0.0 100.0 0.8 99.2 15.8 84.2 0.8 99.2 
10.8 89.2 50.8 49.2 36.7 63.3 58.3 41.7 

0.0 100.0 4.2 95.8 9.2 90.8 7.5 92.5 
0.0 100.0 27.5 72.5 1.7 98.3 3.3 96.7 

b d 0.0 100.0 27.5 72.5 1.7 98.3 3.3 96.7 
0.8 99.2 58.3 41.7 10.0 90.0 40.8 59.2 
0.8 99.2 39.2 60.8 13.3 86.7 5.8 94.2 
0.0 100.0 2.5 97.5 16.7 83.3 1.7 98.3 

b 59.2 40.8 65.0 35.0 55.0 45.0 62.5 37.5 
50.0 50.0 50.8 49.2 35.0 65.0 69.2 30.8 
70.8 29.2 53.3 46.7 65.8 34.2 61.7 38.3 
75.0 25.0 38.3 61.7 76.7 23.3 70.8 29.2 

d 35.8 64.2 44.2 55.8 34.2 65.8 32.5 67.5 
37.5 62.5 31.7 68.3 27.5 72.5 35.8 64.2 
60.0 40.0 29.2 70.8 30.0 70.0 32.5 67.5 
63.3 36.7 35.0 65.0 40.8 59.2 34.2 65.8 
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(e.g. Schouten and Pols, 1983). A rather obvious reason for this discrepancy is 
that, due to our procedure for isolating the bursts from the voiced stops, the bursts 
contain no energy below 500 Hz. This may bring about a certain unnaturalness 
in the bursts when presented in isolation, which may negatively affect recognition. 
The burst-only data should therefore be treated with caution. 

For the mixed-burst stimuli, the overall proportion of responses corresponding 
to the burst was 26%, and with the transitions 74%. Like for the unvoiced stops, 
we performed a GLIM analysis on the response data for the mixed-burst stimuli. 
The analysis was slightly different, however. Because for the voiced stops only two 
responses were possible ("B" or "D"), the number of responses corresponding to 
either burst or transitions summed to a constant value. Moreover, the effect of the 
/b/-burst is indistinguishable from the effect of the /d/-transitions- and vice versa 
- because they always co-occur. Therefore we only made a GLIM-analysis for the 
dependent variable NB, and TRA was not used as a factor. Thus, the following 
main effects and interactions were used in the model: BUR, VOW, SPK, LST, and 
BURxVOW, BURxSPK, VOWxSPK. 

The results of the analysis showed that all main effects and interactions were 
highly significant (p < 0.001), except the main effects SPK (p = 0.47) and LST 
(p = 0.79). The Bonferroni test for post-hoc comparison of means revealed that 

1. The /d/-burst and the /b/-transitions were significantly stronger in cueing 
place of articulation than the /b/-burst and /d/-transitions. 

2. The burst is most effective before vowel /i/, less effective before /y /, and least 
effective before /a/ and /uf. The reverse holds for the transitions. 

The mixed-burst data are recapitulated in Table 5.V. The left column in Ta­
ble 5.V again describes the stimulus, and the two columns on the right-hand side 
present the percentage of responses corresponding to either the burst or the transi­
tions. Part of tb.e data of Table 5.V are presented visually in Figure 5.4. The bars 
in Figure 5.4 represent the proportion of responses corresponding with the burst, 
given the consonant identity of the transitions (first 2 bars), or the vowel identity 

Table 5. V: Average probabilities, presented in percentages, of responding according 
to the burst or transitions for the mixed-burst stimuli of the voiced stops. For a 
further explanation see text. 

stimulus response 
burst trans 

trans = /b/ & burst = /d/ 38.9 61.1 
trans = /d/ & burst = /b/ 13.9 86.1 
vowel= fa/ 2.0 98.0 
vowel= /i/ 63.9 36.1 
vowel= fy/ 33.2 66.8 
vowel= /u/ 6.6 93.4 
total 26.4 73.6 
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Figure 5.4: Percentage of responses to the (voiced) mixed-burst stimuli corre­
sponding to the burst, given the identity of the transitions (first 2 bars), or the vowel 
identity (last 4 bars). The dotted line indicates the average proportion of responses 
corresponding to the burst (26%). Non-significant differences, as determined by the 
post-hoc Bonferroni tests, are indicated by the "staples" above the bars. 

(last 4 bars). The dotted line again indicates the average proportion of responses 
corresponding to the burst {26%). The proportion of responses in accordance with 
the transitions are not plotted, as they are simply equal to 100% minus the percent­
age of responses in accordance with the burst. Note the exceptionally large vowel 
effect: in the front vowel contexts the burst is much more effective than in the other 
contexts. Clearly this is not an effect which is restricted to the velar category. 

5.5 General discussion and conclusions 

The results of the perception experiment show a complex picture of the relative 
importance of release burst and formant transitions for the perception of place of 
articulation of initial prevocalic stop consonants. The perceptual importance of 
burst and transitions highly depends on {1) whether the burst is labial, dental or 
velar, {2) whether the transitions are labial, dental or velar, {3) the vowel context, 
and, for the unvoiced stops, ( 4) the speaker. Furthermore, the results show that 
the bursts of unvoiced stops are more effective in cueing place of articulation than 
the bursts of their voiced counterparts. We will discuss these dependencies in more 
detail below. 

As described in an earlier section, it has been reported in previous studies that 
the perceptual relevance of the release burst depends on the place of articulation of 
the stop consonant. In particular, it has been found that the velar burst is a more 
effective cue than either a labial or a dental/ alveolar one. Our results for the burst­
only as well as burst-spliced stimuli are in complete agreement with these findings. 
Indeed, we found, first of all, that /k/-bursts, when presented in isolation, are al-
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most perfectly recognized, while bursts of /p/ and jtj were much less accurately 
recognized. Secondly, the perceptual data for the mixed-burst stimuli showed that 
the /k/-bursts were significantly more effective than /p/ and /t/-bursts. 

Also in accordance with earlier studies, we found that, for burst-less stimuli, 
the /k/-transitions are the least effective cues, while /pf-transitions give rise to 
ahnost perfect recognition. This observation may prompt the conclusion that /pi­
transitions are strong or robust place cues, while /k/-transitions are weak place 
cues. This conclusion would, however, be at variance with the mixed-burst data, 
for which the fp/ and /k/-transitions are not significantly different in their effec­
tiveness in cueing place of articulation, while both are significantly more effective 
.than ftf-transitions. We offer the following explanation for this seeming contra­
diction. The physical removal of the burst from prevocalic stops does not bring 
about the intended deletion of burst cues, but rather suggests a very weak release 
burst. In terms of the gross cues of Stevens and Blumstein (1978), a strongly posi­
tive spectral tilt at signal onset, is suggested, which will cue a fpf-response, unless 
other information is present which indicates a different place of articulation. In 
other words, the removal of the burst does not bring about a deletion but rather a 
modification of the "burst cues", as was suggested earlier by Pols (1979). The strat­
egy of replacing the release burst with a 300ms burst of noise, as employed by Pols 
and Schouten (1978), Pols (1979), and Van Wieringen (1995), seems an adequate 
method to avoid this problem. Their data show that, when the noise burst is used, 
the proportion of correct fp/-responses decreases while the proportion of correct 
ft/ and /k/-responses increases dramatically, compared to the condition where the 
burst is replaced by silence. 
For similar reasons, we argue that splicing the release burst onto the stationary for­
mants, as performed by Dorman et al. (1977), does not result in an actual deletion 
of transition cues. Instead, the new cue "straight formant transitions" is intro­
duced, which in a back-vowel context can be strong evidence for a labial consonant. 
This may partially explain the strong bias in favor of formant transitions which is 
observed by some authors, like Dorman et al. (1977). As a consequence, we like to 
argue that the conflicting-cue paradigm is more reliable for measuring the relative 
contributions of acoustic cues than the cue-deletion paradigm. 

Our study shows that the relative perceptual importance of burst and transitions 
is highly dependent on the vowel context. In general the release burst dominates 
place perception in front vowel contexts, while for non-front vowels the transitions 
are most important, although exceptions exist, like the jpu/-/ku/ contrast, which 
is almost entirely established by the burst. These findings are in agreement with 
Fischer-J!iSrgensen (1972) and Pols (1979), and in partial agreement with Dorman 
et al. (1977) and Van Wieringen (1995). Although the vowel-dependence seems 
to be very robust and important, it appears to be rather underexposed in studies 
investigating the relative importance of burst and transitions. In a large number 
of such papers, either a single vowel context is tested (e.g. Hoffman, 1958; Ohde 
and Stevens, 1983; Lindholm et al., 1988) or results are pooled across vowels (e.g. 
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Pols and Schouten, 1978; Ohde and Scharf, 1981; Schouten and Pols, 1983), thus 
ignoring or obliterating this interesting phenomenon. 

A qualitative explanation for the influence of the vowel context on the percep­
tual importance of burst and transitions is suggested by Fischer-J0rgensen (1972). 
She reasoned that, because the production of stop consonants differs for different 
vowel contexts, the acoustics of the stops show that in one vowel context the for­
mant tracks for the 3 places of articulation are very different and the bursts are 
similar, like in the /a/-context, while in an other context, like /i/, the formant 
tracks are similar for the 3 places of articulation and the bursts are very distinct. 
Fischer-J0rgensen hypothesizes that the perceptual system has learned to focus on 
the most distinctive properties of the signal and therefore weighs the burst and 
transition cues differently depending on the vowel context. 

The results of our experiments have shown that the bursts of unvoiced stops are 
more effective in cueing place of articulation than the bursts of voiced stops. One 
may argue that this finding is an artifact, brought about by the difference in the 
signal manipulations for the voiced and unvoiced stops. As our signal manipulation 
procedure for deleting the burst only removes the burst energy above 500 Hz, a 
substantial part is left intact, which may result in an apparent reduction of the 
influence of the release burst. We think that this is not the reason, because the 
most relevant burst properties are generally thought to reside in frequencies above 
500Hz (e.g. Halle et al., 1957; Jongman and Miller, 1991; Kewley-Port et al., 1983). 
In fact our findings are in accordance with a number of earlier studies which show 
that the perceptual system more heavily depends on burst information for unvoiced 
stops than for voiced stops (e.g. Schouten and Pols, 1983; Fischer-J0rgensen, 1972). 

In conclusion, we have found that the relative perceptual importance of burst and 
transitions highly depends on the stop consonant, the vowel context and whether 
the stop is voiced or unvoiced. Velar bursts are generally much stronger in cueing 
place of articulation than other bursts. The dental transitions appear to be weaker 
than labial or velar transitions. In front-vowel contexts the release burst dominates 
the perception of place of articulation, while in non-front vowel contexts the for­
mant transitions are generally dominant. Finally, we have found that the bursts of 
unvoiced stops are perceptually more important than the bursts of voiced stops. 



Chapter 6 

Detailed versus gross cues for the perception of prevocalic 
stop consonants: Modeling and evaluation1 

Abstract 

The purpose of the study presented in this chapter is to evaluate whether de­
tailed or gross time-frequency structures are more relevant for the perception of 
prevocalic stop consonants. To this end, first a perception experiment is carried 
out with "burst-spliced" stop-vowel utterances. This experiment is described in 
the previous chapter. The present chapter describes the second part of the inves­
tigation, that is, the simulation of the behavior of the listeners in the perception 
experiment. First, a number of detailed and gross cues are measured on the 
stimuli. Next, these cues are mapped onto the observed perceptual data using a 
formal model of human classification behavior. The results show that the detailed 
cues, such as formant transitions, give a better account of the perceptual data 
than the gross cues in all cases. The best-performing models are interpreted in 
terms of the acoustic boundaries which are associated with the perceived linguis­
tic contrasts. These boundaries are highly interpretable linear functions of 5 or 6 
acoustic cues, which give a quantitative description of the often-discussed "trade­
off" relation between the various cues for perception of place of articulation in 
stop consonants. 

6.1 Introduction 

In this chapter we present the actual evaluation of the relevance of various sets of 
acoustic cues for the perception of initial prevocalic stop consonants. In particular 
we will compare the perceptual relevance of detailed versus gross spectra-temporal 
cues, using manipulated natural utterances. As indicated in the previous chapter, 
a three-step procedure is adopted. First, a perception experiment is carried out 
in which manipulated natural stop-vowel utterances are presented to listeners for 
classification. This experiment is described in the chapter 5. The second step is the 
measurement of a number of detailed and gross cues on the stimuli. The third step 
is the mapping of the acoustic cues onto the observed perceptual responses. The 
second and third step, which are intended as a formal simulation of the behavior of 
the subjects in our perception experiment, are presented in this chapter. 

1 Ba.sed on: Smits, R., Ten Bosch, L., and Collier, R. (1995b), "Evaluation of various sets of acoustic 
cues for the perception of prevocalic stop consonants: II. Modeling and evaluation," submitted to J. 
Acoust. Soc. Am. 



116 Chapter 6 Detailed versus gross cues: Simulation 

The chapter is structured as follows. In the next section, the methods are 
described that were used for measuring the various cues on the signals. In section 
6.3, the classification model is discussed, along with the methods for training, testing 
and interpreting the modeL Section 6.4 presents the results of the various model fits 
and an interpretation of the best-fitting models. Finally, the results are summarized 
and discussed in the last section. 

6.2 Extraction of acoustic cues 

In this section, our specific choices of the detailed and gross acoustic cues are 
motivated, and the details of the measurement procedures are given. 

6. 2.1 Detailed cues 

Preparations 

As described in the previous chapter, the original utterances used for the purpose 
of the perception experiment were all possible CV-combinations consisting of the 
Dutch stops /b,d,p,t,k/ followed by the Dutch vowels Ja,i,y,u/, spoken by two male 
speakers. For all utterances, the instants of burst onset and offset were used, which 
were determined manually for the purpose of the burst-splicing, see chapter 5. 

In this study, frequencies of spectral peaks and formants are transformed to 
an 'auditory' frequency axis. For this purpose, the 'Equivalent Rectangular Band­
width' or ERB-scale was chosen (Glasberg and Moore, 1990), which is similar to the 
Bark scale. The ERB-scale is defined in such a way that each ERB corresponds to 
a constant distance along the basilar membrane. The ERB-rate e can be calculated 
from the frequency I using the following equation (Glasberg and Moore, 1990): 

e = 21.4log(4370I + 1) (-1) 

with I expressed in Hz. 

Burst cues 

Based on the results of previous studies, it was decided to measure the following 4 
burst cues: the burst length, the frequency of the highest burst peak, the level of 
this peak and the total level of the burst. 

The length of the release burst has been found to increase with increasingly 
backward place of articulation, that is, velar bursts are longer than coronal bursts, 
which in turn are longer than labial bursts (Fischer-Jprgensen, 1954; Winitz et 
al., 1971; Fant, 1973; Zue, 1976; Dorman et al., 1977; Tekieli and Cullinan, 1979; 
Crystal and House, 1988). We define the burst length lb here as the interval between 
the instants of burst onset and offset. As described in chapter 5, it was carefully 
checked, by looking as well as listening to the speech signals, that none of the 
stop-vowel utterances contained aspiration, as is common in the Dutch language. 

Acoustic analyses have shown that labial bursts have spectral peaks at low fre­
quencies (below 1 kHz), while dental or alveolar bursts have high-frequency peaks 
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(above 3 kHz). Velar bursts, on the other hand, display a strong energy peak in 
the mid-frequency range (1 to 4kHz), the position of which highly depends on the 
vowel context. In front-vowel context the energy peak is wide and lies in the F3-F4 
region, while in non-front vowel contexts the peak is located near or slightly above 
the F2 at the onset of voicing (Fischer-J!I}rgensen, 1954; Halle et al., 1957; Winitz et 
al., 1971; Fant, 1973; Zue, 1976; Dorman et al., 1977; Edwards, 1981; Repp and Lin, 
1988; Keating and Lahiri, 1993; Keating et al., 1994). Perception experiments with 
synthetic signals and burst-spliced natural utterances have shown that the spectral 
peaks of the burst are indeed perceptually relevant, and that they are evaluated 
in relation to the vowel context (Cooper et al., 1952; Schatz, 1954; Hoffman, 1958; 
Ainsworth, 1968). For our measurement of the burst peak frequency Fbp, an FFT 
was calculated of the entire burst. From the resulting amplitude spectrum, the 
highest peak in the interval of 700 Hz to 5 kHz was picked. The frequency of the 
peak was converted to the ERB-scale; using Eq. -1. 

The level of the burst peak LIJp was defined as 

(-2) 

where jF(FIJp)l is the spectral amplitude at frequency FIJp. 
Finally, the total level of the burst Lb was measured. Labial bursts are generally 

· weaker than coronal and velar bursts (Fischer-J!I}rgensen, 1954; Fant, 1973; Zue, 
1976; Dorman et al., 1977; Edwards, 1981; Repp and Lin, 1988). Ohde and Stevens 
(1983) have shown that this energy cue is indeed used in the perception of the 
labial-alveolar distinction. Our measurement procedure was as follows. In order 
to eliminate the contribution of artificial low-frequency components to the burst 
energy, only the energy above 100 Hz was used. The burst level was defined as: 

Lb = 10log(L IF(/iW) (-3) 
i 

where /i is the discrete frequency, expressed in Hz, IF(Ii)i is the spectral amplitude 
at frequency /i, and the summation is carried out across frequencies ranging from 
100 Hz to 5 kHz. 

Formant frequencies -

Since the early days of speech perception research, formant transitions, especially 
F2 and F3, have been considered to be important carriers of information regarding 
place of articulation. Throughout this chapter, the second and third formant will 
be indicated by F2 and F3, respectively. The frequencies of F2 and F3 at onset and 
in the stationary part of the utterance will be indicated by F20 , F30 , and F2 8 t, 

F3st, respectively. A number of perception studies showed that the frequencies 
of F2 and F3 are strong cues to place of articulation (e.g. Cooper et al., 1952; 
Liberman et al., 1954; Delattre et al., 1955; Ainsworth, 1968). Beside the perception 
studies, a number of acoustic studies showed that the individual frequencies of 
F2 and F3 at voicing onset (or traced back to the instant of consonantal release) 
showed high variability, particularly with vowel context {Fischer-J0rgensen, 1954; 
Halle et al., 1957; Ohman, 1966; Fant, 1973; Kewley-Port, 1982). It was, however, 
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reported by several authors that a combination of various formant measures could 
give reasonable to good clustering of stops according to place of articulation, e.g. F2 
and F3 at voicing onset (Ohman, 1966; Fant, 1973), F2 at onset and in the vowel 
nucleus (Ohman, 1966; Sussman et al., 1991), and F2 and F3 at voicing onset and 
F2 in the vowel nucleus (Ohman, 1966; Kewley-Port, 1982; Sussman, 1991). 

In our study, the frequency of the second and third formant were measured at 
voicing onset and in the stationary part at the end of the utterance. The onset 
frequencies F20 and F30 were measured in accordance with the suggestions made 
in chapter 2. From all utterances, the first glottal period after the release was 
excised using a rectangular window. The first glottal period was defined as the 
interval starting at the last negative zero crossing before the first glottal pulse and 
ending at the last negative zero crossing before the second glottal pulse. From the 
windowed portion, an FFT was calculated. From the resulting amplitude spectrum, 
the F2 and F3 peaks were measured manually. In cases where multiple peaks were 
present, the peak was chosen that was part of a continuous formant track in the 
corresponding wideband spectrogram. In a few cases, the F3 was not significantly 
excited by the first glottal pulse. In these cases, F30 was measured from the second 
glottal period. 

The formant frequencies in the stationary part of the utterance, F2st and F38t, 

were measured manually from wideband spectrograms. Because only stop-vowel 
utterances were used in this study, all vowels ended in a clear stationary portion, 
and the measurement of the formant frequencies was unambiguous. 

The formant frequencies at onset as well as in the stationary part were converted 
from Hz to ERB using Eq. -1. 

Locus equations 

In Sussman (1991) and Sussman et al. (1991) it was shown that prevocalic stop 
consonants can be very" well classified using the concept of locus equations for F2. 
A locus equation for F2 is defined as 

F20 =k·F2st+c (-4) 

where the slope k indicates the linear variation of F2 with the F2 of the following 
vowel, and c is a constant. A distinct pair (k, c) is associated with each stop 
consonant. 

Sussman hypothesized that locus equations may play an important role in the 
perception of stops. According to his hypothesis, the listener has a locus equation for 
each of the stop consonants stored in memory. These locus equations will generally 
be speaker-dependent. From each new occurrence of a stop consonant, the onset 
frequency and frequency in the 'vowel nucleus' of F2 is estimated by the listener. 
The distance of the resulting point ( F2st, F20 ) to the locus equations of each of the 
stop consonants is calculated. The perceived consonant will generally correspond 
to the locus equation which is closest to the point (F2st, F20 ) of the new utterance. 
For certain vowel contexts, especially high front vowels, the locus equations for the 
different places of articulation are generally very close together. In these cases F30 

as well as certain burst properties are used as additional cues. 
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In order to test the role of locus equations in the perception of stops, locus 
equations were determined from our stimuli and for all stimuli the distance to each 
of the locus equations was calculated. The calculations were made as follows. First 
locus equations were computed separately for each speaker and separately for voiced 
stops and unvoiced stops. That is, for each of the stops, the pair (k, c) of Eq. -4 
is determined from the measured values of F20 and F2st, using linear regression. 
Separate locus equations were calculated for velars in front-vowel contexts /i,y /and 
velars in non-front vowel contexts /a,uj, as suggested by Sussman et al. (1991). 
The resulting locus equations are listed in Table 6.XI of Appendix 6.A. 

The distance of each utterance to each of the relevant locus equations is deter­
mined as follows. Suppose the F2 of an utterance has an onset and vowel frequency 
F20 and F25 t, respectively. For each locus equation, the point that is closest to 
(F2 8t, F20 ) is obtained by orthogonal projection of (F28t, F20 ) on the locus equa­
tion. Next, all coordinates are converted to ERB-rate, using Eq. -1, and the Eu­
clidean distance in ERB between the points is calculated. Thus, for the unvoiced 
stops 3 distances are measured: the distance D1 to the labial locus equation, the dis­
tance Dd to the dental locus equation, the distance Dv to the velar locus equation. 
For the voiced stops, only Dt and Dd were determined. 

6.2.2 Gross cues 

In a series of acoustic and perceptual studies, Blumstein and Stevens hypothesized 
that gross spectral characteristics of the initial 20-odd ms after consonantal release 
contain context-independent information for place of articulation of stop conso­
nants. Labial, coronal, and velar stops were claimed to have diffuse falling, diffuse 
rising, and compact characteristics (Stevens and Blumstein, 1978; Blumstein and 
Stevens, 1979, 1980). Kewley-Port argued that dynamic, that is, time-dependent, 
information needed to be incorporated, and she added the dynamic cues "late on­
set of voicing" and "persistence of a mid-frequency peak over time" to the existing 
static spectral properties (Kewley-Port, 1983; Kewley-Port and Luce, 1984; Kewley­
Port et al., 1983). Lahiri et al. (1984) introduced an improved, dynamic, cue to 
the labial-coronal distinction. Roughly, the measure was based on the change in 
high-frequency energy (around 3.5 kHz), relative to the change in low-frequency 
energy (around 1.5 kHz) from burst to voicing onset. 

Based on these studies, we decided to measure the following gross cues. In 
accordance with Blumstein and Stevens, we measured the global spectral tilt and 
compactness after release. Additionally, we measured the change of global spectral 
tilt and compactness during the first 50 ms after release. The change of spectral 
tilt was intended to capture the measure proposed by Lahiri et al. (1984), while 
the change of compactness was intended to indicate the persistence of the mid­
frequency peak, as proposed in Kewley-Port (1983) and in Kewley-Port and Luce 
(1984). In addition we decided to measure the global spectral tilt and compactness 
in the stationary part of the utterance, as well as the frequency location of the 
mid.:frequency peak immediately after release and in the stationary part. 
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Preparations 

In contrast to some of the detailed cues, all gross cues were measured automatically. 
For the measurement of the gross cues, a Short-Time Fourier Transform (STFT, 
Rabiner and Schafer, 1978) was made of all stimuli, using a Hanning window with 
a total length of 20.0 ms. In total, 12 windows were used. The first window was 
centered at the instant of burst onset. For the no-burst stimuli, the first window 
was centered at the voice-onset marker, which was used as the cutting position for 
the separation of the burst and the rest of the utterance. The next 10 windows were 
positioned to the right of the first window, using a window shift of 5.0 ms. Thus, 
approximately 50 ms of the signal after burst onset was analyzed by the first 11 
windows. The last window was centered at 200 ms after burst onset. This window 
was intended to capture gross spectral properties in the stationary vowel. 

All windowed segments were padded with 312 zeros to a sequence of 512 samples. 
From each of these sequences an FFT was calculated, resulting in a Fourier spectrum 
containing 257 frequency points. Like in many previous studies on acoustic cues 
for the perception of stops (e.g. Kewley-Port and Luce, 1984, Krull, 1990), the 
spectra were converted to "auditory spectra". This was done in two steps. First 
the frequency axis was warped to an ERB-axis, second the spectral amplitudes were 
weighed for the local bandwidth. 

The amplitude spectrum for each of the windows was converted from Hz to ERB 
using Eq. -1. In order to obtain ERB-spectra containing 257 equidistant points, 
linear interpolation was used. In effect, the Hz-spectrum was upsampled at the low­
frequency end, and downsampled at the high-frequency end. The interval between 
the last-but-one and the last sample on the ERB-axis corresponds to approximately 
63.6 Hz, which corresponds to a downsampling with a factor of 3.26. Generally, if no 
smoothing of the spectrum is applied beforehand, downsampling may cause aliasing. 
In our case, however, aliasing was avoided by zero-padding. As a Hanning window 
of 20 ms has an effective spectral resolving power of approximately 72 Hz (Harris, 
1978), which is larger than the maximum frequency step o'f 63.6 Hz, aliasing was 
negligible. 

From a spectrum that is obtained by warping of the frequency axis of a Fourier 
amplitude spectrum, a valid energy measurement cannot be made. A correction 
must be made by multiplying the individual spectral amplitudes by the square root 
of the local auditory filter width. This is shown in the following derivation. 

Generally, the spectral energy E between frequency !1 and fz is calculated as 
follows: 

(-5) 

where IF(f)l is the amplitude of the Fourier spectrum at frequency f. Suppose 
A(e) is a function that transforms ERB-rate e into linear frequency f (A(e) is the 
inverse of Eq. -1) and define e1 and e2 by ft = A(e1) and fz A(e2 ). Then: 

1
A(e2) 

E = IF(A(e)WdA(e) 
A(el) 

(-6) 
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(-7) 

(-8) 

where I(F · A)(e)l is the frequency-warped amplitude spectrum, aud dA(e)fde is 
the first derivative of A(e) with respect to e, which is always positive. dA(e)/de 
is equal to df /dAinv(f), which is equal to the reciprocal of the first derivative of 
Eq. -1 with respect to J, which is the auditory bandwidth as a function of f. 

Thus we find that a warped spectrum IP(e)l, which is valid for energy mea­
surements, can be obtained by multiplying the warped spectrum I(F ·A)( e) I by the 
square root of the local bandwidth: 

IP(e)l = I(F ·A)( e)!· V24.7(0.00437f + 1) (-9) 

where f is the frequency in Hz corresponding with the ERB-rate e. 
Figure 6.1 shows the 2-step transformation of the frequency spectrum into the 

ERE-spectrum for a spectrum of one of the utterances, plus the effect of smoothing 
of the ERE-spectrum (which is used for the measurement of the mid-frequency 
peak). 

Global spectral tilt 

For the purpose of this study, the spectral tilt at onset, the change of spectral tilt 
over time, and the spectral tilt in the stationary part were measured. As the measure 
of spectral tilt used by Lahiri et al. (1984) was very successful for separating labials 
from dentals and alveolars, our strategy for measuring the global spectral tilt was 
chosen to be similar to this measure. In essence, the spectral tilt in Lahiri et al. 
(1984) was obtained by drawing a straight line by hand through the F2 and F4 peaks 
in an LPC spectrum with a logarithmic amplitude axis. Our automatic procedure 
works as follows. A straight line is fitted through the spectra with an ERB-axis and 
a logarithmic amplitude axis. In order to exclude the Fl from contributing to the 
spectral tilt, while ensuring that the F2 is always used, only the spectrum points 
in the range of 650 Hz to 5000 Hz were used. Linear regression was used for the fit, 
aud spectral peaks were emphasized by weighing each squared local error by the 
local linear amplitude value, which is always larger than zero. The squared error 
E 2 that was minimized in the linear regression was: 

(-10) 

where, wi and Ei are the weight and the error at ERB-rate ei, a0 and a1 are the 
y-intercept and slope of the regression line, and the summation is over the ERB-rate 
interval corresponding to the frequency interval of 650 Hz to 5000 Hz. 

The results of the fitting procedure for the spectra of the 1st, 3rd, 5th aud 7th 
frames of an utterance fpa/ are shown in Figure 6.2. 
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Figure 6.1: The transformation of the frequency spectrum into the ERE-spectrum, 
illustrated for a vowel spectrum of an utterance /baj. Figures 6.la, b, c and d show 
the original amplitude spectrum IF(!) I, the frequency-warped amplitude spectrum 
(IF· A)( e)!, the final ERE-spectrum I.Fw(e)l, and I.Fw(e)l after smoothing with a 
Hamming window with a total width of 4 ERB, respectively. 

Each regression fit resulted in two numbers: the y-intercept, expressed in dB, 
and the slope, which is the actual spectral tilt, expressed in dB/ERB. Only the 
spectral tilt was used for further analysis. 

The 12 values of spectral tilt for the 12 window positions were reduced to 3 
numbers: the tilt for the first window (at burst onset), the tilt for the last window 
(in the stationary part) and the change of the tilt over the first 50 ms after the burst 
onset. For this change-of-tilt measure, a linear regression line was fitted through 
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Figure 6.2: Illustration of the measurement procedure of the spectral tilt. Fig­
ures 6.2a, b, c, and d show the ERE-spectra of the 1st, 3rd, 5th and 7th frame of an 
utterance /pa/, together with the straight line segments that are fitted through the 
part of the ERE-spectrum between 650 Hz and 5 kHz. The vertical line indicates 
the ERB-rate corresponding to 650 Hz. Note the effect of emphasizing the spectral 
peaks in the linear regression. 
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the tilt values of the first 11 windows. The regression line was forced to contain 
the onset value of the tilt, so only one parameter value, the change of tilt, was 
determined. The squared error E 2 that was minimized in the linear regression was: 

11 

E 2 
= L El = 'L(li- (t;~To + To))2 (-11) 

i i=2 

Where t; is the time interval between the center of window i and the instant of 
burst onset (t1 = 0 ms, t2 = 5 ms, etc.), T; is the spectral tilt at time t;, and 
To = T1 = the tilt for the first window. ~To is the change of spectral tilt, expressed 
in dB/(ERB·ms), which is estimated in the minimization:. 
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Thus, for each stimulus, we obtain 3 measures related to the global spectral tilt: 
the tilt at onset T0 , the change of spectral tilt immediately after onset tlT0 , and 
the tilt Tst in the stationary part of the utterance. 

Mid-frequency peak 

For the purpose of this study, the intensity of the mid-frequency peak at onset L 0 , 

the change of this intensity after onset tlL0 , and the intensity of the mid-frequency 
peak in the stationary part Lst were measured. Also the frequency location of the 
mid-frequency peak at onset Fo and in the stationary part of the utterance Fst were 
determined. The procedure for locating the mid-frequency peak and measuring its 
intensity was aimed to be an automated version of the procedure followed by the 
judges inspecting the auditory running spectra in Kewley-Port and Luce (1984). 

First, the auditory spectra IFw(ei)l were smoothed as follows. Each auditory 
spectrum was mirrored around e = 0 ERB and e = 29.08 ERB (5kHz) and subse­
quently convolved with a Hamming window with a total width of 4 ERB. The figure 
of 4 ERB was arrived at through a manual optimization. Next, in the smoothed 
spectrum of the first window, the highest peak was picked in the mid-frequency 
range, that is, the range of ERB-rates corresponding to the frequency interval of 
650 Hz to 3.5 kHz. Only true local maxima were considered, that is, spectral am­
plitudes that were locally maximal in their surroundings to the left as well as to the 
right. Thus, spectral amplitudes at the boundary of the mid-frequency region were 
never eligible for mid-frequency peak. The ERB-rate position pmfp of the peak was 
determined and the intensity of the peak Lmfp was defined as the logarithm of the 
peak energy divided by the average mid-frequency energy: 

mfp- IFw(pmfpw 
L - lOlog(~ L::i I.Fw(ei)l2) (-12) 

where the summation L::i is made over the mid-frequency region, and cis the number 
of terms in the summation. 

In order to ensure that only peaks were tracked that varied slowly in frequency, 
the onset peak was tracked within a narrow frequency window in subsequent spectra. 
Therefore, in the 2nd to 11th smoothed auditory spectrum, the maximum spectral 
amplitude was picked in a frequency region of width 2 ERB, centered around the 
peak position in the onset spectrum. For these spectra, the mid-frequency peak was 
allowed to be a spectral amplitude at the boundary of the 2-ERB region. For the 
2nd to 11th spectrum, only the peak intensities were kept, the peak locations were 
discarded. Like for the onset spectrum, the peak intensities were calculated using 
Eq. -12. Finally, in the smoothed auditory spectrum for the stationary part, the 
peak position and peak intensity were determined in the same way as in the onset 
spectrum. So, the onset peak and the stationary peak could be farther apart than 
1 ERB. 

The results of the measurement procedure for the mid-frequency peak are shown 
in Figure 6.3 for the 1st, 3rd, 5th and 7th smoothed ERE-spectrum of an utterance 
jkyj. 
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Figure 6.3: illustration of the measurement procedure of the mid-frequency peale 
Figures 6.3a, b, c, and d show the 1st, 3rd, 5th and 7th ERB-spectrum of an utterance 
/ky /, after smoothing. The vertical lines in Figure 6.3a show the mid-frequency 
region on the ERB-axis. The arrow indicates the position of the mid-frequency peale 
The pair of straight lines in Figures 6.3b, c, and d indicate the 2-ERB region centered 
around the ERB-ra~e of the initial peak, and the arrows indicate the maximum value 
of the spectrum within this region. Note that the mid-frequency peak shifts slowly 
upward. 
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The measurements of the mid-frequency peak yield 12 peak intensities and 2 
peak positions per stimulus. Using the 'clamped' linear regression which was iden­
tical to the calculation of the change of spectral tilt, the 12 intensity values were 
reduced to 3 numbers: the peak intensity for the first window, the peak intensity 
for the last window, and the change of the peak intensity over the first 50 ms after 
the burst onset. 
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6.2.3 Cues for the various stimuli 

In summary, the following 19 cues were measured on the stimuli. 
Detailed cues: 

Lb : total level of the burst; 
Fbp : frequency of the spectral peak of the burst; 
Lbp : spectral level of the burst peak; 
lb : burst length; 
F20 : frequency of F2 at voicing onset; 
F2st : frequency of F2 in the stationary part of the utterance; 
F30 : frequency of F3 at voicing onset; 
F3st : frequency of F3 in the stationary part of the utterance; 
D1 : distance to the labial locus equation; 
Dd : distance to the dental locus equation; 
Dv : distance to the velar locus equation. 

Gross cues: 

T0 : spectral tilt at onset; 
L).T0 : change of spectral tilt after onset; 
Tst : sp·ectral tilt in the stationary part of the utterance; 
Lo : level of the mid-frequency peak at onset; 
i).£0 : change of the level of the mid-frequency peak after onset; 
Lst : level of the mid-frequency peak in the stationary part of the utterance; 
F::ifp ERB-rate of mid-frequency peak at onset; 
F

8
rr;fp : ERB-rate of mid-frequency peak in the stationary part of the utterance. 

Four types of stimuli were used in the perception experiments: original utter-
ances, no-burst stimuli, burst-only stimuli and mixed-burst stimuli. As the burst­
only signals by definition do not contain voiced parts, only the detailed cues lb, Fbp, 
Lbp and Lb, and the gross cues T0 , Fo and Lo were measured. For evident reasons, no 
burst cues were measured on the no-burst signals. On the original and mixed-burst 
stimuli, all cues are measured. For the voiced stops no velar locus equations were 
measured, so Dv was not used as a cue. The measured cue values for the stimuli 
containing the unvoiced stops are listed in Tables 6.XII to 6.XIX in Appendix 6.B. 
The measured cue values for the stimuli containing the voiced stops are listed in 
Tables 6.XX to 6.XXIII in Appendix 6.C. 

6.3 The classification model 

6. 3.1 Introduction 

The cue values that were measured on the stimuli were mapped onto the observed 
perceptual responses using the classification model described in chapters 3 and 4. 
In this section we will briefly recapitulate a number of basic issues concerning this 
model which are necessary to understand the modeling results. 



6.3 The classification model 127 

In accordance with the general theory put forward by Ashby (1992), it is assumed 
that the underlying identification process which is performed by the subject can be 
subdivided into three intermediate steps: (1) extraction of stimulus features, (2) 
evaluation of class probabilities on the basis of stimulus features, (3) actual choice 
of response class on the basis of class probabilities. For a detailed discussion of 
these steps, see section 3.2. 

6.3.2 The single-layer perceptron 

The SLP is the core of the classification model. It performs a mapping of the 
stimulus cues onto the class probabilities. The number of input nodes of the SLP 
is equal to the number of stimulus cues. The number of output nodes equals the 
number of response classes. The SLP contains no hidden nodes. 

We define the class boundary between two response classes Ci and Ci as the 
subspace of the cue space where the probability of choosing ci equals the probability 
of choosing Cj. The response region of a response class C; is defined as the subspace 
of the cue space where the most probable response class is C;. As described in 
chapter 3, a basic assumption in the SLP is that the class boundaries are linear. No 
assumptions are made concerning the existence of category prototypes or underlying 
distributions of the acoustic cues. 

Addition of a "hidden layer" to the perceptron may enhance the classification 
power of the model by enabling the use of non-linear boundaries. Beside the SLP­
model fits we tried this enhanced model, but significant improvements in goodness of 
fit were seldom found. Therefore, only the results for the SLP-model are presented 
in this chapter. 

6.3.3 Model estimation {training) 

The term training or estimation of the model is defined here as the estimation of 
the model parameters, that is, the SLP's weights and biases, for which the goodness 
of fit ( GOF) of the model is optimized. As measure of GOF we will use the "fuzzy" 
percent-correct score, henceforth GOF-fuzzy, which is derived from the multinomial 
function (see chapter 4, Eq. -4). In some cases GOF-fuzzy will be transformed into 
a winner-takes-all (WTA) score. For each stimulus it is determined whether the 
model's most likely response is equal to the actually most-occurring response, and 
the WTA-score expresses the overall proportion of stimuli for which this is the case. 

In all model estimations it is important to be aware of the chance level per­
formance of the model. Chance level is defined as the maximum GOF which can 
be obtained by a model with a fixed, stimulus-independent output (see chapter 4). 
Chance level for GOF-fuzzy increases with increasing response bias and with in­
creasing confusion in the responses. GO F-WTA only increases with increasing 
response bias. 
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6.3.4 Model evaluation (testing). 

In order to avoid over-fitting of the model, we tested the generalizability of all model 
fits using a formal cross-validation method. Although the perception experiments 
were extensive, the number of data that are available for the model fits is necessar­
ily rather limited compared to e.g. the data bases used in automatic classification 
experiments, such as Forrest et al. (1988) and Nossair and Zahorian (1991). There­
fore, we chose to employ the leaving-one-out (100) method for the cross-validation 
(see chapter 4). Although the 100-method is computationally expensive, it makes 
maximally efficient use of the available data by using, in effect, each datum in train­
ing as well as in testing, while maintaining the independence of training set and 
test set. 

6.3.5 Model interpretation 

By means of interpreting the S1P's weights and biases in an appropriate way (see 
chapter 3) the class boundaries can be derived. The class boundaries are linear 
functions of the stimulus cues. The absolute value of the coefficient of each of the 
cues indicates the perceptual relevance of the cue, the sign of the coefficient gives 
the direction in which the cue works (e.g. whether a high cue value favors a /p/ or 
a /t/-response). 

Apart from being relevant for a class distinction, cues may have the function 
of indicating troublesome areas in the cue space, that is, areas where either the 
S1P is unable to model the observed stimulus dependent response behavior, or 
the responses themselves have been rather stimulus-independent. The S1P-model 
is capable of "squeezing" the output probabilities to fixed levels in a certain cue 
subspace, by attenuating the influence of the cues on the output probabilities to 
zero (see chapter 4). 

6.3.6 Modeling program 

The comprehensive set of 19 cues was subdivided into 4 cue sets, which will be 
indicated by fo (formant plus burst cues), le (locus-!iquation plus burst cues), gr 
(gross cues), and su ("super set"): 
- fo: Detailed cues, comprising burst cues Lb, FIYI, Lbp, lb, plus formant cues F20 , 

F28t, F30 , F3st· 
le: Detailed cues, comprising burst cues, Lb, Fbp, Lbp, lb, formant cue F30 , 

and locus equation distances D1, Dd, Dv. F30 is incorporated in accordance with 
suggestions by Sussman (1991). 

gr: Gross cues T0 , l::..T0 , T..t, L0 , l::..L0 , Lst, F;:fp, F::/fp. 
su: "Super set", containing a selection of burst cues, formant cues and gross 

cues which, after a number of preliminary model fits, gave the most promising re­
sults: Lb, h, F20 , F2st. F30 , F38 t, To, l::..T0 , L0 , F;:rP. 

For the purpose of the model fits, the data of the perception experiment were 
pooled across subjects, thus obtaining 120 responses per stimulus. Pooling was 
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allowed because data analysis showed that, although subject was a significant factor 
in the perception of the unvoiced stops, the subjects could only be clustered in 3 
largely overlapping groups, as described in the previous chapter. 

The first type of model fits that were performed were speaker-independent model 
fits on the original utterances, separately for unvoiced and voiced stops. The pur­
pose of the fits was to make a comparison with previous automatic classification 
experiments. Next, the actual perception experiments were simulated. As indicated 
in Table 5.1 in the previous chapter, the complete perception experiment consisted 
of 8 subsessions. In each of the first subsessions, subjects were presented with the 
original plus no-burst plus mixed-burst stimuli in random order, but separately per 
speaker and separately for voiced versus unvoiced stops. In the last 4 subsessions, 
subjects were presented with the burst-only stimuli, again separately per speaker 
and separately for voiced and unvoiced stops. In accordance with these experi­
mental procedures, the perceptual data were subdivided into 8 stimulus response 
matrices, one for each subsession. For practical reasons, the set of stimuli consisting 
of the original plus no-burst plus mixed-burst stimuli will henceforth be indicated 
by the combined stimuli. Calculation of chance levels for GOF-fuzzy showed that 
the burst-only stimuli for the voiced stops were essentially labeled randomly by the 
subjects: chance levels were 97% and 94% for speaker 1 and 2, respectively. No 
model fits were therefore made on these data. On each of the remaining 6 stimulus­
response matrices separate model fits were made. 

The procedure for the model fits was as follows. On each stimulus-response ma­
trix, except the burst-only data, models were trained for each possible combination 
of 4, 5, 6, and 7 cues within each of the cue sets fo, le, gr, and su. Next, for 
each number of cues, the three cue combinations with the highest GOF-fuzzy on 
training were tested using the LOO-procedure.2 Subsequently, the cue set with the 
highest GOF on testing was chosen as the best cue subset, and the corresponding 
model obtained during training was chosen as the best modeL Thus, for each of 
the stimulus-response matrices and for each of the cue sets fo, le, gr, and su, we 
obtained a best cue subset consisting of 4, 5, 6, and 7 cues. In all cases, the high­
est GOF-fuzzy on testing occurred for either 5 or 6 cues. These cue subsets plus 
corresponding model -were finally selected as the overall best-performing cues and 
model. 

The procedure for the burst-only data of the unvoiced stops was slightly different. 
First of all, instead of the cue sets fo, le, gr, and su, the sets de, gr, and su were 
constructed, which consisted of the following cues: 

de: Detailed cues L0, Fbp, Lbp, lb. 
gr: Gross cues T0 , L 0 , F::'fp. 
su: "Super set", containing all cues of de and gr combined. 

The subsets trained and tested consisted of 1, 2, 3, or 4 cues. In all cases the subset 
of 2 cues provided the highest GOF-fuzzy on testing. 

2 The LOO-method could not be applied to all possible cue subsets because of computation costs. 
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Before the model fits were initiated, the measured values for eaeh cue were nor­
malized across all stimuli using Eq. 3.7. For the burst cues Lb, Fbp, Lbp, and h of 
the burst-less stimuli the value 0 was inserted. Although it seems that the burst 
cues thus receive the average value rather than no value for the no-burst stimuli, the 
actual effect of this manipulation is that, during training, the weights emanating 
from the burst-cue nodes are free to assume any value for the burst-less stimuli, 
because they are multiplied by zero and thus have no contribution to the GOF. 

Fitting all the models according to the procedures described above will finally result 
in the set of "best" models and cue subsets listed in Table 6.I. The results of these 
32 model fits will be discussed in the next section. 

6.4 Results 

6.4.1 Levels of goodness-of-fit 

Original utterances 

In order to assess the agreement with previous automatic classification studies, 
speaker-independent model fits were obtained for the original utterances. Note 
that, although the fuzzy GOF-measure was optimized, the WTA-levels are most 
interesting for the purpose of comparison. 

Unvoiced stops 

The subsets of eaeh of the cue types that produced the highest GOF-fuzzy on 
testing are listed in Table 6.II, together with the respective GOF-levels on training 
and testing. The GOF-levels on testing are shown graphically in Figure 6.4. For 
each pair of bars for a particular cue set, the left bar represents GOF-fuzzy, the 
right bar represents GOF-WTA, respectively. The dashed and dotted lines indicate 
chance level for GOF-fuzzy and GOF-WTA. Chance levels are 38.8% for GOF-fuzzy 

Table 6.1: Modeling program: The model simulations will yield "best" models for 
the listed sets of stimuli and cues. 

stimulus set speaker cue sets 
original utterances unvoiced 1+2 fo, le, gr, su 

voiced 1+2 fo, le, gr, su 
combined stimuli unvoiced 1 fo, le, gr, su 

unvoiced 2 fo, le, gr, su 
voiced 1 fo, le, gr, su 
voiced 2 fo, le, gr, su 

burst-only stimuli unvoiced 1 de, gr, su 
unvoiced 2 de, gr, su 
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Figure 6.4: The GOF-levels on testing for each of the cue types fo, le, gr, and 
su, for the speaker-independent model fits on the original utterances containing the 
unvoiced stops. For each pair of bars for a particular cue set, the left and right 
bar represent GOF-fuzzy and GOF-WTA, respectively. The dashed and dotted lines 
indicate chance level for GOF-fuzzy (38.8%) and GOF-WTA (33.3%). 
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and 33.3% for GOF-WTA. The subscripts fo, le, gr, and su indicate the various 
cue sets. 

Comparing the GOF-test for the fo, le, and gr sets, we find both for GOF-fuzzy 
and for GOF-WTA that the le-set provides the best fit {84% and 88% on testing 
for GOF-fuzzy and GOF-WTA, respectively), followed by gr {74.3% and 81.3% 
on testing), while fo gives the worst fit {68% and 73%, respectively). The su-set 
provides a GOF which is intermediate between le and gr {83% and 81% on testing). 
Note that for the best subset for su, the formant onset frequencies F20 and F30 are 
combined with the "Blumstein-and-Stevens" cues T0 and L0 and the burst level. 

Although the WTA-levels are reasonable, they are far from perfect and clearly 
lower than some of the results reported in the literature (e.g. Forrest et al., 1988; 
Nossair and Zahorian, 1991). The ordering of GOF-levels for the 3 cue types is, 

Table 6.II: The best subsets of each of the cue types fo, le, gr, and su, for the 
speaker-independent model fits on the original utterances containing the unvoiced 
stops. The two columns on the right present the levels of GOF-fuzzy and GOF-WTA 
on training and testing for each of the cue subsets. The chance levels are 38.8% for 
GOF-fuzzy, and 33.3% for GOF-WTA. 

cue cues used GOF{fuzzy) GOF{WTA) 
type train test train test 

fo Lb Lbv lb F20 F30 85.1 68.2 87.5 72.9 
le Fbv Lbv F30 Dd Dv 90.3 84.3 89.6 87.5 
gr To pmfp 

0 

pmfp 
st Lo !:::.Lo 89.4 74.3 93.8 81.3 

su Lb F20 F30 To Lo 88.7 82.9 87.5 81.3 
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however, in agreement with previous findings. Both locus equations and gross cues 
have been reported to provide higher classification scores than raw formant data 
(e.g. Sussman et al., 1991; Nossair and Zahorian, 1991). Apparently for our data 
the locus-equation data, in turn, perform slightly better than the gross cues. 

The discrepancy of our WTA-levels with the data of e.g. Forrest et al. (1988) 
and Nossair and Zahorian (1991) can be attributed to the small size of our data 
set for the model fits on the original utterances: only 48 utterances were available. 
Both in Forrest et al. (1988) and Nossair and Zahorian (1991), large numbers of 
data were available, thus permitting a more precise model estimation. and the use 
of a larger number of cues. Forrest et al. (1988) and Nossair and Zahorian (1991) 
used 12 and 20 cues, respectively, in the best-performing conditions, while we could 
use only 5 cues. It is important to remember that the purpose of our study is to 
study the perceptual rather than machine classification of stops, and the fits on the 
original utterances are only intended to allow for a crude validation. 

Voiced stops 

The cue sets that produce the highest GOF-levels for the voiced stops are listed 
in Table 6.III, together with the respective GOF-levels for training and testing. 
The GOF-levels on testing are plotted in Figure 6.5. Chance levels are 52.8% for 
GOF-fuzzy and 50.0% for GOF-WTA. 

All 3 subsets of cues have a high GOF-level on testing. The fo-set produces the 
highest levels on testing (97% and 100% for GOF-fuzzy and GOF-WTA, respec­
tively), followed by gr (91% and 97%), while le produces the worst (but still good) 
fit (88% and 97%). The best subset of the cue set su appeared to be identical to 
the best subset of fo. Finally, we note that the number of utterances used for these 
classifications is again low, namely 32. 

Table 6.III: The best subsets of each of the cue types fo, le, gr, and su, plus 
the respective GOF-levels, for the speaker-independent model fits on the original 
utterances containing the voiced stops. The chance levels are 52.8% for GOF-fuzzy, 
and 50.0% for GOF-WTA. 

cue cues used GOF(fuzzy) GOF(WTA) 
type train test train test 

fo lb F2o F28t F30 F3st 99.5 96.9 100.0 100.0 
le Lb Lbp F3o D1 Dd 98.3 88.3 100.0 96.9 
gr To !::iTo pmfp 

st La !::i£0 98.9 91.3 100.0 96.9 
su h F20 F2st F30 F3st 99.5 96.9 100.0 100.0 
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Figure 6.5: The GOP-levels on testing for the cue sets fo, le, gr, and su, for the 
speaker-independent mod~! fits on the original utterances containing the voiced stops. 
Interpretation of the bars is as in Figure 6.4. Chance levels are 52.8% for GOF-fuzzy 
and 50.0% for GOF-WTA. 

Combined stimuli 

Unvoiced stops 
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The best cue subsets and their respective levels of GOF-fuzzy for the fits on the 
combined stimuli (original plus no-burst plus mixed-burst) are listed separately for 
speaker 1 and 2 in Table 6.1V. The GOF-levels on testing for both speakers are 
shown graphically in Figure 6.6. The left and right bar in each pair now repre­
sent GOF-fuzzy for speaker 1 and 2, respectively. As the levels of GOF-WTA are 
less relevant here, they are omitted. The dashed and dotted lines indicate chance 
level for GOF-fuzzy for the perception data for speaker 1 (chance level 52.2%) and 

Table 6.IV: The best subsets of each of the cue types fo, le, gr, and su, plus the 
respective levels of GOF-fuzzy, for the speaker-dependent model fits on the combined 
stimuli containing the unvoiced stops. The chance levels are 52.2% for speaker 1, and 
50.8% for speaker 2. 

cue speaker cues used GOF 1 

type train test 
fo 1 Lb Lbp F20 F2st F30 75.4 68.4 
fo 2 Lbp F2o F2st F30 F3st 77.5 70.2 
le 1 Lb Lbp lb F30 D1 Dd 82.0 75.2 
le 2 Fbp Lbp D1 Dd Dv 77.9 70.7 
gr 1 To !:::.To Tst pmfp 

st Lo Lst 73.3 61.4 
gr 2 To !:::.To T.t pmfp 

st Lo 74.5 66.7 
su 1 Lb F20 F3st To Fmfp 

0 74.4 69.5 
su 2 lb F20 F30 

f':llfP 
0 Lo 81.6 75.0 
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Figure 6.6: The levels of GOF-fuzzy on testing for the cue sets fo, le, gr, and su, 
for the speaker-dependent model fits on the combined stimuli containing the unvoiced 
stops. The left and right bar in each pair represent the GOF for speaker 1 and 2, 
respectively. The dashed and dotted lines indicate chance levels for GOF-fuzzy for 
speaker 1 (52.2%) and speaker 2 (50.8%). 

speaker 2 (chance level 50.8%). 
First of all, we note that, compared to the model fits for the original utterances 

only, the GOF-levels have generally decreased considerably, even while the chance 
levels have gone up. Secondly, it is evident that the pattern for the two speakers is 
very similar. Comparing the various cue sets, we find that for both speakers, the 
le-set provides the best account of the data (75% and 71% on testing for speaker 1 
and 2, respectively), followed by the fo-set (68% and 70%). The gross cues (gr) give 
the worst account of the data (61% and 66%). Adding gross cues to the detailed 
cues based on raw formant information (su) only gives an improvement for speaker 
2 (GOF-fuzzy is 75%). 

The optimal cue subsets are very similar for the two speakers. For both speakers 
the subsets for fo contain the cues L~>p, F2a, F2 8 t, and F30 • The subsets for le both 
contain L~>p, Dt, and D,i; the subsets for gr contain T0 , 6.T0 , Tst> F!fp' and L0 • The 
subsets for su are less similar, as they only both contain F20 and F;:'fp. 

Voiced stops 

The best cue subsets and their respective levels of GOF-fuzzy are listed separately 
for speaker 1 and 2 in Table 6.V. The GOF-levels are shown graphically in Fig­
ure 6.7. Chance levels for speaker 1 and speaker 2 are 60.9% and 61.1%, respectively. 

As was the case for the unvoiced stops, the GOF-levels are lower here than 
for the fits for the original utterances only. For both speakers GOF on testing is 
highest for the fo-set (89% for both speakers), closely followed by the le-set (88% 
for both speakers), and clearly lowest for the gr-set (79% and 78% for speaker 1 
and 2, respectively). Only for speaker 1 did the su-set produce a GOF higher than 
the GOF for the fo-set, namely 91%. 

The optimal subsets of cues are again rather similar for the two speakers. For 
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Figure 6.7: The levels of GOF-fuzzy on testing for the cue sets fo, le, gr, and su, 
for the speaker-dependent model fits on the combined stimuli containing the voiced 
stops. The left and right bar in each pair again represent the GOF for speaker 1 
and 2, respectively. The dashed and dotted lines indicate chance levels for speaker 1 
(60.9%) and speaker 2 (61.1%). 
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both speakers the optimal subsets for fo contain Lbp, F20 , F28t, and F38t, and the 
subsets for le both contain Lb, Lbp, F30 , and Dd. The optimal subsets for the gr 
and su sets are somewhat less similar. 

Burst-only stimuli 

As explained earlier, model fits on the burst-only data were only made for the 
unvoiced stops. The best cue subsets and the respective levels of GOF-fuzzy are 
listed separately for speaker 1 and 2 in Table 6.VI. The GOF-levels are shown 
graphically in Figure 6.8. Chance levels are 62.0% for speaker 1 and 62.1% for 

Table 6. V: The best subsets of each of the cue types fo, le, gr,. and su, plus the 
respective levels of GOF-fuzzy, for the speaker-dependent model fits on the combined 
stimuli containing the voiced stops. The chance levels are 60.9% for speaker 1, and 
61.1% for speaker 2. 

cue speaker cues used GOF 
type train test 

fo 1 Lb Lbp F20 F28 t F38t 93.2 88.9 
fo 2 Fbp Lbp F2o F2st F3o F38t 94.9 88.9 
le 1 Lb Lbp F30 Dz Dd 95.2 88.1 
le 2 Lb Fbp Lbp F30 Dd 95.2 88.3 
gr 1 To D:.To pmfp 

0 D:.Lo Lst 86.5 79.3 
gr 2 To D:.To Tst pmfp 

st Lo 88.1 77.8 
su 1 Lb F20 F2st To D:.To 95.2 90.5 
su 2 F20 F30 F3st To D:.To 95.0 88.0 
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Figure 6.8: The levels of GOP-fuzzy on testing for the cue sets de, gr, and su, 
for the speaker-dependent model fits on the burst-only stimuli of the unvoiced stops. 
The left and right bar in each pair again represent the GOP for speaker 1 and 2, 
respectively. The dashed and dotted lines indicate chance levels for speaker 1 (62.0%) 
and speaker 2 (62.1%). 

speaker 2. 
In contrast with the previous fits, here the gross cues perform slightly better 

than the detailed cues for both speakers. GOF for the de-set is 75% and 78%, 
respectively, for speaker 1 and 2, and 84% and 79% for the gr-set. The combination 
of a detailed and a gross cue (su-set), however, produces the highest GOF-levels 
for both speakers (85% and 80%). 

6.4.2 Interpretation of the classification models 

In this section we willlpok in detail at some of the models that were trained on the 
data for the combined stimuli. We emphasize again that in our model no assump-

Table 6.VI: The best subsets of each of the cue types fo, le, gr, and su, plus the 
respective levels of GOP-fuzzy, for the speaker-dependent model fits on the burst-only 
stimuli of the unvoiced stops. The chance levels are 62.0% for speaker 1, and 62.1% 
for speaker 2. 

cue speaker cues used GOF 
type train test 
de 1 Lb h 85.3 74.8 
de 2 Lbp Fbp '86.1 77.7 
gr 1 pmfp Lo . 87.3 83.5 

0 

gr 2 To Lo 84.5 78.7 
su 1 Lb Lo 88.7 84.6 
su 2 Lbp pmfp 

0 
88.7 80.2 
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tion is made that listeners arrive at linguistic classification by comparing the in­
coming "idealized" category prototypes. Instead, our model can be viewed as being 
"boundary-based". Using a boundary-based classification model is a classification­
theoretic expression of the fundamental axiom that linguistic communication is 
achieved by transmitting distinctions rather than idealized symbols (e.g. Jakobson 
et al., 1952). Thus, the model's class boundaries can be interpreted as the acoustic 
correlates of linguistic distinctions. In the model interpretations, we will therefore 
restrict ourselves to describing the linear boundaries in the multi-dimensional cue 
space for each place-of-articulation contrast, and we will discuss the importance of 
the various cues for each of these contrasts. 

Unvoiced stops 

Speaker 1 

For speaker 1, the highest GOF on testing was obtained for the le-set (75%). GOF 
on training for this model was 82% (see Table 6JV). Interpretation of the weights 
and biases of the SLP leads to the following boundaries Bp-t 1 Bp-k, and Bt-k 
between the response regions for fp/ versus jtj, fpf versus /k/, and /t/ versus 
fkf: 

Bp-t: 

Bp-k: 

Bt-k: 

-1.6Lb + 0.7L~p- 0.6lo- L8F3,- 0.6Dz + 1.5Dd + 0.2 = 0 

2.2Lb- 3.2L~p + 0.5lb + 0.5F3,- 1.5Dl + 0.1Dd + 0.6 = 0 

3.9£0 - 3.9L~p + Lllo + 2.3F3, - 0.9Dt - 1.4Dd + 0.4 = 0 

(-13) 

(-14) 

(-15) 

Note that these equations are in fact mathematical expressions of the often (qual­
itatively) discussed cue trading relations (e.g. Dorman et al., 1977). The cues in 
Eqs. -13-15 have been normalized using Eq. 3.7. Note that the"-" symbols have 
been left out for readability. The actual means and standard deviations used in 
this normalization of the cues in Eqs. -13-15 are listed in Table 6.VII. Using 
Table 6.VII, Eqs. -13-15 can be transformed into linear combinations of the true 
(unnormalized) cues, and can thus be tested on new stimuli. 

For the labial-dental distinction (Eq. -13), the most important cues are the burst 
level Lb, the frequency of F3 at voicing onset F30 , and the distance to the dental 
locus equation Dd. We find that a low burst level, combined with a low frequency 
of F3 at voicing onset and distance to the dental locus equation cue the labial place 
of articulation versus the dental place. 

Table 6.VII: Means p. and standard deviations cr of the cues used in the best model 
for the combined stimuli with the unvoiced stops of speaker 1. 

Lo L~>p l, F3, Dt Dd 
(dB) (dB) (ms) (ERB) (ERB) (ERB) 

J1. 90:5 71.9 13.9 22.3 0.99 1.37 
(j 4.5 7.2 5.3 1.0 1.10 1.29 
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For the labial-velar distinction (Eq. ~14), the most important cues are the burst 
level Lb, the level of the spectral peak in the burst Lbp, and the distance to the labial 
locus equation D1• For the sake of interpretation, we rewrite the terms 2.2Lb-3.2Lbp 
as -2.2!:J..Lbp- l.OLbp, where t:J..Lbp = Lbp- Lb, which is the level of the spectral 
peak in the burst relative to the total level of the burst. A large value of t:J..Lbp 
indicates that almost all the burst energy is concentrated in the spectral peak, 
while a small value indicates that the burst peak is relatively weak. Thus, we find 
that the "pronouncedness" of the spectral peak in the burst is important for the 
labial-velar distinction: the labial class is cued by a "diffuse" burst spectrum, while 
the velar class is cued by a strong spectral peak. Furthermore, the labial class is 
distinguished from the velar class by a proximity to the labial locus equation. 

The most important cues for the dental-velar distinction (Eq. ~ 15) are the burst 
level Lb, the level of the spectral peak in the burst Lbp, the frequency of F3 at 
voicing onset F30 , and the distance to the dental locus equation Dd. Again we 
substitute t:J..Lbp = Lbp - Lb, which transforms the terms 3.9Lb - 3.9Lbp into the 
single term -3.9t:J..Lbp. Clearly, like in the labial-velar distinction, here the velar 
class is cued by a pronounced spectral peak, while the dental class is cued by a 
diffuse burst spectrum. Furthermore, we find that a high F30 and proximity to the 
dental locus equation are cues to the dental class versus the velar class. 

If we inspect the coefficients separately per cue, we find that some of the cues 
are important for only two distinctions, and are close to zero for the remaining 
distinction. This indicates that the cue mainly triggers one particular class (e.g. 
dental) rather than cueing a particular distinction (e.g. labial versus dental). Thus, 
we find that a high F30 indicates the dental category while a low F30 is not a par­
ticular cue to the labial or velar place, but simply indicates "not dental". Similarly, 
the distance to the dental locus equation is only relevant for contrasts involving the 
dental class (Eqs. -15 and -13). 

Speaker 2 

The highest GOF on testing for speaker 2 was obtained for the su-set (75%), where 
GOF on training was 82% (see Table 6.IV). The class boundaries are given by: 

0.2lb 2.0F20 + 0.05F30 - 3.6F,;"fp + l.OL0 + 1.9 = 0 

Bp-k : -3.8lb 4.9F20 + 0.4F30 + 4.8F,;"fp + 1.6L0 - 0.4 = 0 

Bt-k : -4.1lb- 2.9F2a + 0.3F3a + 8.4F,;"fp + 0.6Lo- 2.3 = 0 

(-16) 

(-17) 

(-18) 

The means and standard deviations used in the normalization of the cues in Eqs. ~ 
16-18 are listed in Table 6.VIIL 

The labial-dental distinction (Eq. -16) is mainly determined by the frequency 
of F2 at voicing onset F20 , and the location of the mid-frequency peak at release 
F::'"fP. A low mid-frequency peak at release, as well as a low frequency of F2 at 
voicing onset cue the labial class versus the dental class. 

The most important cues for the labial-velar distinction (Eq. -17) are the burst 
length h, the frequency of F2 at voicing onset F20 , and the frequency of the mid-



6.4 Results 

Table 6.VIII: Means J.L and standard deviations cr of the cues used in the best model 
for the combined stimuli with the unvoiced stops of speaker 2. 

lb F20 F30 
pmtp 

0 Lo 
(ms) (ERB) (ERB) (ERB) (dB) 

f..L 19.8 18.7 21.6 19.9 5.2 
(J 11.4 2.4 1.4 3.9 2.1 
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frequency peak at consonantal release F
0
mfp. We rewrite the terms -4.9F20 +4.8F

0
mfp 

as -4.9.6.F0 +0.1F,:r'fP, where .6.F0 = F20 - F,:r'fP. The purpose of this manipulation 
is that the new measure D.Fo seems to be a good indicator of the continuity of 
the burst peak into the formant transitions, that is, it is a "spectral" alternative 
to .6.L0 • Inspection of the acoustic data reveals that F,:r'fp is generally close to, or 
larger than F20 • Thus, the maximum value of .6.F0 occurs when F,:r'fp ::::::: F20 , that 
is, when the spectral peak at release is spectrally continuous into F2. A small value 
of .6.F0 , on the other hand, occurs when F,:r'fp is much higher than F20 , in which 
case the transition of the mid-frequency peak into F2 is discontinuous. Obviously, 
a large value of D.Fo cues /k/, a small value cues jpj. Additionally, we find that a 
long burst cues /k/ versus jpj. 

The dental-velar distinction (Eq. -18) is mainly determined by the burst length 
lb, The F2-frequency at onset F20 , and the frequency of the mid-frequency peak at 
release F,:r'fP. A similar argument as before leads to the transformation of -2.9F2o+ 
8.4F,:r'fp into -2.9.6.F0 + 5.5F

0
mfp. Thus, both the continuity of the mid-frequency 

peak, as well as a low frequency of the mid-frequency peak cues /k/ versus jtj. 
Additionally, a long burst cues /k/ versus jtj. 

As discussed earlier, a number of acoustic analysis studies have demonstrated 
that the burst length is an acoustic correlate of place of articulation, and thus is a 
potential perceptual cue. The coefficients of h for the 3 boundaries indicate that 
the burst length is mainly used as a cue for "velar versus not velar" by the listeners. 

Because the coefficients of F30 are close to zero for all 3 boundaries, it may seem 
that this cue is irrelevant and can be deleted from the cue set without damage. 
Inspection of the SLP-weights shows, however, that F30 does play an important 
role in the model as indicator of "troublesome areas"' as discussed in section 6.3.5. 
Apparently, for high F30 , which generally occurs for the vowel context /i/, the 
model is not capable of reproducing the observed response behavior based on the 
cue set in question. Calculation of GOF as well as chance level separately per vowel 
context, shows that the fit for the vowel context /i/ is by far the worst. Chance 
levels for the vowels fa, i, y, uj are 51%, 58%, 53% and 49%, respectively (highest 
for /i/), while GOP-fuzzy on testing was 75%, 64%, 89%, and 71%, respectively 
(lowest for /i/). 
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Voiced stops 

Speaker 1 

For the data of the voiced stops of speaker 1 the highest GO F on testing was 
obtained for the su-set (19%), with a GOF on training of 95% (see Table 6.V). As 
there is only a labial-dental contrast for Dutch voiced stops, the model generates 
only one boundary Bb-d: 

Bb-d : 0.8Lb- 9.4F2o- l.OF2st + 1.1T0 + 5. 7 6.T0 + 0.3 0 (-19) 

The means and standard deviations used in the normalization of the cues in Eq. ·-19 
are listed in Table 6.1X. 

The most relevant cues for the /b/-/d/ distinction are the F2-frequency at voic­
ing onset F20 , and the change of spectral tilt after release f:::.T0 . In accordance 
with past perception studies, the labial place is perceptually distinguished from the 
dental place by a low F20 and an increasing spectral tilt, that is, a spectral tilt 
which becomes less falling when going from burst to voiced transitions. The roles 
of the burst level Lb and the spectral tilt at onset T0 are somewhat mystifying, as 
they appear to have the wrong sign. Their influence on the /b/-/d/ distinction is, 
however, small, and their main contribution is in the overall attenuation of the cue 
influence, like we have encountered before. 

Table 6.IX: Means f.t and standard deviations u of the cues used in the best model 
for the combined stimuli with the voiced stops of speaker 1. 

L& F20 F2st To f:::.To ! I 
(dB) (ERB) (ERB) (dB·ERB-1 ) (dB·ERB- 1·ms-1

) 

p, 88.1 18.8 18.2 -0.142 -0.100 
(J 6.5 2.1 3.0 0.570 0.262 

Speaker 2 

The highest GOF on testing for speaker 2 was obtained for the fo-set (89%), with 
a GOF on training of 95%. The labial-dental boundary Bo-d is given by 

Bb-d: 0.04Fbp 1.2Lbp- 6.2F2o + 3.1F2st- 0.7F30 1.4F3st- 1.5 = 0 (-20) 

The means and standard deviations used in the normalization of the cues in Eq. -20 
are listed in Table 6.X. 

We rewrite the terms -6.2F2o + 3.1F2st as -3.1F20 3.lf:::.F2, where 6.F2 = 
F20 F25t, which is the frequency change of F2 from onset to the stationary 
position. Thus, we find that the /b/-/d/ distinction is mainly cued by the onset 
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Table 6.X: Means J.L and standard deviations O" of the cues used in the best model 
for the combined stimuli with the voiced stops of speaker 2. 

Fbp Lbp F20 F28t F30 F3st 
(ERB) (dB) (ERB) (ERB) (ERB) (ERB) 

f.L 19.9 72.8 18.6 18.3 22.3 22.8 
a 3.4 9.1 2.2 3.1 1.0 1.9 
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frequency of the F2 and its frequency change. In accordance with previous studies 
we find that perception of the labial place versus the dental place benefits from a 
low F20 as well as a rising F2. The role of the F3st needs some clarification. We 
surmise that F3st basically has a trading relation with the dominant F2-cues. F3st 
for speaker 2's vowels fa, i, y, u/ are approximately 2350 Hz, 3400 Hz, 2050 Hz, 
and 2050 Hz, respectively. When F38t is relatively low, that is, in vowel contexts 
/a, i, yj, the /b/-/d/ boundary for the cues F20 and D.F2 lies relatively close to 
jbj. This means that a /d/-percept needs a relatively high F20 and a strongly 
falling F2. When F38t is high (vowel context /i/), on the other hand, the /b/-/d/ 
boundary shifts toward /d/, which means that the demands for the /d/-percept are 
relaxed, and now the /b/-percept needs a relatively low F20 and a distinctly rising 
F2. Note that these trading relations, which have also been reported in a number 
of previous studies, are here compactly represented in a single linear expression. 

6.5 General discussion and conclusions 

In this chapter and the previous chapter, we have described an experiment which 
consists of three major steps. The first step is a perception experiment in which 
original and manipulated ("burst-spliced") natural stop-vowel utterances have been 
presented to listeners for classification. The second step is the measurement of 
various detailed and gross cues on the stimuli. The third step is the mapping of the 
measured acoustic cues onto the observed perceptual responses. With the second 
and third step we have intended to simulate the behavior of the listeners with two 
purposes: (1) to establish whether detailed or gross cues give a better account of 
the perceptual data, and (2) to model how the listeners have integrated the cues in 
their perception of the stimuli. 

6. 5.1 Detailed versus gross cues 

Concerning the first question, whether detailed or gross cues give a better account 
of the perceptual data, we have found the following. For the original utterances 
only, the levels of goodness-of-fit did not provide a clear basis for preferring either 
detailed or gross cues. However, as discussed earlier, detailed and gross cues will 
generally covary in natural speech. Therefore, the model fits on the manipulated 
utterances with reduced covariance and redundancy provide the real test of which 



142 Chapter 6 Detailed versus gross cues: Simulation 

type of cues has been used by the listeners. For these stimuli - the combined stimuli 
- the performance of detailed and gross cues clearly differs: in all cases the detailed 
cues give a better account of the perceptual data than the gross cues. Often, 
however, the "super" -set a number of detailed cues combined with one or two 
gross cues - gave the overall best performance. 

From these observations we conclude that it is likely that detailed spectra­
temporal properties, such as formants, have been the primary cues for the listeners' 
perception of place of articulation in our experiments. We formulate this conclusion 
in somewhat cautious terms because the procedure adopted in our study is based 
on a number of assumptions which, naturally, are liable to criticism. 

First of all, we want to remark that part of the detailed cues, namely the for­
mant frequencies and the burst length, have been measured manually, while all 
gross cues were measured automatically. This may give the detailed cues an advan­
tage, as phonetic knowledge has been used in the complex process of the manual 
measurement of these cues, e.g. knowledge on the continuity of formants into the 
vowel (not every spectral peak is a formant). 

Secondly, while there has been some consensus on the identity of the detailed 
cues in the existing literature (frequencies of the second and third formant plus 
certain burst parameters), the gross cues that have been proposed over the years 
seem to vary from author to author. We have attempted to capture the major gross 
spectral properties that have been proposed, namely the global spectral tilt and 
compactness, and their evolution throughout the utterance. Nevertheless, our cues 
may fail to capture certain potentially important gross spectral properties, such as 
the change of high-frequency energy over time (Ohde and Stevens, 1983). 

Thirdly, we remark that our categorization model makes certain assumptions 
on the nature of the categorization process. The most basic assumptions are ( 1) 
linear class boundaries, and (2) one convex subspace per response class. In a first 
investigation of this kin:d, where one wants to start simple, these assumptions seem 
warranted. Moreover, as discussed earlier, it is our opinion that these assumptions 
are superior to, for instance, the assumption of category prototypes combined with 
an isotropic distance functions, as is often used in other studies (e.g. Oden and 
Massaro, 1978; Suomi, 1985). Nevertheless, these assumptions may substantially 
deviate from reality. - For instance, the velar category, for which most cues are 
extremely context-dependent, may be associated with a non-convex (e.g. strongly 
curved) cue-subspace, or even several disjunct subspaces associated with allophonic 
variants, for instance for front versus back vowel contexts. · 

Finally, we want to look in more detail at the differences in the results for the 
unvoiced stops and the voiced stops. Let us define the badness-of-fit (BOF) as 1 
minus the goodness-of-fit (GOF), and let us judge the modeling success in terms of 
the reduction of BOF compared to chance level. The best-performing model fit for 
the unvoiced stops provides a reduction in BOF of roughly 50% (BOF shifts from 
49% at chance level to 25%). Clearly, the model cannot account for a substantial 
part of the observed behavior. Note, however, that these figures are based upon 
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cross-validation on independent test data.3 The best-performing model for the 
voiced stops provides a higher reduction in BOF, namely 75% (BOF shifts from 
39% at chance level to 10%). We attribute the difference in the BOF-reduction 
between the voiced and the unvoiced stops to the fact that the voiced stops lack the 
velar category, rather than to the possibility that the cues (or model) used in this 
study would be more suitable for voiced stops than for unvoiced stops. It seems 
to be the case that the perception of the labial-dental distinction is modeled more 
"easily" than the distinctions involving the velar category. This may be caused 
by the fact that the velar cues vary more strongly with phonetic context than the 
labial or dental cues, as mentioned earlier. 

6.5.2 Cue integration 

We have interpreted the best-fitting models in terms of the boundaries between 
each pair of response classes. In our classification model, the class boundaries are 
linear combinations of 5 or 6 cues. Although we have discussed the resulting class 
boundaries individually per cue, we stress that it is the combination of cues in the 
boundary equations that is important here. As noted earlier, the boundary equa­
tions can actually be interpreted as quantitative expressions of the often-discussed 
"trading relations" between cues (e.g. Dorman et al., 1977). The stimulus is labeled 
on the basis of a set of cues, rather than just one, and the value of one cue can be 
"compensated for" by the value of another cue. 

In a sense, our boundary equations are similar to locus equations. Compare, for 
instance, Eq. -4 to Eq. -20. These equations are very similar, Eq. -20 just contains 
additional terms which incorporate information of F3 and the release burst. It 
is, however, important to note two basic differences. Firstly, locus equations are 
considered to be category prototypes, while our equations are category boundaries. 
Secondly, locus equations (so far) have always been derived from speech production 
data, while our equations are derived from speech perception data. 

6. 5. 3 Comparison with Krull { 1990) 

Krull (1990) investigated whether perceptual confusions of stop consonants could 
be predicted from acoustic distances between the speech signals. In a number of 
respects Krull's study is similar to ours. Firstly, she presented truncated natural 
stop-vowel utterances to listeners for classification. Next, two types of acoustic 
properties were measured on the stimuli: formant frequencies plus the length of the 
release burst, and. running spectral levels. Finally, the acoustic distances between 
each utterance and prototypical utterances of each of the response classes were 
mapped onto the observed perceptual confusions: large acoustic distance should 
lead to low confusability, small acoustic distance should lead to high confusability. 
Krull found that the distances based on formant frequencies plus burst length had a 

3 We employed this severe test of model-generalizability in order to avoid over-fitting. To our knowledge, 
this technique is seldom used in perceptual modeling, with the result that the presented GOF-levels -
obtained from the training set only may often be over-optimistic. 
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high correlation with the perceptual confusions. The running spectral levels, on the 
other hand, correlated much less with the perceptual confusions. If we assume that 
the running spectral levels capture gross spectro-temporal properties, these results 
are in good agreement with our finding that detailed cues give a better account of 
the listeners' classification behavior than the gross cues. 

An important difference between Krull's approach and our approach is that 
Krull aims to account for perceptual confusions only, while we have simulated the 
complete classification process. We have set up a formal classification model which 
generates a response to every stimulus. Moreover, our simulation not only enables 
us to evaluate the perceptual relevance of acoustic cues, but, in addition, allows for 
interpretation in terms of how the cues are actually integrated in the classification 
process. 

6. 5.4 Coonclusions 

In this chapter, we have presented a simulation of the classification behavior of the 
listeners in the perception experiment of the chapter 5. A number of detailed and 
gross cues have been measured on the stimuli, and these cues have bee mapped onto 
the observed perceptual data using a formal model of human classification behavior. 
The results have shown that the detailed cues, such as formant transitions, give a 
better account of the perceptual data than the gross cues. The best-performing 
models have been interpreted in terms of the acoustic boundaries which are associ­
ated with the perceived linguistic contrasts, 
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Appendix 6.A 
Locus equations 

Table 6.XI: Locus equations calculated separately for the two speakers and sep­
arately for voiced and unvoiced stops. "V /UV" indicates voiced stops or unvoiced 
stops, and "POA" stands for place of articulation. For the velar place of articulation 
separate locus equations were calculated for the back velars (vowel contexts /a, u/), 
and the fronted velars (vowel contexts /i, y/). 

V /UV speaker POA locus equation 
uv 1 labial F20 0. 755F28 t + 0.236 
uv 1 dental F20 0.328F28 t + 1.167 
uv 1 fronted velar F20 0.496F28t + 1.001 
uv 1 back velar F20 = l.731F2st - 0.492 
uv 2 labial F20 = 0.827F2st + 0.122 
uv 2 dental F20 = 0.150F2st + 1.423 
uv 2 fronted velar F20 = 0.594F28t + 0. 709 
uv 2 back velar F20 = 1.191F28 t + 0.080 
v 1 labial F20 = 0.747F2st + 0.293 
v 1 dental F2o = 0.416F2st + 1.073 
v 2 labial F20 = 0.817F28 t + 0.183 
v 2 dental F20 = 0.462F2st + 0.937 
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Appendix 6.B 
Acoustic cues measured on stimuli with unvoiced stops 

Table 6.XII: Values of detailed cues, measured on the original utterances containing 
the unvoiced stops of speaker 1. The values of the detailed cues for the no-burst 
stimuli are identical to the values for the original utterances, except that there are 
no burst cues. The values of the detailed cues for the burst-only stimuli are identical 
to the values for the original utterances, except that there are only burst cues. The 
values of the detailed cues for the mixed-burst stimuli are identical to the values 
for the original utter8Jlces, taking the appropriate form8Jlt or locus-equation values 
from one utterance 8Jld the burst values from another. In this table and the following 
tables, the first 2 characters in the stimulus name indicate the stop-vowel utterance in 
phonetic notation, the number 1 or 2 indicates the token number, "org", "nob", and 
"bur" indicate original, no-burst, 8Jld burst-only stimulus, and "rnxbp", "rnxbt", 
and "rnxbk" indicate a mixed-burst stimulus, with the burst of fp/, /t/, or /k/, 
respectively. All formant frequencies are listed in Hz (left number) as well as ERB 
(right number). 

Lb Fbp Lop lo F2o F2st F3o 1''3st v, Dd Dv 
stim ! (dBJ (ERB) (dB) (msj (Hz, ERB) (Hz, ERB) (Hz, ERB) (Hz, ERB) (ERB) (ERB) (ERB) 
pa.lorg 83.2 19.3 58.9 10.5 ll20 16.5 1330 17.8 2400 22.7 2550 23.2 0.622 2.757 2.273 
pa2org 86.7 13.0 68.2 ll.9 ll60 16.8 1358 18.0 2380 22.6 2596 23.4 0.513 2.535 2.253 
ta.lorg 87.6 19.1 67.8 9.2 1360 18.0 1394 18.2 2400 22.7 2523 23.1 0.333 1.382 1.700 
ta.2org 87.9 20.9 66.3 8.0 1480 18.7 1349 17.9 2500 23.0 2514 23.1 1.023 0.659 1.088 
ka.lorg 91.1 20.5 72.7 16.2 1820 20.4 1367 18.0 2200 21.9 2550 23.2 2.259 0.941 0.150 
ka2org 89.2 21.0 73.0 14.4 1900 20.7 1349 17.9 2240 22.1 2468 22.9 2.600 1.315 0.157 
pilorg 84.9 25.6 63.2 9.7 1960 21.0 2165 21.8 2180 21.9 3009 24.6 0.296 0.334 0.425 
pi2org 89.7 20.1 64.7 8.6 1800 20.3 2128 21.7 2060 21.4 2963 24.5 0.148 0.279 0.990 
tilorg 94.6 23.0 76.5 10.0 1980 21.1 2156 21.8 2500 23.0 2945 24.4 0.383 0.425 0.334 
ti2org 92.1 14.2 71.5 10.8 1980 21.1 2128 21.7 2480 23.0 2872 24.2 0.455 0.464 0.284 
kilorg 91.9 23.9 73.6 17.6 2040 21.3 2119 21.6 2940 24.4 2963 24.5 0.668 0.710 0.046 
ki2org 92.5 24.7 74.6 15.5 2080 21.5 2138 21.7 2920 24.4 2936 24.4 0.742 0.836 0.064 
pylorg 88.2 19.8 73.3 21.6 1500 18.8 1697 19.8 2100 21.6 2101 21.6 I U.Uil LU~U 1.""" 
py2org 88.6 19.1 69.8 17.2 1540 19.0 1615 19.4 2040 21.3 2092 21.5 0.352 0.756 1.178 
tylorg 97.5 27.6 82.3 20.0 1740 20.0 1651 19.6 2240 22.1 2110 21.6 1.002 0.140 0.339 
ty2org 97.1 27.1 82.8 25.3 1620 19.4 1679 19.7 2200 21.9 2156 21.8 0.465 0.459 0.929 
kylorg 94.4 20.1 81.4 12.6 1700 19.8 1688 19.7 2020 21.2 2101 21.6 0.740 0.097 0.588 
ky2org 97.9 20.4 84.1 12.5 1960 21.0 1661 19.6 2140 21.7 2156 21.8 1.723 1.062 0.537 
pulorg 81.5 15.3 63.2 13.2 920 15.0 835 14.3 2520 23.1 2312 22.4 0.356 3.508 0.143 
pu2org 82.9 20.0 59.6 25.7 900 14.8 807 14.0 2240 22.1 2321 22.4 0.372 3.635 0.021 
tulorg 92.9 27.9 70.0 6.5 1440 18.5 711 13.7 2300 22.3 2358 22.5 3.499 0.113 2.310 
tu2org 94.4 27.9 71.6 6.0 1640 19.5 761 13.6 2500 23.0 2339 22.5 4.407 1.217 3.031 
kulorg: 94.1 14.4 82.9 15.3 800 14.0 780 13.8 1940 20.9 2358 22.5 0.182 4.468 0.268 
ku2org 90.2 13.3 74.7 14.3 880 14.7 761 13.6 1720 19.9 2339 22.5 0.486 3.744 0.249 
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Table 6.XIII: Values of gross cues, measured on the original and no-burst stimuli 
containing the unvoiced stops of speaker 1. 

To 
stim (dB/ERB) (dB 
palorg -0.104 -0.559 
pa.2org -0.631 -0.327 4.55 
talorg -0.092 -0.435 5.13 
ta2org 0.282 -0.521 3.72 
ka.lorg 0.286 -0.435 4.07 
ka2org 0.191 -0.293 4.96 
palorg 0.447 0.118 0.516 6.88 
pi2org 0.065 0.227 -0.454 7.49 
tilorg 0.587 0.087 -0.036 4.70' 
ti2org 0.207 0.214 0.046 5.19 
kilorg 0.764 0.088 0.021 6.12 
kl2org 1.255 -0.041 0.127 5.32 
pylorg ,0.097 -0.025 
py2org -0.004 -0.053 0.051 23.2 20.7 1.94 -1.310 5.15 
tylorg 0.987 -0.121 0.403 23.5 20.6 2.96 -0.774 4.66 
ty2org 0.873 -0.060 0.364 24.1 20.0 4.55 -0.906 5.44 
kylorg -0.224 0.058 0.016 20.2 20.0 6.70 0.036 5.97 
ky2org -0.049 -0.041 0.069 20.7 19.8 6.38 0.203 5.99 
pulorg -0.047 -0.570 -2.346 14.9 13.7 2.67 1.176 7.06 
pu2org 0.054 ·0.498 -2.381 14.5 12.6 2.79 0.817 8.37 
tulorg 0.686 ·0.558 -2.365 20.6 12.7 3.80 -3.320 7.72 
tu2org 1.287 ·0.690 -2.499 25.3 13.1 6.57 ·3.521 7.70 
kulorg -1.596 ·0.279 ·3.120 14.1 13.1 7.30 -0.057 8.59 
ku2org -0.896 -0.437 -3.012 12.6 13.3 8.46 -0.449 8.30 
pal no -1.558 -0.160 -1.418 16.0 17.4 4.76 -0.516 4.18 
pa2nob -1.788 -0.013 -1.524 14.8 13.6 4.14 ·0.200 4.60 
talnob -1.039 ·0.195 -1.721 18.5 13.7 0.98 0.137 5.24 

·0.950 -0.198 -1.505 13.2 13.5 5.02 1.228 3.90 
-0.555 -0.301 -1.558 18.6 17.3 3.45 -0.335 4.29 
0.229 -0.409 -1.798 22.8 13.7 2.60 -2.340 4.92 
0.557 0.117 1.027 21.2 25.2 6.13 -0.304 6.97 

pi2nob -0.123 0.304 1.132 20.6 25.4 7.06 -0.602 6.51 
tilnob 0.838 0.032 0.625 23.5 25.2 5.22 -0.443 5.18 
ti2nob 0.815 0.044 0.957 21.8 25.3 4.68 0.192 4AO 
kilnob 0.857 0.064 0.892 24.5 25.1 7.26 -0.471 5.77 
ki2nob 1.115 0.008 0.751 14.8 24.8 -1.62 -3.116 4.81 
pylnob 0.439 -0.206 -0.103 21.5 20.1 4.12 -0.152 6.5 
py2nob 0.590 ·0.224 0.160 19.6 20.9 4.62 0.507 5.08 
tylnob _1.524 -0.356 0.300 20.6 20.3 1.94 1.061 4.86 
ty2nob 1.497 -0.352 0.097 20.4 19.8 1.42 1.161 6.52 
kylnob 0.615 -0.195 0.080 18.5 20.2 2.42 1.070 5.68 

nob 0.121 -0.134 0.2.10 21.3 20.4 6.41 -0.025 5.77 
-1.395 -0.203 -2.402 14.3 13.3 5.95 0.275 7.54 
-1.618 -0.177 -2.715 14.4 13.1 6.50 0.312 8.19 
-0.408 -0.275 -2.298 13.2 12.6 5.16 -0.300 8.05 
0.296 -0.443 -2.456 19.1 13.2 3.87 -3.126 7.63 

kulnob ·1.205 -0.430 -3.394 15.9 13.1 6.04 -0.078 8.89 
ku2nob -1.801 -0.224 -3.136 15.0 13.2 7.90 -0.363 8.52 
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Table 6.XIV: Values of gross cues, measured on the mixed-burst stimuli containing 
the unvoiced stops of speaker 1. 

To ATo Tst F~P Fmtp 
st Lo ALo Lst 

stim (dB/ERB) (dB/ERB/m•) (dB/ERB) (ERB) (ERB) (dB) (dB) (dB) 
palmxbt -0.092 -0.563 -1.410 20.4 17.4 4.47 -5.534 4.03 
pa2mxbt 0.285 -0.592 -1.437 20.9 13.7 5.56 -5.151 4.82 
pa.lmxbk 0.269 -0.624 -1.525 21.5 13.9 6.26 -5.444 3.93 
pa.2mxbk 0.191 -0.534 -1.517 21.3 13.7 6.24 -5.012 4.52 
talmxbp -0.104 -0.427 -1.710 19.9 13.7 1.60 -0.873 5.13 
ta2mxhp -0.631 -0.245 ·1.483 15.6 13.3 3.94 -0.940 4.18 
talmxbk 0.286 -0.478 -1.688 21.5 13.7 6.17 -3.867 5.02 
ta2mxbk 0.191 -0.447 -1.487 21.3 13.4 6.24 -3.974 4.03 
kalmxbp -0.104 -0.388 -1.552 19.9 17.1 1.60 -0.522 4.24 
ka.2mxbp -0.631 -0.103 -1.760 15.6 13.9 3.94 -1.124 4.93 
ka.lmxbt -0.092 -0.397 -1.555 20.4 17.1 4.47 -1.986 4.21 
ka2mxbt 0.287 -0.384 -1.759 20.9 13.7 5.57 -2.074 5.03 

~:;~; ~:~;~ 
1.055 23.4 25.4 3.91 -0.015 6,87 

pt2mxbt 1.326 24.0 25.5 3.46 -0.307 7.06 
pilmxbk 0.764 0.004 1.159 23.5 25.4 5.59 -0.495 7.10 
pi2mxbk 1.275 -0.153 1.259 24.6 25.4 6.45 -1.398 6.59 
tilmxbp 0.447 0.128 0.489 20.7 24.5 3.56 0.336 4.73 
ti2mxbp 0.061 0.253 0.925 19.1 24.8 3.14 -1.380 5.54 
tilmxbk 0.764 0.014 0.447 23.5 25.0 5.59 -0.465 4.35 
ti2mxbk 1.255 -0.089 0.887 24.6 21.7 6.28 -0.771 4.89 
kilmxbp 0.461 0.172 0.972 20.7 25.1 3.48 -0.251 6.04 
ki2mxbp 0.062 0.297 0.830 19.1 24.9 3.14 -1.780 5.08 
kilmxbt 0.582 0.136 0.970 23.4 25.1 3.92 0.343 5.99 
ki2mxbt 0.205 0.260 0.828 23.8 25.0 3.46 0.787 4.69 
py1mxbt 0.987 ..{).273 0.135 23.5 20.7 2.96 -2.114 6.36 
p:y2mxbt 0.873 -0.206 0.102 24.1 20.8 4.55 -2.359 5.22 
pylmxbk -0.224 -0.004 -0.076 20.2 20.1 6.70 -0.228 6.22 
py2m:xbk -0.049 -0.040 0.144 20.7 20.9 6.38 -0.193 4.98 
tylmxbp -0.097 0.130 0.396 19.0 20.8 4.26 0.345 4.68 
ty2mxbp -0:007 0.103 0.261 23.2 19.9 1.92 -0.235 5.92 
tylmxbk -0.224 0.157 0.378 20.2 20.3 6.70 -0.313 5.18 
ty2mxbk -0.049 0.104 0.167 20.7 19.8 6.38 -0.288 6.37 
kylmxbp -0.097 0.032 -0.029 19.1 20.0 4.26 0.719 6.29 
ky2mxbp -0.004 -0.029 -0.061 23.2 19.5 1.94 -0.556 6.46 
kylmxbt 0.987 -0.213 -0.032 23.5 20.0 2.96 -1.681 6.31 
ky2mxbt 0.873 -0.161 -0.077 24.1 19.5 4.55 -1.683 6.82 
pulmxbt 0.701 -0.776 -2.375 20.6 13.6 3.81 -5.311 7.34 
pu2mxbt 1.299 -0.980 ·2.556 25.3 13.1 6.59 -5.904 8.28 
pulmxbk ~-1.596 -0.173 ·2.311 14.1 13.6 7.30 ~0.058 7.09 
pu2mxbk -0.896 -0.361 -2.476 12.6 12.7 8.46 -0.505 8.48 
tulmxbp -0.047 -0.309 -2.294 14.9 12.7 2.67 0.486 7.71 
tu2mxbp 0.056 -0.160 ~2.395 14.5 12.7 2.79 -0.151 8.23 
tulmxbk -1.596 0.109 -2.139 14.1 12.6 7.30 -0.745 8.13 
tu2mxbk -0.896 -0.019 -2.574 12.6 12.9 8.46 -1.273 8.00 
kulmxbp -0.051 -0.695 -3.157 14.9 13.1 2.72 1.175 8.62 
ku2mxbp 0.054 -0.547 -3.187 14.5 13.2 2.79 0.898 8.73 
kulmxht 0.700 -0.942 -3.355 20.6 13.1 3.81 -5.579 8.81 
ku2mxbt 1.281 -1.074 -3.102 25.3 13.1 6.57 -6.241 8.55 



6.B Acoustic cues measured on stimuli with unvoiced stops 

Table 6.XV: Values of gross cues, measured on the burst-only stimuli containing 
the unvoiced stops of speaker 1. 

pal ur 
pa2bur 
tal bur 
ta2bur 
ka.lbur 
ka2bur 
p1lbur 0.449 
pi2bur 0.063 
til bur 0.586 
ti2bur 0.207 
kilbur 0.763 23.5 
k12bur 1.255 24.6 
pylbur -0.099 19.1 
py2bur -0.006 23.2 
tylbur 0.987 23.5 
ty2bur 0.873 24.1 
kylbur -0.223 20.2 

bur 0.072 20.8 
-0.045 14.9 
0.058 14.5 
0.700 20.6 
1.306 25.3 

-1.598 14.1 
-0.897 12.6 

Table 6.XVI: Values of detailed cues, measured on the original utterances containing 
the unvoiced stops of speaker 2. 

L• 2o F2st F30 Dv 
(dB) (H•, ERB) (Hz, ERB) (Hz, ERB) (ERB) 
87.7 1120 16.5 1358 18.0 2120 21.!1 2.377 
81.1 1160 16.8 1404 18.3 2160 21.8 2413 2.368 
88.0 1440 18.5 1459 18.6 2240 22.1 2358 1.365 
91.5 1420 11!.3 1450 18.5 2320 22.4 2358 1.410 
88.6 1760 20.1 1404 18.3 1760 20.1 2294 0.029 
93.8 1780 20.2 1431 18.4 1980 21.1 2257 0.013 
89.2 1880 20.6 2110 21.6 2180 21.9 3394 0.302 

pi2org 83.2 1880 20.6 2156 21.8 2160 21.8 3431 0.399 
tilorg 91.4 1860 20.5 2174 21.8 2480 23.0 3486 25.9 0.512 
ti2org: 93.1 1880 20.6 2183 21.9 2660 23.6 3450 25.8 0.455 
kilorg 101.5 2020 21.2 2183 21.9 2840 24.1 3349 25.5 0.049 
ki2or 99.6 2000 21.1 2193 21.9 2920 24.4 3505 25.9 0.041 
pylorg 85.8 1660 19.6 1743 20.0 2100 21.6 2037 21.3 0.362 0.120 0.350 
py2org 88.2 75.4 1660 19.6 1761 20.1 2020 21.2 2037 21.3 0.305 0.133 0.393 
tylorg 97.3 82.7 24.5 1700 19.8 1780 20.2 2140 21.7 2119 21.6 0.390 0.046 0.271 
ty2org 97.3 84.4 26.8 1660 19.6 1817 20.4 2080 21.5 2119 21.6 0.131 0.173 0.525 
kylorg 99.2 85.4 27.0 1800 20.3 1872 20.6 2060 21.4 2064 21.4 0.456 0.443 0.082 
ky2org 95.9 81.8 25.5 1780 20.2 1771 20.1 2020 21.2 2055 21.4 0.697 0.425 0.075 
pulorg 93.8 77.3 21.6 700 13.0 734 13.3 1980 21.1 1 1. 0.218 5.987 1.630 
pu2org 89.3 70.5 14.3 800 14.0 688 12.9 1880 20.6 2009 21.2 0.803 5.011 0.624 
tulorg 96.8 78.1 10.2 1660 19.6 670 12.7 2120 21.6 2046 21.3 5.275 0.712 3.747 
tu2org 99.4 82.8 8.9 1600 19.3 688 12.9 1960 21.0 2073 21.4 4.916 0.390 3.375 
kulorg 97.2 85.5 27.8 860 14.5 706 13.1 1240 17.3 2046 21.3 1.092 4.492 0.367 
.~~.~.org 97.4 88.0 30.9 900 14.8 642 12.4 1840 20.5 2037 21.3 1.774 4.121 0.347 
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Table 6.XVII: Values of gross cues, measured on the original and no-burst stimuli 
containing the unvoiced stops of speaker 2. 

To ar. Tst F~ P Fmp Lo Ll.Lo Lst st 
stim (dB/ERB) (dB/ERB/ms) (dB/ERB) {ERB) {ERB) (dB) {dB) (dB) 
palorg -0.206 -0.453 -1.698 17.8 13.5 4.05 -0.417 4.41 
pa2org -0.389 -0.340 -1.710 20.9 13.6 1.52 -2.917 5.50 
talorg -0.572 ·0.226 ·1.450 18.9 13.5 2.99 -0.071 4.84 
ta2org -0.325 -0.293 -1.509 19.9 13.4 2.16 0.035 5.27 
kalorg -0.319 -0.050 -1.681 20.0 13.3 4.87 0.023 6.12 
ka2org 0.171 -0.178 -1.348 21.0 13.5 6.50 -0.550 4.20 
pilorg -0.156 0.223 1.340 18.1 21.8 5.10 -4.585 3.89 

: pi2org -0.262 0.253 1.266 16.5 21.8 2.77 ·4.592 4.19 
tilorg 0.228 0.121 1.064 21.0 21.9 4.81 0.043 6.10 
tiZorg 0.301 0.079 1.010 24.6 25.8 3.07 0.114 6.11 

i kllorg 1.209 0.014 0.715 25.3 21.7 8.59 -0.158 7.11 
1 ki2arg 1.223 -0.061 0.701 25.4 21.8 8.78 -0.292 7.03 
pylorg ·0.691 0.236 0.116 12.6 20.8 3.60 -3.612 7.91 
py2org -0.590 0.183 -0.127 12.6 20.6 3.47 -3.461 7.68 
tylorg 0.468 -0.032 0.240 23.4 21.2 4.30 0.026 7.73' 
ty2org 0.917 -0.180 0.056 23.4 21.0 6.68 -0.767 7.78' 
kylorg -0.052 0.016 0.202 20.2 21.0 7.30 0.074 8.06 
ky2org -0.302 0.101 0.120 21.1 20.8 4.04 0.937 7.75 
pulorg -1.047 -0.466 -3.466 16.6 13.1 5.52 ·2.207 9.38 
pu2org -0.188 -0.571 -4,397 21.2 12.9 1.97 -3.797 9.76 
tulorg 0.984 -0.417 ·2.565 25.0 13.5 4.94 -4.226 8.67 
tu2org 1.493 -0.557 -1.340 24.5 21.2 7.81 •4,355 -7.75: 
kulorg ·2.053 -0.066 -2.866 14.2 13.2 7.85 -0.041 9.32 
ku2org -1.530 -0.125 -3.233 14.0 13.1 6.30 0.319 9.60 
pa}nob -1.486 -0.090 -1.689 13.2 13.5 7.15 ·0.428 4.74 
pa2nob -1..354 -0.084 ·1.713 16.8 13.5 5.54 -0.596 5.59 
tal nob -1.136 -0.091 -1.443 15.9 13.5 1.79 -0.605 5.09 
ta2nob -1.128 -0.077 -1.688 16.0 13.4 1.74 -0.524 5.57 
kalnob -0.434 -0.102 -1.613 20.8 13.2 4.49 -0.252 6.25 
ka2nob -0.282 -0.117 ·1.274 21.5 13.5 3.57 -0.212 4.23 
pilnob -0.352 0.313 1.396 20.7 21.8 7.32 -0.383 3.68 
pi2nob 0.157 0.152 1.366 21.0 21.8 6.61 -0.021 3.78' 
til nob 1.144 -0.127 1.027 24.9 21.8 6.52 -0.621 5.82: 
ti2nob 0.946 -0.037 0.705 24.0 21.8 6.79 -0.821 7.41 
kllnob 1.726 -0.295 0.682 25.9 21.8 7.09 -0.532 6.85 
ki2nob 0.836 ·0.074 0.827 25.7 21.8 7.05 -0.956 6.90 i 
pylnob 0.348 -0.079 0.174 21.9 20.9 7.64 -0.274 6.74 
py2nob -0.010 -0.017 ·0,076 21.2 20.8 8.04 ·0.284 7.68 
tylnob Q.501 -0.078 0.292 21.9 21.2 7.84 -0.302 7.62 
ty2nob 0.169 -0.013 0.282 21.8 21.2 7.39 -0.167 8.00 
kylnob 0.013 -0.005 0.104 21.1 20.9 8.00 ·0.031 8.11 
ky2noh -0.412 0.121 0.154 21.5 20.9 7.67 0.019 7.58 
pulno~ ·1.139 -0.446 -3.718 16.6 12.8 5.54 -2.647 9.98 
pu2nob -0,998 -0.368 -3.765 13.6 12.7 4.58 0.848 10.02 
tulnob 0.610 -0.364 -2.340 21.6 13.3 5.03 -0.926 8.78 
tu2nob 0.233 -0.247 ·1.373 22.3 21.3 4.01 -1.219 -6.58 
kulnob -1.712 -0.264 -3.470 14.5 12.8 6.08 0.685 10.09 
ku2nob -1.845 -0.114 -2.229 15.1 21.2 7.29 0.064 -13.49 
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Table 6.XVIII: Values of gross cues, measured on the mixed-burst stimuli contain-
ing the unvoiced stops of speaker 2. 

To T,, F~P Fmp Lo t;.Lo 
stim (dB/ERB dB ERB} (ERB) (EftB) dB dB 
palmx:bt -0.572 -1.878 18.9 13.5 2.99 -0.880 
pa2mxbt -0.322 -1.724 19.9 13.6 2.26 -1.938 
pa1mxbk -0.314 -1.877 20.0 13.4 4.85 -3.370 
pa2mxbk 0.172 -1.710 21.0 13.6 6.47 -4.041 
talmxbp -0.204 -1.423 17.8 13.5 4.08 -0.459 
t&2mxbp -0.389 -1.537 20.9 13.4 1.52 -0.990 
ta.lmx.bk -0.314 -1.481 20.0 13.6 4.85 -0.647 

0.171 -1.536 21.0 13.4 6.50 -2.425 
-0.194 -1.614 17.9 13.2 4.08 -0.258 
-0.390 -1.348 20.9 13.5 1.51 0.711 
-0.571 ·1.645 18.7 13.3 2.91 0.432 
-0.322 -1.301 19.9 18.3 2.16 0.591 
0.228 0.071 1.392 21.0 21.7 4.81 0.469 

pi2mxbt 0.301 0.047 1.182 24.6 21.7 3.07 -0.702 5.30 
pilmxbk 1.209 -0.077 1.358 25.3 25.9 8.59 -0.864 8.48 
pi2mxbk 1.223 -0.068 1.257 25.4 25.9 8.78 -0.470 8.51 
tilmxbp -0.153 0.236 0.886 18.1 21.8 5.11 -3.897 7.14 
ti2mxbp -0.213 0.273 0.836 16.5 21.7 2.66 -3.634 7.11 
tilmxbk 1.209 -0.001 0.808 25.3 21.7 8.59 -0.247 7.18 
ti2mxbk 1.223 -0.055 1.109 25.4 21.8 8.78 -0.371 5.96 
kilmxbp -0.154 0.245 0.699 18.1 21.8 5.10 -4.025 6.79 
ki2mxbp -0.203 0.220 0.851 16.5 21.8 2.63 -3.667 6.64 
kilmxbt 0.228 0.147 0.771 21.0 21.8 4.80 -0.059 6.73 
ki2mxbt 0.301 0.066 0.892 24.6 25.9 3.07 0.152 6.91 
pylmx t 0.468 -0.061 
py2mxbt 0.913 -0.203 0.006 23.4 20.6 6.68 -1.509 7.62 
pylmxbk -0.051 0.064 0.384 20.2 20.8 7.31 -0.202 7.61 
py2mxbk -0.302 0.085 -0.()14 21.1 20.7 4.04 0.729 7.52 
tylmxbp -0.688 0.270 0.157 12.6 21.1 3.60 -3.491 7.43 
ty2mxbp -0.591 0.219 0.000 12.6 21.0 3.47 -3.979 7.75 
tylmxbk -0.052 0.102 0.198 20.2 21.2 7.30 -0.207 7.93 
ty2mxbk -0.302 0.119 0.005 21.1 21.0 4.02 0.681 7.84 
kylmxbp -0.691 0.196 0.141 12.6 21.0 3.60 -4.822 8.10 
ky2mxbp -0.590 0.200 0.()44 12.6 20.7 3.47 -4.306 7.87 
kylmxbt 0.490 -0.111 ().157 23.4 21.0 4.21 -0.072 8.24 
ky2mxbt 0.91() .().198 0.143 23.4 20.8 6.67 -1.089 7.81 
pulmxbt 1.000 -1.037 -3.679 25.0 12.9 4.98 -8.253 9.65 
pu2mxbt 1.493 -1.032 -4.288 24.5 12.9 7.81 -7.617 9.81 
pulmxbk -,_2.053 -0.191 -3.361 14.2 13.1 7.85 0.008 9.28 
pu2mxbk -1.534 -0.181 -4.327 14.0 13.1 6.31 0.196 9.59 
tulmxbp -1.047 0.172 -2.370 16.6 13.6 5.52 -0.864 8.62 
tu2znxbp -0.188 -0.076 -1.777 21.2 12.5 1.97 0.056 10.29 
tulmxbk -2.053 0.337 -2.071 14.2 13.6 7.85 -1.807 8.31 
tu2mxbk -1.533 0.189 -1.742 14.0 12.6 6.31 -1.291 9.59 
kulmxbp -1.047 -0.309 -2.947 16.6 13.1 5.52 -1.074 9.46 
ku2mxbp -0.188 -0.503 -2.501 21.2 21.2 1.97 -3.003 -16.24 
kulmxbt 0.982 -0.946 -3.189 25.0 12.9 4.94 -7.590 9.83 
ku2mxbt 1.493 -0.998 -2.403 24.5 12.6 7.81 -8.149 9.89 
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Table 6.XIX: Values of gross cues, measured on the burst-only stimuli containing 
the unvoiced stops of speaker 2. 

stim 
To F~ p L~ I 

(dB/ERB) (ERB) {dB) 
pal bur -0.194 17.8 4.06 
pa2bur -0.392 20.9 1.53 
tal bur -0.573 18.9 2.99 
ta2bur -0.326 19.9 2.16 
kat bur -0.318 20.0 4.87 
ka2bur 0.172 21.0 6.49 
pilbur -0.155 18.1 5.1~ I pi2bur -0.263 16.5 2.76 
til bur 0.228 21.0 4.81. 
ti2bur 0.300 24.6 3.07! 
kHbur 1.209 25.3 8.59. 
ki2bur 1.224 25.4 8.78 
py1ot~r -0.692 12.6 3·60 I 
py2bur -0.587 12.6 3.47 
tylbur 0.493 23.4 4.25 
ty2bur 0.918 23.4 6.67 

, kylbur -0.052 20.2 7.30 
i ky2bur -0.302 21.1 4.04 
pulbur -1.045 16.6 5.5~ I 
pu2bur -0.188 21.2 1.98 i 
tulbur 0.984 25.0 4.94! 
tu2bur 1.493 24.5 7.81 
kulhur -2.059 14.2 7.85 
ku2bur -1.532 14.0 6.30' 
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Appendix 6.C 
Acoustic cues measured on stimuli with voiced stops 

Table 6.XX: Values of detailed cues, measured on the original utterances containing 
the unvoiced stops of speaker 1. The values of the detailed cues for the no-burst 
stimuli are identical to the values for the original utterances, except that there are no 
burst cues. The values of the detailed cues for the mixed-burst stimuli are identical 
to the values for the original utterances, taking the appropriate formant or locus­
equation values from one utterance and the burst values from another. In this table 
and the following tables, the first 2 characters in the stimulus name indicate the 
stop-vowel utterance in phonetic notation, the number 1 or 2 indicates the token 
number, "org" and "nob" indicate original and no-burst stimulus, and "mxbb", and 
"mxbd" indicate a mixed-burst stimulus, with the burst of /b/, or /d/, respectively. 
All formant frequencies are listed in Hz (left number) as well as ERB (right number). 

(d~~ (I l'),p 
'-bp •• F20 1'2st 1''3o .1'"3st Dt Dd! 

stim ERB) (dB) (lll$) (Hz, ERB) (Hz, ERB) (ERB) (ERB}! 
ba.lorg 79.6 17.0 59.4 5.8 2480 23.0 2606 23.4 0.023 2.401 
ba2org 89.2 20.0 70.3 9.0 1230 17.2 1404 18.3 2520 23.1 2688 23.6 0.545 2.258 
dalorg 92.0 14.0 73.1 8.1 1530 18.9 1165 16.8 2520 23.1 2606 23.4 1.731 0.139 
da2org 91.6 17.3 72.6 11.9 1680 19.7 1394 18.2 2580 23.3 2624 23.4 1.459 0.127 
bilorg 77.2 20.5 61.1 10.0 1920 20.8 2229 22.1 2360 22.5 2963 24.5 0.128 0.309 
bi2org 85.2 19.5 67.1 10.3 1940 20.9 2147 21.7 2260 22.2 2862 24.2 0.142 0.100 
dilorg 87.6 13.0 71.0 12.6 2050 21.4 2174 21.8 2570 23.3 3000 24.6 0.428 0.276 
di2org 94.8 20.8 82.0 13.7 2000 21.1 2174 21.8 2510 23.1 2771 23.9 0.270 0.088 
by1org 88.4 23.3 68.3 11.7 1580 19.2 1688 19.7 2080 21.5 2101 21.6 0.103 0.885 
by2org 91.7 19.2 75.7 14.2 1590 19.3 1661 19.6 2090 21.5 2092 21.5 0.226 0.790 
dy1org 93.7 19.8 74.7 7.4 1710 19.9 1697 19.8 2260 22.2 2119 21.6 0.579 0.300 
dy2org 94.9 20.0 79.5 10.4 1690 19.8 1688 19.7 2300 22.3 2156 21.8 0.531 0.374 
bulorg 80.1 15.1 68.0 14.9 950 15.2 752 13.5 2320 22.4 2404 

~~:~! 
0.649 3.002 

bu2org 75.9 13.4 59.9 9.0 820 14.1 798 13.9 2350 22.5 2394 0.493 4.178 
dulorg 92.6 19.0 74.2 6.8 1420 18.3 780 13.8 2350 22.5 2431 22.8 3.075 0.132 
du2org 95.7 25.7 76.0 10.8 1450 18.5 817 14.1 2240 22.1 2440 22.8 3.009 0.213 
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Table 6.XXI: Values of gross cues, measured on the original, no-burst, and mixed­
burst stimuli containing the voiced stops of speaker 1. 

To AT0 T 8 t Fmp Fm P Lo l!i.Lo L,t 
stim (dB/ERB) (dB/ERB/ms) (dB/ERB) (EitB) (EfiB) (dB) (dB) (dB) 
balorg ·0.559 -0.316 -2.089 16.7 12.5 2.57 0.220 7.80 
ba2org -0.491 -0.274 -1.692 19.8 13.4 4.11 -3.298 5.45 
dalorg -0.181 -0.218 -2.117 20.7 13.3 4.00 -2.602 5.79 
da2org -0.104 -0.252 -1.587 20.7 13.3 2.13 -1.576 5.22 
bilorg 0.395 0.095 1.453 21.1 25.9 4.19 0.430 8.03 
bi2org -0.025 0.253 0.820 19.6 25.4 3.62 -0.058 6.22 
dilorg -0.390 0.353 1.475 12.9 25.7 5.18 -3.878 7.87 
di2org 0.277 0.181 1.017 20.9 24.8 5.04 0.006 4.56 
bylorg 0.459 -0.138 0.155 23.4 19.9 5.12 -2.290 6.79 
by2org 0.042 -0.028 0.170 25.9 20.2 1.91 -0.998 6.80 
dy1org 0.014 0.065 0.313 14.1 20.7 2.10 -3.636 6.47 
dy2org 0.292 -0.032 -0.081 20.-2 20.0 4.16 0.614 6.94. 
bulorg -0.901 -0.373 -2.677 15.3 13.9' 3.85 1.000 7.41 
bu2org -0.363 -0.493 -2.651 13.3 13.3 2.73 1.098 8.26 

~ 
0.273 -0.380 -2.585 19.9 13.9 3.79 -2.327 7.75 
0.569 -0.456 -2.295 21.5 12.7 1.22 -2.364 6.39 

-1.343 -0.098 -2.036 12.5· 14.8 5.05 -0.144 7.95 
-1.659 0.026 -1.649 13.4 23.2 -11.15 -0.441 5.36 
-0.67& -0.112 -2.10i 13.1 19.5 2.65 -0.619 5.58 

da2nob -0.954 -0.074 -1.708 13.4 19.4 1.15 -0.647 5.42 
bilnob Q.049 0.223 1.324 25.8 20.8 5.54 0.005 6.96 
bi2nob 0.037' 0.278 0.757 25.4 21.2 5.59 -0,159 6.08 
dilnob 0.896 -0.003 1.447 25.9 22.9 5.78 ..{).024 8.25 
di2nob 0.283 0.230 1.008 25.3 21.1 6.63 -0.611 4.63 
bylnob -0.312 0.115 0.052 19.9 19.4 4.8!! 0.372 7.17 
by2nob -0.287 0.084 0.090 19.9 19.3 5.33 0.317 7.23 
dy1nob 0.751 -0.148 0.344 20.3 22.6 3.64 -0.307 6.58 
dy2nob 0.390 -0.056 -0.145 19.9 19.9 4.72 0.447 7.05 
bulnob -1.740 -0.196 -2.666 13.9 15.3 6.03 0.411 7.40 
bu2nob -0.544 -0.462 -2.702 13.3 16.4 3.01 0.430 8.34 
dulnob 0.055 -0.359 -2.528 13.7 19.5 4.6l -2.515 7.79 
du2nob -0.379 -0.257 -2.344 12.6 18.5 3.70 -1.104 6.48 
ba1mxbd -0.1 9 -0.414 -2.077 12.5 20.7 4.0~ -6.680 '.37 :' 
ba2mxbd -0.095 -0.365 -1.690 13.4 20.7 2.19 -4.172 5.35: 
dalmxbb -0.538 -0.132 ·2.105 12.9 16.8 2.70 0.266 5.55 
da2mxbb -0.479 -0.169 -1.606 13.3 19.8 4.16 -1.458 5.Zl 
bilm:xbd -0.372 0.306 1.424 25.8 13.1 5.03 -2.900 7.96 
bi2mxbd 0.278 0.147 0.861 25.5 20.9 5.04 0.199 6.33 
dilmxbb 0.299 0.161 1.452. 25.7 21.1 3.80 0.44.7 7.88 
di2mxbb -0.016 0.284 1.036 24.5 19.6 3.61 -0.273 5.13 
by1mxbd 0.027 0.004 0.097 19.9 14.3 2.ll -2.268 7.04 
by2mxbd 0.291 -0.086 0.193 20.2 20.2 4.16 0.655 6.'75 
dylmxbb 0.501 -0.064 0.338 20.7 23.4 5.18 -1.498 6.47 
dy2mxbb -0.076 0.065 0.001 20.1 15.1 0.96 -2:389 6.72 
bulmxbd 0.279 -0.740 ·2.694 13.9 19.9 3.83 -6.497 7.62 
bu2mxbd 0.577 -0.739 -2.578 13.3 21.5 1.26 -4.192 8.28 
dulmxbb -0.835 0.000 -2.625 13.9 15.6 3.48 0.034 7.67 

Table 6.XXII: Values of detailed cues, measured on the original utterances con-
taining the voiced stops of speaker 2 . 

. 1 23.1 
ba.2org 89.4 17.0 68.4 2532 23.1 
dalorg 85.7 19.2 69.8 2596 23.4 
da2org 88.2 19.2 73,9 19.1 18.7 2587 23.3 
bilorg 94.7 20.4 81.0 20.9 21.9 3358 25.6 
bi2org 90.6 20.8 73.8 21.1 21.7 3459 25.8 0.230 
dilorg 91.6 23.4 71.5 21.1 21.7 3376 25.6 0.209 
di2org 95.8 20.7 80.7 21.1 21.7 3450 25.8 0.267 
bylorg 84.1 18.1 64.6 18.9 19.6 1972 21.0 0.832 
by2org 81.3 21.0 62.9 19.3 19.8 2009 21.2 0.544 
dylorg 102.0 24.3 89.1 19.8 20.3 2009 21.2 0.353 
dy2org 95.3 23.2 76.1 20.0 20.1 2046 21.3 0.029 
bulorg 80.4 15.1 60.7 13.7 13.3 1963 21.0 3.833 
bu2org 86.9 14.0 72.3 14.2 13.2 1982 21.1 3.269 
dulorg 100.8 21.7 84.7 12.1 18.1 13.9 2000 21.1 0.381 
du2org 98.4 25.7 80.4 6.8 17.6 13.3 1991 21.1 0.086 



6.C Acoustic cues measured on stimuli with voiced stops 

Table 6.XXIII: Values of gross cues, measured on the original, no-burst, and mixed­
burst stimuli containing the voiced stops of speaker 2. 

To ATo Tat F::UP Fm'p Lo I:J.Lo Lat 
(dB/ERB) (dB/ERB/ms) (dB/ERB) (ERB) 

.. 
(dB) (dB) (dB) stim (ERB) 

balorg ·1.036 ·0.167 -1.668 15.8 13.7 3.14 -0.007 5.41 
ba2org -0.590 -0.341 -1.634 19.3 13.9 2.33 -0.635 5.10 
dalorg -0.438 -0.188 -1.432 19.1 13.6 3.39 -0.631 5.51 
da2org -0.828 -0.055 -1.361 14.6 13.7 2.49 0.457 5.49 
bi1org -0.176 0.274 1.368 20.2 25.8 6.97 -0.586 9.37 
bi2org 0.121 0.129 1.170 23.7 21.9 2.95 0.342 4.16 
di.lorg 0.328 0.217 1.449 23.1 22.0 2.63 0.011 3.42 
di2org 0.548 0.134 1.756 21.0 25.9 6.03 -0.457 9.91 
by1org 0.026 -0.013 -0.279 19.1 20.4 3.33 0.817 8.00 
by2org 0.169 -0.063 0.209 21.7 20.4 1.83 1.250 7.65 
dy1org 1.436 -0.282 0.289 23.5 20.8 6.70 -0.653 8.08 
dy2org 0.631 -0.099 0.344 23.6 21.1 6.03 ·1.019 8.24 
bulorg 0.026 -0.673 -1.856 24.1 13.5 2.16 -7.243 8.06 
bu2org -0.149 -0.542 ·1.940 13.3 12.8 2.51 1.434 8.25 
dulorg 0.648 -0.367 -2.168 21.6 13.9 3.11 -1.644 8.17 
du2org 1.163 -0.542 -2.339 25.4 13.7 7.99 -5.017 8.34 
t>a1nob -1.263 -0.109 ·1.703 13.7 16.7 4.44 -0.238 5.80 
be.2nob -1.998 0.059 -1.733 13.7 16.7 1.00 0.752 5.79 
dalnob -0.542 -0.196 ·1.409 13.6 19.3 2.36 -0.337 5.90 
dl!.2nob -0.606 -0.147 ·1.403 13.7 19.3 2.59 -0.161 5.37 
bilnob 0.479 0.129 1.423 25.9 21.9 4.81 0.020 9.00 
bi2nob 0.242 0.129 1.265 21.7 23.5 4.61 -0.231 1.85 
dilnob 0.723 0.157 1.516 21.9 23.7 5.66 -0.194 3.40 
di2nob 0.763 0.100 2.131 21.8 23.6 6.36 -0.720 0.77 
by1nob -0.161 0.046 -0.135 20.4 20.0 5.05 0.605 7.95 
by2nob -0.372 0.115 0.238 20.9 19.6 5.63 0.306 8.06 
dylnob 0.764 -0.128 0.181 20.8 25.3 4.23 -2.843 8.03 
dy2nob 0.942 -0.205 0.211 21.0 23.3 5.90 ·0.670 7.88 
bulnob -1.837 -0.166 ·1.824 13.5 13.6 7.55 0.147 8.22 
bu2nob ·1.712 -0.083 -2.630 13.1 14.1 6.26 0.378 8.81 
dulnob -0.033 -0.258 -2.375 13.7 21.5 4.88 ·2.626 8.35 
du2nob 0.121 -0.267 -2.365 13.9 21.3 4.21 ·2.310 8.40 
ba1mxbd -0.440 -0.324 ·1.643 13.7 19.1 3.41 -0.425 5.47 
ba2mxbd ·0.820 -0.266 -1.503 14.0 14.6 2.53 0.787 4.95 
da.1mxbb -0.559 -0.178 -1.405 13.6 15.4 2.51 ·0.444 5.69 
da2mxbb -0.549 -0.144 -1.438 13.7 19.3 2.71 -0.139 6.16 
bilmxbd 0.334 0.146 1.417 25.9 23.1 2.66 0.504 9.51 
bi2mxbd 0.551 0.032 1.463 25.9 21.0 6.04 -0.408 9.69 
dilmxbb -0.178 0.321 1.517 25.9 20.2 6.97 -0.771 9.91 
di2mxbb _0.138 0.203 1.849 21.8 23.7 3.03 0.370 2.43 
bylmxbd 1.429 -0.389 -0.243 20.4 23.5 6.70 ·2.267 8.07 
by2mxbd 0.635 -0.185 0.177 20.6 23.6 6.03 ·2.675 7.61 
dylmxbb 0.044 0.094 0.050 20.8 19.1 3.40 0.083 8.16 
dy2mxbb 0.183 0.036 0.322 21.1 21.7 1.92 1.345 8.23 
bulmxbd 0.647 ·0.786 -1.857 13.1 21.6 3.12 -3.597 8.80 
bu2mxbd 1.179 -0.861 -2.408 12.8 25.4 8.02 -7.120 9.06 
dulmxbb 0.024 -0.240 ·2.467 13.7 24.1 2.08 -3.673 8.40 
du2mxhb ·0.144 -0.170 ·2.095 13.9 13.5 2.31 -0.134 7.91 
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Chapter 7 

General discussion and outlook 

7.1 Introduction 

The purpose of the research presented in this thesis is to study whether detailed or 
gross spectro-temporal properties are the primary cues in the perception of place 
of articulation of prevocalic stop consonants. In our approach we have emphasized 
two aspects. First of all, we wanted to use (manipulated) natural utterances. The 
primary reason for this choice was that past investigations employing synthetic 
stimuli have yielded unequivocal results, which may heave been partly caused by a 
certain unnaturalness of the stimuli. Secondly, we have attempted to carry out a 
complete simulation of the listeners' categorization behavior. The simulation was 
intended to establish which type of cues were used by the listeners, and how they 
were used. 

A summary of the research is presented in the next chapter. In the current 
chapter we first of all elaborate on some of the methodological novelties introduced 
in this thesis. Next, in section 7.2.2, we will shortly discuss the phonetic insight 
provided by our study. In section 7.3 we will discuss the basic limitations of our 
research, and finally, in section 7.4, an experiment will be proposed which overcomes 
some of these limitations. 

7.2 Value of our study 

The present research may be valuable on two accounts, viz. the developed method­
ology and the phonetic insight that is gained. 

7.2.1 Methodological value 

Traditionally, knowledge on phoneme perception stems from three basic method­
ologies. 

1. Acoustic analysis of natural speech. 
The general purpose of this type of study is to describe acoustic regularities 
and variability associated with phonemes (or other linguistic categories). Of­
ten, acoustic analysis is accompanied by automatic classification experiments 
in which the suitability of certain acoustic structures for classification is tested. 
Logically, from classification experiments it can be concluded that, if accurate 

· automatic classification is possible from a certain set of acoustic properties, 
human listeners may actually make use of these cues while perceiving speech. 
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On the other hand, if the automatic classification based on a certain set of 
acoustic properties is unreliable, it can be concluded that listeners cannot base 
their phonetic perception on these cues using the specific classification method 
which is tested. It is important to realize that from a negative result it cannot 
be generally concluded that listeners do not base their phonetic perception on 
the tested set of cues, because an alternative classification strategy, using the 
same cues, may provide very different results (Smits and Ten Bosch, 1994c). 

2. Perception of manipulated natural speech. 
Although it is generally impossible to manipulate the values of certain acoustic 
cues at will in natural speech, it is often possible to delete cues from utterances, 
or exchange them between utterances. As discussed in section 5.2, deleted­
cue stimuli can be used to measure the necessity of the deleted cues and 
the sufficiency of the remaining cues. Conflicting-cue stimuli, on the other 
hand, can be used to measure the relative importance of the conflicting cues. 
Both types of experiments have the advantage that the natural variability 
of the speech signal is more or less preserved. The experiments have the 
major disadvantage, however, that the conclusions which can be drawn from 
the resulting perception data are generally very limited, pertaining only to 
the perceptual relevance of a cue (see chapter 5). How the value of a cue, 
like the onset frequency of F2, influences perception can generally not be 
derived from this type of experiment. Another disadvantage of this method 
is that the recorded speech material will naturally contain certain speaker 
characteristics, and the measured perceptual effects may differ substantially 
for speech material of different speakers, even though the manipulations are 
identical (e.g. Dorman et al., 1977). 

3. Perception of synthetic speech. 
Compared to the previous class of experiments, perception experiments with 
synthetic stimuli naturally have the advantage that individual cue values can, 
in general, be manipulated at will. Thus, synthetic stimulus continua can 
be constructed by systematically varying the values of one or more acoustic 
parameters. After presenting the stimuli to listeners, the resulting identifica­
tion functions provide detailed information concerning the use of cues in the 
classification process, for instance with respect to the position of class bound­
aries in the cue· space. On the other hand, this type of experiment has the 
drawback that, due to stylization, the stimuli may deviate strongly from natu­
ral utterances, and important acoustic structures may be absent or distorted. 
Furthermore, the stimuli may sound unnatural, which may affect the listeners 
classification behavior. 
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In our study, we have introduced a novel type of phonetic experiment which 
combines elements of all three classes of experiments discussed above. As discussed 
in earlier chapters, our approach essentially consists of 3 steps: 

1. Perception experiment with manipulated natural utterances; 
2. Measurement of acoustic cues; 
3. Mapping of acoustic cues onto observed perceptual responses. 

Clearly, step 1 and 2 correspond to experimental classes 2 and 1, respectively. 
Step 3 is intended to provide information on the classification process which is of 
the type of experimental class 3, that is, a quantitative description of the influence 
of cue values on phoneme perception. 

It is our opinion that the experimental methodology used in the present research 
provides a new means to investigate various aspects of speech perception. Moreover, 
the general approach can be used to study any kind of human classification behavior, 
like the recognition of written language, visual recognition of objects, etc. The 
method can be generalized to the following 3 steps: 

1. Perceptual classification experiment with manipulated natural stimuli; 
2. Measurement of physical quantities on the stimuli; 
3. Mapping of physical data onto categorical perceptual data using a formal 

model of human classification behavior. 

7.2.2 Gained phonetic insight 

With respect to our primary research question, we have found that detailed cues give 
a better account of the perceptual data than the the gross cues in all cases except for 
the burst-only stimuli. Furthermore, we have derived a number of linear functions 
of acoustic cues which correspond with the linguistic distinctions, as perceived by 
the listeners. We venture to speculate as follows. First of all, it seems to be the 
case that the formants, especially F2, have been explicitly used by the listeners. All 
of the best model fits contain formant information. Secondly, concerning the locus 
equations we are somewhat hesitant to draw conclusions on their explicit role in 
speech perception. For the unvoiced stops /p, t, k/, the locus-equation distances 
often outperformed the raw formant data. We speculate that it may be the case 
that the raw formant data are explicitly used by the listeners, but in a more complex 
way than our model is able to simulate. For instance, the perceptual system may be 
able to cope with the high acoustic variability of F2 and F3 for the velar category 
by employing non-linear class boundaries, or even disjunct response regions for 
allophonic variations of /k/. Our model cannot reproduce such strategies, hence 
the somewhat lower GOF-levels. However, the conversion of raw formant data into 
distances to locus-equations may provide a useful "preprocessing" of the formant 
data, in the sense that the distances are more or less linearly separable, and thus 
more suitable for our model. This speculation is supported by the observation that 
for the voiced stops, where the highly context-dependent velar class is absent, the 
locus equation preprocessing does not provide this advantage. Here, the labial and 
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dental class are more or less linearly separable using raw formant data, and in 
the simulations the raw formant data systematically outperform the locus equation 
data. 

7.3 Limitations of our study 

In this section, some of the limitations of our study are briefly discussed. First of 
all, as we have noted in the previous chapter, the results of our simulations are 
based upon a number of assumptions, which may be less than optimal. The two 
most important assumptions are: 

1. The specific a-priori choice of acoustic cues, which may be particularly relevant 
for the gross cues. Although we have attempted to capture the most important 
gross spectro-temporal properties discussed in the literature, it may be the 
case that certain perceptually relevant structures have not been incorporated 
in our cues. 

2. In our SLP-based model, certain assumptions are made. Class boundaries are 
assumed to be linear, and the shape of the probability "landscape" is dictated 
by the sigmoid function. As mentioned in the previous section, it may well 
be the case that these assumptions do not hold, especially when the velar 
class is involved. All SLP-model estimations presented in this thesis have also 
been carried out with the TLP, that is, using a hidden layer. However, this 
more powerful model only rarely produced higher GOF-levels, than for the 
SLP. This may, however, been caused by the fact that the number of data was 
rather limited, which prevents a generalizable estimation of a model with a 
large number of parameters. 

Beside the assumptions made in the simulations, there is the issue of generalizability 
across speakers. The stop-vowel utterances used in this study were produced by 
two male speakers. We have simulated the classification behavior of the listeners 
as closely as possible, that is, fitting a model separately per experimental session. 
Preliminary experiments have shown that using the model for one speaker to predict 
the perceptual data for the other speaker results in rather low scores. It is, however, 
important to realize that it would indeed be surprising if the scores would be high. 
As discussed in the introductory chapter, listeners adapt to one particular speaker. 
Mullennix and Pisoni (1990) have shown that using several speakers within one 
experimental session affects the listeners' classification behavior. Fitting one model 
to both speakers' data would in fact be a simulation of a perception experiment in 
which stimuli of the two speakers would be randomly mixed in one session. In that 
case, however, the perceptual data would have been significantly different. 

How then do our results generalize to the perception of stop-vowel utterances of 
new speakers? At present, this issue remains tfric}ear. Beside the often-discussed 
vocal-tract normalizatiqn, very little is actually known about the process of the 
listeners' adaptation to individual speakers. When discussing our general model 
in the introductory chapter, we have suggested that speaker adaptation may take 
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place at the level of cue measurement - cues may be measured differently for differ­
ent speakers - as well as in the classifier, for example by shifting class boundaries 
(altering the SLP's biases), or by rotating the class boundaries (weighing various 
cues differently for different speakers). Clearly, there is ample room for additional 
research on the problem of speaker adaptation in consonant perception. 

7.4 Proposal for an additional experiment 

In this section, we will propose an experiment which does not suffer from two of 
the basic limitations mentioned in the previous section, namely making a-priori 
assumptions on the details of the cue-measurement procedures, as well as on the 
nature of the classification process. Rather than measuring the perceptual relevance 
of a set of predefined detailed and gross cues, the proposed experiment aims to 
measure the perceptual relevance of various levels of detail in the spectrogram. The 
approach is as follows. Like in our experiments, natural utterances are used, and 
from these utterances conflicting-cue stimuli are constructed. However, instead of 
splicing time segments of conflicting utterances together, we will construct signals 
by combining detailed time-frequency from one utterance with gross time-frequency 
information from another utterance. 

Technically, this can be implemented as follows. First of all, two conflicting 
utterances, e.g. jpaj and jta/, are recorded and the instant of burst onset is de­
termined for both signals. Next, a short-time Fourier transform (STFT, Rabiner 
and Shafer, 1978) is performed, with the first window centered at the instant of 
burst onset. The STFT is carried out with a fixed window length of, say, 6 ms 
(roughly corresponding to the wideband spectrogram) and fixed- preferably small 
- window shift. This transformation yields a spectra-temporal representation for 
each utterance, which consists of a short-time Fourier amplitude (STFA) and phase 
(STFP). We concentrate on the STFA, as this corresponds to the wideband spec­
trogram which is generally thought to contain nearly all of the perceptually relevant 
information. The STFA of each utterance is first converted into an "auditory spec­
trogram" by warping the frequency axis as described in section 6.2.2, and transform­
ing the linear amplitudes to a dB-scale using Eq. -2. The resulting representation, 
indicated by STFA', is subdivided into a detailed and a gross part by using a two­
dimensional filtering technique. To this end, we perform a low-pass filtering through 
a convolution of the spectral levels along the time axis (temporal smoothing) as well 
as along the frequency axis (spectral smoothing). With this filtering operation, a 
time constant and a frequency constant is associated which represents the effective 
window length of the convolution window along the time axis and the frequency 
(ERB) axis. The resulting smoothed version of STFA' is called the gross part of 
STFA', and will be indicated by STFA'g· Subtracting STFA'g from STFA' yields 
the detailed part of STFA', indicated by STFA'd· After the STFA's of both utter­
ances have been subdivided into gross and detaiied parts using identical smoothing 
constants, the gross part of utterance 1 and the detailed part of utterance 2 are 
summed, and vice versa. Finally, these representations are to be transformed into 
waveforms. First, the inverse operations of the frequency and amplitude warping 
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signal 

Figure 7.1: Flow diagram for the signal processing procedures for the proposed ex­
periment. Ovals represent signal representations, squares represent processing steps. 

are performed. Next, each of the STFAs is coupled with one of the original, unma­
nipulated STFPs in order to perform the inverse STFT. Fundamentally, it seems 
preferable to use the STFP which corresponds to the detailed STFA, because the 
short-time Fourier phase spectrum has been shown to contain information on de­
tails along the frequency axis (Yegnanarayana, 1978), as well as along the time axis 
(Smits and Yegnanarayana, 1995). Next, the amplitude-phase pairs are entered into 
the iterative signal estimation method from the STFA, using the iterative procedure 
described in Griffin and Lim (1984) and Veldhuis and He (1994). The comprehen­
sive operation is summarized in Figure 7.1. The signal-processing procedure has 
been implemented and extensively described by Jonkers (1993) in a Master's thesis 
project. 

The resulting signals contain detailed spectro-temporal information of one ut­
terance and gross spectro-temporal information of another utterance. By creating 



7.4 Proposal for a.n additional experiment 163 

several such signals from two original utterances by varying the time-smoothing 
constant and the frequency-smoothing constant, a two-dimensional stimulus con­
tinuum can be created. Presenting such a continuum to listeners will result in a 
two-dimensional identification function. The boundary in the continuum at which 
the percept changes from one stop consonant to the other, or where the transition 
in the identification function is steepest, indicates the level of detail in the spectro­
gram which contains the perceptually most relevant information. 

The procedure described above provides the means to create conflicting-cue stim­
uli in which the gross spectro-temporal information cues one place of articulation, 
while the detailed spectro-temporal information cues another. The deleted-cue ver­
sion ofthis approach has been carried out by Ter Keurs et al. (1992, 1993a, 1993b), 
Drullman (1995), and Drullman et al. (1994a, 1994b). Ter Keurs has studied the 
effect of spectral smearing on speech reception. Her results show that intelligibility 
of sentences is not impaired for spectral smearing up to 1/3 octave. With smearing 
over 1/3 octave, intelligibility is increasingly reduced. Furthermore, for consonants 
spectral smearing most strongly affects perception of place of articulation. Drull­
man studied the effect of reducing slow or fast modulations in the speech signal. 
His results show that intelligibility of sentences is not impaired when temporal fluc­
tuations higher than 16 Hz are canceled. When slower fluctuations are deleted, 
intelligibility decreases. Decreasing slow fluctuations, while preserving rapid fluc­
tuations does not affect sentence intelligibility for cut-off frequencies up to 4 Hz. 
Stop consonants appear to be mostly confused with either fricative consonants or 
glides. Place-of-articulation confusions also occur often. 

Unfortunately, information concerning the perceptually most relevant level of 
detail in the spectro-temporal representation of stop consonants can hardly be de­
duced from the data of these studies. The reason for this is that the stimulus sets 
as well as response sets contained nearly all Dutch consonants, and apart from 
the major consonantal confusions mentioned above, the confusion matrices did not 
show very clear patterns. 
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Summary 

The perception of place of articulation of stop consonants constitutes a long­
standing problem in phonetic research. During the last 50-odd years many acoustic 
structures have been described which correlate with phonetic distinctions and/ or 
which demonstrably influence the perceived place of articulation when they are 
artificially manipulated. Examples of such phonetically relevant acoustic structures, 
or cues, are the frequency of the second formant at voicing onset and the global 
spectral tilt at consonantal release. Despite the considerable research effort devoted 
to the problem of stop-consonant perception many issues remain unsolved, such 
as the question which cues are perceptually most important and how the various 
cues are actually combined by the perceptual system in order to reach a linguistic 
classification. Particularly for stop consonants the individual cues show a large 
variability depending on the phonetic context, and no single acoustic property has 
been shown to entertain a one-to-one relationship with a perceived linguistic class. 

In the research on acoustic cues for place of articulation of stop consonants, 
the issue whether detailed or gross spectra-temporal structures are perceptually 
most important has received increasing attention in recent years. For the purpose 
of this study, detailed cues are defined as acoustic structures which result from 
measurements with a relatively high resolution in time or frequency, such as the 
length of the release burst or formant frequencies. Gross cues, on the other hand, 
result from acoustic measurements with a relatively low resolution, like the global 
spectral tilt, or the existence of a broad spectral prominence. 

The research presented in this thesis investigates the relative importance of 
detailed and gross acoustic structures for the perception of place of articulation in 
prevocalic stop consmiants. In addition, the research aims to model how the most 
relevant cues are combined and mapped onto the linguistic classes by the perceptual 
system. Two methodological aspects are emphasized in our study. First of all, we 
use (manipulated) natural utterances in our experiments in order to preserve the 
natural variability in the speech signal. Secondly, we make a complete simulation of 
the behavior of listeners during a stop-consonant classification task. The simulation 
is complete in the sense that it includes the basic processing steps of initial signal 
representation, extraction and combination of cues, and classification. 

In our investigation a three-step paradigm is adopted. First, a perception ex­
periment is carried out in which manipulated natural stop-vowel utterances are 
presented to listeners for classification. This first step results in a body of per­
ceptual data, organized in a stimulus-response matrix. The second and third step 
constitute the simulation of the listeners' behavior in the experiment. The second 
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step is the measurement of a number of detailed and gross spectro-temporal cues on 
the stimuli, resulting in a body of acoustical data. The third step is the mapping of 
the acoustical data onto the perceptual data using a formal model of human clas­
sification behavior. A comparison of the resulting levels of goodness-of-fit for the 
detailed cues and for the gross cues indicates which of the two gives the better ac­
count of the observed behavior of the listeners. In addition, an interpretation of the 
best-fitting models leads to a mathematical approximation of the cue-combination 
and response-selection strategies used by the listeners. 

Before the paradigm described above can be applied, a number of method­
ological hurdles are taken. Firstly, chapter 2 addresses the issue whether detailed 
spectra-temporal structures, such as formant frequencies, can be measured accu­
rately enough when the signal spectrum changes very rapidly, as is the case for 
stop consonants. In particular, the accuracy is assessed of the two most widely 
used speech analysis tools - the spectrogram and Linear Prediction - for the mea­
surement of formant frequencies in stop consonants. Analysis of various dynamic 
signals shows that when a long analysis window, like 25 ms, is used, the quality 
of the representation may be impoverished. A number of unwanted effects may 
occur, such as staircase-like formant tracks, flattening-off of formants close to voic­
ing onset, and bending of the formant towards a strong energy concentration in 
the release burst. The parameters that have the largest influence on the quality 
of the representation are the length of the analysis window, the transition rate of 
the formant, the fundamental frequency, and the position and energy of the release 
burst. It is shown that the most accurate analysis using a quasi-stationary method 
is made when windows are positioned pitch-synchronously. A quantitative analysis 
of the influence of the afore-mentioned parameters provides evidence that no devi­
ations due to the quasi-stationarity assumption occur when the effective length of 
the analysis window is not larger than the pitch period. Therefore, the wideband 
spectrogram is a reliable speech-analysis tool because it meets this condition for 
fundamental frequencies up to about 370 Hz. 

The second methodological issue in this thesis is the formulation of an appro­
priate mathematical model which can be used for the mapping of the acoustic cues 
onto the observed perceptual responses. In chapter 3, a model of human catego­
rization behavior is presented which is based on the multi-layer perceptron (MLP). 
First the modeling behavior of the single-layer perceptron (SLP) is studied through 
an analysis of the mathematical expressions and a discussion of a number of the­
oretical examples. A number of similarities and differences between the SLP and 
the well-known similarity-choice model (SCM) are discussed and it is shown that 
the SLP and SCM coincide in a certain limit case. Finally, the theory that we have 
developed for the SLP is extended to the two-layer perceptron (TLP). It is shown 
that, compared to the SLP, the TLP has substantially increased modeling power, 
but it can become hard to interpret. A linearization of the sigmoid functions in the 
hidden nodes is introduced, which facilitates interpretation. 

In chapter 4, a number of practical methods are presented for estimating the pa­
rameters and the goodness-of-fit of the MLP-based model of human categorization 
behavior. A measure of goodness-of-fit is defined which is interpreted as a gener-
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alized "percent correct score". The "leaving-one-out method", a cross-validation 
technique which is commonly used in the field of statistical pattern recognition, is 
adopted to estimate the generalizability of a model estimation. Finally, the method­
ology is illustrated by a practical example which deals with the perception of release 
bursts that are excised from prevocalic stop consonants. The danger of overfitting is 
demonstrated, and the best fitting model is interpreted using the theory presented 
in chapter 3. 

The experimental treatment of the research questions formulated earlier is pre­
sented in chapters 5 and 6. First a perception experiment is carried out with "burst­
spliced" stop-vowel utterances. This experiment is described in chapter 5. From 
a number of stop-vowel utterances, "burst-only", "burst-less" and "cross-spliced" 
stimuli are created and presented to listeners. The results of the experiment show 
that the relative perceptual importance of burst and transitions highly depends (1) 
on the stop consonants from which burst and transitions originate, (2) on the vowel 
context, and (3) on the voiced or unvoiced nature of the stop. Velar bursts are 
generally stronger in cueing place of articulation than are other bursts. The dental 
transitions appear to be weaker than labial or velar transitions. In front-vowel con­
texts the release burst dominates the perception of place of articulation, while in 
non-:front vowel contexts the formant transitions are generally dominant. Finally, 
the bursts of unvoiced stops are perceptually more important than the bursts of 
voiced stops. 

Chapter 6 describes the simulation of the listeners' behavior in the perception 
experiment presented in chapter 5. First, a number of detailed and gross spectra­
temporal cues are measured on all stimuli. The set of detailed cues includes the 
frequencies of F2 and F3 at voicing onset and in the vowel and a number of release­
burst parameters. The set of gross cues includes the global spectral tilt and the 
strength of the mid-frequency peak just after consonantal release, and the change 
of these measures into the stationary part of the utterance. Next, these cues are 
mapped onto the observed perceptual data using the formal model of human clas­
sification behavior introduced in chapters 3 and 4. The results of the model fits 
show that the detailed cues, such as formant transitions combined with certain 
burst parameters, give a better account of the perceptual data than the gross cues. 
The best-performing inodels are interpreted in terms of the acoustic boundaries 
which are associated with the perceived linguistic contrasts. These boundaries are 
linear functions of 5 or 6 acoustic cues, which are phonetically interpretable. The 
boundaries give a quantitative description of the often-discussed "trade-off" relation 
between the various cues for perception of place of articulation in stop consonants. 

In the final chapter it is discussed how the research presented in this thesis may 
be valuable on two accounts. Firstly, with respect to our primary phonetic research 
question, we have found that detailed cues give a better account of the perceptual 
data than the the gross cues, and we have described the linguistic distinctions per­
ceived by the listeners in terms of linear functions of acoustic cues. Secondly, we 
have developed an novel experimental paradigm for research on phoneme percep­
tion. The paradigm combines aspects of three traditional experimental approaches, 
viz. acoustic analysis, perception of manipulated natural utterances, and percep-
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tion of synthetically prepared speech-like sounds. An important advantage of our 
paradigm over existing ones is the possibility to model the actual cue-measurement, 
cue-combination, and classification strategies of listeners via a perception experi­
ment in which manipulated natural utterances are used. 



Samenvatting 

De perceptie van de plaats van articulatie van plofldanken vormt een oud pro­
bleem in het fonetisch onderzoek. Gedurende de laatste 50 jaar zijn een groot aan­
tal akoestische structuren beschreven die correleren met fonetische distincties en/of 
aantoonbaar de waargenomen plaats van articulatie be:invloeden als zij worden ge­
manipuleerd. Voorbeelden van dergelijke fonetisch relevante akoestische strukturen 
- ook wel cues genoemd - zijn de frekwentie van de 2e formant bij steminzet en 
de globale spectrale helling op het moment dat een afsluiting van het spraakkanaal 
wordt losgelaten. Ondanks dat er een grote hoeveelheid onderzoek is gewijd aan het 
probleem van de perceptie van plofldanken zijn er nog vele vragen onopgelost, zoals 
de vraag welke cues perceptief het belangrijkst zijn en hoe verschillende cues worden 
gecombineerd door het perceptieve systeem bij het maken van een lingu'istische clas­
sificatie. De individuele cues vertonen, in het bijzonder voor plofklanken, een grote 
variabiliteit afhankelijk van de fonetische context, en er blijkt geen cue te bestaan 
die een een-op-eE'm relatie vertoont met een waargenomen lingu'istische klasse. 

In het onderzoek aan akoestische cues voor plaats van articulatie van plof­
klanken is de vraag naar het relatieve belang van fijnschalige en grofschalige spectro­
temporele structuren recentelijk steeds meer in de belangstelling komen te staan. 
Ten behoeve van ons onderzoek definieren wij een fijnschalige cue als het resultaat 
van een akoestische meting met een relatief hoog oplossend vermogen in tijd of fre­
kwentie, zoals de lengte van de ruisplof of formantfrekwenties. Een grofschalige cue 
wordt gedefinieerd als het resultaat van een akoestische meting met een relatief lage 
resolutie, zoals de globale spectrale helling, of de sterkte van een brede spectrale 
prominentie. 

Het onderzoek beschreven in dit proefschrift heeft als doel om het relatieve 
belang vast te stellen van fijnschalige en grofschalige akoestische structuren voor 
de perceptie van plaats van articulatie in prevocalische plofklanken. Tevens wordt 
geprobeerd om te modelleren hoe de meest relevante cues door het perceptieve 
systeem worden gecombineerd en afgebeeld op de lingu'istische klassen. In ons 
onderzoek worden twee methodologische aspecten benadrukt. Allereerst worden in 
de experimenten (gemanipuleerde) natuurlijke uitingen gebruikt om de natuurlijke 
variabiliteit van het spraaksignaal zo veel mogelijk te behouden. Ten tweede maken 
we een volledige simulatie van het gedrag van de luisteraars in een classificatie 
experiment van plofklanken. De simulatie is in die zin volledig, dat deze een aantal 
essentiele verwerkingsstappen bevat, te weten initiele signaalrepresentatie, extractie 
en combinatie van cues, en classificatie. 

Het experimentele paradigma bestaat uit drie stappen. Eerst wordt een percep-
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tie experiment uitgevoerd waarin gemanipuleerde natuurlijke uitingen voor classi­
ficatie worden aangeboden aan luisteraars. Deze eerste stap levert een stimulus­
respons matrix op. De tweede en derde stap vormen de simulatie van het clas­
sificatiegedrag van de luisteraars in het perceptie experiment. De tweede stap is 
het meten van een aantal fijnschalige en grofschalige cues aan de stimuli, met als 
resultaat een hoeveelheid akoestische data. De derde stap is de afbeelding van 
de akoestische data op de perceptieve data met behulp van een formeel classifi­
catiemodel. Een vergelijking van de resulterende niveaus van goodness-of-fit voor 
de fijnschalige en voor de grofschalige cues laat zien welke van de twee het beste 
het gedrag van de luisteraars verklaart. Bovendien leidt een interpretatie van de 
beste modellen tot een wiskundige benadering van de cue-combinatie strategieen en 
respons-selectie strategieen van de luisteraars. 

Voordat de bovenstaande aanpak kan worden uitgevoerd moeten nog enkele 
methodologische hindernissen worden genomen. In hoofdstuk 2 wordt onderzocht 
of fijnschalige spectro-temporele structuren, zoals formantfrekwenties, nauwkeurig 
genoeg gemeten kunnen worden als het signaalspectrum zeer snel verandert, zoals 
bij plofklanken. In het bijzonder wordt de nauwkeurigheid bepaald voor de twee 
meest gebruikte spraakanalysegereedschappen - het spectrogram en lineaire predic­
tie - voor het meten van formant frekwenties in plofklanken. Analyses van een 
aantal dynamische signalen laat zien dat de kwaliteit van de representatie kan ver­
slechteren als een lang analysevenster (bijvoorbeeld 25 ms) · wordt gebruikt. Een 
aantal ongewenste effekten kunnen dan optreden, zoals trapvormige formantsporen, 
afgeplatte formantsporen dicht bij het moment van steminzet, en het afbuigen van 
een formant naar een sterke energieconcentratie in de ruisplof. De parameters 
die de grootste invloed hebben op de kwaliteit van de representatie zijn de lengte 
van het analysevenster, de transitiesnelheid van de formant, de grondtoon van het 
spraaksignaal, en de energie en positie van de ruisplof. Ons onderzoek toont aan 
dat de meest nauwkeurige metingen kunnen worden gemaakt met quasi-stationaire 
methoden als de vensters "pitch-synchroon" worden gepositioneerd. Een kwanti­
tatieve analyse van de invloed van eerder genoemde parameters laat zien dat er 
geen meetonnauwkeurigheden optreden t.g.v. de aanname van quasi-stationariteit 
als de effectieve lengte van het analysevenster niet groter is dan de pitch-periode. 
Het breedband-spectrogram is een betrouwbaar spraakanalysegereedschap omdat 
het aan deze voorwaarde voldoet voor grondfrekwenties tot 370 Hz. 

Het tweede methodologische probleem dat wordt behandeld is het formuleren 
van een geschikt wiskundig model dat gebruikt kan worden voor het afbeelden van 
de akoestische cues op de perceptieve responsen. In hoofdstuk 3 wordt een model 
van menselijk classificatiegedrag gepresenteerd dat gebaseerd is op het multi-layer 
perceptron (MLP). Eerst wordt het modelgedrag van het single-layer perceptron 
(SLP) bestudeerd via de analyse van de relevante wiskundige expressies en het 
bespreken van een aantal theoretische voorbeelden. Een aantal overeenkomsten en 
verschillen tussen de SLP en het bekende similarity-choice model (SCM) worden 
besproken en het wordt aangetoond dat de SLP en de SCM in een bepaald limiet­
geval samenvallen. Tenslotte wordt de theorie die we hebben ontwikkeld voor de 
SLP uitgebreid naar het two-layer perceptron (TLP). We laten zien dat de TLP 
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een grotere modelleerkracht heeft dan de SLP, maar dat dit ten koste kan gaan van 
interpreteerbaarheid. We introduceren een linearisatie van de sigmoide functies in 
de hidden nodes, waardoor interpretatie wordt vergemakkelijkt. 

In hoofdstuk 4 worden een aantal praktische methoden gepre:;;enteerd waarmee 
de parameters en de goodness-of-fit van het classificatiemodel kunnen worden 
geschat. Er wordt een goodness-of-fit-maat gedefinieerd die ge"interpreteerd kan 
worden als een gegeneraliseerde percent-correct score. De leaving-one-out methode, 
een cross-validatie techniek die veel wordt gebruikt in het gebied van de statis­
tische patroonherkenning, wordt aangepast voor het schatten van de generaliseer­
baarheid van een model na training. Tenslotte wordt de methode geillustreerd met 
een praktisch voorbeeld betreffende de perceptie van ruisplofjes die zijn gelsoleerd 
uit prevocalische plofklanken. Het gevaar voor overfitting wordt gedemonstreerd, 
en het best kloppende model wordt gelnterpreteerd met behulp van de theorie uit 
hoofdstuk 3. 

De experimentele aanpak van de eerder geformuleerde onderzoekvraag wordt 
besproken in hoofdstukken 5 en 6. Allereerst wordt een perceptie-experiment uit­
gevoerd met zogenaamde burst-spliced plofklank-klinker uitingen. Dit experiment 
wordt beschreven in hoofdstuk 5. Uitgaande van een aantal plofklank-klinker uitin­
gen worden stimuli gecreeerd die ofwel uitsluitend de ruisplof, ofwel de gehele uiting 
behalve de ruisplof, ofwel de ruisplof van de ene uiting en de rest van de andere 
uiting bevatten. Deze stimuli worden aangeboden aan luisteraars voor classificatie. 
De resultaten van het experiment Iaten zien dat het relatieve perceptieve belang van 
de ruisplof en de formanttransities sterk afhankelijk is (1) van de plofklank waar­
van de plof en transities afkomstig zijn, {2) van de klinkercontext, en {3) van het 
stemhebbende of stemloze karakter van de plofklank. Velaire ruisplofjes bevatten 
over het algemeen sterkere cues voor plaats van articulatie dan de andere ruisplofjes. 
Dentale transities zijn zwakker dan labiale of velaire transities. De ruisplof domi­
neert de waargenomen plaats van articulatie in de context van een voor-klinker, 
terwijl in andere klinkercontexten de formanttransities domineren. Tenslotte vin­
den we dat de ruisplofjes van stemloze plofklanken perceptief belangrijker zijn dan 
die van stemhebbende plofklanken. 

Hoofdstuk 6 beschrijft de simulatie van het classificatiegedrag van de luisteraars 
in het perceptie-experiment van hoofdstuk 5. Eerst worden een aantal fijnschalige en 
grofschalige cues gemeten aan aile stimuli. De set van fijnschalige cues bevat onder 
andere de frekwenties van F2 en F3 bij steminzet en in de klinker, plus een aan­
tal ruisplofparameters. De set van grofschalige cues bevat onder andere de globale 
spectrale belling en de sterkte van de mid-frekwentie piek direct na loslating van de 
afsluiting, en de verandering van deze maten over de tijd. Vervolgens worden deze 
cues afgebeeld op de perceptieve data met behulp van het eerder gelntroduceerde 
formele model van menselijk classificatiegedrag. De resultaten van de modelschat­
tingen Iaten zien dat de fijnschalige cues, zoals de formantfrekwenties gecombineerd 
met enkele ruisplofparameters, een betere beschrijving geven van de perceptieve 
data dan de grofschalige cues. The beste mod ellen worden gelnterpreteerd in termen 
van de akoestische grenzen die horen bij de waargenomen lingu1stische contrasten. 
De grenzen zijn lineare functies van 5 of 6 cues, met een duidelijke fonetisch interpre-
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tatie. De grenzen geven een kwantitatieve beschrijving van de vaak bediscussieerde 
"ruilkoers" relatie tussen de verschillende cues voor plaats van articulatie in plof­
klanken. 

In het laatste. hoofdstuk wordt aangegeven hoe het onderzoek dat beschreven 
wordt in dit proefschrift waardevol kan zijn op twee punten. Allereerst hebben we 
met betrekking tot de primaire fonetische vraagstelling gevonden dat het classifi­
catiegedrag van de luisteraars beter kan worden beschreven op basis van fijnschalige 
cues dan op basis van de grofschalige cues. Tevens hebben we de waargenomen 
lingu!stische distincties beschreven in termen van lineaire functies van akoestische 
cues. Ten tweede hebben we een nieuw experimenteel paradigma ontwikkeld 
voor onderzoek aan fonetische perceptie. Het paradigma combineert aspecten 
van drie traditionele experimentele benaderingen, te weten akoestische analyse, 
perceptie van gemanipuleerde natuurlijke uitingen, en perceptie van synthetische 
spraakachtige klanken. Een belangrijk voordeel van ons paradigma ten opzichte 
van de bestaande methoden is de mogelijkheid om via een perceptie-experiment 
met gemanipuleerde natuurlijke uitingen een wiskundige modellering te maken van 
hoe hiisteraars cues auditief verwerken om te komen tot een classificatie. 
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Stellingen 
behorende bij het proefschrift 

Detailed versus gross spectra-temporal cues 
for the perception of stop consonants 

van Roel Smits 

1. De metingen val} Kewley-Port (J. Acoust. Soc. Am. 72, 1982) aan formant­
overgangen in in\iele plosieven hebben een grotere onnauwkeurigheid dan de 
gepretendeerde 60 Hz, vanwege de grote vensterlengte en vensterverschuiving 
die gebruikt zijn bij de analyse van het spraakmateriaal. 

2. De conclusies gerapporteerd door Suomi (J. of Phonetics 13, 1985) betref­
fende het ontbreken van invariantie in globale spectrale structuren zijn niet 
geoorloofd op grond van zijn onderzoeksresultaten. 

3. Met het verschuiven van de invariantie in het spraaksignaal, via invariantie in 
neuro-motor commando's voor articulatie, naar invariantie in articulatorische 
intenties, schuift de motor theorie van spraakperceptie het rijk der religie 
binnen, aangezien de theorie vrijwel onfalsifieerbaar is geworden. 

4. Het "fuzzy-logical model of perception" van Oden en Massaro zou zowel een 
zinvoller onderzoekgereedschap worden, als minder vrije parameters bevatten, 
indien de afbeelding van fysische cues naar interne representaties expliciet zou 
worden gemodelleerd via een eenvoudige wiskundige transformatie, bijvoor­
beeld met een sigmoide-achtige functie. 

5. Het succes van bepaalde spraakrepresentaties, zoals de korte tijd Fourier 
amplitude en linear predictive coding, is zo groot dat zij heden ten dage de 
ontwikkeling van spraakonderzoek in zekere mate vertragen. 

6. Het feit dat een "stimulus-cue ruimte" met een dimensie hoger dan 2 moeilijk 
interpreteerbaar is, heeft het onderzoek aan spraakperceptie parten gespeeld. 
Bij het ontbreken van akoestische invariantie in 1 of 2 dimensies wordt te 
gauw geconcludeerd dat invariantie volledig ontbreekt, en worden complexe 
"decoderings" -mechanismen gepostuleerd. Toch is er geen reden om aan te 
nemen dat het menselijke perceptieve systeem niet in staat is om geluiden te 
classificeren in hoogdimensionale ruimten. 

7. Bij het ontwikkelen van een lesprogramma voor een onderzoekschool is de 
bijdrage van degenen die het programma gaan volgen- hoog-opgeleide mensen 
met een kritische houding en grote ervaring in het volgen van onderwijs -
onmisbaar. Als deze bijdrage spontaan wordt gegeven client deze positief te 
worden ontvangen. 



8. Een goede wetenschapper onderscheidt zich van minder goede wetenschappers 
in het vermogen om vraagstellingen te formuleren eerder dan in het vermogen 
om meningen of "zekerheden" te poneren. Het zou daarom informatiever zijn 
over de kwaliteit van de promovendus om het proefschrift vergezeld te doen 
gaan van een aantal vraagstellingen dan van een aantal stellingen. 

9. Het is voor de voortgang van, en creativiteit in wetenschappelijk onderzoek 
van belang dat er ruime gelegenheid blijft bestaan voor onderzoek waarvoor 
op geen enkele wijze het maatschappelijke of commerciele nut hoeft te worden 
aangetoond. 

10. Het is ironisch dat medewerkers en studenten van de Technische Universiteit 
Eindhoven troost zoeken bij koffie-automaten met een klokje dat de tijd uit­
drukt in de eenheid guldens. 

11. Geen gedicht kan de poi:\zie van de maandagochtend zo treffend uitdrukken 
als een hondedrol naast je bureau. 


