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Memorandum COSOR 96-20, 1996, Eindhoven University of Technology

THE M�M�cWITH CRITICAL JOBS

IVO ADAN� AND GERARD HOOGHIEMSTRAy

Abstract� We consider the M�M�c queue� where customers transfer to a critical state when their
queueing�sojourn� time exceeds a random time� Lower and upper bounds for the distribution of the
number of critical jobs are derived from two modi�cations of the original system� The two modi�ed
systems can be e�ciently solved� Numerical calculations indicate the power of the approach�

Key words� M�M�c� priority queue� bounds� matrix methods

AMS subject classi�cations� �	K
�� �	B



�� Introduction� We consider an M����M����c queue� where customers trans�
fer to a critical state when their queueing�sojourn� time exceeds a random time� This
time is exponentially distributed with parameter �� Critical customers have preemp�
tive priority over non�critical ones �hence the servers never attend non�critical cus�
tomers if there are critical customers waiting in the queue��

In the application that we have in mind� the customers are repairjobs and the
servers are repairmen �engineers�� When the queueing time of a job exceeds a ran�
dom time� the repairjob will be called critical and causes a slowdown of the entire
installation from which the repairjobs originate� An example of such an installation
is a sugarfactory �sugarhouse�� where sugarbeets are re�ned� The technical sta� of
such a factory� who maintain the installation� consists of engineers working in full shift
during the beetcampaign� This beetcampaign is a period of approximately 	

 days
during which the beets are harvested from the �elds and re�ned in the factory� The
management of the sugarhouse is interested in the delay of the re�nery process caused
by technical failures of the installation� We model the repairjobs and the engineers
as a multi�server queue� A repairjob becomes critical when its queueing time exceeds
a given random time and it is then treated with priority� We arrive at the model
described above by assuming that failures arrive according to a Poisson process� the
repairwork is done with an exponential rate and jobs become critical with an exponen�
tial rate� Of course� such a model can only be used as a �rst approximation� The basic
quantities of interest for the management are the total time during a campaign that
the system contains critical repairjobs and the average number of critical repairjobs�

The system can be represented by a two�dimensional Markov process with states
�m�n� where m is the number of non�critical jobs and n the number of critical jobs in
the system� It is di�cult to �nd an explicit solution for the stationary probabilities of
this Markov process� We will not attempt to do this� Instead lower and upper bounds
for the distribution of the number of critical jobs will be derived from two modi�cations
of the original system� which are easier to solve� The number of non�critical jobs in
these two systems is bounded by a certain threshold� In the lower bound model this
is realized by rejecting a new job if the number of non�critical jobs has reached the
threshold and in the upper bound model a new job becomes immediately critical in
this case� The larger the threshold� the better the bounds will be� but also the more
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e�ort it takes to compute the bounds� Note that when there are many jobs in the
original system� most of them will be critical� Hence one might expect that the bounds
are tight for already moderate values of the threshold�

The reason why the lower and upper bound system are easier to handle than the
original model is that the Markov processes describing these systems have only one
unbounded variable� namely n� So they are essentially one�dimensional� In fact� these
processes are so�called quasi�birth�death processes� which can be e�ciently solved by
using Neuts matrix�geometric approach �	
��

The proof of the bounds is based on a Markov reward technique similar to the ones
used in ��� �� �� �� 	� ��� In these references �rst the Markov processes representing the
original model and the lower and upper bound model are translated into equivalent
Markov chains� Then it is shown by induction that for each �nite number of periods
the performance of the original model is sandwiched between the performances of the
two bound models� Letting the number of periods tend to in�nity yields the result for
the average performance� The translation into a Markov chain is only possible if the
transition rates are bounded� In our case� this holds for the lower and upper bound
model� but not for the original model� Therefore we have to follow a slightly di�erent
road� First we prove that the number of critical jobs in the lower �upper� bound model
stochastically increases �decreases� as the threshold increases� This is established by
using the technique described above� Then the proof is �nished by showing that the
distributions �and also the means� of the number of critical jobs in the lower and upper
bound models converge to that of the original model as the threshold tends to in�nity�
In fact� we prove more than in the references mentioned� in the sense that not only
the bounds are proved� but also that they converge to each other�

The Markov reward technique used in the present paper to establish computable
bounds is also a powerful tool to prove qualitative properties� like e�g� monotonicity
properties in queueing networks �cf� �	��� or optimality of routing policies to parallel
queues �cf� �����

The model with an additional input stream of jobs which are critical from the
beginning has been studied by De Waal �	�� and Van Rooij �		�� They use this model
to describe corrective and preventive maintenance of components in an installation
like� e�g�� a plant at an oil re�nery� In their model corrective maintenance jobs �i�e��
the critical jobs� have priority over preventive maintenance jobs� But preventive main�
tenance of a component can change into corrective maintenance� namely when that
component breaks down while it is waiting� They develop approximations for the
fraction of preventive maintenance jobs that become corrective and the mean waiting
time of corrective maintenance jobs�

The paper is organized as follows� In Section � we describe the models� The
bounds are established in Section � and the matrix�geometric analysis of the lower
and upper bound model is brie�y described in Section �� We present numerical results
in Section �� The �nal section is devoted to conclusions and comments�

�� The models� We consider an M����M����c queue� where jobs become crit�
ical when their queueing time exceeds an exponential time with mean 	��� Critical
jobs have preemptive priority over non�critical jobs� In the lower and upper bound
model the arrival mechanism is modi�ed such that the number of non�critical jobs
never exceeds a ��xed� threshold T � If� due to an arrival� the number of non�critical
jobs would exceed T � then in the lower bound model that job is rejected and in the
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upper bound model that job becomes instantaneously critical�
The three models are Markov processes� The state of the original system can

be described by the pair �m�n�� where m is the number of non�critical jobs in the
system and n the number of critical jobs� From state �m�n� there are transitions to
�m�	� n� with rate � �an arrival� and �m� 	� n�	� with rate m� �transfer to critical
state�� There are two other transitions corresponding to service completions� namely
to �m�n � 	� with rate min�n� c�� �departure of a critical job� and� if n � c� then
also a transition to �m � 	� n� is possible with rate min�c � n�m�� �departure of a
non�critical job�� The states in the lower and upper bound systems are restricted to
the pairs �m�n� with m � T � The transitions are the same as in the original system�
except that in the states �T� n� the transitions to �T � 	� n� with rate � are replaced
by transitions �with the same rate� to �T� n� and �T� n� 	� in the lower and upper
bound system� respectively�

Since in the original and upper bound system the total number of jobs is the
same as in the ordinary M�M�c� the condition � � c� is necessary and su�cient for
these systems to be ergodic� The lower bound system destroys work� so it is ergodic
if the original system is ergodic� The transition rates for the three models with c � 	
are depicted in Fig� 	� For the lower and upper bound model we only indicate the
di�erences with respect to the original model�
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Fig� �� Transition rates for the three models with c � �

In the next section we will prove that the number of critical jobs in the upper
bound model is stochastically larger than in the original model� The proof for the
lower bound model proceeds along the same lines� and it is therefore omitted�

�� Proof of the upper bounds� We �rst compare the upper bound models
with thresholds T and T � 	� Let Lu

T be a random variable denoting the �stationary�
number of critical jobs in the model with threshold T � Then we will prove the following
result�

Theorem ���� Lu
T �st L

u
T�� for each T � 
�

Let us �x T � 
 and N � 
� We now have to show that

P �Lu
T � N� � P �Lu

T�� � N� ��	�

Let QT be the generator of the model with threshold T � Its equilibrium distribution
	T satis�es 	TQT � 
� Related to this Markov process we introduce the Markov chain
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with transition matrix I � �QT where � 
 
� but su�ciently small for I � �QT to
be nonnegative� Clearly the Markov chain has the same equilibrium distribution 	T
as the Markov process� Hence� to establish �	� we can focus on the Markov chains
I � �QT and I � �QT�� with � � 	���� c� � �T � 	���� Along with these chains
we introduce the one�step cost c�m�n� de�ned as 	 if n � N and 
 otherwise� De�ne
vk�m�n� and wk�m�n� as the total expected cost over k periods for the models with
thresholds T and T � 	� respectively� and with �m�n� as initial state� Further we set
v� � w� � 
� In Appendix A we prove by induction the following intuitively obvious
inequalities for the functions wk�

Lemma ���� For all k � 
 we have

�i� wk�m�n� 	� � wk�m�n�� 
 �m � T � 	� n � 
�
�ii� wk�m� 	� n� � wk�m�n�� 
 �m � T� n � 
�
�iii� wk�m�n� 	� � wk�m� 	� n�� 
 � m � T� n � 
�
The inequalities �i� and �ii� state that it is preferable to start with less jobs in the

system and �iii� states that it is attractive to change a critical job into a non�critical
job� Note that the cost function also satis�es these inequalities� Lemma ��� is crucial
for the proof of the following result �see Appendix B��

Lemma ���� For all k � 
 and all �m�n� with 
 � m � T and n � 
�

vk�m�n� � wk�m�n� ����

From Lemma ��� we conclude that

P �Lu
T � N� � lim

k��

vk�m�n�

k
� lim

k��

wk�m�n�

k
� P �Lu

T�� � N� �

and so the proof of Theorem ��	 is complete�
Next we show that the equilibrium distribution 	T of the upper bound model with

threshold T converges weakly to the equilibrium distribution 	 of the original model
as T tends to in�nity�

Theorem ���� 	T
d
� 	 as T � ��

Proof� Set

	T �k� �
X

m�n�k

	T �m�n��

Balancing the �ow into and out the set of states �m�n� with m � n � k yields that
min�k � 	� c��	T�k � 	� � �	T �k� �note that for the lower bound model we have �
instead of ��� Hence� it is immediate that for � � c� and independent of T the prob�
abilities 	T �k� decrease exponentially� It follows that the class of discrete probability
measures f	T � T � 
� 	� � � �g on S � f�m�n� � N�g is tight� Consequently� by Pro�
horovs theorem �cf� ���� Theorem ��	� the class f	Tg is relatively compact� meaning
that each subsequence 	T

n�
contains a further subsequence 	T

n��
that converges weakly

to some discrete probability measure �	 on S� The limit probability measure �	 must
satisfy the equilibrium equations of the original model and hence is equal to 	� So
each converging subsequence 	T

n��
has limit 	 and this implies the statement of the

theorem�
Let L be the number of critical jobs in the orginal system� Theorems ��� and ��	

imply that the distribution of Lu
T converges to that of L� monotonously�

Corollary ���� P �Lu
T � N� � P �L � N� as T �� for each N � 
�
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Denote the means of Lu
T and L by Lu

T and L� respectively� From the monotone
convergence theorem we can conclude that the means also converge�

Corollary ���� Lu
T � L as T ���

Similar results hold for Ll
T � the number of critical jobs in the lower bound model

�with� of course� obvious modi�cations such as � instead of � in the two corollaries
formulated above��

�� Analysis of the upper bound model� In this section we brie�y describe
the analysis of the upper bound model� which is based on the matrix geometric theory
developed by Neuts �	
�� The analysis of the lower bound model is identical �and
therefore not included��

The upper bound model can be described by an irreducible Markov process with
states �m�n�� where m is the number of non�critical jobs in the system and n the
number of critical ones� The state space is restricted to the pairs with m � T � Let
us de�ne for n � 
� 	� � � �� level n as the set of states �
� n�� �	� n�� � � � � �T� n�� Then
we partition the state space into the levels c� c� 	� � � � and we put together the levels

� 	� � � � � c�	 with less regular transition behaviour in one set of boundary states� The
states at a level are ordered lexicographically� For this partitioning the generator QT

is of the form

QT �

�
BBBBBB�

B�� B�� 
 
 
 	 	 	
B�� A� A� 
 
 	 	 	


 A� A� A� 
 	 	 	

 
 A� A� A� 	 	 	
���

���
���

� � �
� � �

� � �

�
CCCCCCA
�

The blocks A�� A� and A� are square matrices of order T � 	� The matrices B��� B��

and B�� are of dimension c�T � 	�
c�T �	�� c�T �	�
�T �	� and �T �	�
c�T �	��
respectively�

For � � c� the system is ergodic� Then the equilibrium probability vector 	T
exists� We partition 	T into the �large� vector 	bT � �	�T � � � � � 	

c��
T � of boundary states

and into the sequence 	cT � 	
c��
T � � � �� where 	nT is the equilibrium probability vector of

level n� Note that the generator A��A��A� is irreducible� so we can conclude from
�the continuous time version of� Theorem 	���	 in �	
� that

	nT � 	cTR
n�c � n � c ����

where the matrix R �the so�called rate�matrix� is characterized as the minimal non�
negative solution of the matrix quadratic equation

A� � RA� � R�A� � 
 �

The vectors 	bT and 	cT follow from the boundary conditions

�	bT � 	
c
T �

�
B�� B��

B�� A� �RA�

�
� 


and the normalization equation

c��X
n��

	nTe� 	cT �I �R���e � 	 �
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where e is the column vector of length T � 	 with all entries equal to one� For the
determination of R e�cient algorithms have been developed �see� e�g�� ����� From the
equilibrium distribution 	T it is now straightforward to determine global performance
characteristics� For instance� for Lu

T we �nd� by inserting ���� that

Lu
T �

�X
n��

n	nTe �
c��X
n��

n	nTe� 	cT �I �R���e� �c� 	�	cT �I � R���e �

�� Numerical results� This section is devoted to numerical results� In Fig� �
we demonstrate the rate of convergence of the bounds for the mean number of critical
jobs as a function of � for the case � � c � 	 and � � 
���� The dashed lines are the
bounds for T � �� the dotted ones for T � �� The results show that especially the
upper bound rapidly converges to the exact values� and that for high workload this
bound is much better than the lower bound� Apparently� transforming a non�critical
job somewhat earlier to a critical state has not much e�ect on L� but the impact
of destroying work is considerable� Luckily� it is possible to produce with the upper
bound model a �much better� lower bound for L as well� This will be explained below�
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Fig� �� Bounds for L as a function of � for � � c �  and � � 	�
� with T varied as � and ��

The number of jobs that becomes critical per unit of time should balance the
number of critical jobs that leaves the system per unit of time� Hence

�LM�M�c� L�� � �fc ����

where LM�M�c is the mean number of jobs in an M�M�c system and fc is the fraction
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of jobs that becomes critical� Note that fc satis�es

fc �
	

�

cX
n��

P �L � n�� �

where the sum at the right hand side is the number of critical jobs leaving the system
per unit of time� We can use relation ��� to produce a lower �upper� bound for L from
the upper �lower� bound for fc� In other words� with one bound model we are able
to produce a lower bound as well as an upper bound for L� In Fig� � we show the
lower bound for L �the dash�dotted line� obtained from the upper bound for fc which
is produced by the upper bound model with T � �� Clearly� this bound for L is much
better than the one obtained from the lower bound model with T � ��

In Table 	 we list for several values of c� � and � the mean number of critical
jobs L� the probability P �L � 
� and the fraction fc of jobs that becomes critical�
In all examples in Table 	 we have set � � 	�c� so that � is equal to the occupation
rate of the servers� The value of T indicates the minimal threshold needed to obtain
the performance measures with the accuracy �i�e�� the number of digits� listed� The
computation of L is based on the upper bound model only�

Table �

Performance characteristics� In all examples we have set c� � �

c � � L P �L � 	� fc T

 �� � ���� ����� ���
�� �
�� ���	 �����	� ��
���
 �

�� � ���
�� ���
��� ����
�� 
�
�� ������ �
���� ������	 �

� �� � ��	��� ���
�� �
���� �
�� �	��
 ������
 ������� �

�� � ���		� �
����� ������ 
�
�� ������ �	���
	 �����
	 �

We see in Table 	 that the performance characteristics can be determined accu�
rately for already moderate values of T � For each example the computation time on
an ordinary ��� PC is at most a couple of seconds�

We conclude this section by comparing the mean number of critical jobs in an
M�M�	 system where jobs become critical after an exponential time with mean 	��
with a system where jobs become critical after a deterministic time 	��� Let us denote
the mean number of critical jobs in the systems with an exponential and deterministic
deadline by Le and Ld� respectively� By Littles law we have that

Ld � �C �

where C is the expected time that a job is critical� Since the queueing time of a job
is exponentially distributed with parameter �� �� it follows that

C � e��������
	

�� �
�

Hence�

Ld � e��������
�

� � �
�
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In Table � we compare Le and Ld for several values of � and �� The results show that
the mean number of critical jobs is fairly insensitive to the distribution of the critical
deadline� except when � and � are both small�

Table �

Comparison of the mean number of critical jobs for an exponential and deterministic deadline�

� � Le Ld

�� � ��� �		��
�� ���	 �����
 ����� ��	��

�� � ���
� ���
�� ����� �����
 ���� ����

Note� If � is very small �� � ��	
�� it seems sensible to bound the number of
critical jobs instead of the non�critical ones� This can be realized by refusing the
transfer of a job to a critical state� if due to that transfer the number of critical jobs
would exceed a threshold T � Further� we have to bound the rate with which jobs
become critical� the maximum rate is M� say� It can be proved �along the same lines
as in Section �� that this model produces a lower bound for the distribution of critical
jobs�

	� Conclusions� We have seen that it is possible to derive tight lower and upper
bounds for the distribution of the number of critical jobs by comparing the original
system with two modi�ed systems� The lower and upper bound system are much easier
to analyze than the original one� because they have a matrix�geometric solution�

It is straightforward to extend the analysis to the case where there is also an input
stream of jobs which are critical from the beginning� As mentioned in the introduction�
this model is considered in �	�� 		�� Further it is also possible to derive bounds for
the performance of a system with phase�type deadlines and�or service times� In this
case� however� the state space is much larger than for the exponential system� since
we have to include extra information of the status of the jobs and the service process
in the state description�
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A� Proof of Lemma ���� The proof proceeds by induction� Since w� � 
 the
inequalities are trivially satis�ed for k � 
� Suppose that �i�� �iii� hold for k� Then
we will establish them for k � 	� The induction step is only worked out for �i�� the
other two inequalities can be treated similarly�

Case a� m � T � 	� n � c� We have

wk���m�n� 	� � c�m�n� 	� ���wk�m� 	� n� 	� ��m�wk�m� 	� n� ��

��c�wk�m�n� � �	����� c��m���wk�m�n� 	� �

wk���m�n� � c�m�n� � ��wk�m� 	� n� � �m�wk�m� 	� n� 	�

��c�wk�m�n� 	� � �	����� c��m���wk�m�n� �

Comparing the right sides of the equations above we see that �i� for k�	 follows from
the induction hypothesis �i��

Case b� m � T � 	� n � c�m � c� n� Then

wk���m�n� 	� � c�m�n� 	� ���wk�m� 	� n� 	� � �m�wk�m� 	� n� ��

��n�wk�m�n� � ��wk�m�n� � ��c� n � 	��wk�m� 	� n� 	�

��	����� c��m���wk�m�n� 	� �

wk���m�n� � c�m�n� � ��wk�m� 	� n� � �m�wk�m� 	� n� 	�

��n�wk�m�n� 	� � ��wk�m� 	� n� � ��c� n� 	��wk�m� 	� n�

��	����� c��m���wk�m�n� �

So from the induction assumptions �i�� �ii� we obtain wk���m�n� 	� � wk���m�n��
Case c� m � T � 	� n � c�m � c� n� From

wk���m�n� 	� � c�m�n� 	� ���wk�m� 	� n� 	� ��m�wk�m� 	� n� ��

��m�wk�m� 	� n� 	� ��n�wk�m�n� � ��wk�m�n�

��	����� �m� n� 	���m���wk�m�n� 	� �

wk���m�n� � c�m�n� � ��wk�m� 	� n� � �m�wk�m� 	� n� 	�

��m�wk�m� 	� n� � �n�wk�m�n� 	� � ��wk�m�n�

��	����� �m� n � 	���m���wk�m�n� �

we get that wk���m�n� 	� � wk���m�n��
The proof of the three cases above with m � T � 	 only needs obvious changes

and it is therefore omitted�
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B� Proof of Lemma ���� The proof is again by induction� For k � 
 inequality
��� is trivial� Suppose that ��� holds for k� In order to prove ��� for k� 	 we have to
distinguish between the cases m � T and m � T � but the latter is the only interesting
situation� For m � T and n � c we have �recall that vk has threshold T ��

vk���T� n� � c�T� n� � ��vk�T� n� 	� ��T�vk�T � 	� n� 	�

��c�vk�T� n� 	� � �	����� c� � T���vk�T� n�

wk���T� n� � c�T� n�� ��wk�T � 	� n� � �T�wk�T � 	� n� 	�

��c�wk�T� n� 	� � �	����� c�� T���wk�T� n� �

Hence

vk���T� n�� wk���T� n� � ���vk�T� n� 	�� wk�T � 	� n��

� ���vk�T� n� 	�� wk�T� n� 	�� � 
 �

where the �rst and third inequality follow by induction� the second one follows from
Lemma ����iii�� The case m � T and n � c follows in the same way�


