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Abstract 

In studying glass morphology often models are used that describe it as a strongly viscous 
Newtonian fluid. In this paper we shall study one of the problems encountered in glass tech
nology. It is dealing with producing packing glass by a so-called pressing process. The press
ing problem actually deals with the morphology of a bottle or jar. We first show how to deal 
with the temperature, by a suitable dimension analysis. In this analysis we see the dominance 
of the convection over the other modes of heat transfer. However, at the end of the pressing 

a stage called the dwell- flow is absent and we have to deal with conduction and radia
tion in a heat-only problem. A similar analysis is made for the re-heating, where the internal 
stresses are relaxed before the final, blowing stage of the forming process. We give a number 
of numerical examples to sustain our results. 

1 Introduction 

For many years, glass technology has been a craft based on expertise and experimental knowledge, 
reasonably sufficient to keep the products and production competitive. Over the last twenty years 
mathematical modelling of the various aspects of production has become increasingly decisive, 
however. This is induced in part by fierce competition from other materials, notably polymers, 
which, e.g., have found their way into the food packing industry. For another, this is a conse
quence of environmental concerns. It is not so much the waste (glass is 100% recyc1able, a strong 
advantage to most competitors) as the energy consumption. One should realize that the melting 
process of sand to I iquid glass makes up the largest cost factor of the product. The relative impor
tance of the current industry is illustrated by the following numbers: In the European Union about 
25 megatons of glass is being produced, which represents fifty billion euro worth. The industry 
employs more than 200,000 people. Two-thirds of the glass production is meant for packing Qars 

1 



and bottles). Float glass (used for panes) makes up most of the other quarter. The rest is for special 
products like CRTs and fibers. 

Production of container glass products goes more or less along the following lines. First grains 
of silica (typically available in the form of sand) and additives, like soda, are heated in a tank. 
This can be an enormous structure with a typical length of several tens of meters and a width of 
a couple of meters. The height is less impressive and rarely exceeds one meter. Gas burners or 
electrode heaters provide the necessary heat to heat the material to around 1400°C. At one end, the 
liquid glass comes out and is either led to a pressing or blowing machine or it ends up on a bed of 
liquid tin, where it spreads out to become float glass (panes, wind-shields, etc.). In the latter case 
the major problems are the need for a smooth flow from the oven on the bed and controlling the 
spreading and flattening. The pressing and blowing process is used in producing packing glass. 
To obtain a glass form a two-stage process is often used: First a blob of hot glass is pressed into a 
mould to form a so-called parison. It is cooled down (the mould is kept at 500°C) such that a small 
skin of solid glass is formed. The parison is then blown into its final shape. Such pressing/blowing 
machinery can produce a number of products at the same time; as a result a more or less steady 
flow of glass products is coming out on a belt. The products then have to be cooled down in a 
controlled way such that the remaining stresses are as small as possible (and thus the strength is 
optimal). 

Sometimes only pressing is needed. This is the case in the production of CRTs, where a stamp 
is pressed into liquid glass and after being lifting, a certain morphology should have been trans
ferred onto the glass screen. 

All these processes involve the flow ofthe (viscous) glass in combination with heat exchange. 
Although these two are closely intertwined we shall show in this paper that in they can often be 
decoupled. In cases where convective heat transfer is predominant this effectively leads to isother
mal flow problems on one hand and temperature problems on the other. In the stages where flow 
is absent or negligible we are left with a pure heat problem. 

This paper is written as follows. In Section 2 we shall derive the basic flow equations that will 
playa role in our models. We discuss the pressing of glass in a mould. We describe the model and 
pay special attention to the heat exchange problem. In Section 3 we discuss the actual pressing 
phase of the process. In Sections 4 and 5 we look at the post-pressing treatments of the parison: 
the dwell and the re-heating; these to stages do not involve convection and allow for a thorough 
treatment of the underlying heat problem. 

2 Modelling The Problem 

In many cases the process of glass production consists of three main phases. The first one is the 
pressing phase, the second is the re-heating phase, and the final one the blowing phase. In this 
section we first describe the process as it is used in industry. The different stages of the process 
are shown in Figures 2.1 and 2.2. Throughout this section we refer to these figures. 

1. A gob of glass leaving the furnace (tank), enters into a configuration consisting of two parts: 
the mould and the plunger (a). Then, the pressing of the glass takes place in the following 
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way. The plunger moves up inside of the mould (b) and forces the glass to fill the free space 
in between. At the end of this stage the glass is left in the mould for a second (c), which is 
called the dwell. Stages (a), (b) and (c) form the pressing phase. 

2. After the dwell the parison - as the half-product is called - is taken out of the mould and 
left outside for a couple of seconds (d) giving it the possibility to re-heat, i.e. soften the 
internal temperature gradients. 

3. The parison is then placed into a second mould (e) and is blown in to its final shape (t). The 
latter two stages form the blowing phase of the press-and-blow process. 

In order to make a sufficient mathematical model of the process it is necessary to mention the 
basic characteristics and numerical parameters of the process: 

I}o = I} (Til) 104 kg/m s 
K = 3.50 m-I 
p = 2500 kg/m3 

cp = 1350.0 J/kg K 
kC = 1.71 W/mK 
Lo = 10-2 m 
n = 1.50 
Tn = 1250°C 

" 

~1I = 700°C 
Tp = 1000°C 
Vo = 10-1 m/s 

- the dynamic viscosity of the glass 
- absorption coefficient 
- the density of glass 

specific heat 
- conductivity 
- the typical scale for the parison 
- refractive index 
- the temperature of the glass 
- the temperature of the mould 
- the temperature of the plunger 
- the typical velocity of the plunger 

(2.1) 

Figure 2.1: The various stages of the pressing phase in a press and blow process: a) The glass 
enters the mould; b) The plunger presses the glass into form; c) During the dwell the outside of 
the glass is cooled and solidified; d) The plunger is reheated to reduce temperature gradients. 
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Figure 2.2: The various stages ofthe blowing phase: e) The plunger is put into the blow mould; 
f) The glass is blown into its final stage. 

2.1 Modelling of The Flow 

As it was already implicitly assumed above, the glass - at sufficiently high temperatures - can 
be considered a viscous fluid. Glass may be viewed as a frozen liquid, i.e. it has an amorphous 
structure. At sufficiently high temperatures (say above 600 °C) it behaves like an incompressible 
Newtonian fluid, which means that for a given dynamic viscosity 11, a velocity v and a pressure 
p, the stress tensor (]' is given by 

(2.2) 

This constitutive relation should be used to close the equations that actually describe the motion 
of glass gob, the momentum equation (2.3) and the continuity equation (2.4): 

(2.3) 

where p denotes the mass density and f the volume forces on the blob, 

\1·v=O. (2.4) 

Using (2.2) in (2.3) we obtain 

(2.5) 

In the problem we shall study in this paper we anticipate the viscous forces (\1 . cr) to dominate in 
(2.3). To see this we shall reformulate our equations in dimensionless form, for which we need 
some characteristic quantities. 

First we remark that the only acting volume force in the process is gravity, so Ilfll = g ~ 
lOm/s2. We define 

- 1 
f:= -f. 

g 

4 
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For a fixed temperature, the viscosity rJ is assumed constant, say rJo ~ 104 kg/m s for a reference 
temperature of SOO°e. Normally, there is no need to introduce a dimensionless viscosity, but we 
shall nevertheless do this, as will become clear in the subsequent sections. Thus, let 

_ 1 
rJ := -rJ· (2.7) 

rJo 

A typical average velocity Vo (which is lO-Im/S or much smaller), say Vo ~ lO-Im/S, can be 
used as a characteristic velocity. As a characteristic length scale we take Lo(~ 1O-2m). We now 
define the dimensionless quantities 

_ x 
x:=-, 

Lo 

_ v 
v'-.- Vo' 

_ Lo 
p:=-p. 

rJo Vo 
(2.S) 

A proper choice for characteristic time scale is the ratio Lo/ Vo (~ 10-1 s). So, let us finally define 

- Vo 
t:= -to 

Lo 

In this problem the Reynolds number (Re) and the Froude number (Fr), defined by 

VoLoP 
Re:= ---

rJo 

pgL2 

Fr:= __ 0 

rJo Vo 

(2.9) 

- an important characteristics. The Reynolds number indicates the ratio between inertial forces 
and viscous forces and the quotient of the Reynolds number and the Froude number indicates the 
ratio between volume forces (i.e. gravity) and viscous forces. The two numbers are estimated by 

(2.10) 

Substituting all dimensionless quantities into (2.4), (2.5) yields 

Re ----:::: + (VV)T V (
OV ) 
dt 

(2.11) 

V·v = 0 

All spatial derivatives in (2.11) have to be taken with respect to the dimensionless variable x. 
l,From this we conclude that the viscous forces dominate indeed. Thus, the equations describ
ing the flow are (rewritten in their dimensionless form) 

(2.12) 

V·v = 0 

These equations are of course the Stokes creeping flow equations. They require further boundary 
conditions in order to be able to solve for the vector V. Actually, these will be kinematic con
straints, changing with time t, describing the evolution of the gob. They have in common that at 
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least one part of the boundary is free. Hence, besides finding the velocity vet) we then need to 
find this free boundary. The actual displacements x satisfy the ordinary differential equation: 

dx 
dt = vex). (2.13) 

Numerically we shall deal with these problems in a two stage sweep: Suppose we have a domain 
Q(t), describing the glass gob. Then solve (2.12) (approximately) and use the velocity field on 
the boundary to compute a new domain at time t + I::!.t, using (2.13) and the boundary conditions. 

The results of particular simulation, velocity magnitude and pressure field, are depicted on 
Figure 3.1. 

2.2 Modelling of The Heat 

The energy equation for an incompressible fluid is given by 

DT 
pCp Dt = - \1 . q + <1>, (2.14) 

where the heat flux q is due to the heat transfer mechanisms of conduction and radiation, and the 
source term <I> comes from the internal heat generation by action of viscous and volume forces. 
Because of the elevated temperatures in this process and the semi-transparency of glass - it ab
sorbs, emits and transmits radiative energy - knowledge of radiation is necessary. Because of 
the high temperatures and the importance of radiation the heat flux, differently from the usual for
mulations of the energy equation, consists of a conductive heat flux qC and a radiative heat flux 

(2.15) 

During the rest of the analysis we assume that all material properties are constant throughout the 
medium and time. Furthermore, we assume that the conduction obeys Fourier's law, which states 
that 

(2.16) 

where kC is the conductivity, a material property. 
The radiative heat flux cannot be expressed as simply. An approach generally made in indus

try is to make the often not sustainable assumption that the problem is optically thick. This means 
that the optical thickness r - defined by r := K L, where K is the absorption coefficient, which 
denotes the amount of radiative energy absorbed by the medium per meter, and L is a character
istic length - is much greater than one. For typical values of K '" 100m- 1 for dark glasses, and 
L '" 0.01 (the thickness of the parison), we see that this assumption is violated. The results later 
in this section show the lamentable effect this has on the accuracy of the solution. 

The reason to make this assumption in practice is made anyway, is that radiation can be ac
counted for in a computationally cheap way. Especially in higher dimensions, the only other op
tions are: 
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• Not to account for radiation - and as we have seen in the previous chapter, radiation some
times plays only a very minor role, even at elevated temperatures; 

• To use higher order approximations - in general these are computationally very intensive, 
e.g. Monte Carlo methods, Modified Diffusion, Ray Tracing. 

However, if we restrict ourselves to one dimension we can use both the optically thick method and 
the exact solution to the heat problem (2.14), and see if there are significant shortcomings with 
the use of the optically thick approximation. 

The derivation of the optically thick approximation - also called the Rosseland or diffusion 
approximation - can be found in many text books on radiative heat transfer such as [5] and [1]. 
Here, we only state the result. The radiative heat flux under this approximation can be written as 

(2.17) 

which resembles the expression for the conductive heat flux (2.16). In this equation kf (T) is called 
the Rosseland parameter and is given by 

4 n2(jT3 
F(T) := - , 

3 K 

where n is the refractive index (a material property) and (j is the Stefan-Boltzmann constant. We 
see that the only difference with the conductive heat flux is the non-linearity of the diffusion co
efficient. In many applications this can be implemented without a drastic change of the existing 
code. 

For an exact solution we need to go deeper into the theory behind radiative heat transfer. The 
emitted radiative energy by a medium is proportional to the total blackbody intensity B(T), which 
by definition is the amount of energy per unit area, per unit spherical angle of a perfect emitter
absorber. Because it is already implicitly integrated over all wavelengths, the total blackbody 
intensity is only a function of the temperature T. Planck found this upper limit to emission to 
be 

- T4 
2(J 

B(T) =n -. 
Tr 

(2.18) 

Because of the T4 term, radiation becomes progressively more important than conduction. We 
will also use the notation B(x), defined as B(x) := B( T(x)), where the blackbody is a function 
of the position x. 

In practice most of the other radiative quantities are dependent on the wavelength).. of the 
radiation, but here we consider so-called gray radiation, where this dependence is absent. So, 
we can define the radiative intensity J (x, s) which is defined as the amount of radiative energy 
per unit area, per unit solid angle, at a certain position x, travelling in a certain direction s. If the 
radiation is unpolarised and a local thermal equilibrium can be assumed (see [3]), this quantity 
solely and totally describes electromagnetic radiation. The behaviour of the radiative intensity is 
determined by the radiative transfer equation: 

s· VI (x. s) = K(x)B(x) - K(X)J (x, s), (2.19) 
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where K is the absorption coefficient denoting the amount of radiative energy absorbed by the 
medium per unit length. The boundary conditions for this equation for diffusely emitting/reflecting 
boundaries are given by 

(2.20) 

Here, we used E(Xw) for the emissivity of the boundary, where Xw is an arbitrary point on the 
boundary. Further, p(xw) is the (diffuse) reflectivity. Both are material properties. Finally, n is 
the outward pointing normal at the boundary. 

Then, if we know the intensity, we can determine the radiative heat flux qf by 

qf(X) = 1 sl (x, s) dQ. 
4rr 

(2.21) 

In higher dimensions, it is very elaborate to work with these equations. However, a lot can be 
said about the behaviour of radiative heat transport if we restrict ourselves to one dimension only. 
The radiative transfer equation (2.19) can be simplified for the quasi-one-dimensional case into 
the foHowing equations. Here, we mean by quasi-one-dimensional that we do not restrict the di
rections to one dimension. Doing so would result in Rosseland-like solutions. So, Jet 

(2.22) 

(2.23) 

where ]+ and ]- denote the intensity, r J:. K(x)dx is the dimensionless optical co-ordinate, 
and ji, = Icos f} I, where f} is the angle of the direction vector with the x-axis. Here we wrote the 
intensity in two different components ]+ and 1- with a ji, E (0, 1], because it simplifies relations 
that follow. 

If we look at the problem on the open interval x E (xo, XI), with corresponding dimensionless 
optical co-ordinate r E (0, rl), the formal solution for the above equations is: 

(2.24) 

(2.25) 

Integrated over all directions these give the two hemispherical fluxes q+ and q-, defined by 

q+Cr) := 2rr t ji,I+(r, ft) dft = 2rrcoE3(r) + 2rr {T E2 (r s)B(s) ds; 
~) ~ 

(2.26) 

q-(r) := 2rr 11 jll- Cr, ft) dft = 2rrcI E3(rl r) + 2rr JTI E2(r - s)B(s) ds, (2.27) 
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where E; is the i -th exponential integral. Then, we can construct the radiative heat flux with 

qf:=2rr: l'[l[I+(r,[l) I-(r,[l)]d[l=q+-q-. (2.28) 

Combining (2.26-2.28) then gives 

qr = 2rr: coE3(r) + 2rr: 1T E2(r - s)B(s) ds - 2rr:c,E3(r, r) - 2rr: 17:1 E2(S - r)B(s) ds, 

(2.29) 

Since in the heat equations we use the gradient of the heat flux, we differentiate (2.29) immediately 
to find 

dqf tl 
dr (r) = 4rr: B(r) - 2rr: coE2(r) - 2rr:c] E2 (rl - r) - 2rr: Jo EI (Ir - sI)B(s) ds. (2.30) 

In this equation Co and CI are still undetermined; they are depending on the radiative properties of 
the boundaries, which we have silently assumed to be diffusely emitting and reflecting. The case 
with no reflection P = 0 in (2.20) - is the simplest. Because of Kirchhoff's law: 

(2.31) 

we find that E 1; in other words we are dealing with perfectly black walls and the emitted 
intensities at the boundaries are equal to the blackbody intensity. As we will see in the Section 5, 
this situation applies in the reheating phase when the parison is situated in an infinite atmosphere. 

However, for the dwell this is not valid. During the dwell the glass is enclosed by the metal 
mould on both ends and metal typically has a reflectivity of P ~ 0.9. Therefore we must have a 
closer look of (2.20), which rephrased for one dimension and integrated over the right directions 
reads 

2rr:co := q+(O) = 2rr:EoBo + Poq-(O); 

2rr:c, := q- (rd = 2rr:E,B] + p,q+(r,). 

(2.32) 

(2.33) 

Here Bo and B I are the blackbody intensities due to the temperature of the respective walls, and 
not due to the temperature of the glass at those walls. If conduction is neglected, it should be 
noted that there usually is a temperature jump at the boundary. The hemispherical fluxes at the 
wall have special names: qr;- := q+(O) and ql := q-(rl) are called the radiosities of the respec
tive boundaries, while q(; := q-(O) and q+ := q+(rl) are called the irradition at those walls. 
Applying (2.26,2.27) to (2.32,2.33), and then applying the latter two again, gives 

Co = EoBo + PoEJBI E2(rl) Po 1:1 
E, (s)B(s) ds + PoP, E2(rl) 1:1 

El (rl - s)B(s) ds. 

1 - POPI Ei( r,) 
(2.34) 

PIEoBoE2(rl) + PI J:I EI (s)B(rl - s) ds + poPI E 2(r,) loTI E, (s)B(s) ds 
CI =------------------~----------~------------~----------

1 poP,Ei(rl) 
(2.35) 
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If we know the temperature distribution and the temperature of the walls we can use (2.18) directly 
to compute Co and CI from these. Although in most heat problems we do not know the temperature 
distribution a priori, the use of (2.30) together with (2.34,2.35) is next to trivial in explicit or 
iterative methods. 

For higher dimensions a similar but more complex derivation can be done. The method where 
the Discrete Ordinate Method - described in [4] - and ray tracing are combined to approximate 
the formal solution. A discussion of this method is beyond the scope of this artic1e. The theory 
behind it can be found in [7]. 

3 Pressing phase 

As usual in viscous fluid flow the energy equation is ignored because in an incompressible New
tonian fluid with constant viscosity it is not coupled to the equations of motion. In the present 
case the high viscous forces might generate heat by friction, such that the temperature rises and 
the viscosity decreases. In order to investigate this possibility consider the energy equation (2.14) 
for incompressible flow. Using (2.15), (2.16) and (2.17) we can rewrite it as follows: 

(3.1) 

where C p is the heat capacity, T is the absolute temperature, r} is the viscosity, kC is the heat con
ductivity, and kf(T) is the Rosseland parameter as it was defined before. 

Let us introduce a dimensionless temperature variable T: 

T = Tm + I:lTT, (3.2) 

where I:lT TK Tm (TK, Till are the temperatures of the glass and the mould, as defined in 
(2.1 ». Using dimensionless variables (2.7), (2.8) and (3.2) the equation above reads as follows 

--:::;- + v . \IT = -\I T + \I. ---\IT aT - J 2 - (P(T)]-) 
at Pe k C Pe 

Both the dimensionless numbers IIPe and Ec/Re, defined by 

Re:= VoLop, 
r}o 

are of order 10-4
, so the energy equation (3.1) simplifies to: 

dT aT 
- = - +v· \IT = 0, 
dt at 

(3.3) 

(3.4) 

so the temperature remains constant. Thus, assuming uniform temperature distribution in the 
glass gob, we can compute the flow using correspondent constant viscosity r}. As a result velocity 
and pressure fields can be obtained. 
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Figure 3.]: Velocity magnitude and pressure field. 

4 Dwell 

During the dwell - the stage when the glass is kept in the mould after all the air has been forced 
out - there is no flow. If the radius and the height of the bottle is much bigger than its thickness, 
as is usually the case, we can locally approximate the behaviour of the temperature as being one 
dimensional. In this case, the two walls of our approximation in Section 2.2 are the mould on one 
side and the plunger on the other. It is assumed that the glass makes perfect contact with both 
the mould and the plunger, so we can assume Dirichlet boundary conditions on either side. The 
thickness of the glass layer is denoted with L. In this case, (2.14) simplifies to 

oqC oqf 
-- - -, t > 0, 0 < x < L; ax ax 

(4.1) 

to which the following boundary and initial conditions are added: 

T(t,O) = I;nould, T(t, L) = Tparison, and T(O, x) = To(x). (4.2) 

Now, we define the Rosseland number Ro to be 

(4.3) 

where Tw is some characteristic temperature (e.g. the temperature of the walls or the average 
thereof). If we assume optical thickness, the Rosseland approximation (2.17) holds, the ratio be
tween the radiative and conductive diffusion parameters is 

kr 7J3 

k c = 3Ro' 

in which 7J := T / Tw is the dimensionless temperature. Remembering we assumed the material 
properties to be constant, and defining the thermal diffusivity to be a := k C 

/ PC}H (4.1) becomes, 
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Figure 4.1: Temperature profile after one second dwell (various methods). 

after dividing left and righthand side by Tw and kC
: 

1 aT 
a at ~) aT]. 

3Ro ax 

Introducing the Fourier number (dimensionless time) cP := at / L2 and the dimensionless coordi
nate ~ := x / L this simplifies to, after division by Tw , 

(4.4) 

Expressed in the optical coordinate T := K L and the optical Fourier number CPr := aK
2t, this can 

be written as: 

a1J a [( 
acpr = aT 1 

~) a1J]. 
3Ro aT 

(4.5) 

Finally, if we do not use the Rosseland approximation, but some exact method to obtain the ra
diative flux, we can perform the same coordinate transformations. If we furthermore define the 
dimensionless radiative heat flux to be Qr := qr /4n2(jT4, we find that 

a1J a21J 1 a Qr 
-=------ (4.6) 
8 CPr 8T2 Ro aT 

Here we can use the method outlined in Section 2.2 to obtain values for the heat flux and its di-
vergence. 
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In Figure 4. 1, we see the results of the one-dimensional problem for a computation simulating 
a dwell time of one second. The most eye-catching is the erroneous result, the Rosseland approx
imation gives us in this case. We should have been warned by the small optical thickness (of order 
one in the production of jars and bottles). This result is worrying as in industry it is widely used 
'just to take care of radiation'. The results here show that far better results are achieved by simply 
neglecting the radiation. Still, one has to take care, since after longer periods the exact method 
and the radtion neglecting method will deviate severely, too. 

The reason the Rosseland approximation fails here, is that it overestimates the radiative en
ergy transport. The glass is not thick enough to achieve diffusion-like behaviour. The Dirichlet 
boundary-conditions applied to both boundaries enforce a large gradient of the thin glass sam
ple. It is this gradient that makes the problem conduction driven, aggravating the results of the 
Rosseland approximation, which is basically enlarging the effective conductivity. 

We see from these calculations that for short times (i.e. very small Fourier numbers), the 
conduction-driven problem can be approached by omission of the radiation. This apparently is 
still valid for the cases in which the optical thickness il and Rosseland number do not directly 
indicate the radiation is not crucially unimportant. Yet, be aware that still significant errors are 
made by such a simple approximation (maximum 50°C in this example). So, depending on the 
importance of the temperature and its gradient one can choose between accuracy and speed. In 
this case, for example, a quite big difference of 50 degrees during the dwell does not give rise 
to an erroneous prediction of the remainder of the process. Simply omitting the radiation, would 
therefore be most likely candidate for simulations in more dimensions, where the implementation 
of the exact method brings severe performance penalties. 

5 Reheating phase 

The heat problem in the reheating phase is basically the same as during the dwell: only the bound
ary conditions differ. During reheating the parison is standing outside the mould and without 
plunger in an open atmosphere. This open atmosphere from an radiative point of view lets itself 
be accurately modelled as a blackbody, with the ambient temperature as driving force. The con
tact with the surrounding atmosphere is, unlike during the dwell, not a perfect contact. Rather we 
have to apply a Robin boundary conditions describing the exchange of heat with this surrounding 
atmosphere. Since, the ambient temperature Too - say standard room temperature (20°C) - is 
much cooler than the parison, we expect it to act as a heat sink. The infinite surroundings of the 
parison can be seen as a blackbody boundary as shown in Figure 5.1. On the outside we have both 
convective and radiative cooling of the parison. The convective heat q30nv entering the parison on 
the outside is due to free convection of the surrounding air. It can be calculated by: 

(5.1) 

where h is the convective heat transfer coefficient. Methods to compute this can be found in books 
like [6]. Typically its value is 1-2W 1m2 . 

How the radiative properties are taken into account, depends on the model of radiation that is 
chosen. For the exact method we calculate the intensity of the atmosphere with (2.18), then (2.34) 
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.... convection ... radiation 

cold air glass hot air 

Figure 5.1: The model for the reheating phase. The inner side of the parison 'sees' the other side, 
and thus, the irradiance at this boundary is equal to its radiosity. 

leads to Co = n 2(jT!/rr. This coefficient then is used in (2.30), which we use to calculate the 
radiative heat flux gradient throughout the glass. If the Rosseland method is used, however, the 
radiative exchange of the glass with its surroundings can only be applied at the boundary. We find 
a similar expression to (5.1) that states: 

(5.2) 

The emissivity 8, being equal to the absorpsivity, can be determined as follows. Given the inten
sity Boo entering the glass at certain direction fl, it will travel through the glass, then through 
the inside and then through the glass again. Because the hot air does not absorb, we can see 
from (2.24) that an intensity of Booe-2rJ/ji. caused by the entering radiation, is leaving the glass 
again. We can now calculate 8 using 

2rr Boo 2rr jiBooe-2rllii. dj.L 
8 = = 1 - 2E2(2TI). 

2rr Boo 

On the inner side of the parison, the convective heat exchange can be modelled as before: 

(5.3) 

where Thot is the temperature of the hot air inside the parison. As for the radiative exchange, we 
do not 'see' the surrounding atmosphere (directly), but the other inner side of the parison instead. 
The radiative boundary condition for this side of the glass can be modelled as specularly reflec
tive. Depending on the radiation model this can be simplified further. If we are using a diffusion 
approximation all the radiative heat has to leave at boundary. However, since there is a specular 
wall between the glass and the infinite surroundings of the parison, and since air in absence of 
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cold air glass cold air 

Figure 5.2: Additional model for the reheating phase. The specularly reflective boundary is tack
led by reflecting the domain. 

high vapour and CO2 concentrations does not absorb radiative heat, the radiative heat exchange 
at the surface equals zero. 

If we use the exact radiation model, treating specular reflections is even more involved than 
the diffuse reflection we have seen in Section 2. As shown in Figure 5.2, in one dimension we 
can evade this, by simply doing what the reflective boundary does: make a reflection. So, rather 
than using (5.1) over the physical interval (0, I',), we use this equation over the interval (0, 2Tl), 
where we extend the blackbody intensity by using: 

B(I') = B(2Tl - I'), 'v' T E (I'l, 2r1). (5.4) 

The problem is written now almost identical to (4.1); only the boundary conditions are differ
ent, as can be seen in 

aT aqc aqr 
pCp at = - ax ax ' t > 0, O<x<L (5.5) 

to which the following initial condition is added: 

T(O, x) = To(x). (5.6) 

The boundary conditions are different for different models. For diffusion models (like the Rosse
land model or simple neglect of radiation), we have to include the term for radiative heat loss at 
the boundary. Then, the boundary equation becomes the non-linear Robin-condition 

aT h 
- - -(T, ax - keff 00 

S(J' ( 4 4) T(t, 0)) + Too - T(t, 0) , (5.7) 

where keff is the effective conductivity. In the Rosseland approximation this is equal to (ke + F(T)), 
whereas it is simply k C if we neglect radiation. 

If we use the exact method for the radiation, any loss of heat through radiation to its surround
ings is already taken care of by the qr term. The boundary conditions therefore only have to pre
scribe the convection at the boundaries: 

aT h 
- = - (T, - T(t 0)) ax keff 00 , 

(5.8) 
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Figure 5.3: Temperature profile after one second dwell (exact method) and one second reheating 
(various methods). 

As we can see in Figure 5.3, more so than during the dwell, the three methods give very dif
ferent results. Unlike during the dwell, however, the Rosseland approximation now gives a good 
estimate of the energy being extracted during the reheat. In this case, omission of the radiative 
heat transfer also leads to large errors, especially concerning the cooling down of the glass. Both 
simplifications under-perform in approximating the temperature gradients, which are so impor
tant during the reheating. 

The conclusion is clear. During reheating, in a case where the neither the conduction (as in 
the optical thing case) nor the radiation (as in the optical thick case) is predominant, only an ex
act approach gives trustworthy results. If it has been identified either the temperature itself or its 
gradient is critical to the functioning of the process, effort has to be made to get the radiative heat 
transfer right. Two numbers, the optical thickness T] and the Rosseland number Ro, can assist 
in determining whether this effort has to be made. From comparison of the results of the dwell 
and the reheat, however, we see that these two numbers by themselves are not conclusive. The 
Dirichlet-conditions applied in the dwell, and thus applying a large temperature gradient over a 
small distance, forced the conduction to be dominant. Natural boundary conditions as during the 
reheat, however, give value to the two afore mentioned numbers .. 

The results presented were derived for the simple one-dimensional case. In higher dimensions 
the simplicity of the Rosseland equation becomes even more tempting as the computational com
plexity of the exact solution raises. For the best approximations of three-dimensional problems 
methods as the Monte Carlo Method and the Ray Trace Method are utilised. However, the large 
computational times associated with these methods are usually considered to be prohibitive for 
implementation in simulations of processes in the production of glass. Newer methods include the 
algebraic for of the Ray Trace Method, presented in [7], and the Modified D~ffusion Approxima
tion as discussed in [2]. Given the results presented it here it seems wise to implement a method 
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other than the (standard) Rosseland approximation for thin to medium optical thicknesses, or to 
accept that the temperature and temperature gradients of the simulation are plainly inaccurate. 
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