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Upflowing salty groundwater, evaporating completely at the ground surface, leads to the 
buildup of a saline layer, usually with solid salt on the surface. The diffusion layer below the 
surface, if stable, may grow to a finite thickness at equilibrium between the upflowing 
solution salt and the downward diffusion. The energy method used by Homsy & Sherwood to 
treat the gravitational stability of the diffusion layer at equilibrium is shown to lead to a 
Bessel equation, and the lowest value of the lower bound to the Rayleigh number is equal to 
the square of the smallest root of the Bessel function 10 , However, this minimum value is 
reached only in a limit as the wave number of a disturbance tends to zero. Here an alternative 
formulation is introduced, based upon the energy method, where the linear equations of 
motion (Darcy's law) and continuity are combined to provide a linear "differential 
constraint", in place of the standard integral constraint, leading to a linear sixth-order Euler
Lagrange equation. Numerical solution by the Jacobi-Davidson method for the lowest 
eigenfunction indicates a lower bound for the stability curve of Rayleigh number versus wave 
number which is in good agreement with experiment. As in the standard energy method, this 
accounts for subcritical instabilities at Rayleigh numbers below the critical value according to 
linearised theory, which occur in the presence of the throughflow. 

Both the energy method with differential constraint and linearised stability theory are applied 
to the developing diffusion boundary layer. When the boundary layer is thin, the profile may 
change rapidly by diffusion. However, with the chosen boundary conditions, an initially 
sharp interface at the surface is stable to small perturbations; the system becomes less stable 
monotonically as the thickness of the diffusion layer increases. In this situation a neutral 
stability curve can be calculated formally in the same way as before, but it changes with time 
and is interpreted as a boundary between a range of Rayleigh numbers in which the system is 
stable, and a range in which instability may occur. The position of that boundary moves to 
lower Rayleigh numbers as the thickness of the diffusion layer increases, and the wave 
number where the Rayleigh number is a minimum decreases with time. In the limit the wave 
number - Rayleigh number curve tends to that for the equilibrium boundary layer, which is 
evidently an asymptotic limit. 



1. Introduction 

Consider a semi-infinite porous medium with a horizontal upper boundary. If a uniform 

upflow exists within the medium and through the boundary, and if appropriate boundary 

conditions apply, a spatially one-dimensional boundary layer may be created and sustained by 

the outflow. For instance, if the surface is maintained at a temperature different from that of 

the medium and the saturating fluid, a thermal boundary layer is formed with an equilibrium 

thickness proportional to the ratio of thermal diffusivity to up flow rate. Similarly, a boundary 

layer is formed by a dispersing solute if the solute concentration at the boundary differs from 

the concentration of the solution issuing from the medium. (A thermohaline problem arises 

when both effects are present simultaneously, but that requires separate consideration and is 

not pursued here.) 

Such flows may occur naturally in areas of groundwater discharge. These may be 

characterised by very low flow rates, leading to boundary layers of significant thickness. An 

upflow of warm or hot groundwater has been postulated for some shallow geothermal areas 

(Wooding 1960). As the surface is relatively cold, a thermal boundary layer of cool water is 

formed below the surface. A reversal of this situation relative to gravity may arise for in situ 

coal gasification (Sherwood & Homsy 1975), where a hot reaction surface forms at the lower 

horizontal boundary of a cooler permeable layer. Boundary layers are also formed in semi

arid regions containing extensive areas of groundwater discharge (Gilman & Bear 1996; 

Wooding, Tyler & White 1997). The groundwater contains salt. After throughflow induced 

by evaporation, the salt remains behind at the surface to form saline deposits (salt lakes). 

These salt lakes may be "dry" at the surface under the influence of evaporation, or may 

contain standing water (ponding), perhaps varying seasonally between the two states. 

In each of these examples the fluid in the horizontal groundwater boundary-layer differs 

In density from the fluid in the adjacent permeable medium, and the question of the 

gravitational stability of the boundary layer arises. Wooding (1960) treated the case of a 

constant-pressure (ponded) boundary by linearised stability theory. Jones & Persichetti 
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(1986) applied linear analysis to a permeable layer with all combinations of boundary 

condition and throughflow direction. Nield (1987) obtained approximate stability criteria by 

variational means. Gilman & Bear (1996) treated the linearised stability of a horizontal 

unsaturated layer (vadoze zone) overlying a shallow water table. Wooding, Tyler & White 

(1997) discussed saturated groundwater movement with "dry" or ponded conditions at the 

surface, and used both experimental and numerical methods to simulate the unstable 

behaviour of a boundary layer growing from an initial salinity discontinuity at the surface, and 

including the margin, of a "dry" salt lake. 

In an important step, Homsy & Sherwood (1975, 1976) pointed out that the presence of 

throughflow contributes non-symmetric (odd order) terms to the stability equations. The 

linear, time-independent part of the stability equations is not self-adjoint, and linear stability 

analysis is applicable only when the system is definitely unstable. Subcritical instabilities of 

finite amplitude are possible at Rayleigh numbers below the critical value derived using linear 

theory (Davis 1971, Straughan 1992). 

In the present work we are concerned with this aspect and also with the stability of a 

growing boundary layer. For simplicity we consider only the dry lake case in a vertical 

upflow, in which we assume that a rapidly established saturated surface layer exists yielding a 

steady boundary condition for the salt concentration. We will employ both the energy method 

and the method of linearised stability. 

1.1. Stability of the equilibrium saline boundary layer 

In applying the energy method we follow two approaches. The first one is the "standard 

approach" as outlined, for example, by and Homsy & Sherwood (1975, 1976) or by Straughan 

(1992). In this approach one incorporates an integral constraint in the class of admissible 

perturbations, which is based on continuity and the integrated Darcy equation. The Euler

Lagrange equations with boundary conditions can be combined into a second order linear 

eigenvalue problem with time as a parameter. One of the goals of this paper is to demonstrate 

that at equilibrium, when the boundary layer has reached its large time profile of a simple 

exponential, this eigenvalue problem can be solved exactly in terms of Bessel functions 

yielding 
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(1.1) 

as a value of the Rayleigh number below which the system is definitely stable; R~ is the first 

root of the Bessel function Jo (Abramowitz & Stegun 1965. p. 409). 

In a second approach we deviate from Homsy and Sherwood and consider a different 

maximum problem. Using the same functional. we replace the integral constraint with an 

exact differential relation which is now based on continuity and the "pointwise" Darcy 

equation of motion. This yields a sixth order eigenvalue problem. At equilibrium we obtain 

a numerical solution using the Jacobi-Davidson method (see Appendix C). With the given 

boundary conditions we find approximately 

(1.2) 

as the largest Rayleigh number below which the system is definitely stable. The close 

agreement of this result with the experimental and numerical results of Wooding, Tyler & 

White (1997) is discussed in Section 6. 

Further, we consider a linearised stability analysis of the simple equilibrium boundary 

layer yielding a linear fourth-order eigenvalue problem. Using a power series expansion in 

terms of the equilibrium saturation, we find the lower eigenvalues and also the 

eigenfunctions. From the smallest eigenvalue we find 

RL = 14.35 (1.3) 

as a critical Rayleigh number above which the system is definitely unstable. 

Given the physical parameters of the system a value for the Rayleigh number Rs 

results. This value may fall within one of three ranges -- definitely stable for Rs ~ RE (i = 1 
I 

or 2), definitely unstable for Rs > RL ' and possibly unstable to disturbances of finite 
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amplitude (leading to subcritical instabilities) when REi < Rs :::; RL . We note that (1.1) and 

(1.3) correspond to the asymptotic numerical results of Homsy & Sherwood (1976). They 

considered throughflow in a finite slab. Their asymptotic result for large dimensionless 

throughflow (for instance, letting the thickness of the slab become large) corresponds, after an 

appropriate scaling, to our formulation. 

1.2. Time dependent growth of the saline boundary layer 

Problems of fluid instability with impulsively-generated (time-dependent) base density 

profiles have been discussed, in particular, by Homsy (1973), who used the energy method to 

treat global stability of fluid layers, and Caltagirone (1980), who compared the stability 

behaviour using linear and energy methods and also used finite-difference computations for a 

horizontal porous layer with a sudden rise in surface temperature. These studies did not 

involve a superimposed throughflow. Generally, the linearised instability in such cases is 

treated as an initial-value problem, with the spatial dependence reduced to one dimension by 

Fourier decomposition. 

Our case involves a dispersive boundary layer in an upflow, and we shall identify 

approximate parameter values where instability is likely to occur. Section 3 describes the 

profile of the growing boundary layer, which depends only upon the time parameter 't. In the 

early stages of development, the layer is sufficiently thin to be stabilised by the given 

boundary conditions. However, the monotonic increase in layer thickness with time will be 

accompanied by decreasing stability of the system as the influence of the boundary 

diminishes. This is shown in Figures 3 and 4. 

Figure 3 shows a family of curves in the a, R plane, a denoting the horizontal wave 

number, with time 't as parameter. The curves are obtained with the energy method based on 

the differential constraint. For a given time 't > 0, corresponding to an instantaneous state of 

the growing boundary layer, let RE('t) denote the minimum of the corresponding curves. 

Similarly, Figure 4 shows a family of curves obtained with the linearised stability method. 

Now, let RL('t) denote the minimum of the curve corresponding to time 't. 

5 



We now have the following refinement with respect to the equilibrium case. If 

Rs :::;; RE (00) = REz ' the layer will attain a stable equilibrium profile. If, however, Rs > REz 

we can determine a time 't E ,corresponding to Rs RE (t E) , and conclude the stability of 

the growing boundary layer for 't < t E.. On the other hand, if R s > RL we can nominate an 

elapsed time tL corresponding to Rs = RL(tL) and conclude the instability of the layer for 

t > t L • The observations follow from the nature of the curves in Figures 3 and 4. The 

curves in Figure 3 are upper bounds for regions of stable (a,R) combinations, whereas the 

curves in Figure 4 are lower bounds for regions of unstable (a, R) combinations. 

We should note that the actual time of appearance of a growing instability depends 

substantially upon the amplitude and other properties of the perturbations present during the 

unstable period. The wave number selected by a growing instability tends to decrease with 

time due to the increasing scale of the boundary-layer thickness. It follows that the wave 

number determined by the crossover at t = t L should provide an upper bound to observed 

wave numbers. 

The relationship of these theoretical and numerical calculations to the experimental and 

numerical results of Wooding, Tyler & White (1997) is discussed in Section 6, with Figure 5. 

2. Equations for salt transport 

Following earlier work (Wooding, Tyler & White 1997), we consider a uniform 

isotropic porous medium, neglecting compressibility and thermal effects, and examine the 

effects of salinity variations only. The medium is saturated (pores completely filled) with a 

fluid of variable density (water with dissolved salt). We denote the water density by Po' the 

density of the fluid in 'natural circumstances' (i.e. far away from outflow boundary) by Pr and 

the local fluid density by p. Finally, let Pm be the maximum density at the outflow boundary. 

This number may represent the fluid density in an overlying pond or the density of the salt 

saturated solution. Clearly, Po < Pr < Pm and Pr:::;; P:::;; Pm . The movement of saline water 
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is governed by the fluid and salt mass-balance equations, the equation of state and Darcy's 

law; see for instance Hassanizadeh & Leijnse (1988). 

Assuming the porosity <l> to be constant, the fluid mass-balance equation has the form 

<l> ~ + V ·(pq)=O, (2.1) 

where q is the Darcy volume flow rate and t is time. With an assumed Fickian dispersive 

flux, the mass balance of salt reads 

<l> a(~~) + V .(proq -pDVro) = 0, (2.2) 

where ro is the mass fraction of salt (Le. salt mass per unit volume of fluid/total mass of a unit 

volume of fluid) and (upright) D denotes an appropriately-defined diffusivity or dispersivity. 

The equation of state is taken to be, see Van Duijn, Peletier & Schotting ( 1993), 

(2.3) 

in which the coefficient a is a constant, and finally Darcy's law is assumed to have its usual 

form 

Jl q + V(p- gPrZ*) -(p - Pr)gk = 0 
k 

(2.4) 

where p is pressure, g denotes acceleration gravity, k is medium permeability and Jl is fluid 

viscosity. Further, z· is the (dimensioned) depth and the dimensionless unit vector k is 

directed vertically downwards. Throughout we assume that all fluid and rock properties, 

except the fluid density, are constant. Combining (2.1) and (2.2) gives 

aro 
<l>P - + pq . V ro - V . (Dp V ro ) = 0 at 
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and using the equation of state (2.3) leads to 

ap 
<\>-+q·Vp-D~p=O. at 

where ~ denotes the Laplacian V 2
• 

(2.6) 

We shall now consider the approximate salt-transport equations obtained by replacing 

(2.1) with the incompressibility condition 

V·q=O (2.7) 

and combining this with equations (2.4) and (2.6). Equation (2.7) is justified as follows. 

Introduce the saturation 

S = P - P r with 0:::; S :::; 1. (2.8) 
Pm -Pr 

Substituting it into the fluid mass-balance equation (2.1) yields 

as P <\>-+ v ·(Sq)+ r V·q = o. at Pm -Pr 
(2.9) 

Now assuming (Pm - P r) /p r « 1, we find to leading order the incompressibility equation 

(2.7). This limit process was studied in detail by Van Duijn, Peletier & Schotting (1993) for a 

particular flow problem. 

3. Problem formulation 

We can define a dimensionless vector U proportional to volume flow rate from 

(3.1) 
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where Uc is the scale for gravitational convective flow rate. We choose dimensionless 

Cartesian coordinates (x, y, z) with origin in the surface and z directed vertically downwards. 

These are scaled to the thickness of the equilibrium boundary layer, 0 = D/ c, where £ is the 

rate of throughflow. The corresponding scale for dimensionless time 't is $D/c2
• Then the 

non-dimensionalised forms of equations (2.7), (2.4) and (2.6) are 

v·u=o, (3.3) 

VP-Sk+U=O, (3.3) 

(3.4) 

Here P = (P-Prgoz)/(Pm -Pr)go represents departures of the dimensionless pressure from 

hydrostatic conditions. Equation (3.4) involves the Rayleigh number Rs = (Pm -Pr)gk / J..Lc 

as dictated by the physical parameters of the system. It can be written equivalently as 

(3.5) 

where 1 = D/uc ' the "diffusion thickness", is an intrinsic length scale. In the second form 

Rs is specified as the ratio of two velocities, without involving D. 

Equations (3.2) - (3.4) are to be solved in the three dimensional half space 

Q={(x,y,z): -oo<x,y<oo, z>O}. Along the upper boundary we prescribe the 

saturation and flow corresponding to a "dry lake bed", with a sufficient rate of evaporation to 

remove all free surface water, and a rapid buildup of salt at the surface so that saturation is 

reached for 't <::: 0, close to the starting time of the flow process. Further, we write U = Uo for 

the assumed constant dimensionless upflow, which satisfies (3.2). This means that 
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S(x,y,O, 1:) = 1 (3.6) 

and 

U(x,y,O,1:) = Uo = 
(3.7) 

for all -00 < x, y < 00 and 1: > 0. We will investigate the stability of the solution that 

corresponds to the "natural" initial state in which the scaled saturation is zero: i.e. 

(3.8) 

3.1. The primary profile 

The solution of (3.2) - (3.8) is called the primary profile. Assuming S = S(z,1:) only, and 

taking U(x,Y,Z,1:)=Uo in Q and for all 1:>0, we find that the saturation equation reduces 

to 

(3.9) 

The solution of this equation subject to the initial - boundary conditions (3.6), (3.8) is well

known: 

(3.10) 

giving 

(3.11) 
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the steady-state form, as 't ~ 00. The corresponding primary pressure P = Po is found by 

integrating Darcy's law (3.3). 

In the analysis carried out in the next Sections, we drop the subscript s on Rs and 

simply denote the Rayleigh number by R. This is to distinguish between R as eigenvalues in 

the analysis and its value Rs for an actual physical system. 

4. Perturbation equations and variational analysis 

To investigate the stability of the primary profile given In Section 3 we follow the 

accustomed path and set S = So + s, V = Vo +u, with U == (u, v, w). and P = Po + p. Here the 

lower case variables denote perturbations with respect to the unperturbed upflow. 

Substitution of these perturbation expansions into equations (3.2) - (3.4) and writing R instead 

of Rs yields the system (in Q and for't > 0) 

as as aso ---+Rw-+Ru·Vs=fls, a't az az 
(4.1) 

V·u=o, (4.2) 

Vp-sk+u O. (4.3) 

As in Lapwood (1948) we note that equations (4.2) and (4.3) can be combined to give for s 

and w the linear relation 

(4.4) 

where L13 denotes the horizontal Laplacian a2 jax2 + az ja/. This expression will play a 

crucial role in the stability analysis carried out in Sections 4.3 and 5. 
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On the basis of experimental observations of early instabilities, we assume that the 

perturbations are periodic in the horizontal x, y - plane and satisfy homogeneous conditions 

along the outflow boundary and at large depth. In particular, 

s = w = 0 at z = 0,00 . (4.5) 

Because of the assumed x, y periodicity, we may restrict the analysis of the perturbation 

equations to the periodicity cell V, given by 

(4.6) 

Here a x and ay are the, as yet unspecified, horizontal wave numbers. We call 

(4.7) 

the horizontal wave number of the periodicity cell V. 

4.1. The energy method 

In the energy method one estimates the time derivative of the L2 - norm of the saturation 

perturbation. In particular, the aim is to find the largest Rayleigh number for which 

(4.8) 

The value of R for which this inequality is satisfied clearly will depend on the wave number 

a and, because So = So(z, 1:), on time 1:. Once (4.8) is established, which often implies the 

asymptotic stability 

J S2 --t 0 as 1: --t 00, 
v 
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it follows that the L2 - norm of the velocity perturbation is bounded or vanishes as well. This 

is a direct consequence of (4.2) and (4.3). Multiplying (4.3) by U, integrating the result over 

V and using (4.2) yields 

0= 5 sw-51uI2 

• 
(4.10) 

V V 

Using the inequality sw:::; 1-S2 +1-W
2 we find 

51uI
2 :::;t5 i 5 w2 :::;t 5 S2 +1- 51u12 • 

v v v v 

Thus 

(4.11) 

which proves the assertion. To investigate (4.8) we multiply (4.1) by s and integrate over V. 

Using again (4.2) we find the identity 

(4.12) 

Thus if R is chosen such that the right-hand side of (4.12) is negative for all perturbations 

satisfying a given constraint, then stability is guaranteed. 

It is our aim to investigate the consequences of two different constraints. In the first we 

consider perturbations satisfying (4.2) and (4.10), which is the integrated Darcy equation. 

This approach is a modification of that used by Homsy & Sherwood (1976). While they 

considered a stationary primary profile only and solved the corresponding eigenvalue problem 

numerically, we are in a position to deal with the time evolution of the primary profile as 

well. However, we shall not pursue the time dependence for this constraint. Instead we give 

a complete analytical treatment of the case when the primary profile is given by (3.11) for all 
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't > O. This analysis explains quite elegantly some of the previously obtained numerical 

results. 

In the second constraint, we consider perturbations satisfying the differential 

(pointwise) expression (4.4). We shall treat the time dependent primary profile and show that 

this differential constraint significantly improves the abovementioned integral constraint. 

4.2. Energy method with integral condition 

In Homsy's approach (see also Straughan 1992) one combines (4.10) and (4.12) into a single 

expression. Multiplying the integral constraint (4.10) by R , and (4.12) by a coupling factor 

'A?(> 0), one finds, with E = t')..} J S2, 

V 

Redefining the variables according to 

u=.JRu and s=A.s, 

leads to the expression 

(4.13) 

where now E = t J i. This expression is almost identical to the one given by Homsy and 
v 

Sherwood (1976). The only (and non-trivial) differences are in the primary density profile 

and in V; they consider throughflow in a finite slab with a steady primary density profile. The 
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object is now to find R > 0 such that the right hand side of (4.13) is negative for a class of 

admissible perturbations. This yields the maximum problem: 

f( 1 A dSo ) 
1 sup v A dz 

RYz = s,U E H flV'sl2 + flu I
2 

(4.14) 

V V 

where H = Is, U : x, y periodic with respect to V, s, U = 0 at z = 0, OQ and V'·u = OJ. 

The Euler-Lagrange equations corresponding to this maximum problem together with 

the homogeneous boundary conditions form an eigenvalue problem with RYz being the 

eigenvalue. In view of (4.14) one considers only the smallest eigenvalue which is maximised 

with respect to A. 

4.2.1. An equivalent formulation 

In a slightly modified approach, we return to (4.12) with (4.10) and consider the 

maximum problem 

1 sup 
= R s,uEH 

with 

_fdSO sw 
v dZ (4.15) 

H = {s,u: x,y periodic with respect to V, s, U = 0 at z = 0, OQ and V'. U = 0, fluI
2 
= f sw}. 

v v 

The Euler-Lagrange equations follow from the first variation of the functional 

](s,U) = f1V'~2 +Rf~o sw+ ,uf{luI
2

-sw}+ fnV.u , 
v v v v 

(4.16) 
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where !J. (constant in space) and 'It are Lagrange multipliers. As a result we find 

_2As+R aso W-IIW=O az ,.., , 
as 2JlU - V'It + R_o sk - !J.sk = 0, az 

v . u = 0 and f lul2 = f sw . 
v v 

Applying the scaling 

A R 
u:= RYz u, !J. = A? and p = 'It, 

one finds 

RYz (!_ A aso) w+ As = 0 
2 A az ' (4.17) 

RYz l( !-A aSO)Sk u-Vp = 0, 
2 A az 

(4.18) 

V·u=O, (4.19) 

f 2 RYz f lui =- SW. 
v A v (4.20) 

Equations (4.17) - (4.19) were also found by Homsy & Sherwood, and indeed also arise as the 

Euler-Lagrange equations of the maximum problem (4.14). However, here the parameter A 

is fixed by the additional constraint (4.20). Later we show, see Figure 1, that this choice 

maximises the eigenvalue RYz. Note also that (4.18) has a structure similar to Darcy's law. 

As before, (4.18) and (4.19) can be combined to give 

(4.21) 
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Further, mUltiplying (4.18) by u, integrating the result over V, and using (4.20) yields the 

useful identity 

J sw 
')} =--'::::-::::---

-J sw 
v dZ 

Finally, multiplying (4.17) by s, integrating the result over V, and using (4.22) gives 

2 RYz 
JIVsl =-J sw. 
v A v 

(4.22) 

(4.23) 

Next we introduce the periodicity. Setting s:= as, with a given by (4.7), we find from 

(4.17) and (4.21) the equations (with D signifying d I dz) 

2 2 aRYz ( 1 ~ dSo) 
(D -a )s+-2- A -I\, dz w=O, (4.24) 

2 2 aRYz ( 1 dSo ) (D -a )w+-
2
- A -A dZ s=O, (4.25) 

for 0 < z < 00 • Note that in these equations 't appears as a parameter through the primary 

profile. We seek non-trivial solutions subject to the homogeneous boundary conditions (4.6) 

and the constraint (4.22). 

As a first observation we note that (4.24), (4.25) and the boundary conditions imply s = 
w. Hence we are left with the second order boundary value problem 

{ 

2 2 aRY2 (1 dSo) (D -a )s+- --A- s=O 
2 A dz 

s(O) = s(oo) = 0, 

O<Z<OO, (4.26) 

(4.27) 
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subject to the constraint 

(4.28) 

Identity (4.23) rewrites into 

(4.29) 

Th· d· 6 dSo ---" 0 . I h . . I IS expreSSIOn an equatIon (4.2 ), usmg dZ -----r as Z ~ 00, Imp y t at nontnvIa 

solutions exist only in the parameter range 

RYz 
1<-<2. 

a'A 
(4.30) 

In the analysis below we confine ourselves to the equilibrium case (3.11), where SO IS a 

simple decaying exponential. 

Introducing the new parameters 

0= ~: (with 1<0<2), a=(2:f and ~=~(a,O)=2a~I- ~ , (4.31) 

and the transformation 

/; = ae~ f (/;) = s(z) , (4.32) 
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we find for I a boundary value problem involving the Bessel equation 

(4.33) 

with 

1(0) = I(a) =0, (4.34) 

where each prime signifies d I d~. A solution of (4.33) satisfying the first condition in (4.34) 

is 

(4.35) 

with J ~ denoting the Bessel function of the first kind, order ~. 

Next we fix a > 0 and consider 

(4.36) 

where ~l = ~l (a,S) is the first positive zero of J~. Then setting a = ~l in the second 

equation of (4.31), we obtain the first eigenvalue R] for the given values of a and S: 

(4.37) 

Keeping a fixed, we now turn to the integral constraint (4}.o). In the transformed 

variables it reads 
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(4.38) 

The question now arises whether there exists a number oa E (1,2) such that 0 = oa satisfies 

(4.38). We show in Appendix A that this is indeed the case for every a> O. If we can 

determine it, then 

(4.39) 

In Figure 1, curve S shows the eigenvalue (4.37) plotted as R~ versus the parameter A, 

for a given positive wave number a 0.759 in this example) and for the range 1 < 0 < 2. 

Note that the straight lines 0 = 1 and 0 = 2 have slopes a and 2a respectively. 

To map the effect of the constraint (4.38), we note that ~ and ~I are related through 

(4.36). Selecting a value of ~ in the interval (0, a..fi), we use the constraint to calculate a 

new value of 0 = oa say. With a still fixed, this leads to corresponding values RI = RIa and 

A, = \, from (4.37) and the first of (4.31) respectively. The values (A,a ,RIa) have been 

plotted as the short-dashed curve C in Figure 1. Evidently the constraint (4.38) is satisfied on 

the curve S at just two points, circled in Figure 1, and the single maximum of curve S is 

identified by the point of intersection with curve C. 

Obviously, these curves take different forms when we vary a. However, the curves all 

reach the same R - value as 0 -7 2. Indeed, when 0 -7 2 then ~(a,o) -70 and 

consequently ~I (a,o) -7~? , the first zero of 10 , Hence, for all a> 0, 

(4.40) 
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The value at 0 = Oa defined in (4.39) corresponds to a higher value of R1 (a) for all 

a > 0, thereby furnishing a preferable lower bound. This energy stability curve is plotted in 

the a, R plane as curve 1 in Figure 2 for comparison with further results from the energy 

method and from linearised instability theory. Homsy & Sherwood (1976) maximised R1 

with respect to A numerically, followed by minimisation with respect to a, and found (4.40) 

approximately as a stability bound. 

4.3. Energy method with differential condition 

In another approach we consider a maximum problem based on (4.12) and (4.4). Now we 

seek the largest possible R > 0 such that the right hand side of (4.12) is negative for a class of 

perturbations s, w satisfying (4.4). This yields the maximum problem 

1 sup 
= 

R s,uEH 

where 

-faso sw 
v az 

ii = {s, w : x, y periodic with respect to V, s, w = 0 at z = 0, 00 and ~w = ~3S in V}. 

(4.41) 

This maximum problem will result in an eigenvalue problem which has a much higher 

complexity than the eigenvalue problem related to (4.15). In fact it leads to a sixth order 

differential equation in terms of w, for which no explicit solution is known. However, one 

expects to have a more accurate description, yielding larger Rayleigh numbers, in particular 

since now Darcy's law is accounted for exactly in the class of admissible perturbations. 
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4.3.1 The Euler Lagrange equations 

To simplify the analysis we first formulate (4.41) in terms of x, y periodic functions. This 

yields 

1 
-= 
R 

where now 

~ as -J_o swdz 
sup 0 az 

s,wEHzJ~{( )2 22} Ds +a s dz 
o 

Proceeding as usual we consider the functional 

(4.42) 

(4.43) 

where n is the Lagrange multiplier. The first variation reads (with s = s + <p, w = w + \jI) 

(4.44) 

for all <p, \jI satisfying <p(0) = \jI(O) = 0 and <p, \jI together with all derivatives vanish as 

z -t 00. Since <p and \jI can be varied independently we deduce from (4.44) two equations. 

Setting \jI = 0 with <p arbitrary we find 

2 2 R dSo a
2 

(D -a )s=--w+-n 
2 dZ 2 

(4.45) 

Next, setting <p = 0 with \jI arbitrary we find 
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which implies 

2 2 aSO (D -a )n=-R dz s, (4.46) 

and the natural boundary condition nCO) = O. Combined with (4.45) and (4.46) we have, of 

course, 

(4.47) 

Eliminating n from equations (4.45) and (4.46) yields a fourth order equation in s and w, and 

the further elimination of s using (4.47) leads to the sixth order wequation 

(D2 2)3 a
2 
R {(D2 2)(dSo ) dSo (D2 2)} - 0 -a w+-- -a -w +- -a w - , 

2 dZ dZ 
(4.48) 

The corresponding boundary conditions for this equation are 

w(oo) =0, (4.49) 

implying that all higher order derivatives vanish as well at Z = 00 ,and 

(4.50) 

The first two conditions are obvious. The third one is a consequence of nCO) = 0; this 
, 

condition implies D 2s(0) = 0 from (4.45), which is then used in (4.47). In terms of the 

variables w, s and n, we have the homogeneous conditions 
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w = s = 1t = 0 at z = 0,00. (4.51) 

The eigenvalue problem (4.48), (4.49) and (4.50), or equivalently (4.45) - (4.47) subject to 

(4.51), was solved numerically by the Jacobi-Davidson method. This method is discussed in 

Appendix C. 

For a given wave number a> 0 and time 't > 0, let RE(a, 't) denote the smallest 

positive eigenvalue. The dashed curves in Figure 3 show the numerical approximations of 

the curves {(a, R): a> 0, R = RE (a, 'tn for increasing values of 't. Note that these curves 

essentially move downwards, except for large a and 't. At large time they converge to the 

equilibrium curve, corresponding to (3.11). This limit case is also shown in Figure 2 (curve 

2). As would be expected, the results obtained with the differential constraint are superior to 

the results obtained with the integral constraint. In particular, the minimum of curve 2 is R = 
8.590 approximately, which is significantly higher than the minimum of about R = 5.78 of 

curve 1. 

To interpret the results of the time dependent case, we set 

(4.52) 

and we recall the Rayleigh number of the physical system Rs ' given by (3.5). 

If Rs < RE ( 00) =: RE ' which we denoted by RE2 in the Introduction, the boundary layer 

is definitely stable for all 't > O. However, if Rs > RE ' we can only conclude that the 

boundary layer is stable for 0 < 't ~ 't E ,where 't E is determined by Rs = RE ('t E)' When 

't > 't E no direct conclusions can be drawn. 

The curve connecting the minima, Le. {(a,R): a=amin ('r),R=RE (7:) with r>O}, is 

shown as a dashed curve in Figure 3. This curve is also discussed in connection with 

experimental and other numerical results in Section 6 (Figure 5). 
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4.3.2. The case of zero throughflow 

Although we are concerned primarily with the saline boundary layer, we note here the 

classical stability problem of a horizontal porous layer of finite depth, without throughflow, in 

which the base profile S is time independent and linearly decreasing downwards through the 

range (0,1) in z. This is included in the studies of Homsy & Sherwood (1975, 1976), and 

corresponds to the case 'Y --7 ° in their notation. Let 

dSo =-k 
dz 

k>O (4.53) 

where k -1 is the dimensionless depth of the porous layer. If the dimensioned layer depth is 

chosen as the appropriate length scale, then obviously k = 1 . With the modified profile, the 

Euler-Lagrange equations (4.45)-(4.47) become 

{ 

(D2 -a2)s = K (1t-kw) , 

(D2 -a 2 )1t = Kks, 

(D 2 -a2 )w = -KS, 

(4.54) 

a 2R 
where we used the transformations w:= a 2w, 1L = R1i and s:= 7<:s with 7<:2 = --, and then 

2 

dropped the overbar. 

Since 1t and w share the same homogeneous boundary conditions, the last two 

equations of (4.54) give 1t = -k w. Then (4.54) reduces to the two equations 

{

(D 2 -a2 )s=-2KkW, 

(D 2 -a2 )w = -KS. 

Introducing the additional scaling w = a wand dropping the overbar again gives 
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{ 

(D2-a2)s=-2a"Kkw, 

2 2 "K (D -a )w=--s. 
a 

Now if we choose K = 2ex K k which implies ex = 
ex 

eigenvalue problem reduces to 

{
(D2 -a2)s = -K -J2k s 

s(O) = s(1) = 0 . 

If n = 1,2, ... , the eigenvalues Kn are given by 

and in terms of the Rayleigh number, 

1 
, we find s = w. 

O<z<l, 

Hence the 

(4.SS) 

(4.S6) 

(4.S7) 

The same well-known result is obtained using linearised stability theory (Lapwood 1948), or 

by using the integral constraint (Homsy & Sherwood 1975, 1976). In this case, in fact, the 

problem is self-adjoint and subcritical instabilities cannot occur. 

5. Linearised stability analysis and time dependence 

In the method of linearised stability one disregards the higher order terms in (4.1) and 

considers the approximate linear saturation equation 

(S.l) 
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for 't > O. We shall seek nontrivial solutions of this equation together with (4.4), subject to 

the homogeneous boundary conditions (4.6). In case of a stationary primary profile one looks 

for solutions having an exponential growth rate in time. Since here, the primary profile 

depends on time as well, such a construction is only possible under the assumption that the 

rate of change of the primary profile is small compared with the growth rate of infinitesimal 

perturbations. Hence, for given 't > 0, we consider instead of (5.1) the approximate equation 

as as as . 
---+Rw_o ('t z)=ru In n 
a't' az az' (5.2) 

for 't' > 0 and sufficiently small. Now again 't appears as a parameter in the equation, as in 

the case of the energy methods. Applying again the x, y periodicity, taking (j as the 

exponential growth rate and setting 

(5.3) 

we find from (4.4) and (5.2) the coupled set of second order equations 

(5.4) 

and 

(5.5) 

for 0 < z < 00. Elimination of s from these equations gives for w the fourth order eigenvalue 

problem 

(5.6) 

for 0 < z < 00 • with 

w(O) = D 2w(O) = 0 and w(oo) = O. (5.7) 
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Here again, w( co) = 0 implies that all derivatives vanish as well as z -t co . 

In the next Sections we consider the equilibrium case (1: = co) and the time dependent 

case (1: < co) separately. Further, we compare the eigenvalues resulting from the time 

dependent (linear) case to those obtained from the energy method subject to the differential 

constraint. 

5.1. The equilibrium case 

With expression (3.11) for the unperturbed density profile, the w-equation to be considered is 

(5.8) 

Solutions of this equation, satisfying w( co) = 0, decay exponentially fast as z -t co. This 

observation, and the fact that the right hand side contains e -z , motivate us to express solutions 

as Frobenius expansions in terms of descending exponentials; i.e. 

w(z) = L ::~ Rn( ~l)eclz + A!2)eC2Z )e-nz 

=: ~1)W(I) + ~2)W(2) , (5.9) 

say, where Cl and C2 are the negative roots of the indicial equation and where ~l) and ~2) are 

arbitrary constants. Following the usual procedure, one finds 

(5.10) 

and the subsequent terms of the series are determined by the recurrence relations 

28 



(5.11) 

where i = 1, 2 and k = 1, 2, ... 

Non-trivial solutions exist provided that the constants ~j) and ~2) satisfy a 

characteristic relation posed by the boundary condition pair at z = O. Using (5.9) to evaluate 

w(O) and D2w(0) we obtain two equations for these constants. The coefficients in these 

equations are the infinite series determined from (5.10) and (5.11). Non-trivial solutions can 

exist only if the determinant of the coefficients vanishes. From this condition one finds, for 

given a > 0 and cr > -lj 4 - a2
, the eigenvalues {Rn (a; cr)} ~=t satisfying Rt < R2 < .... In 

Appendix B we show that 

Rj (a;O) < Rt (a;cr) for cr > 0 (unstable regime) 

and 

R[ (a;O) > RJ (a;cr) for cr < 0 (stable regime) 

For the purpose of the stability analysis we are therefore interested only in the neutral 

stability curve RJ(a;O). Accordingly, we change notation; instead of Rn(a;O) we write Rn(a) 

or simply Rn and Lo is being denoted by L. To find RJ and the other roots of the determinant 

equation, we approximate the coefficients numerically and solve the resulting expression 

iteratively. The calculated values show no change when 10 or 15 terms of the series (5.9) and 

its relevant derivatives are taken. However, after truncation to 5 terms (Wooding 1960) the 

accuracy is satisfactory for computation of the minimum value of RJ only. 

In Figure 2, point values of the lowest eigenvalue RI versus wave number a have been 

plotted as crosses, showing excellent agreement with solid curve 3 - the numerical solution of 

the fourth order eigenvalue problem (5.6), (5.7) with (3.11) using the Jacobi-Davidson 

method (Appendix C). We find 
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RL:= minRl{a) = Rl{a
C

) = 14.35 
a>O 

(5.12) 

with 

ac =0.759 (5.13) 

approximately. These numbers, in good agreement with the numerical results of Homsy & 

Sherwood (1976), are characteristic of the linearised stability method. 

5.2. Time dependent case 

To study the instability of the growing boundary layer we turn to the eigenvalue problem 

(5.4), (5.5) together with boundary conditions (4.5). Clearly now, the eigenvalues depend on 

'f as well. For given wave number a> ° and time 'f > 0, let RL (a, 'f) denote the smallest 

positive eigenvalue. 

Because fJSo/fJz cannot be expressed in terms of simple decaying exponentials with 'f 

as parameter, we do not use the semi-analytical Frobenius method to determine the curves 

{(a,R): a> 0, R = RL(a, 'f)}. Instead we employ the Jacobi-Davidson method (see Appendix 

C) to find accurate numerical approximations. These results are shown in Figure 4, where the 

dashed curves indicate RL (a, 'f) for increasing values of 'f. Note again that these curves 

essentially move downwards, except for large a and 'f. As 'f ~ 00 convergence towards the 

equilibrium curve R\ (a) is attained. 

As before, we set 

(5.14) 

The curve connecting the minima, i.e. {(a, R): a = ac ('f), R = RL ('l') with 'f > o} , is shown as 

a short-dashed curve in Figure 4 (and also in Figure 5). The significance of this curve is the 

following. 
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If Rs > RL (00) =: RL, an estimate for the onset time of instability is found by the 

crossover time 7: L determined by Rs = RL(7: L). In other words, the boundary layer becomes 

unstable for 7: > 7: L , with ac (7: L) as an estimate for the preferred wave number. If Rs "'" RL ' 

the boundary layer becomes unstable when it is close to its equilibrium profile. Then the 

preferred wave number for growing instabilities is given by (5.13). 

For Rs < RL no definite statement about stability is possible. The results of this (and the 

previous) sections only imply that infinitesimal perturbations vanish for Rs < RL . 

Subcritical instabilities originating from large perturbations may still grow in time. This is a 

consequence of the uniform upflow, implying that the operator La with boundary conditions 

(5.7) is not self-adjoint (Homsy & Sherwood 1976). 

5.3 Comparison with energy method 

The numerical results obtained by the Jacobi-Davidson method show that the eigenvalues 

arising from the energy method with differential constraint and also from the linearised 

approach satisfy 

(i) RE (a,7:) '5: RL (a,7:) foral! a,7:>O; 

(ii) the difference is relatively smalL 

The first observation is a direct consequence of the problem formulations. Multiplying the 

saturation equation (5.5) by s, with (J = 0, and integrating the result, gives 

Hence, for any a,7: > 0, 

(5.15) 
~ 

J {(DS1)2+ a2s/} 
o 
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where SI' WI denote the first set of eigenfunctions. Clearly they belong to the space Hz, 

which implies by the nature of the maximum problem 

1 

which proves (i). 

= as -f azo 
(·,r)sw 

:::; sup _=~o~ ___ _ 

s,wElI, f {(Ds)2 +a2s2} 

o 

1 
= 

(5.16) 

For the observation (ii) we have only a tentative explanation. Equations (4.46) and 

(4.47) imply the identity 

f -R-ow+a2n s = 0 . ={ as } 
° az (5.17) 

Hence 

asO 2 2 -R-w+a n -L s in L - sense. az 

With this observation in mind, we write (4.45) as 

2 2 aSo I {aSo 2} (D -a )s = R-w+T -R-w+a n . az az (5.18) 

The linearised approach gives (5.5), which we write (for (J = 0) as 

(5.19) 
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Note that, also in this equation, Ds ..L s in 13 sense. Hence both equations have a 

similar variational structure, possibly accounting for the relatively small difference in 

eigenvalues. 

6. Discussion and conclusions 

Using the simplified model described in the Introduction, we have formulated a stability 

problem involving a porous medium saturated with saline water flowing vertically upwards 

through a horizontal surface. The upflowing water is assumed to evaporate completely at the 

surface. Salt saturation is established quickly and is sustained there, with excess salt 

precipitated on the surface. Below the surface, a saline boundary layer grows by diffusion in 

the counter direction to the upflow. If this layer remains stable under gravity, an equilibrium 

state is reached where the salinity (or density) profile is exponential, decreasing downwards 

towards the ambient upflow value. 

Since the surface salinity and upflow rate are both taken constant, the layer can be 

assumed stable provided that it is sufficiently thin; that is, it is initially stable, but will tend to 

become less stable monotonically as the thickness increases by diffusion/dispersion. It is 

reasonable to conclude that the system is least stable when the boundary layer has attained 

maximum thickness, which occurs at equilibrium. That case has been treated extensively in 

the present paper. The equilibrium boundary-layer thickness provides a length scale for the 

Rayleigh instability problem. If the porous medium has a lower boundary, it is assumed to be 

at a distance large relative to that scale. 

If the system parameters are such that the equilibrium boundary layer would be 

unstable, and hence will not be formed, we have shown that there must be a critical time 

during the growth phase when the pre-equilibrium layer passes from a stable to an unstable 

state. Since the scale of the saline layer increases monotonically with time, the critical wave 

number is expected to provide only an upper bound for the wave number of the growing finite 

disturbance which subsequently appears. This approach has involved an extended application 
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of stability theory, with time treated as a parameter when it appears in the expression for the 

diffusing primary profile. 

6.1. The equilibrium boundary layer: Energy methods 

We have noted that the linearised stability problem for the saline boundary layer with up flow 

is non-selfadjoint (Homsy & Sherwood 1975,1976), and linearised stability analysis may be 

useful only in the range of wave numbers and Rayleigh numbers where the system is 

definitely unstable. At Rayleigh numbers below that range, subcritical instabilities of finite 

amplitude may exist (Davis 1971), and experimental and numerical studies (Wooding, Tyler 

& White 1977) confirm that this is indeed the case. For a theoretical analysis of this stability 

problem we have given detailed attention to the nonlinear instability equations and have 

applied the energy method. A "standard" approach similar to that of Homsy & Sherwood 

(1976), which includes the use of a coupling factor, gives expressions differing only through 

our assumption of a semi-infinite porous medium instead of a porous layer. This corresponds 

to their limiting case. If we assume horizontal periodicity of the perturbation in the usual 

way, the Euler-Lagrange equations reduce to a pair of second-order ordinary differential 

equations which are symmetric in the perturbation density and vertical velocity. The 

boundary conditions also obey this symmetry, and the system reduces to second order. For 

the eqUilibrium boundary layer, we have found that the solution is a Bessel function of the 

first kind. The lowest eigenvalue R is plotted versus periodicity wave number a in Figure 2, 

curve 1. As shown, the minimum value of R occurs at a = 0, and is equal to the square of the 

first root of the Bessel function 10. This corresponds to the value of 5.77 found numerically 

by Homsy & Sherwood (1976) for their limiting case of a semi-infinite porous medium. 

Clearly that is a lower bound, and thus the existence of a stable range for finite positive R was 

proved by those authors. 

However, in the resistive porous medium the perturbation induced velocity tends to 

zero with the horizontal wave number a, while the vertical diffusive damping across the 

boundary layer is approximately constant, effectively increasing stability, so that R should 
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increase indefinitely. The indication that a minimum lower bound is reached as a ~ 0 

departs from this, and also differs qualitatively from the behaviour of the linearised solution. 

Use of the energy method involves an inequality, and details of the method and results 

obtained are not necessarily unique. Instead of the integral relation derived from the equation 

of continuity and Darcy's law, and linked through a coupling factor, we make direct use of 

the differential equation (4.4) relating density and velocity. The linearity of this equation is a 

consequence of the fact that the equation of motion, Darcy's law, is linear. This is found to 

lead to a maximum principle which is more closely connected with the original physical 

problem. A sixth-order Euler-Lagrange equation results, involving three boundary conditions 

at the surface. An alternative formulation, introducing a new Lagrange multiplier, leads to 

the same system in the form of three second-order ordinary differential equations. 

These eigenvalue equations have been solved accurately using the Jacobi-Davidson 

numerical method (Appendix C). Figure 2, curve 2, shows the plot of the lowest eigenvalue 

R versus periodicity wave number a obtained for the equilibrium primary profile. 

Interestingly, this curve falls between curve I obtained by application of the "standard" 

energy method and curve 3 obtained by linearised stability theory, all three curves tending to 

have the same asymptotic form at high wave numbers. The shape of curve 2 is qualitatively 

the same as that of the linearised solution at low wave numbers, showing the expected 

behaviour as a ~ O. The minimum value for R, approximately 8.590, gives an improved 

estimate of the lower bound to possible instability. 

6.2. The time dependent growing boundary layer 

The case of the growing boundary layer has been studied by treating time't as a parameter in 

the expression (3.10) for the primary profile, and choosing a sequence of increasing 't - values 

to follow the growth of the boundary layer. We considered two approaches. First, for each 

value of 't we used the energy method in its sixth order form to identify a curve in the a, R 

plane which represents an estimate of the upper limit of absolute stability. From the 
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properties of the energy method, this estimate is actually a lower bound and applies for 

arbitrary finite perturbations. Figure 3 shows the results obtained. ill the second approach, 

we employed the fourth order linearised stability equations (5.6) and (5.7) in a similar way, to 

give solutions in the case of infinitesimal perturbations. These results are shown in Figure 4. 

Figures 3 and 4 show qualitative similarities. Pairs of curves having the same 1:

values are non-intersecting and qualitatively resemble curves 2 and 3 shown in Figure 2. The 

spacing between these pairs decreases with increasing T. As T increases, the curve minima 

in each case progress monotonically to lower (a, R) - values with the equilibrium values as 

the limit. At higher wave numbers, however, the R - values at minima first decrease and then 

increase with the increasing scale of the boundary layer thickness. The resultant curve 

intersections (crossovers) exhibit marked topological similarities in Figures 3 and 4. 

6.3. Comparisons with laboratory and numerical experiments 

Figure 5 repeats the equilibrium stability curves of Figure 2 and includes experimental 

mea')urements obtained using a tilted Rele-Shaw cell to simulate two-dimensional flow in a 

porous medium, with inflow of a saline solution and evaporation along part of the upper edge 

(Wooding, Tyler & White 1997). Experimental points are represented in Figure 5 by the 

symbols +, x and *. ill the experiments, the large scale Rayleigh number Ra based on 

finite "aquifer" depth was greater than 102 times the boundary layer R-value. Numerical 

results are also given for a finite-difference model with the same boundary conditions which 

used a 256 x 128 mesh and a near-surface "random-noise" density perturbation of 0.01 times 

the total density difference. These parameters specifying noise provided quite good agreement 

with a wide range of experimental results (Simmons, Narayan & Wooding 1999). Points 

from the numerical studies are represented by open squares (Ra = 6400) and circles (Ra = 

8000). Although the large scale flow in both the experimental and numerical work differed 

from a simple vertical upflow, a uniform evaporation rate was modelled and a saline 

boundary layer of uniform thickness was observed to develop. Wave numbers of initial 

instabilities, scaled to the equilibrium boundary layer thickness, were measured for a wide 

range of R-values. Previously, these observations were plotted by Wooding, Tyler & White 
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(1997, Figure 7) using wave numbers scaled to the diffusion thickness and therefore 

equivalent to a I R in the present case. 

From the published experimental data, stable boundary layers were observed for R

values of 5.8,5.6 (two experiments), and smaller R. Unstable boundary layers resulted for R

values of 5.6 (one experiment), 8.9 (two experiments), and larger R. Except for the 

unexplained appearance of instability in one experiment performed at R = 5.6, there was a 

clear separation of stable and unstable layers into two ranges. From the numerical model, 

with a mesh of 512 x 256 elements and a "random noise" perturbation of 0.005 times the 

total density difference, unstable boundary layers were observed for R-values of 9.8 and 

higher (Wooding, Tyler & White 1997, Figure 6). If the single unstable result at R = 5.6 is 

not included, the theoretical lower bound of 8.590 obtained using the alternative energy 

method is in agreement with the results of both the experimental and numerical studies. 

The dashed curves in Figure 5 provide traces of the minima of the stability curves 

defined by the modified energy method in Figure 3 and by linearised stability analysis in 

Figure 4. For the data obtained by experimental and numerical simulation, either curve might 

be considered as an upper bound to the wave number of an instability which first appears. 

This is on the assumption that growth rate is zero at a critical point for stability, and a 

growing perturbation becomes significant when the boundary layer thickness scale has 

increased significantly. Clearly, however, the instabilities plotted in Figure 5 have been 

initiated by perturbations of small but finite amplitude, and the modified energy method 

provides the appropriate estimate. Three experimental points at the low-R end appear to be 

exceptional. These occur in a range where accurate observation becomes more difficult, and 

an inadvertent change of background conditions could have altered the wave number. 

No instabilities at higher wave numbers, between the two dashed curves in Figure 5, 

have been recorded experimentally. Some have been found by numerical simulation, using a 

refined mesh of 512 x 256 elements, which extends the "random noise" spectrum to higher 

wave numbers, with a reduced amplitude. These have not been reproduced as the range of 

such perturbations has not been fully explored. 
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In general, we may conclude that the alternative formulation of the energy method has 

improved the quantitative and qualitative estimate of a lower bound to absolute stability, and 

is in agreement with experimental and numerical modelling. The comparison with results 

from linearised analysis yields interesting qualitative similarities, and stability properties of a 

growing boundary layer can be described in some detail. The above results could have 

applications to the theory of stability of salt lakes and the salinization of groundwater. 

The experimental results discussed above were derived in a study initiated by I. White 

and carried out by Scott W. Tyler and P. A. Anderson between 1990 and 1992, and described 

previously in a different format (Wooding, Tyler & White 1997). We wish to acknowledge 

also the contributions made by H. I. 1. te Riele and 1. L. M. van Dorsselaer of CWI in 

Amsterdam, for their highly valued assistance in connection with the numerical computations. 

We are grateful to CSIRO Centre for Environmental Mechanics and CSIRO Land and Water 

for support to carry out the theoretical investigation. 

Appendix A. Existence and uniqueness 

To prove existence of 0 a such that (4.38) is satisfied, we fix a> 0, arbitrarily chosen, and 

consider for 1 < 0 < 2 the left and right hand sides of (4.38) separately, i.e. 

LHS(o) = ~ (AI) 

and 

~l 1 J -J~(~)d~ 
RHS(o) = 2a 2 ~l ~ , 

J ~ J~(~)d~ (A2) 

o 
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where ~ = ~(a,o) and ~I = ~l (a,o) are defined in (4.31) and (4.36), respectively. Trivially, 

(AI) is strictly decreasing in 0 such that LHS(l) = 1 and LHS(2) = t. Below we prove 

analytically that RHS( 1) < 1 and RHS( 2 -) = 00. This clearly implies the existence of 0 (J • 

Computationally, we verified the monotonicity of RHS( 0); see Figure 6, which in addition 

gives the uniqueness of 0 (J for any a > 0 . 

Behaviour as 0 J, 1. 

Set w(~) = J p (~) and consider the Bessel equation 

(A3) 

Dividing by ~ and multiplying by w yields 

1 
~Ww" +ww' +~W2 _~2 ~ w2 = O. (A4) 

Integrating this equation in ~ from ~ = 0 to ~ = ~l gives 

(AS) 

for all fJ > O. Since 

~1 ~ ~1 ~I J gww" = ~w' t -J w'(w+gw') = -J g(W,)2 , 
o 0 0 0 

(A6) 

we obtain 
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which implies RHS(1) < 1, since lim{32(a,0) =2a2. s.J.j 

Behaviour near B = 2. 

(A7) 

Since lim{3(a,o) = 0 and Jo(~) ~ 1 as ~~O, the integrand in the numerator of (A2) is non
stz 

integrable as 0 t 2. Consequently, lim RHS (0) = 00 • 

Si2 

We conclude this appendix by determining the behaviour of R, (a) , see (4.39), as a ~ 0 . 

Using (4.31), we rewrite (4.38) into 

(A8) 

Since a ~ 0, we need to investigate the right-hand side of this equation as {3 ~ O. From 

(AS) and (A6) we deduce 

as ~ ~ O. Hence limo" = 2. 
,,~o 

Moreover since lim~, (a,B) = ~~ , we find limRj (a) = t.2.(~~)2 = 5.784 .... 
,,~o ,,~o 
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Appendix B: Comparison of eigenvalues 

Let a > 0 be fixed and consider the eigenvalue problem 

where La is defined in (5.6). Note that 

(Bl) 

We denote the eigenfunctions and eigenvalues of (Ea) by {Wn,.,.f=1 and {Rn(a;O')}~=I' 

respectively. The eigenvalues are ordered according to Rl(a ;0') < R2(a ;0') <.... We prove 

the following fundamental property: 

Theorem. The smallest positive eigenvalues of Problem (Eo) satisfy 

and 

Proof. We only show the first assertion. The proof of the second one is similar and is 

therefore omitted. Consider for (j > 0, 

L - 2R ( . )-z .,.w1,.,. - a 1 a, 0' e WI,.,.' 

Using property (Bl) we write this equation as 
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4WI,a _a 2 RI (a ;O)e-ZwI,a = a2
{ Rl(a ;0')- RI (a ;O)}e-zwI,a 

+0'(D2 -a2)WI ,a. 

Multiplying this expression by wI,(P integrating, and usmg the notations wa = wI,a and 

(Wa' 4 wa )_a2 Ro( wa,e-zwa) = a2 (Ra - Ro)( wa,e-zwa) 

-O'{IIDwall~ +a21Iwall~}, 

where (. ,.) denotes the L2 - inner product and 11·112 the induced norm. The left hand side of 

this expression is strictly positive, because 

where H = {WE H2 (0,00): W satisfies boundary conditions}. 

Thus we obtain the inequality 

from which the assertion follows. 

Appendix C: The Jacobi-Davidson method 

In this section, we show briefly how the sixth order problem described by the combined 

system of equations (4.45), (4.46) and (4.47) can be solved numerically. The fourth order 

problem, described by (5.4) and (5.5), can be solved in a similar way. 
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After using the transformation introduced at (4.54), 

the system (4.45) - (4.47) can be written as 

(D 2 2)- (- dso(r,z»)_ -a s = 1C Jl'+ w, 
dZ (Cl) 

(D2 2)- (dso(r,z»)_ -a Jl' = 1C s , 
dZ (C2) 

(C3) 

for 0 < Z < 00. The boundary conditions are given by s = 1f = w = 0 at Z = 0 and at z = 00 • 

21C
2 

We want to obtain R = ~ as a function of a for several values of r. Here 1C min is the 
a 

smallest positive eigenvalue of (CI) - (C3). 

Before a numerical solution can be obtained, we have to decide how to deal with the 

boundary conditions at infinity. One possibility is to use a transformation t = e-z
• We have 

used the more direct approach in which the boundary conditions are applied at a finite value 

Z = Zcut instead of Z = 00. Here Zcut is chosen sufficiently large; increasing Zcut should not 

alter the results beyond the accuracy that we demand for the numerical solution. We have 

experimented with several values of Zcut to ensure that this criterion has been satisfied. 

The next step is to discretise (CI) - (C3) for 0 < Z < Zcut . In order to keep the 

discretised system of equations reasonably small, we use a relatively large mesh size near 

Z = Zcut' and an exponential refinement near Z = o. Suppose that we discretise at the points 

ZI,Z2, ... ,ZN. At a given point Zp the operator (D2_a
2

) is discretised using a standard, 

second-order scheme that involves only Zi-I' Zi and Zi+l. After discretisation, we obtain the 

following generalised eigenvalue problem 
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= 1([~ 
-/ 

/ -D][~] o 0 7r. 

o 0 w 
(C4) 

Here T is the tridiagonal matrix that represents the operator D2 - a 2 
, / is the identity matrix, 

dSo(,r,z) 
and D is the diagonal matrix with its i-th diagonal element equal to the value of at 

dZ 

Zi' The N x I vectors s, ir and w have as components the values of the corresponding 

functions in the discretisation points. For each W, the vector (O,Dw, w) is in the null space 

of the matrix in the right-hand side of (C4). Hence (C4) has N eigenvalues equal to infinity. 

Further, it can be shown that if 1( is an eigenvalue not equal to zero, then so is -1(, and 

1( satisfies the generalised eigenvalue problem 

(C5) 

We note that this equation corresponds to the sixth order w-equation (4.48). 

We want to solve (C5) with the Jacobi-Davidson (JD) method (Sleijpen & van der 

Vorst 1996). This method can be used to solve generalised eigenvalue problems of the form 

Ax = flBx. (See below.) We used the code that has been developed at the University of 

Utrecht and which is described by Fokkema, Sleijpen & van der Vorst (1999). The JD 

method is especially of interest when only a small number of eigenvalues fl is required and 

when the matrices A and B are large and sparse. An advantage is that the inverse of A or B is 

not required; hence JD can be used for very large eigenvalue problems (Nool & van der Ploeg 

1997). Therefore, for our application, we could take A = T3
, B = DT + TD and apply JD 

directly to (C5). However, from numerical experiments it appeared to be more efficient to 

apply JD to the following standard eigenvalue problem, 

T-3(DT + TD)w = ;"-2W. (C6) 
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We emphasise that it is not necessary to construct the matrix T-3 explicitly; we only need the 

matrix-vector multiplication with T-3 
• Since -Tis a tridiagonal, diagonally dominant 

matrix, we can easily construct the bidiagonal matrices L and V in such a way that 

T = LV and L and V are lower- and upper-triangular respectively. Therefore, the result of the 

matrix-vector multiplication is available. 

For completeness, we discuss briefly the basic ingredients of the Jacobi-Davidson 

method by further consideration of the standard eigenvalue problem Ax = Jix. At the k-th 

step of the method, an approximate eigenvector is assumed a combination of k vectors 

VI' V 2 ,.··, vk ' where k is very small compared to N. If the N x k matrix whose columns are 

given by VI' v2"", vk is denoted by Vk , an approximate eigenvector can be written as Vks, for 

'small' vector s with k components. The search directions are made orthonormal to each 

other; hence Vk *Vk = I . 

Suppose that an approximate eigenvalue is given bye. The vectors sand e are 

constructed in such a way that the residual vector r = AVks-e Vks is orthogonal to the k 

search directions. From this requirement it follows that 

In this way one obtains a 'projected' eigenvalue problem, in which the size of the matrix is k. 

By using a proper restart technique one makes sure that k stays so small that this problem can 

be solved by a direct method. In our application, we are interested in the largest eigenvalue. 

Hence the eigenvalue of the projected system that has the largest norm is chosen as the 

approximate eigenvalue e. 

At each step of the algorithm a new search direction has to be constructed. Suppose 

that we have obtained an approximation u of the true eigenvector x associated with some 

eigenvalue Ji. We assume that II ull = 1; hence e = u * A u is an approximation of Ji. Let us 

define P = u u * being the orthogonal projector onto the subspace spanned by {u} and let 

I - P be the projector onto the orthogonal complement of span {u}, which is denoted by uJ. . 
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Any vector x E en can be written as x = Xl + X2 with XI E span {u} and X2 E uJ... We 

normalise X such that X = u + y with y 1. u. In the JD algorithm a correction vector y E uJ.. 

is constructed. The restriction of A to uJ.. is given by 

Ap = (I - P) A( 1 - P) . (C7) 

If we rewrite (C7) and substitute the resulting expression for A into Ax = J.lX, we obtain 

(Ap - J.L)y = -r+ (J.L - (J- u* Ay)u. (C8) 

Both y and r are orthogonal to u and therefore, premultiplication of (C8) with u* yields 

J.L = (J + u * Ay. Note that J.L is unknown and its best approximation will be (J. In this way, 

we obtain as the correction equation 

(I - P)(A -(J/)(I - P)y = -r, u*y=o. (C9) 

It is sufficient to solve (C9) only approximately. This can be done by some steps of an 

iterative method, for example, GMRES. When an approximate solution y of (C9) has been 

constructed, it is made orthogonal to the previous search directions, and the new search 

direction Vk+1 is taken equal to the normalisation y IIlyll. 

A more detailed description of the Jacobi-Davidson method, including the generalised 

eigenvalue problem, can be found in Sleijpen & van der Vorst (1996) and Fokkema, Sleijpen 

& van der Vorst (1999). Information on how to obtain the code can be obtained at the 

Internet address http://www.math.uu.nl/people I bomhof I jd.html 
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Figure Captions 

Figure 1. With .wavenumber a given, curve S shows lower bound for first eigenvalue plotted 

versus A ; curve C has been constructed using 8 - values satisfying the integral constraint. 

Figure 2. Comparison of estimates involving lowest eigenvalue RJ versus wavenumber a for 

the equilibrium boundary layer. Curve 1: Energy method using integral constraint. Curve 2: 

Energy method using differential constraint. Curve 3: Linearised stability theory using 

Jacobi-Davidson numerical method (solid curve) and Frobenius expansions (crossed points). 

Figure 3. Solid curve: Lower bound to RJ for equilibrium boundary layer according to the 

energy method with differential constraint. Dashed curves: Lower bound for R j prior to 

eqUilibrium. Numerical values are calculated by Jacobi-Davidson method. Short-dashed 

curve traces minima of lower bound for Rj with increasing l' > 0 . 

Figure 4. Solid curve: Lowest eigenvalue R
J 

for equilibrium boundary layer according to 

small perturbation theory. Dashed curves: Estimate of RJ prior to equilibrium, treating time 

as parameter. Numerical values are calculated by Jacobi-Davidson method. Shorter-dashed 

curve traces minima of RJ with increasing 7: > 0 . 

Figure 5. Comparison of theory (this paper) with experimental and numerical modelling 

results (Wooding, Tyler & White 1997). Solid curves 1-3 give eigenvalues RJ versus 

wavenumber a for the equilibrium boundary layer (Figure 2). Curves of minima of RJ with 

respect to a for l' > 0 increasing to equilibrium: by modified energy method (Figure 3, short 

dashes), by linearised theory (Figure 4, shorter dashes). Symbols for experimental and 

numerical results are identified in the text. 

Figure 6. Typical curves of RHS (8) and LHS (8) used for existence proof. In the most 

likely situation curves are monotone, giving a single point of intersection and hence 

uniqueness. 

49 



o 

5'=2 / 
. 1\ / r"t_ J l},_ 

I.:.-\,I" v\.t.ATU.-

/ 

/ 
/ 

/' 

/' 
/' 

/ 

/ 
/ 

" " " 

/' 
/' 

Figure 1. With wavenumber a given, curve S shows lower bound for first eigenvalue plotted 

versus A. ; curve C has been constructed using 0 - values satisfying the integral constraint. 



10 

10 

1 2. 3 

Figure 2. Comparison of estimates involving lowest eigenvalue RI versus wavenumber a for 

, the equilibrium bOUlldat) layer. Curve 1: Energy method using integral constraint. Cunre 2: 

Energy method using differential constraint. Curve 3: Linearised stability theory using 

Jacobi-Davidson numerical method (solid curve) and Frobenius expansions (crossed points). 
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Figure 3. Solid curve: Lower bound to Rl for equilibrium boundary layer according to the 

energy method with differential constraint. Dashed curves: Lower bound for Rl prior to 

equilibrium. Numerical values are calculated by Jacobi-Davidson method. Short-dashed 

curve tra,ces minima of lower bound for Rl with increasing 'l' > 0 . 
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Figure 5. Comparison of theory (this paper) with experimental and numerical modelling 

results (Wooding, Tyler & White 1997). Solid curves 1-3 give eigenvalues Rl versus 

wavenumber a for the equilibrium boundary layer (Figure 2). Curves of minima of Rl with 

-respect to a for 't' > 0 increasing to equilibrium: by modified energy method (Figure 3, short 

dashes), by linearised theory (Figure 4, shorter dashes). Symbols for experimental and 

numerical results are identified in the text. 
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