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ABSTRACT

The problem of joint blind signal separation and acoustic
echo cancelling arises in applications such as teleconferenc-
ing and voice controlled machinery. Microphones pick up
a signal of the desired speaker together with contributions
of other speakers and loudspeakers in these applications.
The contributions of these loudspeaker signals to the micro-
phone signals need to be cancelled. The remaining signals
are then separated so that the individual local speakers are
recovered.

In this paper an extension of the recently introduced
Convolutive Blind Signal Separation algorithm; CoBliSS is
presented. This extended algorithm is capable of perform-
ing combined blind signal separation and acoustical echo
cancelling at a low computational cost. The performance
of the extended CoBliSS algorithm is evaluated using audio
that is recorded in a real acoustical environment.

1. INTRODUCTION

Both Blind Signal Separation (BSS) and Acoustic Echo
Canceling (AEC) is required for high quality audio appli-
cations such as teleconferencing and voice controlled ma-
chinery. The teleconferencing setup is depicted in Figure
1. Typically, both local speakers and reproduced far end
sounds or music are present. The adaptive processor can
consist of separate BSS and AEC. Recently, several convo-
lutive BSS algorithms have been introduced that are based
on Second Order Statistics (SOS) [1, 2, 3, 4, 5, 6]. As
conventional AEC’s employ SOS too, it seems feasible to
merge such BSS and AEC algorithms. Higher quality and
lower computational complexity can be achieved in this way
[7].

Recently, the CoBliSS BSS algorithm was introduced
which is entirely based on SOS [6]. In this paper an exten-
sion of CoBliSS is presented which is capable of performing
joint AEC and BSS.

The problem of recovering independent signals from
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Figure 1: Teleconferencing setup

mixtures of them which are contaminated with acoustic
echos is depicted schematically in Figure 2. The sources
s� � � � sL� are the unknown sources, e.g. the local speak-
ers. The sources sL��� � � � sJ are the known sources, e.g.
far end speech which is reproduced in the same room using
loudspeakers. The multi-channel room impulse response
is modeled by H . The microphone signals are x� � � � xL� .
The correlation estimator measures the cross-correlations
among all microphone signals and the known sources. This
information is used to update the multi-channel filter w
which produces y� � � � yL� as outputs. These outputs are
the estimates of the unknown sources s� � � � sL� . There are
two important advantages of combining AEC and BSS into
one algorithm that is based on blind signal separation. Con-
ventional AEC is hampered by the presence of active lo-
cal speakers, which is known as double talk. BSS however
profits from simultaneously active speakers. A second ad-
vantage is that the performance of the BSS no longer de-
pends on residual echo signals of the AEC.
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Figure 2: Mixing, unmixing and control system

2. NOTATION

Throughout, time and frequency signals will be denoted by
lower case and upper case characters respectively. A char-
acter which denotes a vector will be underlined. Super-
scripts denote the vector or matrix dimensions, a matrix
with one superscript is square. Also, A�, AT , AH and
A�� denote complex conjugate, matrix transpose, hermi-
tian transpose and matrix inverse respectively and �� � ��.
Element-wise multiplication is denoted by �. The expecta-
tion operator will be denoted by Ef�g. The N � N iden-
tity matrix and the K � L zero matrix will be denoted by
IN and 0K�L respectively. The k� lth element of matrix A
and the lth element of vector B is denoted as �A�kl and
�B�l respectively. The M �M Fourier matrix FM is de-

fined as �FM �kl � e
�����k����l���

M . The matrix square root
sqrtm��� is defined as A � sqrtm�B� � AHA � B, such
that AH � A, with B a complex symmetric matrix, i.e.
BH � B. The N � N mirror matrix JN has ones on its
anti-diagonal and zeros elsewhere. Time indices are not
mentioned explicitly in all equations.

3. DERIVATION

For notational convenience the far end signals are assigned
to xj � sj for j � L��� � � � J so that the xj now represent
the input signals for ECoBliSS for j � � � � � J . The filter
part can now be written for m � � � � � L�

ym�n� �

JX
l��

�wNml�n��
TxNl �n�

with xNl �n� � �xl�n�N � �� � � � xl�n��
T . The wNml�n� per-

form blind signal separation for l � � � � � L� and acoustical
echo canceling for l � L��� � � � J . The idea that forms the
basis of ECoBliSS is to make all output signals mutually
uncorrelated and uncorrelated with the far end signals.

Similar to the CoBliSS algorithm, blocks of microphone

signals are transformed to the frequency domain

XM
a � FM

�
B�
xa�nB �M � ��

...
xa�nB�

�
CA �

The blocks are of length M and are overlapping; only B

new samples are used per block. The filters are also trans-
formed to the frequency domain

WM
jc � FM

�
JNwNjc
0M�N

�
�

The transformed microphone signals XM
a and filters WM

jc

are used to perform the filter operation efficiently in the fre-
quency domain using the overlap save technique [8]. Also,
the cross-power estimates are updated efficiently in the fre-
quency domain �a� c 	

PM
ac 	� �PM

ac � ��� ��
�
�XM

a �� �XM
c

�
�

The cross-power PM
ac is the Fourier transform of the cross-

correlation of xa�n� and xc�n�. The estimation of this cross-
power is computationally efficient and fast compared to the
estimation of the cross-correlation matrix. The algorithm
is based on these cross-powers as there is a known linear
relation w between the cross-correlations among the out-
puts and the cross-correlations among the inputs [4]. This
has the advantage that the cross-correlations do not need to
be recalculated when the multi-channel unmixing and echo
canceling filter w changes.

For every frequency, the filter coefficients and the corre-
lation estimates are grouped in the following way. The pth

elements of the vectors WM
ij and PM

ij are put in a matrix
for i � � � � � L�� j � � � � � J and i � � � � � J� j � � � � � J
respectively

WL��J
p �

�
B�

�WM
���p � � � �WM

�J�p
...

. . .
...

�WM
L��

�p � � � �W
M
L�J

�p

�
CA �

	

WL�
p

�WL��L�
p




P J
p �

�
B�
�PM

���p � � � �P
M
�J�p

...
. . .

...
�PM

J��p � � � �P
M
JJ �p

�
CA �

The 
WL�
p correspond to the filters that perform the BSS and

the �WL��L�
p correspond to the filters that perform the AEC.

In the CoBliSS algorithm, the weight matrix W J
p is square

and the decorrelation criterion is �W J
p �

�P J
p �W

J
p �

T � �Jp ,
with �Jp a diagonal matrix. The diagonal elements of �Jp
set the power of the recovered signals for frequency p. The
off-diagonal zero elements correspond to mutually uncorre-
lated recovered signals for frequency p. The decorrelation



criterion for ECoBliSS is a generalization of that of CoB-
liSS�

� 
WL�
p �� ��WL��L�

p ��

0L��L� IL�

�
P J
p

�
� 
WL�

p �T 0L��L�

��WL��L�
p �T IL�

�
�

�
�L�
p L��L�

L��L� �PL�
p

�
� (1)

with �L�
p a diagonal constraint matrix as before and �PL�

p

the cross-power matrix of the known sources for frequency
bin p

�PL�
p �

�
B�

�PL����L����p � � � �PJ�L����p
...

. . .
...

�PJ�L����p � � � �PJ�J �p

�
CA �

The weight matrix in (1) consists of the matrices 
WL�
p and

�WL��L�
p , a zero matrix and a identity matrix. This can

be seen as a filter structure that yields both y� � � � yL� and
sL��� � � � sJ as outputs. The right hand side of (1) pre-
scribes that y� � � � yL� are uncorrelated as �Jp is a diagonal
matrix. The zero matrices prescribe that the y� � � � yL� are
not correlated with the far end signals sL��� � � � sJ . The
�PL�
p is required as the cross-correlations among the far end

signals remain unchanged. Equation (1) is rearranged as�
� 
WL�

p �T 0L��L�

��WL��L�
p �T IL�

��
��L�
p ��� L��L�

L��L� ��PL�
p ���

��
� 
WL�

p ����WL��L�
p ��

0L��L� IL�

�

� �P J
p �

�� (2)

so that�
� 
WL�

p �T ��L�
p ���� 
WL�

p �� � 
WL�
p �T ��L�

p ���� �WL��L�
p ��

��WL��L�
p �T��L�

p ���� 
WL�
p �� ��WL��L�

p �T ��L�
p �����WL��L�

p ��

�

� �P J
p �

�� �

�
0L� 0L��L�

0L��L� � �PL�
p ���

�
� (3)

Note that both sides of this equation are of rank L� (with
P J
p and �PL�

p full rank)1 so the weight matrix products are
uniquely defined. The inverse of the correlation matrix is
now written as

�P J
p ��� �

�

PL�
p

�PL��L�
p


�P
L��L�

p
��P
L�

p

�

so that the two relevant equations from (3) are

� 
WL�
p �T ��L�

p ���� 
WL�
p �� � 
PL�

p (4)

� 
WL�
p �T ��L�

p ���� �WL��L�
p �� � �PL��L�

p (5)

1For the left hand side of (3) this is obvious because it equals the left
hand side of (2) with � �PL�

p ��� replaced by zeros. For the right hand side
it can be seen from

rank
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C D
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�
�
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n

I�
	
A B

C D


	
� �
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o
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n	
I �BD��

� �


o
.

Similar to CoBliSS the diagonal matrix ��L�
p ��� can be ab-

sorbed by the weight matrices. Ideally, �L�
p contains the

powers of the sources to be recovered on its diagonal for
all frequencies p. As these powers are unknown in practice,
�L�
p is set equal to the identity matrix. The impact of this

is that the spectra of the recovered sources will be flattened.
When the signals have almost no energy for a certain fre-
quency, the filter coefficients will be made large so that the
recovered output signals have unity power as prescribed by
�L�
p � IL�. This can be compensated for by normalizing

the weight matrices so that they all have the same norm.
Therefore, the BSS matrix 
WL�

p can be initialized by us-
ing the matrix square root to decompose the inverted cross-
correlation matrix


WL�
p � �sqrtmf 
PL�

p g���

The AEC matrix �WL��L�
p depends on the BSS matrix 
WL�

p .
It is found from rewriting (5)

�WL��L�
p � � 
WL�

p ��H� �PL��L�
p �� (6)

In this approach the AEC weight matrix is calculated from
the BSS weight matrix. This is an advantage over traditional
systems with separate BSS and AEC, where the BSS is up-
dated independent of the AEC. When the AEC changes in
such a system, the BSS has to re-converge.

When the weights are initialized, the cross-correlation
estimates are updated and the weights are constraint so that
they correspond to linear FIR filters of length N :

�FM ���WM
jc �

�
wNjc

0M�N

�
� (7)

This is done by replacing the coefficients that should equal
zero by zeros in the time domain. Equations (4) and (5)
no longer hold after these modifications. The objective is
now to modify the weight matrices so that these equations
hold again. These modifications must be as small as pos-
sible to ensure that the modified weight matrices still ap-
proximately satisfy (7). Similar to CoBliSS, this is done by
post-multiplying the 
WL�

p by CL�
p , with

CL�
p � �sqrtmf� 
WL�

p �T � 
WL�
p ��g����sqrtmf� 
PL�

p ���g� �

The AEC matrix can again be found from (6). This pro-
cedure is repeated continuously. Together these steps form
the ECoBliSS algorithm which is summarized in the next
section.

4. ALGORITHM OVERVIEW

In this section an overview is given of the ECoBliSS algo-
rithm. The ECoBliSS algorithm consists of the following
steps;



1. Blocks of input data are transformed to the frequency
domain for a � � � � � J

XM
a �nB� � FM

�
B�
xa�nB�M���

...
xa�nB�

�
CA.

These blocks are of length M and are overlapping;
only B new samples are used per block.

2. Cross-power estimates are updated efficiently in the
frequency domain �a� c 	

PM
ac �nB� 	� �PM

ac ��n� ��B�

� ��� ��
�
�XM

a ���nB��XM
c �nB�

�
�

The forgetting factor � may vary from 0 to 1 depend-
ing on the application. Usually � is chosen near to
1, e.g. � � ���. In contrast to CoBliSS, these
cross-powers are calculated among both the micro-
phone signals and the far end signals.

3. When the cross-correlation matrices are initially esti-
mated the weights that correspond to the signal sepa-
ration are initialized using the matrix square root
�p 	 
WL�

p � sqrtm� 
PL�
p �� . The weights that corre-

spond to the acoustical echo canceling are calculated
�p 	 �WL��L�

p � �� 
WL�
p �H���� �PL��L�

p ��.

4. The weights are changed so that (1) holds again
�p 	 
WL�

p 	� 
WL�
p CL�

p

with CL�
p � sqrtm�� 
WL�

p �H 
WL�
p ���sqrtm�BJ

p �
�

Note: This step can be omitted if the initialization has
just been done.

5. The weight matrices are normalized using the 2-norm

WL�
p 	�

�W
L�
p����� �W

L�
p

�W
L��L�
p

�����
and �WL��L�

p 	�
�W
L��L�
p����� �W

L�
p

�W
L��L�
p

����� �
Note that

	

WL�
p

�WL��L�
p



means that 
WL�

p and

�WL��L�
p are placed next to each other in one matrix.

6. The weights are constraint so that the frequency do-
main weights corresponds to time domain filters of
length N , �p 	

WM
jc 	� FM

�
IN 0N�M�N

0M�N�N 0M�N

�
�FM ���WM

jc .

Note that the �W J
p �ac � �WM

ac�p.

7. The filtering is performed efficiently in the frequency
domain using the overlap-save method [8] to ideally
obtain the separated and echo free outputs
yB
j

� �0B�M�BIB��FM ���
PJ

a���X
M
a �WM

ja�.

8. All steps are repeated iteratively except for the initial-
ization in item 3.

Note that similar to CoBliSS, the filtering and the weight
update can be calculated independently. When the update
of the cross-correlations is slower than the weight update for
example, reducing the weight update rate lowers the com-
putational complexity at the cost of only a slightly slower
convergence of the system.

5. EXPERIMENTS

Experiments were done with audio recorded in a real acous-
tical environment. The room that is used for the record-
ings has dimensions 3.4 x 3.8 x 5.2 m (height x width x
depth) and is depicted in Figure 3. Two persons read 4
sentences aloud. Far end speech was introduced by play-
ing the French radio news over a small loudspeaker. The
resulting sound was recorded by two microphones which
were spaced 58 cm apart. The recordings are sampled at
24kHz, with 16 bit accuracy. The separation filters are of
length 512 tabs. In an initial experiment, the CoBliSS algo-

58cm

1m

80cm

1.2m

3.8m

5.2m

Figure 3: Recording setup

rithm is used. The microphone signals and the far end signal
used as inputs for the algorithm. For the sake of computa-
tional complexity, only one update per every 2560 samples
is done. In this experiment, the algorithm converges to a
good solution within 0.25 second. This convergence time is
required to make good estimates of the cross-correlations.



Therefore, increasing the update rate does not significantly
increase the convergence time. The resulting sound files can
be played online2. The three outputs of the CoBliSS algo-
rithm indeed consist of the two separated speakers and the
far end speech which is contaminated with some crosstalk.
An important advantage of the CoBliSS over a system that
uses conventional AEC is that it performs acoustic echo
canceling which is not impaired by double talk situations.
This makes it suitable for applications like teleconferenc-
ing, hands free telephony, etc. A drawback is that blind
signal separation is based on little information so that it be-
comes becomes much more difficult in a real environment
when the number of sources increases.

The same experiment is repeated with ECoBliSS. The
ECoBliSS algorithm does exploit the fact that the far end
signal readily is a source and recovers the unknown speakers
only. The outputs of ECoBliSS sound significantly better
than those of the first experiment. Also, the computational
complexity of extended CoBliSS is significantly lower, as
the number of filters decreases and the matrices that need
to be decomposed become smaller. The signals that are re-
covered by ECoBliSS in this experiment can also be played
online�.

6. CONCLUSIONS

An extension of the recently introduced CoBliSS BSS al-
gorithm is presented in this paper. This extension is capa-
ble of performing joint acoustic echo canceling and blind
signal separation at a low computational complexity. The
performance is verified using data that is collected in a real
world environment. The extended algorithm exhibits a per-
formance that is superior to that of the CoBliSS algorithm
when the known signal is used as an additional input. The
computational complexity of the extended CoBliSS algo-
rithm is significantly lower however which is important for
real-time operation. An additional advantage of the CoB-
liSS algorithm over conventional echo canceling is that it
can operate in double talk situations without complications.
This makes it suitable for applications such as teleconfer-
encing and hands free telephony.
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