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Abstract

A brief overvicw of the drying-induced stress and strain problem is given, followed by a presentation of the
governing equations and the (inite element formulation. The mathematical formulation of mass transfer is
based on the diffusion equation and an elastic model is used to compute drying-induced strain and stress.
The von Mises cracking criterion is introduced in order to locate the area where danger for cracking occurs.
The modcl is applied 1o the drving of a Kaolin brick with a square section. Danger for cracking is highest
during the hours four first duc to the important size of the clay sample. The cracking criterion reaches its
peak value al the surface for the symumetry axes in 40 minutes and then decays slowly. Cdmplemenmly

examplces are presented that demonstrate representative applications of such calculations.

Keywords: drying;: diffusion: elasticity: shrinkage; cracking criteria; mathematical modelling.

INTRODUCTION
Drying is an operation which is present in important industrial processes involving minerals, agricultural
products, forest and polymer. An cxample of a branch of industry, where drying plays an essential role in
the production proccesscs is the brick and tile manufacturing industry.
Shrinkage occurs during drying of many materials. It is pointed out that the shrinkage for clays is caused by

particle slip into a more compact arrangement by Onoda et al. (1988). Moisture concentration gradients in




the material and corresponding gradients in the amount of shrinkage will lead to drying stresses.
Controlling these stresses is tmportant since they can lead to undesired deformations and/or cracks in the
product. A correct description of the evolution of moisture concentration profiles in the material is
complicated by the influencc of shrinkage on mass transfer.

A review of papers dealing with drying-induced strain and stress has been made by Hasatani and Itaya
(1996). Concerning the mechanical behaviour elastic or more complex models -in particular viscoelastic
modcls- could be used. cach onc having its advantages and disadvantages.

Numerous papers deal with the simulation of drving-induced strain and stress using an elastic model.
Jomaa (1991) assumed clastic properties to predict strain and stresses during gel drying. He concluded that
the prediction of the final shape of the sample, by assuming the gel of being an clastic material, is not
adcquate and that the consideration of viscoclastic properties would most probably improve the shape
prediction. Mrani et al. (1993) delined a theoretical model taking into account the simultaneous influence
of mechanical and hygrometric actions to study the drying of a highly deformable two phases gel. Using
this model for the non uniform drving of agar gel (Mrani et al., 1997) the numerical results showed a good
agrecment with experiments and the authors concluded that this kind of model could be used as a tool for
improving the final quality of dried product. Brooke and Langrish (1997) studied an elastic model to
simulate stresses and strains in the drying of Pinus radiata sapwood. Comparing with measured rupture
stresses they observed that the clastic model over-cstimates the stress level inside the timber. The authors
concluded that their model is still uscful 1o develop a better understanding of the effect of the board
geometry and the drying conditions on the risk of cracking,

There have been published only a lew papers on viscoelastic behaviour related to dehydration. Also the
finite elemeni technique has been extended 1o viscoelastic problems in only a few relatively simple cases
which were based on the sohution of integral cquations in real lime (Taylor and Chang, 1966, Srinata and
Lewis, 1981). To overcome the difficulties of these solution schemes, Haghighi and Segerlind (1988a,b)
developed a variational formulation for a finite clement analysis of a viscoelastic sphere subjected to
temperature and moisture gradicnts. Their numerical results were limiled to an elastic solution since the
viscoelaslic propertics for malerial being studied were not available. Irudayaraj and Haghighi (1993)
proposed a theory and finite element formulation for the stress analysis of non-linear viscoelastic materials

during drying. The history-dependent nature of viscoelastic behaviour required extensive computer storage




and time. Thus the only way to use elTiciently their model was to define a computational scheme wherein
the current solution depended only on solutions from the previous two lime steps and to use a small number
of clements (22).

From this literature survey it can bc concluded that viscoclastic analysis is only limited to the simple
problem, because the performance of new computers is still not sufficient for the problem, but also because
it is quite dilficult to propose an appropriatc mechanical mbdel and to obtain the necessary properties
experimentally. For these reasons in most cases elastic models are used in order o arrive at a better
understanding of the risk of cracking.

The main objectives of this rescarch arc 1) to develop the mathematical formulation of the problem and the
way to solve it by using a Lagrangcan frame and the finite elcment method; 2) to analyse the simulated
drying bchaviour: 3) to stucly the cffect of different parameters such as diffusion coefficients on the drying
and the mechanical behaviour.

In the first part of this paper the mathematical model is presented. A diffusion model is used to describe the
moisture content cvolution. Due to the lack of relevant mechanical properties for clays and the huge
memory requirciient to numncrically solve the viscoelastic problem it is assumed that the clay behaves
perfectly elastic. In a sccond part of this paper the corresponding finite clement formulation is given.
Different numerical problems and the way 1o solve them are studied. In the final part Kaolin drying is
considered. Analysis of moisture content profiles, shape evolution and cracking criterion evolutions allow
to understand where, when and why danger for cracking occurs. The effects of diffusion coefficients and of

Young’s modulus approximation arc briefly discussed and some conclusions are drawn.




MATHEMATICAL MODELLING

Isothermal dryving of clay can be modelled by equations expressing mass conservation of moisture and
solid. together with a flux equation for moisture. This flux equation is essentially Darcy’s law, where
pressure and permeability depend on moisture content. A combination of these equations leads to a
diffusion equation which is used in this study. This equation can be applied for systems with any degree of
shrinkage (Coumans, 1987. Ketclaars, 1992).

The diffusion equation is supplemented with an expression for the deformation of clay due to gradients in
moisture content. In this study. it is assumed that clay behaves like an clastic material, i.e. Hooke’s law
applics, where Young's modulus and Poisson’s ratio depend on moisture content.

With the introduction of Lagrangean co-ordinates these cquations can be transformed into a non-linear
parabolic equation for the moisturc conservation and a non-linear elliptic equation for the displacements
that depends on the moisturc conlent (Wigmans, 1994). The coupling between stresses and drying kinetics
is very small (Kctelaars, 1992) and has been neglected. However, it should be realised that the diffusion

cocfhicients determined from drving curves implicitly take into account this coupling.

Diffusion model

The description ol mass transfcr in porous media can be found in various literature references (e.g.,
(Whitaker. 1977)). In order to arrive at a practical. manageable model. simplification of the complete set of
equations scems incvitable. A simplification most frequently encountcred in drying is the so-called
apparent diffusion cocfficient. All mechanisms contributling to moisture transfer are lumped into a single
diffusion coefficient. The model based ou this assumption is often referred o as “the’ diffusion model. The
diffusion modecl is a more phenomenological model. in contrast to mechanistic models. Different methods
can be used to determine the diffusion coefficients from experimental data. The first technique is the
measurement of drying curves (Coumans, 1987). The second experimental technique is the direct
measurcment of moisture profiles during the drying process. Example of non-destructive measurement
methods are gamma or neutron attennation mcthods (Ketelaars et al.,, 1995) and nuclear magnetic

resonance imaging (Pel. 1993 Krocs. 1998).




With respect to the diffusion modcl. the mass balances and flux equation that hold for the drying of a block
of clay with any degree of shrinkage can be represented by (he following equations (Coumans, 1987,
Ketclaars, 1992):

- mass conservation of moisture :

%rv(pmvm), M

- mass conscrvation of solid :
L 9. @

- flux cquation for moisture :
PV =PV, - n. D@V, 3)

where the moisture content is givenby u=p_ /p,.

The flux cquation can be derived from mechanistic considerations by neglecting the effects of air transport,
temperature gradicnts and gravity, and by assuming that the capillary pressure is a function of moisture
content only (Puiggali ef al,, 1988). Combining this sct of equations leads to the form of the diffusion
equation which is used in this study:

au

+v -Vu= i V. (p,.DW)Vu) inQ >0, (€))

s

C

where €, is the time-dependent computational domain. This equation is supplemented with the initial
condition

ux.) =u’. xel, &)
and the boundary condition

—p.D(u)Vu-n = J(u on ., >0,
Py (u) () L ©)

where J(u) is the prescribed drying flux which can be found from the sorption isotherm and the external
drying conditions.

Note that equations (4)-(6) are not complete. since Q.. p. and v, arc unknown,

In order to make the computational domain constant, Lagrangean co-ordinates with respect to solid are

used. Each clay particie will have a solid co-ordinate z=x(0). Define the mapping 7, : Q—C) by




Fz)=x(),  ze. 120, w
where =0, Lct 'Df|=[Vx]T be the functional matrix of #. and 7, =del(DF) its Jacobian which
represents the volume ratio of the continuum. 1t is clear that

X(O=v,(x(1).1).  xey, >0, ®

and
Px().0=02) " pl . 2eQ. 120, ®
where pl =p,(z.0). i.c. it is assumed that the initial solid concentration is constant.

It follows from (4)-(6). using (7)-(9) and the well-known transformation rules corresponding to the

covariant and contravariant formalism (e.g.. (Morse and Fesbach, 1953)), in solid co-ordinates z:

%‘:v-(ﬁ(u)vm inQ2,1>0,
- -~ (10
-pPn-(D)Vu) = Ju)  ondd 1>0,
u(z.0y=1u". zeQ,
where
D(u) =27, | D)\oF,| T, (an
T = 7,127, "0 | Jaw) . (12)

Note that (10) is still not complete. since D, is unknown. In order to determine D#, the displacement due

to mechanical stresses needs to be khown.

Mechanical model

We assumc that clays have perfectly elastic constitutions. Obviously this is an oversimplification of their
actual mcchanical bchaviour. There arc two important reasons for this simplification. First, it is very
difficult to determine experimentally all the relevant mechanical properties to be used in more sophisticated
constitutive models. especially since all these propertics are functions of moisture content. Second, the
numerical solution of these models is complicated. In addition to this it is assumed that the deformation due

to stresses of clay is small, which is confirmed experimentally. Thereflore, as a first approximation we will




use linear clastic constitutive equations. The resulting mechanical deformation holds instantaneously and
therefore we omit the time t in the following cquations.

T
|

Let w=x-z be the displacement. then D, =|Vx]" =1+ Vw]|". The total strain tensor is defined by

£(w) = (Vw +|Vw|")/2 . It is assumcd that the total strain is the sum of the elastic strain due to the stress
and the dilatation due 10 shrinkage. i.c.
g(W)=c"+e’, (13)

Since the material is assumed to be isotropic, the elastic strain can be determined from Hooke’s law:

, ' 14
¢ = L+ v(u) [0'— vw lr[c]l]. (4
E(u) [+ v(u)

The dilatation duc to shrinkagc is assumed to be isotropic. i.e.
g =¢’l. (15)
It is also assumcd that shrinkage only depends on moisture content. Define the prescribed shrinkage factor
W=7 <1, (16)
then det(I+&")=(1+ £*)* =y (u) and thus
£ =" (u) =y, I"* 1. an
Note that the shrinkage factor w(u) is the equilibrium relation between the specific volume (m’/kg dry

solid) of a picce of clay and its moisture content.

From (13)-(15) it follows that

1+ v(u) v(u) s
3(w) = - I|+¢ I, 1
£(w) E) {0’ l+v(u)lrlc] J+s. (u) (18)
and, inverting (18).
E(u) v(u) 1+v(u)
=—F 1 (w _ s(w - I
1+ v(u) [! tw)+ L= 2v(u) trlesCw )]IJ 1-2v(u) W ' (19

Neglecting gravity and accelerationts (orces. the momentum balance law is

(V-] =0. (20)




Assuming no external forces. the boundary condition for (19)-(20) is
on=0. Qn
Deline the Lamé coclTicients 2.(u) and p(u), and the bulk modulus K(u), by

E(u)v(u) E(u)

E(u)
=— K =
(I=2v(u)d+v@) * k(W) 2(1+v(u) w

T3 -2v(u)

7(u)=

then (18)-(21) result in

{V . [}.(u)lr(i:(w))l + Zu(u)s;(w)] =V. [3K(ll)85(ll)l] inQ2,
(22)

L)Veawn + 2p{u)e(w)n = 3K)e* (u)n on .

Coupling of the complete set of equations
The complete set of equation (10) and (22) can be simplified by neglecting the elastic strain with respect to
the shrinkage dilatation. which mcans that the deformation due 1o stress is much smaller than the

deformation due to shrinkage. resulling into

DY, =y, W)L (23)

This approximation is only uscd to solve the diffusion problem. It then follows from (10)-(12) that

6'1_1: V(I ()] 1 D(u)Vu) inQ1>0,

. . ' 24
=pin-(y, (W DW)V) =y, (WP Ju) ondQ, t>0, @4

wz.0)y=u", 2eQ)

Model limitations

With the help of the precedent model it is possible to calculate the moisture concentration distribution in
the clay body, and the connecled stresses. Stresses will lead to additional deformations on top of the
deformation due to shrinkage. In principle these stress-induced deformations have to be taken into account
in the drying kinctics model. If this effcct is 1o be included in the model it would lead to a coupling of the
kinetics model and the mechanical model. which complicates the numerical solution of the problem. It is
therefore assumed that the deformations due to stresses are small compared to the deformations due to

shrinkage. Note that this restriction can be verified once both deformations are calculated with the stress




model. The mechanical behaviour of the material is impticitly coupled with the kinetic model via the
experimental diffusion coeflicients. One of the advantages of this lumped coefficient is to take into account
all mechanisms contributing to moisturc contenl transfer (as the mechanical behaviour of the material).
This advantage could be at the same timc a disadvantage if we try to understand the mechanisms and their
influence. For example in using this model it is still impossible 1o make a sensitivity study to understand

the cffect of the mechanical material behaviour on mass transfer.

FINITE ELEMENT DISCRETISATION
The numerical solution is obtained using a standard finite clement package (SEPRAN, see (Segal, 1998))
which is adaptced for the problem studicd here. This code can be used for one-dimensional, two-dimensional
or three-dimensional problems. The used Finite Element Method (FEM) is standard and is not exposed in
details. The problem has to be wrilten in a weak formulation, the so-called variational form. The block-
shaped domain € is supposcd to be divided in a collection of block-shaped subdomains, called elements.
The clements have to be a partition of thc computational domain. For the time discretisation the time
interval |0.T], T>0. has to be divided into a parlition given by
0=1)<;< ... <ty=T

for some natural number N. Let A=t n=1.....N. be the time steps. The system of equations is
discretised in time by the backward Euler mcthod with frozen coefficients. The resulting sparse lihear

systcms are solved by preconditioned conjugate gradients.

The FEM applied to the diffusion problem

Concerning the diffusion problem the solution u(-.t,). n=1...N, of (24) is approximated by a function
uy € V. Solving the diffusion problem requires lo approximate the time derivative. For the discretisation of
the time derivative we can use an explicit or an implicit method. An explicit method is conditionally stable
and an implicit method can be unconditionally stable. The backward Euler implicit method is used in this
paper. For the derivation of the variational problem the Sobolev space of scalar functions V is used. Let V,

be the finite-dimensional subspace of V consisting of piccewise linear functions defined on each element.

9



Multiplying the diffusion equation by a test function vy,e V), integrating over the region Q and applying the

divergence theorent, the discrete approximate function uy is defined to be the solution of

1 n n-- Nroon i .
XI—J‘(““ -uy v, dz + _F[( D(uy)Vuy, )- Vv, dz

nQ
l Tinn (25)
=5 [Tawpv,ds. v, eV,.n=1..N,
s 20
u?‘(z)=u°. ze (26)

(sec (Douglas and Dupont. 1970) and (Carcy and Oden. 1984)).

N :
Let uy = Zui"(f’i . where ¢, arc the basis functions of Vj,. Successive choice of the test functions vi,=;,
1=l

i=1.2.....M. implics the cquivalence of (25) with the system of non-linear equations

(M +AL,S"u" = Mu"" + At F". @7
where
M, = f opde. 1j=12,..M, 28
S, =J( B(ll::)V(pj)-V(pld'/.. Lj=1.2,...M, 29
B = [T ds, i=12...M. G0
p-\‘ X

and u" is the solution vector. The matrix M is called the mass matrix, the matrix S" is called the stiffness
matrix and the vector F" is the right-hand side vector. The matrix M + At, S" is sparse and symmetric
positive definite because the diffusion cocfficient D is positive. This non-linecar problem is hard to solve
because the diffusion cocfficient and the prescribed drying flux will be evaluated by the solution to be
computed. An casy way to lincarisc this non-linear problem is to ‘freeze’ the coefficients. This means that
the diffusion cocfficicnt and the prescribed drying flux will be evaluated with the solution at the preceding

time level. In this casc the matrix equations to be solved read

(M +ALS" " =Mu"' + AL F. (€2

10



An adaptive time step procedurc is uscd. As long as {he prescribed drying flux is nearly constant near the
whole boundary the time step size can be chosen large. The slope of the prescribed drying flux for low
moisture contents is extremely steep. When this occurs, the time step has to be small.

The way of linearising causcs a numcrical problem. By freezing coefficients the prescribed drying flux is
evaluated on a preceding time level and therefore is too high. The time steps for low moisture contents at
the boundary are smaller than necessary. Since the small time steps are due to the extreme slope of the
prescribed drying flux for low moisture contents, it is necessary to compute the prescribed drying flux
implicitly. For this problem. an itcrative solution procedure does not converge. It seems more appropriate
to prescribe a Robin boundary condition (mixed boundary condition) instead of a Neumann condition. The

Neumann boundary condition from (24) in material co-ordinates can be written as the Robin condition
P’ n- (D) Va) + j(uu = 0, 32)
\;'here ?(u) = T(u)/ u . By using the Robin boundary condition and by freezing the coefficients of ](u),
the matrix cquation 1o be solved reads
(M+at,B"" +At, $" " Hu" =Mu"", (33)

where

n 1 oy ..
B! '= T_[ juy ')cqu)idz. i,j=12..M. (34)

o

Taking into account (26). (33) can be solved very cfficiently by the preconditioned conjugate gradient

method (sce. ¢.g.. (Saad. 1996)).

i



The IFEEM applied to the stress problem
Time discretisation for the stress problem is necessary because the stress depends on the moisture content,

i.e. the solution of the diffusion problem. The approximation of the solution w(.t;) at time t, will be
denoted as wy . For the derivation of the variational problem the Sobolev space of vectorial functions -

called V- is uscd. Let V), be again the finite-dimensional subspace of V consisting of piecewise linear

functions defined on each clement. Since the conservation law of momentum does not contain any time

derivatives the discretised variational formulation reads: Find wy €V, such that
J[).(u WVwh Vv +2uuy)e(wy) te(v, )]dz
“ (35)
= 3JK(U:: )N (TH A" O Vv, € V,.

%

K
, N R . . .
Let w, = Zw: 1. . where {x, }. . are the basis functions of Vy,. Choosing the test functions vy=y; ,
i=1

i=1.2,... K. successively, (35) is equivalent with the matrix equation

Auw" =bu}). (36)

where
Aij(ll::)=J‘[7.(ll;:)V-X| Ve, +2rupelx;) ey, )]d‘l_. Lj=12,. K 37
b,(up) = 3[Kp)e (Vg dz. i =1.2....K. (38)

and w" is (hc solution vector. The matrix A is symmectric and positive definite, because the Lamé
parameters arc positive. This means that the matrix equation (36) has a unique solution.

By solving the vartational formulation (36) in the beginning of the drying process the stresses at the
boundary are still calculated poorly. In lact the Lamé parameters and the derivatives of ihe displacements
have 1o be computed for the calculation of stresscs. In the beginning of the drying process the
displacements at the boundary of the clay will be large. whercas the displacements inside are small.
Therefore. the derivatives of the displacements, the Lamé parameters and their products are large. This
involves that in the beginning of the drying the stresses at the boundary are calculated poorly. Since the

stresses arc calculated from derivatives of the displaccments the stresses are a derived quantity. Therefore,




it is probably better 1o solve the stress problem by the mixed finite element method (see, e.g., (Brezzi and
Fortin, 1991)) because besides the displacements the stresses can be computed explicitly using this
approach.

Since the mechanical mode! holds instantancously -because the model is elastic-, (36) only need to be

solved for the time on which the displacements and stresses are of interest.

KAOLIN DRYING
Physical properties
As an example. the drying of a Kaolin clay -which is used in the fine ceramics industry- at 25°C is
considered. The initial moisture content u, of the clay is 0.4 and the initial solid concentration of solid

pe=1234.6. The following data arc relevant for this type of product.

The experimental diffusion coefficicnts of Kroes (1998) for both shrinking and non-shrinking stages are
used (see figure 1). The dilTusion coc(licients arc approximated using Artificial Neural Networks (ANN).
On the one hand we can notice (he minimum in the difTusion coelficients for ux0.03. This minimum is due
to the fact that the rate of diffusion for water vapour is higher than the rate of diffusion for liquid water. On
the other hand. for moisture contents above the shrinkage limit the diffusion coefficient tends to decrease
with increasing moisturc content. During diying of a shrinking medium the permeability will decrease
because of a decreasing porosity. However. due to clectrochemical effects the effect of the liquid pressure
(also called osmotic suction pressurc) on D will increase in colloidal sysiems. as can be found in literature
(Newitt and Coleman. 1952). Apparcently the latter mechanism is dominant here.

Experimental determination of the shrinkage factor y.(u) obtained by Ketelaars (1992) is used in this paper.

Oty ifuzuy,.
v (u) = 0.81 39
* 0.68 if0<us<u 9
0.81 T e

where uy,, is the moisture content at shrinkage limit. Considering the Kaolin clay, uy;,=0.27.
The prescribed drying Nux J(u) is given by (Ketelaars. 1992)

6-10 9
J(u) = Larcl:-m(] S 10%0). “0)
s

Prescribed drving flux and shrinkage fuctor as functions of moisture content are given in figure 2.




Considering the mechanical behavior of the Kaolin clay, the experimental Young’s modulus E as a function
of moisturc content obtained by Ketelaars (1992) is used (figure 3). This function is approximated using

ANN. The following non-continuous approximation given by Ketelaars (1992) can also be used

[#3)

7-12 ofu-u,,) :
-10 : ifuzuy,,

E(u)= .
3-10° fO<u<uy,. 1)

We will show the differences involved by the usc of these two kinds of approximation. The Poisson’s ratio

v is constant and equal 1o 0.45.

Problem configuration

In figurc 4 a sketch is given of the gcometry under consideration (a brick with a cross-section of 10 x 10
cm). It is assumed that no drying occurs at the ends of the bar and therefore no moisture concentration will
be present along the z-axis. In such a situation a two-dimensional plane-stress analysis can be made of a
cross-scction of the brick. In addition to ihis. drying occurs with equal initial drying fluxes at the other
boundaries. As a result of symunetry only the upper right quarter of the two-dimensional cross-section need
to be considered (figure 4). On the two “symmetry” faces the following homogeneous boundary conditions

are imposced
on t>0. 42)

The resulting computational domain is subdivided into 8100 rectangular elements, such that the mesh is
refined along the external faces. A large number of elements is necessary to obtain a sufficient accuracy. In
fact this kind of problem involves a strong cvolution of stresses between the shrinkage and the non-
shrinkage zones. An cvolutionary mesh (i.e. with a larger number of element near this moving area) should
be uscful 1o decrease the number of clements.

The moisture content is approximated from (33), where the time-steps At, are chosen by some automatic
time-stepping procedure. From this approximation, solving (36). the displacement w and the stress o are

compuled.

14



Moisture content evolulion

As a first result moisture content along profile r for different drying times are given in figure 5. The left
sides of the following figure (i.c. =0 m) corrcspond to the centre of the clay brick and the right sides (i.e.
r=0.07 m)v corrcspond to the upper riglﬁ corner point. We observe that in the beginning of the drying
process the moisture conient decreases [ast, especially in the corner where the evaporation surface is
important. For low moisture contents at the boundary the prescribed drying flux becomes very small, so
that hardly any water can cvaporate anymore. Therelore. it takes a long time before the interior of the clay
is dry. We clearly notice from this figurc a drving front moving inside. This is characteristic for drying
behaviour and is due to the minimwn in the diffusion cocfficients according to curve 1. The presence of a
minimum is related (o the vapour dilTusion mechanism, which may enhance the moisture flux considerably.
Below a certain moisture content the vapour pressure is reduced according to the sorplion isotherm. Since
moisturc gradients are present this will lcad to a vapour pressure gradient in the gas phase. Small
differences in liquid moisture concentration will cause significant vapour pressure gradients. The vapour is
quickly transported to the surface and a receding drying front occur. From 1.his figure we can also notice a
slope break lor u=0.1. This break is due to the form of the diffusion coefficient curve: D increases strongly
for a moisturc content varying from 0.03 to 0.1. and is ncarly constant from 0.1 to 0.4. The slope break for

the diffusion cocfficient is related to the slope break in the moisture profile curve.

Evolution of the shape

The evolution of the boundary surface v (sce lgure 4) is given in figure 6. We observe that in the beginning
of the drying process the moisture content decreases faster in the corner which involves a larger strain. At
the end of the drying the sample shape is (he same as at the beginning, but the dimensions are smaller. This
result is apparent since an clastic mechanical model is used. For a more complex shape at the end of the

drying a viscoelastic or an clastoplastic model should be developed.

Stress analysis
The conditions that Icad to failure can be determined by using a specific failure criterion. The trace of the
Cauchy stress tensor is proportional o the hyvdrostatic pressure (dilatational forces) which does not cause

cracking in the clay brick. In order (o prevent cracking the deviation from the hydrostatic pressure and the




shear stresses have (o be controlled. Therelore we consider the deviator G of the Cauchy stress tensor

defined as follows:
S=o- %lr(c) L 43)

Cracking in the brick has to be independent of the choice of the coordinate basis. Therefore a criterion for
cracking must depend on the invariant of © . Since the first invariant of & (i.e., tr( G )) is zero, the criterion
can only depend on the sccond and the third invariant of o . In this study the well-known Huber-von Mises
yield criterion proposcd for problems in which frictions arc not important (see, e.g., (Shigley and Mischke,

1989 Irudayaraj ct al.. 1993b)) will be uscd for detcrmining the positions where danger for cracking
L , . - . 1 |- .
occurs. This critcrion depends only on the sccond invariant of o (i.c., —Elr[czl), and states that in order

to prevent cracking in the brick we have to satisly the condition

Jufa] <v. 44)

where Y is the vield stress. The vield stress represents the stress where the material under uniaxial tension
starts 1o deform plastically. The vield stress for Kaolin clay as a function of moisture content is determined

experimentally by Ketelaars (1992) and can be fitted by

5-10°, if0su<guy,.

10 S-1L8(u-Uy,)

Y(u)= (45)

Lo}

ifuzuy,.

For moisture contents below the shrinkage limit the yicld stress is constant. An explanation is that for
moisture contents below the shrinkage limit the pores of the clay are not completely filled with water
anymore. so that in this casc the stillness of the clay is independent of the moisture content.

In order to study the positions where stresses are important and danger for cracking occurs we will follow

. . ) ,3 [ o
the temporal cvolution for diffcrent scetion of the square sample of 5”[02] (called the stress criterion)

, 3, [ . . . . . i
and of Y- Etr[c“] (called the cracking criterion) corresponding to the Huber-von Mises yield criterion.

Notc that danger lor cracking occurs only il the cracking criterion is negative.
In figure 7a the stress criterion for the seclion x is given for different drying times. At the beginning of the

drying the stress criterion increascs strongly at the external boundary surface. To be more precise the stress
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criferion increascs at the surface until the moisture content becomes lower than the shrinkage limit moisture
content (u;,=0.27). After this critical moisture content tlie stress criterion decreases slowly. The largest
stresses occur at the surface of the sample and for approximately t=2200s.

From figurc 7b showing the stress criterion evolution along profile r, it follows that the temporal evolution
is quite dilTerent. This is duc to the conliguration of this area: while the precedent case is nearly a one-
dimensional confliguration. this casc is really a two-dimensional configuration with a more important
drying ratc involved from the secoud drving surface. The behaviour becomes then more complex. We can
observe for cach diving time a break slope and a maximum exactly for the distance r where the moisture
content is cqual to 0.27. The pressure and tension are maximal ncar the contour u=uy,, because here, the
influence of shrinkage and no shrinkage is maximal. But the value of this maximum increases from the
beginning of the drving (o (=6000s and then decreases more slowly. For this section the maximum stress
occurs later and inside the sample. Stresses are not important at the surface duc to the high drying rate
involved by the configuration.

In figurc 8 the cracking criterion cvolution along profiles x and r is represented. The lower this criterion is,
the more important the danger for cracking will be. We can note that for this problem configuration (i.e.
sample geometry, dryving conditions. cle.) the model predicts an important risk of cracking. This is due to
the large dimensions of the sample which involves important moisture content and strain gradients.
Furthcrmore. in comparison 1o a viscoclastic or a viscoplastic model. the clastic model generally
overestimates the danger of cracking,

The largest danger occurs for the profile x at the surface from 1000s to 4000s. Due to the sample
configuration corners dry very quickly which involves important strains. Thus large tensile stresses appear
at the surfacc of cach svinmetry axis (¢.g.. lor the profile x and x=0.05m) while the moisture content is still
high (and thus the yicld stress valuc is very low). Combining this large tensile stress with the low yield
stress the danger for cracking becomes really important. Inside the sample the risk is less important and
appears from 5000s to 16000s.

Figure 9 shows the cvolution of the stress criterion maximum and of the cracking criterion minimum
considering the global sample. The risk of cracking exists at the beginning of the drying, is really important
from 1000s 1o 4000s with a maximum Yor 1=2200s, and disappears afier 17000s. The maximum of danger

occurs exactly when the stress criterion is the largest.
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Diffusion coefficients effect

As a first numerical experiment we can try to understand better the cffect of the diffusion coefficients.
Figure 10 compares the results obtained using the ANN diffusion coefficients and a constant one equal to
23510 ms” (which is the avcrage of the ANN difTusion coefficients for u varying from 0.2 to 0.4). By
comparing these results a diffcrent behaviour can be noticed. On the one hand, using a constant diffusion
cocfficient the clay sample dries [aster (particularly for u<uyy,) and the drying front doesn’t appear. On the
other hand. we can note that the difference for the boundary displacement and for the stress criterion profile
is small. Other numerical cxperiments show that diffusion coefficients only influence the mechanical
behaviour for the range of moisturce content from 0.4 to 0.2. If we are interested in the mechanical problem
—e.g. to predict when and where (he risk for cracking is maximum- the diffusion coclficients have to be
defined with accuracy only for high moisture content. In this studied case a constant diffusion coefficient

appears to be sufTicient to understand mechanical phenomena.

Young s modulus approximation effect

The second numerical experiment (figure 11) allows to compare the use of the continuous approximation of
the Young's cocfficient (using ANN) and the non-continuous one (defined by Ketelaars (1992)), see figure
3. Moisture content profiles arc the same and arc not represented in this figure. The boundary displacement
and the stress criterion are quite different using these two kinds of approximation. The larger difference
appears for the stress criterion (curves b and ¢): the discontinuity of E involves higher values for the stress
criterion. (This strong cffect is the samc considering the cracking criterion but is not presented in the
figure). Furthcrmore the use of the non-continuous approximation of E affects quantitatively and
qualitatively the maximum values of the stress criterion for the global sample: the danger for cracking is
more important and its maximum appears roughly and for a shorter drying time. A good approximation of
the Young’s modulus appears to be very important and necessary to approximate accurately drying-

involved strain and stress.
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CONCLUSIONS

In this paper a mathematical model has been developed in order to represent the drying of clays. A
diffusion model is uscd 1o obtain the moisturc content cvolution and an clasticity model allows to compute
displacements and stresses. The probleni is solved by the finite clement method.

Numerical experiments for kaolin drying are considered. These results allow a better understanding of the
positions in the clay brick and the time inierval where danger for cracking occur. The largest danger is
located at the surface of the sample near the symmetry axcs for t=2200s. Furthermore the pressure and
tension arc large necar the contour u=uy,, due to the influence of shrinkage and no shrinkage phenomena.
The danger for cracking is important for the studied case due to the large dimension of the sample.
Furthermore. it mnay be expected that the inclusion of visco-¢lastic or visco-plastic strains would decrease
the danger of cracking. in other words the use of an elastic model yiclds.

Two numcrical experiments are considered in order to obtain better understanding of the effect of both
diffusion cocflicient and Young's modulus. It follows (hat the type of moisture dependence of the diffusion
coefficient at low moisture content with respects to the displacements and the stress criterion is not
important. Considering two dilferent ways (o approximate experimental values for the Young’s modulus,
numerical results are very different. A non-continuous approximation involves larger values for the stress
criterion and overestimates the danger for cracking. A representative definition of Young’s modulus is one

of the morc important steps in order 1o oblain a recalistic model useful to increase the final product quality.

NOTATION
D diffusion cocfficient. m* s
D diffusion cocfTicient in the Lagrangean (rame, m* s
E Young’s modulus, N ™
J prescribed drying fux. kg m~s™
i prescribed drying flux in the Lagrangean frame, kg m™s™
K bulk modulus. N m~
t time. s
T temperature, °C
u solid bascd moisture content. (kg water) (kg ds)’!
v velocity. ms™
w displaccimient. m
X place coordinate. m
4 solid bascd place coordinate. m

Greek letiers
€ strain

A Lamé coefficient. N m™

19



Lamé coclTicient. N m™

n
v Poisson’s ration

P concentration. kg m™
c stress, Nm™

Wy shrinkage function
Subscripts

m moisture

S solid

Superscript

c clastic

s shrinkage

0 initial, at1=0s
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