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Abstract

Consider a divergent multi-echelon inventory system, e.g., a distribution system or a production
system. At every facility in the system orders are placed (or production is initiated) periodically.
The order arrives after a fixed lead time. At the end of each period linear costs are incurred at
each facility for holding inventory. Also, linear penalty costs are incurred at the most downstream
facilities for backorders. The objective is to minimize the expected holding and penalty costs per
period. Within a class ofpractically useful policies the decomposition result is used to develop an
algorithm which determines the control parameters of a near cost-optimal replenishment policy. A
simulation study of a divergent 3-echelon system reveals that this algorithm performs well.

Keywords: multi-echelon, inventory, allocation, rationing, divergent

1 Introduction

The research of multi-echelon models has gained importance over the last decade because integrated
control of supply chains, consisting of a number ofprocessing and distribution stages, has become fea
sible through modem information technology. Multi-echelon inventory systems provide a means of
modeling such supply chains, thereby enabling quantitative analysis and characterization of optimal
control policies (cf. Clark & Scarf [1960], Federgruen & Zipkin [1984], Rosling [1989] and Langen
hoff & Zijm [1990]).

The start of research on multi-echelon inventory models is in generally allotted to Clark & Scarf
[1960], who study an N -echelon serial system without lot sizing. They introduced the concept of ech
elon stock for a given stockpoint to prove that the optimal control policies for the N-echelon serial
system with discounted penalty and holding costs, are characterized by N so-called echelon order-up
to-levels. The echelon stock of a stockpoint equals all stock at this stockpoint plus in transit to or on
hand at any of its downstream stockpoints minus the backorders at its downstream stockpoints. Like
Van Houtum & Zijm [1991a] and Zijm & Van Houtum [1994] we like to define the echelon inventory
position of a stockpoint as its echelon stock plus all material in transfer to that stockpoint.

Although much attention has been given to divergent two-echelon systems, one seldom finds ex
tensions to more general divergent N-echelon systems. In practice, however, large production and dis
tribution networks are frequent!y encountered and therefore generalization of two-echelon policies is
needed. In this paper we analyze a divergent N-echelon inventory system in which every stockpoint
is allowed to hold stock. Every stockpointplaces replenishment orders periodically. The order arrives
after a fixed lead time, and then it is decided how much and in what way the stock is allocated among
its successors. Only the unfilled demand at the end-stockpoints are backordered. Penalty costs propor
tional to the amount short at every end-stockpoint are incurred at the end of each period. Also holding
costs proportional to the inventory on hand are incurred at the end of each period. The objective is to
minimize the average costs per period on the long run.
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TIlis model can be regarded as an extension of Langenhoff & Zijm [1990] and Van Houtum &
Zijm [1991b]. Langenhoff & Zijm [1990] prove exact decomposition results for a two-echelon assem
bly system, a two-echelon serial system and a divergent two-echelon system (which is more thoroughly
analyzed in Van Houtum & Zijm [1991b]). Furthermore, Diks & De Kok [1996] prove exact decompo
sition results for the divergent N -echelon system given the balance assumption. Under this assumption
the rationing rule always allocates non-negative stock quantities. In Eppen & Schrage [1981], Langen
hoff & Zijm [1990] and De Kok, Lagodimos & Seidel [1994] similar assumptions are made. TIlis bal
ance assumption is not required if immediately after taking a rationing decision there is a sufficiently
large 'demandless' period (e.g. week-end). Since such a period enables to transship products from the
stockpoints with negative allocation quantities to those with positive allocation quantities.

Verrijdt & De Kok [1995] study a similar divergent N-echelon system, although, in their model
no intermediate stock is allowed. The control parameters of the replenishment policy are determined
so as to meet the pre-determined target service levels (fill rates) at the end-stockpoints. In this more
'service related' approach the main goal is to attain the target service-levels at the end-stockpoints (also
see De Kok [1990] and Lagodimos [1992]), instead of the minimization of a cost-function. For an
overview of most of these service related models we refer to Van der Heijden, Diks & De Kok [1996],
who did a comparison study on the performance of most of these approaches.

The paper is organized as follows. In Section 2 we describe the model under consideration. In
Section 3 we present an average cost analysis for the divergent N-echelon system. A near cost-optimal
control policy within a class ofpractically useful policies is derived, given the balance assumption. In
Section 4 we develop an algorithm to determine all the control parameters. TIlis algorithm is based on
the decomposition of the network. In Section 5 we present the results obtained by applying the algo
rithm on a 3-echelon system. These results are validated by a simulation study. For most instances the
performance of the algorithm yields very good results. Finally in Section 6 we give a few concluding
remarks.

2 Model description

Consider a discrete-time multi-echelon inventory system where every stockpoint is allowed to hold
stock. The system has an arborescent structure, Le., each location has a unique supplier. We refer to
these kind ofsystems as divergent multi-echelon systems. Notice that a divergent multi-echelon system
can be described by a directed graph (see for example Figure 1). The most upstream stockpoint can
place orders at an external supplier which has an infinite capacity, which means that this supplier can
always meet the demand.

The inventory in this multi-echelon system is controlled by periodic review policies. That is, every
R periods the most upstream stockpoint, i say, issues a replenishment order. The replenishment order
arrives after ~ periods, where ~ is a fixed, non-negative integer. Then the physical stock at stockpoint
i (or part of it) is allocated immediately to its successors. There are two possibilities:

(i). The physical stock is sufficient to raise the echelon inventory position of each successor to its
order-up-to-Ievel. Then the required amounts are sent to the successors and excess stock is kept
at stockpoint i to be allocated in the next occasion.

(ii). The physical stock is not sufficient to reach the order-up-to-Ievels. Then material rationing is re
quired to allocate the available physical stock over its successors appropriately. For this purpose
we introduce rationing functions.

A similar allocation procedure is applied at the other intermediate stockpoints when a replenishment
order arrives.
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Stage: 4 3 2 1

Figure 1: Schematic representation of a divergent 4-echelon inventory system.

Without loss of generality we assume that only the end-stockpoints face external customer demand.
In case an intermediate stockpoint i faces external demand, we redirect this demand to a new succes
sor j with lead time Lj := O. By definition this successor j is an end-stockpoint. During one period
the demand between end-stockpoints may be correlated, however, the demand in subsequent periods
are LLd.. With respect to the customer demand process, we assume that all demand which cannot be
satisfied immediately is backordered.

At the end of each period both penalty and holding costs are incurred. The penalty costs equals Pi
for each backlogged product at end-stockpoint i. For a product at stockpoint i or in transfer to one of
its successors the holding costs equals hi + LkEU

i
hb where Vi represents all stockpoints on the path

from the supplier to i. Notice that hi can be regarded as an additional holding cost due to value added
in stockpoint i. No fixed ordering costs are assumed. Note that because all excess customer demand
is backordered, linear variable ordering costs do not influence any control policy and can therefore be
omitted. The objective of the analysis is to determine a cost-optimal replenishment policy, Le., mini
mizing the expected total costs per period on the long run.

For clarity in the remainder of this paper we refer to the length of a review period as one period
(R := 1). Furthermore, we introduce the following notation:

ech(i) .- Set of stockpoints that constitute the echelon of stockpoint i (e.g. ech(5) = {5, 8, 9n,
pre (i) .- Preceding stockpointof stockpointi (e.g. pre(8) = 5),

Vi := Set of stockpoints on path from supplier to stockpointi (e.g. VI = 0 and V6 = {I, 3}),
Vi .- All stockpoints which are supplied by i (e.g. VI = {2, 3, 4n,
E .- Set of all end-stockpoints (e.g. E = {2, 6, 8, 9, lOn,
I .- Set of all intermediate stockpoints (e.g. 1= {I, 3,4,5, 7n,

N := Number of stages in inventory system (e.g. N = 4).

The examples between the brackets refer to the situation of Figure 1.
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3 Analysis

Diks & De Kok [1996] performed an average cost analysis of the above model. They proved that de
composition is exact. In order to explain this decomposition properly we first elaborate on the system
dynamics, and introduce some additional notation. Suppose at the beginning ofareview period a stock
point i has an echelon stock of Y products. All stockpoints j E "'i want to raise their echelon inventory
position to Yj. IfY 2: LjeV; Yj then the echelon inventory position of stockpoint j just after rationing
yields Yj, and the remainder Y - Ljev; Yj is retained atstockpointi. However, ify < Ljev; Yj wehave
to deal with one of the main difficulties of divergent multi-echelon systems: How should stockpoint i
ration the available stockover its successors? To overcome this problem we define a rationing function
z{ [y]. This means that the rationing policy allocates z{ [Y] to echelon j, and no products are retained at
stockpoint i. Decomposition of the network yields that the order-up-to-Ievel at stockpoint i and the ra
tioning functions to its successors are determined so as to minimize the cost-function Di (x, \IIi). This
cost-functionrepresents the expected total costs in ech (i) at the end ofan arbitrary period given that the
order-up-to-Ievel at stockpoint i equals x and its downstream control parameters are given by \IIi. By
definition \IIi := UjeV; (z{, Yj, \II j) for an intermediate stockpointi, and \IIi := (0 for an end-stockpoint
i. In Diks & De Kok [1996] it is shown that

Theorem 3.1. If i E E,

Di (x) = hi (x - (L; + I)JLech(i») +100

(hi +L hj + Pi)(U - x)d~~~) (u), (la)
x jeUi

ifi E I,

Di(X, \IIi) = hi (x - (L; + I)JLech(i») +L [Dj(Yj, \IIj)+
jeV;

1~ .Dj(Z{[x - u], \IIj) - Dj(Yj, \IIj)dFLch(i) (U)] ,
x LjEVi YJ

where F1ch(i) represents the cdfofdemand at all end-stockpoints in ech(i) during L periods (if L = 1
we suppress the index). Notice that ij\lli = (0 then \IIi is omitted. 0

In Section 3.1 we briefly overview the most important results of Diks & De Kok [1996]. These
results are needed for the determination of appropriate linear rationing functions in Section 3.2.

3.1 Optimal rationing functions

In Diks & De Kok [1996] necessary conditions and properties of an optimal set of rationing functions
are derived.

Theorem 3.2. Necessary conditionsfor an optimal set of rationingfunctions {Z/}jev; are
(i)

LZ{[X] =X.
jeV;

(ii) For every successor j ofstockpoint i:

oDj(Y, \IIj) I = Ai[X],
oy Y=z{lx]

o

As a result of these necessary conditions some interesting properties can be derived.

4



dzf[x] 0
-->dx - .

Corollary 3.1. For every optimal rationing-function zf [x] holds
(i)

(ii)
z{[LYj] = Yj with Yj:= argmin{ylaDj(Y, 'lJj)/ay = o}

jeV;
o

Finally, we state Theorem 3.3 which enables us to simplify the expressions derived in the next section
considerably.

Theorem 3.3. Let a~(y) denotes the non-stock out probability ofan end-stockpoint k in a divergent
echelon system, in which the most upstream stockpoint i uses an order-up-to-policy with order-up-to
level y. Iffor every rationing junction in stockpoint i holds Z{[LjeV; Yj] = Yj, then for j E Vi and
k E En ech(j):

i E E,

(2)

where (F"{Ch(i»)!:>. (x) equals 0 for x < 0, and equals F"{ch(i) (x + Do) for x::: o. o

3.2 Linear rationing functions

Diks & De Kok [1996] proved that the decomposition approach yields the optimal replenishment pol
icy, given the balance assumption. For practical purposes, however, it is rather cumbersome to de
termine the optimal rationing functions. In order to keep the analysis tractable we restrict to linear
rationing functions in this paper, Le.,

z{[x] = q{x + c{. (3)

We like to emphasize that many ofthe rationing policies used in the literature are linear. For instance,
the well-known Fair-Share rationing policy of Eppen & Schrage [1981] for a two-echelon system de
fines

for j E E.

for j E E.

c~re(j) = (Lj + l)JLj - q~re(j) L(Lk + l)JLk
keE

j OJ
qpreU) = '"' '

L..J(Jk
keE

And, the more general Consistent Appropriate Share (CAS) rationing policy of De Kok, Lagodimos
& Seidel [1994] for a two-echelon system:

j Yj - (Lj + l)JLj
qpreU) = L(Yk - (Lk + l)JLd'

keE

In the remainder of this paper we refer to q{ as the so-called allocation-fractions.
In this paper {q{} and {c{} are defined such that the linear rationing functions {z{} have as many

similar properties as the optimal rationing functions. Hence, from Theorem 3.2(i) we have L jeV; q{ =
1. From Corollary 3.1 (i) it follows q{ ::: o. If q{ = 0 from eq. (3) it follows that z{[x] equals a fixed
value, independentofx. This does not at all coincidewith the behavior ofan optimal rationing function,
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therefore we require q{ > O. Finally, from Corollary 3.1(ii) we define cf := Yj - q{ (LkEV; Yk - x).
The aforementioned definitions implies

zf[X]=Yj-qf(:LYk-X) with :Lqf=1, qf>o. (4)
kEV; jEV;

This rationing function has already been used in several papers (cf. Van Houtum [1990] and Van der
Heijden [1996]). Recall that Yi denotes the optimal order-up-to-Ievel at stockpoint i given all its down
stream control parameters, denoted by \IIi. Furthermore, since the considered rationing functions are
linear:

U j (4) U j
\IIi = (Zi' Yj, \II j ) == (qi' Yj, \IIj).

jEV; jEV;

We refer to ~i as quasi-optimal iffor every stockpointj in ech(i) holds oDj (x, $ j )/ax = O.
In order to determine a quasi-optimal replenishment policy we need a tractable expression to eval

uate oDj(x, $j )/ax. From Theorem 3.1,3.3 and the definition of quasi-optimality we prove the next
theorem.

Theorem 3.4. For every end-stockpoint i:

ODi(Y) = hi - (hi + :L hj +pj)(l - a~(y».
oY jEUj

For an intermediate stockpoint i E Wn with quasi-optimal ~i:

(5b)

Proof. The proof is by induction on i. If i is an end-stockpoint equation (5a) immediately follows after
differentiating (la) to x. From (lb) it follows

aDi(X, $i) a { ,,~a = a hi (x - (4 + l)JLech(i) + L...J Dj (Yj. \IIj)+
x x ~v;

100 _ Dj(zf[x - u], $j) - Dj(Yj, ~j)dFLch(i)(u)}
X-LjEVj Yj

= h. +"100
dZf[y] aDj(Y, $j) dF;c.h(i) (u).

'~ -.d a L-t
]Ev; x-LjE Vi YJ Y y=x-u Y y=z{ [x-u]

Differentiation of zf[y] to Y yields qf. Hence,

aDi (x, $i) _ h. "j100
oDj (Y, $ j) dF~C.h(i) (u).a - I + L...J qi _ a L-t

x jEV; x-LjEVi Yj Y y=z{[x-u]

We distinguish between x < LjEV; Yj and x 2:: LjEV; Yj· In the former case we obtain

aDi(X, $i) _ . "j roo aDj (Y, $j) dF;C.h(i) (u).
a - h, + L...J qi in a L-t

x jEV; 0 Y y=z{[x-u]
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where (F1Ch (i)) 6. (x) equals °for x < 0, and equals F1ch(i) (x + ~) for x 2: 0.

In order to prove the above result we notice that

=
y=Z{rLjEV; Yjl

To complete this proof we use induction and Theorem 3.3.

=0.

o

i E E
2 A

a Di (y, \{Ii)
-ay2

From (5) we can show the following corollary.

Corollary 3.2. The cost-function Di (y, ~i) with quasi-optimal policy ~i is convex in y. Specifically,
if Fech(i) (x) is strictly increasingjor x 2: °then Di(y, ~i) is strict convex in y.

Proof Taking the derivative of (5) to Yi yields

~ da~(y)
(hi + L....J hj +Pi) -d-

jeU; y

~. ~. ~. ~ da~ (y)
L....J q:n-I L....J q::=~ ....L....J q:~ (hi l +~ hj + Pi l ) ~y i E 1.

in-I eV; in-2eV;n_1 II eV;2 JeUij

Using the monotonicity of the non-stock out probability completes the proof. o

Consider a divergent multi-echelon system with positive penalty costs at the end-stockpoints. We
conclude that if hi is positive then there exist a finite y such that Di (y, ~i) with quasi-optimal ~i is
minimized for y. Specifically, if pech(i) (x) is strictly increasing for x 2: °the unicity of this minimum
is guaranteed. These results follows from Corollary 3.2 and the observation that when y tends to minus
infinity Di (y, ~i) converges to - LJ·eu. h j - Li e\!; q,~n-l Li e\!; q,~n-2 ... Li e\!; q,~1 Pil < 0, and

, n-l' n-2 'n-l n-l 1 '2 2

when y tends to infinity Di (y, ~i) converges to hi. Hence, if hi equals °the minimum is attained in
infinity.
From (5) we derive the the following optimality conditions for a cost-optimal replenishment policy
(given linear rationing functions (4»:
The order-up-to-level of an end-stockpoint i, say Yi, satisfies

hi - (hi + L hj + Pi)(l - a~(Yi» = 0. (6a)
jeU;

The order-up-to-level of an intermediate stockpoint i, say Yi, and its downstream allocation-fractions
satisfy

hi+L q~n-j[hin_l+ L qt~[···+ Lq~~[hij-(hij+ L hj+Pil )(1-at(Yi»] ... ]] =0,
in- l eV; in-2 eV;n_l i j eV;2 jeU;l (6b)

where the allocation-fractions of every stockpointin ech(i) sum up to one, and are positive.
Diks & De Kok [1996] proved that for the optimal replenishment policy (using optimal rationing

functions) the order-up-to-level in a stockpoint i satisfies a newsboy-style expression:

Lhj+Pk

a~(YJ = jeui: for every k E ech(i) n E. (7)
hk + hj +Pk

jeUk
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In this section we have approximated the optimal rationing functions by linear rationing functions.
Therefore (7) does not necessarily have to hold any longer. However, if the order-up-to-Ievel at stock
point i is determined such that (7) holds, it also satisfies the optimality conditions of (6).

4 Algorithm

Consider a divergent N -echelon distribution system in which the holding costs at every stockpoint
are identical. Hence, for every stockpoint i (except the most upstream stockpoint) the minimum of
Di (x, iJi ) is attained in infinity, Le., the optimal order-up-to-Ievel for every stockpoint equals infinity.
This implies that no stock is retained at intermediate stockpoints. In Verrijdt & De Kok [1995] this
divergent N-echelon system without intermediate stocks is addressed. They assume CAS rationing
functions and developed an algorithm to detennine the allocation-fractions of the rationing policies at
each stockpoint and the order-up-to-Ievel of the most upstream stockpoint so as to meet the predeter
mined target fill rates at the end-stockpoints. In this paper, however, these parameters are detennined
so as to minimize the expected total costs per period.

In the remainder ofthis section we focus on divergent N-echelon systems for which in every stock
point value is added to the product (e.g. production systems). The system has a cost-structure as de
fined in Section 2. It is rather cumbersome to detennine the optimal replenishment policy. Therefore
we formulate an algorithm based on the linear rationing functions developed in Section 3.2. This al
gorithm detennines the control parameters of a near-optimal policy. It distincts itself from most algo
rithms treated in the literature by the wide applicability. There already exists several algorithms for
the 2-echelon case, however, for the N-echelon case (with N ~ 3) it appears to be far more difficult to
detennine the optimal control parameters.

Before addressing the algorithm, some attention should be given to the ordering at which the con
trol parameters need to be detennined. A low level code (LLC) is assigned to every stockpoint. By
definition the low level code of an end-stockpoint i equals 1, i.e., LLC(i):=1. For an intermediate stock
point i we have LLC(i):=1+maxjeV; LLC(j). Let Wn denote the set ofstockpoints with low level code n.

Algorithm based on decomposition:

(i). n:= 1.

(ii). Consider a stockpoint i E Wn . Define for every end-stockpoint k E ech (i) a target non-stock out
probability a~:

Lhj+Pk
. jeUi

aic:= hk+ Lhj+Pk'
jeUk

(iii). (a) Initialize the order-up-to-Ievel at stockpoint i, denoted by Yi.

(b) For every stockpoint j E Vi:
Determine for every end-stockpoint k E ech(j) the allocation-fraction, q{lk1 say, such that
a~ (Yi) = a~. In Appendix A we give an algorithm to fastly compute a good approximation
of a~ (Yi).
Define the allocation-fraction q{ by

L q{lk1

j ._ keechu)nE

qi'- lech(j) n EI

8



(c) If LjEV; qf < 1 we increase Yi and return to step (b).

If LjEV; qf > 1 we decrease Yi and return to step (b).

Repeat this adaptation ofYi until LjEV; qf is sufficiently close to 1, and then define Yi := Yi.

(iv). Repeat step (ii) and (iii) till for all stockpoints i E Wn the order-up-to-Ievels {Yi} and the allocation
fractions {qf} are determined.

(v). (a) m:= n.

(b) If for a stockpoint i E Wm holds Yi < L jEV; Yj we use the following adaptation procedure:
For all stockpoints j E Vi we redefine the order-up-to-Ievels

Yj := zf[Yd, j E Vi-

(c) m :=m-1.

(d) If m = 1 we are finished, otherwise return to step (b).

(vi). Ifn < N then n:=n+1 and proceed with step (ii).

In step (iii) ofthe algorithm the order-up-to-Ievel Yi ofan end-stockpoint i can easily be determined
from (2):

FL+l (Yi) = a}.
For an intermediate stockpoint i we need the existence of an order-up-to-Ievel Yi such that for every
end-stockpointk E ech(i) holds at (Yi) = at in order to satisfy (6). If i E Wz we use a similar heuristic
as developed by De Kok, Lagodimos & Seidel [1994] to determine this optimal order-up-to-Ievel Yi and
the allocation-fractions from stockpoint i to the end-stockpoints such that these target service-levels are
attained. However, if i E Wn with n > 2 we have too little degrees of freedom to guarantee this ser
vice level at for every end-stockpoint k E ech(i). To illustrate this we consider the subsystem ech(3)
of Figure 1. Suppose the decomposition algorithm already computed the allocation-fractions q~, q;,
and the order-up-to-Ievels Y5, Y8 and Y9 (recall that we do not alter these already determined allocation
fractions and order-up-to-Ievels). In order to obtain an optimal replenishment policy we have to choose
q~, q~ and Y3 such that the service requirement for every end-stockpoint is met, and q~ + q~ = 1. It is
clear that in general the existence of such q~, q~ and Y3 satisfying these constraints is not guaranteed,
since the number of constraints exceeds the number ofvariables. In order to still use the decomposition
approach we suggest to define qf as in step (iii)b. 'This method is only justifiable when the differences

between the values of qf1k1 for the different end-stockpoints are small. Because otherwise averaging

these allocation-fractions qf1k1 implies that for some end-stockpoints the defined value qf is too large

and consequently the resulting service performance is too low, or the defined qf is too small and con
sequently the resulting service performance is too large. 'This probably results in a bad performance of
the replenishment policy, since (6) does no longer hold.

The adaptation procedure in step (v) is based on the following theorem.

Theorem 4.1. Considera multi-echelon system, where the order-up-to-level ofthe most upstream stock
point, i say, equals Yi. The rationing functions are defined as in (4). If Yi is less than the sum of the
order-up-to-levels ofits successors we redefine these order-up-to-levels Yj := zf [yd. For this adapted
replenishmentpolicy holds
(i) The total expected costs in the multi-echelon system do not alter.
(ii) The non-stock out probabilities at the end-stockpoints do not alter. 0
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5 Numerical Results

In this section the perfonnance of the algorithm of Section 4 is tested by considering 500 instances
of the divergent 3-echelon system as depicted in Figure 2. The lead time of each intennediate stock-

LLC 3 2 1

Figure 2: Divergent 3-echelon inventory system.

point is drawn from an unifonn distribution on {1, ... , 8}, and the lead time of an end-stockpoint is
drawn from an unifonn distribution on {1, ... ,5}. The penalty costs at each end-stockpointare chosen
such that the non-stock out probabilityunder optimal control is equal to an uniformly distributed value
on [0.85,0.99]. The mean demand and squared coefficient of variation per review period at an end
stockpoint is drawn from a unifonn distribution on [10,25] and [0.5, 1.5], respectively. Every stock
point adds some value to the product. The amount added is uniformly distributed on [0.1, 3].

Consider an end-stockpoint k. When the system is optimally controlled (assuming the balance as
sumption) this stockpoint attains a non-stockout probability, ak say. However, in Section 3.2 we ap
proximate the optimal rationing functions by linear ones. Furthennore, in Section 4 the algorithm uses
an approximate step in (iii). The non-stock out probability in stockpoint k resulting from the algorithm
(still assuming the balance assumption) is denoted by at. Generallyak is not equal too at. Hence the
optimality constraints (6) generally do not hold any longer. Every instance is simulated with the con
trol parameters obtained by applying the algorithm. In case the imbalance would not affect the attained
non-stock out probability at stockpoint k, it would be equal to at. However, usually the phenomenon
of imbalance does have some effect on the stock out probability. Hence, stockpoint k attains a non
stock out probability of aZ.

Figure 3a and b depict the absolutedifferences at - ab at - at and at - ak for an end-stockpoint
k with ak .:::: 0.95 and ak > 0.95, respectively. Notice that at - ak represents the'Algorithmic error'

due to linearizing the rationing functions and averaging ql[kl in step (iii) of the algorithm, at - at
represents the 'Imbalance error' due to the violation of the balance assumption, and aZ - ak represents
the 'Total error'. We distinguish between these two cases ak .:::: 0.95 and ak > 0.95, since an absolute
error of 0.01 is acceptable in case ak is not to large (e.g. 0.85), although, when ak is large (e.g. 0.99)
such an error is intolerable. Comparing these two figures indicates that when ak is large the absolute
errors diminish. Furthennore, we conclude that the algorithm works very well. Most of the difference
between ak and aZ is caused by imbalance.
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Figure 3: Perfonnance of algorithm.
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6 Conclusions

In this paper we addressed the problem of determining the control parameters of a divergent multi
echelon inventory system such that the expected holding and penalty costs per period are minimized.
Diks & De Kok [1996] proved that given the balance assumption a decomposition of the system is
exact. Hence the complex multi-dimensional problem of determining these parameters reduces to the
problem of determining (for every stockpoint): (1) the optimal order-up-to-policy, and (2) the optimal
rationing functions to its successors. It is rather cumbersome and time-consuming to determine these
optimal rationing functions. Therefore we restrict ourselves to a special class of linear functions. An
algorithm is developed to compute the order-up-to-Ievel and its allocation-fractions so as to minimize
the expected total costs as much as possible. The algorithm is tested by a simulation study on a 3
echelon system. It turns out that the algorithm performs very well. When comparing the non-stock
out probability of an end-stockpoint controlled by the optimal policy (given the balance assumption)
and the policy obtained by the algorithm the difference is very small. Specifically, this difference is
mainly caused by imbalance and not by linearization of the rationing functions and an approximate
step in the algorithm.
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A Algorithm to compute the non-stock out probability

In this appendix we show how the non-stock out probability cx1 (Yi) can be approximated. For sake of
clarity we restrict ourselves to the case where the most upstream stockpoint i supplies a stockpoint j,
which supplies the end-stockpoint k. The generalization to the case where more stockpoints are on the
path from i to k is straightforward. It can be shown that

cxt(Yi) = Pr{Qt+l - /),.k + c/J (Qt - /),.j + q{ (Q~ - /),.it) + < O}, (8)

{
Ym mE E

with/),.m:= ~ I
Ym - L."nEVm Yn m E

QT := Demand at the end-stockpoints in ech(m) during L periods.

It is cumbersome to determine (8) exact, therefore we propose an approximate procedure as in Van
Houtum & Zijm [1991a]. This procedure works as follows: First, we determine the first two moments
of X := Q~ - /),.j and fit a mixture of Erlang distributions on these moments. For details of the fit
procedure we refer to Van Houtum & Zijm [1991a] and TIjms [1994]. Next, determine the first two
moments of Y := Q{. - /),. j + q{ X+ and again fit a mixture of Erlang distributions on its moments.

1

Finally, we determine the first two moments of Qik+1 - /),.k + q~Y+ and fit a mixture of Erlang dis-
tributions on its moments. The probability mass of the resulting distribution on the negative halfspace
approximates cx~ (Yi).
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