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Abstract: Complex envelope displacement analysis (CEDA, introduced by Carcaterra
and Sestieri) seems to be a promising approach in the mid or high frequency range for
vibroacoustic computations. The CED analysis solves for a smooth or low wave number
transformed displacement variable from an accordingly transformed partial differential
-equation, a quasi-static problem. This paper addresses the specific problems that have
been solved for generalisation of the original CED analysis to both damped high frequency
vibrations in two point boundary value problems as well as the implementation for damped
- FEM calculations. A numerical example of the longitudinal vibration in a bar is used to
illustrate and assess the new FEM method.

1 Introduction

The analysis of linear dynamic (acoustic) systems with deterministic loading, bound-
ary conditions, and material parameters can nowadays be performed by routine Fi-
nite/Boundary Element Method (FEM/BEM) calculations. Even for very large systems
this approach is feasible by application of commonly used CMS reduction techniques.
However the FEM analysis, or any other discretisation technique, still is limited to a fre-
quency band with a sufficiently low upper excitation frequency, according to the Shannon
sampling theorem. An explicit low frequency range restriction will be present in future
deterministic FEM models, despite of the increasing computer power.

On the other hand, for engineering applications, Statistical Energy Analysis (SEA)
provides good average results for ensembles of structures in the high frequency range
(Lyon and DelJong, 1995). But the application of the SEA is restricted to a frequency
band above an explicit high frequency limit, dictated by the assumptions of SEA like a high
enough modal density. Other deficiencies are the lack of information on the distribution of
the results and the need for a very experienced analyst for modelling the SEA subsystems.



Up till now no alternative engineering tools are available for SEA in the high frequency
range, or even any tools for the mid frequency range. So the volume of research on these
subjects is increasing, especially during the last decade. For a brief review, see e.g.
Carcaterra and Sestieri (1997).

A literature search on alternative methods to SEA (Raaymakers, 1995), showed three
main research topics: Thermal Analogons (e.g. Nefske and Sung, 1987; Cho and Bernhard,
1993), which are proved to be exact only for 1-D systems (Carcaterra and Sestieri, 1995a;
Xing and Price, 1997); FRF methods (Girard and Defosse, 1993), which rely on smoothed
FRF's that are not analytically available for general structures; and Envelope methods
(Carcaterra and Sestieri, 1995b,c, 1997; Sestieri and Carcaterra, 1996) of which the Com-
plex Envelope Displacement Analysis (CEDA) is the most general and promising ap-
proach. No approximations are made so that the CEDA linear operator transformed
quasi-static differential equation is completely equivalent to the original physical differ-
ential equation, in contrast with the other methods.

Towards the application of CED analysis as an engineering tool, several drawbacks of
the original CED analysis must be solved:

e the occurrence of spurious high wave number solutions;

e application of FEM (or another discretisation technique) to the damped CED ana-
lysis;

e the problems with the unknown CEDA boundary conditions;
e application to higher order and more dimensional systems;

e extension to statistical systems, as to-date, the method is limited to deterministic
problems.

This paper deals with the first three items of the above list. The fourth subject is not a
- fundamental problem for 1-D systems, for higher dimensions it is studied by Sestieri and
co-workers. The final subject is studied at present.

So, in this presentation, the generalisation of the original CED analysis to damped
high frequency vibrations in two point boundary value problems is dealt with. The Finite
Element Method will be used which automatically eliminates the spurious solution prob-
lem, and a method for correct inclusion of the CEDA boundary conditions is presented.
Finally a numerical example of the longitudinal vibrations in a bar is used to illustrate
and assess the new FEM method.

2 Undamped CED Analysis

The idea behind CEDA is a signal transformation which transforms a real high frequency
signal and differential equation into a complex low frequency signal and corresponding
differential equation, respectively. An outline of the theory is presented here, for a more
detailed presentation is referred to Carcaterra and Sestieri (1997).



2.1 Theory

The signal transformation consists of three steps. The first is the computation of the
Hilbert transform @(zx) of the displacement field or signal u(z), which is defined as the
convolution of u(z) with 1/7z:

1 * 1
t(z) = — xulx) = —u(z — &)dE.
(z) (2) /6 ( §)d¢ (1)
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Subsequently the analytic signal @(z) can be defined as:
i(z) = u(zx) + ju(z), (2)

which possesses the useful property that it only has a positive wave number contents. In
the third step, the Complex Envelope u is now defined by multiplying the analytic signal
i by e Iksz:

u(z) = i(z)e 7k, (3)

in which k, is the shifting wave number. Under the assumption of a band limited wave
number contents of the physical displacement, this new smooth CEDA variable will be
- wave number band limited at a much lower wave number, so it can be sampled at a much
lower rate. Now this complex envelope displacement should be computed from an CEDA
transformed differential equation.

As an example in this paper the equation of motion for undamped harmonic longit-
udinal vibration in a clamped-clamped bar of unit length is discussed:

—w?pAu(r) — EAu"(z) = p(z) ; u(0)=u(l)=0. (4)

Where u”(z) is the second derivative of the longitudinal displacement u(z), p(z) is the
. body force amplitude per unit length, and w stands for the excitation frequency.

Since the Hilbert transform is a linear transformation, equation (4) is valid for the
Hilbert transforms of u(z) and p(z), as well as their analytic signals:

—w?pAi(z) — EAY"(z) = p(z). (5)

With the relation for the complex envelope and the analytic signal, equation (3), written
inversely:

W(z) = u(x)eti*, (6)
we can write for the second derivative of the analytic signal 4(z):

@"(z) = [u" (z) + 2jksu (z) — k2u(z))e?*e". (7)
The differential equation can now be written as (the term e?*s is factored out):

~w?pAi(z) — EA[4 (z) + 25k, (z) — k2u(z)] = D(z). (8)

It can simply be seen that, if the shifting wave number k; is chosen equal to the excitation
wave number k = w/+y/E/p, the zero order terms cancel out another. If &, is close to



the wave number k, the mass contribution to the equations is small and therefore the
transformed differential equations can be called quasi-static.

The real physical signal can be reconstructed without loss of information by the simple
inverse transformation on the complex envelope signal u(z):

u(z) = Re { a(x)+fm}. 9)

The multiplication with e/*+® increases the frequency of u(z) and therefore u(z) will have
higher frequency contents than u(z). When working with discrete signals it is therefore
necessary to resample u(z)with an interpolation routine.

2.2 FEM discretisation

For clarity, in this specific discretisation a standard Galerkin weighted residual approach
with linear elements is used. This is not a restriction to the CED analysis, as for the
actual computations both linear and quadratic elements have been used.

The weighted residual formulation of the CEDA problem (8) is:

L L
/ n(2){~wpAll — BA[Z" + 2jk, i — K2} dz = / n(2)5 (=) d. (10)
0 0

By using the Galerkin approach, both u.(z) and the test functions 7, (z) will be discretised
per element with linear interpolation functions:

(@) = no(2) = (@) = [31- &) 1(1+9)] (3) o-l<e<l (1)

€

Elaboration, for one element, of the first term in the left hand side of equation (10) gives
the classical mass matrix:

Le - AL,
/ n(z)pAu(zr)dz = M,= prze [2 1] . (12)
0 6 |1 2
Integration by parts of the second term of the weak formulation (10) gives:
Le 7 Le ! | Le
/ —n(z)EAu dz :/ nEAu dx — lnEAuJO : (13)
0 0

The first term on the right hand side of this equation results in the standard stiffness
matrix:

Le _
/ WEAT dv — K, = ZA4 [ 1 1] .
0

. l-1 1 (14)

In classical FEM the boundary term in the right hand side of equation (13) can be
moved to the right hand side of the resulting set of algebraic equations and describes the
external forces on the boundary nodes. In CEDA-FEM a correction has to be made since
the constitutive relation also undergoes a transformation (see equations (4)—(8)):

F=EAW = F=EA[d +jk). (15)



and therefore the boundary term transforms into:
r | Le | Le — 1 Le
— [nEAuJO = [anAkqu - [nFJO ) (16)
0
As will be explained in the next subsection, the boundary forces are negligible, so the
second term can be put equal to zero and the first boundary term gives rise to an extra

matrix:

, o | Le _ -1 0
[]nEAkqu — Cep=jkEA| 1| (17)
0

More attention is paid to the non classical third and fourth terms that are introduced in
the CEDA weighted residual formulation equation (10). The real term gives a symmetric

matrix that is proportional to the mass matrix, and the imaginary term leads to an
skew-symmetric matrix:

L, ,
/ n(z)EA[—ku + j2k,u)dz =
0

_ EARZL,

21 . 1 -1

The full complex algebraic set of equations for a single CEDA element are:

L
[-w’M. + K + Ceg + j (Cer + Cep)] U = N7 (z)p(z) dz. (19)
0

It can be observed that C.g can cancel out —w?M, if k, is chosen equal to k, and again,
the problem is reduced from a high frequency dynamic problem to a static problem.
Standard assembling of all element matrices leads to a set of N complex algebraic
"equations for the complete system. For application of the boundary conditions, this
system will be split up in real and imaginary parts to form a set of 2V real equations.

2.3 Boundary conditions

The boundary conditions, in this case prescribed displacements and unknown clamping
forces, are dealt with in a non-standard way.

The physical second order differential equation (4) needs two boundary conditions, in
this case prescribed displacements:

u(0)=wo ; u(l)=1u. (20)

In CEDA notation boundary conditions on the complex envelope variable are needed. The
relation to the boundary conditions of the original problem is given by the back trans-
formation (9) and can be split up in real (u,(0), u,(1)) and imaginary parts (;(0), u;(1)):

Re {ﬂejk’z} = up cos(ksx)uy — sin(k,z)u; = Uy
— Lk =0 = — . = =0 ) (21)

Re {ueJ -’I} e ul COS(k‘s.’L')UT - Sln(ks-r)lu’z - U’l
z=1 z=1



Now two real unknowns in the set of 2N algebraic equations can be eliminated, resulting
ina 2N x (2N — 2) system matrix.

In classical FEM the system could be solved for the 2N — 2 unknowns by partitioning
to a (2N — 2) x (2N — 2) system, after which the 2 unknown boundary forces could be
computed by postprocessing. However, in CED analysis this can not be done because the
physical delta distribution boundary forces (F'(0), F'(1)) will lead to a CEDA force field,
theoretically, over an infinite domain. But, the CEDA distribution can be split up in the
unknown physical amplitudes Fp; and their corresponding analytically known functions

801, €8 forz=1:

—

Fl)=FRé=z-1) = p()=F&iz-1)=F (5(35 ~1) +jﬁ) e~iksT
| (22

This has two important consequences. First, the discretised domain has to be extended
beyond the clamping points of the bar to a point where the clamping force distribution is
negligible (this is the reason why the point CEDA boundary forces in the discretisation
process could be eliminated). Second, the physical boundary forces have to be kept in the
solution process. The CEDA distributed load contribution to the discretised system, the
- right hand side of equation (19), can now for the complete system be written as:

/0 N'(z)p(z) dz = /0 NT(2){Peze() + Po(x) + Py ()} dz =
/0 NT(2)p...(z) dz + Fy /0 N7 (2)3(z) dz + F, /0 NT(2)64(z) dz =
/ CNT(0)p.o () do + Fo b0 + Fi b1, (23)

Rearranging all unknowns to the left hand side of the system of equations, finally results
in a square 2N x 2N uniquely solvable real system of equations, for 2N — 2 real /imaginary
components of the N nodal CEDA variables, and 2 physical boundary forces. The re-
maining 2 real/imaginary components of the nodal CEDA variables can be computed by
using the boundary conditions (21).

3 Damped CED Analysis

As already stated in Carcaterra and Sestieri (1997) the introduction of damping in CEDA

differential equations is not trivial. The solution to a damped problem is a complex

displacement, and because the CEDA transform is only applicable to real signals the

complex displacement and the corresponding differential equation must be split up in

real and imaginary components. After that, the real and imaginary parts of the physical

variable can be both CEDA transformed to two complex envelope displacement variables.
Starting from the damped variant of differential equation (4):

—w?pAu(z) + jwequ — EAu"(z) = p(x) ; u(0)=u(l)=0, (24)



we can split up: the solution u = (u, u;)7, the excitation distribution p = (p, p,)*, and
the differential equation in real and imaginary components:

—w?pATu(z) + jweg [(1) _01] u(z) — EAIu"(z) = p(z). (25)
Now the CEDA transform can be performed, which gives:

l—wszI + jwey [(1) —01]] u(z) — EAI (ﬁ"(z) + 2jksﬁl(x) — kfﬁ(x)) = p(z).
(26)
Following the recipe of the previous section there will be no fundamental difficulties in

discretising this set of CEDA differential equations. This work has been carried out and
the results are programmed in MATLAB for linear and quadratic elements.

4 Numerical example

A longitudinal vibrating clamped-clamped bar with length L = 1 [m], density p =
7800 [kg/m?], Young’s modulus E = 210 10° [N/m?], damping ¢; = 7020 [Ns/m?] (loss
factor n = ¢y/(pwA) = 0.03 [-]) and area A = 1 10~ [m?] is excited at = 0.4 [m]
with an harmonic oscillating force with amplitude F = 1000 [N] and angular frequency
" w = 310° [rad/s]. The expected number of waves per meter is 1/\ = k/(27) = 9.2.

To obtain a reference solution, a classical damped FEM analysis with 100 quadratic
elements has been performed. In the sequel this is called the exact solution. From the
complex response, the real and absolute values are plotted in figure 1. Note the decaying
solution due to damping.

If we look at the Fourier transform of the real part of the complex solution, see figure 2,
we see that an important assumption of CED analysis is not met. The solution is not
really band limited, the spatial frequency (k/(27)) is significant in the range of 0 up to
- 20-25 waves per meter.

In figure 3 the CEDA transform of the real part of the exact solution is plotted, as well
as the corresponding Fourier transform. One can observe that the CEDA variable seems
to be reasonably smooth, but the discontinuity, at the excitation point z = 0.4, and small
oscillations in the excitation wave number are still present. So, the wave number range is
only reduced by a factor of two, up to approximately 10 waves per meter. Therefore, in
this example, a CEDA-FEM solution should contain at least 20 quadratic elements plus
some extra elements outside the classic interval (see subsection 2.3).

The results of the damped CEDA-FEM calculation with 4 4+ 20 + 4 elements, as well
as the exact solution, are plotted in figure 1. The response is computed correctly with
an error of approximately 10 percent, which would have been the same if we would have
used 50 classical elements. A more accurate CEDA-FEM computation with 10 + 50 + 10
elements results in the exact solution. Discretisation with fewer than 4 4 20 + 4 elements,
as with classical FEM, results of course in an erroneous under sampled solution.

5 Conclusions

A new damped CEDA-FEM method has been derived successfully. No spurious solutions
as reported by Carcaterra were found, and the addition of damping did not lead to



fundamental problems. A non standard inclusion of the CEDA boundary conditions for
displacements, as well as the boundary forces was presented.

It is shown that the expected large reduction in the number of elements for computing
the CEDA response has not been accomplished. The spatial point excitation in this
example, and the examples in Carcaterra’s articles, does not result in a wave number
band limited response, one of the basic assumptions of the CED analysis. The main
reduction in the number of elements for these type of signals is only a factor of two. The
total reduction in this example is therefore limited to somewhat less than a factor of two,
due to the small number of extra elements that are needed outside the original domain,
for correct inclusion of the boundary conditions.
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Figure 1: The complex physical displacement results of classical damped FEM versus
damped CEDA-FEM. In the upper graph the real part of the complex longit-
udinal displacement is plotted. In the lower graph the corresponding absolute
value is drawn.
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Figure 2: The Fourier transform of the real part of the exact physical displacement
(zoomed in to —30,30 [1/m]).
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Figure 3: The CEDA transform and its Fourier transform of the real part of the exact
physical displacement (zoomed in to —30, 30 [1/m]}).



