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Abstract

Consider two random variables subject to random right censoring, like the time

to two different diseases for individuals under study or the survival times of twins.

. Of interest is the bivariate median of these two random variables.

There are various ways that the univariate median has been extended to higher

dimensions for completely observed data. We concentrate on the so-called bivariate

L 1 median and extend this estimator to the censored data situation. The estimator

is based on van der Laan (1996)'s estimator of the bivariate distribution of two

random variables that are subject to censoring. Asymptotic results for the proposed

estimator are established. The obtained results include the asymptotic normality

of the estimator, its local power and the construction of a confidence region for

the true median. Finally, we consider a data set on kidney dialysis patients and

estimate the median time to two different infections for these individuals.

KEY WORDS: Asymptotic normality; Bootstrap; Confidence region; L 1 median; Right

censoring.
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1 Introduction

for a multivariate data set Yl' ... , Y n and 11·11 denotes the Euclidean norm. Hence, we seek a

point that minimizes the average distance to the data points. The multivariate L 1 median

was termed the mediancenter by Gower (1974) who discusses some of its properties and

also provides a computational algorithm in the bivariate case. Brown (1983) referred to

it as the spatial median and the corresponding sign test based on

(1.2)

(1.1)
n

L IIYi - Oil
i=1

n Yi - 0
Sn(O) = ~ II ._ oil

~=1 Y~

as the angle test, useful when testing directional hypotheses. Small (1990) traces the

history of the multivariate L 1 median back to Hayford (1902). Gini and Galvani (1929)

introduced the median into the statistical literature and then it was rediscovered by

Haldane (1948).

This median is attractive for several reasons. The multivariate L 1 median, in con

trast to the vector of marginal medians, provides a better characterization of the center

of the joint distribution. It has 50% breakdown (same value as the univariate median)

and bounded influence; see Lopuhaa and Rousseeuw (1987) and Kemperman (1987). It

is unique in dimensions greater than 1. The multivariate L1 median is equivariant under

orthogonal transformations of the data but not under scale changes or affine transforma

tions. Brown (1983) showed that for spherical normal models, the efficiency increases as

the dimension increases, beginning with a bivariate efficiency of .785 already larger than

the univariate normal efficiency of .637. Finally, Chaudhuri (1992) provides the most'

In this paper we consider the concept of bivariate median and sign test for the censored

data model. The univariate median and sign test, both based on the L 1 norm, have

an extensive literature; see Hettmansperger and McKean (1998) and references therein.

These L 1 methods are highly robust but suffer from reduced efficiency at the normal

model.

There are various ways that the median can be extended to higher dimensions. Small

(1990) provides a full account of the various multivariate medians. Here, we concentrate

on what Small calls the multivariate L1 median, defined as the vector {j that minimizes
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complete and rigorous analysis of the asymptotic properties. He developed a Bahadur

type representation for the multivariate £1 median. MottOnen and Oja (1995) develop

multivariate spatial sign and rank methods based on (1.2) and Choi and Marden (1997)

develop multivariate rank tests for analysis of variance based on (1.2).

We view (1.2) as defining an estimating equation for 8. If F(y) is the bivariate

empirical cdf based on the sample Yl'" ., Yn of bivariate observations, then 8 solves

(1.3)

(1.4)

1
00 100 y-O ~

lIy _oil dF(y) = O.
-00 -00

where tij = min(1ij, Gij ) (with cdf H(y)), Dij = I(Tij :::; Gij ) (j = 1,2) and where 1(·) is

the indicator of the event. Note that the observations can be doubly uncensored, singly

censored in either component, or doubly censored.

For the construction of the van der Laan estimator F(y), we need to assume that the

censoring times C i . are observed or discrete. If this assumption is not met, one needs

to simulate the unobserved censoring variables; see Section 4 for an example. van der

Laan (1996) proposes a discretization of the censoring times which entails using a grid

of width O(hn ), where hn tends to zero as n tends to infinity. The transformed data are

The asymptotic properties of 8 follow from a linearization of the estimating equation.

The corresponding population median °is defined by (1.3) with F(y) replaced by F(y),

the underlying bivariate distribution.

In the case of right censoring, we need a bivariate estimate F(y) of F(y). Singly

censored observations (i.e. observations in which only one component is censored) cause

difficulties; for example, the nonparametric ML estimator is not consistent in this case.

van der Laan (1996) reviews the various ways that have been proposed to circumvent

these difficulties. In this paper, we consider only van der Laan's solution. His solution

results in interval censoring for the singly censored data. Then van der Laan's F(y) is

asymptotically efficient under certain conditions; see van der Laan (1996) for details.

We follow van der Laan (1996) in modelling bivariate right censored data as follows:

T is a bivariate lifetime vector with bivariate cdf F(y) = P(T1 :::; Yl, T2 :::; Y2)' Let C be

a bivariate censoring vector with cdf G(y). Assume that T and C are independent. Let

(Ti , C i ) i = 1, ... ,n be independent copies of (T, C). We observe
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2 Main results

(2.1)

(2.2)

7"1 7"2 8

S(8) = n! ! II~ =811 dF(y)
-00 -00

'Tt T2 8

Sn(8) = n! ! II~ =811 dF(y),
-00 -00

denoted by Y7 = (T~, D7) (i = 1, ... , n). For raw survival and censoring times defined

on [0,00) x [0,00), van der Laan (1996) defines F(y) as the nonparametric ML estimator

computed from Y7(i = 1, ... , n); see van der Laan (1996, Section 2) for more details

on the construction of F(y). More generally, if T and C are transformed survival and

censoring times not necessarily on [0,00) x [0,00) (e.g. a log transformation of the raw

times), then

where Vi = v(Tj ) (j = 1,2) are the raw survival times (starting at zero) for some mono

tone, increasing transformation v. We define F(Yl' Y2) in this case as the nonparametric

ML estimator of van der Laan (1996) for the bivariate distribution of (VI, \12) and evalu

ated at V(Yl) and V(Y2)' Note that this definition also applies to raw survival and censoring

times by taking v to be the identity function. The estimator must be computed iteratively.

We denote Gh(y) for the cdf of the transformed censoring times and Hh(y) for the cdf of

the Tih'S.

In Section 2, we state our main results on the limit distributions of the bivariate L 1

median and sign test. In Section 3, we discuss a bootstrap approach to the estimation of

the asymptotic covariance structure of the bivariate L 1 median and sign test. An example

is analyzed in Section 4. Proofs and derivations are given in the Appendix.

Because the asymptotic theory for fJ is based on an i.i.d. representation for F(y)

which is valid (under assumption (AI) and (A2) given below) for any y = (Yl' Y2) such

that Yj :::; Tj (j = 1,2) (where Tj is strictly less than the upper bound of the support of

Hj(y) = P(Tj :::; y)), we need to work with a slightly modified version of (1.3) :

where we take Tj = Hj- 1(1 - c) and Tj = iIj-
1 (1 - c) for c > °arbitrarily small and

iIj(y) = n-1 L:~=1 I(Tij :::; y) (j = 1,2). Note that S(8) can be made arbitrarily close to



n I~: I~: 1I~=glldF(Y) if the upper bound of the support of H j equals the upper bound

of the·support of Fj(y) = P(Tj ~ y) for j = 1,2. The true median is denoted by (Jo and

is the value of (J for which S((J) = O.

Location models are appropriate when modelling logarithm of survival time and scale

models for raw survival time. It should be noted that there is no simple transformation

that allows one to switch between the bivariate £1 median of the log and the raw survival

times.

Location model: F(y) = FO(Yl - (h, Y2 - ()2) for some prototype distribution FO(Yl' Y2)'

Scale model: F(y) = Fl(~';;) for al,a2 > 0 and for some prototype distribution

F1 (Yl' Y2) satisfying F1 (y) = 0 for Yl < 0 or Y2 < O.

The main results require a number of regularity conditions which we mention below

for convenient reference. The conditions will be expressed in terms of the raw survival

times (Vi, V2) = (v(Td, v(T2)). We use the notation Fv(Y) = P(V1 ~ Yl, V2 ~ Y2) and

similar notations will be used for other distribution functions.

(AI) The bandwidth hn tends to zero, but slower than n- 1/ 18 •

(A2) (i) For all c > 0, SFv (F-v}(l- c), FV:~(l- c)) > 0, where SFv (y) = P(Vi > Yl, V2 >
Y2) and (with analogous notation) SGv (Gv,\ (1 - c), Gv,1(1 - c)) > O.

(ii) FV(V(Tl)' V(T2)) = 1 (data reduced to [0, V(Tl)] X [0, V(T2)])'

(iii) Denote the grid points for the construction of Fv(Y) by Uk (k 2: 1) for Vi

and by Wf. (.e 2: 1) for V2 depending on the choice of hn > O. Then, P(Uk < Vi ~
Uk+l, V2 2: Wf.) > 6hn and P(V1 2: Uk, Wf. < V2 ~ wHd > 6hn for some 6 > O.

(iv) Fv has a continuous density, uniformly bounded away from zero on [0, V(Tl)] X

[0,V(T2)]'

(A3) The function HV,j(Y) (j = 1,2) is differentiable in Hv.;(l-c) and hV,j(Hv.;(l-c)) >
0, where hvAy) is the probability density function of HV,j(Y).

(A4) The function v(y) has a bounded derivative on (-00, Tl V T2]'

(A5) (i) The matri.x A, defined in Theorem 2.1, is positive definite.

(ii) The matrix B, defined in Theorem 2.2, is positive definite.
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We start with the asymptotic normality of Sn(Oo). This result is useful for testing

hypotheses concerning 00 , The following notation is required:

Z 7"2 0

L l,9(Z) = / / II~ =OlldF(y)
-00 -00

7"1 Z 0

L 2,9(Z) = / / II~ =011 dF(y).
-00 -00

Theorem 2.1 Assume (AI) - (A4), (A5)(i). Then,

n- l
/
2 Sn(OO) .!!:t N2 (O, A),

where

[/
7"1/7"2 y-Oo h 2 Lj,90(Tj) - -1 ]

A = Var -00 -00 Ily _ 0
0

11 dg(Y ,y) - .r; hj(HT l (1 _ e)) I(Tj ::; Hj (1 - e)) ,

hj(y) is the probability density function of Hj(y) (j = 1,2) and the function 9 is discussed

in Theorem A.1.

The next result is the asymptotic normality of the estimator 9.

Theorem 2.2 Assume (AI) - (A5). Then,

n l
/ 2(9 - ( 0 ) .!!:t N2 (O, B-1AB- l

),

where

7"17"2[ I 1 ]
B = / / Ily _ 0

0
\1 - lIy _ 0

0
11 3 (y - Oo)(y - Oo)t dF(y).

-00 -00

Below we discuss the estimation of A and B. These estimates are needed to estimate

the covariance matrix of 9 and, hence, estimate the standard errors. In addition, the

results in Theorem 2.2 can be used to calculate the estimation efficiency of 9.

Theorem 2.3 Assume (AI) - (A5).

1. Location model: Let Ho : 0 = 00 and HI : 0 = 00 + ,n-l /
2 for some fixed vector

,. Then, under HI,

6



where x2 (a, b) is a non-central chi-square distribution with a degrees of freedom and

non-centrality parameter b.

-1/2
2. Scale model : Let Ho : 0 = 00 and HI : 0 = Ooe'Yn for some fixed value 'Y.

Then, under HI,

Theorem 2.3 can be used· to estimate the local power of the test based on Sn(OO)' The

test efficiency of two tests concerning 0, is defined as the limiting ratio of the samples

sizes needed for the same asymptotic level and same asymptotic power along the same

sequence of alternatives, or equivalently as the ratio of the noncentrality parameters of the

limiting X2-distributions of the respective test statistics under the alternative hypothesis

(see Bickel (1965), Hettmansperger and McKean (1998)). Hence, the above result enables

us to calculate the test efficiency of Sn relative to another test.

We end this section with the construction of a confidence region for 00 ,

Theorem 2.4 Assume (A1)-(A5). Further, let A and iJ be weakly consistent estimators

of respectively A and B. Then, a (1 - a)100% confidence region for 00 is given by the

values of 00 that satisfy

where X;(2) satisfies P(X ~ X;(2)) = a if X rv X2 (2).

The calculation of standard errors, local power and the construction of a confidence

region for 00 requires the estimation of the matrices A and B. The estimation of the

matrix B is straightforward (simply replace F(y), 71, 72 and 00 by the consistent es

timators F(y), 71, 72 and {} respectively (see Theorem 5.1 in van der Laan (1996) for

the consistency of F(y))). More attention needs to be paid to the estimation of A. An

estimator for A could be obtained by replacing the function g(yh, y) by an appropriate

estimator. However,· the estimation of this function is complicated since it has no explicit

formula. For this reason we define in the next section a bootstrap procedure which can

be used to obtain a bootstrap estimate for A.

7



8

'ii* = min(Tt, Cn and D.; = I(Tt ~ cn·

3 Bootstrap for two dimensional censored data

(3.1)
~ (1 )~(i)

F(y) = 1 - II 1 - .
- n-z+l

T(i):::;Y

where

is the Kaplan-Meier estimator and G(y) is the analogous estimator for the censoring times

(replace the indicators D.(i) in (3.1) by 1 - D.(i))' Then define, for i = 1, ... , n,

The purpose of this section is to define an appropriate bootstrap scheme that will

allow us to estimate the matrix A in a consistent way.

To explain the proposed bootstrap procedure, consider first the one-dimensional case,

which is due to Efron (1981). We use similar notations as for two dimensions. Condi

tioning on the responses Ti and censoring times Ci (i = 1, ... , n) we define the random

variables Tt and Ct (independently) as follows:

Tt, ,T~ are independent; Tt rv F
C;, ,C~ are independent; Ct rv G,

It is readily verified that the above procedure, called the obvious bootstrap, is equivalent to

the one where the pairs (Tt, D.;) are drawn (with replacement) from (TI , D. I ), ... , (Tn, D.n).
The latter procedure is called the simple bootstrap.

The natural extension of the obvious bootstrap to two dimensions exists in replacing

the Kaplan-Meier estimators F(y) and G(y) by the van der Laan estimators F(YI' Y2)

and G(YI' Y2) (where G(YI' Y2) is obtained by interchanging the role of the survival and

censoring times in the definition of F(YI' Y2)). For the simple bootstrap, we draw the pairs

ef;,~;) with replacement from (7\, ~l),' .. , (Tn, ~n). Unlike the one-dimensional case,

the obvious and the simple bootstrap are not equivalent in two dimensions. This is be

cause for the obvious bootstrap the data points get (slightly) modified for the calculation

of the van der Laan estimator, while this is not the case for the simple bootstrap. We

prefer here to work with the obvious bootstrap, since this procedure provides us with

the bootstrapped censoring times. We need these censoring times to calculate the boot

strapped van der Laan estimator F*(YI' Y2), which is obtained by replacing the original



data in F(Y1' Y2) by the corresponding bootstrap data. Similarly, 7j = H;-l (1 - c) where

Hj(Y) = n-1
l:i==1 I(Ttj ~ y) (j = 1,2).

We are now able to construct a bootstrap estimate for the matrix A, which is the

(asymptotic) covariance matric of n-1
/
2 Sn' Define
.... A.
Tl T2 A

s~(e) = n J J y - ~ dF*(y).
-00 -00 IIy - °Il

Calculate this expression for B bootstrap samples, where B is a prespecified number. Let

s~)*(e) be the value of S~(e) for resample j (j = 1, ... , B). Then, define

A = 1 t [s~)*(e) - B-1 ts~)*(e)] [s~)*(e) - B-1 ts~)*(e)]t
n(B-1) j==l i==l i==l

4 Data analysis

We will illustrate the calculations of the multivariate L1 median and an estimate of its

covariance matrix on data provided in an example discussed by McGilchrist and Aisbett

(1991). The data, given in the reference, consist in the recurrence times to infection at

point of insertion of the catheter for 38 kidney patients using portable dialysis equipment.

For each patient two such times are recorded and censoring has taken place in the data.

Of the 38 patients, 23 are doubly uncensored, 12 are singly censored, and 3 are doubly

censored. The data values range from under 10 to over 500 days in each component.

We first compute the van der Laan estimate of the bivariate recurrence time distri

bution function. Since the censoring times corresponding to uncensored observations are

not observed in this example, we followed the suggestion of van der Laan and simulated

them using a Kaplan-Meier estimator for the conditional censoring distribution. The last

observation was changed to a censored observation so the Kaplan-Meier estimate is a

proper distribution. The simulated censoring times are given in Table 1.

Now using van der Laan's algorithm, we find the support points and weights to be used

in the estimating equation (2.2). For the algorithm we used a bandwidth of h = 24.35.

This is the bandwidth for which the average number of uncensored observations in each

cell is 1. Further, f1" = H11(.995) = 562, and 72 = H21(.995) = 511. Figure 1 shows the

van der Laan support points. The bivariate L 1 median and the component medians are

marked in the figure, their values are given in Table 2.

9



0 1 562 13 562 562 562 562 13 562 113 562 113 562 113

O2 511 149 511 511 511 511 511 511 511 22 511 8 511

0 1 70 562 4 562 159 159 108 562 24 70 562 159 113

O2 149 25 511 511 511 22 511 511 511 511 46 511 511

0 1 562 70 562 159 562 5 562 562 562 54 6 8

O2 511 511 511 149 511 511 511 5 511 16 511 511

Table 1: Simulated censoring times

< Figure 1 about here >

L 1 median marginal medians

T1 90 114

T2 76 63

Table 2: L 1 and marginal medians

Then,

B = ( 0.0042732675 -0.0004803128)
-0.0004803128 0.0056800525

and using the obvious bootstrap as described in Section 3, we find, based on B=1000

bootstrap samples,

A = (0.7518447 0.1293847)
0.1293847 0.6597610

and, the estimated asymptotic covariance matrix of n1/ 2 (O - 8) is

B-1AB-1 = (43451.27 11376.54)
11376.54 22062.79

Hence, the estimat~d standard error of 01 i~ J43451.27/38 = 33.82 and similarly the

estimated standard' error of O2 is 24.10.

A simple comparison of the components of the L 1 median, taking into account the

estimated standard errors, suggests that there is no statistical evidence that they differ.
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Appendix: Proof of main results

We start with a result which can be found in van der Laan (1996), and which expresses

the estimator F(y) as a sum of LLd. terms and a remainder term of lower order. This

result is useful for obtaining e.g. the asymptotic normality of n-1/ 2Sn(6o), since it allows

us to apply the central limit theorem. We do not mention the explicit formula of the

function 9 in the main term of the representation below, because 9 has a fairly complicated

(non-explicit) formula. Details on this formula can be found in van der Laan (1996).

Theorem A.I Assume (AI), (A2). Then,
n

F(y) - F(y) = n-1 2: g(Yi , y) + Rn(y),
i=l

where

sup IRn(y) I= op(n-1
/

2
)

-00<Y1::;7"1,-00<Y2::;7"2

and g(z, y) is defined as in Theorem 5.1 in van der Laan (1996).

Next, define
n 7"1 7"2 0

S~(O) =~-L -L II~ =Oil d(F(y) + g(Yi , y))

o Lj,e(Tj) A -1
-n~ h.(H-:-1 ( _ )) (Hj(Hj (1 - e)) - (1- e)).

)=1) J 1 e

The function S~ (0) is a sum of i.i.d. terms and is the main term in the asymptotic

representation for Sn (0) :

Theorem A.2 Assume (AI) - (A4). Then,

n-1
/

2 sup ISn(O) - S~(O)I = op(I).
e

Proof. Consider
f1 f2 0

Sn(O) - S(O) =n! ! II~ =Oil d(F(y) - F(y))
-00 -00

f1 f2 0 f1 7"2 0

+n ! ! II~ =Oil dF(y) +n! ! ,,~= Oil dF(y)
-00 7"2 7"1 -00

3

=2:1j.
j=l

11



From Theorem A.l we have :

This enables us to prove Theorem 2.1 :

(A.I)

12

sup In-1
/
2S;(Oo + bn-1

/
2

) - n-1
/
2 S;(OO) + Bbl ~ O.

Ilbll::;B

Lemma A.3 Assume (A5)(ii) and assume that the junction Hv,j(Y) (j = 1,2) is contin

uous in Hv,;(1 - .s}. Then, jor all B > 0,

Tl f2 0

T2 = n ! ! II~ =Oil dF(y) + op(n
1

/
2

)

-00 T2

= n(L2,o(T2) - L 2,o(T2)) + op(n1
/

2
)

= nL; O(T2)(H;I(1 -.s) - H;I(l - .s)) + op(n1
/
2),

= -nL; O(T2)(H2(H;1(1 - .s)) - (1 - .s))/h2(H;1(1 - .s)) + op(n1
/
2).,

The derivation of Ts is similar, which finishes the proof.

using integration by parts and the fact that Tj - Tj = Op(n- 1
/

2
) for j = 1,2 and

L~1Y(Yf, y) = Op(n1/2h;;3/2) uniformly in y E (-00, Tl] x (-00,72] (see Theorem 5.1

in van der Laan (1996)). Next, write

The following is a technical lemma, known as the fourth Pitman condition, which will

be needed in many of the proofs of the main results.

Proof of Theorem 2.1. From the above Theorem A.2 together with the central limit

theorem, the asymptotic normality of n-1/ 2Sn(OO) follows. Since E[g(yh, y)] = 0 (see p.

614 in van der Laan (1996)), we have that E(S;((Jo)) = 0 after integration by parts and

using the fact that S(Oo) = O. Hence, Sn(OO) is asymptotically unbiased. The asymptotic

variance of n-1/ 2Sn (00 ) equals the variance of n-1/ 2S; (00 ) which is equal to the matrix A.



Proof. The function 8; (9) naturally splits into three terms. Call them 8!f/ (9) (j =
1,2,3). It is easily seen that sUPllbll~B In-1/28;j (90 +bn-1/2) _n-1/28;j (90 ) I = Op(n-1/2)

for j = 2,3. Hence, we need to show that (A.l) holds with 8; replaced by 8;1. This

will be done by applying Theorem 2 in Brown (1985) on -8;1(9) (which yields the

same estimator 8) . Therefore we need to verify his conditions (2), (3), (10) and (11).

For condition (2) we refer to the proof of Theorem 2.1. Next note that the matrix of

derivatives of 8;1 (9) is negative definite and hence the matrix of derivatives of - 8;1 (9)

is positive definite, which shows that (11) is satisfied. Condition (3) holds because B

is positive definite. It remains to show that (10) holds, which we do by verifying the

conditions of Theorem 3 in Brown (1985). We first prove that

(A.2)

Let
A ( ) _ Yj - (JOj - bj n-1

/
2

Yj - (JOj

j y - Ily - 90 - bn-1/ 2 11 - Ily - 90 1/

(j = 1,2). We need to calculate

nV.r [n-1tLl Aj(y) dY(Yi,Y)]

= E [-l-l Aj(y) dy(Y, Y)]'

:S 4 {AJ(T)E[y2(Y, T)] + E [1 y(Y, Yl, 72) dAj(Y1> 72)]'

+E [1 y(Y, 71> Y2) dAk1>Y2)]' + E [11 y(Y, y) dA;(Y)]} (A.3)

where the last inequality follows from integration by parts and the fact that (EJ=1 Tj)P ~

kP- 1EJ=l TJ for any random variables T1, ... ,Tk, from which it follows that E[(EJ=l Tj )2]

~ k EJ=1 E(Tn· The first term of (A.3) is 0(1) since Aj(r) 4- O. The second term equals

Tl Tl

4! ! E(g(Y, Yl, 72)g(Y, ZI, 72))dAj (Yl' 72)dAj (Zl' 72)
-00 -00

13



which tends to zero since J':~ IdAj (Y1' 7"2)1 --+ O. Analogously, the third term is 0(1).

Also the last term of (A.3) has zero limit since J':~ J':~ IdAj(y)1 --+ O. This shows that

condition (A.2) is satisfied. It remains to show that

where \7 denotes differentiation with respect to the components of O. The right hand side

equals

which equals B.

A first consequence of this result is the weak uniform consistency of 0 :

Lemma A.4 Assume (AI) - (A5). Then,

1/2 An (0 - ( 0 ) = Op(I).

Proof. This follows from Theorem 2 in Brown (1985). For the verification of the condi

tions stated in that theorem, we refer to the proof of Lemma A.3 where the same result

was used.

We are now ready to prove the remaining results of Section 2.

Proof of Theorem 2.2. Since n1/ 2 (O - ( 0 ) = Op(I), we can apply the fourth Pitman

condition (Lemma A.3) on b = n1/ 2 (O - ( 0 ) yielding

Because Sn(O) = 0, it follows that S~(O) = op(n1/ 2 ) and hence

14



which tends to a normal distribution with zero mean and covariance matrix B-1AB- l

(see Theorem 2.1).

Proof of Theorem 2.3. For the location model, the asymptotic distribution of

Hi'"l(l-e) Hi"l(l-e)

-1/28 (0 ) - 1/2 f f y - 00 dF
A

( )

n n 0 - n IIy - 0
0

11 y
-00 -00

under HI equals the asymptotic distribution under Ho of

• 1 • 1
Hi'" (I-e) Hi" (I-e) -1/2

- n l / 2 f f y - 00 + n , dF( )
- Ily - 00 + n- l / 2,11 y

-00 -00

=n-l/2Sn(00 - n-l/2,)

=n-l/28~(00 - n-l/2,) + op(l)

= n-l/2S~(00) + B, + op(l)

by the fourth Pitman condition. Since the latter converges to a bivariate normal distri

bution with mean B, and variance matrix A, the result follows. For the scale model

the proof is similar: the asymptotic distribution of n-l / 28 n (00) under HI equals the

asymptotic distribution under Ho of

=n-l/2Sn(OO - '"'(00n- l/2) + op(l)

= n-l/28~(00) + '"'(BOo + op(l),

from which the result follows.
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(AA)

A A -1 A A-I

~=B AB .

From Theorem 2.2 it follows that
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