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Abstract

In the production of glass, temperature plays a crucial role. However, until now, only crude
approximations for radiative heat transfer have been used, although it represents the most
influential mode of heat transfer. In this article the authors present two new methods that can
help in the accurate calculation of radiative heat transfer. The first is a way to find directional
sets of arbitrary size for the Discrete Ordinate Method. The second is an algebraic abstraction
of the Ray Trace Method, which allows the use of this method without the need for re-tracing
the geometry at every time or iteration step. Both methods are compared to existing methods.
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Chapter 1

Introduction

The production of glass belongs to the oldest forms of human industrial production. After the
discovery of glassy layers on pottery, man learned of the benefits of the use of glass. The ma-
terial is strong though brittle; it can stand aggressive environments; and last but not least: it
can be transparent. The manufacturing of glass happened on a small scale for a long time and
glass products were used by a happy few. Industrialization led to mass production of glass.
The methods of production, however, have hardly changed with the massification; usually
manual operations are merely replaced by mechanical ones. Glass production in this way re-
mains like wine making: although the necessary ingredients and proportions are known, the
production is characterised by a process of trial-and-error on the shop floor. This process of
trial-and-error is expensive, both economically and ecologically.

New environmental laws, the opening of the European market, and the growing com-
petition from the plastic industries all have reduced the profit margin on glass mass prod-
ucts, making an optimization of the production cycle imperative. Most optimization has al-
ready been done through experience with trial-and-error techniques, but the limits of such
optimization are almost reached. A call for deeper understanding of the mechanisms behind
glass production is raised.

Two of the main research fields herein are chemistry and heat transfer. Glass results from a
special mixture of ingredients producing a material that can easily be frozen in its liquid state.
The reductor/oxidator condition of the glass melt strongly influences its temperature. And so
are its physical properties during the forming process. A understanding of the temperature
distribution in glass therefore stands at the base of understanding the processes.
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Chapter 2

Radiative Heat Transfer

As mentioned before, one of the special features of glass is its transparency. It is this fea-
ture that causes the calculation of heat transfer to be more complicated than that in metals.
Though both glass and metals are processed at elevated temperatures, the photons in metal
can travel only small distances. This means that physically a particle only influences its direct
neighbours and mathematically we end up with a differential equation: radiation in opaque
materials behaves mathematically like conduction.

If we are dealing with a transparent material, the photons can travel through a large part
of the domain in question. This means that in a mathematical sense we have to solve an inte-
gral equation: the temperature at a point is dependent on the temperature at any other point
in the domain. Additional complications in glass production are the complex shapes that are
involved. For example, if we look at the cooling of a hot bottle, we must realize that a parti-
cle within the bottom ‘sees’ through the bottom and through the empty part inside, the top
of the bottle. We must be able to express this mathematically.

First, let us have a look at the equations describing radiative heat transfer. Radiation is
the transfer of energy by photons. Thermal radiation limits itself to those photons that act on
the temperature of particles in the medium. Typically these photons have associated wave-
lengths in the infrared domain of the electromagnetic spectrum. Here we hit the dual nature
of electromagnetic radiation: it can be both described by particles and by waves. The for-
mer is used for derivation of stochastic methods like the Monte Carlo Method, where a great
number of ‘photons’ is tracked. This method can lead to very accurate results, but the com-
putational costs are high. The latter is the concept of radiation we use to derive our model.
Note that macroscopically both views are identical.

2.1 Intensity and heat transfer

Starting from Maxwell’s electromagnetic wave equations, we can make some assumptions to
end up with a simpler equation. If we consider unpolarised radiation (like Planckian radia-
tion) in a dielectric medium (like glass), we can characterize radiation by a sole entity: the
intensity.

The monochromatic or spectral radiation intensity Iν is defined as the amount of radiative en-
ergy travelling in a certain direction per unit area, per unit spherical angle, per unit frequency.
Unlike heat flow, we cannot represent the intensity in a single vector, because photons and
radiation will travel through a point in different directions. So, the intensity is a scalar depen-
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dent on position and direction, or Iν = Iν(x, s). Here we already see the inherent complexity
of radiation. Although we are dealing with a single scalar, it is dependent on six free vari-
ables: three spatial co-ordinates, two directional, and one for the frequency ν.

Except for some measurement techniques like remote sensing or pyrometry, we generally
are not interested in the intensity itself. We rather want to know the heat flux it generates.
Looking at the definition of intensity, we see that for a particular wavelength/frequency the
intensity represents the amount of energy per unit frequency per unit spherical angle travel-
ling exactly in direction s, or

∂2qr
ν

∂ν∂�
= sIν.

If we integrate this over the entire unit sphere (which represents the space of directions) and
over all frequencies, we find the radiative heat flux qr(x):

qr(x) =
∫ ∞

ν=0

∫
�=4π

sIν d�dν, [2.1]

where 4π means we should integrate over the entire unit sphere. So, if we know the intensity
distribution, we also know the heat flux caused by the radiation.

2.2 Black body intensity

The entity that makes a direct link between temperature and intensity, is the black body inten-
sity. A black body is a body that absorbs all incoming radiation without reflecting, scattering,
or transmitting it. Now, we put such a body in an isothermal enclosure at temperature T and
wait for thermal equilibrium to be reached. Because in thermal equilibrium the energy that
enters a body equals that leaving the body, we find that a black body radiates with the max-
imum reachable intensity for temperature T . For an arbitrary frequency ν, we call this the
spectral black body intensity Bν . A black body emits radiation isotropically, so the black body
is a function of position only: Bν = Bν(x). Planck found (see [1], [7], and [5]) that the black-
body intensity can be expressed in terms of the temperature of the enclosure (and therefore
the temperature of the black body) as:

Bν(T ) = 2hν3

c2
[
ehν/kT − 1

] , [2.2]

where h is the Planck constant, k is the Boltzmann constant, and c is the speed of light in
the medium. If we integrate this over all possible frequencies ν, we find the (total) black body
intensity B(T ):

B(T ) = n2 σ̄T 4

π
, [2.3]

where n is the refractive index of the medium, and σ̄ is the Stefan-Boltzmann constant.
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2.3 Radiative transfer equation and heat transfer

As radiation travels through the medium, the intensity along a ray changes due to absorp-
tion and emission within that medium.In general radiation is scattered, but if we look at glass
melts far away from the batch mixture in the glass furnace, or at glass melts during the form-
ing process, this scattering can be neglected.

If we look at the change of the intensity along a certain ray, which we write mathemati-
cally as s ·∇ Iν , we find a source due to emission by the hot medium and a sink due to absorp-
tion by the medium. The latter we express as follows. We introduce the spectral absorption
coefficient κν which gives us the fraction of the intensity that gets absorbed per meter. So, the
amount of intensity that is absorbed equals κν Iν . The derivation of the emission is somewhat
more complicated. It is given by the Kirchhoff-Planck relation:

ην = κν Bν, [2.4]

where ην stands for the emission at frequency ν. This equation is actually valid only in ther-
mal equilibrium, but we can use it with a high degree of accuracy if we have a local thermal
equilibrium (LTE). For the assumption of LTE not to be valid, temperatures need to be even
much higher than in a glass furnace, so we can use (2.4) for our application (see Chapter 6
of [5]). The radiative transfer equation then becomes:

s · ∇ Iν(x, s) = κν(x)Bν(x) − κν(x)Iν(x, s). [2.5]

If we assume furthermore diffusely reflecting boundaries, the boundary condition for (2.5) is

Iν(xw, s) = εν(xw)Bν(xw) + ρν(xw)

π

∫
n(xw)·s′<0

Iν(xw, s′)|n(xw) · s′| d�′, [2.6]

where n(xw) is the normal at position xw on the boundary. Of course, this equation only pre-
scribes the radiation leaving the boundary; in other words if n(xw) · s > 0. The spectral or
monochromatic emissivity of the wall is given by εν ; the spectral or monochromatic reflectivity by
ρν . If no radiation goes through the boundaries, as can be assumed in most applications for
the glass industry, Kirchhoff’s law requires that

εν + ρν = 1.

2.4 Gray medium

To avoid complex notation for the derivation of subsequent methods, we will assume we are
looking at a gray medium. For a gray medium the radiative properties are not dependent on
the frequency, e.g. κν = κ . This is a violation of what happens in glass where we have typical
lows and highs for certain frequencies (the water band, etc.), but the method can easily be
upgraded to include various bands.

The radiative transfer equation for a gray medium can be expressed in the total rather
than the spectral quantities:

s · ∇ I (x, s) = κ(x)B(x) − κ(x)I (x, s). [2.7]
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with gray boundary conditions for diffusely reflecting boundaries given by

I (xw, si ) = ε(xw)B(xw) + ρ(xw)

π

∫
n·s′<0

I (xw, s′)n · s′ d�′, ∀ si · n > 0. [2.8]

Similarly, the heat flux equation (2.1) can be written in these total quantities:

qr(x) =
∫

4π

s I (x, s) d�. [2.9]
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Chapter 3

Discrete Ordinate Method

For a numerical approach we make use of the Discrete Ordinate Method (DOM). The idea be-
hind the method is the following. Because it is numerically impossible to solve (2.7) for all
possible — i.e. an infinite number of — directions, we choose a setS containing a finite num-
ber of directions we look at. Then, to be able to compute the integral in (2.9), we replace them
by quadratures using the directions inS and corresponding weights wi . In doing this, Equa-
tion (2.7) lets itself be rephrased as the system of equations

si · ∇ I (x, si ) = κ(x)B(x) − κ(x)I (x, si ) ∀ si ∈ S,

with boundary conditions

I (xw, si ) = ε(xw)B(xw) + ρ(xw)

π

∑
n·s j <0

w j I (xw, s j )
∣∣n · s j

∣∣ , ∀ si ∈ S.

Now, we first concentrate on how to choose the set of directions S. Then we consider how
to solve this system of equations, using two different methods: the Finite Element Method and
the Ray Tracing Method.

The quality of the solution for using the DOM depends on the choice of directions and as-
sociated weights. Commonly, so-called level symmetric sets are used. These sets use the same
set of direction cosines for each of the three axes. For an explanation and listing of these di-
rections and associated weights, one can consult the report by Lathrop and Carlson [3].

3.1 Level Trapezium Method

Only a limited number of these sets have been tabulated. Therefore, we present here two dif-
ferent methods to obtain directions and weights, which both allow for a creation of an arbi-
trary number of directions. The first one is the level trapezium method. Basically we are looking
for a quadrature that integrates accurately over a sphere, or

∫
4π

f (s)d� =
∫ π

0
dϑ sin ϑ

∫ 2π

0
dϕ f (ϑ, ϕ) =

∑
i, j

wi j f (si j ).

To do this we choose the directions along certain levels ϑ = ϑi , (ι = 1, . . . , NL ). Then, on
every level, we choose the trapezoidal rule to integrate over ϕ as this method gives super-
convergence for periodic integrands. The number of directions on level i should depend on
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its radius, sin ϑi . Like in level symmetric sets, we put 1 × 4 directions on level ϑ1, 2 × 4 di-
rections on level ϑ2, etc. We choose the values for ϑi such that the number of directions on a
level match the number of levels:

ϑi = arcsin
i

NL
, i = 1, 2, . . . , NL ,

ϕi j = π
2

2 j+1
2i , j = 1, 2, . . . , i.

The weights wi j belonging to the direction determined by (ϑi , ϕi j ) can be calculated from

wi j = wϑ
i w

ϕ
i j .

Here, w
ϕ
i j is the weight found for the trapezoidal rule with 4i directions on a level,

w
ϕ
i, j = π

2i
,

The weight wϑ
i is given by

wϑ
i =

∫ arcsin bi

arcsin ai

sin ϑdϑ = cos arcsin ai − cos arcsin bi =
√

1 − a2
i −

√
1 − b2

i ,

where

ai = 2i − 1

2NL
, i = 2, 3, . . . , NL , a1 = 0

bi = 2i + 1

2NL
, i = 1, 2, . . . , NL − 1, bNL = 1.

3.2 Homogeneous sets

Based on intuition, we would like to have direction sets where all directions have equal weights.
Furthermore, if we associate every direction with a point on the unit sphere, we would like
the distances between any direction ‘point’ and its neighbours all to be equal, such that the
distribution of directions is completely symmetric. Unfortunately, this is only possible for the
five possible regular solids, namely the tetrahedron, cube, octahedron, dodecahedron and
icosahedron, with 4, 8, 6, 20 and 12 points (or directions) respectively. All of these regular
solids have too few points to be of real interest.

So it is not possible to find direction sets with an arbitrary number of directions with equal
distances between neighbours, but we can try to get as close to this ideal distribution as pos-
sible. Therefore we started experimenting with direction sets which can best be associated
with electrons divided on the unit sphere. Due to the magnetic forces, these electrons would
take positions such that their potential energy is minimized. The difference between this di-
rection set and our ‘ideal’ direction set is that the average distance between one point and all
the others is equal for every point, instead of the distances between one point and its direct
neighbours.
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Figure 3.1: Error of the incident radiation as calculated by the discrete ordinates method using
the SN -, the level trapezium and the homogeneous direction sets.

3.3 Comparison

Consider the two-dimensional model problem of an absorbing-emitting medium inside a unit
square surrounded by cold black walls (B(x) = 1). Using the discrete ordinates method with
the SN -, level trapezoidal and homogeneous direction sets the incident radiation — the inten-
sity in a certain point integrated over all directions — inside the square has been calculated.
In Figure 3.1, we see a plot of the difference between the discrete ordinates solution and the
exact solution.

First of all we note that the level trapezium and homogeneous direction sets compare well
with the SN direction sets. It appears that the level trapezium method is more accurate than
the SN method on the interior domain, whereas at the boundaries the SN method yields better
results. An exception is the S8 direction set that gives results inferior not only to the level
trapezium method with 80 directions but also to the S6 method. So the convergence of the
SN method for an increasing number of directions is not so reliable as the level trapezium
method which seems to converge nicely.

Compared to the level trapezium method the homogeneous sets result in good approxi-
mations on the interior as well as on the boundary. The SN sets are still superior on the bound-
ary of the domain, but overall the homogeneous sets are more accurate than the SN sets. An-
other advantage of the homogeneous sets is that they are reliable. We see no excessive values
in any of the points and the method converges nicely for an increasing number of directions.

The largest errors of all methods occur at the boundary of the domain. This can be ex-
plained by the fact that near the boundary of the domain the derivatives of I (x, ϑ, ϕ) to ϕ and
ϑ are largest, causing the quadrature scheme to be less accurate. Especially near the corner
points this effect occurs more dramatically, as can be seen in the plots of Figure 3.1.
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Chapter 4

Methods for one dimension

The classical method to treat radiative heat problems — the so-called Rosseland or diffusion
approximation — bypasses the complexity of the intensity calculations by solving the radia-
tive transfer equations formally, and apply the formal solution to obtain an expression for
the radiative heat transfer in terms of the black body intensity. Then, the assumption of op-
tical thickness of the problem is made, which simplifies the expressions significantly. It can
be shown that in the one-dimensional case, the assumption of optical thickness is equivalent
to following a discrete ordinate method using only two directions. For a detailed discussion
of this approximation we may refer to [6] and [7]. Here we only state the result for a gray
medium without scattering, as we use this expression later in this paper:

qr = −4π

3κ
∇B(x). [4.1]

This equation also carries the name diffusion approximation. Indeed, after applying the defini-
tion for B (2.3), (4.1) can be put into the following form:

qr = −kr∇T,

which is similar to the expression for the conductive heat flow, also called the diffusive term
in heat calculations. Because the radiative ‘conductivity’ kr is proportional to T 3 the radiative
diffusion term is highly non-linear, compared to the conductivity term. The expression can
be applied in a straightforward manner, however. The major drawback of this method is the
inaccuracy where the assumption of optical thickness is violated: close to the boundaries and
for steep temperature gradients. This makes the method unfit to study the behaviour of the
heat transfer at the walls of a glass furnace, or the re-heating process in the production of
bottles.

In this section, we use a method to eliminate the intensity from the equations without
making the severe constraint of optical thickness. We start by studying the (simple) one-
dimensional equations and extend the results to higher dimensions.

4.1 Exact solution in one dimension

If scattering is neglected, the radiative transfer equation (2.7) can be simplified for the quasi-
one-dimensional case into the following equations. Here, we mean with quasi-one-dimensional
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that we do not restrict the directions to one dimension. Doing so would result in Rosseland-
like solutions.

μ̃
∂ I +

∂τ
(τ, μ̃) + I +(τ, μ̃) = B(τ), [4.2]

−μ̃
∂ I −

∂τ
(τ, μ̃) + I −(τ, μ̃) = B(τ), [4.3]

where I + and I − are the intensities with directions that have components in positive and
negative x-direction respectively. Furthermore, τ = ∫

x κ(x)dx is the dimensionless optical
co-ordinate, and μ̃ = |cos ϑ|, where ϑ is the angle of the direction vector with the x-axis. We
wrote the intensity in two different components I + and I − with a μ̃ ∈ (0, 1], because it sim-
plifies relations that follow.

If we look at the problem on the open interval x ∈ (xo, x1), with the corresponding dimen-
sionless optical co-ordinate τ ∈ (0, τ1), the formal solution for the above equations is:

I +(τ, μ̃) = coe−τ/μ̃ + 1

μ̃

∫ τ

0
e(s−τ )/μ̃ B(s) ds; [4.4]

I −(τ, μ̃) = c1e−τ/μ̃ + 1

μ̃

∫ τ1

τ

e(τ−s)/μ̃ B(s) ds. [4.5]

In the case of black boundaries, the two constants become co = B0 = B(0) and c1 = B1 =
B(τ1). This solution is only formal, since it is exactly the black body radiation B(τ), which—
directly linked to the temperature—we are trying to find. This formal solution allows us,
however, to find an expression for the radiative heat flux defined as:

qr (τ) =
∫ π

−π

dφ

∫ 1

0

(
I + − I −)

dμ̃ μ̃ = 2π

∫ 1

0
μ̃

(
I + − I −)

dμ̃. [4.6]

Upon substituting (4.4) and (4.5) into (4.6) and assuming black boundaries, this can be elab-
orated to give:

qr (τ) =2π B0E3(τ) + 2π

∫ τ

0
E2(τ − s)B(s)ds −

2π B1E3(τ) − 2π

∫ τ1

τ

E2(s − τ)B(s)ds

with En being the exponential integral of the nth order, which are special functions that are
explained in detail in Appendix A of [7]. We can use this equation as the radiative term in
heat transfer equations. The simplest of these we arguably find by neglecting the other modes
of heat transfer. In the one-dimensional case, this equation simply becomes:

dqr

dτ
(τ) = 0.

In this case, consequently, the black body radiation has to satisfy

B(τ) = 1

2

∫ τ1

0
E1(|s − τ |)B(s)ds + B0

2
E2(τ) + B1

2
E2(τ1 − τ). [4.7]
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4.1.1 Method of Solution

To solve the integral equation (4.7) we rephrase the problem in an abstract form:

x(t) =
∫ a

0
K (|s − t |)x(s)ds + g(t),

where x(t) is the function to be found, K (|s−t |) is the so-called kernel of the integral equation,
and g(t) is the source function. This notation is chosen so both the pure one-dimensional
(where K (|s − t |) = exp(−|s − t |)) as the quasi-one-dimensional case (where K (|s − t |) =
E1(|s − t |)) can be treated by the same algorithm.

Using a projection method, we estimate the solution x(t) by

x(t) =
∑

i

x(ti )φi (t).

This assumption transforms the integral equation (4.1.1) into

∑
i

x(ti )φi(t) =
∑

j

x(t j )

∫ a

0
K (|s − t |)φ j (s)ds + g(t).

Now, we use simplex functions for the base functions of the approximation:

φi =

⎧⎪⎨
⎪⎩

t−ti−1
ti −ti−1

, ti−1 < t ≤ ti
t−ti+1
ti −ti+1

, ti < t < ti+1

0, elsewhere
,

which have the nice property that

φi (t j ) = δi j ,

If we evolve the integral at points t j , the integral equation becomes

x(ti ) =
∑

j

x(t j )

∫ t j+1

t j−1

K (|s − ti |)φ j (s)ds + g(ti ).

We now introduce ψi j defined as:

ψi j =
∫ t j+1

t j−1

K (|s − ti |)φ j (s)ds.

So, we can write the equation as:

xi =
∑

ψi j x j + gi , or x = �x + g.

Hence, the approximate solution can be found by solving

(I − �)x = g. [4.8]

The computational problem here now lies primarily in the N2 integral evaluations needed
to compute �. It can be shown, however, that when an equidistant grid is chosen, only N
evaluations are needed and when stored in a certain vector f, � satisfies

ψi j = f1+|i− j |. [4.9]
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Figure 4.1: Temperature distribution in a thick glass rod (left) with detail close to the bound-
ary (right)

4.1.2 Solution of the problem

Here, we present the results obtained by the above method. The �-matrix has been con-
structed using a C++ implementation, whereas the linear problem (4.8) has been solved straight-
forwardly. Figure 4.1 shows the temperature distribution in a 1 m long glass rod. The material
properties used for this are those of green bottle glass. Scattering has been neglected. From
this figure we see that the quasi-one-dimensional case follows that of the purely one dimen-
sional case (i.e. a Rosseland approximation) closely, except for the edges where the tempera-
ture jump is reduced.

If we consider thin geometries, the difference between the quasi and purely one-dimensional
cases becomes more apparent as the effects near the edges spread over the whole domain of
the problem (see Figure 4.2). The numerically computed results for the purely one-dimensional
case now precisely match the analytically found solution, not having the offset as in the thick
geometry. This numerical accuracy is due to a better conditioned matrix. The condition num-
ber of the matrix is approximately equal to 1 in the optically thin case, whereas we have a
condition number of 150 in the optically thick case.
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Chapter 5

Methods for calculating the intensity
equations in higher dimensions

Numerical solutions are usually sought in solving the radiative transfer equation (2.7) first.
These methods use this as a step before the calculation of the radiative heat flux as given
by (2.9). In this section we present two of those methods. The first uses the Finite Element
Method (FEM), a method which is also used frequently for the two other modes of heat trans-
fer: conduction and convection. Thus, for the whole heat transfer computation, the same
method can be used. The second method is ray tracing. Here we actively follow the rays.
It presents a versatile method that is better fit for specular reflecting boundaries and can deal
with phenomena like refraction at transitions between media. It is in these situations that the
FEM cannot be used any longer.

5.1 Finite element solution

In many practical problems, radiation appears together with conduction and/or convection.
For these modes of heat transfer usually a finite element approach is used to compute the
solution. Therefore, it seems attractive to derive a finite element method for the radiative
transfer to combine the total energy transport into one general solution method.

A straightforward FEM formulation of (2.7), leads to problems as it is not unconditionally
stable. Results will therefore not be reliable in cases of steep temperature gradients or irregu-
lar boundaries. One way to overcome this was presented by Fiveland [2]. This method uses
the even-parity equations. Rather than calculating the intensity itself, we split it in the direc-
tionally even and uneven ϕ and ψ , which are defined by

ϕ(x, s) = 1

2
[I (x, s) + I (x,−s)] ,

ψ(x, s) = 1

2
[I (x, s) − I (x,−s)] .

Using (2.7) for uniform scattering — i.e. the Hopf phase function is taken �(x, s′, s) = 1 —
with constant absorption and scattering coefficients, we can deduce the following relations
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for these functions:

ϕτ (x, s) + ψ(x, s) = (1 − ω)B(x) + ω

4π

∫
4π

ψ(x, s′, s)I (x, s′)d�′, [5.1]

ψτ (x, s) + ϕ(x, s) = 0, [5.2]

with corresponding boundary conditions

ψ(xw, s) + ϕ(xw, s) = εB(xw) + (1 − ε)
q(xw)

π
, s · n > 0, [5.3]

ψ(xw, s) − ϕ(xw, s) = εB(xw) + (1 − ε)
q(xw)

π
, s · n < 0. [5.4]

Here, (•)τ stands for differentiation with respect to τ , defined as the dimensionless optical
length defined by dτ = βdζ , and where ζ is the physical length along a ray. Finally, q(xw) is
the energy incident on the wall from (2.8): q(xw) = ∫

∩ I (xw, s′)
∣∣n · s′∣∣ d�′.

From these equations ϕ can be eliminated and we find the following expression governing
ψ :

−ψττ (x, s) + ψ(x, s) = S(x, s), [5.5]

where S(x, s) is the source term which is equal to the right hand side in (5.1). We note that the
equation for ψ is elliptic rather than hyperbolic as was (2.7). If scattering is present — i.e. ω >

0 — the source term is dependent on the solution. A way to by-pass this is the use of global
iterations, so the second term in the source function can stay on the right hand side. Now let
� be the domain of interest, � its boundary, and w ∈W an arbitrary element in the space of
all test functions on �. Then the weak formulation of (5.5) with boundary conditions (5.3)
and (5.4) is given by:

∫
�

wψ
∣∣n · s′∣∣ d� +

∫
�

wsψs + wψ d� =
∫

�

wS(x, s)d� −
∫

�

w

(
εB(x) + 1 − ε

π
q(x)

) ∣∣n · s′∣∣ d�

This equation can now be solved for discrete directions using the discrete ordinate method.
Figure 5.1 shows the errors made by the DOM and the FEM for the case of constant B. Fur-
thermore, the medium is assumed to be gray and κ to be constant. From this figure we see
that enlarging the number of elements has almost no influence on the solution. Improvement
should be made in the direction set before using more elements.

5.2 Classical ray trace method

Ray tracing is as the words indicate: it traces rays, using the radiative transfer equation (2.7)
to calculate the change in intensity along the ray. Here we examine ray tracing in a two-
dimensional space: both the geometry and the set of directions are chosen to be in R

2 . In
the two dimensional space consider the domain �. The boundary � is diffusely reflecting.
On the geometry (�,�), we define a mesh consisting of (two-dimensional) surface and (one-
dimensional) boundary elements. Our goal is to compute the total incident radiative energy
for every element in the mesh.
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Figure 5.1: Total error of the DOM solved exactly and using a FEM with 20 × 20 and 40 × 40
elements respectively.

Before the calculation starts, every element e has a certain amount of emissive energy Ee

depending on its temperature Te and on its size. For simplicity, we assume here that the
medium and boundary are gray and diffuse, but the extension to general media is almost
trivial. The total amount of emissive energy in an element can be written as:

Ee = σ AeT 4
e , (surface element),

Ew = σ LwT 4
w, (boundary element),

where Ae is the area of surface element e and Lw denotes the length of the boundary line el-
ement w. In every element the emissive radiation is initiated using the given directional dis-
cretization (si , wi ). The initial intensity of a ray with direction si in a surface element is

I = 1

π
Ee = σ Ae

π
T 4

e ,

and the initial intensity of a ray which starts at the boundary is

I = 1

π
Ew(si · n).

Here, Ew is the sum of emissive and reflective energy stored in the boundary element and si

is such that si ·n > 0. We note that in the case of a scattering medium and a diffusely reflecting
boundary every ray initiates many new rays, which in turn initiates even more. During the
computation the number of rays would therefore become unbounded. To solve this problem,
we do not initiate those new rays directly, but act as if the medium were non-scattering and
the boundary were black. The difference is that in every element the total amount of scattering
energy is raised each time a ray crosses that element. In the same fashion, we also introduce
the total reflective energy for every boundary element. When all emitted rays have been ab-
sorbed, these scattered and reflected energies are used to initiate new rays. The solution is
therefore found iteratively.

Every time a ray crosses a certain element, some energy of the ray is absorbed and the total
incident energy of the element is raised. Since the incident energy is defined as an integral
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Figure 5.2: Error of the ray tracing method using the homogeneous direction set with 12 (2D)
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over the direction, we make use of the given direction discretisation using Ndir directions, i.e.

Ge = (1 − ω)

∫
4π

I (s)d� = (1 − ω)

Ndir∑
i=1

wi I (si ).

Also the total amount of scattering energy Es
e and reflection energy Er

e can be written as an
integral over

Es
e = ω

∫
4π

I (s)d� = ω

Ndir∑
i=1

wi I (si ),

Er
e = ρ

π

∫
s·n>0

I (s) |s · n| d� = ρ

π

Ndir∑
i=1

wi I (si ) |si · n| .

So, suppose a ray with intensity I and direction si enters surface element e. This ray trav-
els through the element for a (optical) distance �. Then due to absorption and scattering the
change in intensity I , incident energy Ge and scattering energy Es

e is

Ge = Ge + wi (1 − ω)I e−�

Es
e = Es

e + wiωI e−�

I = I e−�

The case of a ray which hits a boundary element w leads to the following operations:

Er
e = Er

e + ρ

π
wi I |si · n|

I = 0

5.2.1 Results

In Figure 5.2 we see the results as calculated by the ray tracing method using a homogeneous
direction set with 12 directions. It turns out that the errors as given by the ray tracing method
are of the same order of magnitude as the errors of the exact solution of the discrete ordinates
method. This is not at all surprising, since the directions are used to approximate the same
integrals as in the discrete ordinates method.

When we compare the errors of the solution on the 20×20 mesh with the one on the 40×40
mesh, we see that the errors do not change significantly. In fact, the difference between the
two solutions is smaller than 0.04 everywhere on the domain, which is only one tenth of the
total error.
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5.3 Comparison and Conclusion

Comparing Figures 5.1 and 5.2, we see that for both methods the order of magnitude of the er-
ror is the same. Furthermore, if we denote the number of elements by Nel and—like before—
the number of directions by Ndir, one can show that the computational cost of the ray trace
method is

Ray tracing : O(NdirN
3/2
el ),

whereas the FEM would take a time-complexity of

FEM : O
(
Ndir(3Nel)

p) ,
5

4
≤ p ≤ 3

2
.

Here p is dependent on the type of solver and preconditioner used.
So we see, that also with respect to time-complexity, the two methods are quite equivalent,

but both have their own field of application: The FEM in combination with slug flows where
a FEM is usually already used to solve such a flow problem; the ray trace method on the other
hand for complex domains or non-smooth boundary conditions.

Furthermore, it is clear that a good direction set with appropriate weights is essential for
the DOM to work. For that purpose, we have presented in Section 3 a method to find a good
quadrature for arbitrary many directions.
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Chapter 6

Methods for calculating heat transfer
directly in more dimensions

Looking at the previous methods, it seems a waste to compute the intensity, largely being
an entity we are not interested in. Only in some cases we care about knowing the intensity.
An example might be remote sensing to determine the temperature profile by examining the
radiation coming out of an object. But even then, we only want to know the intensity in some
parts of the geometry and in only a few directions. So, is there a way to by-pass the intensity
equations?

In Section 4.1 we derived such a method using the formal solution of the Radiative Trans-
fer Equation. The Rosseland approximation is derived is a similar way. Here we decide to
express the formal solution in more dimensions by using an algebraic form of the Ray Trace
Method. This allows all flexibility—handling of reflections and refractions being the most
important features—of this method to be present in our method. For an adapted Rosseland
approximation that takes care of the geometry see [4].

6.1 Algebraic form of the ray trace method

Suppose, we want to know the temperature in a certain domain at M positions in the set of
pointsM = {x j , j = 1, 2, . . . , M}. Rather than at an infinite number of directions, we only
look at N discrete directions from the setS = {si |si ∈ R

3 ∧ ‖si‖ = 1, i = 1, 2, . . . , N}.
If we want to know the intensity at the j -th point (i.e. the point with co-ordinates x j ) in the

i-th direction (direction is si ), we trace the ray from that point back to the boundary. On the
line we construct, say Pi j points and interpolate at those points the value of the black body
intensity using only the points inM. If we place the black body intensity at the M points in
a vector b defined as:

b = (B(x1), B(x2), . . . , B(xM))T , [6.1]

we can write black body intensity on the Pi j points on the ray as a vector pi j described by:

pi j = Ti jb, [6.2]

in which Ti j is an M × Pi j matrix describing the interpolation coefficients at position j in
direction i . For simple interpolations, involving only a small subset (typically with two or
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three elements), Ti j is sparse. Furthermore, Ti j is determined geometrically and needs to be
determined only once.

For simplicity, we now assume that scattering is absent within the medium, so the inho-
mogeneous part of the radiative transfer equations is formed by the black body intensity only.
Then the ODE can be solved to yield:

I (s, si ) =
∫ τ

0
et−τ B(t)dt + ri j , [6.3]

with τ(s) = ∫ s
0 κ(ζ )dζ and s is the distance along the ray from the boundary. Further, ri j

is given by the boundary condition. With a prescribed temperature on the boundary, ri j is
simply the black boundary intensity at the boundary. In case of reflections ri j is more com-
plicated. This case is not yet considered.

If κ can be taken constant, s and τ are simply related, and (6.3) can be approximated by a
numerical quadrature at point i :

I (x j , si ) =
Pij∑
k=1

w
i j
k pi j

k = wi j · pi j + ri j = ηi j , [6.4]

where we used the notation ηi j for the approximation of the intensity at position j in direction
i . We can rewrite this with (6.2) as:

ηi j = wi j · Ti jb + ri j = (Ti j )
T
wi j · b + ri j =:

M∑
k=1

ai jkbk + ri j . [6.5]

We see that both the interpolation and the integration have been taken into the tensor A =
(ai jk). So, for constant κ , we do not need to store the matrices Ti j or the vectors pi j . If κ is not
constant, however, we can write it as a function of the temperature, or κ = κ(B). In (6.4) we
should then replace wi j with wi j (b). In that case, it is wise to keep at least Ti j for every (i, j) in
the memory to facilitate the computation of the tensor A according to (6.5). We shall denote
the tensor holding the intensity values H, so H = (ηi j ), and the tensor holding the boundary
conditions R = (ri j ). We then can rewrite (6.5) as:

H = A · b + R, or ηi j = ai jkbk + ri j , [6.6]

using tensor notation and Einstein’s summation convention. This equation now allows us to
express the intensity at the points inM in terms of the black body intensity, and to eliminate it
from the heat equations. Equation (6.6) should be regarded as the more-dimensional variant
of the formal solution we used in order to solve the one-dimensional equation.

Now, if we want to express, for example, the incident radiative energy G(x), defined by:

G(x) =
∫

4π

I (x, s)d�,

where 4π now indicates that we integrate over the whole unit sphere in R3 and a unit circle in
R

2 . As in the discussion of the calculation of radiative intensity, we can replace this integral
by a quadrature fit for our direction setS, or

G(x) =
N∑

i=1

wi I (x, si ).
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Evaluated at the points inM, this can be written as

g = (G(x1), G(x2), . . . , G(xM ))T = HT w, or gj = ηi jwi ,

in tensor notation, which together with (6.6) leads to

g j = ai jkbkwi + ri jwi .

If we now define the matrix A = (αi j) by α jk = wi ai jk and the vector f = ( f j ) by f j = ri jwi ,
this is rewritten in the more readable form:

g = Ab + f, or gj = α jkbk + f j . [6.7]

If radiation is the only mechanism for heat transfer, the equation describing steady thermal
equilibrium is

∇ · qr(x) = 4π B(x) − G(x) = 0.

Using (6.1) and (6.7), we can write this as the linear system:

4π b = g,⇔ 4π b = Ab + f,⇔ (4πI − A)b = f,

which we use to solve the heat problem.

6.2 Results

We have implemented the described method for simple two dimensional rectangular geome-
tries with black boundaries. Figure 6.1 shows a solution of a pure radiative problem. As we
noted before, the number of directions has a larger effect on the error than the number of el-
ements. This is not surprising as the rays initiated by the DOM will always have a large dis-
tance between them when far away from the originating point. We also noted a maximum
useful number of directions for a given number of elements. Once a good coverage with rays
has been reached, additional rays tend to slow the computation process down, rather than
deliver more accuracy.
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Figure 6.1: Temperature distribution obtained with the algebraic Ray Trace method for a sim-
ple pure radiation problem.
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Chapter 7

Conclusion

Here, we have derived a versatile method for treating radiative heat transfer in semi-transparent
materials. Inspired by studies of one-dimensional solution methods, the algebraic form of the
Ray Trace Method overcomes the drawbacks of some of the already existing methods: the
geometry-unawareness of the Rosseland approximation, the inflexibility for use in forming
processes of Fiveland’s FEM formulation, and the computational inefficiency of the ray trace
method, where we do the costly tracing all over at every time or iteration step.

Because all these methods use the directionally discretised form of the Radiative Transfer
Equation, we included a method for finding an optimal set of an arbitrary number of direc-
tions with appropriate quadratures. With that approach we can refine the Discrete Ordinate
Method arbitrarily.
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[7] M. Özişik. Radiative Transfer and Interactions with Conduction and Convection. John Wiley
and Sons, Inc., Toronto, 1973.

26


