

The design of the MathSpad editor

Citation for published version (APA):
Verhoeven, P. H. F. M. (2000). The design of the MathSpad editor. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR534418

DOI:
10.6100/IR534418

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR534418
https://doi.org/10.6100/IR534418
https://research.tue.nl/en/publications/23a09e59-2064-4134-a522-9319c7906e9a

The Design

of the

Matsad Editor

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Verhoeven, Richard

The Design of the Matsad Editor / by Richard Verhoeven – Eindhoven :

Eindhoven University of Technology, 2000

Proefontwerp. – ISBN 90–386-0781-4

NUGI 852

Subject headings: text processing ; mathematics /
mathematics ; notation /
software systems

CR Subject Classification (1998): I.7.2, I.7.1, G.4, H.5.2, D.2.11, D.2.13, K.8.1

Print: UniversiteitsDrukkerij, Eindhoven

c©2000 by R. Verhoeven, Schijndel, The Netherlands

Cover images: c©1977 by Frank Drake (available on Voyager Golden Record).

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without prior permission of the author.

Trademarks: Frame, Photoshop and PostScript are registered to Adobe Systems Incorporated; ANSI is registered to
American National Standards Institute; OpenDoc is registered to Apple Computer, Inc.; ArborText is registered to Arbor-
Text, Inc.; BeOS is registered to Be Incorporated; GIF is a registered service mark of CompuServe Incorporated; Corel
is registered to Corel Corporation; Adept is registered to C-TEXT, Inc.; POSIX is a certification mark registered to the
Institute of Electrical and Electronics Engineers, Inc.; IBM and PowerPC are registered to International Business Machines
Corporation; MatLab is registered to The MathWorks, Inc.; Microsoft, Microsoft Windows en Powerpoint are registered to
Microsoft Corporation; Netscape is registered to Netscape Communications Corporation; CORBA is registered to Object
Management Group, Inc.; RealAudio is registered to Progressive Networks, Inc.; IRIX is registered to Silicon Graphics,
Inc.; Java, Solaris and ToolTalk are registered to Sun Microsystems, Inc.; Scientific Word is registered to TCI Software
Research, Inc.; Linux is registered to Linus Torvalds; Unicode is registered to Unicode, Inc.; UNIX is registered to UNIX
System Laboratories, Inc.; FreeBSD is registered to Walnut Creek CDROM, Inc.; Mathematica and MathLink are registered
to Wolfram Research, Inc.; WordPerfect is registered to WordPerfect Corporation.

This research was financially supported by the Eindhoven University of Technology
and the Netherlands Organisation for Scientific Research (NWO). The work in this
thesis has been carried out under the auspices of the research school IPA (Institute
for Programming research and Algorithmics).

The Design

of the

Matsad Editor

Proefontwerp

ter verkrijging van de graad van doctor aan
de Technische Universiteit Eindhoven, op gezag
van de Rector Magnificus, prof.dr. M. Rem,
voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen

op woensdag 21 juni 2000 om 16.00 uur

door

Richard Verhoeven

geboren te Veghel

Dit proefontwerp is goedgekeurd door de promotoren:

prof.dr. R.C. Backhouse

en

prof.dr. P.M.E. de Bra

Acknowledgements
There are many people who were supportive while the research described in this thesis
took place. They all provided useful information on how to improve the system or
were helpful in some sense.

• My supervisor Roland Backhouse, for providing me with this challenging mas-
ters project, which became the long lasting research project. I want to thank
him for his patience, his suggestions and the effort he put in finding research
funds. Furthermore, I want to thank his family for testing the system and for
the Friday evening meals.

• The former Ph.D. students Henk Doornbos, Paul Hoogendijk, Laurens de Vries
and Ed Voermans, for sharing the room and having fruitful discussions about
the different research topics. Furthermore, I want to thank them for testing
the system and making suggestions.

• My fellow student Olaf Weber, for writing part of the system during our com-
bined masters project.

• The members and former members of the research group in Eindhoven: Eerke
Boiten, Lex Bijlsma, Joop van den Eijnde, Wim Feijen, Netty van Gasteren,
Rik van Geldrop, Kees Hemerik, Jaap van der Woude en Gerard Zwaan.

• The other members of the Ph.D. committee: Professors Paul de Bra, Andries
Brouwer en Lambert Meertens, for reviewing this thesis and giving detailed
and useful comments.

• Several members of the Computing Science department in Utrecht, especially
Lambert Meertens, for pointing out several interesting features which should
be incorporated into the system.

• The School of Computer Science & IT at the University of Nottingham for
funding the final 4 1

2 months of this project.

• The members of the Languages and Programming group in Nottingham: Paul
Blampied, Graham Hutton, Claus Reinke and Natasha Alechina, for the dis-
cussions on several research topics.

• My family, for their support and for the regularly scheduled weekend jobs.

And everyone I forgot to mention.

i

ii

To my parents.

Contents

Acknowledgements i

1 Introduction 9

1.1 The situation . 10
1.2 An example task . 10
1.3 The goal . 11
1.4 Additional goals . 13
1.5 The outline of this thesis . 13

2 Document preparation 15

2.1 Editing models . 15
2.1.1 WYSIWYG vs. markup languages 15
2.1.2 Structured vs. unstructured. 21
2.1.3 Modal vs. modeless . 22

2.2 Mathematical documents . 24
2.2.1 WYSIWYG systems . 24
2.2.2 Markup languages . 27

2.3 Mathematical systems and theorem provers 29
2.4 Software documentation . 31
2.5 Conclusion . 32

3 The functional design 33

3.1 Program versus user in control . 33
3.2 Text editing versus structured editing 34

3.2.1 Text editing . 34
3.2.2 Structured editing . 35

3.3 Fixed grammar versus flexible grammar 36
3.3.1 Fixed grammar . 36

iii

iv CONTENTS

3.3.2 Flexible grammar . 37
3.4 Clipboard versus multiple selections 37

3.4.1 The clipboard . 38
3.4.2 Multiple selections . 38

3.5 WYSIWYG versus markup codes . 39
3.5.1 WYSIWYG . 39
3.5.2 Markup codes . 41

3.6 Keyboard handling . 42

4 The technical design 43
4.1 Text structures . 43
4.2 Character encoding . 45
4.3 Mathematical expressions . 45
4.4 Combining text and expressions . 48
4.5 Displaying a document . 50
4.6 Templates . 54

4.6.1 Versions . 55
4.6.2 Stencils . 56
4.6.3 Manipulating templates . 56

4.7 Generating markup output . 59
4.8 The window environment . 61

4.8.1 The window elements . 65
4.9 Box structures . 66
4.10 Control characters . 70

4.10.1 Some examples . 72
4.11 Keyboard handling . 78
4.12 Unicode support . 80

5 Integrating tools 83
5.1 Communication between tools . 83

5.1.1 Pipes . 83
5.1.2 Helper applications . 85
5.1.3 Client – server . 86
5.1.4 Dedicated link . 87
5.1.5 Plug-In libraries . 88
5.1.6 Software bus . 89
5.1.7 Object sharing . 90

5.2 Integrating existing tools . 91

CONTENTS v

5.2.1 The interpreted language . 92
5.2.2 Plug-Ins . 97
5.2.3 Menus . 105
5.2.4 Keyboards . 106
5.2.5 Translations . 107
5.2.6 Scripting . 107
5.2.7 Missing features . 107

5.3 An example connection: PVS . 108
5.3.1 The PVS system . 108
5.3.2 The PVS interface plug-in . 110
5.3.3 The definition file . 113

6 Discussion and conclusions 115
6.1 The current system . 115

6.1.1 The learning curve . 116
6.1.2 The interface . 116
6.1.3 Converting legacy documents 117
6.1.4 Multiple output formats . 118
6.1.5 Additional layout constructions 119
6.1.6 LATEX and Unicode . 120

6.2 Application areas . 120
6.2.1 Markup for dummies . 120
6.2.2 Teaching and presentations . 120
6.2.3 Interface for mathematical engines 121
6.2.4 Literate programming . 122

6.3 Rebuilding the system . 122
6.3.1 New technology . 125

Bibliography 127

Index 133

Samenvatting 137

Curriculum Vitae 139

vi CONTENTS

List of Figures

2.1 The interface of a WYSIWYG document preparation system. 17
2.2 Markup languages for common textual elements 19
2.3 Several systems for editing mathematics 26
2.4 Markup languages for common mathematical elements 28

4.1 The buffer-gap and list-of-lines methods. 44
4.2 The binary tree representing A ∗ (B + C). 46
4.3 An n-ary tree. 47
4.4 A rose tree. 47
4.5 A rose tree, enabling larger expressions. 48
4.6 A rose tree with formatting labels at each node. 49
4.7 The final tree structure. 51
4.8 A traversal through a rose tree . 53
4.9 Different window interfaces . 62
4.10 The box structure. 67

5.1 A pipe of five tools. 84
5.2 A file manager with helper applications 85
5.3 The client–server model of the X window system. 87
5.4 The dedicated link between Emacs and PVS 88
5.5 Netscape with plug-ins . 89
5.6 The software bus in CAS/PI. 90
5.7 Object sharing in word. 91
5.8 The graph of expressions for the GCD function. 98
5.9 The PVS structure . 109
5.10 The presentation style for proofs . 110
5.11 The interface definition file . 114

vii

viii LIST OF FIGURES

Chapter 1

Introduction

Technical documents, and mathematical documents in particular, are difficult to
prepare[12]. The need, however, for systems that assist authors in preparing technical
documents is very great; such documents are prepared all the time by all sorts of
scientists and technicians and the documents often have several revisions before they
are finally ready for publication.

In the past, the preparation of a technical document underwent several stages. First,
the author prepared a manuscript which was then typed to produce a typescript
(sometimes by a professional typist but sometimes by the author). This process was
then often repeated many times before a satisfactory final version was ready. At this
stage the document was sent to a professional copy-editor who marked it up ready for
handing to a printer whose task was to produce the final printed copy. Several rounds
were then necessary for the author to check that no errors had been introduced by
the printer and that the layout was to the author’s satisfaction.

At the present time the majority of technical documents are prepared using a com-
puterised system, often TEX or LATEX. This has the advantage that the process of
revising a document is much easier and quicker, and the author has better control
over the production process, in particular avoiding the introduction of technical er-
rors. It has the disadvantage that the author is burdened with many details of layout
and appearance that previously were the responsibility of a professional copy-editor.
The effect is that, even to this day, few authors compose mathematical material at
a computer; they still use paper and pencil to develop their ideas and the computer
systems are only used when these have been worked out in some depth. Comput-
erised document preparation systems are thus best-suited for producing high-quality
finished products and are of limited assistance during the development of the math-
ematics itself.

The Matsad system was conceived with the idea of doing away with the use of paper
and pencil during the preparation of mathematical documents. The system would
be used for composing mathematics at a computer screen. It would thus support
the preparation of mathematical documents from beginning to end, focusing on the

9

10 CHAPTER 1. INTRODUCTION

creative activity of doing and writing about mathematics but also assisting with the
preparation of the final publication.

This explains the name of the system: an integration (∫) between doing mathematics
(“math”) and writing about it (“pad”).

1.1 The situation

The original target users for the Matsad system were the members of the Mathemat-
ics of Programming Construction group at the Eindhoven University of Technology.
This group produced a lot of calculations and publications in non-standard mathe-
matics. At the time, symbolic algebra systems used ASCII characters for input and
output of mathematical expressions, which wasn’t suitable for the group, as their no-
tational conventions used many symbols not available among the ASCII characters
and the mathematical theory was not supported by those systems. There were also
some WYSIWYG document preparation systems available, but they didn’t support
the non-standard mathematical content properly and were not suited for doing math-
ematics. For technical support, a proof editor was used which had been designed by
Paul Chisholm[13] to construct proofs and expressions and import them into a LATEX
document. Although that editor worked as expected, there were several problems
with the system. It was built using a graphical toolkit which was not portable and
not supported anymore, and the interface was based on a desktop with many small
notes lying around, which quickly becomes difficult to use.

1.2 An example task

A typical task for the initial group of users is writing a technical report or a paper for a
journal. Such a report usually contains some prose to explain which theorem is proved
in that report and when the theorem is applicable. After the initial explanation, a
technical discussion follows which leads to a proof of the suggested theorem. Before
the proof can be constructed, a collection of lemmas, corollaries, definitions and other
theorems are needed, all of which contain mathematical expressions and references
to earlier parts of the document.

In the beginning, the author writes a report with some mathematical content. Since
there is no special application that can check whether the mathematical content is
valid, the author is responsible for the correctness. For the author, it is easier to see
if something is correct, if it is displayed as well as possible. The layout on screen
might not be perfect, but it should be very readable and clear what the author has
written. If corrections are needed, the author should be able to apply them instantly,
without switching between different applications or edit modes. Since mathematical
calculation implies that the same expressions occur very often1, usually with small

1A challenge from K-Talk to promote MathEdit contained a half page formula, which, after a
closer look, consisted of 5 small formulæ, repeatedly used with small adjustments.

1.3. THE GOAL 11

changes, the author should be able to select, copy and adjust expressions as easily as
possible.

Once the report is written, it is distributed among the members of the group for
feedback, after which the report will be revised. At this point, it is important that
the user can see where he is editing his document. Since the document contains a
lot of expressions which often occur at different locations with small modifications, a
clear view of the document is necessary. Often the changes are small and local, but
sometimes they are large or global, like replacing a proof or changing the notational
convention.

The group’s work involves experimenting with different, not necessary mature, for-
malisms. For this reason, notational conventions might change by adding new no-
tations or replacing existing notations and built-in mathematical knowledge is less
important than ease of use. Certain expressions might not make sense mathemati-
cally, but if it makes editing easier, it should be possible to use such expressions as
temporary results.

1.3 The goal

The initial goal was to develop a system for doing mathematical calculations on
screen. The following priorities were identified, each demonstrated with a small
example.

• Readability. The mathematical expressions have to be readable on screen
and easy to manipulate.

η.f ∈ F.x←G.y

⇐ { G.f ∈ G.x←G.y

• η.f = α ◦G.f }
α ∈ F.x←G.x

⇐ { natural transformation }
α = ηx ,

It is not necessary that the screen view is a perfect copy of the printed output,
but the layout of the expressions has to be close enough to see when something
goes wrong. The layout of those expressions is domain specific and you prob-
ably cannot produce such expressions efficiently with the standard document
processors.

• Flexibility. The system should not impose any particular notational con-
ventions but should be sufficiently flexible that notational conventions can be
introduced or modified on the fly.

12 CHAPTER 1. INTRODUCTION

((p⇒q)⇒ r) ⇒ (p⇒q⇒r) versus

p ` q
r

p
q ` r

Most existing mathematical editors are based on well established mathematical
theories with a well defined layout and grammar. For such theories an opti-
mised system with built-in properties can be built, which is dedicated to that
particular theory. For a young and developing theory, such as the one used by
the target user group, the layout and grammar is likely to change over time.
Building a fixed system based on the current theory would have resulted in an
outdated system by the time it was finished. By making the system flexible
with respect to layout and grammar, the users are allowed to develop the the-
ory without interference of the system being used. Since a system for editing
mathematical documents might be of interest to others, the flexibility of the
system can also be used for other editing tasks, with different mathematical
notations or structures.

• Writability. The complete document should be edited within one interface
and no special mathematical editing mode should be used.

(?y | R[x := f.y] : P [x := f.y])
= 〈One point rule (8.14) — Quantification over x has

to be introduced. The One-point rule is the only rule
that can be applied at first. 〉

(?y | R[x := f.y] : (?x | x= f.y : P))
= 〈Nesting (8.20) —Moving dummy x to the outside

gets us closer to the final form. 〉
(?x, y | R[x := f.y] ∧ x= f.y : P)

The density of mathematical expressions in the envisaged documents is very
high. Expressions can be both inline and displayed, and a large expression, like
a proof, can contain comments in the form of text (which can of course contain
expressions again). In general, the user has to be able to combine text and
expressions freely.

• High quality. The final output had to be of high quality, for use at conferences
and in journals.

N∑
i=0

xi versus sum(x^i,i=0..N)

TEX is one of the best typesetting systems for mathematical or technical docu-
ments and is often required or preferred by technical journals or publishers. To

1.4. ADDITIONAL GOALS 13

be able to communicate with others and to publish articles, it has to be possi-
ble to generate correct LATEX output, which has to be standard and readable.
Publishers usually have their own restrictions on what LATEX documents are
allowed, since they want to format a collection of documents according to one
specific style. This is only possible if the documents use standard constructions
and don’t require special LATEX or TEX features.

1.4 Additional goals

During the development of the system, additional goals were stated.

• Different output formats. The developments regarding the Internet and its
markup language HTML made it clear that the editor would also be useful
for editing documents in other markup languages. In order to support the
generation of multiple output formats, the system has to be extendable in a
direction that wasn’t foreseen at the start of the project.

• Connections to systems. As the initial users had no system support for
verifying their calculations, making connections to other systems was not con-
sidered to be a high priority. However, several systems might benefit from
an additional, document-based interface. Furthermore, some users had system
support for their calculations and would benefit if there was an easy-to-use
connection with their system.

1.5 The outline of this thesis

This project started as a masters thesis for a period of 6 months, in co-operation with
Olaf Weber. The months became years and the system was extended and redesigned
several times, both internally and externally. The final result is described in this
thesis.

In the second chapter, an overview is given of existing systems for document prepa-
ration. As the design and redesign process took several years, the overview includes
several systems that emerged during the development of Matsad. As the Matsad
editor is specialised for complex mathematical document preparation, the mathemat-
ical capabilities of the document preparation systems are examined more thoroughly.

The functional properties are described in the third chapter and an explanation is
given on how these properties were selected. As these properties determine how the
user has to work with the system, they are quite important.

The next chapter describes how the system is implemented and which decisions were
made. As the user of the system is not interested in the implementation details,
the functional properties are more important than the implementation issues. That
is, the functional properties should not change in order to make the implementation
easier.

14 CHAPTER 1. INTRODUCTION

During the development of Matsad, an additional priority arose in the form of con-
nections to other systems, in particular to PVS. In chapter 5, several techniques for
connecting different systems are discussed. After this discussion, one of the methods
is selected and implemented in order to connect the Matsad system to another soft-
ware system. Again, the keyword is flexibility, as it is not known in advance which
other systems might have to be connected to the Matsad system in the future.

The final chapter gives the status of the current system and the areas where it can
be used. As technology has advanced over the years, a short overview is given on
which technologies could be selected today if a similar system has to be built again.

Chapter 2

Document preparation

Matsad should be a document preparation system for mathematically oriented doc-
uments, but should be general enough to allow document preparation of many other
technical documents, without too many adjustments. This chapter describes common
designs for document preparation systems in general and mathematical document
preparation in particular.

2.1 Editing models

There are already a lot of document preparation or text processing tools, all with
their own advantages and disadvantages. The collection of tools can be divided into
several groups according to some design decision. Some of these decisions influence
the rest of the tool so much that it is not possible to change it without rewriting the
complete tool.

2.1.1 WYSIWYG vs. markup languages

A what-you-see-is-what-you-get (WYSIWYG) editor is based on the principle of
direct-manipulation, where the user sees what the final result will be while the docu-
ment is edited. With markup languages, the user creates a plain text file with special
formatting commands and uses a special application to convert the text file into a for-
matted document, much like the document produced by a WYSIWYG editor. Both
approaches to document processing have their advantages and disadvantages. Both
have strong believers that their approach is the right approach. Both have users that
would like to switch if it was possible and feasible.

15

16 CHAPTER 2. DOCUMENT PREPARATION

WYSIWYG editor

The WYSIWYG editors have become standard at the same time that the graphical
user interface became standard[66]. Without the graphical interface, the user had to
switch between two versions of the document, one that was used to edit the document
in a textual interface and one that represented the final output, either on paper or
on screen.

With the graphical interface, the editor is able to combine the two versions of the
document into one. The document can be displayed and manipulated without the
need to make a hard copy to check the final output. This is possible due to the
following principles:

• The fonts used to draw the content of the document are available for both
the screen display and the printer output. By using the same fonts and same
algorithms, both output formats will show the same result.

• Scalable fonts enable the use of large headers and small footnotes. Furthermore,
the user is able to zoom in on the content of the document without the need
to print it and inspect it with a magnifying glass.

• The editor can position the characters with a better precision due to the larger
grid, that is, a pixel grid of 1024 by 768 versus a character grid of 80 by 25.

• Images can be displayed on screen, which allows adding all sorts of graphical
information to a document.

Since the resolution of a screen is much lower than the resolution of the printer,
true WYSIWYG is usually not possible, but if the differences are small enough, the
average user will not notice them. However, if the differences are too large, users will
be annoyed. So, if an editor wants to claim to be WYSIWYG, it should not allow
any noticeable differences between the different output media.

Most WYSIWYG systems have a user interface similar to the one displayed in fig-
ure 2.1. At the top, there is a menu bar where all the menus can be accessed.
Usually, there is a File menu for accessing, printing and converting documents, an
Edit menu for actions related to changing the document, an Insert menu for adding
new elements to the document, a Format menu for changing document properties, a
Tools menu for advanced features such as spell or grammar checking and a Window
menu for managing the different windows. Under the menu bar, there is a collection
of buttons with images on them, which provide easy access to the more often used
options of the menus. Usually, there are also some pull-down menus that allow the
selection of properties like font style or font size. The pull-down menus often display
the current properties of the cursor position. At the bottom, there is a status bar
with additional information about the document, the cursor position and the system
in general. Whatever is left unoccupied will be used to display the document itself.

The following editors could be regarded as WYSIWYG editors or are presented as
such, although some of them are only partially WYSIWYG. As all these systems

2.1. EDITING MODELS 17

Figure 2.1: The interface of a WYSIWYG document preparation system.

work similarly and some of them are in a constant feature battle, the descriptions
are rather short.

WordPerfect The desktop publisher made by Corel. It provides a feature to look
at the internal document structure, in order to fix possible layout problems.

Word The desktop publisher made by Microsoft.

FrameMaker The desktop publisher made by Adobe, for long or technical docu-
ments.

Netscape Composer The editor integrated in the Netscape Browser, for editing
documents in the HTML markup language. As HTML does not provide enough
features to force a certain layout, the editor only shows what you will get, not
what other people might get.

Adept Editor The editor made by ArborText for editing documents in the SGML
and XML markup languages. Although SGML and XML are designed for
specifying the document structure, it is possible to build a WYSIWYG editor
for it when style sheets are applied. As SGML documents contain higher-level
structures, the Adept editor provides different views on the system.

Scientific Word The editor make by MacKichan, for editing scientific documents.
As the documents are still processed by the TEX system, it is not a true WYSI-
WYG system, but it makes life easier for novice LATEX users.

StarOffice The desktop publisher made by StarOffice/Sun, as a multi-platform al-
ternative for the Windows-based desktop publishers.

18 CHAPTER 2. DOCUMENT PREPARATION

This list is certainly not complete and many others are available, such as Thot,
Grif, Amaya, LyX, KOffice and AbiSuite. However, those listed are supported by
companies and have a reasonable user base.

Markup languages

A markup language is a language which uses special character sequences to instruct
an application to perform certain operations on the plain text. By adding the correct
sequences to the text, it can be formatted beautifully. By adding incorrect sequences,
the result will look like a mess. Many markup languages are very powerful, but for
the average user, it is very difficult to access all this power. This is probably due to
the increasing complexity of the markup sequences when more complex features are
used: making certain words in the text bold is easy, adding the rotated, upper-left
part of a picture to a table is difficult.

Since users make mistakes in the form of typing errors, markup sequences are likely
to contain errors, especially if an awkward syntax is used. As a result, the markup
processor, designed to interpret and format a correct markup document, is used to
remove these markup errors. This results in an edit-check loop to remove all the
markup errors from the document, while the formatted output is usually ignored at
this stage.

After all the markup errors are removed, the document is formatted according to
the sequences added to the document and the formatted output can be checked for
errors. If the user wants to do something complex, the trial and error approach is
often used to get what is needed. This results in an edit-format-inspect loop, where
the formatted output is inspected after small changes are applied to the document,
until the formatted output is correct.

Due to the awkward syntax, documents with a very complex content, such as techni-
cal documents with many formulæ, become almost unreadable in the markup version.
The only way to make sure that everything is correct, is by reading it again after
it is formatted, with the possibility that the user reads what is expected instead of
what is written. Therefore, a proof reader is needed to prevent such errors.

Since markup documents are formatted according to their markup and the markup
interpreter often uses tables to store properties of the text, global changes to the
document can be applied easily by adding the correct markup at the beginning of
the document. Furthermore, these tables can also be used to calculate additional
properties, such as the table of contents, the index or the references.

The major advantage of markup languages is the fact that markup documents are
written in plain text files, which implies that any text-based tool can be used to
manipulate the content of the document, such as the favorite text editor, a spell
checker and many UNIX text tools such as grep, tr, awk, sed, perl and sort.
These tools allow the user to perform global manipulations with the best tool for the
job, without having to depend on the built-in tools of the selected editor.

Figure 2.2 shows some typical markup sequences for several markup languages. The

2.1. EDITING MODELS 19

Item LATEX Troff texinfo

Chapter \chapter{...} .sh 1 ... @chapter ...

Section \section{...} .sh 2 ... @section ...

Paragraph empty line .PP empty line
Bold \textbf{...} .B ... @b{...}

Italic \textit{...} .I ... @i{...}

Number Item \item .IP n @item

Bullet Item \item .IP \(bu @item

Table \begin{tabular} .TS @multitable

Row separation \\ newline @item

Column separation & tab @tab

Image \includegraphics{...} .F+

figure ...

.F-

Item Lout SDF HTML

Chapter @Chapter H1: ... <H1>...</H1>

@Title{...}

Section @Section H2: ... <H2>...</H2>

@Title{...}

Paragraph @PP empty line <P>

Bold @B{...} {{B:...}} ...

Italic @I{...} {{I:...}} <I>...</I>

Number Item @ListItem ^ or +

Bullet Item @ListItem *

Table @Tab !block table <TABLE>

Row separation @Rowa newline <TR>

Column separation named columns tab <TD>

Image @IncludeGraphic{...} {{IMPORT:...}}

Figure 2.2: Markup languages for common textual elements

20 CHAPTER 2. DOCUMENT PREPARATION

markup languages are:

TEX A powerful markup language designed by D.E. Knuth[36], which is well-suited
for scientific documents of high quality. The TEX system is mainly used in
combination with macro packages.

LATEX A macro package for TEX, constructed by L. Lamport[39], which removes
the burden to use all the low-level constructs from TEX. LATEX is the markup
language preferred by many publishers of technical journals.

Troff A markup language based on roff and runoff[22], which dates back as far as
the early 1960’s. It was the main markup language on UNIX systems during
the 1970’s and early 1980’s. It is still used for the online manual pages of many
UNIX systems.

texinfo A markup language used for providing documentation on software[11]. It
is mainly used by GNU software and provides hyperlink capabilities. The files
are used to generate the online and printed version of the documentation. The
TEX system is used to produce the printed version.

SGML The standard general markup language defined by ISO[68], defined for stan-
dardisation of document exchange. The structure of documents is defined with
a document type definition (DTD), while the appearance is defined with a style
sheet written in the document style sheet specification language (DSSSL,[71]).

HTML The hypertext markup language defined by the WWW Consortium[81],
used for most of the documents on the Internet. The HTML language is de-
fined by a DTD and is therefore a specific application of SGML. As the layout
requirements differ per user and system, a standard style sheet is not available
for HTML and only recommendations are given on how the layout could be.
However, the browser wars and user requirements have led to new versions of
HTML with more layout oriented features, such as frames and cascading style
sheets (CSS, [6]).

XML The extensible markup language defined by the WWW Consortium, which
is the platform for future versions of HTML. XML can be seen as a simplified
version of SGML, based on the experience with HTML. With XML, it is possible
to construct a modular markup language, as opposed to the monolithic HTML
specification. Such modularisation is required in order to serve all the future
applications of providing information over the Internet, such as database access,
content labeling, mathematical content and vector drawings. XML has its own
versions of style sheets (XSL), document definitions (Schemas) and scripting
facilities (XFA) [8].

RTF The rich text file format defined by Microsoft[76], used to exchange documents
with other applications. As the format can and will be adjusted by Microsoft
when required, it is not very useful. Furthermore, the RTF format is extremely
verbose and the markup is very layout specific. Therefore, RTF is mainly used

2.1. EDITING MODELS 21

for exchanging Word documents with applications that are unable to handle
the latest proprietary Word format.

SDF The simple document format, designed by Clatworthy[14]. SDF can be used
to generate documents in multiple formats by using existing filters.

Lout A high-level language for document formatting, designed by Kingston[33].
With the Lout system, a document can be converted to PostScript, PDF or
plain text. Lout is influenced by the eqn and Scribe systems [31, 61].

To exchange markup documents, they are usually converted to a document format
which is more portable, as the markup processor might not be available to the re-
ceiver of the markup document. Common distribution formats are PostScript[2] and
Portable Document Format (PDF), which contain the final layout of the document
and which can be used to make hard copies.

2.1.2 Structured vs. unstructured.

In a structured editor, the content of the document is stored in some kind of structure,
such as a table or tree. This structure is used to determine properties of the contents
or process the content in some way. In an unstructured editor, everything is stored
as one sequence of characters with a special tag structure to add the properties.

All common text editors work with unstructured text, although the editor might
perform syntax highlighting to indicate the intended structure based on the underly-
ing markup language. Many WYSIWYG editors also work with unstructured text,
where special features are added by superimposing attributes on top of the text.

As SGML is a rather verbose markup language which imposes a structure on the text,
many SGML editors are structure editors, where the DTD is used as a guidance for
the possible structure. However, as SGML-based documents usually consist of text,
the structure is often hidden from the author by providing the same functionality
as in unstructured editors or by automatically adding the structure when possible.
As the number of structural elements is quite small, such structure editors are still
usable.

For technical documents, such as program files or research papers, the structure of
the document and the rules to manipulate that structure are more complex. As a
result, it is difficult to write such an editor by hand, especially if support for multiple
languages is required. Therefore, several systems exist to generate structure editors
for a given language definition:

Centaur A generic interactive environment generator, that produces a language-
specific environment from the formal specification of the programming lan-
guage. Centaur is mainly used in universities and research centers for experi-
menting with languages.[29]

Synthesizer Generator A tool for creating syntax directed editors and interfaces.

22 CHAPTER 2. DOCUMENT PREPARATION

This generator is originally developed at Cornell University and is now main-
tained by Grammatech.[63]

ASF+SDF Meta-environment A system for generating language-specific envi-
ronments from algebraic specifications of (programming) languages. This en-
vironment is related to the Centaur system.[34]

As a definition of the language is used to generate the syntax directed editors, all
the editors will contain the same features, although they are adjusted to the given
language. When the language is defined with sufficient details, the editor could
support term rewriting, type checking, code optimisation and code generation.

Structure editors, especially syntax directed editors, are often quite difficult to use,
as the document has to obey to a certain structure. If the structure elements are
difficult to access or the operations are restricted by the structural integrity, the
editor is useless, as the use of a normal text editor in combination with existing
compiler tools would be just as easy. Therefore, many structure editors provide a
text editing mode[42], where the author can manipulate the structure as if it were
text. Afterwards, the text is parsed and converted to a structure.

Although the use of a structure editor is more difficult, there are several advantages
of working with structured documents.

• As all objects in the document have some structure, you can quickly find all the
objects with the same structure, such as theorems, figures or section headers.

• The structure can be used to fold the content of the document, where large
structures are shown as a comment indicating the content of that structure.
For large documents with many sections, each section can be folded such that
only the header is displayed, as is done in a Mathematica notebook[83]. For
programming languages, a fold operation can hide the content of a function
definition, thereby making the document more easily accessible, as is done in
the Oberon system[62].

• The structure is easy to select, which reduces errors when the structure is
copied. In a text editor, the correct range of characters has to be selected,
which might go wrong due to missing certain characters or due to incorrect
indentation.

• The information generated with the structures is less likely to contain errors,
as the structure is correct by construction.

2.1.3 Modal vs. modeless

Most keyboards have about 100 keys, which is usually not enough for a text editor.
The text editor needs keys to insert characters and symbols and keys to perform edit
actions. Since the number of edit actions increases with the number of features, the
editor has to reuse the keys in a clever way. Some editors do this by using different

2.1. EDITING MODELS 23

modes: in insert-mode, you can add characters to the document, in command-mode
you can perform edit commands. Other editors use combining keys or prefix keys:
after pressing a special key, the next key is interpreted differently. Almost every
editor uses one of the two methods.

As an alternative to the keyboard, an editor can create graphical input methods like
symbol palettes, popup menus and preference windows. The difficulty with these
graphical input methods is the need to leave the home row1 of the keyboard and
reach for the mouse or function keys, which will reduce the editing speed.

The Emacs editor mainly uses combining keys or prefix keys for the editing com-
mands, although it also uses modes for specific features, such as incremental search,
where normal keys will be inserted in the search string, instead of the plain text. As
Emacs places the cursor in a reserved part on the screen while in such a mode, it
is not confusing to the user. Emacs also supports major modes and minor modes,
where two modes are active at the same time: the major mode defines the standard
commands, the minor mode defines document specific commands.

The VI editor uses three main operating modes: command mode, input mode and
external mode. In command mode, the keyboard is used to move the cursor, to
search for something or to delete something. In input mode, characters are inserted
into the text. In external mode, ex commands can be executed. The user switches
from command mode to external mode with the : key, from input mode to command
mode with the escape key and from command mode to input mode with one of the
text entering commands, such as insert (i), append (a) or change (c). From within
command mode, the ! key can be used to run UNIX filter programs, such as sort,
awk, sed and tr.

For entering plain English text, these methods don’t differ very much as all the
characters are available on the keyboard. However, if you want to enter more complex
languages or technical text in some markup language, the keyboard interface has to
be more sophisticated in the form of input methods[40, 72]. Some techniques for
input methods are:

one-to-one Each key is bound to one character. This technique is sufficient for
languages with a limited collection of characters, but it can easily be combined
with other techniques.

dead-keys Certain keys change the behaviour of the next sequence of keys, in order
to construct a single character. During the construction of the character no or
limited feedback is given to the user. This technique is often used for entering
characters which can easily be constructed by combining simpler characters,
such as dead-^ a to get â or compose 1 2 to get 1

2 .

trailing modifiers Certain modifier keys are used to change the character that is
entered with the previous key. Usually, modifier keys represent accents such as
^, " or ’. As these keys are also used as normal keys to enter those characters,

1The home row of the keyboard is the default row where you place your fingers in the 10 finger
system

24 CHAPTER 2. DOCUMENT PREPARATION

the space key is used to prohibit the modifier key to change the previous
character. For example, the sequence "Bu"ro " can be used to enter ”Büro”.

set selection While keys are pressed, the set of characters to select from is reduced.
At any time, the user can select a character from the set and start again. This
technique is used for languages that require large collections of characters, such
as Chinese or Japanese. The method of reducing the sets is based on some
ordering on the characters, such as stroke count or transliteration.

complex analysis The text is analysed with complex algorithms in order to solve
ambiguous input. The Japanese input method is a good example: the text is
first entered in a phonetic form, such as Hiragana or Katakana, with either
a special Japanese keyboard or by using some transliteration like Romaji. In
the second stage, the phonetic form is analysed to convert it to the final form.
As Japanese is context dependent, this analysis might be wrong and the user
might have to select one of the possible final forms. To improve the analysis,
the selection of the user is used by the analyser to improve itself, for example
by suggesting the final forms in a different order.

encoding position The encoding position is used to enter the character. After a
special prefix key, the octal, decimal or hexadecimal position of the character
is entered with the normal keys. As it is rather difficult to remember these
positions, it should only be used as fall-back technique for very few characters.
For example, the sequence Alt 0163 constructs £ under Windows95 with the
Latin1 encoding.

As each language can have its own input method, multiple modes have to be used
when a document contains multiple languages. As mathematics can be regarded as
a language, a mathematical input mode might be required.

2.2 Mathematical documents

Mathematical documents are rather difficult to edit[12]. In fact, any document with
something which is not plain text, a table or an image, is difficult in most document
processing systems. For WYSIWYG systems it is almost impossible to add large
amounts of mathematical expressions to a document and be able to work with it
properly. For markup languages, the situation is usually much better, provided that
the language provides constructs for mathematical content and is compact enough
to remain readable.

2.2.1 WYSIWYG systems

Many WYSIWYG systems use a special editor for entering mathematical content.
However, in a mathematical document, there are so many formulæ that it is im-
possible to use a separate editor. As each formula is a separate object within the

2.2. MATHEMATICAL DOCUMENTS 25

document, the special editor has to be started in order to change the formula. In
most mathematical documents, formulæ are often very similar and a decent copy
facility is needed in order to exploit that. However, many systems use a clipboard
when something is copied and require that the source is first selected and copied to
the clipboard, after which the target is selected and the clipboard content is pasted.
As each selection requires that the special editor is started, mathematical editing is
tedious.

In the Microsoft Windows environment, OLE objects[46] are a common way to enter
special content into documents and a special editor allows the user to edit these
objects in-place, giving the impression that the editor handles the objects natively.
When the OLE object is selected, the special editor is started and the interface
is modified to provide access to the special features for those OLE objects. For
documents with many mathematical objects, editing becomes tedious due to the
constantly changing interface and the difficulty of copying formulæ. Furthermore,
mathematical objects can be used inline or displayed, where the inline versions require
proper alignment, while the OLE system is more suited for displayed material, such
as images or tables. Finally, the OLE system becomes unstable when too many OLE
objects are used within a document. Therefore, the OLE system is not well suited
for documents with many formulæ or non-standard presentations. For example, the
Eindhoven style of proof presentation mixes formulæ and prose in a complex way.
This style originated from Feijen and is extensively used in the book by Dijkstra
and Scholten[18]. Examples of this presentation style are given in section 1.3 and in
figure 5.10 on page 110.

A common editor for mathematical OLE objects is MathType[44], which allows in-
place editing as well as editing in a separate window. In the MathType editor, com-
mon mathematical symbols and notations are available through menus and keyboard
shortcuts. With these menus an expression can be constructed and it is displayed in
a WYSIWYG fashion on the screen. After the expression is finished, it is entered
into the document by either closing the editor or changing the focus.

WordPerfect version 6.1 provides its own mathematical editor, which cannot be used
in-place. This editor gives the user two views on the same expression, one markup
view and one WYSIWYG view. Only the markup view can be edited and the markup
is based on troffs eqn extension. The available markup constructions are listed in
several menus and can be entered by either selecting them from the menu or by typing
them in. At any time, the user can request to update the WYSIWYG view, which
requires the markup to be parsed and interpreted. After the formula is finished, it
can be added to the document by closing the formula editor. Within the document,
formulæ are handled as OLE objects.

StarOffice is intended to be compatible with Microsoft Office and handles formulæ
similar to OLE objects. A formula is edited in a separate window by giving the correct
markup, which is similar to the markup used by the WordPerfect mathematical
editor. The symbols and notations are selected from menus or palettes, where the
menus are ASCII based while the palettes display the resulting symbols. While the
markup is manipulated, the in-place WYSIWYG version is constantly updated. As

26 CHAPTER 2. DOCUMENT PREPARATION

Microsoft Word with in-place editing

MathType in a separate window

WordPerfect with two views

Figure 2.3: Several systems for editing mathematics

2.2. MATHEMATICAL DOCUMENTS 27

the formulæ are handled as OLE objects, similar problems occur.

In FrameMaker and Scientific Word, the formulæ are handled in-place and no special
editor is needed to enter them. A formula is constructed by using menus with common
mathematical symbols and notations, similar to the menus available in MathType.
As no special editor is needed, both systems are more useful for editing mathematical
documents than most WYSIWYG systems. However, for non-standard layout, they
are still difficult to use and there are also some problems related to switching between
inline and displayed expressions.

To summarise, the following problems are common in WYSIWYG system when
mathematical content is concerned.

• Due to the clipboard copy operations, it is difficult to reuse existing formulæ.

• As formulæ are handled as special objects, several textual facilities are missing
for formulæ, such as searching or changing the font size.

• When a formula is changed from inline to displayed, its position is changed
incorrectly.

• Non-standard mathematical layout is difficult to accomplish.

2.2.2 Markup languages

For markup languages, the support for mathematical content depends on whether it
is possible to add special fonts, whether the layout algorithm is powerful enough to
construct mathematical notations and whether macro definitions are allowed. When
these basic requirements are available, the mathematical content can be added to a
document using a plain text editor. Since all the content of the document is written in
plain text, all the functionality available for text is also available for the mathematical
content, such as cut-and-paste, search and find-and-replace.

As the mathematical content is all entered with markup sequences, the formulæ
quickly become unreadable, especially in documents with many similar formulæ,
which is very common. Therefore, the markup language should not be too verbose
in order to keep the document at least manageable.

The table in figure 2.4 shows some typical markup sequences for mathematical no-
tations. The LATEX markup language is listed because LATEX is used very often in
mathematical document preparation. The Troff/eqn markup language is listed be-
cause it is often used as a basis in other systems, such as WordPerfect, StarOffice
and Lout.

HTML version 3.0[59] allows mathematical markup as well. However, that version of
HTML has never been accepted by the major browser manufactures and the math-
ematical markup disappeared in the accepted HTML version 3.2. A working group
of W3C has since defined the MathML markup language[28], which can be used in
combination with XML. In MathML, it is possible to use presentation markup or

28 CHAPTER 2. DOCUMENT PREPARATION

Item LATEX Troff (eqn)
xn x^n x sup n

ai a_i a sub i

x
y \frac{x}{y} x over y

√
x \sqrt{x} sqrt x

3
√
x \sqrt[3]{x} not possible

π \pi pi

n∑
i=0

xi \sum_{i=1}^n x^i sum from i=1 to n x sup i

lim
i→∞

i \lim_{i\rightarrow\infty} i lim from {i -> inf} i

~a \vec{a} a vec

x+ y \overline{x+y} x+y bar

R⊕ S R \oplus S not possible

a
∗→ b a\stackrel{*}{\rightarrow}b a -> from ^ to * b(
x
y

)
\left(\frac{x}{y}\right) left (x over y right)

a b
c d

\begin{array}{cc} matrix {

a & b \\ ccol { a above c }
c & d ccol { b above d }
\end{array} }

Figure 2.4: Markup languages for common mathematical elements

2.3. MATHEMATICAL SYSTEMS AND THEOREM PROVERS 29

content markup language, both of which are extremely verbose and not intended to
be written or read by humans in their ASCII form.

2.3 Mathematical systems and theorem provers

Mathematical systems and theorem provers used to have teletype interfaces and
often still do. In these interfaces, mathematical formulæ are entered using ASCII
characters, even if the system uses a graphical user interface. After a formula has
been entered, it can be evaluated and the result will return either in the same notation
as the entered formula or in a nicely formatted graphical layout. Due to the use of
ASCII, there is a large difference between conventional mathematical notation and
the notation required by the system. Furthermore, each system uses its own notation,
which makes it very difficult to exchange between systems.

Most of these systems are specialised in calculational methods and the document
preparation part is less well developed. When the system does not support documen-
tation facilities, it is often required to enter the formulæ in a document preparation
system again, which is usually a markup language like LATEX. Some systems allow
automatic generation of such LATEX markup sequences, which reduces the chance of
errors in the conversion. Furthermore, it relieves the user of learning an additional
markup language. However, the method of combining these generated markup se-
quences into a document is tedious and error sensitive, especially if the sequences are
changed or regenerated.

Some of the common mathematical systems are:

Maple An advanced computational system for handling symbolic, numeric and mod-
elling problems[60]. More recent versions also allow some document prepara-
tion. In general, a document consists of three different items: comments, Maple
input and Maple output, where the comments are used for documentation pur-
poses. With Maple, it is possible to generate LATEX and HTML output to allow
incorporation of Maple results into LATEX documents or for publishing online.
Maple can be used with either a graphical user interface or a command line
interface.

Mathematica A tool for scientific research, analysis and modelling[83], with more
facilities for document processing in the form of Mathematica Notebooks. A
notebook is a structured document with input and output elements. Folding
operations can be used to hide certain information and it is possible to add
interactive elements such as buttons and animations. Mathematica provides a
graphical interface and allows other applications to use the Mathematica kernel
through the MathLink library.

MatLab An environment for doing technical computing, combining numeric com-
putation, advanced graphics and visualisation[45]. The MatLab system also
includes tools for building graphical user interfaces. Document preparation is
not the strongest point of MatLab, but a separate program exists for generating

30 CHAPTER 2. DOCUMENT PREPARATION

reports. MatLab uses a command line interface, but it allows the construction
of graphical user interfaces.

MuPAD A computer algebra system for symbolic and numerical computations[23].
MuPAD has no support for document preparation and uses an ASCII based
input and output format.

For extending the system, they all provide a tailor-made programming language for
handling the mathematical objects that are used within the system.

Some of the common theorem provers are:

PVS A specification and verification system, intended for formal verification of soft-
ware and model checking[65]. PVS is a large and complex system which uses
Emacs as user interface. It uses an ASCII based input and output language and
is able to represent proof trees in a graphical format. For document preparation
purposes, PVS expressions can be translated to LATEX markup.

Isabelle A generic theorem proving environment, which is extended by using object
logics[55]. Isabelle uses a command line interface, but it can be used within
Emacs through the Proof General interface. For document preparation pur-
poses, Isabelle is able to generate LATEX markup.

Coq A proof assistant based on the calculus of inductive constructions[27]. The Coq
system uses a command line interface and uses ASCII-based notations. There
are several interfaces built around the Coq system, such as CtCoq, which allow
mathematical notations. The CtCoq system is generated by the Centaur system
and is a structure editor. Coq provides tools for converting Coq listings into
LATEX documents and for processing LATEX document containing Coq phrases.

Jape An interactive tool designed to help with learning, teaching and using formal
reasoning[73]. It is one of the few theorem provers which requires mathematical
symbols and does not have a command line interface. The authors have recog-
nised that using the correct notation is a vital requirement in order to make
it useful in education. Jape does not support document preparation itself, but
it provides several ways to generate LATEX markup or encapsulated PostScript.
It is also possible to extract Jape files from LATEX documents.

These systems provide their own configuration or programming language as well.

Both the mathematical systems and theorem provers use their own notation, which
makes it difficult, if not impossible, to switch to a different system, to verify obtained
results or to combine the strength of a mathematical system with a theorem prover.
The MathML[28] and OpenMath[9] markup languages are recent attempts to make
the exchange between these systems easier, as each system would only have to provide
an interface to the common markup language in order to make information exchanges
possible.

2.4. SOFTWARE DOCUMENTATION 31

2.4 Software documentation

One problem with maintaining software is poor documentation, which is caused by
the fact that the documentation and the program are usually two separate docu-
ments. Combining those two documents into one document resembles combining
mathematical calculations and documents. In both cases, the document consists of
two interwoven parts, the documentation and the program text or mathematical con-
tent. With special applications, those parts can be separated into nice documentation
and executable programs or interpreted mathematics.

There are several systems for combining documentation and programs:

Web The literate programming system developed by D.E. Knuth[35]. According to
Knuth, the system should be used for explaining to a human being what the
program should do and that description should not necessarily have to follow
the restricted program text. It is therefore possible to describe the program
by using tags to indicate that certain parts will be defined later. After the
interwoven document is separated, the documentation is formatted by TEX
and the program is processed by a compiler. Due to the use of these tags,
the resulting documentation contains lots of references to used variables and
program parts and a useful index is created. However, the resulting program
text will be unreadable due to the way the code is distributed in the interwoven
document and the way software tools generate feedback messages. Of course,
the source should not be edited directly, as it would go against the purpose
of using the Web system. One major problem with the Web system is that
the user has to learn three languages in order to use it successfully: the TEX
language for the document preparation part, the programming language for the
program part and the Web language for instructing the programs that extract
the two parts.

POD The documentation format used by the Perl system[82]. The POD format
allows easy addition of plain old documentation to Perl scripts by using simple
markup sequences. When the Perl interpreter reads a Perl script, it ignores
the text following POD markup, up to the =cut sequence, which indicates that
Perl code is entered. As a result it is easy to combine the documentation and
the program, as no special languages have to be learned. Although the systems
allows the documentation and Perl code to interweave without problems, it is
mostly used for appending the documentation to the end of a Perl script or
module.

Javadoc The documentation format for Java programs[38]. Javadoc uses documen-
tation comments in Java to generate the documentation for a Java program.
By providing a set of guidelines on how to add comments to Java class defini-
tions, sensible documentation can be generated in the form of HTML files. In
the comments, plain HTML can be used to improve the layout and special tags
are available to refer to other parts of the document or Java class.

32 CHAPTER 2. DOCUMENT PREPARATION

These three systems are specially constructed to improve the documentation of soft-
ware. Of course, it is always possible to add the documentation in the form of
comments, which is a common way to do it, but the additional utilities would be
missing, such as indexing and cross referencing.

There are several Web-based systems which allow combining documentation and
program text. However, these system use a less revolutionary approach, as they
usually don’t disturb the order in which the program is written.

Revision control systems, such as SCCS[5] or CVS[10] are useful tools to improve the
documentation of software when it is maintained by a larger group of people. When
the program is changed by several people, it is important that the documentation
remains up to date and revision control systems enforce that changes to the system
are documented.

2.5 Conclusion

In this chapter, several available systems are reviewed which are related to documen-
tation preparation or processing mathematical material. The WYSIWYG document
preparation systems are very useful for plain documents without too much technical
content, such as mathematical formulæ. The markup languages are very flexible and
allow large quantities of technical content. However, the technical content quickly
becomes unreadable due to the use of all the markup sequences. The mathematical
systems have powerful facilities for doing calculations, but they provide limited facil-
ities for document preparation, especially if the presentation style is not supported
by the system, such as the Eindhoven proof presentation style, shown in figure 5.10
on page 110.

As the survey has pointed out, sufficient support for WYSIWYG document prepara-
tion of technical documents is missing, especially if it concerns non-standard presen-
tation styles. Although it is possible to prepare such documents with a markup lan-
guage, the readability of a markup language is too low to allow easy preparation. In
the following chapters, a document preparation system is designed and implemented
which supports semi-WYSIWYG document preparation of technical documents with
non-standard presentation styles.

Chapter 3

The functional design

In this chapter, the functional design of the Matsad system is given, which deter-
mines how the user will see the system, how the system is operated and thereby what
kind of authors could be using the system. As each design decision influences the
usability of the system, the decisions have to be taken with care and with respect to
the intended user group, authors of technical documents with mathematical content.
As each user group is special in some respect, the resulting system might be so spe-
cialised that only the intended user group can use it. However, it would be nice if
the result can be used by a larger group.

Certain decisions were already fixed at the start of the project, as choosing differently
would be against the requirements.

• The LATEX system will be used for producing the printed document, as LATEX
documents are often required by publishers of technical journals.

• A graphical user interface is required, as the mathematical content should be
readable on screen. A teletype interface would restrict the number of available
symbols and the means of positioning them.

• A UNIX operating system is used as implementation platform, as the intended
users, like many researchers, use UNIX.

In short, the main design is an almost WYSIWYG document processing system for
mathematical LATEX documents running under UNIX.

3.1 Program versus user in control

For a document editor, it is very common that it has control over some part of
the document since the document has to obey certain properties, such as correct
page numbers, correct references or fitting within a page. When the editor thinks

33

34 CHAPTER 3. THE FUNCTIONAL DESIGN

something is wrong, it mentions it to the user who has to take notice of it and solve the
problem. Most users, however, don’t like it when a machine tells them what they can
and cannot do and want to take control when they see fit. If an editor hyphenates
a word incorrectly, the user needs to take control and adjust it. In general, if an
application does something automatically, the user has to be able to overrule it.

Examples of programs that take control are most structure editors. Adjusting the
structure freely is nice, but it’s wrong. So, the user is only allowed to adjust the
structure according to strict rules. If the user knows a shortcut, it is not possible to
take it. It seems inevitable that such structure editors are not widely used.

Since most users know what they are doing, the editor should not obstruct the user
in doing something strange. The editor might protest at first, but it has to allow
the user to take control and perform the strange operation, after which the user is
responsible for anything that might be incorrect as a result.

Decision 1
The user should be in control of the system, not the other way around.

3.2 Text editing versus structured editing

For document preparation, there are two editing models that are often used, the text
model and the structured model. Both models have their advantages and disadvan-
tages.

3.2.1 Text editing

Almost all users are familiar with editing plain text in the text model. If you want
to add some text at a certain location, you just have to position the cursor and enter
the text with the keyboard or by some other method. To the user, the text seems
to be either one large list of characters or a list of lines, each containing characters.
Since the text model is easy to understand and to implement, most text editors and
document preparation systems are based on this model.

Markup languages, including programming languages, make use of this easy to un-
derstand model to add structure to the unstructured text. A special application
interprets the markup to create the actual structure and use that. The advantage of
this approach is that any text editor can be used to enter the markup text and no
special tool has to be provided for that. Since there are dozens of text editors, a user
is likely to find one that fits the needs. One problem with the use of markup lan-
guages is that it is very easy to make typing errors, which usually results in multiple
runs of the interpreter application to remove them.

Since markup languages add structure to the text, some text editors, like Emacs,
interpret the markup to highlight certain parts of the text with different colours or
styles. The advantage is that the user has visual feedback on whether the markup is

3.2. TEXT EDITING VERSUS STRUCTURED EDITING 35

correct or not. This does not mean that the editing model is changed: it is still plain
text and the markup is still visible, except that the editor continuously determines
what the structure would be.

Some advantages of the text model:

• It is easy to understand.

• It is easy to implement.

• It can contain anything by using correct markup.

Some disadvantages of the text model:

• Complex operations are difficult.

• Markup languages make the text unreadable and error sensitive.

• Mathematical content is difficult to add.

3.2.2 Structured editing

In the structured editing model, the content of a document has to obey a specific
structure and the editor helps the user in creating a correct document. Most structure
editors work with a fixed set of structure elements and rules on how these elements are
combined. During an edit session, the user is allowed to enter only those elements
that are correct at the focussed position, to ensure that the entered structure is
syntactically or semantically correct.

Structured editing is often difficult, since most users are neither familiar with the
structure nor with the rules. To overcome this problem, many structure editors have
a free editing mode, which is based on the text model. After a free edit session, the
constructed text is converted to a structure and checked for correctness.

If the editor is optimised for a specific set of rules, it can perform extra checks to make
sure that other properties hold, such as semantical correctness. Whenever there is
something wrong, the user will be notified to correct the problem. Typical examples
of such editors are the ones generated from a language specification.

After a user has created a correct structure, the editor often allows operations on
these structures, which are easier to implement due to the available structure. For
programming languages, it might include code generation, optimisation or interpre-
tation.

Some advantages of the structure model:

• The structure makes certain operations, such as selecting, very easy.

• The structure is always correct.

• Errors are difficult to make.

36 CHAPTER 3. THE FUNCTIONAL DESIGN

• Complex operations are easier.

Some disadvantages of the structure model:

• The user is often restricted too much.

• The editor is in control.

• The elements and rules are often fixed to allow optimised operations.

Decision 2
Since Matsad has to handle documents with many mathematical expres-
sions, a combination of the two models seems to be an obvious choice: the
text model for the document and the structure model for the expressions.
Such a combination has the advantages of both models and reduces the
disadvantages. The user can choose between the best model for a specific
job. For mathematical documents, one might assume that the user has some
knowledge about the structure.

3.3 Fixed grammar versus flexible grammar

For structure editing, a grammar is needed, that is a collection of items and rules to
combine them. If the grammar is known in advance, the editor can take advantage
of it by providing operations specific for these items and rules. If the grammar is
not known in advance, the editor has to provide a method to define the grammar or
allow the user to change the grammar interactively.

3.3.1 Fixed grammar

Most structure editors use a fixed grammar, which makes it very specialised for that
particular grammar. Since it takes a lot of work to construct such a structure editor
from scratch, tools have been constructed to generate a structure editor from a given
grammar [63, 29, 34, 57]. Since the grammar is fixed, the structure editor can be
optimised for that particular grammar by providing extra functionality which is not
available in other editors, such as structure rewriting, optimisation and incremental
compilation. For example, a structure editor for Pascal can provide rewrite and
optimisation functions specifically for Pascal.

The major advantage of the editor generator is that you only have to maintain the
generator and a collection of grammars in order to maintain a collection of structure
editors. One disadvantage is that it does not allow the user to modify the grammar,
since everything is built in and optimised. For example, the user cannot define rewrite
rules for user-defined functions. Furthermore, the grammar for a language might be
so complex or large, that the generated structure editor is not very usable.

3.4. CLIPBOARD VERSUS MULTIPLE SELECTIONS 37

Some generated structure editors provide incremental attribute evaluation and an
attribute can be a semantic check, the generated code or a layout feature. In an
incremental evaluation, the attributes are only calculated for the structure that has
changed and any structure that depends on the changed structure. The continuous
evaluation of the attributes ensures that errors are noticed at the moment they are
entered and not in the final processing step. For a user, this might be handy, since the
errors directly indicate where adjustments are needed. However, certain errors can
generate lots of errors, such as missing variable declarations. If the error messages are
displayed in the same window as the structure that generated them, the document
will become less readable due to the additional information and the changes in layout.

3.3.2 Flexible grammar

Some structure editors are based on grammars that are loaded when the editor is
started or might even allow the user to change the grammar interactively. Since the
grammar is not known in advance, the editor cannot be optimised for one specific
grammar and might not be able to provide the special functions mentioned in sec-
tion 3.3.1. However, since the grammar is not fixed, the user is able to adjust the
grammar where needed without restarting the editor.

If the grammar of the language is not known in advance, a structure editor that
allows a flexible grammar is the only useful solution. Often, if the grammar is not
fixed, tools such as incremental evaluation, optimisation or rewriting are not very
useful. Markup languages which allow macro definitions are examples of grammars
which are not fixed.

Decision 3
Since there is not a fixed grammar for the mathematical theory of the target
users and elements are added on a regular basis, the grammar of Matsad
cannot be fixed. The grammar specific operations that are common in gener-
ated structure editors do not yet apply to this mathematical theory, so there
is not much lost in not supplying those operations. Furthermore, generated
editors are often not very strong in supplying text editing operations or lay-
out features (such as special symbols or different sizes), which is a must if
the mathematical structures have to be combined with plain text.

3.4 Clipboard versus multiple selections

During editing, the user often has to copy or move certain parts of the document to
some other location. There are different methods to perform these operations.

38 CHAPTER 3. THE FUNCTIONAL DESIGN

3.4.1 The clipboard

Many systems make use of a clipboard. A clipboard is temporary storage to which
something, usually text, can be copied. With the operations Cut and Copy, the user
is able to move or copy the selected part to the clipboard. With the Paste operation,
the clipboard is copied to the selected position. This seems to work fine in general,
but there are some caveats.

First of all, some systems have multiple clipboards. For example, under the X11
window system, you have 3 clipboards:

• The primary selection, used by many X11 applications and usually automati-
cally set.

• The clipboard, used by OpenLook applications, where a Cut, Copy and Paste
are needed.

• The cut buffers, used by Emacs and automatically set.

For copying or moving the selection to the clipboard, this is not a problem, since
it can be copied to all the clipboards. However, for pasting the clipboard into a
document, it depends on the application that has set the clipboard which clipboard
should be used.

Second, copying information from one location to another location involves making
two selections and performing two clipboard operations. If these focus changes involve
complicated operations, such as starting an application in an OLE environment, it
might be frustrating to the user if it occurs too often.

Third, the item in the clipboard might not always contain what you expect. In the
X11 windows environment, the clipboard can also contain the identity of a window.
In order to switch to a different window before pasting the clipboard, the target
window is often selected first, which might have set the clipboard to contain the
identity of the window. In general, it is not clear what the clipboard contains or
which clipboard is used if multiple clipboards are available.

3.4.2 Multiple selections

A different approach is to allow multiple selections and copy the content of one
selection to another selection. Since the two selections are simultaneously visible,
the user can check what is being copied before the operation is performed. This
reduces the cognitive overhead.

For mathematical editing, copy and paste operations are very often used. If these
operations take time or are unreliable, the constructed mathematical expressions
are likely to contain errors. Therefore, the multiple selection approach seems to be
better.

Most copy operations will be performed within Matsad, that is, both the source
and the target are Matsad expressions. Copying to and from the general clipboard

3.5. WYSIWYG VERSUS MARKUP CODES 39

is therefore not needed. For those situations where the general clipboard is needed,
a special copy or paste operation can be used. Since most applications are not able
to handle the Matsad structures correctly, the clipboard is only used to export or
import textual representations.

Decision 4
Since copy operations occur very often in mathematical editing, the multiple
selection approach is used. To allow interaction with other applications, the
clipboard approach is also supported.

3.5 WYSIWYG versus markup codes

In a WYSIWYG system[19, 66], the user sees the document exactly as it is published,
at least in theory. In a system based on markup codes, the user manipulates a plain
text file and describes how it should look like and a markup compiler converts the
plain text into the final document. Both versions have their pros and cons.

3.5.1 WYSIWYG

Most users are familiar with WYSIWYG systems, since they either use them or have
strong objections against them. Since the system directly shows how the content of
the document will look, it is a nice system for a novice user. Just enter the text
and add all the features. Once it looks like what you want, you can print it and
have a perfect copy of what you see on your screen. In practice, many WYSIWYG
systems[84, 16] have some problems with that. If different engines or fonts are used for
creating the output to the screen and the printer, it is very likely that the WYSIWYG
metaphor disappears, leaving the user with the task of solving a difficult problem:
if the screen shows what you want, but the printer does not print what you want,
you have to find a way to let the screen show exactly the same, but with the correct
printed version.

In a WYSIWYG system, users are often more concerned with the actual layout than
with the content of the document[39]. One of the problems that occurs due to this
layout centred method is that changing the document afterwards will be difficult
and time consuming, since all the effort that was put in the correct layout will be
destroyed. Problems often occur when the following methods are used to achieve the
correct layout.

• Using hard page breaks to move to the next page. The system automatically
divides the document into pages. If such a soft page break seems to be incorrect,
the user can insert a hard page break to get the correct result.

• Using tabs and spaces to align text vertically. Some systems do not have an
obvious way to achieve vertical alignment, so users apply this method, that
usually works in a WYSIWYG system.

40 CHAPTER 3. THE FUNCTIONAL DESIGN

• Using newlines to get correct line breaks. For most systems, a newline indicates
the end of a paragraph and it influences the standard line breaking algorithms.
By adding a newline, a paragraph is split into two paragraphs.

• Adding fixed references to document elements, such as sections, pages or figures.
When document elements are added, reordered or removed, all fixed references
have to be checked for correctness.

• Using font and size changes to create special headers. Often these changes are
not applied consistently and changing them afterwards is laborious.

If one of the above methods is used, all changes to the document require that the
complete document is checked for errors. For some systems, trying to print it on
a different printer means reviewing the document, since the typeface or paper size
might have changed.

For mathematical or technical documents, WYSIWYG systems are often very lim-
ited and do not provide the features needed for correct mathematical typesetting,
such as inline expressions, line breaks within expressions and references to other ex-
pressions. Furthermore, mathematical typesetting is very laborious due to missing
features like adjusted copy and paste operations. In many systems, mathematical
content is handled as a special image, which disregards the fact that, within a docu-
ment, mathematical objects are closely related to each other, something which is not
common for images.

The following methods are currently available to allow mathematical content in a
WYSIWYG editor:

• The mathematical content is entered with an equation editor using a markup
language. The user is presented with a window with two views on the expres-
sion: a markup view and a WYSIWYG view. The user is only able to edit the
markup view, while the WYSIWYG view is updated on demand. After the user
is finished, the content is inserted in the document and handled as a special
image. The equation editor of WordPerfect is an example of this approach.

• The mathematical content is entered with a WYSIWYG equation editor. The
equation is converted to some image format and inserted in the document.
This method works independent of the document editor, since most of them
support the use of images. The equation editor from K-talk is an example of
this approach.

• The mathematical content is entered as an OLE object. The document editor
allows general OLE objects as part of a document and a special equation editor
is able to handle mathematical objects. From the document editors point of
view, the mathematical object is just an OLE object, which usually implies
that the object is handled as an image. An example of an OLE editor for
mathematics is the Equation Editor from Microsoft.

3.5. WYSIWYG VERSUS MARKUP CODES 41

• The mathematical content is an integrated part of the document and no special
equation editor is needed. Due to the integration, the user never has to change
between different applications and different command syntaxes. Furthermore,
the editor can handle the equations as mathematical objects instead of images.
An example of an integrated environment is FrameMaker 5.0.

All the methods that need a special equation editor are very difficult to use if the
document contains many expressions, since copying existing expressions from the
document into the equation editor is cumbersome due to all the switching between
different programs.

3.5.2 Markup codes

In a markup language, the user edits a plain text with special codes to tell the
markup interpreter how the text should be typeset. With these markup codes, the
user has full control over the final layout, where the interpreter does a decent basic
job and the user has to fix a few details. The interpreter makes sure that the output
will be correct according the provided markup, which might adjust the default font
or the text size to obey a certain style. After the document is finished, the user
converts the document with the references to specific fonts, paper and printers. If
a different printer or font is selected, the interpreter can be used to reformat the
entire document according to those changes, giving warnings where problems might
have occurred. After running the interpreter, inspecting the output and adjusting
the markup a couple of times, the final output is considered correct.

The markup codes can also be used to automatically generate content where needed,
such as references to pages, sections and figures, a table of contents, a list of figures,
an index, a glossary or a bibliography. The interpreter calculates those elements
and adds them to the documents at the appropriate places. If the document would
change, these elements are recalculated to make sure that they are always correct.

Most markup languages are extendable by defining new markup codes. With these
new codes, the user is able to adjust the language to local needs, making sure that
the document is consistent.

A markup language seems to be a very good alternative to a WYSIWYG system.
However, to enter the text with the markup codes is often difficult and error sensitive.
Each user has to learn the markup language, which can be very complex and markup
errors occur very often, especially since the markup text is less readable compared
to the created output or a WYSIWYG system.

42 CHAPTER 3. THE FUNCTIONAL DESIGN

Decision 5
The advantages of WYSIWYG systems are combined with the power of
markup languages to decrease the number of cycles in the edit-process-check
loop. In the hybrid combination, the user can work in a quasi-WYSIWYG
document and add markup code in situations where the system does not
support the intended features. Since the document can contain markup
codes, the WYSIWYG parts of the document are converted to markup codes
and the markup interpreter is used to get the final document. The use of
structure editing can reduce the number of syntax errors in the markup
codes, since the structure can be used to generate correct markup.

3.6 Keyboard handling

For text editing, the keyboard interface is very important, as it is the main interface
to manipulate the text and perform operations on it. Since different text editors use
different keyboard interfaces and users are familiar with some text editor, Matsad
has to allow the user to adjust the keyboard interface, such that a specific keyboard
interface can be constructed or partially simulated.

For mathematical editing, the accessibility of mathematical symbols is important and
they should be available through the keyboard for easy access. However, the collec-
tion of mathematical symbols is very large and not everyone uses the same symbols.
Therefore, a user has to be able to adjust the keyboard interface to those symbols,
such that the most often used symbols are most easiest to access. Furthermore, some
users might prefer a mathematical mode for entering expressions rather than prefix
keys.

Some users prefer the keyboard rather than the mouse, so it has to be possible to
perform mouse operations through the keyboard as well. Especially the selection of
special symbols or mathematical notations should be possible through the keyboard
interface, as these will occur very often for certain subsets of symbols and notations.

Decision 6
The keyboard interface has to be highly adjustable to the preferences of
specific users. In fact, most of the input methods mentioned in section 2.1.3
should be supported by the keyboard handler.

As all the target users are familiar with the Emacs keyboard interface, that interface is
used as a start. Although Emacs is much too complex to integrate all its functionality
into Matsad, the most common operations from Emacs have to be available and
work similarly.

Chapter 4

The technical design

After the functional design decisions are made to determine how the user will interact
with the Matsad system, a technical design is needed to determine how the Matsad
system works internally. As the technical design is of no interest to the user, it
should not influence the functional design, unless the functional design cannot be
implemented without certain small sacrifices.

4.1 Text structures

The plain text of a document has to be stored in a way that it can easily be handled
and processed. Common approaches to storing editable text in memory are the
buffer-gap method and the list of lines method, as shown in figure 4.1

The buffer-gap method In the buffer-gap method, the complete text is stored
in a buffer as one large sequence of characters, with a gap at the location where the
edit actions take place. If the edit location changes, the gap is moved by moving
the text that lies between the original and the new location of the gap. Since edit
actions are usually local, the gap only has to move over small distances. If the gap is
completely filled, the buffer is expanded and a new gap is created. Since all characters
are handled equally, the buffer gap method is rather easy to implement.

The list-of-lines method In the list of lines method, the text is divided into lines
and each line is stored separately. Often, the length of a line is limited by some magic
number, like 255, and each line will use the same buffer size. Operations on lines,
like cursor movements, are simple to implement in this model, but other operations,
like searching or word wrapping, are more complicated.

43

44 CHAPTER 4. THE TECHNICAL DESIGN

ng, it will↵Murphy’s Law: If something can go wor

Buffer Gap

Buffer

Text Gap Text

 If something can go worng, it will

Murphy’s Law:

List of Lines

Figure 4.1: The buffer-gap and list-of-lines methods.

A combined method Both methods have their drawbacks, but it is possible to
combine the two methods, for example by dividing the text into logical parts and
using the buffer-gap method on those parts. A logical part might be a line, a para-
graph, a chapter or a memory block. The main advantage is that the buffer does
not need to be as large as in the full buffer-gap method and it might allow the text
to be larger, although such memory management should be a task of the operating
system. The main disadvantage is that two different memory models are used, which
complicates algorithms and introduces all kinds of exceptions on buffer boundaries.

Decision 7
Since the buffer-gap method is the easiest method to implement and has no
major drawbacks on the performance of the basic edit actions, this method
is used to store the plain text.

The buffer-gap method is implemented with the following type:

BufferType = {
buffer : String; % contains the text
size : integer; % size of the buffer
gap : integer; % size of the gap
gappos : integer; % position of the gap

}

4.2. CHARACTER ENCODING 45

4.2 Character encoding

The character encoding is very important, as technical documents contain a lot of
special symbols. To be able to handle those symbols correctly, the character en-
coding either has to contain them or has to support a means of adding them. The
only official character encodings that contain sufficient special symbols or allow addi-
tional symbols, are the Unicode and ISO-10646 encodings[77, 69], which are similar
and designed to (eventually) contain all the characters used around the World. By
using the Unicode encoding internally, it is possible to access almost every symbol.
However, there are a few disadvantages: Unicode is not widely supported yet and it
requires double-byte strings to handle it efficiently (if UTF16 is used). On the other
hand, since the number of required symbols easily exceeds the magic number 256, a
double-byte encoding is needed anyhow. Furthermore, the use of a private encoding
would also not be supported, with the main difference that support for it is unlikely
to be added to operating systems or toolkits at all.

Decision 8
The Unicode encoding is used internally to be able to support all the math-
ematical symbols.

Although Unicode support is still missing on most UNIX systems, there is a move-
ment towards Unicode support in several systems, toolkits and programs. Until
sufficient support for Unicode is available, the system should include basic support
on its own.

Unicode contains large collections of characters which are very difficult to support
correctly, such as the Arabic, Hebrew and Japanese writing systems. Supporting
these correctly is not the main target of this project, but it would be nice if support
for these scripts could be added in the future.

An earlier version of the Matsad system[80] used a font-based encoding. Although
it worked correctly, there were compatibility problems when fonts were added. For
example, different fonts could contain the same symbols, which results in strange
behaviour of search functions, as visually equal symbols are not equal within the
system. In general, encodings which combine several encodings by using escape
sequences, as in ISO-2022, Extended UNIX Code (EUC) and the wide characters
of UNIX [70, 53, 32], are difficult to extend with new characters and difficult to
manipulate properly due to state information.

4.3 Mathematical expressions

For mathematical expressions, the use of some kind of tree makes manipulating ex-
pressions easier, since the structure is always available. What kind of trees to use

46 CHAPTER 4. THE TECHNICAL DESIGN

depends on the operations that are needed and the content that should be allowed1.
Since the information that will be stored is not known a priori, the tree structure
should allow many common mathematical structures and easy selection and manip-
ulation. Certain mathematical structures, such as arrays and graphs, might not be
easy to select or manipulate when stored as a tree, but for such structures, there
should at least be an improvement compared to the use of plain text.

In general, a tree structure consists of one root node which defines the complete
expression. Each node in the tree contains a collection of subnodes and some in-
formation on how to combine those subnodes. In a tree, it is not possible to have
cycles, since this would result in an infinite recursive structure, which is impossible
to display.

Binary trees In a binary tree, each node has at most two subnodes and the in-
formation to combine the subnodes is usually fixed and known in advance. Since
a tree can only contain two subnodes, the structure is very easy to implement and
manipulate. Figure 4.2 gives a visual representation of the expression A ∗ (B + C).
In a tree, the structure of the expression is clear and parentheses are not needed.

+

CB

A

*

Figure 4.2: The binary tree representing A ∗ (B + C).

Certain mathematical structures are difficult to represent with a binary tree. For
instance, the expression a ≤ b < c cannot be stored in a binary tree in a logical
sense, since it is an abbreviation of the expression a ≤ b ∧ b < c. A user might
want to select either a ≤ b or b < c in the abbreviated expression, which would not
be possible with binary trees unless a sophisticated reshape mechanism is available.
Other structures need more than two arguments to be valid, such as most of the large
operators, like

∑N
i=k+2 x

i, where three or four arguments are required.

N-ary trees In an n−ary tree, each node has up to n subnodes, with information
on how to combine those subnodes. Since the number of subnodes is still fixed, it is
still rather easy to implement. Figure 4.3 shows an n-ary tree for the previous sum

1The design of trees was constructed in co-operation with Olaf Weber, as part of a combined
masters thesis[80]

4.3. MATHEMATICAL EXPRESSIONS 47

expression, where the summation node contains four subnodes and the equals sign is
part of the summation node.

2 x

i ^

ik

N+

Σ

Figure 4.3: An n-ary tree.

A fixed number of subnodes might not be enough. Mathematical calculations often
involve very large expressions, consisting of a list of similar expressions, separated
by relators. Since the number of subexpressions is not known in advance, an n-ary
tree will not be sufficient to store those expressions. Furthermore, different relators
might be involved, which have to be part of the node.

Rose trees In a rose tree, each node contains a list of subnodes. Since the list of
subnodes is not restricted by any size, each node in the tree can contain an unlimited
number of subnodes. It seems that rose trees do not have limitations with respect to
the common mathematical notations, since all subexpressions can be stored in the
list of subnodes and the node itself can contain the information on how to combine
these subnodes in the correct manner.

2 x

i ^

ik

N+

Σ

Figure 4.4: A rose tree.

Figure 4.4 shows the rose tree equivalent to the n-ary tree from figure 4.3. The
horizontal links between the nodes construct the list of subnodes, while the vertical
links create the tree structure. To allow expressions like a + b + c and a ≤ b < c,

48 CHAPTER 4. THE TECHNICAL DESIGN

the binary operators are moved one level down, to be part of the list of subnodes, as
shown in figure 4.5. In this example, the superscript operator in xi is not regarded

k x

i

i2

N

+

Σ

^Expr

Figure 4.5: A rose tree, enabling larger expressions.

as an infix binary operator, as it behaves differently. Due to its two-dimensional
layout, the left expression of the operator would require parentheses, while the right
expression doesn’t, as in (x+ 1)i+1. Furthermore, as an infix operator, it would
require that the right expression should be displayed in a small font, which requires
that any node can change the appearance of non-subnodes. It would be possible to
build some mathematical knowledge about such operators into the system, but that
would result in hundreds of exceptions, as the user is allowed to extend the system
with new notations and operators.

Decision 9
The mathematical expressions are stored in a rose tree, where the binary
operators are part of the list of subnodes.

Each node has to contain some information on how the subnodes are combined,
which is stored in a formatting string. The formatting string contains place holders
indicating where the subnodes have to be inserted. For identifiers, the string consists
of the name of the identifier. For operators, it consists of the definition of the operator
and for expressions, it consists of a list of place holders. An example is shown in
figure 4.6, where the small rectangles indicate the place holders.

4.4 Combining text and expressions

A document can contain both text and expressions and there needs to be some way
to combine these two objects. Due to the flexibility requirement, the user should
be able to combine text and expressions freely. That is, an expression is allowed to
contain text and the text is allowed to contain expressions.

4.4. COMBINING TEXT AND EXPRESSIONS 49

2+k +

Ni

x i

=

l

Σ

Id

Op

IdId

OpId

Id Op

Expr

Id Op

Id

Figure 4.6: A rose tree with formatting labels at each node.

To allow text inside expressions, the text should be handled as a valid subnode of
an expression. This can easily be achieved by defining a subnode for text, which
contains the text itself as formatting information.

To insert expressions into the text, the text might be split up into two parts with the
expression in between, or the text might contain place holders to indicate where the
expression needs to be inserted. Since a mathematical text usually contains many
expressions, the first method would divide the text into many small pieces, which
removes the advantages of the buffer-gap method. Using meta-symbols does not have
this disadvantage, but it introduces problems related to linking the expressions to the
right meta-symbols. However, to enable code reuse and to keep the document model
simple, all the nodes are handled in the same way by expanding the structure where
needed. Since the formatting string contains place holders to indicate subnodes, the
text will contain place holders to indicate positions where expressions have to be
inserted. Since the buffer-gap method is used to store the text, this method will also
be used to store the identifiers and expression sequences.

Decision 10
Text is stored as a special kind of node from a rose tree, where the expressions
in the text are stored in the list of subnodes and the text itself is used as the
formatting information.

The main advantage of this resulting document model is the fact that most text
operations can be applied to expressions without modifications. For text, a selection
consists of a sequence of characters. For expressions, a selection consists of a sequence
of expressions and operators, which are represented by special characters, the place
holders.

By treating text as a special node, one general node structure suffice to store the
different types of nodes:

50 CHAPTER 4. THE TECHNICAL DESIGN

NodeType = {
format : BufferType; % contains the text
kind : integer; % kind of node (Expression,

% Operator, Identifier, Text)
first : NodeType; % first sub-node
right : NodeType; % node to the right in the list

}

4.5 Displaying a document

To display a document, the information in each node should be sufficient to make a
correct projection from the list of subnodes to some output medium, for example the
screen or a file.

The standard method to generate formatted output from a tree is by doing a tree
traversal with recursion, as the output of a tree consists of the output from the
subtrees, separated by formatting information from the root node. This method
works for both the screen output and file output. However, a document can get very
large and regenerating the screen output after every edit action would take too much
time. To optimise the regeneration of screen output, the recursive tree traversal is
replaced with a non-recursive traversal, which can start and stop at any position in
the tree.

Decision 11
The tree drawing algorithm uses a non-recursive algorithm to enable partial
screen updates.

In general, there are two methods to store locations in trees, such that they can
be used to walk through the tree and that they store the location uniquely. The
first method stores the path from the root to the referenced node, usually by storing
the sequential position of each subnode. These paths are rather difficult to store
and manipulate. The second method only stores the referenced node, while the
tree contains the information to extract the path from that node to the root node,
which makes operations on paths from the root node to the referenced node more
difficult. Furthermore, the tree has to contain extra information and store a reference
to the parent node in each subnode. However, in the selected tree structure, either
the subnode or the formatting string has to contain information about the position
where the subnode has to be used. By storing the information in the subnode, that
information can also be used to construct the path from a node to the root node.

Decision 12
A position in a tree is stored as a reference to the specific node. The tree itself
contains the information to walk through the tree in the form of references
to parent nodes.

4.5. DISPLAYING A DOCUMENT 51

String with some holes

Figure 4.7: The final tree structure.

Figure 4.7 shows the general tree structure. A node contains a string with holes which
determines how the tree is displayed and where the subnodes have to be added. In
this example, the string contains four holes and four subnodes. Each node contains
references to the first and last nodes of the list of subnodes. Since each node is also
part of a list of subnodes, a node also contains references to the next and previous
nodes in that list, thus forming a doubly linked list of subnodes. To be able to
walk through the tree, a node contains a reference to the parent node, which has
as attribute the position of the place holder within the string of the parent node.
These parent references are drawn with dashed lines, as they might change due to
modifications in the string of the parent. The type definition of such a reference,
called a Marker, is:

MarkerType = {
node : NodeType; % the node it refers to
pos : integer; % position within the format string
next: MarkerType; % next Marker referring to the same node

}

The type definition of a node then becomes:

NodeType = {
format : BufferType; % contains the text
kind : integer; % kind of node
father : MarkerType; % parent reference
first,last : NodeType; % first and last sub-node
left,right : NodeType; % left and right neighbors
list : MarkerType; % list of markers referring

% to this node
}

The list attribute is used to update the markers that refer to this node, which
is needed when the format string of this node changes. The list contains all the
father markers from the subnodes and possibly some markers related to selections
or caching.

52 CHAPTER 4. THE TECHNICAL DESIGN

The non-recursive traversal takes a marker and increases it according to the visual
representation. The following pseudo-algorithm gives the general structure of such a
traversal, which starts at marker A and ends in B, assuming that A and B are valid
markers with the same tree:

|[p := A

; DetermineState(p)
; do p 6=B →

Process(p.node.format .buffer [p.pos])
;if p.pos = p.node.size → p := p.node.father

;p.pos := p.pos + 1
2 IsPlaceHolder(p.node.format .buffer [p.pos]) →

p := Subnode(p)
2 else → p.pos := p.pos + 1
fi

od

]|

Here, DetermineState(p) restores the state for a given marker p, Process(c) changes
the state according to the character c, IsPlaceHolder(c) determines whether character
c is a place holder, Subnode(p) returns the marker referring to the first character in
the node attached to the place holder at marker p. Figure 4.8 shows the traversal
path though the tree representing “Einsteins formula E = m · c2 relates energy to
mass.”, where every node in the tree is represented by its formatting information.
With the non-recursive algorithm, the traversal can start at any location within the
tree and move forward. The algorithm for moving backwards is similar.

Since screen updates occur very often, it is the first location for optimisation, as a
flickering screen due to updates is very annoying. The following methods have been
used to improve the screen updates:

• When text is entered, only the line with the changes is updated. Usually the
first part of the line will not change, so that part is only used to calculate the
correct positions, but it is not actually redrawn.

• When the user selects a part of the document, only the part that visually
changes has to be updated.

• It is possible that the height of a line changes due to an additional character,
which requires that the complete line has to be updated, together with the text
below that line. To handle this correctly, the height of each line is cached for
reference.

• When the user clicks somewhere on the screen, the mouse position has to
be translated into a position within the document, which is known as origin

4.5. DISPLAYING A DOCUMENT 53

·m

2c

=E

relates energy to mass.Einsteins formula

Figure 4.8: A traversal through a rose tree

tracking. Instead of caching all the information that is needed to update the
screen, the screen update function is used to trace the given position. The
cache with the line heights is used to improve its performance.

• Since tabbing positions and margins are important for many layout structures,
but difficult to reconstruct dynamically, tabbing positions are also cached, just
like the height of each line.

• To determine the correct state of the screen update routine, such as which font
is used, only formatting information on the path to the root node is taken into
account. This means that formatting information of a node only affects the
subtrees of that node.

Other methods for improving the screen update time are not used, due to their
memory requirements and complexity. These methods include:

• The results of the screen update function could be cached, such that the next
time, the layout calculations are not needed. When such a cache is used, it
will contain a copy of the document that is displayed and this copy has to
be synchronised with the original, which becomes very complex. Furthermore,
this copy would require a large amount of additional memory, especially for
the mathematical content, which requires font switches and additional layout
information.

• The window system, X11 in this case, can handle some of the screen updates
by keeping a copy of the screen[51]. However, there is no guarantee that the

54 CHAPTER 4. THE TECHNICAL DESIGN

window system will actually support this, as it requires sufficient memory, which
might not be available. Therefore, the application needs to have a fall-back
algorithm, in case this support is missing.

• The screen update could use the double buffering method[21], where the screen
update is first drawn in a separate image and then copied to the real location.
Since the window system can be used over a network, the separate image has to
be part of the window system, otherwise the image has to be transported over
the network. Again, the window system might not have the required memory
to support this, and a fall-back algorithm is needed.

Since a fall-back algorithm is needed, that algorithm has to be optimised in order to
improve the screen update time. However, if this fall-back algorithm is fast enough,
it can be used for all purposes and other methods are not needed.

The optimised algorithm is fast enough for normal purposes and works sufficiently
in a variety of environments: low-end PCs with Linux or FreeBSD, X terminals
with limited memory, remote X sessions (over a modem) and X emulators under MS
Windows.

4.6 Templates

The tree is formatted according to the strings contained in each node, so the math-
ematical operators and notations have to consist of at least some formatting string.
Entering these formatting strings by hand will lead to errors and inconsistencies.
Instead, a method is needed to faithfully reproduce these formatting strings with-
out adding complexity to the interface. In accordance to the templates used for
repeatedly drawing the same shapes in civil engineering, templates are introduced to
repeatedly apply the same formatting strings.

Decision 13
Mathematical operators and notations are represented by templates, which
contain the information needed to format those entities correctly.

In order to format combinations of operators correctly, the precedence of the operators
is important, as it determines where the parentheses have to be added. The system
should add these parentheses automatically, but the user should be able to overrule
the system, as the user is in control.

For better readability of large expressions, the spacing around operators is important,
as it suggests the structure of the expression. Although the use of default spacing
around certain operators improves the readability, such as the spacing rules in LATEX,
the spacing should depend on the size and structure of the expression, as incorrect
spacing would suggest the wrong structure, thereby introducing confusion to the
reader. Therefore, each operator can be surrounded by default spacing, the system

4.6. TEMPLATES 55

can add spacing according to the structure and the user can overrule the spacing
that is calculated, as the user is in control.

Instead of copying the template specific information into the tree structure for each
instance of the template, a reference to the template is used. This will reduce the
memory consumption, since the formatting strings are shared, but has the drawback
that there will be extra complexity due to the two different memory models, namely,
the editable and uneditable formatting string. However, allowing the user to modify
copied formatting strings would certainly introduce inconsistencies in the appearance
of operators and notations and it should be prohibited anyhow.

To allow templates to appear within the tree structure, the following additional
attributes are needed:

NodeType = {
...
stencil : boolean; % does the node use a template?
template : pointer; % reference to the template
opspace : integer; % user added operator spacing
parens : boolean; % add parentheses?

}

4.6.1 Versions

Certain operators can be presented in different ways and the user has to be able to
select the appropriate presentation for a given context. For example, the division
operator can be presented as /, ÷ or and the integral notation depends on whether
it is definite or indefinite and whether it is used inline or displayed on a separate
line. Adding support for these different presentations is easily achieved by allowing
templates to have multiple formatting strings and allowing the user to switch between
those formats.

Decision 14
A template can contain several versions to allow multiple presentation of the
same mathematical concept.

As an example, the integration template is used. The following table shows some of
the versions that such a template could contain.

56 CHAPTER 4. THE TECHNICAL DESIGN

Description Layout

Indefinite, displayed integral
∫

2∂2

Indefinite, inline integral
∫

2∂2

Definite, displayed integral
∫ 2

2

2∂2

Definite, inline integral
∫ 2

2
2∂2

It is possible to add more versions, such as contour or double integrals.

4.6.2 Stencils

Since the mathematical context is not known in advance, the user and maintainer
have to be able to create or adjust templates. To manage all those templates, related
templates can be collected in files, which are called stencils, analogous to the sheets
with templates cut out of them, used in chemistry and civil engineering.

Decision 15
Related templates are stored in stencils.

How these templates, versions and stencils are used is the responsibility of the user
and maintainer. The user can decide to create a template with equality and inequality
as two versions of that template to be able to switch between them more easily.
Mathematically, these two relations are not two representations of the same concept,
but the user has the choice to create two different templates, one for each relation.

The templates and stencils are similar to macros and style files in LATEX, where a
macro is used to abbreviate a common construct and a style file combines related
macros for easy management.

4.6.3 Manipulating templates

Since the user might be working in a field where notational conventions change, the
system has to allow the user to modify the templates and versions of templates. This
has implications on how templates are used internally and how documents are stored.
The following problems might occur:

• A template can be modified while it is used in a document. After the modifi-
cation, the document has to be updated to use the modified template.

• The number of place holders in a template might change. If a place holder is
removed, the content of that place holder is lost. If a place holder is added, all
occurrences of the template will contain empty place holders.

4.6. TEMPLATES 57

• A template might be modified while a document is not loaded. For consistency
reasons, the occurrences of that template in such a document should be updated
when the user visits that document. Since modified templates might corrupt a
document, the user should also be able to load the document without updating
the modified templates.

• Old documents might still use templates which are not accessible anymore in
any of the available stencils.

• Several stencils might contain the same template. If a template is updated, it
should be updated in all stencils.

• The number of versions can be changed. For example, a version can be removed,
which could corrupt the document.

The same problems also occur in markup languages that allow the user to define
macros, such as LATEX, troff or XML. If a macro is modified or removed, the document
that uses it can become incorrect. Similar problems occur with user-defined functions
in programs or libraries.

When a template is modified, the document can be updated by correcting all ref-
erences to that template. Since a user might be working on several documents at
the same time, updating all those references might take some time. By using an
intermediate table, all the references can be updated at once by updating that table.
Moreover, this requires that no additional actions are needed when templates are
changed.

If a place holder is added to a template, any occurrence of that template will require
an additional argument to fill that new place holder. As it is impossible to fill in the
place holder automatically, the user has to fill it in later. To use the table as suggested
in the previous paragraph, the subnode that corresponds to the place holder has to
be added automatically when needed.

If a place holder is removed from a template, the content of that place holder will be
lost or at least become inaccessible. As it is possible that the place holder has been
removed by accident, the user should be able to restore the original state by restoring
the template. Therefore, the content of a disappearing place holder is not removed
from the tree. Instead, it will remain inside the tree until it is actually removed.
Therefore, the tree does not have to be updated when a place holder is removed.

If a version of a template is removed, any occurrence of that version in a document
will become incorrect. Therefore, the user should remove such occurrences before
the version is removed from the template. If the removed version is still used in
a document, its occurrences will be replaced by a different version of the template,
which might corrupt the document. Therefore, users should be aware of the problems
that might arise when a version is removed from a template.

If a template appears in a document that is not loaded at the moment that the
template is changed, it should be possible to update the document while it is loaded
in order to have a consistent use of templates. To achieve this, each template will

58 CHAPTER 4. THE TECHNICAL DESIGN

receive a unique number, which is used during the lifetime of that template. A
document on disk will contain that unique number to allow correct retrieval of the
used template.

If a user changes the order of versions within a template, the system has to be able
to retrieve the correct version when the template is used. Therefore, each version
from a template will receive a unique number on construction, just like the template.
With these unique numbers, the system is able to decide when two templates are
equal and which versions are related.

If templates change over time, old documents get unmanageable due to missing or
incorrect templates. To ensure that old documents remain usable, each document
will include the templates that are used in that document. When the document is
loaded, it is possible to replace the templates from the document with the ones from
the stencil files. However, if the stencil files and their templates have changed, the
document could be incorrect according to these modified templates. In that case, the
document can be loaded without any stencil files, such that the templates from the
document itself are used.

It is possible that a template appears in multiple stencil files. If a template is updated
in one of the stencil files, then it should be updated in all of them in order to keep
documents consistent. When all the stencils containing the modified template are
loaded, this is not a problem, as all stencils can be adjusted at the same time.
However, if there exists a stencil with the modified template which is not loaded,
that stencil has to be synchronised once it is loaded. Since a stencil might also be
used as a backup for a template when the user is experimenting, it should be possible
to load a stencil without synchronising it.

To handle all of the above problems, the system contains a database of templates,
where the unique number of the template is the key to the database. The database
contains all the templates that are needed to handle the documents and stencils.
Since documents on disk can contain templates, some of the templates in the database
might not be part of any stencil. The following strategy is used when a template is
loaded from disk, either from a document or from a stencil.

• If the template does not appear in the database, then it is added to the
database.

• If the template does appear in the database, but it is not part of any of the
loaded stencils and it originates from a stencil, then the template from the
database is replaced by the new template.

• Otherwise, the template is ignored and the one from the database is used.

Thus, templates from stencils have precedence over templates from documents. As
it is possible to load a document when no stencils are loaded, the templates from the
document are always accessible.

The precedence of stencils over documents introduces a new feature, although it is
quite difficult to use. Different stencils can contain templates with the same unique

4.7. GENERATING MARKUP OUTPUT 59

number, but these templates might be different in each stencil. By switching between
the different stencils, different templates can be used for the same document, thereby
changing the appearance of the document. The stencils are in this case used as style
sheets, defining how templates should be displayed.

4.7 Generating markup output

Mathematically oriented documents can be edited on screen in a readable fashion.
However, a user might want to make a hard copy of the document, submit it to a
journal or conference, make it available on Internet or send it to a colleague. This
requires that the document is converted to a suitable format, for example, PostScript
to make a hard copy or LATEX to submit it.

For text, this conversion is straightforward. Since the user is allowed to add plain
markup sequences to the text, the system assumes that the text either contains
correct markup sequences or does not contain any markup sequences at all. Either
way, plain text is not modified while the markup output is generated, unless some
characters are not available in the character encoding of the markup language.

For the mathematical part of the document, which is created using the templates,
it is impossible to generate correct markup output without at least some hints from
the author of these templates, as the information that is used to display a template
on screen is usually not sufficient. Therefore, the author of a template has to define
the markup that has to be generated for that template, where the place holders are
used to indicate the position of the arguments. This markup definition resembles the
formatting information that is used for displaying a template on screen. Therefore,
they are both called formats. Thus, the screen format defines how a template is
displayed on screen, while the output format defines how a template is converted to
the output medium or markup language. To remove the burden of defining the output
format for each and every template, the system is able to generate the output format
automatically if the screen format is not too complex. When this automatically
generated output format is incorrect, a user who is fluent in the markup language
can modify the output format where needed.

For the target users, the LATEX markup language is most important, as it allows high
quality output and it is used by technical journals and conferences. Therefore, the
generation of LATEX output has received extra attention, as that output should be
error free and ready to submit to a journal. This last requirement indicates that the
generated LATEX markup should be similar to hand-written LATEX markup and that
the use of additional macros is restricted. This complicates the LATEX generation
algorithm, due to the following features in LATEX:

• LATEX uses a math mode to typeset mathematics correctly.

• There are several ways to switch between text mode and math mode. For
example, the commands \begin{math}, $, \(, \begin{displaymath}, $$, \[
and \begin{equation} can be used to enter math mode.

60 CHAPTER 4. THE TECHNICAL DESIGN

• The user can define new commands that also switch between the different
modes.

• Certain symbols are only available in math mode.

• Other symbols are only available in text mode.

• Switching between the different modes might introduce additional spacing.

• It is possible to nest the different modes, for example to have text within
mathematics within text.

Since the use of math mode is rather complex and error sensitive, the output generator
tries to solve the problems that are introduced by these features. To release the user
from the burden of knowing which symbol can be used in which mode, the output
generator will switch between the two modes where needed. To achieve this, the
generator has to keep track of the current mode, which is almost impossible due
to the freedom of entering LATEX markup in plain text. Therefore, the generator
assumes that for each expression in the text, the generator has to switch to math
mode and for all text within an expression, it has to switch to text mode. Since the
output format of a template might contain LATEX markup to switch to a different
mode, the author of the template can notify the output generator of such an event,
to ensure that the generator works correctly. When a symbol is used which is not
available in the current mode, the generator will temporarily switch to the correct
mode and add that symbol. Since each switch to a different mode might introduce
additional spacing, the number of temporary switches is minimised by combining
them where possible.

As the markup output is generated less often and performance optimisation is not
an issue, the output generation algorithm is recursive, where the output format is
used as a guideline for the recursive calls. In pseudo code, the generation algorithm
GenerateOutput(A) behaves as follows, assuming the output for node A is needed.

|[s , i := FormatString(A) , 0
; if IsTextNode(A) → EnterTextMode()

2 else → EnterMathMode()
fi

; do s[i]6=0 →
if IsPlaceHolder(s[i]) →

GenerateOutput(Subnode(s[i]))
2 else → Output(s[i])
fi

;i := i+1
od

; if IsTextNode(A) → LeaveTextMode()

4.8. THE WINDOW ENVIRONMENT 61

2 else → LeaveMathMode()
fi

]|

The function FormatString() returns the format string for a given node. The func-
tions EnterTextMode() and EnterMathMode() are used to indicate the preferred out-
put mode, as used by the Output() function. As it is possible to combine text and
mathematics freely, these functions use a stack of preferred modes to switch correctly.
The functions LeaveTextMode() and LeaveMathMode() are used to operate correctly
with the stack of modes. The function Output(c) generates the markup output for a
character c and looks as follows:

|[if Macro(c ,PreferredMode)6=Empty →
newmode ,macro := PreferredMode ,Macro(c,PreferredMode)

2 Macro(c ,TextMode)6=Empty →
newmode ,macro := TextMode ,Macro(c,TextMode)

2 Macro(c ,MathMode)6=Empty →
newmode ,macro := MathMode ,Macro(c,MathMode)

2 else → newmode ,macro := PreferredMode ,DefaultMacro
fi

; if CurrentMode 6=newmode → SwitchToMode(newmode)
2 else → skip

fi

; Print(macro)
]|

The function Macro() returns the markup macro for a given character and mode.
The function SwitchToMode() switches to a new mode by adding the correct markup
to the output and sets CurrentMode to the new mode. The function Print() adds a
string to the output and keeps track of the correct termination of markup macros.

4.8 The window environment

The standard window environment is used to display the documents and stencils.
As the user might be working on several documents and stencils at the same time,
it should be possible have multiple documents and stencils open. There are several
models which achieve this, as shown in figure 4.9.

• A single document interface is used to display a document. When the user
switches to a different document, the content of the window is replaced by the
new document. At all times, only one document is visible, which requires some

62 CHAPTER 4. THE TECHNICAL DESIGN

Multiple Document

Single Document Split Document

Document1

Document2

(d)

(b)(a)

(c)

Figure 4.9: Different window interfaces:
(a) single document interface, (b) split document interface,

(c) multiple document interface, (d) multiple top-level interface

cognitive overhead when something has to be copied from one document to
another. Since stencils are used as a source for copying templates, this model
is not very useful.

• A split document interface is used to display several documents. The user can
split the window horizontally or vertically to create several subwindows, one
or each document or stencil. Since the user has to be able to manipulate these
subwindows, some internal window management is needed to open, close, split
or combine subwindows, which is likely to differ from the window management
that is used for the normal windows. Furthermore, this model requires the
user to split a rectangular window into a suitable configuration, which might
be quite difficult.

• A multiple document interface (MDI) is used to display the several documents,
where each document is displayed in its own window and these windows are
kept together with one top-level2 window. The user can manage the document
windows similarly to normal windows and is able to position windows more flex-
ibly. The top-level window provides the general functionality of the program,
for example, to open new document windows or to perform some action. This
model is regarded as better than the previous models, as it allows the user to

2A top-level window is a window which is manageable by the window manager. As a result, it
might appear in task bars and icon managers.

4.8. THE WINDOW ENVIRONMENT 63

handle multiple documents with the same principles as managing the window
environment. The MDI is commonly used in the MS-Windows environment.

• A multiple top-level interface (MTI) is used to display the several documents,
where each document is displayed in its own top-level window. The main dif-
ference with the MDI is that the top-level window to keep everything together
is missing. Instead, the user is initially presented with one main window, which
provides the functionality to open additional windows. Since all the windows
are top-level windows, the user can use the general window management rou-
tines to manipulate windows. Although the model is similar to the MDI, it is
more flexible with respect to window management, as there is no restriction to
place everything within a single rectangular window.

We want to have a flexible system with multiple documents and stencils, so the choice
would be either the MDI or the MTI. On the platform of choice, UNIX with the X
Window system, the MDI is not common and developing one would be non-trivial,
due to the variety of window managers with their specific behaviour. By using the
MTI, the user is free to choose a familiar window manager, which might have special
support for MTI applications, such as virtual desktops or icon grouping.

Decision 16
The multiple top-level interface is used to allow multiple documents and
stencils to be open at the same time. The management of the top-level
windows is left to the window manager, which can be selected by the user.

There are several ways to build a window application:

• With an integrated environment, the application can be constructed by copying
window elements onto an empty window and the interface can be constructed
very quickly in a WYSIWYG way. For the actual functionality of the applica-
tion, the developer has to fill in the functions that are called when buttons or
menu items are selected. Such integrated environments, like Devguide, are not
very common for the X windows system and they are usually platform specific
and restricted by licenses.

• With a toolkit[74, 15, 52, 26], the low-level details of the window elements
are handled by the toolkit, but these elements have to be combined by using
a programming language. A toolkit can shorten the development time when
standard elements can be used. Furthermore, the application will have the
same look-and-feel as other applications developed with the same toolkit.

• With a low-level library[50], everything has to be constructed from scratch,
but the developer has full control over the final result. If non-standard window
elements are needed, the low-level library is the only way to construct these.
Usually, it is possible to access the low-level library when a toolkit is used, to
enable the construction of additional window elements.

64 CHAPTER 4. THE TECHNICAL DESIGN

Since integrated environments were not available on the intended platform at the
time the decision had to be made, the choice was to use either a toolkit or the low-
level libraries. Although the use of a toolkit would have shortened the development
time, the special features that are needed to allow mathematical formulae on window
elements, were missing in every toolkit available at that time. Therefore, the toolkit
that would have been used, would have to be extended with additional elements,
which required the use of the low-level library.

Selecting a toolkit is a tricky problem. The selected toolkit will impose a particular
look-and-feel upon the application and since different applications use different toolk-
its, it is unlikely that all applications will have the same look-and-feel. Furthermore,
a toolkit is often related to a window manager to create a consistent interface, such
as the Openlook and Motif toolkits and window managers[74, 37]. If such a toolkit is
used in combination with a different window manager, the interface is not consistent
anymore and strange behavior might be the result. For example, many Openlook
applications don’t provide an option to end it, as the window manager is supposed
to provide that function. However, with some window managers, ending such an
application becomes clumsy. Due to all the available toolkits and window managers,
there is no consistent look-and-feel within the X window environment and a selection
based on the look-and-feel is biased. Another selection criteria could be the license
under which the toolkit can be used, as certain toolkits cannot be distributed freely.
However, freely distributable toolkits are usually not supported by a company, which
means that you might have to solve certain problems with the toolkit yourself.

Since the number of necessary window elements is rather limited and most of them
have to be constructed from scratch, the decision was made not to use any toolkit at
all. Some knowledge of the low-level library is already needed for these special window
elements and constructing a concise personal toolkit would suffice for most purposes.
The needed window elements include buttons, scrollbars, menus and canvasses, each
of which is easy to construct with the low-level library. Furthermore, by constructing
a personal toolkit, we have full control over the final layout and we can give it a certain
look-and-feel. Since the functionality is more important than the appearance, this
toolkit is kept rather simple. For portability reasons, it does not use any fancy 3D or
colour effects, as it has to be usable on monochrome or grayscale monitors as well.

Decision 17
Instead of using an existing toolkit and extending it with new elements,
a personal toolkit is constructed using the low-level libraries. Since the
functionality is more important than the appearance of the interface, this
toolkit will not contain features where they are not needed.

When there is some consensus on the use of toolkits and window managers, the
knowledge of the low-level libraries can be used to extend some of these toolkits
with new elements. Then, everything can be ported to the extended toolkit. An
experimental port to Windows95[7] shows that the functionality is well separated
from the interface and that such a port should not be too difficult.

4.8. THE WINDOW ENVIRONMENT 65

4.8.1 The window elements

The private toolkit only supports a small collection of window elements, which are
sufficient to construct an interface. It is always possible to construct additional
elements or improve the existing ones, but as stated earlier, the functionality is more
important than the appearance. Therefore, the toolkit is similar to the standard
X Toolkit[52], which is used by several common or related X applications, such as
xterm, xman, ghostview and xdvi.

The button element is used to either call a function or open a popup menu, depending
on which mouse button is used. When a popup menu is available, the default function
from that menu will be used if the menu is not to be displayed. The button contains
a description of the functions that can be found on the menu, which might be of a
mathematical nature. When the button is used, visual feedback is given to indicate
whether the function will be called or not. If the popup menu has to appear, it will
appear before the mouse button is released, which allows the user to select a function
from the menu in a single action.

A popup menu consists of a title and a list of items, each describing either a function or
a submenu. When the item is selected, the related function is called or the submenu
is opened. By dragging the mouse pointer across a popup menu, submenus can be
opened in a single action. As with buttons, the description of an item might consist
of mathematical content. Since certain menus might be used very often, it is possible
to pin-up a popup menu by selecting its title, which allows the user to select items
from that menu more easily. This pin-up feature is also available in the Openlook
toolkit.

The scrollbar is used to navigate through documents which are too large to fit on the
screen at once. The scrollbar behaves similarly to the scrollbars from the X Toolkit.
By clicking with the first mouse button, the line in the document at that position
will move to the top of the window. By clicking with the second mouse button, the
document will move to the relative position within the document, according to the
position within the scrollbar. By clicking with the third mouse button, the line at
the top of the window will move to the position of the mouse. By dragging with the
second mouse button down, the document can be move around to visually search for
something. Since LATEX is used to divide a document into physical pages, it is not
possible to scroll through a document page by page in the normal sense. However, it
is possible to scroll screen by screen, by clicking with the first or third mouse button
on the lowest part of the scrollbar.

For entering small parts of text, such as a file name or option, a one-line text edit
element is constructed. For consistency, it is possible to enter mathematical symbols
in those text elements as well.

To allow easy selection of documents, a file selector is created by combining the
previous elements. The filename is either entered in the text edit element or can be
selected from a list of files and directories. To be consistent with many command line
shells, the text edit element supports filename completion, username expansion and
environment variable substitution. To improve the browsing of files, the file selector

66 CHAPTER 4. THE TECHNICAL DESIGN

separates the directories and files into two lists and these lists are connected to the
filename completion from the text edit element. Usually, the user is only interested
in files with a certain extension, so it is possible to specify that extension. Once the
correct filename is selected, the user can click on one of the buttons to perform some
action on the file.

For displaying documents, an element is constructed which can be used as a canvas.
The display algorithm for documents will draw the content on that canvas. Since a
document can get very large, the canvas is used together with a horizontal and vertical
scrollbar and with a number of buttons to perform document specific actions.

Mathematical notations often use symbols which do not appear on the average key-
board. To allow easy access to those symbols, a symbol palette is constructed which
can display several pages of special symbols. By clicking on a symbol on the palette,
it will be inserted at the position of the cursor. Since not everybody will need the
same symbols, it is possible to adjust the symbol pages with a configuration file or
interactively. For keyboard oriented users, it is possible to access the symbols by
defining keyboard shortcuts for the often used symbols.

To access all the stencils and templates, a template palette is constructed, which will
display all the templates from a stencil. By clicking on a template in the palette, that
template will be inserted at the cursor position if that is possible. Since a template
can contain several versions, it is possible to open a popup menu with the available
versions by clicking with the third mouse button. To improve the accessibility of
templates and their versions, these popups can be pinned up to allow direct access.

To edit the stencil or modify templates, the template palette also gives access to
a definition window through a button. The definition window is used to display
the internal details of the template and allows the user to modify it by means of
buttons, menus, keyboard commands, symbol palettes and template palettes. Once
the definition of the template is correct, it can be added to the stencil.

For find-and-replace actions, a special window is constructed, which consists of two
canvasses, one for the find expression and one for the replace expression. On these
canvasses, place holders are numbered to indicate how expressions should match and
how such expressions should be replaced, where place holders with the same number
match equal expressions. Since multiple find and replace actions might be needed,
such actions can be stored in an internal list or in a file.

4.9 Box structures

Since mathematical notations are often two-dimensional, the display algorithm should
be able to handle those. The display algorithm uses boxes to draw the mathematical
text, in a manner similar to the use of boxes in the TEX system[36]. However, the
display algorithm should be fast enough for interactive updates, even on less powerful
machines, which restricts the complexity of box constructs. For example, TEX uses
a very powerful and complex box language, but it requires so much time that users
of TEX were accustomed to run it during coffee breaks or during the night. For an

4.9. BOX STRUCTURES 67

j + 1

i

width

baseline

de
sc

en
t

as
ce

nt

he
ig

ht

Figure 4.10: The box structure.

interactive editor, trained users can type plain text at rates of 300 keys per minute,
which requires five screen updates every second. To ensure that the user doesn’t
get a headache after several minutes, these screen updates should be fast enough
to remove any flickering. Therefore, the box language is kept simple, yet powerful
enough to support most mathematical constructs and some textual constructs.

Decision 18
Boxes are used for improving the layout of mathematical content. Due to
performance issues, the number of box constructs is kept small.

With the box language, the display algorithm can construct boxes by opening and
closing the appropriate boxes. When a box is closed, the box layout algorithm will
calculate the properties of the boxes, such as height, width, ascent and descent and
place its internal boxes at the correct positions. Once the top-level box is closed, the
complete collection of boxes is drawn on the canvas.

Figure 4.10 shows the box structure for the expression i
j+1 , which is used to explain

the properties of boxes. As usual, each box has a height and a width to indicate
its size. However, for positioning text correctly, each box also has a baseline, which
indicates how that box is aligned with other boxes horizontally. The position of
the baseline is indicated by the dot on the left line of the box. The part above the
baseline is called the ascent and the part below the baseline is called the descent. To
be able to position boxes correctly, each box also contains the coordinates of that
box, relative to the position of the enclosing box, where the left end of the base line is
used as a reference point, indicated by a big dot. Since boxes can contain subboxes,
the boxes are stored in a tree structure, where each box contains a list of subboxes.

To construct mathematical notations, different types of boxes are allowed, which is
achieved by adding a box-type attribute. The following types are currently available:

• The text box is used for displaying text. Although it is possible to use one
box for each character, the text box combines as many characters a possible
to improve performance. To store the content of the box, a box is extended

68 CHAPTER 4. THE TECHNICAL DESIGN

with a string, its length and the font attributes. To handle italic correction3,
an attribute is added to store the correction needed for the last character.

• The back box is a box for inserting negative horizontal spacing, thereby moving
leftwards. Normally, while boxes are constructed, a box is extended rightwards.
However, in the tabbing environment, which behaves like the tabbing environ-
ment in LATEX, it is possible to move leftwards, overwriting previous boxes. A
back box is just an empty box of a certain width, where the right-side of the
box is aligned with the right-side of the previous box. Due to the negative
spacing, the width of a box might not be equal to the sum of the width of its
sub-boxes. Therefore, an attribute is introduced to store the maximal width of
a box.

• The newline box is used to signal the end of a line. When the end of a line is
encountered, the rest of the line needs to be cleared. A newline box is regarded
as an empty box of infinite length.

• The stack base box is used to place three subboxes, top, gap and bottom, above
each other. If more boxes have to be stacked together, nested stack boxes
can be used. To determine the baseline of the stack, the gap box is used,
where the baseline of the stack is aligned with the baseline of the gap. In a
variation of the stack base box, called the stack center box, the baseline of the
gap box is positioned half the height of an ‘x’ above the baseline of the stack.
Although the difference is small, it is sufficient to construct many mathematical
notations, such a superscripts, subscripts, underlines, overlines and fractions.
The example section contains some examples on how the stacks are used.

• The bar box is a box for adding a vertical bar, where the height of the bar
depends on the boxes that appear on the same line. Usually, the bar is used in
combination with the stack, to add a delimiter.

• The stipple box, line box and space box are horizontally stretching boxes for
adding lines, stipple lines or spaces. The space box is used in combination
with the stack box to align its subboxes. The line box is used for constructing
fractions or underlines. The stipple box can be used for highlighting purposes.

With these boxes, many mathematical notations can be built, although some are
still missing, such as arrays, roots and scalable delimiters. However, the missing
notations are less common and can be simulated to some extent with the available box
constructs. Scalable delimiters are particularly difficult to support directly, unless
boxes for vector drawing are added.

For drawing the document, this collection of box constructs would be sufficient.
However, for editing the document, a cursor is needed to indicate the insert position,
origin tracking is needed to link mouse clicks to selected objects and inversion is
needed to indicate selections. To support these additional features, two additional

3Italic correction is needed when italic text is ended, for example, “some stuff” versus “some
stuff ”.

4.9. BOX STRUCTURES 69

box types are added, the cursor box for adding cursors and the node box for keeping
track of objects. To support inversion, each box is extended with an attribute that
indicates which colour combination is used. These additional features do not influence
the layout algorithm, otherwise the layout would depend on the cursor position or
selected area. For origin tracking, the boxes are rebuilt, without actually drawing
them. When the correct box is found, the object that is responsible for that box is
extracted and returned to the origin tracking routine.

To reduce flickering and improve performance, the screen updates are based on a
line-by-line algorithm. Therefore, all the boxes have to be closed at the end of a line,
in order to calculate the final position of each box. After the line is drawn, the boxes
have to be reopened again, in order to continue correctly with the next line. For
normal text, this is not a problem, but when a linebreak appears within a stack box,
the layout results are undefined. Luckily, the stack is mainly used for mathematical
structures, where linebreaks are very rare. In the event that someone uses the stack
for plain text, for example to simulate underlining, the text is still readable, but not
complete, for example, part of the underlining is missing.

When the boxes are drawn on the canvas, the original content of the canvas has to
be cleared. The easiest way to achieve this is by clearing everything at once and then
drawing the boxes. However, that could introduce flickering, as the time between
clearing and drawing is larger. Therefore, the canvas is cleared just before the boxes
are drawn. To achieve this, each box is either totally covered by its subboxes or
it contains no subboxes at all. Then, each box without subboxes has to clear the
canvas before drawing, while each box with subboxes can rely on the subboxes to
clear everything correctly. An additional advantage of this method is the ability to
use “exclusive or” operations on boxes when selections are made, which requires that
the operation is performed an odd number of times.

To further improve the drawing performance, each box is extend with a style attribute
to indicate whether that box has to be drawn or not. This allows the screen update
routine to indicate which boxes are used for calculations only, as in the case where
only the right half of a line has to be drawn in order to update the screen. Such
partial redraws require some additional calculations, but it reduces the number of
drawing requests for the X server, which possibly require network communications
and calls to complex graphics routines.

By combining all the attributes, the final box structure looks as follows:

BoxType = {
special : integer; % type of box
width, ascent,

descent : integer; % dimension
x, y : integer; % position
itemnr, itemtot : integer; % string-pool item
fattrib : integer; % font attributes
lright : integer; % italic correction
maxwidth : integer; % negative spacing
color : integer: % selection scheme

70 CHAPTER 4. THE TECHNICAL DESIGN

funcarg : pointer; % origin tracking
style : integer; % drawing style
fbox : BoxType; % first sub-box
lbox : BoxType; % last sub-box
nbox : BoxType; % next box

}

4.10 Control characters

Since the layout of notations is defined in the screen format of versions from tem-
plates, these formats have to be used to construct the boxes correctly. It is possible
to achieve this by defining a small markup language to describe the boxes. How-
ever, such a language would require that the maintainer of templates has to learn
yet another markup language. Furthermore, processing this markup language would
require additional parsing time while the document is displayed, which slows down
the screen updates. To reduce the parsing time, each markup sequence can be re-
placed by a control character, which removes the lexical analyser state of the parsing
routine. Since there is a private area within the Unicode encoding with sufficient
positions, the use of control characters is not a problem.

To relieve the maintainer of templates of the burden to learn a new markup language,
the control characters are made available through popup menus whereby the system
will ensure that control characters are used correctly. For example, if two control
characters are used as opening and closing brackets, then the system will assure that
those characters are used as a pair and are correctly nested in combination with other
bracket-like control characters.

Decision 19
Control characters are used in the screen format of a template to indicate
how boxes have to be constructed. Since the place holders have to be inserted
in the screen format as well, they are also treated as control characters.

The tree traversal algorithm will use the screen format to traverse the tree and process
the characters one by one. The procedure that processes these characters interprets
the control characters and builds the boxes where needed. Normal characters need
no special treatment and are just added to a text box.

The following control character are currently used by the system. Although certain
control characters are equal in appearance, such as the closing brackets, the system
might use different characters for them. Since the user can only edit these characters
in pairs, the internal difference is not important to the user.

E, O, I, V, T The place holders, which indicate where a subtree has to be inserted.
Since templates can contain multiple place holders of the same type, each place
holder can have an index number associated with it to determine the unique
subtree.

4.10. CONTROL CHARACTERS 71

[Name:,] To give a hint to the user of a template, a place holder can be given a name
to indicate its purpose. These control characters are used to enclose the name
of the place holder, just before the place holder itself is used.

[text], [math], [disp] The LATEX mode indicators, which are used to steer the LATEX
output algorithm when the output format is not standard.

[attribute=value:,] The font attribute control characters, which change the attributes
of the current font. A configuration file determines which attributes there are,
which values these attributes can take and how attributes and their values are
ordered. The ordering on the attribute values is used to determine which at-
tribute combination should be used as an alternative when a combination is
not supported by fonts. The default configuration file defines the attributes,
values and ordering as supported by LATEX. That is, the attributes are family
(roman, sans serif and type writer), series (medium and bold), shape (upright,
italic, slanted and small caps) and size (10 values). This corresponds to 240
attribute combinations.

[SizeRn,] The control characters for relative size change, which are similar to the
font attribute control character. The relative size changes are used when the
size of text has to change relative to the actual size. The sizes are available as
discrete values as defined by the configuration file for font attributes and are
sorted. The value n determines how much the size increases or decreases.

[Tabbing:,], [Display:,], [set], [tab], [back], [plus], [minus], [push], [pop] The tabbing
control characters, which are used for indentation and other specific layout fea-
tures. The tabbing controls are based on the commands used by LATEX, except
that certain commands behave slightly different in order to work around the
problems found in the LATEX versions. The main differences are that the [tab]

command does not fail due to undefined tab positions and that the movement
of the left margin works correctly in combination with nested tab positions.

A short explanation of these commands might be needed for those who are not
familiar with the tabbing environment of LATEX. The [Tabbing: and [Display:

commands open the tabbing environment, where the later one also moves the
left margin forward by a standard number of tabs. The [set] command defines
a tab position at the current location. The [tab] command jumps to the next
tab position or moves forward over a specific distance. Similar to the behaviour
in LATEX, the tab position might be left of the current position, thereby moving
backward. The [back] command moves to the previous tab position and can
be used at the beginning of a line only. The [plus] command moves the left
margin one tab position forward. The [minus] command moves the left margin
one tab position backwards. The [push] and [pop] commands are used to enter
a temporary tabbing environment, to change tab positions locally.

[StackB:, :, :,], [StackC:, :, :,], [Line], [Fill], [Dots], [Bar] The control characters for
placing boxes above each other and to align them correctly. The [StackB: :

:] commands are always used in combination and the three fields that they

72 CHAPTER 4. THE TECHNICAL DESIGN

construct are combined into one stack, where the middle field is used for vertical
alignment. Horizontally, the fields are centred, unless the stretching commands
([Line], [Fill] and [Dots]) are used to fill the space that is left over. If multiple
filling commands are used within the same field, the space is equally divided
over them. The [StackC: : :] commands are similar to the [StackB: : :]

commands, except that the middle filed is aligned above the baseline of the
surrounding box. The [Bar] command will insert a vertical line, with a length
equal to the height of the field in which it appears. It is also possible to use
the [Bar] command outside a stack environment, in which case the height of
the line is used.

[Space] The control character for adding micro spacing to operators. The system uses
micro spacing around operators to indicate the structure. For non-operators,
where the location for adding such micro spacing is not clear, this structure-
dependent spacing is added by hand with this character.

There are still sufficient positions available to add more control characters. Possible
extensions might be control characters for colour changes, language tagging, country
tagging, table construction or conditional output.

4.10.1 Some examples

These commands might not make much sense at first, but they are easy to use
once you get the hang of it. In general, if you need different margins, you use the
tabbing environment with its commands, if you need things above each other, you
use the stack environment with its commands, and if you need both, you combine
the environments. If you need to highlight some text, you use the font attribute
commands.

The commands are entered in the definition window, which is used to construct
templates. By means of popup menus and keyboard short-cuts, the screen format
is created and special features are added. Since the control commands affect the
layout of the screen format, the user can switch between an interpreted mode and
uninterpreted mode to improve editing capabilities. In the interpreted mode, the
screen format is displayed as it will appear within a document and the commands
themselves are not visible. In the uninterpreted mode, the screen format will display
the commands in a verbatim manner to allow easier manipulation of the screen
format.

In the following examples, the screen formats are displayed in the uninterpreted way,
where the control commands are displayed in the small, bold style. For completeness,
the LATEX output for each example is given in the output format, where the small
bold style is used to indicate automatically generated LATEX output. This layout
convention is also used by Matsad itself.

4.10. CONTROL CHARACTERS 73

Font change

Font changes are very common, especially in technical reading, where it is used
to highlight keywords, examples and keyboard input. Creating a template which
changes the appearance of text is straightforward. The “Font” menu from the define
window contains the commands to change font attributes and the commands are
inserted by selecting the appropriate menu item. The template in the following
example is used to make the content bold. The screen version contains the command
to change the font attributes to bold and a text place holder to contain the text.

Screen: [Series=Bold:T1]

Output: {\bfseries T1}
Name: Bold

Quote

When text is quoted from someone else, it it usually displayed in a separate paragraph
with an indented left and right margin. It is possible to simulate this partially with
the tabbing environment, where the left margin can be moved rightward without
problem, but the right margin cannot be moved. Since the templates are not required
to be perfect, such small differences are not a problem.

The quotation uses the tabbing environment to be able to move the left margin.
Within this environment, a tab is used to move forward and then the margin is
moved rightwards to the current position. After the quoted text, which is entered
in a place holder, the margin is moved back and the tabbing environment is ended.
Since the quoted text has to appear as a separate paragraph, line breaks are added
at the beginning and end of the template.

Screen:
[Tabbing:[tab][plus]T1[minus]

]

Output:
\begin{quote}T1

\end{quote}

Name: Quote

In this template, the output format is modified to replace the automatically generated
tabbing environment, which is used to simulate visual behaviour. Like the quote
environment from LATEX, the quote template can be used recursively.

Itemise

A common way to list a number of items is with a bullet list, where the left margin
is moved rightwards and each item is preceded by a big dot. Again, simulation of

74 CHAPTER 4. THE TECHNICAL DESIGN

this environment is not to very difficult with the tabbing environment. However,
two versions are needed to make it work: one for the environment which defines the
margin and one for adding the items and moving the margin.

The first version just opens the tabbing environment, sets a tab at the appropriate
position and contains a place holder for the items that will be inserted. The second
version adds the big dot, moves to the next tab position, adjusts the left margin,
enters a text place holder for the content and restores the left margin.

Screen:
[Tabbing: [set]

T1]

Output:
\begin{itemize}
T1

\end{itemize}

Name: Environment

Screen: •[tab][plus]T1[minus]

Output: \item T1

Name: Item

It is possible to simulate the itemise environment differently. The version for the en-
vironment could adjust the margin, while the version for the item would temporarily
move it back to add the big dot. Another option is to remove the text place holder
from the item version, as that text could also be inserted in the environment itself.
One advantage of the given approach is that each item with its description is easily
selected by selecting the big dot, which is part of the template.

Proof step

Since the Eindhoven style of proof presentation is often used by the initial users
of Matsad, support for that notation should be available. This proof style uses
indentation to improve readability and uses hints to explanation each proof step.
The following example shows a trivial proof of two steps:

A∧ (A∨B)
= { ∧ distributes over ∨ }

(A∧A)∨ (A∧B)
= { ∧ idempotent }

A∨ (A∧B)

4.10. CONTROL CHARACTERS 75

Each step in the proof notation is actually a binary operator which relates two ex-
pressions and contains a hint with a short explanation. Therefore, the template that
is used for a proof step should be a binary operator.

In the proof notation, there are four tab positions, three of which are also margin
positions. The first tab position is used for aligning the binary relators of each step,
the second tab position is used for aligning the expressions, the third tab position is
used for aligning the opening brackets ({) of each hint and the fourth tab position is
used for aligning the hints. Since a hint might consist of multiple lines, the left margin
should be moved to the fourth tab position in order to align those lines correctly.
Since the expressions require that the margin is located at the second tab position,
the template for the proof step can assume that it is possible to move the margin
one tab position leftwards. An additional assumption is that the environment where
this template will be used has defined the tab positions that are needed.

Screen: [minus]

=[tab][tab]{[tab][plus][plus][plus]T1[minus][minus] }

Output: \-
=\>\>\{\>\+\+\+T1\-\-∼∼∼\}

Name: Proof step

Accent

Most accents are positioned above or below a character and many accented characters
are available by default. However, if a certain combination is missing, a template can
be used to place one character above another. For example, characters with a macron
accent (¯) are often missing, although the macron accent itself is available. With the
stacked boxes, it is possible to combine the macron accent with any character that
is available, simply by placing the macron accent in the top box and the character
or place holder in the gap box.

Screen: [StackB:¯:T1:]

Output: \={T1}
Name: Macron Accent

Super- and subscript

Superscripts and subscripts are often used in mathematics and with the stacked
boxes, Matsad is able to support them too. A superscript is an expression that is
positioned above the baseline and in a smaller font. A subscript is similar, except that
it is positioned below the baseline. To align the super- and subscripts correctly, the
[StackC:::] version of the stacked boxes are used, which gives the best results. Since
super- and subscripts are also used recursively, the size of the expression depends on
the level of recursion and is therefore relative to the actual size.

76 CHAPTER 4. THE TECHNICAL DESIGN

Screen: [StackC:[SizeR-1:E1]::]

Output: ˆ{E1}
Name: Superscript

Screen: [StackC:::[SizeR-1:E1]]

Output: {E1}
Name: Subscript

Summation

The summation-like notation is also commonly used in mathematics, where the scope
of an operation is given by placing the start condition below and the end condition
above an enlarged operator symbol. The expression on which the operator acts is
given after the operator. For example, the expression

n∑
i=1

i2

symbolises the formula “the summation from i is 1 to n of square i”. It is not
very difficult to support such a notation with Matsad. With stacked boxes, the
expressions are placed above each other and with a relative size change, the sigma
sign can be enlarged and the range expressions reduced.

Screen: [StackB:[SizeR-1:E3]:[SizeR+1:Σ]:[SizeR-1:E2]] E1

Output: \sum {E2}ˆ{E3} E1

Name: Summation

Although it is possible to use this summation template recursively, it is not very
common in mathematics and proper support from LATEX might be missing.

Fraction

Fractions are also commonly used and support within Matsad is again achieved
with the stacked boxes, where the middle box contains a line that extends according
to the size of the nominator and denominator. The correct alignment of the fraction
is achieved by using the [StackC:::] version, which aligns the line of the fraction
roughly with the position of the minus sign. Again, relative size changes are used
to reduce the size of sub-expressions and recursive usage will result in smaller and
smaller expressions.

Screen: [StackC:[SizeR-1:E1]:[Line]:[SizeR-1:E2]]

Output: \frac{E1}{E2}
Name: Fraction

4.10. CONTROL CHARACTERS 77

Framed boxes

Although framed boxes are not very common, they are useful for highlighting pur-
poses. Since framed boxes are not directly supported, they can be simulated with a
combination of stacked boxes and extendible lines.

Screen: [StackB:[Line]:[Bar]T1[Bar]:[Line]]

Output: \fbox{T1}
Name: Framed Box

Scalable delimiters

Scalable delimiters are often use in combination with two-dimensional arrays or to
describe several options, as in the following expression.

|x| =
{
x if x ≥ 0
−x if x ≤ 0

Although these scalable delimiters are difficult to support, it is possible to simulate
them with stacked boxes, although they will not scale automatically. By placing
the correct symbols above each other, a large delimiter is constructed. The special
symbols to do this are available in the Adobe symbol font and have been specifically
constructed for this purpose.

The large delimiter will not scale automatically, but it is possible to construct multiple
versions, such that the user of the template can switch to the correct version when
that is important.

Screen: [StackB:::]

Output: \left\{
Name: Large {

Tables and arrays

Tables and arrays are not easy to capture in a tree structure, which requires the table
to be broken into either one row of columns or one column of rows. In each case,
manipulations on either rows or columns are easy, while manipulations on the other
orientation are difficult. To correctly support tables and arrays, the tree structure has
to be abandoned and an n-dimensional array structure is required. Combining the
tree structure with the array structure is possible, but it would make the calculations
for screen layout and updates very complex due to performance requirements. Since
tables are used less often by the initial target users, direct support is not needed, as
long as it is possible to simulate them reasonably.

In markup languages such as LATEX, Troff and HTML[39, 22, 58], a table is described
in its reading order, that is, on row-by-row basis, where each row describes the cells
for the different columns. Since the templates are used to generate such markup

78 CHAPTER 4. THE TECHNICAL DESIGN

output, the template for constructing tables will describe one row at a time. To
align the cells in each row, the tabbing environment is used, where the tab positions
are defined in a template that adds the table environment. The use of the tabbing
environment only allows columns to be left-aligned on screen, although the markup
output could contain instructions to align them otherwise.

By choosing the row-based approach, operations on columns become more difficult.
However, if a column-based approach with stacked boxes were to be used, opera-
tions on rows would be difficult and, furthermore, the alignment of rows would be
impossible and the generation of markup output much more complex.

Screen:
[Tabbing:T2[set]T3[set]T4[set]

T1]

Output:
\begin{tabular}{T2T3T4}
T1

\end{tabular}
Name: Table environment, 3 columns

Screen: T1[tab]T2[tab]T3

Output: T1 & T2 & T3 \\

Name: Table row, 3 columns

An explanation might be in order. In the first version, the tab positions are set by
filling the place holders T2, T3 and T4 with the appropriate alignment commands,
where spaces are added to widen the column. The rows are inserted in place holder
T1. The second version is used for adding rows, where each place holder contains
one element.

As these two versions show, different templates are needed for tables with a different
number of columns, which makes adding or removing a column difficult, although
the find-and-replace utility can be used. Furthermore, to support tables with frames,
versions have to be defined to add horizontal and vertical lines. With these tem-
plates, simple tables can be simulated on screen adequately, but tables with special
requirements such as cells that span across multiple rows or columns are not possible
in general.

4.11 Keyboard handling

As the keyboard will be the most important form of interaction with the user, the
keyboard handler should be powerful enough to support the common methods of
keyboard interaction:

4.11. KEYBOARD HANDLING 79

• key combinations, such as ‘ctrl-c’, ‘shift-F7’ or ‘ctrl-alt-delete’.

• prefix keys, such as ‘ctrl-x ctrl-c’, ‘alt f x’ or ‘compose e ˆ’

• keyboard modes, such as an insert mode and a command mode

• nested keyboard modes, such as a Pascal mode within an Emacs mode.

• temporary keyboard modes, such as the incremental search mode from Emacs,
where the selected mode is used as long as the pressed keys are defined in that
mode.

Furthermore, the keyboard interaction has to be configurable, as different users have
different requirements.

In order to support these different methods, the keys and the functions that are
connected to them are stored in a keymap table. A key combination is regarded as
a single key, where only the modifier keys, such as control, shift and alt, can be used
in combination with any other key. A key combination such as ‘stop-a’ or ‘esc-a’ is
therefore not possible, but such key combinations are not very common anyway.

To support prefix keys, a key can be connected to a keymap table instead of a
function. When the prefix key is pressed, the keymap table that is connected to the
key will be used to handle the next key. If the next key is not defined in combination
with the prefix key, then the key will be ignored and the original keymap table will
be restored.

To support keyboard modes, each mode can use its own keymap table, where the
keys are connected to functions. In order to switch between the keyboard modes, a
special function is supplied to switch to a different keymap table, where the name of
the keymap table is used as unique identifier.

To support nested keyboard modes, a keyboard handler uses a stack of keymap tables
to handle the keys. When a key is pressed, the stack of keymap tables is used to find
the function connected to that key in the top-most table. If the key appears to be a
prefix key, all the tables on the stack will either enter the prefix state or be disabled
temporarily.

To support temporary keyboard modes, a keymap table can be placed on the stack
of the keyboard handler, such that it will be removed when a key is pressed which
isn’t defined in that keymap table. As a temporary mode might be used to construct
some argument to a function, as in the universal argument mode of Emacs, it is
possible to specify two functions which will be executed when the temporary mode is
removed: one function is called just before the mode is removed, which can be used
to set default values; the other function is called after the undefined key is handled,
which can be used to clean up state information used by the temporary mode.

Certain modifier keys, such as the shift modifier, are often used by the operating
system or the window system to adjust the key accordingly, as in ‘shift-a’ versus ‘A’.
However, when a keymap table is used to find functions connected to keys, it is useful
to ignore such modifiers, as the difference between ‘ctrl-a’, ‘ctrl-A’ and ‘ctrl-shift-A’

80 CHAPTER 4. THE TECHNICAL DESIGN

is often not clear to the user. Therefore, when a keymap table is defined, it is possible
to specify which modifiers can be ignored for certain key combinations.

Section 5.2.4 contains some additional information on how the keyboard interface is
defined.

4.12 Unicode support

Unicode support is not yet very common on UNIX systems or it is unportable. The
C language defines a wide character datatype together with a collection of functions
to handle such characters or the strings constructed with them. However, these wide
characters are intended for Asian languages[32], so the library functions might not
work correctly when they are used to store Unicode characters. Furthermore, the
wide characters are not very portable. So, in order to get basic Unicode support, a
small library is constructed to handle Unicode characters, strings and fonts.

The Unicode characters are stored internally in the UTF16 encoding, which uses 16
bits for each characters and uses surrogates to access the 16 other planes reserved
by the ISO-10646 encoding. Although the full 32 bit encoding could be used to
work around the problems related to surrogates, such an encoding would double
the memory requirements for strings, while the surrogates are not used yet. As for
now, Unicode characters are stored in a 16-bit integer type, while the surrogates are
unsupported. When surrogate support is required, it will not be very difficult to use
a 32-bit integer type.

The character properties, as defined in the Unicode data table, are accessible through
functions and tables, similar to the character properties defined in the standard C
header file ctype.h. In order to handle the large collection of symbols and properties
efficiently, two-layered tables are used to store the spare or monotonic tables.

For the conversion of data encoded using other standards, mapping tables are con-
structed, which are stored on disk, such that the library is kept small and easy
extendible. As most existing encodings are either 8-bit or 16-bit, it is easy to store
these mapping tables as two-layered tables. Certain encodings for the Far-East can
be regarded as a 12 bit encoding, where some characters are encoded by 8 bits, while
others are encoded by 16 bits. As these encodings do not use any state information,
it is possible to store its mapping table in a two-layered table, where the table is
accessed as follows: if the 8-bit character is defined in the table, then that value is
used, otherwise the next 8 bits are used to construct a 16-bit character, which will
be mapped according to the table.

The string manipulation functions as found in the C headers string.h and widec.h
cannot be used on the Unicode strings due to the incompatible types. Therefore, the
functions from string.h are re-implemented to work on Unicode strings, which isn’t
that difficult.

In order to draw a Unicode string on screen, the library has to provide some facilities
to access all the Unicode symbols. Although the X window system can work directly

4.12. UNICODE SUPPORT 81

with fonts in the Unicode encoding, the main problem is that there are only a few
of such fonts, which clearly isn’t sufficient for a LATEX user with 240 possible font
attribute combinations. Therefore the library supports the definition of virtual Uni-
code fonts, where existing fonts with different encodings are combined to construct
a partial Unicode font. These virtual fonts allow the use of all existing fonts on the
system, as long as a mapping table is available for the encoding that they use. The
virtual fonts are constructed with a configuration file, which contains the instructions
on how to combine fonts and the attributes of the virtual fonts. If multiple virtual
fonts are defined, the font attributes will be used to find character glyphs when they
are missing in a certain virtual font. As the X window system gives an application
access to thousands of fonts, the library will only load the existing fonts on demand,
that is, when it is needed to actually draw something.

Although the library is kept as portable as possible, the part that constructs the
virtual fonts is destined to be less portable, as it contains system specific calls to
access the fonts. However, these calls are well isolated and easy to replace.

82 CHAPTER 4. THE TECHNICAL DESIGN

Chapter 5

Integrating tools

A technical document often contains information from different sources, such as plain
text, mathematical computations, program listings and illustrations. Each of these
sources are related to special tools to manipulate them, such as spelling checkers,
algebra systems, compilers and image manipulation software. For the author of a
document, switching between all these tools might be cumbersome and introduce
errors due to version management. Support for accessing these additional tools from
within the document editor is needed in order to improve the usability.

5.1 Communication between tools

There are several methods to communicate between different tools. Since the tar-
get operating system is UNIX, the described methods are most common for that
environment, although methods used in other operating systems are also mentioned.

5.1.1 Pipes

The most common way to combine tools in UNIX is by using pipes, where several
tools process the information independently in sequential order. It works on the
principle that each tool processes its input and generates output using standard
channels (stdin/stdout), where a special program called a shell is able to connect
the output channel from one tool with the input channel from the next tool, as
shown in figure 5.1. Under a multiple-processing environment like UNIX, pipes are
very powerful, as the information is processed by different tools at the same time
whenever that is possible, whereby results are available as soon as possible. Under
a single-process environment like DOS, pipes are rather clumsy, as each tool in the
pipe is executed in sequence and the information that travels through the pipe is
buffered between processes.

The UNIX environment contains many small tools for processing textual informa-

83

84 CHAPTER 5. INTEGRATING TOOLS

tr sort uniq|||sed tr|

result

example.txt

Figure 5.1: A pipe of five tools.

tion, such as grep (searching), sed (string manipulation), awk (table processing), tr
(character transformation) and sort (ordering). By combining these small tools, a
powerful and flexible solution is constructed for many text processing problems. For
example, to determine how often each character is used as the first character of a
word in the file example.txt, the following pipe can be used, also shown in figure 5.1:

tr -cs ’[:alpha:]’ ’[\n*]’ < example.txt |
sed ’s#^\(.\).*#\1#g’ |
tr ’[:upper:]’ ’[:lower:]’ |
sort |
uniq -c

The first tr command divides the words over lines, the sed command removes ev-
erything except the first character on the line, the second tr command converts
everything to lowercase, the sort command orders everything and finally, the uniq
command counts how often each line occurs in succession. The action of “piping”
these together is denoted by the “|” symbol.

Although pipes are mainly used for processing text, it is also possible to process
binary information, such as sound or image data. A common use of binary pipes is
in combination with compression programs, as in

tar cf - /usr/demo | gzip > demo.tar.gz

where the intermediate archive might be too large to fit on the disk directly. The
image manipulation package called netpbm allows images to be manipulated with
a pipe, where each tool performs an operation on the image, such as conversion,
rotation, scaling or colour reduction and where all non-conversion tools operate on a
common image format. For example, to scale down a TIFF image to 25%, rotate it
900 clockwise, reduce the number of colours to 64 and save it as a GIF image, you
can use the command

tifftopnm photo.tif | pnmscale 0.25 |
pnmrotate -90 | ppmquant 64 | ppmtogif > photo.gif

Since the netpbm tools require no interaction with the user, they are especially
useful for converting large amounts of image data automatically. Again, many small

5.1. COMMUNICATION BETWEEN TOOLS 85

emTeX Netscape Word

WP6.1 PhotoShop Paint

Mpeg Play Morphing WinAmp

File manager

Documents
LaTeX

WordPerfect
Word
HTML

Images
Photos
Drawings

Movies
Sounds

Figure 5.2: A file manager with helper applications

tools are combined into a powerful and flexible solution for many image processing
operations.

The use of pipes requires some overhead from the operating system, as the multiple
processes introduce context switches between those processes. Furthermore, different
tools require different options and script languages, which requires cognitive overhead
from the user. As a result, there are tools that combine the functionality of several
tools into one. The tool perl is a combination of several, if not all, text processing
tools, together with a programming language and a shell.

5.1.2 Helper applications

A file manager is an application which tries to give the impression that it supports
any file format that is available on the system. However, it would be impossible to
construct a tool which supports every file format natively, as the resulting application
would work like a Swiss army knife: you can use it for everything, but if you want
to do it right, you need a specialised tool. Therefore, a file manager uses a database
with helper applications, which connects each file format to an application that can
handle that format, as shown in figure 5.2. When the user wants to work on a file,
the database is used to determine which application has to be started.

Due to the large variety of file formats and tools, the user might be presented with sev-
eral different interfaces, depending on which tools are available and how the database
is constructed. For example, the database might connect different image formats to
different applications, while the user would expect that all these image formats are
handled by the same application. Therefore, such a database should be easy to adjust
by the user.

The database has to determine the correct file format for each file in order to start
the right application. A common method uses the file extension to determine the
file format, but that method might fail, as different file formats can use the same

86 CHAPTER 5. INTEGRATING TOOLS

extension. Another method uses the content of the file to determine the file format,
as most file formats contain a magic sequence to detect incorrect files. In order to
check the magic sequence of a file, part of the file has to be accessed, which influences
the performance. However, the method might also fail, as a given file might match
multiple magic sequences. It is possible to combine both methods, where the content
is used to check for magic sequences and the extension is used as an additional check.
Due to performance issues, the method based on extensions is most commonly used.

Independently of the chosen method, the user has to be able to specify how files with
multiple formats should be handled. An example of such a file is a self-extracting
archive, which is simultaneously an application and an archive. As an application,
the file is platform specific and is useless on the wrong platform. As an archive, the
file is platform independent and can be used on any platform. However, the file only
has one extension, often the one of the application, which hides the fact that it is
usable as an archive. With the magic sequence method, this hidden information can
be revealed and used.

A WWW browser can be regarded as a file manager where the only operation on files
is to view them. Therefore, the browser uses a similar database to start the correct
application when a file has to be viewed, except that this database is based on the
mime-types which are part of the transfer protocol. The http server determines
the file format of the file that is transferred and sends its format as mime-type at
the beginning of the transmission. The browser uses that mime-type to handle the
transferred file correctly. For this to work correctly, the server has to determine the
right mime-type and the browser has to be able to handle that mime-type. Since
the mime-types are usually determined by checking the extension1, there is room for
errors on the server side, due to incorrect and unlisted extensions. And since the
collection of mime-types is expanding due to new file formats, the browser might not
be able to handle certain mime-types, although the browser might suggest installing
additional applications in order to handle them correctly.

5.1.3 Client – server

In the client-server model, a client application connects to a server and sends a
number of requests. The server handles the requests by performing an action on the
data that it maintains and responds to the client with an answer. Examples of the
client-server model are:

• The X window system, where the X server manages the display of a computer
and an X application can connect to manipulate the display, for example by
opening a window or writing some text. Figure 5.3 shows the architecture of
the X window system.

• The FTP and WWW sites, where a server manages a collection of files and a
browser retrieves those files, for example when the user clicks on a hypertext

1The magic sequence method could be used, although it could cause performance problems. As
the file is already accessed, the performance issue should be minor compared to network issues.

5.1. COMMUNICATION BETWEEN TOOLS 87

X11

Server

Netscape

Emacs

XTerm

Figure 5.3: The client–server model of the X window system.

link.

• The NFS service, where an operating system manages a large, central file system
and other operating systems can access that file system through its manager.

• A flight booking system, where a central server manages seats on airplanes and
travel agents book a flight by reserving seats.

In a client-server model, the interaction between the client and the server is well
defined by means of a protocol. If a client is compliant to the protocol, that client
can connect to any server which is also compliant. As a result, compliant clients and
servers are interchangeable.

5.1.4 Dedicated link

When two applications are highly related, a dedicated link between these applica-
tions can be constructed by adding knowledge to each application about the other
application. Often, dedicated links are constructed between a general purpose ap-
plication and a special purpose application, such as a link between a text editor like
Emacs[67] and a proof engine like PVS[65], as shown in figure 5.4. For a normal
user, the dedicated link between the two applications is so tight, that the distinction
between the different tools is difficult to make.

In order to build a dedicated link, the source of the applications has to be available
or the applications have to support a method for extending the system with new
features. A successful method to achieve this is the use of an internal interpreter,
such as the lisp interpreter in the Emacs editor. By constructing interpreted files,
the application is extended without the need to rebuild it. When the interpreted
language is powerful enough to start other applications and communicate with them,
the creation of links to other applications is possible. For the Emacs editor, dozens
of links are available, each consisting of some lisp files to handle the communication
and an application to communicate with.

Another common method uses a library which handles the connection with the re-
lated application. By using that library, any application can create a connection
and communicate. For example, a mathematical application can use the MathLink

88 CHAPTER 5. INTEGRATING TOOLS

Emacs Editor

PVS Core System

Lisp Interpreter

Lisp Interpreter

Figure 5.4: The dedicated link between Emacs and PVS

library[64] to handle connections with the Mathematica core system, thereby allow-
ing complex computations to be performed by Mathematica[83]. Or, an application
can use the WWW library to handle Internet related connections, thereby making
the application Internet-aware and allowing access to files on remote systems.

5.1.5 Plug-In libraries

When the functional interface to the other application is not complex, plug-in libraries
can be used to perform these tasks. In a plug-in library, a fixed set of commands is
provided, which can be called by the host application. When the host application
needs to perform a task which is supported by a plug-in, the plug-in is loaded and the
related commands are called. A plug-in library works like an interpreted file, except
that a plug-in consists of native machine code, which improves the performance, but
makes it system dependent.

Netscape[43] is an example of an application that uses plug-ins, which is shown in
figure 5.5. In order to handle objects which are not supported natively by Netscape,
it allows the user to provide plug-ins for such objects, which will display the object as
if it was supported natively. The plug-in is provided as a native dynamic library and
contains functions to initialise and finalise the plug-in and to handle operations on
the object. Since the plug-in uses native code, it is possible to transform an existing
application into a plug-in and let it take advantage of WWW related technologies.

The Gnu Image Manipulation Program (GIMP)[24] and Adobe PhotoShop[1] use
plug-ins to perform all kinds of operations on images. Many of the operations on
images are similar to the operations available in the netpbm tool collection, but the
performance is better due to shared memory and less conversion steps.

The Generalised Display Processor (GDP)[56] uses a script language called LOOKS,
which allows run-time library linking, thereby combining flexibility, extendibility and
high performance. The GDP is used as a basis for several research projects on 3D

5.1. COMMUNICATION BETWEEN TOOLS 89

dvi flash

math

pdftcl

mp3 midi

Netscape

mpeg

plugin loader

Figure 5.5: Netscape with plug-ins

modelling and animations, where extensions can be constructed independently.

Java applets[49] can also be seen as plug-ins, although they are not compiled to
native machine code. Instead, an applet consists of bytecode, which is interpreted by
a virtual machine running on a host operating system. Due to the virtual machine, an
applet runs on any operating system for which a virtual machine is available, although
the performance might be a problem due to the interpretation. For applications with
high requirements on computational power, such as virtual reality, an applet can use
a system specific library by using so called native methods. With these libraries, the
system independent nature of Java is lost, but the performance is much better.

5.1.6 Software bus

A software bus is used when related applications need to work together without
knowing in advance which other applications are available. The software bus forwards
requests from one application to another, where the applications themselves know
nothing about the other applications on the bus. The communication is based on a
protocol, similar to the client-server model. However, there is no distinction between
a client and a server, as an application might act as both at the same time.

Some existing software buses are:

• The ToolTalk service[75], which receives (unaddressed) messages from applica-
tions and delivers them to the appropriate applications. The ToolTalk service
is designed for combining facilities from independently developed applications,
which are otherwise difficult to achieve.

• CAS/PI[30], a distributed architecture for computer algebra systems, that en-

90 CHAPTER 5. INTEGRATING TOOLS

Gnuplot Ulysse SisypheMaple

CAS/Pi Software Bus

Figure 5.6: The software bus in CAS/PI.

ables communication between different algebra systems by use of a software
bus and data manager. Figure 5.6 shows the architecture of CAS/PI.

• The ToolBus[4], a software architecture intended for building distributed appli-
cations. Components of the application communicate with each other over the
bus and each component is specified in terms of process algebra. The ToolBus
is the basis for the revised ASF+SDF Meta-environment.

5.1.7 Object sharing

While the previous methods are based on communication between applications, the
object sharing method is based on communication between single objects within those
applications. Within an object-oriented framework, a network-transparent architec-
ture handles this communication between objects, such that the location of objects is
irrelevant. As a result, an application can work with objects as if they are available
locally, while they might in fact be stored on a remote system and managed by a
different application.

The most important object sharing technologies are:

• CORBA[48], the Common Object Request Broker Architecture, allows appli-
cations to communicate with one another no matter where they are located
or who has designed them. CORBA hides anything that is not related to the
object itself, such as the programming language or the operating system, from
the application which uses the object.

• OLE[46], Object Linking and Embedding, is a compound document architec-
ture based on COM, the Common Object Model of Microsoft. OLE is used to
combine objects such as text, spreadsheets and images into one document (see
figure 5.7), where different applications are used for manipulating each type
of object. Although OLE allows object sharing, it is not network transparent.
Furthermore, OLE is proprietary to Microsoft.

• OpenDoc[3] is a compound document architecture based on SOM, the Systems
Object Model of IBM. OpenDoc is similar to OLE, except that it allows network

5.2. INTEGRATING EXISTING TOOLS 91

Word Document

Lorem ipsum dolor sit amet, consectetaur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et
et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum

Excepteur sint occaecat cupidatat non proident,

articulus

acinus

amygdalum

anas

anser

pecuniapretiumvendere

63.22

69.43

108.01

83.97

15.43

27.99

2.18

1.31

3

7

29

53

PhotoShop

Excel

dolore eu fugiat nulla pictura.

sunt in culpa qui officia deserunt mollit tabella.

Figure 5.7: Object sharing in word.

transparency. Although OpenDoc is designed to be platform independent, it
seems to be used mainly on Apple Macintosh.

The object sharing method is very flexible, as objects can be supported by multiple
applications and combined where possible. Furthermore, high-level features such as
distributed computing, accounting and mobile computing are supported by the object
sharing architecture, thereby simplifying the applications that support the objects.

Object sharing is mostly used for documents with embedded objects, such as images,
spreadsheets, animations or sound. However, within such documents, shared objects
are often treated differently from native objects, while the combination of different
objects is restricted or impossible.

5.2 Integrating existing tools

Since Matsad documents are converted to LATEX documents and the spell checking
might be performed by an application like ispell, some level of integration with
existing applications is necessary. Certain applications are available as source code,
thereby allowing modifications which simplifies integration. However, modifying the
source code of an existing application to add specific extensions is not advisable if
that application is actively maintained, as the modifications have to be applied to
every new release of the tool and users have to install the modified versions, thereby
introducing version management problems with the modified application. Therefore,

92 CHAPTER 5. INTEGRATING TOOLS

an application should be integrated without any modifications, as that would ensure
integration with as many applications as possible, whether the source is available or
not.

Since an integrated application is not modified, all the modifications for the inte-
gration have to be applied to the Matsad system. However, if many applications
were integrated, the system would become unmanageable due to all these extensions.
Therefore, an architecture is needed to integrate the system with other applications
in a useful manner. The applications that we have in mind are mathematical engines
like Maple and Mathematica[60, 83], theorem provers like PVS[65], spell checkers like
ispell and several compilers.

As the applications are not modified, the existing interface will be used. For ap-
plications with a graphical user interface, it is very difficult to integrate those with
other applications, as the interaction with the user is almost impossible to simulate
automatically. Therefore, integration with such applications will not be supported.
For applications which provide interpreted configuration languages, it is possible to
construct scripts to simplify the interaction. For applications, like ispell, that provide
special features for integration with other systems, these features are used for the
integration. For all other applications, the integration is based on a simulation of the
user, that is, Matsad sends valid input and parses the output of the application.

As the architecture to integrate applications should allow easy addition of new ap-
plications, it should be easy to configure and extend. Since the object sharing archi-
tectures and software buses are not available or not used widely on UNIX systems,
the use of dedicated links, plug-ins, helper applications and pipes seems to be the
best choice. As the dedicated links are best achieved by using a script language, such
a script language is added to the system in order to extend it with dedicated links.
By making the language powerful enough, it can also support the extendibility of
the system by means of plug-ins, helper applications and pipes. Although the use of
software buses and object sharing architectures is not required yet, it would be nice
if the language would allow support for those features in the future.

5.2.1 The interpreted language

To make Matsad easily extendible, an interpreted language has been constructed to
combine the extensions. That language is based on the Guarded Command Language
(GCL), which contains the basic building blocks as found in most imperative lan-
guages, such as constants, variables, assignments, statements, blocks and functions.
Although there are some small differences, the language is straightforward.

As the language is used to extend the system by using plug-ins, everything that can be
provided by means of plug-ins is not included in the language itself. This is achieved
by using a general mechanism that allows plug-ins to define new types, functions and
variables and to overload the meaning of available operators. Internally, the parser
and interpreter use several databases for available constants, types, variables and
functions.

5.2. INTEGRATING EXISTING TOOLS 93

Constants and variables

Constants and variables are treated by the interpreter in the same way, except that
constants cannot be changed or passed as a call-by-reference parameter to a pro-
cedure. Therefore, every constant that appears inside a definition file results in an
unnamed variable with a fixed value. The interpreter supports three kind of con-
stants: integers, reals and strings. Integer constants are specified according to the
usual convention, which includes the octal notation, decimal notation, hexadecimal
notation and character notation. Real (floating point) constants use the standard
floating point notation of programming languages. String constants are similar to the
strings in C, where the usual escape sequences can be used to add special characters.
As Matsad uses Unicode strings internally, the string constants are first converted
to the Unicode encoding, according to the character encoding of the script files, which
is UTF-8 by default. After that conversion, the escape sequences are expanded. For
easy use of Unicode characters, the \uhhhh sequence is available, similar to the one
available in Java. Examples of constants are:

5481 integer, decimal notation
012551 integer, octal notation
0x1569 integer, hexadecimal notation

’\u2709’ integer, character notation
54.81 real

5.481E+1 real
5481E-2 real

"Postcode" string
"\u260E 112" string

Variables are either declared globally or locally, where block structures are used to
create local environments. These blocks can be nested and the usual scoping rules
apply to the variables defined inside a block. The name of a variable is case sensitive
and consists of a combination of Latin characters, digits and underscores, where the
first character cannot be a digit. As the language contains several keywords, these
keywords are not allowed as variable names. Furthermore, the names of types are
also not allowed as variable names.

To allow output arguments to procedures, the interpreter supports references to vari-
ables, where the conversion between referenced variables and non-referenced variables
is performed automatically where needed.

Some examples of variable definitions are:

Var Int counter;
Var Real pi;
Var String pc_5481;
Var StringRef return_argument;

94 CHAPTER 5. INTEGRATING TOOLS

Expressions

The interpreter supports a standard set of operators to construct expressions. How-
ever, there is no default semantics for these operators. Instead, an extension can
define the semantics of an operator by providing a function with the appropriate
argument types. With these functions, the interpreter can determine the semantics
of an expression by matching functions to the operators from the expression. The
available operators are, in order of their precedence:

Operators Intended meaning
! ~ Logical and bitwise not
* / % Multiplication, division and remainder
+ - Addition and subtraction
<< >> Bit shifting

= < > <= >= != Comparison
& Bitwise and
^ Bitwise exclusive or
| Bitwise or
&& Logical and
^^ Logical exclusive or
|| Logical or

These operators are based on the C programming language, although most of them
are available in other programming languages as well. It is not very difficult to add
new operators, for example to support operations on sets or lists, but it requires
certain additions to the lexical analyser. Currently, these operators are constructed
from ASCII characters, as that character set is the common denominator of all en-
codings. It would be nice if the set of mathematical operators from Unicode could
be used instead, but that requires a precedence relation on these operators and an
extension of the lexical analyser generator.

There are certain limitations to the operator overloading. Similar to C++, it is not
possible to change the precedence, associativity or arity of an operator or to define
new operators, as it introduces ambiguity and makes expressions very difficult to read
by both humans and computers. For example, the operator ^ can be overloaded to
mean “to the power” in floating point arithmetic. With that meaning, the precedence
of ^ is incorrect. If the precedence could be changed, certain expressions would be
very difficult to handle. The expression 2^3+5.1 is such an expression. As the ^
operates on two integers, its precedence is less than the precedence of the +, so
it should be read as 2^(3+5.1). However, 3+5.1 is a floating point value, so the
^ operator means “to the power”, in which case the precedence and the resulting
value are incorrect. Therefore, adjusting properties of operators is not possible. The
definition of new operators might introduce ambiguity as well, as the new operators
can consist of combinations of existing operators. Furthermore, different modules
could define the same operator with different precedences or arities.

5.2. INTEGRATING EXISTING TOOLS 95

In C++, operators can only be overloaded when at least one operand is an object of
the class that defines the operator. This ensures that the built-in operator meaning
cannot be re-defined. As the interpreted language does not have built-in operator
meaning, the requirement is not needed. However, without that requirement, oper-
ators can be overloaded with a non-standard meaning, thereby making expressions
unreadable, even for standard types such as integers or strings. Therefore, an exten-
sion should only overload operators with meaningful operations on types supported
by the extension.

Statements

The constructs for statements are based on the Guarded Command Language and
include the multiple assignment, procedure calls, the sequential composition, the se-
lection and the iteration.

The multiple assignment is part of GCL for convenience and it is a generalised version
of the normal assignment, as multiple variables are changed in a single assignment.
The syntax of the multiple assignment is:

v1 , ... , vn := e1 , ... , en

for variables v1 to vn and expressions e1 to en. The semantics of this assignment is
that the expressions e1 to en are evaluated in some order and the resulting values
are assigned to the variables v1 to vn in some order.

The C programming language also allows multiple assignments in one statement by
using either v1=e1 , v2=e2 or v1 = v2 = e2. However, the semantics of both state-
ments is very different. The first statement assigns different values to different vari-
ables, but assignments are made in a sequential order. It is mainly used at positions
where only one statement is allowed, such as in for loops. The second statement uses
a linked assignment, where assignments are used as expressions. It is mainly used in
initialisations, where multiple variables are set to the same value, usually zero.

A procedure call allows structure and abstraction by means of hiding the internal
computation. The syntax of a procedure call is

procedure name(arg1 , ... , argn)

where the semantical meaning is that the arguments arg1 to argn are evaluated and
the procedure procedure name is called with the resulting values.

The sequential composition combines two statements into a new statement. The
syntax of the composition is:

S1 ; S2

where the semantical meaning is that statement S1 is executed first and statement
S2 is executed next.

96 CHAPTER 5. INTEGRATING TOOLS

The selection allows the program to execute statements under certain conditions.
The syntax of the selection is:

if (B1) S1

elseif (B2) S2

...
elseif (Bn) Sn
else Sr
fi

The semantical meaning is that a statement Si is executed for which guard Bi is
true. If none of the guards is true, statement Sr will be executed. This semantical
meaning differs from the meaning of the selection in GCL, where the unguarded Sr is
not allowed and where the execution would abort if none of the guards is true. These
adjustments are made to make the semantics more familiar to common practice in
programming languages, where a selection doesn’t abort execution and unguarded
else clauses are allowed.

The iteration allows the program to execute statements repeatedly, according to
certain conditions. The syntax of the iteration is similar to the syntax of the selection:

do (B1) S1

elsedo (B2) S2

...
elsedo (Bn) Sn
od

The semantical meaning is that a statement Si is executed if guard Bi is true, until
all guards are false. Notice that the else clause is not allowed in an iteration, as it
would result in endless loops.

Most programming languages do not support a multi-guarded iteration directly, but
it is not very difficult to construct it by means of existing iterations. For example,
the above GCL iteration can be constructed in C with the following code:

while (1) {
if (B1) { S1 }
else if (B2) { S2 }
...
else if (Bn) { Sn }
else break;

}

Function definitions

For abstraction, reusability and readability, the language allows function definitions.
As the interpreter performs type checking on the arguments of functions, each func-
tion definition provides a prototype for that function by listing the arguments and

5.2. INTEGRATING EXISTING TOOLS 97

their types. With the prototype, the arguments are also available as local variables.
Within the function definition, statements, blocks and local variables can be used to
complete the calculation.

It is currently not possible to define recursive functions as the interpreter does not
handle local variables in a suitable way yet. However, many recursive functions can
be written in a non-recursive fashion, especially if stack operations are available.
Furthermore, recursive functions usually require a performance which is easier to
achieve in a plug-in using a compiled language.

The arguments to functions are passed either by reference or by value, depending on
the prototype of the function. As the arguments can be used as local variables within
the function, the call by value conversion will copy values to temporary variables. To
release the user of the burden to dereference the arguments, the interpreter performs
this task automatically: a value is converted to a reference by taking the address
of the value, a reference is converted to a value by dereferencing the reference and
copying the value. Due to this automatic conversion, values and references to values
are used without distinction.

It is possible to define local variables in functions by using blocks, which can be
nested. The normal scoping rules apply to the nested blocks and it is possible to
define variables that hide existing variables, although that is not advisable with
respect to readability.

Internally, a user defined function is stored as list of variables, which includes the
arguments and a graph of expressions. When the function is called, the variables
are initialised and the starting point in the graph is selected. Then, the expression
of the current point in the graph is evaluated and depending on the result of the
expression, the next point in the graph is selected. This is repeated until no next
point is available. When the function is finished, the local variables are cleaned up.
Figure 5.8 shows the graph of expressions for the GCD function, which calculates the
greatest common divisor of two integers.

5.2.2 Plug-Ins

The extensions might become too complex to construct them in the interpreted lan-
guage and the efficiency of the interpreter might become a bottleneck. To allow
complex extensions, the interpreter is extended with a run-time library loader which
enables the dynamic loading of additional compiled code by the interpreter. An ex-
tension can use a compiled library or plug-in to provide the interpreter with new
functions which require high performance or low-level access, while the interpreted
language can be used to customise the extension.

The plug-in extends the interpreter with new items, such as new object types, opera-
tor definitions and functions. To ensure that the capabilities of the plug-in mechanism
are sufficient, the interpreter does not provide any types, operators or functions by
default, except for the ones which are vital, such as the functions to open files to be
interpreted. As a result, the interpreter usually loads a collection of default plug-ins

98 CHAPTER 5. INTEGRATING TOOLS

a<b

a := 0

b := 0

a<0

b<0

Start

a := -a

a=0

b=0

b := -b

False

False

False

False

True

True

True

True

True

True
a := a-b

r := a

False

False

{

b := b-a

b<a

}
 r := a;

 elsedo (b<a) a := a-b;

 od;

 do (a<b) b := b-a;

 fi;

 if (a<0) a := -a;

 fi;

Function GCD(Int a, Int b, IntRef result)

 elseif (b=0) a := 0;

 elseif (a=0) b := 0;

 if (b<0) b := -b;

Figure 5.8: The graph of expressions for the GCD function.

to allow standard types such as integers, floating points and strings.

When a plug-in is loaded with the system function dlopen, the interpreter has to
extract the new items from the library. This is done with the system function dlsym,
but it requires the name of an item in the library. Although it would be possible to
provide these names through the interpreted language, it is easier to add a function
with a standard name to the library which will add all the items to the interpreter and
initialise any data used within the library. By using such a standard function, all the
information that is needed to load the library is contained within the library itself.
Furthermore, the function dlsym has to be called only once with the name of the
standard function and loading a plug-in behaves similarly to loading an interpreted
file.

In the following discussion of the plug-in features, a plug-in to handle strings will be
used as leading example. The strings as defined by this plug-in are similar to strings
in C, that is, arrays of characters with a termination null character. The plug-in
library is written in C, so be warned for upcoming C code, which is quite nasty due
to all the type conversions.

Type definitions

A plug-in can extend the language by defining a new type. In order to handle such
a type internally, the plug-in has to provide functions to construct, destroy and copy
objects of the given type. The function to add a new type is:

5.2. INTEGRATING EXISTING TOOLS 99

Type define_type(String name, Integer size,
Function construct(Var ObjectPointer),
Function destruct(ObjectPointer),
Function copy(Var ObjectPointer, ObjectPointer))

The name argument is used by the parser of the interpreted files to identify variables
of the given object. The other arguments are used to handle objects internally
during the interpretation phase, where the size argument indicates the size of an
object, such that the default function can be applied. The construct function is
used to initialise objects, the destruct function is used to destroy objects and the
copy function is used when objects are passed as a call-by-value argument to a user
defined function. These three functions can use reference counting on objects if the
object and its operations allow it.

The function returns a type identifier, which can be used for further reference by the
plug-in. There is no guarantee that the type identifier will be the same in different
instances of the plug-in, as it depends on the number of types that are already defined.

As a plug-in might want to refer to types supplied by different plug-ins, two lookup
functions are available to get the name of the type when a type identifier is given
and to get the type identifier when the name is given:

Type lookup_type(String)
String lookup_typename(Type)

For each type provided by a plug-in, the interpreter will define a reference type, which
is used to pass output arguments to functions. For a given type Name, the interpreter
will define NameRef and conversion between the two is done automatically.

Example The string plug-in defines the type String, which is just a pointer to
an array of characters. As each string requires an unknown amount of memory, the
plug-in has to handle the memory allocation to store the strings correctly. To make
sure that no memory leaks occur, each operation on strings has to make sure that no
memory is lost. This is achieved by using reference counting, where each operation
updates a counter correctly in order to keep track of the number of references to a
particular string, such that the string can be released when it is no longer needed.

typedef Uchar* String;

void construct_string(void **object)
{

*object=NULL;
}
void destruct_string(void *object)
{

decrease_refcount(object);
}

100 CHAPTER 5. INTEGRATING TOOLS

void copy_string(void **object, void *orig)
{

increase_refcount(orig, free);
*object=orig;

}

int init_library(void)
{ Type stringtype;

...
stringtype = define_type("String", sizeof(String),

construct_string,
destruct_string,
copy_string);

...
}

The functions construct_string, destruct_string and copy_string are used by
the interpreter. The plug-in handles NULL strings as empty strings, which results
in a simple construct function. The reference counting mechanism will handle the
cleanup operation when the string is not needed anymore, so the destruct function
only calls decrease_refcount. As reference counting is used, a string value can be
copied by increasing the reference counter, so the copy function consists of calling
increase_refcount and making an assignment.

Prototypes

In order to verify that all functions and expressions are valid, function prototypes
are used. A function prototype consists of a list of type identifiers and a function
caller. The list specifies the type of each argument, which is used by the interpreter
to perform certain conversions. The function caller receives as arguments a function
internal to the plug-in and a list of pointers, each pointing to an object of the appro-
priate type. The function caller performs the required conversions on those pointers
and calls the provided function.

A prototype is defined with the following function:

Prototype define_prototype(Type argumentlist[], Integer length,
Type result,
Function caller(Function,Pointer[]))

As the type identifiers are not fixed, the list of types has to be entered by using
the return value of define_type or by calling lookup_type with the names of the
correct types. The function caller is usually a very simple function, which converts
the pointers and passes them to the given function.

The returned prototype is used to extend the interpreter with functions from the
plug-in, which comply to that prototype.

5.2. INTEGRATING EXISTING TOOLS 101

Example Although the plug-in supplies more prototypes, the following example
should be sufficient to show how the definition of prototypes works.

The definitions of the caller functions are a bit obscure due to the use of C and
the way it passes arguments to functions. To ensure that the arguments are passed
correctly without having to rewrite every function, the caller function receives a list
of pointers to the appropriate objects. By casting those pointers to the correct type,
the arguments are passed correctly to the functions that are called. This results in
the ugly code for these caller functions.

In the init_library function, four prototypes are defined and assigned to vari-
ables. When a large number of prototypes has to be defined, the arguments to
define_prototype can be stored in an array and an iteration over the array can be
used instead.

int call_stringstringref(int (*function)(), void **arguments)
{

return (*function)(*((String*)arguments[0]),
*((String**)arguments[1]));

}

int call_stringstring_resstring(String (*function)(),
void **arguments)

{
*(String**)arguments[2] = (*function)(*((String*)arguments[0]),

((String)arguments[1]));
return (*((String**)arguments[2]))!=NULL;

}

int call_stringstring_resinteger(int (*function)(),
void **arguments)

{
(int)arguments[2] = (*function)(*((String*)arguments[0]),

((String)arguments[1]));
return 0;

}

int call_stringinteger_resinteger(int (*function)(),
void **arguments)

{
(int)arguments[2] = (*function)(*((String*)arguments[0]),

((int)arguments[1]));
return 0;

}

int init_library(void)
{ Type list[2];

102 CHAPTER 5. INTEGRATING TOOLS

Type inttype;
Prototype protoassign, protocombine,

protocompare, protoelement;
...
list[0]=stringtype;
list[1]=ToRefType(stringtype);
protoassign = define_prototype(list, 2, NoType,

call_stringstringref);
list[1]=stringtype;
protocombine = define_prototype(list, 2, stringtype,

call_stringstring_resstring);
inttype=lookup_type("Int");
protocompare = define_prototype(list, 2, inttype,

call_stringstring_resinteger);
list[1]=inttype;
protoelement = define_prototype(list, 2, inttype,

call_stringinteger_resinteger);
...

}

Function definitions

The functions internal to the plug-in are made available to the interpreter by calling
the function

FuncRef define_function(String name, String description,
Prototype prototype, Function function())

name is used by the interpreter to identify the function. description gives an (infor-
mal) description of what the function does, which is used to provide some help and
to summarise the content of the plug-in. prototype provides the prototype of the
supplied function, which includes the number of arguments, the type of arguments
and the result type. function is the compiled function that is added, which can be
called with the function caller provided by prototype.

Example Again, only a small collection of the available functions is given to indi-
cate how the definition of functions works. After the C functions are defined, they
can be added to the interpreter.

void stringassign(String s, String *t)
{

increase_refcount(s,free);
decrease_refcount(t);
*t=s;

}

5.2. INTEGRATING EXISTING TOOLS 103

int stringelement(String s, int pos)
{

if (pos<0 || !s)
return 0;

else
return s[pos];

}

String stringadd(String s1, String s2)
{

int j = Ustrlen(s1);
int i = j+Ustrlen(s2)+1;
String t;
t = malloc(i*sizeof(Uchar));
Ustrcpy(t,s1);
Ustrcpy(t+j,s2);
increase_refcount(t,free);
return t;

}

int stringequal(String s1, String s2)
{

return !Ustrcmp(s1, s2);
}

int stringsmaller(String s1, String s2)
{

return Ustrcmp(s1, s2)<0;
}

int init_library(void)
{

FuncRef assign, element, add, equal, smaller;
...
assign = define_function("StringAssign",

"Assign one string to another",
protoassign, stringassign);

element = define_function("StringElem",
"Get a certain character of a string",
protoelement, stringelement);

add = define_function("StringAdd",
"Concatenate two strings",
protocombine, stringadd);

equal = define_function("StringEqual",
"Are two strings equal?",
protocompare, stringequal);

104 CHAPTER 5. INTEGRATING TOOLS

smaller = define_function("StringSmaller",
"Is the first string smaller?",
protocompare, stringsmaller);

...
}

As reference counting is used, the assignment of strings is equal to increasing and
decreasing the reference counters of the appropriate strings and making an assign-
ment. The function for accessing characters within a string, stringelement, checks
the lower bound (0) of the string, but not the upper bound, as that requires the cal-
culation of the length of the string, which influences the performance of the function
too much. Therefore, when the characters in a string are used in the interpreted
language, the user has to do the bound checking, which isn’t very complicated. The
stringadd function combines two strings by concatenating them, which requires new
memory to be allocated and the two strings to be copied. To ensure that the allo-
cated memory is deallocated in time, the reference counter is set. The comparison
function stringequal and stringsmaller just call the standard function Ustrcmp,
which compares Unicode strings similarly to the system function strcmp.

The name of the function is rather verbose and should be self-explanatory, although a
description is given. It is possible to use these functions in the interpreted language,
but it easier to use the operator overloading, which is discussed next.

Operator overloading

An operator is overloaded by first defining a function with define_function for
handling the specific combination of arguments and then defining that the operator
will be handled by that function, by calling:

define_operator(Operator operator, FuncRef function)

As function includes a prototype, the argument types and result type for operator
are extracted from the information provided by function.

Example In the init_library function, everything is available to overload the
operators.

int init_library(void)
{ ...

define_operator(OPASSIGN, assign);
define_operator(OPARRAY, element);
define_operator(OPADD, add);
define_operator(OPEQUAL, equal);
define_operator(OPLESS, smaller);

}

5.2. INTEGRATING EXISTING TOOLS 105

With the overloading of these operators, the following expressions are valid in the
interpreted language:

Var String s,t;
Var Int i;

s := "Hello";
t := s + " world!";
if (s<t) i:=s[0]; fi;

Internal variables

A plug-in might also make its internal variables available to the interpreter, which
enables easier configuration of the plug-in by means of assignments and inspections.
The plug-in can use such variables internally like any normal variable. Internal
variables are added to the interpreter with the function

define_program_variable(Type type, String name, Pointer address)

Example The string library does not require any internal variables to be made
available to the interpreter, as the interpreter is able to handle string constants
directly. As an example, the library adds the variable easter_egg to surprise users
when they try to define a variable with that name.

String easter_egg=NULL;

int init_library(void)
{

...
define_program_variable(stringtype, "easter_egg",

&easter_egg);
}

5.2.3 Menus

As the extensions provide the interpreter with new functions, which have to be ac-
cessible to the user, the language is extended with interface specific features, such
as the ability to define input methods with keyboard mappings and to define popup
menus.

Although it would be possible to define popup menus by calling the appropriate
functions provided by the interpreter, the menus are such an important part that easy
definition of such menus is required. Therefore, the interpreter allows the definition
of popup menus with a special language construct, which has the following form:

106 CHAPTER 5. INTEGRATING TOOLS

Menu identifier {
Options Pin;
Title "title";

Default "Item 1" : function1(arg1, arg2);
"Item 2" : function2(arg1);
Separator;
"Item 3" : submenu_identifier;

}

The identifier is used to refer to the menu when it is used as a submenu of other
menus. The option Pin is used to specify that the menu can be pinned up on the
screen, such that the menu is directly accessible, which is especially useful for nested
or often used menus. The Title is used as the window title. After the global
information, the menu items are listed, which might be either a description and a
function call, or a description and an identifier of another menu, or a separator.
When the attribute Default is used, then the given menu item will be selected by
default, that is, when the item is selected where the given menu appears as submenu.
For example, when Item 3 is select while the submenu is not suppose to open, the
default action for menu submenu_identifier will be executed.

As an interpreted file might want to add new items to an existing menu, it is possible
to extend a menu by defining it a second time but only specifying the additional
items. Items that already appear in the menu will be replaced by the newly specified
items.

5.2.4 Keyboards

Many users prefer to use the keyboard instead of menus. However, different users
are familiar with different types of keyboard definitions. Therefore, the interpreter
allows the construction of keyboard definitions by a special construct, as keyboard
definitions should be easy to construct or modify.

As keyboard definitions differ greatly from application to application, the interpreter
supports several common key handlers, such as prefix keys, modes, temporary modes
and stacks. Furthermore, as every window might have a different content, the key-
board handler might be specified on a window by window basis.

The special construct provided by the interpreter looks similar to the construct to
define menus, except that keys are specified instead of strings. As the back quote
(‘) is not commonly used in programming languages, it is used by the interpreter to
denote keys.

Keyboard dummy {
Clear;
‘Help‘ : open_sensitive_help();
‘Left‘ : move_backward(1);
‘Right‘ : move_forward(1);

5.2. INTEGRATING EXISTING TOOLS 107

‘ ‘ ... ‘~‘ : self_insert(pressed_key,1);
‘CM-Delete‘ : reboot();
‘F35‘ ‘F13‘ : easter_egg:=easter_egg+"Easter! ";
‘Again‘ : use_map("dummy");

}

5.2.5 Translations

For customising the interface, the interpreter allows the user to specify translation
strings for all the messages used internally by the application or plug-ins. These
internal strings are all ASCII strings due to the limitations of programming languages.
Therefore, a conversion is already required, as Matsad uses Unicode strings for all
messages.

As customisation of the interface is important, the language is extended with a new
construct to specify translations:

Translation Dutch {
"English" : "Engels";
"File" : "Bestand";
"Directory" : "Map";
"Screen" : "Scherm";
"Are you sure?" : "Weet u het zeker?";

}

If no translation strings are specified, the internal strings are used after a default
conversion to Unicode.

5.2.6 Scripting

The interpreted language is also used as a scripting language, where the commands
are executed as they appear. This enables easy customisation and execution in batch
mode. Furthermore, it allows other applications to send execution requests to the
interpreter, similar to remote procedure calls.

5.2.7 Missing features

It is not yet possible to specify watch functions, that is, functions that are called when
certain events happen, for example when a variable changes. Such watch functions
might be needed when the interface depends on certain variables and has to be
consistent all the time, as in popup menus with grey items. The variables internal to
a plug-in are the main hurdle to add this feature, as the plug-in might have functions
with side-effects on the registered variables, which makes it difficult to trigger the
watch functions.

108 CHAPTER 5. INTEGRATING TOOLS

Another use of watch functions would be to extend existing functions by calling the
watch function just before or after another function, as is possible in the configuration
language of Emacs. Although such extensions are useful, they might lead to race
conditions, where watch functions call each other recursively.

The language does not support type constructors, such as arrays, records, lists or
sets. Nor is there a way for a plug-in to extend the language with type constructors.
It would require functions with arguments of some generic type, which disables the
type checking.

5.3 An example connection: PVS

Technical reports often contain parts written in multiple languages, such a mathe-
matical language, a programming language, a script language and a natural language.
The use of multiple languages can easily introduce errors due to manipulations of the
document. Furthermore, the different parts can get out of sync, where the program
in the report is not the program that is compiled. To reduce such errors, a tool is
needed to verify that the report is correct up to a certain point.

The Ph.D. thesis by Matteo Vaccari[78] is an example of such a technical report
with multiple languages. It contains a description of circuits in a mathematical
language with properties and calculational rules on those circuits, the properties are
proven with PVS and the circuits are tested with Tangram. The translations between
these languages had to be made by hand, but it would be nice if some system would
support these translations to some extend. As Vaccari wrote his thesis with Matsad,
a connection to PVS would be a good test case for the Matsad architecture.

5.3.1 The PVS system

From a user interface point of view, PVS is an extension of Emacs, which connects
the proof engine to the Emacs interface and the Tcl toolkit. The user can edit files
containing theorems and use the proof engine to construct the proof interactively.
Since the proof engine is basically a lisp interpreter with state information, the user
interface of the engine is hidden from the user by a collection of pull-down menus
in Emacs. With these menus, the user can perform all the actions that might be
needed to manipulate files, theorems, lemmas and proofs. However, to construct a
PVS proof, the user has to enter plain lisp commands to apply tactics to a goal. To
allow some proof planning, an interface with a Tcl program is available to keep track
of the subgoals.

Since PVS is a closed system and cannot be modified, the available PVS interface had
to be used. The first problem was the existing Emacs interface, which complicates
the communication with PVS. Luckily, the PVS system consists of a core system
connected to Emacs with a collection of Emacs lisp files, as shown in figure 5.9.
Emacs contains a lisp interpreter which is used to load the lisp files for the PVS
communication. These configuration files extend Emacs with new functions and

5.3. AN EXAMPLE CONNECTION: PVS 109

PVS core
system

load

Emacs

Lisp interpreter

communication
lisp files for PVS

output

extend

input

Figure 5.9: The PVS structure

menus to provide a PVS specific interface. With these additional functions, Emacs is
able to communicate with the PVS core system, using its standard input and output.

By using the PVS core system directly, the communication is simplified and easier
to maintain. However, the protocol used between Emacs and the core system is not
documented, probably because the constructors of PVS didn’t envisage a different
interface to that core system. Therefore, the protocol had to be extracted from the
lisp configuration files used by Emacs and the messages that are sent between Emacs
and the core system. With some detective work in the form of a wrapper script that
monitors these messages, we were able to reconstruct the most important parts of the
protocol, which was sufficient to use the core system without the Emacs interface.

The PVS core system is a lisp interpreter and receives lisp commands as input, which
can be used to update or inspect the state of the system or to prove a theorem. The
output of the core system consists of a combination of commands to update the
state of Emacs and the results of proving a theorem. The core system might also
construct temporary files and instruct Emacs to open them, which is mainly used
for help files and the Tcl interface. The Emacs interface cleverly hides the lisp input
with a collection of pull-down menus, while the mixed output is parsed and separated
into several buffers. For the average user, only the buffer with the results of a proof
are of interest.

The PVS core system operates in three modes: a mode for managing the state, a
mode for making the proofs and a debug mode. Since the active mode affects the
commands that Emacs has to send, the system uses synchronisation points when it
switches to a different mode and notifies Emacs. The debug mode is only used if the
system receives incorrect input, and this mode is ended by resetting PVS.

To construct a different user interface for the PVS core system, the user interface
had to simulate the actions performed by Emacs, such that the core system could

110 CHAPTER 5. INTEGRATING TOOLS

A law about map and fold is the following: given R and S such that

R ◦ S×S = S ◦R

then
foldn.R ◦mapn.S = S ◦ foldn.R

The proof is by induction on n; for n = 1 it is trivially true. For n + 1
we have

foldn+1.R ◦mapn+1.S

= { definitions }
R ◦ ι×foldn.R ◦ S×mapn.S

= { fusion }
R ◦ S×(foldn.R ◦mapn.S)

= { induction hypothesis }
R ◦ S×(S ◦ foldn.R)

= { proviso: R ◦ S×S = S ◦R; fusion }
S ◦ R ◦ ι×foldn.R

= { definition }
S ◦ foldn+1.R

Figure 5.10: The presentation style for proofs

not notice the difference. As our plan was to hide PVS as much as possible from the
user, only a subset of the actions available in Emacs were made available in the new
interface.

5.3.2 The PVS interface plug-in

The PVS module consists of a plug-in for communicating with the PVS core system
and an interpreted file to adjust the interface with Matsad. The purpose of the
plug-in is threefold. First, it interprets the Matsad document to extract theorems
and proofs. Second, it generates the input that is sent to the PVS core system.
Third, it parses the output that is generated by the core system.

As a Matsad document is structured, the generation of theorems from a proof given
in the Eindhoven style is not so difficult. For the example in figure 5.10, each of
the five steps has to be correct, so we can generate a theorem for each step. Since
the syntactical differences between the PVS input and the Matsad version are not
very different, generating these theorems is straightforward, once the definitions of

5.3. AN EXAMPLE CONNECTION: PVS 111

the templates are correct. Extracting the proof for these theorems is also possible,
as the hint contains keywords that indicate which strategies are applicable. In the
example, the keyword “fusion” indicates that the fusion lemma is used as a rewrite
rule. The keyword “definition” indicates that some definition has to be expanded and
the keyword “induction” indicates that a premise is used as a rewrite rule, where the
premise can be constructed from the proof itself by using the first and last expressions.
However, the hints are not always precise enough, as PVS often requires more detailed
information on how to apply a rule. The additional details are automatically applied
by a human reader of the formatted proof, without complaining. The reader will
apply the trivial laws, such as the “identity of composition” and “associativity of
composition”, when needed and the direction in which an equality law is used is
determined by trial and error. A complex dialogue with the author could be used to
get these additional details, but a better method would be to define additional PVS
strategies to simulate the behaviour of a human reader:

• a strategy to apply a rewrite rule in both directions,

• a strategy to retry a given strategy after applying the trivial laws, if that
strategy fails the first time,

• a strategy to apply a rewrite rule modulo composition.

These strategies have their limitations, as it is likely that rewrite rules are applied
incorrectly. However, the theorems are usually small and their proofs are short, so
it is less likely that something will go wrong. In the event that a theorem cannot be
proven, an indication that the given hint is not sufficient to prove that step should
be a reasonable reply from the system, as a reader might have the same problems
with it as PVS.

For the other part of the example, the extraction of the theorems would require a
combination of natural language processing and logical reasoning, for which a general
solution is difficult. Therefore, this part is still missing from the constructed PVS
interface.

Once the theorems and proofs are known, they have to be converted to the specifi-
cation language used by PVS. Since the output generated by Matsad depends on
the templates that are used, it is possible to generate valid PVS input from Matsad
expressions without much additional programming. However, the expressions appear
in a certain context and the identifiers should have a certain type, otherwise PVS
will generate parse or type errors. Although the context and type information can
be stored in the document as hidden information, a default context is used, where
certain definitions and identifiers are predefined. This approach is quite common
in documents with many identifiers, as it releases the author from the burden of
mentioning the type of an identifier over and over again.

In order to give feedback to the user, the PVS output should be parsed and converted
to familiar syntax. If a theorem is correct, all is well and a simple message should
be sufficient. Otherwise, a warning or error message should be generated, indicating
the problem and possibly a solution. If PVS does not need the generated proof

112 CHAPTER 5. INTEGRATING TOOLS

completely, it might be that the given hint is incorrect or over-complete and Matsad
will suggest to adjust the hint in order to avoid confusing the reader. If PVS is unable
to prove the theorem, the hint might be incomplete or an error might have occurred.
By inspecting the output and comparing the expressions Matsad could suggest that
an identifier is incorrect or that a particular law might be applied. Since the user is
not familiar with the PVS language, the output of PVS is parsed and shown in the
language as used in the document with a familiar syntax. However, templates are
used to generate the PVS expressions, which allows ambiguity.

The PVS output also contains commands which are handled by Emacs. For each
command, the PVS module will either ignore it or translate it to the new interface.
For example, after the PVS core system has finished a proof, it will tell Emacs to
open a buffer with the PVS file that contains the proven theorem. In Matsad, that
PVS file is generated by a step in a proof and of no interest to the user, so Matsad
will highlight the step that generated the PVS file.

The plug-in adds three functions: pvs_check_hint(), to check the selected hint,
pvs_start(), to start PVS, and pvs_add_keyword(), to define a keyword like “in-
duction” mentioned above and the related PVS strategies. These functions, together
with the already available functions, are used in the pop-up menus to extend the
interface of Matsad, for example to start PVS and to check a selected hint. The
plug-in also adds the variables pvs_initialized and pvs_in_checker, which can
be used to inspect the status of PVS, and pvs_context_dir, pvs_hint_file and
pvs_lemma_name, which are used to customise the generation of PVS files.

Since Matsad uses Unicode internally, the strings that are part of the plug-in, such
as error messages, have to be converted to Unicode before they are used. This
conversion uses a translation table to check whether the string has been customised
by the user. This leaves a plug-in with an additional method of customisation: by
converting a string with the translation table, it can be adjusted by the user. In
the PVS module, the string “PVS HEADER” is used as the header of the PVS file,
which defines the context of the generated theorem. By defining a translation for
this string, the correct header is used.

In addition to the theory-specific keywords, there are four keywords with a special
meaning. Each of these keywords is used in a special case:

• INITSTEP is used to initialise the PVS proof and to remove universal quanti-
fiers.

• FINISHSTEP is used to finalise the PVS proof by applying all the trivial steps,

• EXPRESSIONSTEP is used when an expression occurs within a hint. Expres-
sions in hints are regarded as assumptions and will result in a premise.

• STOPPVSPROOF is used when the proof fails and PVS has to leave the proof
mode.

5.3. AN EXAMPLE CONNECTION: PVS 113

Without these four keywords, a correct proof script cannot be constructed. Therefore,
the interface definition file has to define these keywords with the pvs_add_keyword
function.

5.3.3 The definition file

The PVS plug-in handles the communication with the PVS core system and provides
the interpreted language with a collection of high-level functions. With these func-
tions, the popup menus of Matsad have been extended with PVS specific commands
or submenus. The interpreted language is also used to initialise and customise the
PVS plug-in, for example by filling the keyword list and setting up the context. Some
parts of the definition file for PVS are shown in figure 5.11 on page 114.

First, the plug-in is included, meaning that the functions and variables from that
plug-in become available to the interpreter. It is also possible to include other def-
inition files, which can be used to divide the different aspects of the interface over
separate files.

After the plug-in has been included, the function pvs_reset is defined, which is used
to reset PVS if something goes wrong. This function could also be part of the plug-in,
but defining it in the interface definition file is more flexible, as it can be adjusted
more easily.

Once all the functions are available, they can be linked to a pop-up menu and the
keyboard. The interface definition language has special constructions to make this
as easy as possible. A pop-up menu is defined by making a list of menu items, each
containing a description and either the function to be called or the submenu to be
opened. In the example, the menu called PVSMathSpad gives the user access to four
PVS-specific functions. The menu itself is added as a submenu to the menu called
Misc, which lists miscellaneous features.

Three functions are made available through keyboard shortcuts. After the Meta-p
prefix, the key s will start PVS, the key c will check the selected hint and the key r
will reset PVS.

To customise the PVS plug-in, two translation strings are defined. As explained
earlier, a translation for the string “PVS HEADER” is given to set the context for
the generated theorems. In general, this translation mechanism is used to customise
the messages from Matsad, as these are all in English and perhaps not clear enough
(as in ‘folder’ versus ‘directory’).

At the end, the variables are initialised and the database of keywords is filled. At
this point, the definition file is used as a script file to execute the functions while the
definition file is loaded, which is used to further customise the plug-in.

114 CHAPTER 5. INTEGRATING TOOLS

Include "libpvs.so"

Function pvs_reset()

{

if (pvs_initialized) {

send_signal(2, "PVS Session");

send_string(":reset\n", "PVS Session");

pvs_in_checker := 0;

}

}

Menu PVSMathSpad {

Options Pin;

Title "PVS Link";

"Start" : pvs_start("PVS Session");

"Check Hint" : pvs_check_hint(1);

"Reset" : pvs_reset();

"Exit" : send_string("(pvs::lisp (ILISP:ilisp-restore))

(pvs-errors (exit-pvs))\n", "PVS Session");

}

Menu Misc {

"PVS" : PVSMathSpad;

}

Keyboard Global {

‘M-p‘ ‘s‘ : pvs_start("PVS Session");

‘M-p‘ ‘c‘ : pvs_check_hint(1);

‘M-p‘ ‘r‘ : pvs_reset();

}

Translation English {

"PVS-shell" : "PVS Session";

"PVS_HEADER" : " [t: TYPE+] : THEORY

BEGIN

IMPORTING tuples[t]

n,m: VAR upfrom(1)

R,S,T,U: VAR rel

";

}

pvs_context_dir := "/home/river/pvs-test";

pvs_hint_file := "hint";

pvs_lemma_name := "hintlemma";

pvs_add_keyword("STOPPVSPROOF", "(quit)\nY\n\"nil\"\nno\n",0);

...

pvs_add_keyword("induction",

"(then* (inst?)(ground)

(try-triv-step (bidi-replace*)))\n", 1);

Figure 5.11: The interface definition file

Chapter 6

Discussion and conclusions

The development of Matsad started in 1992 with much fewer requirements, as it was
a final year project[80], which had to be finished in six months. The final year project
was completed in co-operation with Olaf Weber. During the years that followed, new
requirements were added and the existing system was extended in order to meet these
requirements. Some of these additional requirements include the use of templates for
entering text-related constructs like section titles and support for external systems.
In December 1993, the system was first released as version 0.31 and a questionnaire
was sent to get some feedback. In June 1995, version 0.50 was released, followed by
version 0.60 in March 1996. The current version, which required a large rewrite of
the internal system, was released in January 2000 as version 0.80.

This chapter consists of three sections. The first section discusses the current system
and which parts of the system might require some improvements. The second section
contains possible application areas of the current system and discusses which modifi-
cations might be needed to support these areas better. The third section contains a
short description on how to build a similar system again, using the experiences with
the current system and making use of current technology.

6.1 The current system

The current system works according to requirements of the target users. That is, it
helps in preparing large and complex mathematical documents and generates error-
free LATEX code for the structures that are used. As it is possible to include raw
LATEX markup, it is still possible that there are markup errors in those parts. The
flexibility of the templates is used for several purposes, which weren’t anticipated
when the system was first constructed, such as generating multiple views on the
same document or entering letters using templates as fill-in forms. At the moment,
the system is freely available on the Internet, including the online help and a tutorial.
It works on several UNIX systems and it should not be difficult to install.

115

116 CHAPTER 6. DISCUSSION AND CONCLUSIONS

As with many document preparation systems, Matsad is never finished and it is
always possible to extend the system with new features. Although Matsad works
properly and it is always possible to enter plain markup to the document, there is
room for improvements. Some of the problems with the current system are described
in the following sections.

6.1.1 The learning curve

The Matsad system is a structure editor and therefore quite different from existing
text editors or document processing systems. Furthermore, Matsad uses LATEX for
printing purposes and some basic knowledge of LATEX is still needed. As a result, it
might take quite some time to learn to use the system, even when the online tutorial
is used to get started.

It is possible to reduce the learning curve by copying the behavior of another system,
such as Word, WordPerfect, Emacs or VI, depending on the background of the user.
For example, Microsoft Word is able to mimic the behavior of WordPerfect, in order
to make the transition to Word easier and Emacs provides a VI mode for VI users.
However, to mimic the behavior of such systems, you have to translate operations
in those systems to operations on tree structures, such that the user doesn’t notice
the difference. This is rather difficult due to the operations that are allowed in those
systems, such as free selection and deletion.

6.1.2 The interface

The interface that Matsad presents to the user is simple yet functional. The inter-
face resembles the style used by several tools available at the time the interface was
constructed, but most modern applications use more appealing interfaces with lots of
colourful buttons with icons. In order to make Matsad more accessible, the interface
of Matsad should be updated to the current standards. In the updated interface,
which could look similar to the interface of Word or WordPerfect, the templates for
adding textual items could be made available through small buttons, making it easier
to get started with the system.

To update the interface, the use of a toolkit is advisable. However, the situation has
not changed much in six years. There are still about a dozen toolkits available with
a different look-and-feel and putting mathematical symbols or notations on popups
is still difficult. The experimental port to Windows95 indicated that the internal
processing is portable, except for the drawing-related parts. Therefore, reconstruct-
ing a new interface should not be too difficult, once the drawing routines are sorted
out. The main problem might be related to the use of dynamically generated popup
menus for templates and the use of mathematical notation on those menus.

By choosing a graphical toolkit which is available on multiple platforms, such as
Tcl/Tk or Java, only one interface has to be written to support these platforms and
native methods could be used to access the internal workings. However, Matsad
has special requirements with respect to fonts and in the toolkits that are available

6.1. THE CURRENT SYSTEM 117

for multiple systems, only the common features are available, which means that vital
information about character sizes is not directly accessible, which makes it quite
difficult to use the fonts properly.

By using a platform-specific toolkit, the interface has to be ported to a different
system in order to use the application there. However, the toolkit would more likely
follow the look-and-feel of the platform it is written for and it would allow access to
platform-specific data. For the Microsoft platform, one of the visual interface builder
tools can be used to construct the skeleton of the interface and the internal functions
can easily be connected to the buttons and menu items. For the UNIX platform,
the situation is a bit different. Most UNIX variants, such as Solaris, Linux, Irix and
HP, use their own toolkit with their own look-and-feel, which makes it difficult to
write an application that works properly on all platforms, especially when interac-
tion between graphical applications is required. On Linux, the KDE environment
with its Qt toolkit is common and it also works on several other UNIX platforms,
although the look-and-feel might differ slightly. So choosing the Qt toolkit covers
most UNIX systems, although the Qt license agreement requires that the source
code is made available. Furthermore, this toolkit has the same look-and-feel as the
Windows toolkit, so it allows Window users to use the system more easily as well,
for example through an X emulator. Another advantage is that it supports Unicode
to some extent. Other operating systems, such as MacOS and BeOS, use their own
toolkits, which makes it more difficult to port to those systems.

Although the use of a toolkit guarantees a common look-and-feel, certain parts of
Matsad are difficult to translate into that look-and-feel. For example, most toolkits
require Cut, Copy and Paste operations to be located in an Edit menu and it would
be possible to comply with that. However, the multiple selection mechanism is very
useful when mathematical content is edited, as it contains more duplication of content
than other data formats, such as text, spreadsheets or images. Supporting multiple
selections is therefore useful, but it is not possible to make these selections in a similar
way, as the look-and-feel guide lines determine how the mouse buttons should be used,
either with or without modifier keys such as shift or control. As a result, a different
and more complex method of making selections is required.

6.1.3 Converting legacy documents

One of the problems of starting with Matsad is the fact that all the old documents
are not converted to the WYSIWYG representation of Matsad. It is possible to
import plain text into a document, but that doesn’t improve the editing facilities
on that text. However, parsing documents in a markup language that allows macro
definitions, as LATEX does, is very difficult due to these user-defined macros. As the
templates can be used to generate such markup documents, it might be possible
to parse the documents using the information available in these templates. That
way, a parser can be constructed by defining the correct templates and if strange
markup sequences are used, the parser can easily be extended by defining additional
templates. An experimental version of such a parser was tested and it was possible

118 CHAPTER 6. DISCUSSION AND CONCLUSIONS

to parse LATEX and HTML documents partially.

The problem with such a parser is that the input documents are usually constructed
by hand and not regular enough for the parser to work properly. Furthermore, if the
parsed document is used to generate new output, that output should be equal to the
original input, as any difference could influence the meaning of the markup sequences.
Even for automatically generated markup, such as HTML documents produced by
a document preparation system, there might be errors, such as tags that are nested
incorrectly tags. As a result, the parser should be able to handle all kinds of errors
gracefully.

A different approach to the parsing problem would be to build the document structure
while the input is read, such that the position within the structure is used to guide
the parser. That way, it is possible to parse input that is delayed, such as computa-
tion results or HTML documents received over slow network connections, while the
document is regularly displayed. This assumes that the input is correct, but it is pos-
sible to handle errors like missing end tags gracefully. The position in the structure
can be used to calculate the closure-set for that position and what should happen in
case of errors. For example, the HTML markup sequence <I>Example</I>
is incorrect. While parsing that sequence, the structure for <I>Example</I>
is constructed and the incorrect tag is found. The parser would expect a </I>
tag first, but the position in the structure indicates that that tag is probably miss-
ing, as is the closing tag for an element at a higher level. As the markup is
incorrect, the parser might handle the situation in different ways depending on the
markup language or context: regard it as a typing error , regard it as a missing tag
or unparse the constructed structure.

6.1.4 Multiple output formats

At the moment it is possible to generate many different markup languages, but only
one at a time. That makes it difficult to generate multiple output formats from
the same source. However, in order to interact with multiple systems at the same
time, multiple output formats should be supported simultaneously. That way, LATEX
output can be used for printing, HTML output for publishing on the Internet, Maple
output to do calculations or generate images and C output to generate a program.
At the moment, this is possible but very tedious and risky. To do it, you have to
load a stencil file with the correct collection of templates, which define the required
output format. After the stencil file is loaded, you can generate the required output.
The main problem with this approach is that certain templates might not be defined
in the loaded stencil file, so that the output can contain markup sequences from
different languages. Another problem is that fact that the system only allows one
definition of a template at any time and a template is only replaced if no loaded
stencil file refers to it, which means that other stencil files have to be closed before
the stencil with the required output definitions is loaded.

It would not be very difficult to allow multiple output definitions for each version
of a template. However, the impact of the extension is large. The interface for

6.1. THE CURRENT SYSTEM 119

defining templates has to provide facilities for selecting the output formats and for
defining them. The generation of output has to be modified such that the correct
output format is selected, probably with some mechanism to select alternatives when
definitions are missing. As the templates are stored in stencil and document files,
storing the complete template with all its output formats would increase the size of
document files dramatically, so it should be possible to specify which output formats
have to be saved. Finally, if multiple output formats are possible, it is likely that
multiple screen formats are requested as well, with all the related features such as
switching between screen formats.

Once multiple output formats are available, it is possible to generate the output
in several stages. For example, a LATEX preamble output mode could be used to
generate a list of all the packages and definitions that are required by the document.
The generation of LATEX output would then involve generating the LATEX preamble
and generating the LATEX document content. For HTML, similar output stages could
be defined, such as a table of contents, an index and a glossary.

If multiple screen formats are available, it would be possible to have style sheets
and document related screen versions. The different formats could also be used
for handling pretty printing of the document, although that would require a close
interaction with the display engine.

6.1.5 Additional layout constructions

Within screen formats, several special characters are available to instruct the display
engine to format the text differently. The special characters were initially only used
for the tabbing environment and the stack construct. Later on, support for font
changes, size changes and colour changes were added. It would not be too difficult to
add support for other constructs, such as tables and images. However, the document
display engine is not able to handle these extensions properly, as many of the optimi-
sations are based on a line oriented document, which requires that the complete table
has to be redrawn after every change to its content. Furthermore, the document is
scrolled on a line basis instead of a pixel basis and as a table would be regarded as a
single line, positioning the document properly becomes impossible for large tables.

In order to allow more layout constructions, the document display engine has to use
the recursive method instead of the tree-traversal method that is currently used. As
the display engine is used after every change to the document, it has to use clever
caching of previous results and make use of clever screen updates, especially for plain
text and tables.

The document display system was developed six years ago for computer systems at
that time, which means that the memory footprint had to be small and complex
layout algorithms had to be avoided. That way, it was possible to use the system on
an i486 with 8MB, a 50Mhz processor and a 120MB disk. Currently, even a simple
computer system is ten times more powerful in every aspect (speed, memory and disk
storage). Therefore, updating to a memory or processing intensive display system
should not cause performance problems.

120 CHAPTER 6. DISCUSSION AND CONCLUSIONS

6.1.6 LATEX and Unicode

Matsad allows the complete set of Unicode character to be entered, although it
is not always possible to display them properly. With special input methods, it is
possible to enter Chinese, Cyrillic, Greek or Korean, but it is not possible to convert
all these characters to correct LATEX markup. One of the problems is that LATEX
requires special environments and encodings for each language, which is difficult to
add automatically when characters are entered freely.

The Ω system[25], a Unicode-capable extension of TEX, is able to handle Unicode
encoded input, but it still requires the correct language environment in order to
switch to the correct fonts and perform the correct manipulations on the document.
To some extent, it is possible to add some of these tags automatically, which would
allow free typing within Matsad, but it will not always result in the correct output
due to missing or incorrect fonts.

6.2 Application areas

Although the system is developed for document manipulation and preparing reports,
papers or books with mathematical content, it is also possible to use the system for
other purposes without too many problems.

6.2.1 Markup for dummies

The main problem with the LATEX markup language is that you have to learn the
markup sequences in order to use it properly, which takes quite some time. With
Matsad, it is possible to construct document templates, similar to the ones available
in Word or WordPerfect, such that someone only has to fill in the place holders and
click on the Print option to get a hard copy. All the LATEX markup and commands
to print the document are hidden from the user.

As the user does not know anything about LATEX, all the characters that are entered
into the document should appear as such in the output. That means that all special
LATEX characters generate markup sequences to produce these characters in the final
output, instead of their ASCII representation, which would be interpreted by the
LATEX system.

6.2.2 Teaching and presentations

By using the scripting language, it is possible to set up a document for a slide
presentation and with creative use of the template mechanism, it is even possible to
create visual effects, such as text fading in or entering the page from the right or
bottom. And as Matsad handles formulæ as well as it handles text, it is possible
to add lots of formulæ to the presentation. Of course, professional presentation
software provides many more animations to lighten up the presentation, but such

6.2. APPLICATION AREAS 121

features should be used with care, as they distract the audience from the subject.
Furthermore, an application like PowerPoint is not well suited for presenting lots of
formulæ.

The advantage of using a document preparation system for giving a presentation is
that you can easily annotate your presentation. Comments from the audience can be
added and mistakes can be corrected while the presentation is given. Furthermore,
if the system provides an interface to another system, that system can be demon-
strated without the need to switch to a different system (and showing all the mess
on your screen). In a presentation at the Formal Methods conference in 1999[79], the
connection with PVS was demonstrated in that way, which left quite an impression
(if I may believe Tony Hoare).

Another application of Matsad might be for students to take notes during lectures.
When templates and their keyboard shortcuts are installed properly, it is possible to
enter formulæ very fast, which allows taking notes directly into a Matsad document.
That way, it is easier to adjust the notes during the lecture, in case the teacher makes
a mistake, to work out the notes later on or to print the notes at the end of the
semester.

6.2.3 Interface for mathematical engines

The PVS interaction shows that it is possible to connect other systems to Matsad,
although it requires some additional programming work. If the parsing routines for
the output produced by the system could be generated from the template definitions,
that part of the task could be reduced dramatically, making it easier to construct a
connection.

The internal script language is easy extendable with new functionality through the
use of dynamic libraries. By providing sufficient functionality to make connections
with external systems more feasible, such as direct access to the internal document
structure and several connection mechanisms, such as sockets, software busses or
Corba, Matsad can be used as a general interface for several mathematical systems,
by either using their command line interface or by using specific connection libraries
such as MathLink.

If multiple output formats are available, it is even possible to have the same document
processed by several mathematical systems at the same time, in order to verify results
or get the fastest results. The Matsad document would serve as an intermediate
translation format between the connected systems.

For theorem provers, the same argument holds, although it might be more difficult to
use different systems on the same input. In symbolic algebra systems, the theory and
automation is well established and most systems will come up with the same results
and the systems use similar notations. For theorem provers, there is a wide variety
of systems, formalisms and notations, from fully automated proving to step-by-step
proving. Due to this possibly interactive nature of the theorem prover, it is more
difficult to embed it in a different interface. Furthermore, theorem provers often do

122 CHAPTER 6. DISCUSSION AND CONCLUSIONS

not provide a command line interface or connection library, which makes it even more
difficult.

6.2.4 Literate programming

By defining the correct template, it is possible to write programs with Matsad in a
publication style, such as the guarded command language. By using different output
formats, it is possible to generate both the documentation and the program from
the same source document. Although this will certainly work for small examples,
it might not scale very well, as larger programs require more management tools,
such as revision control, debugging facilities, project management and optimisation
profiling. To support such tools, the Matsad documents should be suitable for
revision control systems, which extract changes to files to allow regeneration of all
previous versions. At the moment, the document format is not well suited for that.
To allow debugging, it is necessary that positions within the program text are mapped
correctly to positions in the tree structure. Although possible, the current system
does not support such tight integration.

To convince people that literate programming is possible with Matsad, the system
itself should be written using literate programming. To do that, Matsad has to be
bootstrapped, that is, written using itself and thus ensuring that the system is stable
enough to handle large literate programs. However, the current source would have to
be converted to a literate program or rewritten completely within Matsad, which
is quite a large effort.

6.3 Rebuilding the system

Matsad was constructed with technologies and systems that were available in 1993.
Since then, a lot has changed, for better or worse. Therefore, if Matsad were to be
reconstructed from scratch with current technology, other decisions would be made.

The current system was constructed for writing technical documents and being able
to print them. Therefore, the LATEX markup language was important as an output
format as it generates high quality printed documents. For that purpose, the system
works well. Due to the Internet, documents are more often distributed in an electronic
form, usually in different document formats, such as the HTML and XML markup
languages or PDF layout format. Therefore, the new system should include support
for those document formats, as well as the technologies used on the Internet, such as
hyperlinks, style sheets and document scripting.

When support for these Internet technologies is available, the question arises what
the main purpose of the new system will be.

• A document preparation system

• A presentation tool for teaching technical material

6.3. REBUILDING THE SYSTEM 123

• An interface for other systems

• A browser for technical contents

Each purpose requires different features. The document preparation system requires
good editing facilities and dynamic screen updates. The presentation tool requires
some scripting facilities and textual animations. The interface for other systems
requires advanced scripting facilities and easy extendibility by providing communi-
cation protocols. Depending on its usage, the browser requires support for all XML
related technology, for Java applets and for plug-ins.

As there are already several browsers available, building a new browser is not really
necessary, as it might be possible to extend an existing browser like Netscape with
the functionality to handle mathematical objects or non-standard notations. If the
existing browser fully supports XML, it should be a matter of defining the correct
XML schema and related style sheet.

The interface for other systems is useful, but as long as it is not clear which systems
will be used as a background engine, the new system has to be modular and easily
extendable. As the MathML and OpenMath markup languages are designed by
several companies selling mathematical engines, general support for those languages
should allow easy communication with several symbolic algebra systems. As MathML
is an application of XML technology, general support for XML is a requirement.

The presentation tool is a logical extension of the document preparation system.
Once a document is written, it can be used in a presentation immediately by using
the same system to present the document. However, with some additional features,
the presentation can be made more attractive to the audience. With limited scripting
facilities, it is possible to perform some textual animations, such as text moving in
from some direction or stepping through a list of bulleted items.

For educational purposes, a combination of a document preparation system, a pre-
sentation tool and an interface for other systems is useful. Although a browser is
useful as well, it would probably take too much effort to build it from scratch. Fur-
thermore, a document preparation system can already be used for that purpose to
some extent and otherwise an existing browser could be extended with the required
features for handling technical content properly.

By combining the three purposes, the resulting system is well suited for use in edu-
cation:

• The document is used in the lecture to give a presentation, similar to using
slides or other presentation software, such as PowerPoint.

• The students can use their own copy of the document to take notes, either
during the lecture or afterwards, depending on whether they are allowed to use
computers during lectures.

• The document can contain exercises for the students, which can be carried out
using the system. Afterwards, the student can give a presentation using the
same system.

124 CHAPTER 6. DISCUSSION AND CONCLUSIONS

• If a connection to an external system is available, some of the exercises can be
carried out or marked using the external system.

• The document can contain additional information for students who are unable
to gasp the standard information. By using hyperlinks, this addition informa-
tion might be located anywhere on the Internet.

Several of the features mentioned are already used in the interactive algebra course[17]
developed by Cohen in Eindhoven. This course uses HTML documents and Java
applets to present the algebraic theory, examples, exercises and background infor-
mation. With the use of special Java applets, called gapplets, a connection with the
GAP system[41] can be used for doing calculations. One possible problem with the
interactive course is that it is not yet possible to add notes to the individual pages,
such that personal comments or corrections can be added. However, this problem is
inherent in the usage of the CD-ROM storage medium and the limitations of Internet
browsers. Nevertheless, the interactive algebra course is impressive and it takes a
lot of time and effort to create such an interactive course. As there is no specialised
software support for constructing such a course, a powerful mathematical document
preparation system might be useful for preparing similar courses.

There are several advantages for using electronic documents during lectures, espe-
cially if they can be adjusted easily.

• It is easy to highlight parts of the document by using the selection or scripting
facilities.

• With hyperlinks, it is easy to refer to other documents or parts of the same
document, which allows the lecturer to easily skip parts of the lecture which
are clear and give more information on the parts which are not clear.

• The lecturer can annotate the presentation with remarks from students.

• It is possible to have reliable dynamics, such as showing the steps in a proof.

• With scripting facilities, it is possible to replay the presentation, which allows
students to repeat the presentation.

• If the document contains sufficient information, it is possible to follow lectures
from a distance. Otherwise, technologies such as RealAudio or WebCam can
be used to transmit the additional information provided by the lecturer.

For this to work, the system has to provide presentation specific features, such as
animations, highlighting, hyperlinking, script recording and script playback.

During a presentation, the keyboard and mouse are often not an appropriate interface
to the computer, as it requires the lecturer to be very close to the computer, often
sitting down behind a desk and being obscured by equipment. Therefore, other
input methods might be useful, such as sound recognition using a microphone, 3D
gestures using a 3D mouse or data glove or written gestures using a PalmPilot. These
alternative input methods are also useful for normal interaction with the system, as
they might reduce the chance of RSI.

6.3. REBUILDING THE SYSTEM 125

6.3.1 New technology

The new system can make use of new technology, which wasn’t either available, widely
used or mature enough when the current system was built. Some of the technologies
which might be useful are:

XML The XML markup language and related technology[47] seems to be the new
standard for storing structured documents and processing them. Although
SGML, the basis for XML, has been around for a long time, it was considered
to be too complex to be useful. The simplifications in XML and the success
of HTML make the technology more accessible and more tools have become
available for handling XML documents. As XML originated from the WWW
consortium, it is probably a format that will be used for quite some time,
although it is difficult to predict how it will develop in the future. Therefore,
using XML as a basis for the revised system would be a good choice, as other
XML tools can be used for processing documents. The related technology
includes:

XSL The extensible style language used for formatting XML documents

XSL transformations The transformation system for XSL to generate other
formats from XML documents.

MathML An XML schema for adding mathematical content to XML docu-
ments.

DOM The document object model that allows easy access to the content of
an XML document through a standard interface.

SAX The simple API for XML that allows easy interaction with existing XML
parsers.

Although the XML markup language is quite different, it should still be possible
to generate sensible LATEX output for printing purposes.

Corba With Corba technology[48], it is possible to build distributed systems, such
that documents can be manipulated by multiple authors, for example, sev-
eral students working on a common project. However, to be able to use this
technology, the internal structure has to support network transparent storage
and editing operations, as part of the document may be stored and edited on
another system.

Internet Browsers By using XML as the native storage format of the new system,
normal Internet browsers like Netscape or Internet Explorer can be used to view
the documents, assuming that the support for XML and XSL will be available
in those systems. It might be necessary to provide additional functionality
in the form of plug-ins or extensions in order to handle certain mathematical
notations properly.

OpenMath The OpenMath society has defined a standard for representing mathe-
matical formulæ and their semantics[9], such that they can easily be exchanged

126 CHAPTER 6. DISCUSSION AND CONCLUSIONS

between different systems. By supporting the OpenMath standard (and the re-
lated MathML recommendation), interaction with mathematical systems could
be established. With the use of content dictionary, it is also possible to rep-
resent programs in the OpenMath standard, thereby allowing interaction with
programming related systems like interpreters, compilers and debuggers.

Scripting There are several scripting languages which can be used within docu-
ments, such as Javascript, ECMAScript[20], VBscript and Tcl/TK[54]. With
these scripting languages, it is possible to make the content of documents more
interactive and responsive to actions of the user.

By using XML as a basis for the new system, the structure of the internal workings
are determined to some extent. The Corba support will complicate the internal work-
ings as network transparency has to be added in the form of conversion methods to
access the ORB. The OpenMath support can be accomplished by providing conver-
sion methods between the internal representation and the OpenMath representation,
where the Corba support can be used for the communication with other systems.

The use of XML as basis for documents means that the structure of documents
is more rigid than the structure that Matsad currently uses, as XML documents
have to comply to the structure described in their XML schema. Therefore, the
new system has to provide sufficient features to ensure that this structural integrity
doesn’t become a hurdle in using the system. Similar requirements appear when
support for OpenMath is added, as it adds semantical meaning to the formulæ,
which has to be correct as well.

Although it is possible to build some the described features and technology into the
current Matsad system, the internal storage structure with its selection and display
features make it very difficult to support these extensions properly.

Bibliography

[1] Adobe. Adobe Photoshop version 4.0. Adobe Press, 1997.

[2] Adobe Systems Incorporated. PostScript Language Reference Manual. Addison-
Wesley Publishing Company, 1990.

[3] Inc. Apple Computer, editor. OpenDoc Programmer’s Guide for the MacOS.
Addison-Wesley, 1995.

[4] J.A. Bergstra and P. Klint. The discrete time toolbus. Technical Report P9502,
Programming Research Group, University van Amsterdam, 1995.

[5] Don Bolinger and Tan Bronson. Applying RCS and SCCS. O’Reilly, September
1995.

[6] Bert Bos, H̊akon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading style sheets,
level 2. Available online, at http://www.w3.org/TR/REC-CSS2/, May 1998.

[7] Arald den Braber and Frits Lucas. Mathpad for Windows95. Master’s thesis,
Eindhoven University of Technology, 1998.

[8] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen. Extensible markup lan-
guage (XML) 1.0. Available online, at http://www.w3.org/XML/, February
1998.

[9] O. Caprotti, D.P. Carlisle, and A.M. Cohen. The OpenMath standard. Available
online, at http://www.openmath.org/, August 1999.

[10] Per Cederqvist et al. Version Management with CVS, 1993. Available online,
at http://www.cyclic.com/.

[11] Robert J. Chassell and Richard M. Stallman. Texinfo, the GNU Documentation
Format, 3.12 edition, February 1998.

[12] Chicago Press, editor. The Chicago Manual of Style. The University of Chicago
Press, 14th edition, 1993.

[13] P. Chisholm. Calculation by computer. In Third International Workshop Soft-
ware Engineering and its Applications, pages 713–728, Toulouse, France, De-
cember 1990. EC2.

127

128 BIBLIOGRAPHY

[14] Ian Clatworthy. SDF User Guide, May 1999. Available online, at http://www.
mincom.com/mtr/sdf/.

[15] Englewood Cliffs. OSF/Motif : programmer’s reference. - Release 1.1. Prentice
Hall, 1992.

[16] Cobb Group. Word 6 for Windows companion. Microsoft Press, 3rd edition,
1994.

[17] Arjeh Cohen, Hans Cuypers, and Hans Sterk. Algebra Interactive. Springer,
1999.

[18] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, 1990.

[19] ECMA. User interface taxonomy. Technical Report ECMA TR/61, European
Computer Manufacturers Association (ECMA), 1992.

[20] ECMA. ECMAScript language specification - 3rd edition. Technical Report
ECMA-262, European Computer Manufactures Association (ECMA), December
1999. Available online, at http://www.ecma.ch/stand/ECMA-262.htm.

[21] Ian Elliott and David P. Wiggins. Double buffer extension protocol. Technical
report, X Consortium, Inc., 1996.

[22] Sandra L. Emerson and Karen Paulsell. Troff typesetting for UNIX systems.
Prentice-Hall, 1987.

[23] Benno Fuchssteiner and Klaus Gottheil et al. MuPAD : Multi Processing Algebra
Data Tool : Tutorial, MuPad version 1.2. John Wiley and sons, Chichester, New
York, 1994. See also http://www.mupad.de/.

[24] The Gimp User’s Manual, 1999. Available online at http://manual.gimp.org.

[25] Yannis Haralambous and John Plaice. Multilingual typesetting with Omega,
a case study: Arabic. In Proceedings of the International Symposium on
Multilingual Information Processing, pages 63–80, 1997. Available online at
http://www.gutenberg.eu.org/omega/.

[26] Dan Heller. XView Programming Manual. O’Reilly & Associates, Inc., 1990.

[27] G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq proof assistant – a tutorial.
Technical Report 178, INRIA, July 1995.

[28] Patrick Ion and Robert Miner. Mathematical markup language (MathML) 1.0
specification. Available online, at http://www.w3.org/Math/, April 1998.

[29] Ian Jacobs and Laurence Rideau-Gallot. A Centaur tutorial. Technical Report
140, INRIA Sophia-Antipolis, July 1992.

BIBLIOGRAPHY 129

[30] Norbert Kajler. CAS/PI: a portable and extensible interface for computer al-
gebra systems. In Proceedings of ISSAC’92, pages 376–386. ACM Press, July
1992.

[31] Brian W. Kernighan and Lorinda L. Cherry. A system for typesetting mathe-
matics. Communications of the ACM, 18:182–193, 1975.

[32] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, 2nd edition, 1988.

[33] Jeffrey H. Kingston. A User’s Guide to the Lout Document Formatting Sys-
tem. Basser Department of Computer Science, The University of Sydney 2006,
Australia, August 196.

[34] P. Klint. The ASF+SDF Meta-environment User’s Guide, June 1995.

[35] D.E. Knuth. Literate programming. Computer Journal, 27(2):97–111, 1984.

[36] Donald E. Knuth. The TEXbook. Addison-Wesley Publishing Company, 1986.

[37] Shiz Kobara. Visual design with OSF/Motif. Addison-Wesley, 1991.

[38] Doug Kramer. How to write doc comments for javadoc. Available online, at
http://java.sun.com/products/jdk/javadoc/.

[39] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley Pub-
lishing Company, 1994.

[40] Mark Leisher. Input method design. A tutorial at the Ninth International
Unicode Conference, September 1996.

[41] Steve Linton. The GAP 4.2 reference manual. Available online, at http://
www-history.mcs.st-and.ac.uk/~gap/, February 2000.

[42] Monique H. Logger. An integrated text and syntax-directed editor. Technical
Report CS-R8820, Centrum voor Wiskunde en Informatica, 1988.

[43] Jason J. Manger. Netscape Navigator. McGraw-Hill, 1995. See also http:
//www.netscape.com/.

[44] MathType, the best thing for writing equations since chalk! Available online,
at http://www.mathtype.com/.

[45] The MathWorks, Inc. Using MATLAB, December 1996. Available online, at
http://www.mathworks.com/.

[46] Microsoft, editor. OLE2 Programmer’s Reference, volume one. Microsoft Press,
1994.

[47] Michael Morrison et al. XML Unleashed. Sams Publishing, December 1999.

[48] Thomas J. Mowbray and William A. Ruh. Inside CORBA : distributed object
standards and applications. Addison-Wesley, 1997.

130 BIBLIOGRAPHY

[49] Patrick Naughton. The Java Handbook. Osborne McGraw-Hill, 1996.

[50] Adrian Nye. Xlib reference manual. O’Reilly, 3rd edition, 1992.

[51] Adrian Nye. Xlib programming manual. O’Reilly, 3rd edition, 1993.

[52] Adrian Nye and Tim O’Reilly. X Toolkit intrinsics programming manual.
Addison-Wesley, 3rd edition, 1993.

[53] Sandra Martin O’Donnell. Programming for the World: A Guide to Interna-
tionalization. Prentice Hall, 1994.

[54] J.K. Ousterhout. An X11 toolkit based on the TCL language. In Proceedings of
the 1991 Winter USENIX Conference, pages 105–115, 1991.

[55] Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Number 828 in
Lecture Notes in Computer Science. Springer – Berlin, 1994.

[56] Eric Peeters. Design of an Object-Oriented, Interactive Animation System. PhD
thesis, Eindhoven University of Technology, December 1995.

[57] V. Quint and I. Vatton. Grif: an interactive system for structured document
manipulation. In J.C. van Vliet, editor, Text Processing and Document Manip-
ulation, Proceedings of the International Conference, pages 200–213. Cambridge
University Press, 1986.

[58] Dave Raggett and Ian Jacobs. Hypertext markup language home page. Available
online at http://www.w3.org/, 1999.

[59] Dave Raggett, Jenny Lam, and Ian Alexander. HTML 3, Electronic Publishing
on the World Wide Web. Addison-Wesley, 1996.

[60] Darren Redfern. The Maple Handbook. Springer, 1996.

[61] Brian K. Reid. A high-level approach to computer document production. In
Proceedings of the 7th Symposium on the Principles of Programming Languages
(POPL), pages 24–31, 1980.

[62] Martin Reiser. The Oberon system : user guide and programmer’s manual.
Addison-Wesley, 1991.

[63] Thomas W. Reps and Tim Teitelbaum. The synthesizer generator : a system
for constructing language-based editors. Springer, 1989.

[64] Wolfram Research. MathLink reference guide : Mathematica version 2.2. Wol-
fram Research, 1993. See also http://www.wolfram.com/.

[65] John Rushby. The pvs specification and verification system. Available online
at http://pvs.csl.sri.com/, November 1998. Contains many references to
information on PVS.

BIBLIOGRAPHY 131

[66] Ben Shneiderman. Designing the User Interface. Addison Wesley Longman,
Inc., 3rd edition, 1998.

[67] Richard Stallman. GNU Emacs Manual. Free Software Foundation, 9th edition,
August 1993.

[68] JTC 1 subcommittee. Information processing – text and office systems – stan-
dard generalized markup language (SGML). Technical Report ISO 8879:1986,
International Organisation of Standardisation (ISO), 1986.

[69] JTC 1 subcommittee. Information technology – universal multiple-octet coded
character set (UCS) – part 1: Architecture and basic multilingual plane. Tech-
nical Report ISO/IEC 10646-1:1993, International Organisation of Standardis-
ation (ISO), 1993.

[70] JTC 1 subcommittee. Information technology – character code structure and
extension techniques. Technical Report ISO/IEC 2022:1994, International Or-
ganisation of Standardisation (ISO), 1994.

[71] JTC 1 subcommittee. Information technology – processing languages – doc-
ument style semantics and specification language (DSSSL). Technical Report
ISO/IEC 10179:1996, International Organisation of Standardisation (ISO), 1996.

[72] JTC 1 subcommittee. Information technology – input methods to enter char-
acters from the repertoire of ISO/IEC 10646 with a keyboard or other input
device. Technical Report ISO/IEC 14755:1997, International Organisation of
Standardisation (ISO), 1997.

[73] Bernard Sufrin and Richard Bornat. User interfaces for generic proof assistants
part II: Displaying proofs. In R.C. Backhouse, editor, Workshop on User In-
terfaces for Theorem Provers, Computing Science Reports, pages 147–156, July
1998. See also: http://www.win.tue.nl/~martijno/uitp/papers/Sufrin.
ps.gz.

[74] Inc. Sun Microsystems. OPEN LOOK Graphical User Interface Functional Spec-
ification. Addison Wesley, 1990.

[75] Sun Microsystems Company. ToolTalk 1.0 Programmer’s Guide, December 1991.

[76] Microsoft Technical Support. Rich text format (RTF) specification and sample
RTF reader program. Technical report, Microsoft, May 1997. Available online,
at http://www.wotsit.org/.

[77] Unicode Consortium. The Unicode Standard : Version 2.0. Addison-Wesley,
1996.

[78] Matteo Vaccari. Calculational Derivation of Circuits. PhD thesis, Dipartimento
di Informatica, Università degli Studi di Milano, May 1998. See also: http:
//gongolo.usr.dsi.unimi.it/~matteo/tesi.ps.gz.

132 BIBLIOGRAPHY

[79] Richard Verhoeven and Roland Backhouse. Interfacing program construction
and verification. In J.M. Wing, J. Woodcock, and J. Davies, editors, FM’99 –
Formal Methods, volume 1709 (II) of LNCS, pages 1128–1146, Toulouse, Septem-
ber 1999. Springer.

[80] Richard Verhoeven and Olaf Weber. Mathpad : implementatie van een formule
editor. Master’s thesis, Eindhoven University of Technology, 1992.

[81] W3c – the world wide web consortium. Available online, at http://www.w3.
org/, 1999.

[82] Larry Wall. perl - Practical Extraction and Report Language. Available online,
at http://www.cpan.org/.

[83] Stephen Wolfram. The Mathematica Book. Cambridge University Press, 3rd
edition, 1996.

[84] Allen L. Wyatt, Steve Dyson, and Daniel J. Fingerman. WordPerfect 6 for
Windows : the complete reference. Osborne, 1994.

Index

Adept Editor, 17
applets, 89
ASCII, 25, 29
ASF+SDF, 22
assignment, 95

binary tree, 46
box language, 66

area covered, 69
constructs, 67–69
examples, 72–78
properties, 67

browsers, 125
buffer-gap method, 43
button, 65

call by reference, 97
call by value, 97
canvas, 66
CAS/PI, 89
Centaur, 21
Chisholm, 10
client-server, 86–87
clipboard, 38
complexity, 53, 66
constants, 93
control characters, 70–72
Coq, 30
CORBA, 90, 125
CVS, 32

database of templates, 58
dedicated link, 87–88
definition window, 66, 72
display algorithm, 66

edit-check loop, 18
edit-format-inspect loop, 18

editing model
markup, 18
modal, 23
modeless, 23
structured, 21
text, 34
unstructured, 21
WYSIWYG, 16

emacs, 23, 30, 34, 38, 42, 87, 108, 116
equation editor, 40
extendibility, 88, 92
external connections, 13

file selector, 65
find-and-replace window, 66
fixed grammar, 36
flexibility, 11, 14, 88, 115
flexible grammar, 37
fold operation, 22
font attributes, 71–73, 81
font-based encoding, 45
fonts, 16, 81
formatting string, 48, 49, 54, 59
FrameMaker, 17, 27, 41
function definitions, 96–97

plug-ins, 102–104
function prototypes, 100–102

GAP, 124
GDP, 88
GIMP, 88
graphical user interface, 16, 33
Guarded Command Language, 92–96
guarded iteration, 96
guarded selection, 96

helper applications, 85–86

133

134 INDEX

home row, 23
host application, 88
HTML, 13, 17, 20, 27, 29, 31, 77, 118

input method, 23–24, 120
complex analysis, 24
dead-keys, 23
encoding position, 24
set selection, 24
trailing modifiers, 23

integrated environment, 63
integration, 91–92
integration architecture, 92
interactive algebra course, 124
interpreted language, 92–97, 105–108
Isabelle, 30
ispell, 92
iteration, 96

Jape, 30
Javadoc, 31

K-talk, 40
keyboard definition, 106–107
keyboard handler, 22–24, 42, 78–80
keyboard modes, 79

LATEX, 20, 29, 33, 56, 59, 118, 120
mathematical, 27
mode indicators, 71
Scientific Word, 17
tabbing environment, 71

layout, 27, 39, 41
list of lines method, 43
Lout, 21, 27

magic, 86
Maple, 29, 92
marker, 51
markup editing model, 18
markup languages, 15, 18–21, 32, 34,

41–42
grammar, 37
mathematical, 27–29
parsing, 117

markup output, 59–61
math mode, 59

Mathematica, 22, 29, 88, 92
mathematical systems, 29–30
MathLink, 29, 87
MathML, 27, 30, 123
MathType, 25
MatLab, 29
memory requirements, 53
micro spacing, 72
mime-types, 86
modifier keys, 23, 79, 117
multiple assignment, 95
multiple document interface, 62
multiple output formats, 13
multiple selections, 38, 117
multiple top-level interface, 63
MuPAD, 30

n−ary tree, 46
netpbm, 84, 88
Netscape, 17, 88
node, 51

object sharing, 90–92
OLE, 90
OLE objects, 25, 40
Ω, 120
one-line text entry, 65
OpenDoc, 90
OpenLook, 38
OpenMath, 30, 123, 125
operator overloading, 104–105
operator precedence, 94–95
operators, 94–95
output format, 59, 72
output generator, 60

performance, 69, 86, 88–89
optimisation, 52, 60

perl, 85
PhotoShop, 88
pipes, 83–85
place holders, 48–49, 52, 56–57, 59, 66,

70
examples, 72–78
named, 71

plug-in library, 88–89, 97–105

INDEX 135

plug-in loading, 98
POD, 31
popup menus, 23, 65, 105–107, 113,

116
PostScript, 21
precedence attribute, 54
precedence of stencils, 58
prefix keys, 23, 42, 79
procedure call, 95
PVS, 30, 87, 92, 108–110
PVS module, 110–113
PVS script definition, 113

quality, 12

readability, 11, 32, 54, 74, 96
relative size change, 71, 75–76
root path, 50
rose tree, 47
RTF, 20

SCCS, 32
Scientific Word, 17, 27
screen format, 59, 70
screen output, 50
scripting, 107
scrollbar, 65
SDF, 21
sequential composition, 95
SGML, 17, 20
single document interface, 61
software bus, 89–90, 92
software documentation, 31–32
spacing attribute, 54
spacing control character, 72
spell checking, 91
split document interface, 62
stacking control characters, 71, 72, 75–

77
StarOffice, 17, 25, 27
statements, 95–96
stencils, 56
stretching control characters, 72, 76–

77
structure editing model, 21, 35
structure editor, 116

structure editors, 21, 34
syntax highlighting, 21

symbol palette, 23, 25, 66
syntax directed editing, 22
syntax highlighting, 21
Synthesizer Generator, 21

tabbing environment, 71–75, 78
template database, 58
template manipulation, 56
template palette, 66
template versions, 55
templates, 54
temporary keyboard modes, 79
TEX, 20, 31
texinfo, 20
text editors, 27
theorem provers, 30
ToolBus, 90
ToolTalk, 89
translation, 107, 112
tree structure, 45–48
tree traversal, 50, 52, 70
troff, 20, 27, 57, 77
type constructors, 108
type definitions, 98–100

Unicode, 45, 70, 80–81, 93, 94, 104,
107, 120

surrogates, 80
virtual fonts, 81

unique numbers, 58
UNIX, 18, 33, 45, 83, 92
unstructured editing model, 21

variables, 93
plug-in, 105

versions, 55
VI, 23, 116

watch function, 107
Web, 31
Weber, 46, 115
window elements, 64
window interface, 61–64
window library, 63

136 INDEX

window managers, 63, 64
window toolkit, 63, 116
Windows 95, 64
Word, 17, 116
WordPerfect, 17, 25, 27, 40, 116
writability, 12
WYSIWYG, 15–18, 32, 39–41

mathematical, 24–27
WYSIWYG editing model, 16

X window system, 86
XML, 17, 20, 57, 123, 125

Samenvatting

Iedereen heeft wel eens een briefje geschreven en weet uit ervaring hoe vervelend het
is als je fouten maakt. Als je het met de hand schrijft, moet je opnieuw beginnen
en als je het op een oude typemachine typt, moet je met typex gaan knoeien. Met
een computer en tekstverwerker heb je het voordeel dat het resultaat nog niet op
papier staat en dat je door de computer geholpen wordt om fouten te vinden en te
verbeteren. Voor veel brieven en andere normale teksten werkt dit fantastisch en het
is zelfs mogelijk om je tekst te versieren met allerlei plaatjes.

Voor technische teksten, zoals wiskunde boeken en wetenschappelijke rapporten, is
het allemaal niet zo rooskleurig. De auteur moet de complexe materie goed begrijpen
om de tekst uit te kunnen werken. Meestal moet hij dat zelf doen omdat het erg
omslachtig is om iemand anders duidelijk te maken wat precies de bedoeling is. Bij
het maken van fouten wordt de auteur vaak niet geholpen, omdat de tekstverwerker
de technische beschrijvingen en formules niet kan controleren. Die controle wordt
meestal uitgevoerd door verschillende deskundigen, die de tekst lezen.

Ook het maken van het tekst zelf is niet zo geavanceerd. In plaats van te werken
met een “wat-ik-zie-is-wat-ik-krijg” (WIZIWIK) scherm, wordt er een cryptische taal
(meestal LATEX) gebruikt om de tekst te beschrijven. Deze cryptische taal heeft als
voordeel dat de uiteindelijke kwaliteit uitstekend is, vooral voor technische teksten,
maar er zijn een paar nadelen. Voor eenvoudige tekst is de cryptische taal nog
goed te lezen, maar naarmate er meer formules verschijnen wordt alles minder lees-
baar. Verder komen in technische teksten vaak formules voor die weinig van elkaar
verschillen, zodat in de cryptische tekst alles op elkaar begint te lijken en fouten
moeilijk zijn te vinden en te herstellen.

Het Matsad systeem is ontworpen om deze problemen gedeeltelijk op te lossen.
Matsad wil:

• de leesbaarheid van de technische tekst verbeteren

• het werken met formules vereenvoudigen

• de teksten eenvoudiger controleren op correctheid.

137

138 Samenvatting

De leesbaarheid van technische teksten verbeteren

De auteur werkt rechtstreeks met leesbare formules die bijna WIZIWIK op het scherm
staan, terwijl de cryptische taal wordt gebruikt om de uitstekende kwaliteit te waar-
borgen. Aangezien verschillende auteurs met verschillende notaties werken, is het
systeem zo ontworpen dat de auteur gemakkelijk nieuwe notaties kan definiëren. Het
systeem is daardoor niet beperkt tot een kleine groep.

Het werken met formules vereenvoudigen

Om het werken met formules te vereenvoudigen, worden ze opgeslagen als bomen.
Net als bij echt bomen is het eenvoudiger om takken (deelformules) te selecteren dan
de bijbehorende bladeren (letters). De auteur hoeft een formule nu niet langer letter
voor letter te schrijven, maar kan een aantal deelformules gebruiken. Voor formules
is dit zeer belangrijk, want een ontbrekende letter betekent vaak een foute formule.
Helaas zijn er nogal wat verschillen tussen het werken met deelformules en het werken
met letters, zodat de auteur enige tijd nodig heeft om aan het idee te wennen en de
mogelijkheden volledig te benutten.

Binnen de wiskunde en technische vakken is het gebruik van speciale symbolen zeer
normaal. Zo heeft elk lettertype een bepaalde betekenis en bij uitputting van de
gewone letters wordt er al snel gebruik gemaakt van de Griekse en Hebreeuwse letters.
Hetzelfde geldt voor de operatoren. Bij standaard rekenen heb je voldoende aan +,
-, ×, / en =, maar een behendig wiskundige varieert en combineert al naar gelang
de situatie er om vraagt. Zo betekenen de operatoren <, ≺, ⊂, <, en � vaak dat
iets kleiner is ten opzichte van iets anders, maar het is niet toegestaan het verkeerde
symbool te gebruiken. Om de auteur voldoende keus te geven, geeft het Matsad
systeem de gebruiker toegang tot een zeer grote collectie symbolen (Unicode) en een
aantal methoden om de symbolen te variëren en combineren. En voor het geval de
Griekse en Hebreeuwse letters op zijn, zijn onder andere ook de Russische letters en
Chinese ideogrammen beschikbaar.

De teksten eenvoudiger controleren op correctheid

Met dit alles is het mogelijk om de technische teksten te maken, maar is het niet mo-
gelijk om de teksten op correctheid te controleren. Daarom is het Matsad systeem
uitgebreid met een eigen taal om nieuwe onderdelen eenvoudig toe te kunnen voegen.
Via deze taal kan het Matsad systeem worden gecombineerd met bestaande syste-
men. Op die manier kan elk onderdeel van de tekst worden gecontroleerd door het
bijbehorende systeem, aangenomen dat zo’n systeem bestaat en kan samenwerken
met Matsad.

Curriculum Vitae

Petrus Hendricus Franciscus Maria Verhoeven (Richard)

9 februari 1969 Geboren te Veghel

juli 1987 Diploma VWO
Mgr. Zwijsen College, Veghel

december 1992 Doctoraal examen Technische Informatica
Technische Universiteit Eindhoven

1993 tot 1998 Wetenschappelijk programmeur
Faculteit der Wiskunde en Informatica
Technische Universiteit Eindhoven

1998 tot 2000 Onderzoeksmedewerker
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
verbonden aan de Technische Universiteit Eindhoven

januari tot Research Assistant
juni 2000 School of Computer Science & Information Technology

University of Nottingham

139

140

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process
Algebra. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-1

A.M. Geerling. Transformational Develop-
ment of Data-Parallel Algorithms. Faculty
of Mathematics and Computer Science, KUN.
1996-2

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementation.
Faculty of Mathematics and Computer Science,
KUN. 1996-3

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-4

M.H.G.K. Kesseler. The Implementation
of Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN. 1996-5

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE. 1996-6

J.H. Hoepman. Communication, Synchro-
nization, and Fault-Tolerance. Faculty of
Mathematics and Computer Science, UvA.
1996-7

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Mathemat-
ics and Computing Science, TUE. 1996-8

D. Turi. Functorial Operational Semantics
and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Mechani-
cal Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Faculty

of Mathematics and Computing Science, TUE.
1996-13

M.M. Bonsangue. Topological Dualities in
Semantics. Faculty of Mathematics and Com-
puter Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-
tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory
in Logic and Mathematics. Faculty of Mathe-
matics and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for
Explicit Substitution. Faculty of Mathematics
and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Alge-
bra. Faculty of Mathematics and Computing
Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Math-
ematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Test-
ing. Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering. Fac-
ulty of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication
for Multiprocessor Computation. Faculty of
Mathematics and Computer Science, UU. 1998-
03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Faculty of
Mathematics and Computing Science, TUE.
1998-04

A.A. Basten. In Terms of Nets: System De-
sign with Petri Nets and Process Algebra. Fac-
ulty of Mathematics and Computing Science,
TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping – A Relational Model. Faculty
of Mathematics and Computing Science, TUE.
1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation
of Surface Processes. Faculty of Mathematics
and Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evo-
lutionary Search. Faculty of Mathematics and
Natural Sciences, Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Faculty
of Mathematics and Natural Sciences, RUG.
1999-05

M.P. Bodlaender. Schedulere Optimization
in Real-Time Distributed Databases. Faculty
of Mathematics and Computing Science, TUE.
1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Mathematics
and Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Proto-
cols with Formal Methods. Faculty of Computer
Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Faculty of
Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for Hy-
brid Systems. Faculty of Mechanical Engineer-
ing, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neu-
ral Prediction System. Faculty of Mathematics
and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementa-
tion of Attribute Grammars. Faculty of Math-
ematics and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Progam Construction. Faculty of
Mathematics and Computing Science, TUE.
1999-15

K.M.M. de Leeuw. Cryptology and Statecraft
in the Dutch Republic. Faculty of Mathematics
and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design
of Delay-Insensitive Communicating Processes.
Faculty of Mathematics and Natural Sciences,
RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of Sci-
ence, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics and
Computing Science, TUE. 2000-05

	Acknowledgements
	Contents
	List of figures
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography
	Index
	Samenvatting
	Curriculum vitae

