EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Exploiting instruction-level parallelism : a constructive
approach

Citation for published version (APA):

Villar dos Santos, L. C. (1998). Exploiting instruction-level parallelism : a constructive approach. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR516269

DOI:
10.6100/IR516269

Document status and date:
Published: 01/01/1998

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR516269
https://doi.org/10.6100/IR516269
https://research.tue.nl/en/publications/701b2b81-05d0-4394-b50b-0397d5b4299f

Exploiting
instruction-level
parallelism

a constructive approach

S S S A XTI IR L
Itk s e
- R S S A S G s A TR
S R O B e
@@@@@@@gﬁﬂ@@ﬁu¢¢w#-'0'ﬁ
Sersarsseacyt Sescesezsanndieces: |
‘cmvwﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ HKH]
sEvaesegates: oot eatausecegoses: iatatatuses
§esetatnc ™oy SasocEecterer"” Jay essitaent

e," 'sQutntateqnic’ 1367 aTeR0g0;

Sofalelef * %¢° 'S 60 0%eRe
efegosece. .0g 33 - g8S SOLPRE
Sotetesets, o). ofefuteteduld. ofv. Judegedel
SosEsceaeice csestaseceanseaoty capiatotacs
} %6 . "0g%e%e% %cLea Y0 Eafed
gefegstepeds. jaSigesesicaraccel 2

)
; ® @
&@ﬁﬁhﬁﬁﬁp Regeiea:
v JeRegese
T3 Cr AT
dW@W%@M%@&&&w%&%%ﬁ%

1 DR
RS, SEniuinn, e
Cplute®st j¢etsCetololelePoln, 3Tat0deter
’.Q ®, I'.‘Qel'““ Q‘¢ ‘Q.'..’. Q.O.\w’z’
R A LA O oS A S
A S AL RACI
2202 0eule AL L I H 14
A S I O ST O I

Luiz Claudio Villar dos Santos

Exploiting instruction—level parallelism

a constructive approach

Exploiting
instruction-level
parallelism

a constructive approach

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag
van de Rector Magnificus, prof.dr. M. Rem, voor
een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op
maandag 23 november 1998 om 16.00 uur

door

Luiz Claudio Villar dos Santos

geboren te Arapongas, Brazilié

Dit proefschrift is goedgekeurd door de promotoren:

prof.Dr.-Ing. J.A.G. Jess
en
prof.dr.ir. J.L.. van Meerbergen

Copromotor:

drir. C.A.J. van Eijk

© Copyright 1998 Luiz Claudio Villar dos Santos

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission from the copyright owner.

Druk: Universiteitsdrukkerij Technische Universiteit Eindhoven

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Villar dos Santos, Luiz C.

Exploiting instruction-level parallelism : a constructive approach / by Luiz
C.Villar dos Santos. — Eindhoven : Technische Universiteit Eindhoven, 1998.
Proefschrift. — ISBN 90-386-0490-4

NUGI 832

Trefw.: grote geintegreerde schakelingen ; CAD / digitale systemen ; CAD /
combinatorische optimalisering / scheduling.

Subject headings: VLSI / digital systems / high level synthesis / scheduling.

Summary

The increasing complexity of integrated circuits provided by VLSI technology
requires design automation at higher levels of abstraction. In such context,
high—level synthesis translates a behavioral-level specification of the digital
system into an architecture consisting of a data path and a control unit.
Emerging design problems are prompting the utilization of instruction—level
parallelism (ILP), traditionally an object of parallelizing compilers, for the
synthesis of digital systems. In this thesis, techniques like code motion,
speculation and loop pipelining are employed to expose ILP and their
application is oriented to digital systems designed to operate under a global
time—constraint. A resource—constrained optimization problem is formulated
as a starting point. From a given specification and a set of resource
constraints, the goal is to obtain a symbolic finite state machine (FSM) for the
control unit of the digital system such as to minimize the schedule length of
the critical execution path. An approach is proposed in which several
alternative solutions are generated and explored by means of a local search
algorithm.

For the construction of a FSM, our approach combines both graph algorithms
and Boolean techniques. The flow of control is represented in the form of a
graph consisting of branch and merge junctions and so—called basic blocks.
During a top—down traversal of this graph, the operations scheduled in each
state may come from different basic blocks and possibly from different
iterations of a loop. Equivalent states are detected and merged on—the—fly. A
code—motion pruning technique is proposed to prevent inefficient code
motions caused by the typical unbalance between the potential parallelism
exposed and the parallelism that can actually be exploited within the
available resources.

Experimental results show, on the one hand, that the growth of the number
of states caused by ILP techniques can be restrained efficiently by the
on—the—fly merging of equivalent states. On the other hand, they provide
evidence that the pruning technique increases the density of good—quality
solutions in the search space, thereby paving the way to a reduction of
average search time.

Samenvatting

De toenemende complexiteit van de hedendaagse chips creéert een behoefte
om op een hoger niveau van abstractie te ontwerpen. Vanuit een functionele
beschrijving van een digitale systeem, genereert hoog—niveau synthese een
architectuur die bestaat uit een datapad en een “control unit”. Hedendaagse
ontwerpproblemen suggereren het gebruik van instructie-niveau parallel-
lisme (ILP), welbekend uit het vakgebied van compilers, voor de synthese van
digitale systemen. In dit proefschrift wordt het gebruik van ILP technieken
als “code motion”, speculatieve executie en “loop pipelining” gericht op
digitale systemen onder tijdsbeperkingen. Een optimaliseringsprobleem
wordt geformuleerd waarin het aantal en soort bouwblokken wordt beperkt.
Het doel is, om vanuit de beschrijving en het aantal bouwblokken, een
symbolische FSM te genereren voor de “control unit” met minimaal kritiek
executiepad. Een methode wordt gepresenteerd waarbij verschillende
oplossingen gecreéerd en onderzocht worden met behulp van een lokale
zoekmethode.

Om een FSM op te bouwen, gebruikt de methode graaf algoritmen en Boolse
technieken. De controle—stroom wordt gerepresenteerd als een graaf die
bestaat uit “branch” en “merge” knooppunten en zogenaamde “basic blocks”.
Tijdens het doorlopen van deze graaf, kunnen de operaties die geselecteerd
zijn voor een toestand komen vanuit verschillende “basic blocks” en van
verschillende loop iteraties. Gelijke toestanden worden geidentificeerd en
samengevat tijdens het opbouwen van de FSM. Door het gebrek aan
evenwicht tussen het potentieel parallellisme en het echt bruikbaar
parallellisme binnen de beschikbaar bouwblokken, wordt een techniek
genaamd “code—motion pruning” (CMP) voorgesteld om inefficiént “code
motions” te voorkomen.

Resultaten uit experimenten tonen aan dat de toename van het aantal
toestanden, door het gebruik van ILP technieken, kan worden beperkt door
het samenvatting van gelijke toestanden. Andere resultaten tonen aan dat
het percentage oplossingen van goede kwaliteit in de zoekruimte toeneemt
door de CMP techniek. Dit baant de weg voor een reductie van de gemiddelde
zoektijd. '

Vil

Contents

Samenvattingccciveiieiiiincreieennanas
Acknowledgementsccceieveiiiennnannn

Introductionccoiviiiiiiiiirniiinennn
1.1 High-level synthesis
1.2 ILPtechniquesccovn....
1.3 ILP in high-level synthesis
1.4 Emerging time—constrained problems
1.5 Outline of thisthesis

Modeling the problemcovvvivnnnn.
2.1 Basicterminology...........................
2.2 Design representation
2.2.1 Modeling behavior
2.2.2 Modeling thedatapath
2.2.3 Modeling the controlunit
2.24 Modeling timing
2.3 Formulation of the optimization problem

A constructive approachc0iiiiiinnn
3.1 Motivation e
3.2 Related high—-level synthesis approaches
3.3 Related approaches in the compiler arena
3.4 How our contribution relates to previous work .
3.5 An overview of the constructive approach
3.6 The priorityencoding
3.7 Theconstructor.............................
3.71 Thescheduler
3.7.2 Theparallelizer
3.7.3 Anexample
3.74 Discussionciiiiiiiiiiiin.
3.8 The Booleanoracle..........................
3.9 Theexplorerc.iiiiiiiioin.

Code motioncoviveeeieenereeennsocsecasesnns
4.1 Fundamentalnotions
4.2 Modeling code motion

ix

Exploiting instruction-level parallelism: a constructive approach

4.3 Availabilityanalysis
4.4 Code compensation
44.1 Relatedwork
4.4.2 Bookkeeping code motions
4.4.3 Overcoming the effects of greedy choices
4.5 Exploiting state equivalence
4.5.1 Equivalent states in the SMG
4.5.2 On-the-fly detection of state equivalence ...
4.5.3 Comments on the implementation
4.5.4 Experimentalresults
4.6 Discussion

5 Code-motion pruningcoveveeveeenennees
5.1 A data—flow analysis technique
5.1.1 Fundamentalnotions......................
5.1.2 Formulation of our analysis technique
5.2 Pruning inefficient code motions
5.2.1 Motivation
5.2.2 A precedence relation based on the links
5.2.3 Reordering the sets of available operations ..
5.3 Experimentalresults........................
5.8.1 The impact on the search space
5.3.2 The impact on schedule length
5.3.3 The impact on the number of states
5.3.4 Comparison with other methods
5.4 Discussioniiiiiiiiiiiiiiia.

6 Towards loop pipeliningccivviiennn.
6.1 Motivation i
6.2 Fundamentalnotions
6.3 Relatedwork
6.4 Our approach for loop pipelining
6.4.1 Requiredextensions
6.4.2 Basicprinciple
6.43 Anexample
6.5 Discussioncc. i,

7 Conclusionsveeeeeeeeeeenennneneennnnnns
7.1 Concludingremarks
7.2 Topics for further research

Referencescovvvvveieneienienannennnnnnnn
A Experimental set—upcceveveeinenenennes
B Awuxiliary informationcoieiivinn...

Biographyccoiiiiiiiiiiiiiiiinnnnnenecnnnns

Acknowledgements

This Ph.D. thesis reports the research performed in the Design Automation
Section of the Department of Electrical Engineering of the Eindhoven
University of Technology in the Netherlands, under the supervision of
prof.Dr—Ing. J. A. G. Jess.

I am thankful to prof. Jess for the opportunity to work in his research group.
Our first meeting occurred on March 1992, after his lectures during the 274
Brazilian Microelectronics School, held in the town of Gramado. Since then,
many fruitful discussions have followed, influencing my research activities.

Iwould like to thank Marc Heijligers and Koen van Eijk for their cooperation
in different phases of my research work. Marc has introduced me to important
issues in high-level synthesis, thereby pointing the first stepping—stones.
Koen found the time for various discussions and gave me many suggestions.
Through a careful and fast proofreading of the first draft of this thesis, he has
indicated various parts of the text requiring elaboration. I am also grateful
to Jos van Eijndhoven for his suggestions in the course of my research. I
appreciate his welcoming attitude towards me and my family in our early
days in the Netherlands.

I would like to express my gratitude to the people whose software I reused or
combined within my own programs. Marc Heijligers, Ric Hilderink, Adwin
Timmer, Wim Philipsen and Harm Aarts have developed the NEAT System,
upon which Thave built my implementation. Geert Janssen has developed the
BDD package that I have used for Boolean manipulation. The C** interface
written by Koen van Eijk paved the way to bridging the BDD package with
the NEAT System.

Furthermore, I am grateful to my roommate Michel Berkelaar and to Jeroen
Rutten. I appreciate their help and our pleasant conversations. Also, I would
like to thank all other members of the Information and Communication
Systems Group, where I found a well-balanced combination of skills,
sociability and good humor.

I am also grateful to the members of the reading committee for their remarks
and suggestions.

xii Exploiting instruction~level parallelism: a constructive approach

I owe a lot to my compatriots living in the Netherlands. Special thanks to
Carla and Reginaldo, Viviane and Cicero, Sdnia and Egbert, Isabel and César,
Silvia, Javier, Luis Barbosa, Carlos, Lincoln, and many others.

Last, but not least, I would like to thank the patience and comprehension of
my wife Joice and my son Rafael, who have made of this long stay in the
Netherlands, a pleasant experience in family.

I was partially supported by the Federal University of Santa Catarina, my
employer in Brazil, and by CNPq (Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico), one of the Brazilian agencies supporting research,
under fellowship award n. 200283/94—4.

Chapter

1 Introduction

The term instruction-level parallelism (ILP) stands for the fine—grain
parallelism observable among the elementary operations used to build up a
program. Traditionally, exploitation of ILP is the object of parallelizing
compilers. However, emerging design problems are prompting the utilization
of ILP for the synthesis of digital systems. This thesis addresses the
application of ILP techniques during the synthesis of synchronous digital
systems. It focuses on systems which have to operate under a time constraint.

Several techniques to deal with ILP are proposed in the compiler-technology
arena. Although most of the techniques to expose parallelism are quite
general, the way of exploiting the exposed parallelism varies depending on
the target application domain. As a consequence, the techniques conceived in
the compiler domain can not be directly applied to the synthesis of
time—constrained systems. This is due to the fact that the goal of parallelizing
compilers is to optimize average program runtime, while time—constrained
systems need support for worst—case runtime.

This chapter presents a brief overview of the available techniques and of the
issues involved in the synthesis of digital systems for some emerging
applications leading to time—constrained design problems.

1.1 High-level synthesis

The increasing complexity of integrated circuits (ICs) provided by very large
scale integration (VLSI) technology requires design automation at higher
levels of abstraction, such as the behavioral level and the register—transfer
level (RTL). At the behavioral level, the function of a digital system is
described in the form of an algorithm which computes the output values of the
system from its input values, abstracting from the way the system is actually
implemented. At the register—transfer level, the structure of the digital
systemis described as anetlist of functional units (adders, ALUs, multipliers,
etc.), memory elements and interconnect elements (buses, multiplexers, etc.).

High-level synthesis (HLS) has been defined as a translation “from an
algorithmic level specification of the behavior of a digital system to a

2 Exploiting instruction—level parallelism: a constructive approach

register—transfer level structure that implements that behavior” [45]. HLS
is a field of intensive research and comprehensive surveys can be found in the
literature [16] [23].

HLS results in the architecture of a digital system, consisting of a data path
and a control unit, as shown in Figure 1.1. The data path is described as a
network at the register—transfer level and the control unit is usually
described in the form of a symbolic finite—state machine. In HLS, the design
has to comply with a set of constraints, like completion time, throughput rate
and execution order and it is driven by a set of objectives, like the
minimization of IC area, power consumption or number of states.

HLS is usually decomposed in several subproblems, like module selection,
allocation, scheduling and binding. Module selection determines the kind of
resources needed in the data path, allocation evaluates how many of such
resources are necessary, scheduling determines when the operations are
executed, and binding assigns operations to specific resources. Although
these subproblems are interdependent, they are solved separately in most
cases, because a completely unified approach seems unpractical. Due to this
interdependence, the order of solving these subproblems may lead to different
final results. The most suitable order is dictated by the target application
domain [63]. :

CONTROL UNIT

DATA PATH

FIGURE 1.1. IC architecture at the register—transfer level

Traditionally, HLS tools are oriented to the synthesis of hard—wired VLSI
circuits, which are known as application specific integrated circuits (ASICs).
Arecent trend broadens the scope of HLS to include the design of application
specific instruction set processors (ASIPs), which are programmable circuits

Introduction 3

tailored to an application domain [25] [68]. This broader scope has its roots
in the adoption of an architecture template, as a starting point for HLS. An
example of such a template is the MISTRAL architecture [64], which is
oriented towards audio applications. This template is the result of early
research on silicon compilation, in particular the CATHEDRAL silicon
compilers [15], which are successfully used for digital signal processing (DSP)
applications.

From a HLS perspective, the design of an ASIP core can be viewed as if
module selection and allocation had already been performed, such that a
complete data path suitable for the whole application domain is determined.
As a consequence, the remaining tasks, scheduling and binding, are
responsible for the programmability. After they are performed, the resulting
symbolic finite—state machine is then mapped to a microcoded controller.
Flexibility is obtained by providing on—chip RAM as control store, allowing
microcode downloading. Within this scenario, the role of the remaining tasks
is to accomplish the (micro) code generation for the application domain
specific processor.

1.2 ILP techniques

Modern architectures, such as superscalars and very long instruction word
(VLIW) machines, have multiple functional units. They rely on the
overlapped execution of independent instructions. Superscalar machines
require specific hardware for run—time scheduling and dynamic dependence
analysis, while VLIW machines perform compile-time scheduling and static
dependence analysis. Although the ILP techniques described here are used
by both superscalar and VLIW processors, this thesis focuses on compile~time
scheduling techniques. A comprehensive overview of specific techniques for
superscalar processors can be found in [30].

The traditional scope for exploiting parallelism in early compilers was the
basic block (BB), a straight-line code sequence without branches, except at
the entry and exit points. Since the amount of parallelism available in a basic
block is limited, the ample resources present in modern architectures would
be poorly utilized. As a consequence, techniques are required to expose
parallelism beyond basic-block boundaries. This is performed by allowing
code to move from one BB to another, which is called code motion. Some code
motions place instructions ahead of conditional branches, a technique known
as speculation.

One ofthe first proposed ILP techniques is Trace Scheduling [22], which takes
the most likely execution path and optimizes it as if it were a single basic

4 Exploiting instruction—level parallelism: a constructive approach

block. Extra code is inserted to compensate for the side effects of some of the
optimizations. However, this technique is not general enough since it
assumes a highly predictable control-flow. A more general technique is
Percolation Scheduling [48], which defines a set of semantics—preserving
code motions. Percolation Scheduling provides a way of exposing parallelism
iteratively, by the successive application of primitive code motions.

Nevertheless, these first ILP methods are essentially resource—uncon-
strained parallelization techniques. Their drawback is that some of the
greedily performed code motions might have to be undone, since they can not
be accommodated within the available resources. This lack of global
management of resources motivated the development of resource—
constrained parallelization techniques [19][46][47].

ILP can also be uncovered beyond loop boundaries, by means of a
straightforward method called loop unrolling. It consists in replicating the
loop body several times such that the resulting loop body contains multiple
iterations of the original loop and, as a consequence, more parallelism is
exposed. A more elaborate technique is software pipelining, which is also
known as loop pipelining or loop folding. The main idea of software pipelining
is to allow the exploitation of ILP across loop boundaries, by overlapping the
execution of instructions belonging to different iterations of a loop, but
without unrolling the loop.

A simple and widely used software pipelining technique is Modulo Schedul-
ing [39]. It is a very efficient approach suitable for single basic-block loops,
but it does not address properly the software pipelining of loops containing
conditional constructs. This more general problem is tackled by other
methods like Perfect Pipelining [2][3], which combines loop unrolling and the
detection of a repeating pattern to form the pipelined schedule. Another
suitable method is Enhanced Pipeline Scheduling [17], which relies on the
motion of instructions around the loop.

1.3 ILP in high-level synthesis

Most HLS methods are oriented to data—flow dominated designs. Although
loop pipelining is commonly supported [13][24], code motion is rarely
addressed [54][70]. Nevertheless, some methods have been proposed to cope
with behavioral descriptions containing conditional constructs, such as
“if-then—else”. Path—based Scheduling [12] and Tree-based Scheduling [34] -
aim at optimizing the execution time of each path. Others, like conditional
vector list scheduling [71][72] and the hierarchical reduction approach [37],
are oriented to average execution time. The combination of speculation and

Introduction 5

loop pipelining is addressed in [32]. Recently, an approach has been proposed
to tackle applications with combined data and control-flow [9]. However,
neither code motion nor loop pipelining is supported. Although powerful
techniques [44] [67] are available for handling time—constraints, they can not
cope properly with optimization under complex control flow, since they are
oriented to data—flow dominated applications.

HLS for high-throughput applications, like real-time video encoding and
decoding, is addressed in the PHIDEO system [43]. In this application
domain, a typical behavioral description is structured as a hierarchy of nested
loops. The basic concept of PHIDEO is the assumption that executions of a
same operation are periodical in time. The loop hierarchy is translated to
periodic operations and scheduling consists of selecting the start times and
the periods of the operations [43]. Such specialized techniques for high—
throughput applications do not fall within the scope of this thesis.

Since the starting point of HLS is a behavioral description and not a sequence
of instructions, the techniques used in this thesis are actually applied to
operations, instead of instructions. Although the term operation-level
parallelism would be appropriate, the more usual term instruction—level
parallelism is adopted and used throughout this thesis.

1.4 Emerging time-constrained problems

Complex modern digital systems perform several tasks. Their design is
typically approached by partitioning the tasks into a data—flow dominated
and a control-flow dominated part, such that two different HLS tool-suites
can be applied, each one specialized on one of these domains. An instance of
this strategy can be found in [11], where the design of a videophone
coder—decoder motion estimator is described.

Another example is reported in the design of an IC known as “I. McIC” chip
[381[73]. This IC performs MPEG2 video encoding for applications in digital
video recorders and cameras. It contains a PHIDEQO processor for the
high—throughput tasks and a MISTRAL core for the control tasks. The
MISTRAL core is designed as an ASIP to provide the necessary programma-
bility. It is conceived to accommodate different standards and all tasks that
are subject to change in future products [38]. The behavioral description for
the tasks assigned to the ASIP exhibits a structure of nested conditional
constructs enclosed by an outer loop [65]. Those tasks must be completed
within a limited interval of time. This interval is dictated by the time to
process the information in a so—called macroblock of a video picture, which
is a composition of one 16 X 16 luminance block and two 8 X 8 chrominance

6 Exploiting instruction—level parallelism: a constructive approach

blocks. In practice, this represents a tight time—constraint, which makes it
difficult to add extra functionality to the ASIP, unless a better exploitation of
parallelism is envisaged.

A somewhat similar behavioral description structure, also subject to a global
cycle budget, is reported for applications in the area of Asynchronous
Transfer Mode (ATM) [61]. A sketch of such a structure is given in Figure 1.2.
In the figure, conditional constructs are explicitly shown and t; designates
the test associated with the i*! conditional construct. Braces represent the
basic blocks enclosing operations such as additions, subtractions and
multiplications. The dashed arrow represents the outer loop, while the
bidirectional arrow depicts the time constraint (e.g. latency, data introduc-
tion interval), meaning that an upper bound of T. clock cycles must be
satisfied for the worst—case execution of the loop body.

\ .
\ if t,
\ {.}

\ else
N {..}
_ {...} Y

FIGURE 1.2. Structure of a behavioral description under a time
constraint

For these emerging problems, whose structure is sketched in Figure 1.2, if
optimization is restricted to the scope of basic blocks, it might be impossible
to meet a tight time—constraint. In this scenario, the application of ILP
techniques, such as code motion, speculation and loop pipelining may reduce
the schedule length of the critical execution path and grant time—constraint
feasibility. Besides, the combination of intensive data—flow, complex control—
flow and time constraints creates a challenging problem to which few
solutions have been proposed, as shown in the previous section.

Introduction 7

These reasons motivate the research described in this thesis, where the
application of ILP techniques is oriented to the satisfaction of time
constraints, instead of execution speeding up. As a consequence, speeding—up
techniques such as those based on branch prediction are not addressed. More
information on the application of prediction—based techniques in the domain
of HLS can be found in [32].

1.5 Outline of this thesis

As opposed to classical compilers, synthesis tools for embedded system design
can often afford to spend more time on optimization. The effort in saving a few
clock cycles to meet a tight constraint tends to outdo a redesign from scratch.
For this reason, a good exploration of the design space is very important in
HLS.

This thesis proposes a constructive approach oriented to the synthesis of
time—constrained digital systems. The approach provides a way of generating
and exploring several alternative solutions to a given optimization problem.

The proposed approach assumes that module selection and the allocation of
functional units have been performed beforehand. In other words, the
number and kind of functional units, henceforth referred to as resource
constraints, are fixed prior to scheduling. Therefore, a resource—constrained
optimization problem is formulated as a starting point. In the construction of
each solution, ILP techniques are used in such a way that the parallelism
exposed is constrained by the available resources. In this thesis, we assume
that binding, along with the allocation of registers and interconnect
elements, will be performed after scheduling.

An advantage of adopting a resource—constrained optimization problem as a
starting point is that it paves the way to an unified approach comprising not
only the synthesis of ASICs, but also the code generation for ASIPs, if
registers and interconnect elements are also modeled as resource constraints.

The topics addressed in this thesis are organized as follows.

Chapter 2 describes the design representation and the terminology used
throughout the thesis and defines the optimization problem to be tackled.

Chapter 3 summarizes the proposed constructive approach. It explains the
interaction between the several engines which co—operate in the construction
of a solution to the optimization problem.

Chapter 4 addresses code motion and related issues. It explains how code
motion and speculation are modeled and induced in the frame of our

8 Exploiting instruction—level parallelism: a constructive approach

approach. Also, an expedient called code compensation is introduced for
coping with some side effects of code motion. This broadens the range of legal
code motions supported in the approach. In addition, a technique is proposed
to control the growth of the number of states when code motion and
speculation are applied. This technique exploits the notion of state
equivalence in the course of scheduling. The experimental results in this
chapter show that when a HLS tool is required to make use of flexible code
motions in order to face a tight time—constrained problem, the resulting
number of states would be unpractical if the notion of state equivalence is
overlooked during scheduling.

Chapter 5 focuses on code—motion pruning, a technique proposed to prevent
inefficient code motions. It shows that, due to the typical unbalance between
the potential parallelism and the constrained amount of resources to
accommodate it, some code motions do not contribute to shortening schedules
and, as a consequence, they are not worth doing from a worst—case execution
perspective. The experimental results reported in this chapter show that the
application of the pruning technique increases the density of promising
solutions observable during the search, paving the way to a reduction of
average search time.

Chapter 6 addresses ILP techniques for dealing with loops. First, it explains
the deficiencies of modulo scheduling in properly handling loop bodies
containing conditional constructs. Then, it describes how our approach can
be extended for inducing loop pipelining. The chapter illustrates the close
relationship between code motion and loop pipelining.

Chapter 7 contains concluding remarks and suggestions for further work. It
places the application of ILP techniques in perspective with some on—going
work on related research topics.

Chapter

2 Modeling the problem

2.1 Basic terminology

Similarly to a high-level programming language, the core of a behavioral
description consists of statements, conditional constructs and loop
constructs. Statements define the operations, whereas conditional and loop
constructs specify conditional execution. ‘

As a consequence of conditional execution, a flow of control is introduced,
creating junctions among different sequences of statements. A junction in the
control flow is either a fork, where the flow diverges from a point, or a join,
where the flow converges to a point. When associated with a conditional
construct, a divergent junction is called a branch and a convergent junction
is called a merge. Junctions split the control flow into basic blocks. A basic
block (BB)is a sequence of consecutive statements in which the flow of control
enters at the beginning and leaves at the end, without junctions in between.

Consider, for instance, the description in Figure 2.1, where i, to iy represent
inputs, o, and o, designate outputs and x, y and z are local variables.
Operations are labeled with small letters at the left of their respective
statements. In this description, a branch junction occurs after t; and a merge
junction before p. As a result, the control flow exhibits four BBs, which are
depicted by the shadowed boxes and are labeled with capital letters.

Among the operations in a behavioral description, some perform relational
tests (e.g. >, ==, <) and produce a Boolean value as outcome. Depending on
the result of the test, a conditional branch will occur in the control flow. The
operations which do not perform a test are called ordinary operations (e.g. +,
—, X) or simply operations, whenever clear from the context.

The exploitation of parallelism in a behavioral description is constrained by
the available resources, the so—called resource constraints. For the descrip-
tion in Figure 2.1, we assume, throughout this chapter, that an adder, a
subtracter and a comparator are available.

Let us now analyze how the operations in the example of Figure 2.1 can be
scheduled. We could think of scheduling each BB independently. Such

10 Exploiting instruction—level parallelism: a constructive approach

straightforward approach would not be efficient, because the amount of
parallelism within a BB is limited. For example, in BB I the adder would
remain idle during two cycles, even though operation q in BB L could be
scheduled at the same time step as either k or 1. The example suggests that
we should exploit parallelism across BB boundaries, by allowing operations
to move from one BB to another. This is called code motion.

Two operations can not always be executed in parallel, even if there are free
resources. For example, operation m can not be executed in parallel with
operation k, because the value of variable x consumed by operation m
depends on the value produced by operation k. We say that operation m is
data dependent on operation k. On the other hand, since there is no data
dependence between operations q and k, they could be executed simulta-
neously. Note that, if operation q is allowed to move from BB L into BB I, a
cycle will be saved in BB L. Since data dependences limit the order in which
operations can be executed, they are sometimes called precedence constraints.

[Kk]
[1]
[t1]

[m]

else
[n]
[p]
[q]

FI1GURE 2.1. A behavioral description with conditional constructs

As a consequence of conditional execution, another kind of dependence arises.
For instance, while operation q is always executed, operations m and n are
conditionally executed, depending on the result of test t;. We say that
operations m and n are control dependent on test t,.

Code motion may occur across branch junctions, because control dependences
can be disregarded under certain circumstances, as opposed to data
dependencies. For example, although m is control dependent on t,, they are
not data dependent on each other and can be executed simultaneously. For
the same reason, m and 1 could be executed in parallel. In both scenarios, the

Modeling the problem 11

motion of m from BB J to BB I causes the violation of a control dependence.
However, this kind of motion is legal, provided that some mechanism be used
to preserve semantics. This is obtained by either committing or discarding the
result of the moved operation, as soon as the outcome of the test is known. The
technique of moving an operation ahead of a conditional branch is called
speculation or speculative execution. Note that, if operation m is speculatively
executed and the result of test t; turns out to be true, a cycle will be saved,
otherwise there will be no savings.

Inthe general case, it may be necessary to insert extra code in order to “clean”
the outcome of the speculatively executed operation, the so—-called compensa-
tion code. For this example, however, no compensation code is needed, since
variable z(assigned by operation m) will be overwritten by operation n, if the
result of test t; turns out to be false.

When operations move across merge junctions, they do not violate control
dependences. For instance, we can consider moving operation qinto BB K,
as it can be executed in parallel with operation n. However, as operation q
must always be executed and the operations in BB K are only executed when
the result of t, is false, a copy of q has to be placed at the end of BB J. As a
result, we say that duplication takes place and the copy can be seen as a form
of compensation code. For this example, duplication saves a cycle if the result
of t; is false, but there are no savings otherwise.

To accomplish a code motion, the moved operation has to be deleted from its
original position, copies might be inserted as compensation code and
sometimes the control flow itself has to be changed. This whole procedure is
known as bookkeeping in compiler—technology terminology and it is
addressed in Chapter 4.

2.2 Design representation

This section describes the design representation used throughout this thesis.
It introduces the main notions used to model the system behavior, the data
path structure, the symbolic description of the control unit and the execution
timing.

Since most of our modeling relies on graph representations, it is convenient
to briefly recollect some graph concepts [14] and associate them with the
notation adopted throughout this text.

A graph G = (V,E) consists of a set of nodes V and a set of edges E, where
E C V X V. Most of the graphs in this thesis are directed graphs. In a

12 Exploiting instruction—level parallelism: a constructive approach

directed graph, the set E consists of ordered pairs of nodes and its elements
are directed edges. If (u,v) is a directed edge, we say that (u, v) leaves node
u and enters node v. Also, u is called a predecessor of v and v is said to be a
successor of u. Given a node v, the set of all predecessors of v is denoted by
PRED(v) and the set of all successors is designated by succ(v). The out—degree
of a node v, written outdegree(v), is the number of edges leaving it.
Conversely, the in—degree of a node v, written indegree(v), is the number of
edges entering it. A fundamental notion throughout this thesis is the concept
of a path, as defined below.

DEFINITION 2.1
A path in a graph G = (V,E), from node v, to node Vk, is a sequence
(Vgs Vq, -, V) of nodes such that (v;_;,v;)) € E, fori = 1,2,.. k.

Apathissimpleifallnodes in the path are different. A subpath is a contiguous
subsequence of the nodes of a path. A path (v, vy, ..., v}) in a directed graph
is said to form a cycle if v, = v, and it contains at least one edge. A cycle is
called simple when v, v,, ..., v are distinct. A graph with no cycles is acyclic.
In this thesis, since only simple cycles are of interest, the term cycle is used
to mean a simple cycle. Two other central notions throughout this thesis,
reachability and topological ordering, are highlighted below, where v; and v;
designate arbitrary nodes of a directed graph G = (V, E).

DEFINITION 2.2

Given a directed graph G = (V, E) and two arbitrary nodes v, v € V, node

v; reaches node v; via p, written v, _p>v if there is a path p from v; to v;.

Sometimes, it is unnecessary to name the path from v, to v;. We write v; * v;
to mean that there is a path from v; to v;. Note that thls path may be tr1v1a1

1fv = Vj.

DEFINITION 2.3
Given a directed acyclic graph G = (V,E), a topological ordering of G is a
linear ordering < of all its nodes such that if an edge (v, v;) € E, then v,

precedes \ in the ordering, written v; <, v i

2.2.1 Modeling behavior

In HLS, a behavioral description is usually compiled to an intermediate
representation. In this thesis, behavior is modeled in the form of a data flow
graph, as defined below.

DEFINITION 2.4

A data flow graph DFG = (V,E) is a directed graph, where V is the set of
nodes, representing operations, and E C V XV is the set of edges,
representing dependences between operations.

Modeling the problem 13

Several DFG representations are available in the literature and the choice of
a particular representation does not limit the application of ILP techniques.
In this thesis, we adhere as much as possible to the so—called ASCIS model
[21].

We assume that the behavioral description contains conditional constructs
and that the respective DFG has special nodes to represent them. In the
literature, a DFG supporting conditional constructs is also known as a control
data flow graph (CDFG). An example is shown in Figure 2.2b for the
description in Figure 2.2a. Circles represent either ordinary operations or
tests. Triangles denote inputs or outputs. Pentagonal nodes are associated
with control—flow decisions. A branch node (B) distributes a single value to
different operations and a merge node (M) selects a single value among
different ones.

Branch and merge nodes are controlled by a dummy node called a conditional,
which is represented by a diamond in Figure 2.2b. A conditional transfers the
outcome of a test to branch and merge nodes. It provides a simple way of
modeling the fact that the result of a test is not necessarily used immediately
after its evaluation. For instance, the outcome of a test can be stored to be
recovered later on or it might not be available instantly (see Section 2.2.4).

The flow of data between operations is represented by data edges. The
outcome of a test is carried by control edges (dashed edge in Figure 2.2b) from
the conditional to branch and merge nodes. A detailed explanation of those
symbols and their semantics can be found in [20].

Our DFG model also has special nodes to represent loop constructs. However,
for simplicity, we postpone the discussion of loops to Chapter 6.

The operations in a DFG can be classified in different operation types, such
as addition, subtraction, merge, branch, conditional, etc., as formalized
below.

DEFINITION 2.5

Let Ty be the set of operation types such that T, = T,UTy,
Ty = {branch, merge, conditional} and T, = Ty\Ty. The function w : VT,
represents the mapping of an operation v to an operation type t..

Note that the set T, contains the operation types associated with tests and
ordinary operations, whereas the set Ty contains the types of special nodes
representing conditional constructs.

In general, we refer to some node of the DFG as an operation v, € V.
However, we sometimes need to emphasize, in the notation, the distinction

14 Exploiting instruction—level parallelism: a constructive approach

between a test, a conditional and an ordinary operation. When necessary, a
test is designated by t,, a conditional by ¢, and an ordinary operation by o,.
Most of the time, however, we use the terms test and conditional
interchangeably, since they refer to closely related notions.

[Kk]
(]

[t4]
[m]

else
[n]
[p]
[q]

(2)

FI1GURE 2.2. A behavioral description and its DFG

In order to help us to keep track of code motion, an auxiliary graph is defined
below. This graph is a condensation of the DFG.

DEFINITION 2.6

A basic-block control flow graph BBCG = (U, F) is a directed graph, where U
is the set of nodes, representing basic blocks or junctions, and F C U x U is
the set of edges, representing the flow of control.

The BBCG is derived during a depth—first traversal of the DFG and it is built
as follows. All operations in the DFG which are enclosed between a pair of
branch and merge nodes controlled by the same conditional are condensed in
the form of a basic block in the BBCG. All branch (merge) nodes in the DFG
controlled by the same conditional are condensed into a single branch (merge)
node in the BBCG domain. Similarly, all input nodes are contracted to a single
source node and all output nodes to a sink node.

Figure 2.3 shows both the DFG and the BBCG for the description in Figure
2.1. In the BBCG, circles represent basic blocks and each BB is associated
with a set of operations in the DFG. Branch and merge junctions in the control
flow are explicitly represented, in the BBCG domain, by branch (B) and merge

Modeling the problem 15

(M) nodes, which are drawn as pentagons. Triangles denote the source and
the sink nodes.

BBCG

\Y

FIGURE 2.3. A DFG and its associated BBCG

In general, we designate by u; an arbitrary node of the BBCG, although we
sometimes distinguish a BB from branch and merge junctions in the notation.
A basic block is denoted as BB, whereas B, and M, respectively represent
branch and merge junctions associated with some conditional c,.

Note that, for a given branch node B, the flow of control reaches a different
BB, depending on the outcome of conditional ¢, . In Figure 2.3b, this is marked
by labeling the edges leaving the branch node with “1” and “0”, depending on
whether the outcome of c; is true or false, respectively. We sometimes make
a distinction on which BB is reached, as follows. Given a branch node B,, we
denote as succ(B,, true) the successor of B, when the outcome of conditional
¢y is true. Similarly, succ(B,, false) designates the successor when the result
of ¢, is false.

Apath (up, uy, ..., u;) in the BBCG=(U, F) with u, = source and u)_ = sink is
called a control path. As the outcome of the tests is dependent on some setting
of the data, the taken control path can be determined at execution time only.
The set of operations enclosed by the BBs contained in a given control path
is here called a trace or execution instance. In other words, each path in the
BBCG corresponds to exactly one trace in the DFG. We say that an operation
on executes on a control path p if oy, is in the trace associated with p.

The relationship between the DFG and the BBCG is kept by means of
so—called links. A link connects one node v in the DF'G with a node u in the

16 Exploiting instruction—level parallelism: a constructive approach

BBCG. Links play an important role in modeling code motion and for this
reason we will especially be interested in the links connecting ordinary
operations and tests to BBs. From now on, we will use the notation oy, 24 BB;
to designate that an operation oy, is connected to a basic block BB, by means
oflink A. This notion is illustrated in Figure 2.4, where each arrow represents
alink. Only links from operations and tests are shown. Note that, in Figure
2.4, each operation is linked to the BB where it was initially described. We say
that each operation is linked to its initial BB, or equivalently, that a set of
initial links is defined. The fact that an operation o, is not linked to a basic
block BB, is denoted as 0,2 BB, throughout this thesis.

FI1GURE 2.4. The initial links for the example in Figure 2.2

Now we formalize some classical notions from the compiler—technology
domain [7], by casting them into our own representation. The notions of
domination, postdomination and control equivalence are useful during
bookkeeping. The definitions below assume an acyclic BBCG=(U, F) with
single—source and single-sink nodes and in which u,, u; € U.

DEFINITION 2.7
Node u; dominates node u;, written u; dom u;, if every path from the source
to u; includes u;.

DEFINITION 2.8
Node u; postdominates node u;, written u; pdom u, if every path from u; to

the sink includes u;.

DEFINITION 2.9

Nodes u; and u;, are control equivalent, written u,; equiv w, if and only if u,
dominates u; and u; postdominates u; or vice-versa.

Modeling the problem 17

Note that, in the BBCG shown in Figure 2.3, BB I dominates BB K, but BB
K does not postdominate BB I, while BBs I and L are control equivalent.

2.2.2 Modeling the data path

The data path is modeled as a set of interconnected components, such as
functional units, multiplexers and memory elements, which are here called
modules. The data path is represented in the form of a graph, as defined
below. Although this graph is a very abstract model for the RTL structure, it
is sufficient for the purposes of this thesis.

DEeFINITION 2.10

A network graph NWG=(M, W) is an undirected graph, where M is the set of
nodes, representing modules, and W C M x M is the set of edges, represent-
ing the connectivity of the modules.

The modules are classified according to their function, such as adder,
multiplier, register, etc. This leads to the notion of module type. The mapping
between modules and types is formalized as follows.

DEFINITION 2.11

Let M be a set of modules and Ty, be a set of module types. The function
u: M~ Ty, maps a module m to a module type tp,.

In HLS, the relation between operation types and module types is usually
described in the form of a library. For example, given a set of module types
T = {adder_subtracter, ALU, ripple_carry_adder, multiplier}, we could
instantiate modules by choosing from the set Ty,. A plus—operation could be
performed on any module of the three first types and a multiplication, on the
last one only. This notion is formalized below.

DEFINITION 2.12

The operation mapping function B : T, — P(Ty,) maps each operation type
to € T, to the subset of the available module types on which it can be
executed.

For the example given above, we could thus write: p(x) = {multiplier} and
B(+) = {adder_subtracter, ALU, ripple_carry_adder}.

Since an operation can be executed on various module types, it is the task of
module selection to choose a subset of suitable module types, say Ts C Ty,
and to assign each operation to a single module type ts € Ty, according to the
formulation below.

18 Exploiting instruction—level parallelism: a constructive approach

DEFINITION 2.13
Let Vo, = {v € V]w(v) € T,). The operation assignment function t: V, — Ty
maps each operation v to a selected module type ts such that ts € p(w(v)).

2.2.3 Modeling the control unit

As a consequence of the application of ILP techniques during scheduling, the
operations from different parts of the DFG are packed together for
simultaneous execution. In this thesis, the operations executing in parallel
are represented in the form of a state, and an execution sequence is
represented by transitions between states. When a given state sy 1s reached,
all operations associated with it are executed simultaneously. These notions
are also cast into a graph representation, as follows.

DEFINITION 2.14

A state machine graph SMG = (S,T) is a directed graph, where S is set of
nodes, representing states, and T C S x S is the set of edges, representing
transitions.

The SMG can be seen as a prototype for the state transition diagram of the
underlying finite state machine (FSM), whose formal definition can be found,
for instance, in [16].

We assume that the SMG has dummy nodes called source and sink states. The
duration of every state is one clock cycle, except for the sink and the source,
whose execution is assumed to take no time.

Recall from Section 1.4 that our goal is to focus on design problems subject
to a global time—constraint T.. From a DFG perspective, the time constraint
can be interpreted as follows. The difference between the time when the input
values are available and the time when the output values are determined can
not exceed T clock cycles. The availability of input values in the DFG can be
interpreted in the SMG domain as a transition from the source to an initial
state s;, whereas the availability of output values can be interpreted as a
transition from a state Sy -1 tothe sink. As a consequence, the time to execute
all the operations in every path from s to Sy 1 must not exceed T, clock
cycles. This notion is formalized as follows.

DEFINITION 2.15
Given a simple path p = (source, S0s 815 -+ Sk _ 1, Sink) in a SMG, the schedule
length of path p, written Ly, is the number k of states included in path p.

Our main goal is to find SMGs for which the inequality max(Ly) < T holds
for every path p. For simplicity, we sometimes refer to the path with greatest
schedule length as the “longest” path in the SMG.

Modeling the problem 19

Given DFG and a set of resource constraints, several different SMGs can be
synthesized, depending on how the operations are packed together. Figure 2.5
illustrates alternative SMGs, synthesized from the DFG in Figure 2.2b.

(a) (b) (c)

FIGURE 2.5. Alternative SMGs for the DFG in Figure 2.2b

To construct the first SMG in Figure 2.5a, exploitation of parallelism is
restricted within BB boundaries. The remaining alternatives, however, are
constructed using code motion. The operations executed in each of the states
in those SMGs are given in Table 2.1. Although all alternatives comply with
resource and precedence constraints, they have different properties. The
choice of the most convenient alternative is based on the design objectives.
For example, if we want to minimize completion time, the SMG in Figure 2.5a
is of inferior quality when compared to the others. If we also want to reduce
the number of states as a second objective, the SMG in Figure 2.5¢ should be
preferred.

TABLE 2.1 Operations executed in each state for the SMGs in Figure 2.5

SMG So 81 S S3 S4 S5
(a) k 1, t; n m P q
(b) k, q 1, t; n m p -
(c) k,q |1, m,t; n p - -

20 Exploiting instruction—level parallelism: a constructive approach

In the context of code generation, the number of states in the SMG correlates
with code size. The application of code motion may lead to SMGs with a larger
number of states. In the compiler—technology arena, this is known as code
expansion or code explosion. In this thesis, we sometimes use these customary
terms informally to mean an increase in the number of states.

In summary, the DFG is the starting point for synthesis. The NWG is
obtained by performing allocation and module selection. Our goal is to obtain
a SMG complying with both design constraints and objectives. The BBCG is
a useful intermediate representation which assists on the construction of a
SMG from the DFG, under the resource constraints imposed by an already
defined NWG.

2.2.4 Modeling timing

The amount of time spent to execute an operation of the DFG on a module of
the data path is usually modeled with the notion of delay. Different operations
might have different delays. As a consequence, delays are usually normalized
to the clock cycle and are represented by positive real numbers.

In general, the execution delay depends on both the operation type and on the
module type (e.g. a plus—operation executes faster on a carry look—ahead
adder than on a ripple—carry adder). This notion is formalized below.

DEFINITION 2.16

The execution delay is a function 8:T, X Ty, = R™, such that 8(to,tm)
represents the number of clock cycles taken by module type t., to complete
the execution of an operation of type t,.

Timing can also be affected by the advance choice of a controller. Although the
synthesis of the controller is performed at a later phase of the design flow, the
fact that a controller architecture is chosen beforehand imposes extra
constraints for HLS. Although this problem can be postponed by performing
a re-scheduling during the synthesis of the controller [42], a more elaborate
approach is proposed in [36] for addressing this issue during HLS. This is
performed by extending the DFG representation so as to capture the effects
of the advance choice of a controller. In the following, we illustrate how one
of this effects can be captured in our DFG representation. A detailed
discussion of this issue can be found in [36].

Assume that the symbolic FSM generated by HLS is mapped to the
microcoded controller of an ASIP. The operations assigned to a state of the
symbolic FSM are mapped to a micro-instruction format. A micro—instruc-
tion consists of a number of operation fields. Each field is associated with the

Modeling the problem 21

control signals steering the modules involved in the execution of a given
operation. The micro—instructions are kept in a control-store memory, from
where they are fetched prior to execution. It might be necessary to overlap the
micro—instruction fetch in the control unit and the execution in the data path,
for reducing the overall critical path. As a result, the whole digital system
may be organized as a pipeline, by the proper insertion of registers to isolate
pipeline stages. As a result of the latency of the pipeline, a delay occurs
between the time in which the outcome of a test operation is made available
to the control unit and the time when it actually influences the data path. This
time interval is known as delay slot, which we denote as 9. Given a pipeline
with n stages, the delay slot is equal to n — 1 clock cycles [36].

fetch I3

fetch 14 fes

clock cycles

(a) (b)

FIGURE 2.6. The notion of delay slot

If the effect of the latency of the pipeline is overlooked during HLS, the
generated FSM may turn out not to satisfy the time constraint during
microcode generation. To overcome this problem the effect of the latency of a
pipeline can be modeled during HLS by associating a delay 9 to every
conditional c, in the DFG. This notion is illustrated in Figure 2.6. A simple
pipeline with 2 stages is sketched in Figure 2.6a, where the k™ micro—instruc-
tion is denoted by I, and the delay slot is indicated by 9. In the first stage,
amicro—instructionisfetched and in the second, it is executed. In Figure 2.6b,

22 Exploiting instruction—level parallelism: a constructive approach

a SMG is constructed such that the delay slot is taken into account. Note that
the operations executing in state s, (Figure 2.6b) correspond to micro—
instruction I, (Figure 2.6a). Assume that a test is executed in micro—instruc-
tion I,. Depending on the outcome of test t, either I, or I, will be executed.
Since one of them has to be fetched, the operations associated with the fetched
micro-instruction will be executed one cycle later, after a delay 9.

Recall that, after module selection is performed, the operation assignment 1
is determined. This fact allows us to combine the effects of execution delay
and delay slot into the concept of operation delay, as defined below:

DEeFINITION 2.17
The operation delay is a function d : V+— R ™, such that:

dw(v), tv)),ifwv) € T,
dv) = D,ifw(v) = conditional .
0,ifw(v) = branch V w(v) = merge

Note that an operation delay is a fraction of a clock cycle. If d(v) > 1, an
operation v is said to be a multicycle operation, which means that its
execution takes longer than a single cycle. On the contrary, when d(v) < 1,
more than one operation could be executed within a clock cycle. This leads to
the notion of chaining, which is the execution of data—dependent operations
within a clock cycle. The occurrence of multicycling or chaining depends on
the choice of value for the clock cycle. For instance, assuming that the
execution delay of a multiplication is twice the execution delay of an addition,
the multiplication in Figure 2.7a is a multicycle operation, while the
additions in Figure 2.7b are chained.

(a) (b)

FIGURE 2.7. The notions of multicycling and chaining

A module can be designed to operate as a pipeline, which means that it can
process new input data while the execution for some old input data is still

Modeling the problem 23

unfinished, in such a way that the processing of different data can be
overlapped.

DEFINITION 2.18

The data introduction interval is a function dii : Ty, = N T, such that dii(ty,)
represents the minimal number of clock cycles required between different
executions of a same module of type tp.

Although each operation takes d(v) cycles for completion, successive
execution of operations can be issued each dii(t(v)) cycles. If dii(t(v)) < d(v)
then the execution is pipelined, otherwise the module does not operate as a
pipeline, since it just starts the execution of the next operation after the
completion of the previous one.

Part of the formulation in this section summarizes some of the major
achievements of years of research in design representation for HLS, which
are borrowed from many sources such as [16][21][28][63][66]. Other notions,
however, are especially introduced as a consequence of our focus on ILP
techniques applied to synthesis. The described design representations are
implemented using the so—called NEAT System [29], an object—oriented
framework for HLS.

2.3 Formulation of the optimization problem

Throughout this thesis, it is assumed that allocation and module selection
have already been performed. As a result, the selected module types, the
number of modules per type and the assignment of operations to module types
are considered to be known and fixed. This is formalized as follows.

Recall that T, designates the set of module types in the library, and that
Ty C Tnis the set of selected module types. Also, remember that the function
1: V — Ts maps each operation on a selected module type. Finally, let n(ts)
be the number of selected modules of type ts. From now onwards, it is
assumed that T is determined, that n(ts) is known for each tg € T and that
the mapping thas been accomplished. These parameters represent resource
constraints for further synthesis steps. Without loss of generality, the
application of resource constraints is restricted, in this thesis, to functional
units. Extensions are suggested in Chapter 7.

Although the relation between a DFG and a SMG is described more formally
in Chapters 3 and 4, we need to anticipate some notions thereof. Our goal is
to generate a SMG such that each operation of the DFG is associated with
some state. Assume that operations o and o, are associated with states s;
and S;, respectively. Essentially, operations are assigned to states such that:

24 Exploiting instruction—level parallelism: a constructive approach

o If 0, is data dependent on op, then there must be a simple path from the
source to s; that includes state s;, such that the execution of operation o,
starts only after the execution of operation o, is completed. If this
condition holds for all data dependent operations, we say that the
precedence constraints are obeyed.

e The resources needed for the execution of the operations associated with
a given state can not exceed the available number of resources. When this
holds for every state, we say that the resource constraints are satisfied.

The subproblems stemming from HLS can usually be formulated as
combinatorial optimization problems [50]. An instance of an optimization
problem is a pair (%, ¢), where the solution space ¥ is the set of all feasible
solutions, and the cost function c is a mapping ¢ : F — R. An optimization
problem (OP) is a collection of problem instances. An OP can be formulated
either as a minimization or as a maximization problem. The goal is to find a
solution for which the cost function reaches either its minimal or its maximal
value, depending on whether a minimization or a maximization problem is
envisaged.

One way of tackling the synthesis of time—constrained designs is to formulate
an OP whose goal is to minimize completion time and to search for a solution
satisfying the time constraint. The completion time of a path in the SMG
depends on how the operations are scheduled in the states included in that
path. As a result, cost is evaluated in this thesis as a function of schedule
lengths of paths. In the following formulation, ¢ is a monotonically increasing
function and L denotes the schedule length of a path p in the SMG such that

source L sink.

OPTIMIZATION PROBLEM

Given a DFG, a set Tsof selected module types, anumber of available modules
n(ts) for each module type ts and an operation mapping 1, find a SMG in which
the precedence constraints of the DFG are obeyed and the resource
constraints are satisfied for each module ts € T, such that the cost function
c(Ly, Ly, ..., Lp) is minimized.

The solution of this OP implies the solution of resource—constrained
scheduling, a well-known intractable problem. In this thesis, instead of
relying on an exact algorithm to solve the OP, we assume that promising
solutions are explored via local search [50). Local search is based on the notion
of neighborhood. Given an instance (¥, c), a neighborhood is a mapping
N':F — P(F). This leads to the notion of local optimum with respect to a
given neighborhood, in contrast to the notion of global optimum, which refers
to the whole scope of the solution space. Essentially, the principle of a local
search algorithm is to explore a given neighborhood of the current solution

Modeling the problem 25

(or of a group of solutions) and search for a better solution, until some
stopping criterion is satisfied. Examples of local search algorithms are
iterative improvement, tabu search, simulated annealing and genetic
algorithms (for an overview, see [69]).

Some solutions, although feasible, are deliberately not generated, for reasons
of efficiency. Reconsider the solutions in Figure 2.5, for instance. Since code
motion in general leads to shorter schedule lengths, it would be unnecessary
to generate a solution like the one in Figure 2.5a, where code motion is
prohibited, as far as minimization of schedule lengths is the primary
objective. Therefore, a given synthesis method can be conceived such that
some feasible solutions of poor quality are never constructed. As a result, not
all feasible solutions in the solution space can be explored. In order to mark
the distinction, we call search space the set of feasible solutions that can
actually be explored during the search.

It should be noted that, unlike most HLS approaches, where greedy heuristic
algorithms are used to come up with a single solution, our choice of a local
search approach is more flexible, since it provides a way of exploring
alternative solutions. This is especially important because some solutions to
the OP might not satisfy a given time constraint and have to be ruled out.

Figure 2.8 summarizes how the solution of the OP is placed in the context of
a synthesis methodology. If the inequality max(Ly) < T.is not satisfied for
some path p, previous decisions in the HLS design flow should be revoked and
new decisions should be taken, through an iterative process, until the time
constraint is met.

v

resource
constraints

v

FIGURE 2.8. A design methodology for synthesis

Chapter

3 A constructive approach

3.1 Motivation

To tackle the optimization problem defined in the previous chapter, the
following main difficulties have to be faced when conditionals and loops are
present in the behavioral description:

e the NP—completeness of resource—constrained scheduling;

o the limited parallelism of operations enclosed by basic blocks, such that
available resources are poorly utilized,

e the possibility of state explosion because the number of control paths may
explode in the presence of conditionals;

¢ the limited resource sharing of mutually exclusive operations, due to the
late availability of test results.

Most methods address these issues as separate subproblems (BB scheduling,
code motion, code size reduction, conditional resource sharing). Since the
optimization goals of different subproblems may conflict, the result typically
depends on the order in which the subproblems are solved. Besides, most
methods apply different heuristics to each subproblem, as if they were
independent. An heuristic is used to determine the order of the operations
during scheduling (like the many flavors of priority functions), another to
decide whether a particular code motion is worth doing [22][48][54], yet
another for reducing the number of states [71]. The application of an
aggregate of unrelated heuristics makes it difficult to control the quality of
the final result. Therefore, these approaches might miss optimal solutions.

This chapter proposes a formulation [56] to encode potential solutions to the
entire optimization problem, instead of addressing the interdependent
subproblems separately. The formulation abstracts from the linear—time
model commonly used in HLS and allows us to concentrate on the order of
operations and on the availability of resources. Different priority encodings
are used to induce alternative solutions and many solutions are generated
and explored. The basic idea is to keep high—quality solutions in the search
space when ILP techniques like code motion, speculative execution and loop
pipelining are applied.

27

28 Exploiting instruction—level parallelism: a constructive approach

Before presenting our own approach to tackle the OP, later referred as the
constructive approach, we review related approaches to similar problems.

3.2 Related high-level synthesis approaches

In path-based scheduling (PBS) [8]{12] a so—called as—fast—as—possible
(AFAP) schedule is found for each path independently, provided that a fixed
order of operations be chosen in advance. Due to the fixed order and to the
fact that scheduling is cast as a clique covering problem on an interval graph,
code motions resulting in speculative execution are not allowed. The original
method has been recently extended to relieve the fixed order [9], but
reordering of operations is performed inside BBs only. Reordering is not
allowed across branch junctions, because this would destruct the notion of
interval, which is the very foundation of the PBS technique. Consequently,
although reordering improves the capability of efficiently handling more
complex data—flow, the method cannot support speculative execution, which
limits the exploitation of parallelism with complex control flow [41]. This
limitation is relieved in tree—based scheduling (TBS) [34], where speculative
executionis allowed and the AFAP approach is conserved by keeping all paths
on a tree. However, since the notion of interval is lost, an heuristic list
scheduler is used to fill states with operations.

Condition vector list scheduling (CVLS) [71][72] allows code motion across
branch and merge junctions, and supports some forms of speculative
execution. Although it is shown in [53] that the underlying mutual exclusion
representation is limited, the approach would possibly remain valid with
some extension of the original condition vector or with some other
alternative, such as the representations suggested in [6] and [53].

A hierarchical reduction approach (HRA) is presented in [37]. A DFG with
conditionals is transformed into an “equivalent” DFG without conditionals,
which is scheduled by a conventional scheduling algorithm. Code motion
across merge points is allowed, but speculative execution is not supported.

In [54] an approach is presented where code-motions are exploited. At first,
BBs are scheduled using a list scheduler and, subsequently, code motions are
allowed. One priority function is used in the BB scheduler and another for
code motion. Code motion is allowed only inside windows containing a few
BBs to keep the runtime low, but then iterative improvement is needed to
avoid restricting too much the kind of code motions allowed.

Among those methods, only PBS is exact, but it solves a partial problem
where speculative execution is not allowed. TBS and CVLS address BB

A constructive approach 29

scheduling and code motion simultaneously, but use classical list scheduler
heuristics. In [54] a different heuristic is applied to each subproblem. All
those methods may exclude optimal solutions from the search space.

In [52], an exact method is presented for solving a resource—constrained
scheduling problem, which is entirely modeled in Boolean form. Code motion
is largely supported. However, some traces are scheduled in such a way that
they would lead to infeasible solutions, which requires a backtracking
procedure for trace validation. As a consequence of being an exact method and
due to the lack of efficient pruning, the reported runtime is large. Therefore,
the use of this technique in the early (more iterative) phases of a design flow
is unlikely.

3.3 Related approaches in the compiler arena

In Trace—scheduling (T'S) [22] a main trace is chosen to be scheduled first and
independently of the others, then another trace is chosen and scheduled, and
so on. First, resource unconstrained schedules are produced and then
heuristically mapped to the available resources. TS does not allow code
motion between traces. The downside of TS is that its main—trace—first
heuristic works well only in applications whose profiling shows a highly—pre-
dictable control flow (e.g. in numerical applications).

Percolation Scheduling (PS) [48] defines a set of semantics—preserving
transformations which convert a program into a more parallel one. Each
primitive transformation induces a local code motion. PS is an iterative
neighborhood scheduling algorithm in which the atomic transformations
(code motions) can be combined to permit the exploration of a wider
neighborhood. Heuristics are used to decide when and where code motions
are worth doing (priorities are assigned to the transformations and their
application is directed first to the “important” part of the code).

The most important aspect of PS is that the defined primitive transforma-
tions are potentially able to expose all the available instruction-level
parallelism. Another system of transformations is presented in [27] and it is
based on the notion of regions (control-equivalent BBs). Operations are
moved from one region to another by the application of a series of primitive
transformations. Since the original PS is essentially not a resource
constrained parallelization technique, it is extended with heuristic mapping
of the idealized schedule into the available resources [47][51].

The drawback of the heuristic mapping to resources performed by both TS
and PS is that some of the greedy code motions have to be undone [19][46],
since they can not be accommodated within the available resources.

30 Exploiting instruction—level parallelism: a constructive approach

More efficient global resource-constrained parallelization techniques are
reported [19][46][62], whose key idea is a two—phase scheduling scheme.
First, a set of operations available for scheduling is computed globally and
then heuristics are used to select the best one among them.

In [19], a global resource—constrained percolation scheduling (GRC-PS)
technique is described. After the best operation is selected, the actual
scheduling takes place through a sequence of PS primitive transformations,
which allow the operation to migrate iteratively from its original location to
its final position.

A global resource—constrained selective scheduling (GSS) technique is
presented in [46]. As opposed to GRC-PS, the global code motion of the
selected operation is performed in one step, instead of applying a sequence of
local code motions. The results presented in [46] give some experimental
evidence that, although PS and GSS achieve essentially the same results,
GSS seems to lead to smaller compilation times.

3.4 How our contribution relates to previous work

On the one hand, we keep in our approach some of the major achievements
on resource—constrained scheduling in recent years, as follows.

o Like most global scheduling methods [31[19][46][62], our approach also
adopts a global computation of available operations. However, our
implementation is different [59], since it is based on a DFG, unlike the
above mentioned approaches.

o We perform global code motions in one step, in a way similar to [46], but
different from [19] and [27], which apply a sequence of primitive
transformations.

On the other hand, our approach distinguishes itself from related work, as
follows:

e Our formulation is different from all the methods above in the way it uses
the notion of priority for generating schedules. Instead of using one
heuristically established priority function [16], many priority encodings
are generated by an external (and therefore tunable) search engine (see
Section 3.5), thereby allowing the exploration of alternative solutions.

e Unlike most global resource—constrained approaches [3][19][46][62], we
include support for exploiting downward code motion (see Section 5.1).

e We propose a technique to exploit the notion of state equivalence during
scheduling by merging equivalent states on the fly. The technique relies on

A constructive approach 31

information usually overlooked by traditional scheduling methods (see
Section 4.5).

e We present a new code—motion pruning technique, which exploits
precedence and resource constraints to prevent inefficient code motions
(see Section 5.2).

3.5 An overview of the constructive approach

An approach could be envisaged where no restriction is imposed beforehand
neither on the kind of code motion, nor on the order the operations are
selected to be scheduled. In this section, we will introduce an approach, which
is indeed largely free from such restrictions, henceforth referred to as the
constructive approach.

An outline of our approach is shown in Figure 3.1. Solutions are encoded by
a priority encoding II, which is essentially a more or less arbitrary
permutation of the operations in the DFG. A solution explorer creates the
priority encodings. A solution constructor builds a solution for each priority
encoding and evaluates its cost. The explorer looks for the solution with
lowest cost by means of a local search algorithm and decides about
time—constraint satisfiability.

While building a solution, the constructor needs to check many times whether
a given operation is available for scheduling in a given state or whether a
certain code motion needs compensation code. These tests are modeled as
Boolean queries and are directed to a so—called Boolean oracle (the term was
coined in [10]) which allows us to abstract from the way the queries are
implemented.

explorer

II cost

constructor

)

Boolean
oracle

FIGURE 3.1. An outline of the approach

32 Exploiting instruction—level parallelism: a constructive approach

Note that the approach consists of co—operating but orthogonal engines. This
has the advantage of allowing further tuning, since one engine can be
modified or replaced without the need to change the other. For instance, an
explorer based on genetic algorithms could be replaced by another based on
simulated annealing; the Boolean oracle could be based on binary decision
diagrams [16] or on simpler one-hot encoding techniques like condition
vectors [71]. The constructor can be modified to include various kinds of
pruning techniques.

Another advantage is that the approach allows to trade search time against
solution quality, since the number of explored solutions can be, in general,
controlled by the parameters of the search method. In the early (more
iterative) phases of a design flow a quick local search can be used, while
broader neighborhoods can be explored in the final optimization phase.

The approach is designed such that the following properties hold:

e The priority encoding is not determined by greedy heuristics:
The explorer determines a priority encoding depending on the criteria of
a given local search algorithm, instead of relying on greedy priority
heuristics, like “critical-path—first”, “main—trace—first”, etc.

¢ The constructor manages code motion:
Although constrained by the available resource and by the dependences,
code motions are induced by the priority encoding and no limitation on
type, scope or amount of code motions is imposed beforehand.

¢ Decisions are exclusively made in the explorer:
The constructor simply generates a solution for each priority encoding. All
the decisions are made by the explorer based on the cost evaluated by the
constructor.

e Pruning is used to discard low-quality solutions:
The constructor exploits precedence and resource constraints in order to
avoid the generation of solutions which certainly do not lead to lower cost.
This is performed by preventing inefficient code motions.

¢ Only feasible solutions to the OP are generated:
The construction of a solution is determined by the priority encoding in
combination with precedence and resource constraints, such that only
solutions satisfying all these constraints are constructed.

e The notion of state prevails over the notion of time step:
Unlike most HLS approaches, our constructor assigns operations directly
to states and defines state transitions, instead of scheduling operations on
a linear sequence of time steps.

In the sequel, we refine the description of our approach by focusing on each
of the co—operating engines.

A constructive approach 33

3.6 The priority encoding

Most of the issues described in this thesis are performed in the constructor,
such as the application of ILP techniques and the handling of resource and
precedence constraints.

Precedence constraints impose a restriction on the set of operations to be
scheduled in a given state, since the values used by some operations may not
yet be computed. The operations which can potentially be scheduled in a
given state, without violating the semantics of the behavioral description, are
called available operations [3]. They are also known as unifiable operations
[19] or ready operations [62]. The set of operations available for scheduling at
a given state s, is denoted as A,. The evaluation of A; depends, not only on
the precedence constraints, but also on operation delays (see Section 4.3).
However, not all operations in Ay can be scheduled in state s; simultaneously,
due to resource constraints. Therefore, a subset of the operations in A, has
to be selected.

The assignment of operations to each state s, in the SMG depends on the
order governing the selection of operations from the set A,. As a consequence,
a potential solution to the OP can be induced by assigning a priority to each
operation. For this reason, the interaction between the explorer and the
constructor relies on encoding distinct solutions in the form of distinct
priority encodings.

Given a DFG=(V, E), a priority encoding is essentially a permutation IT of
operations from V. The notion of priority is associated with the relative
position of operations in II. Let I1(v,) denote the position of some operation
v, in permutation II. Operation v, has the priority over v, written v; <p vj,
if (v < H(Vj).

3.7 The constructor

The solution constructor consists of two main engines, a scheduler and a
so—called parallelizer, as shown in Figure 3.2. The role of the parallelizer is
to manage code motion and loop pipelining. It traverses the BBCG and
appoints a current state s, to be scheduled. After the assignments implied by
the scheduling of that state are completed, a set of states called next states is
determined. As a result, the parallelizer packs operations into states and
defines the state transitions, thereby generating the SMG on the fly. The
parallelizer maintains, within the set A,, the operations available for
scheduling in the current state.

The task of the scheduler is to select, from the set A,, one operation v; to be
executed in state s,. The scheduler then returns the selected operation and

34 Exploiting instruction—level parallelism: a constructive approach

the parallelizer updates the set A, accordingly. This interaction proceeds
until all resources available are occupied at state s, or the set A, is empty.

EXPLORER

parallelizer

scheduler

FIGURE 3.2. An outline for the solution constructor

Although most global resource—constrained scheduling methods rely on the
notion of available operations, they differ on how this set is used to accomplish
parallelization. In [46] greedy scheduling heuristics are used to prioritize the
set Ay. In [3] the handling of resource constraints is orthogonal to the
software pipelining algorithm. This separation allows scheduling heuristics
to be modified for an efficient management of resources. In our approach, not
only scheduling is orthogonal to the parallelization, but also heuristics are
removed from the scheduler and placed in the explorer. This allows proper
exploration of alternative solutions.

3.7.1 The scheduler
Operation selection

In our approach, each set A, is ordered according to some priority encoding
IT. The scheduler selects operations from the set A,, whose ordering is
induced by < ;. Given a state s) and an ordered set A, the scheduler selects
the first operation v; € A, that satisfies resource constraints.

Since heuristics are pushed to the explorer engine, our selection mechanism
depends only on the linear order <; and on the free resources, but does not
depend on built—in scheduler heuristics (as opposed to classical methods
[3]1[19][46][62]). This makes it easy to compare the operations to be scheduled

A constructive approach 35

in distinct states without actually scheduling all of them. Such predictability
can be used for further optimization, as will be shown in the next chapter (see
Section 4.5.2).

Management of resources

Occupation of resources is modeled by resource utilization functions. The
resource utilization function associated with a basic block BBJ-, is a mapping
: N x Tg— N such that rJ(k ts) represents the number of resources of a
given type ts which are occupied in some state s ik within a basic block BB..
The joint resource utilization function assomated with basic block BB is a

mapping R N ~ NIT:l such that:
R;(k) = (rj(k,tl),r-(k, ty), ..., 15k, ts), ""rj(k’tlTsl)). (3.1

We say that there exists some free resource when r.(k,ts) < n(ts). Each time
an operation v, is scheduled, rj(k, ©(v;)) is incremented by one. Since v; can
be a multicycle operation and possibly executed on a pipelined resource, the
occupation of a module, starting at some state 8j 10 is modeled by
incrementing ri(n,t(v,)) by one, for each n €N, such that
k = n < k + dii(t(v,)). The joint utilization function is fundamental for the
detection of equivalent states in the SMG, as will be shown in Chapter 4.

3.7.2 The parallelizer
State handling

One of the main tasks of the parallelizer is to perform a top—down traversal
of the BBCG, while following the flow of tokens in the DFG. We say that the
parallelizer visits basic blocks and that the BB being visited is the current BB.
Given two distinct basic blocks, say BB, and BBJ-, if BB, reaches BBJ., then BB;
is visited before BBJ- and is never revisited.

The BBCG s used as a frame of reference for the construction of a SMG. Each
basic block BB. is modeled as a sequence of successive states (8008410 > SjN)
such that 1ndegree(s k) = outdeg‘ree(sJ _p) =Ll fork = 1,2,..,Nand such
that s. 50 = source and SN * sink. We say that the parallehzer appoints a
state w1th1n a BB when 1t creates a new state to which operations are not yet
assigned. Scheduling assigns operations v; to states Si k within basic block

BB,.

Assume that a current state s; ik is appointed within the current BB, say BB..

For assigning operations to state S oo the parallelizer interacts with the
scheduler, which selects them from the set AJ . The parallelizer assigns each
scheduled operation, one after another, to state s; ik until no more available

36 Exploiting instruction—level parallelism: a constructive approach

operations remain or no more resources are free. In this case, we say that the
state is scheduled. When the current state is scheduled, the next states are
determined. A next state may fall within BBJ itself or within some other BB
still to be visited. In the first scenario, the next state s. i+ 1 becomes the
current state and the process is repeated. In the second scenarlo the visiting
of BB. is completed and the traversal of the BBCG resumes at another basic
block, say BBy. Then, the state Sx.0 becomes the current state, restarting the
process.

Bookkeeping

The parallelizer is also in charge of detecting if a code motion requires
compensation code. If this is the case, it evaluates in which BB the needed
code has to be inserted. The detailed description of this procedure is given in
the more appropriate scope of Chapter 4.

Availability analysis

The evaluation of which operations are available for scheduling, from now on
referred to as availability analysis, is also performed in the parallelizer and
is formalized in the next chapter. Assume that BB, is the current BB. The
parallelizer searches for available operations among those linked to BBs
reachable from BB,. The available operations discovered during this search
are kept in the so—called set of available operations at basic block BB, which
we denote as .A;. Note that .4, contains operations that should execute on
some path from BB, to the sink. Besides, due to the effect of different
operation delays, not all operations in A, are available for scheduling at the
same state. Some operations might be avallable at the current state s; "
whereas others may be available at some state Sik+x reachable from s; ik For
this reason, the parallelizer splits the set A into several subsets say
A, I Ao k4w each of them containing the operations available for
scheduhng at states i Sik+1 " Sik4w respectively. For simplicity, in the
remainder of this chapter, we assume provisionally that all operations in the
DFG have unit delay and, as a consequence, that the sets .A; and Ai,k can be
used interchangeably. This assumption is relaxed in Section 4.3.

As a result of availability analysis, the set .4; may contain operations from
different BBs (possibly inducing code motion) or instances of operations
belonging to different iterations of a loop (possibly inducing loop pipelining).
Efficient ways of evaluating A, are proposed in the literature [4][19][46], but
they are based on a so—called control flow graph representation. In Chapter
4, we propose algorithms for availability analysis that are suitable for a DFG
representation.

A constructive approach 37

Code-motion pruning

On the one hand, it is convenient to expose as much parallelism as possible,
by keeping a global view of the operations available for scheduling in set A, .
On the other hand, the more global the scope, the larger the search space
becomes. As a consequence, we should also prune inferior solutions from the
search space. Code—motion pruningis a technique included in the parallelizer
for this purpose, and it will be explained in Chapter 4.

In early versions of our approach [56][57]{60], we neither used the notion of
available operations at some state s, explicitly, nor we stressed the notion of
current and next states. These notions were later incorporated, after the work
presented in [4], since they allow us to extend the original approach with loop
pipelining, as will be shown in Chapter 6.

3.7.3 An example

The process of construction is now illustrated with a simple example. The
starting point is the behavioral description of Figure 2.2, which is repeated
in Figure 3.3a for convenience. The resource constraints are given in Figure
3.3b, along with a priority encoding Il. The rectangle in Figure 3.3b is a
pattern used throughout the example to represent resource utilization
schematically at a given state s,.. Each field within the rectangle is associated
with a different module type. Suppose that d(t;) = 1 and that d(v) = 1 for
every ordinary operation v.

[k] resource constraints
[l] T, = {adder, subtracter, comparator}
[t1] k) =) = (n) = subtracter
©(m) = 1(p) = Wq) = adder
t(t,) = comparator
else n(adder) = n(subtracter) = n(comparator) = 1

[n] s+ -[>]
[p] priority encoding
[q] H = (m’ p: qyn9k? Irtl)

(b)

Fi1GURE 3.3. Behavioral description and resource constraints for the
example in Figure 3.4

38 Exploiting instruction—level parallelism: a constructive approach

YAI = {n, p}
A =k Ld S B
0 1 0 1 0 1

A

(a) (b) X (c)
gk | soCIEE solCH
1 EERIE o Bl i 1t
Ag =) OML Ay = {p} Ay = o} O 4 = Ag = {p} L

W1 0] s | ol

L@ (e) X ®
!

o EIH gp
1 R ,

-
;
\

(g) (h) (i)

FIGURE 3.4. An example of the process of solution construction

A constructive approach 39

The process is depicted in Figure 3.4, showing the scheduling of state after
state. The permutation IT induces the construction of the final solution in
Figure 3.4h. The intermediate steps to obtain this solution are given from
Figure 3.4a to 3.4g. In the figure, boxes represent BBs and small rectangles
denote the states forming a BB. Each rectangle is subdivided in fields
representing the different module types available, in correspondence with
the pattern in Figure 3.3b. In order to stress the handling of states, we have
marked the states with different colors. A black rectangle represents a state
already scheduled, a gray rectangle depicts the current state being scheduled
and a white rectangle denotes unscheduled states. Note also that the current
BB being visited in the BBCG traversal is emphasized with a heavy outline.

In addition, the sets of available operations at a given BB are shown. They
represent the operations available on entry to a state about to be scheduled,
or on exit from a state just scheduled. Since the example does not have
multicycle operations, sets A; and A, are used interchangeably.

The process starts with the creation of a first state s, in BB I. Note that, in
Figure 3.4a, operations k, 1and q are available on entry to s,. Since k <1,
k is the first subtraction selected for scheduling in s;,. Operation 1, however,
turns out not to be scheduled in s;, due to resource constraints. Besides,
operation q is eventually scheduled in s, since it is the only addition
available on entry to s,. Observe that the scheduling of k in s, makes t, and
m available on exit from s, that is to say, on entry to s, as depicted in Figure
3.4b, where the next state s; is created.

Figure 3.4c shows that all the operations available on entry to s, can actually
be scheduled in that state. As lis scheduled in s, and k was scheduled in s,
operation n becomes available. Notice that, after m is scheduled in s,
operation p also becomes available, because its input values are determined
on control path (I,dJ, L), although not on the other path. Since a test t; is
executed in state s, two alternative next states will be created, depending
on the outcome of t,, which is illustrated in Figure 3.4d. Note also that not
all operations available on exit from state s; are made available for next
states s, and s;. On the one hand, operation n does not belong to the
execution instance associated with the control path through BB J. On the
other hand, operation p belongs to the execution instance associated with the
control path through BB K, but it depends on n for this path and operation
n, although available, has not yet been scheduled.

Observe that, given a sequence of states (s, ..., sy, ..., Syy) of a BB, the set A}
on entry to s, equals the set A, _; on exit from s, _,, for k = 1,2,..,N.
However, if state sy contains a test, the set Ay, ; on entry to sy, ; is a subset
of Ay on exit from sy.

40 Exploiting instruction—level parallelism: a constructive approach

Figure 3.4e shows that, after state s, is scheduled, the set A y is empty,
meaning that the operations executing on the control path through BB Jhave
all been scheduled. The same happens for the other control path after the
steps in Figures 3.4f and 3.4g. Note that BB L turns out to contain no states,
since all its operations are moved upwards. The resulting SMG is drawn in
Figure 3.4h. It should be noted that operation p was duplicated in states Sg
and s,. Since those states are redundant, it would be convenient to merge
them into a single state, as suggested by Figure 3.4i. Our approach supports
this feature, as will be explained in Chapter 4.

3.7.4 Discussion

Since our constructor is designed such that the scheduler engine is largely
independent of the parallelizer, distinct schedulers can be used in our
approach. We summarize in this section some of the issues involved in the
choice of a scheduling mechanism.

The priority encoding II can be used in distinct ways to generate a schedule,
giving rise to distinct classes of schedulers. In the following, we discuss two
examples of scheduling mechanisms based on a priority encoding:

¢ List scheduling (LS):
This is one of the most popular mechanisms employed in HLS [16]. It relies
on the notion of “filling” a current time step with operations. Given a
current time step, an available operation is allowed to be scheduled in that
step if there is a free resource for executing the operation. If more than one
operation can be executed on a same resource at the current step, the
operation with highest priority in the permutation is selected. When no
more operations can be scheduled in that step, a successive time step is
allocated, it becomes the current step and the process of “filling” restarts.

e Topological permutation scheduling (TPS):
This mechanism [28] selects the first operation in the permutation that is
available for scheduling. The selected operation is scheduled at the earliest
time step in which a resource is free. There is no notion of current time step.
The “filling” of a time step can start even if the previous step is not
completely “filled”.

The mechanism of selection of operations in LS is such that in some cases the
optimal schedule can not be generated, regardless of the ordering chosen in
the priority encoding. This is illustrated in Figure 3.5, which is borrowed from
[28] and where the operation delay is 2 cycles for multiplications and 1 cycle
for additions. Observe that, since v, and vy are the only initially available
-operations and 1(v;) # 1(v;), they are eventually scheduled at the first time
step, regardless of the priority encoding, as shown in Figure 3.5a. As a

A constructive approach 41

consequence, the optimal schedule shown in Figure 3.5b can not be induced
by the LS mechanism. This problem is overcome by TPS. It is proven in [28]
that the optimal schedule is always among those created by the TPS
mechanism. This is the main advantage of TPS when compared with LS. The
proof, however, is restricted to DFGs with a single BB. For the example in
Figure 3.5, TPS can generate both schedules, depending on the relative order
between v, and v in the permutation. Note, however, that the optimum is
missed by LS only when multicycle operations occur. When d(v;) = 1, for
every available operation v;, the problem disappears and both TPS and LS
lead to the same schedule.

(a) (b)

FIGURE 3.5. A list schedule and an optimal schedule of a same DFG

A disadvantage of TPS is that many distinct permutations lead to a same
schedule. Consider two operations in A, say v; and Vi, such that t(v,) = ‘E(Vj).
Assume that they have the highest priorities among the operations in set A,.
Since v; and v, will both be scheduled in s, their relative order in II is
irrelevant. As a consequence of irrelevant ordering, several permutations
may induce a same schedule. In other words, the priority encoding IT is
redundant with respect to operations that map to different resource types.

A way of alleviating such redundancy is obtained by restricting the
permutation to each module type separately. As the scheduler does not have
to arbitrate the occupation of a given resource by operations mapping to

42 Exploiting instruction—level parallelism: a constructive approach

different module types, we can induce a schedule by using a set containing one
permutation per module type. This notion is formalized below, where IT;
denotes a permutation consisting of all operations mapping to module type
ts € Tsand K = |T|:

DEFINITION 3.1
A condensation of a priority encoding I1, written € = {Htl’ th, NS § P HtK},
is a set of permutations II; such that:

e Vv, €EIl: (wlv) =t = v, € I,

o Vv, v, € IT: (v = ’v(vj) =tg) A (v; <q vj)) =V <, Yy

Therefore, only the priority among operations of a same module type is taken
into account. If the scheduler relies on the condensation ¢, instead of on the
priority encoding II, the size of the search space is reduced substantially.
Reconsider, for instance, the DFG in Figure 3.3a. For this example, a possible
permutation is IT = (k,1,t;,n,m,p,q), whose condensation & consists of
Hadder = (k’ 1’ n)’ r[subt;rac’cer = (m’ Db, q) and 1-Icomparator = (tl)' Note that’ for
this example, the search spaces induced by II and &€ would be 7! = 840 and
3! 3! 1! = 36, respectively.

After using the TPS in early implementations of our approach, we have
observed that too many identical schedules are generated and, as a
consequence, that much time is spent on exploring identical solutions. For
this reason, despite the theoretical advantage of TPS, our practical
experience has guided us towards the use of a mechanism similar to LS for
selecting operations to be scheduled in a given state. This mechanism is used
for the experiments reported in this thesis. An efficient way of overcoming the
generation of redundant schedules during the exploration of alternative
solutions is presented in Section 3.9 and it is based on the condensation ¢ of
the priority encoding II.

Although other scheduler classes can be supported in our constructor, the
study of different scheduler classes does not fall within the scope of this
thesis, where the main focus is on the parallelizer and not on the scheduler.
A comprehensive overview of scheduler classes can be found in [28].

3.8 The Boolean oracle

In order to provide extra support for availability analysis and bookkeeping,
we propose a Boolean encoding for control path information. Classical notions
like reachability, domination, postdomination and control equivalence are
cast into Boolean form. As a result of this encoding, it is unnecessary to

A constructive approach 43

frequently traverse the BBCG in order to check control path information.
Traversals are replaced by Boolean queries, which are submitted to the
Boolean oracle. The purpose of our Boolean encoding is thus twofold. On the
one hand, it supports major notions borrowed from the compiler—technology
domain. On the other hand, it can rely on efficient Boolean representation
techniques developed as part of the design automation technology.

The key to encoding path information in Boolean form is to associate a
Boolean variable with each conditional and to define expressions on this set
of variables. As the number of control paths may grow exponentially with the
number of conditionals, paths are not represented explicitly. Instead, the
execution condition of the operations associated with a BB is encoded. We
formalize below the notions required for such an encoding.

The output of a conditional is associated with a Boolean variable, whose value
is determined by the outcome of the respective test. For simplicity of notation,
let us give this Boolean variable the same name as its respective conditional.
Therefore, given a conditional c,, its output value is denoted either as ¢, or
as T, depending on whether the outcome of the conditional is true or false,
respectively. In the literature, this Boolean variable is sometimes called a
guard [52], a term that we adopt throughout this thesis.

Consider a BBCG generated for a behavioral description containing N tests.
Let By and M, be, respectively, the branch and merge nodes associated with
conditional c; . Recall that succ(B,, true)is the successor of B, thatisreached
when the outcome of ¢, is true. The predicate representing the execution
condition of the operations enclosed by basic block BB; is defined as follows.

DEFINITION 3.2

The predicate of a basic block BB,, written G(BB,), is a Boolean function
defined on the set of guards {c,, ¢y, ..., ¢y} according to Algorithm 3.1.

ALGORITHM 3.1. Algorithm for obtaining the predicate of a basic block

G(BB) := 1,
for (k:= 1to N)
if (B, dom BB; A M, pdom BB;)
if (succ(B,, true) il BB))
G(BB,)) := G(BB)) - ¢;;
else
G(BB;) := G(BB)) - ¢;

Algorithm 3.1 can be interpreted as follows. In a topological traversal of the
BBCQG, if the branch junction B, is reached prior to BB, and the latter before

44 Exploiting instruction—level parallelism: a constructive approach

the junction M, the guard c, contributes to the Boolean product. The polarity
is determined by which of the successors of B, reaches BB;. Informally, we can
say that a guard c, contributes to the predicate if BB;is “enclosed” in between
a pair of junctions By and M, in the BBCG. Predicates can be efficiently
evaluated during a topological traversal of the BBCG from source to sink.

An example is shown in Figure 3.6. A sketch of a behavioral description is
given in Figure 3.6a for the BBCG in Figure 3.6b, where the arrows indicate
links from conditionals in the DFG. The predicates associated with BBs are
given in Figure 3.6¢.

{.} Co
if tq
{...}
else
ifﬁ G(BB,) = G(BB,) = G(BB,,) = 1
) G(BB,) = G(BBy) = ¢,
else G(BBg) = c;
{...} G(BBjy) = ¢ - ¢
) GBB) = ¢ - ¢,
gfg G(BBs) = 63
I t3 _
{.. } C3 e 0 G(BBQ> Ca
else
{..}
{...}
(a) (c)

FIGURE 3.6. An example of Boolean encoding in terms of predicates

Having defined the encoding, we are able to reason about paths in Boolean
form. Let BB, and BBJ- denote arbitrary basic blocks and assume that BB, is

A constructive approach 45

the current BB being visited. Let BB; < BBJ. denote that BB, precedes BB;
in some topological ordering <. of the nodes of the BBCG. Table 3.1
summarizes the most frequently queries submitted to the Boolean oracle.

Note that the first three queries require BB, < BBj as a pre—condition. This
pre—condition is automatically satisfied by the traversal of the BBCG adopted
in the parallelizer. Consequently, only the Boolean queries within the shaded
area are actually handled by the Boolean oracle. Therefore, a path query is
split into two parts: one tackled in Boolean form by the Boolean oracle and
another performed as graph manipulation by the parallelizer.

TABLE 3.1 Most frequently used queries

NOTION PATH QUERY BOOLEAN QUERY
REACHABILITY BB, % BB; [BB; <1 BB; G

DOMINATION BB; dom BB; |BB; <1 BB; A

POSTDOMINATION | BB; pdom BB; |BB; < BB, A

CONTROL EQUIVALENCE | BB, equiv BBj

Let us apply some queries to the example in Figure 3.6, where BBs are
numbered in a topological order for convenience. For instance, proposition
BB, % BB, is false, since the predicate Cy * T; * Coisnotsatisfiable. Note that
proposition BB, dom BBj is true, since BB, < BBg and ¢, - ¢, =7¢; is a
tautology, which agrees with the fact that all paths from the source to BB,
include BB,

Note that the encoding leads to predicates which are always Boolean products
of guards. Since the Boolean queries shaded in Table 3.1 involve two
predicates and assuming that m and n are their respective number of guards,
the worst—case complexity of such queries is O(m.n). Moreover, the number
of guards in a predicate is bounded by the maximal depth of conditional
nesting, which in practice tends to be a fraction of the total number of
conditionals. As a consequence, the path queries can be efficiently handled by
a Boolean oracle.

For the experiments presented in this thesis, we use a Boolean oracle based
on binary decision diagrams (BDDs) [16]. Although other Boolean represen-
tations could be utilized, as suggested in [10], we have used a BDD package
for convenience, but without loss of generality.

The utilization of a Boolean encoding has been proposed before in HLS, but
for different uses and purposes. In [52], the whole scheduling problem is
represented in Boolean form. In other words, data and control dependences,

46 Exploiting instruction—level parallelism: a constructive approach

resource constraints and timing are all cast into Boolean expressions. The
downside of such a monolithic approach is that it leads to a huge number of
Boolean variables, making memory size a critical issue when handling large
behavioral descriptions.

Our approach differs from [52] in three main aspects. First, only conditional
execution is represented in Boolean form. As a result, the guards are the only
Boolean variables, whose total number is bounded by the number of
conditionals. Second, we utilize the Boolean encoding to reason about paths.
Unlike the work in [52], we cast into Boolean form important notions from the
compiler-technology domain, such as domination, postdomination and
control equivalence. These notions are useful, for instance, in bookkeeping
code motions (Section 4.4). Third, we do not encode solutions in Boolean form.
Instead, solutions are represented in the form of graphs and predicates assist
on the construction of solutions, for instance during availability analysis
(Section 4.3) and state equivalence checking (Section 4.5).

3.9 The explorer

A detailed discussion of the explorer is beyond the scope of this thesis. The
way in which priority encodings are generated according to the criteria of a
given local search algorithm has already been object of previous research
[28].

For the experiments in this thesis, we want to evaluate the techniques used
in the constructor by obtaining statistics about their impact on the search
space. In order to keep the figures largely independent of the choice of a
particular search method, random search will be used in our experiments.
Experimental results showing the impact of a genetic algorithm in
combination with scheduling methods can be found in [28].

The generation of identical solutions during the exploration of alternative
SMGs can be largely avoided by using the condensation & of the priority
encoding II, as suggested by the following idea: since a list-scheduling
selection mechanism is used in the constructor, if two priority encodings have
the same condensation, then the solutions induced by these encodings are
identical.

Assume that a so—called condensation table is provided to the explorer
engine. Each row of this table contains the condensation . of some priority
encoding II;. The table contains exactly one condensation for every priority
encoding sent to the constructor hitherto. Assume that the explorer generates
a priority encoding Hj. Before sending Hj to the constructor, the explorer

A constructive approach 47

checks if there is some & in the table such that g; = ;. In this case, we say
that a hit occurs in the condensatlon table.

A hit in the condensation table means that a solution f; has already been
explored and that it is not worth applying H to the constructor because it
would induce a solution f; identical to f,. Instead HJ is discarded, a new
priority encoding II. i1 is generated and the process is repeated. However, if
no hit occurs, this means that no solution with condensation ¢. is explored so
far. Therefore the priority encoding HJ is applied to the constructor and the
generated solution fJ is explored. The checking on hit can be efficiently
implemented by means of a hash table.

In summary, methods to implement the explorer and the Boolean oracle are
borrowed from other research areas. Since neither the explorer nor the
Boolean oracle handle exploitation of parallelism, from now on, this thesis
will focus on the solution constructor, the engine which actually deals with
ILP techniques.

Chapter

4 Code motion

This chapter describes the support for code motion and speculation in the
frame of the constructive approach presented in the previous chapter. It
addresses the following issues:

How to model code motion:

It is shown that the effect of moving operations can be captured by
reorganizing their respective links to BBs, instead of actually moving the
operations in the DFG. A mechanism is proposed for maintaining
information on conditional execution by updating predicates dynamically.

How to induce code motion:

The notion of available operation is the key concept for inducing code
motion. Basically, an operation is available at a given BB if its scheduling
in that BB satisfies data dependences and preserves the semantics of
conditional execution, although the operation may initially be linked to
some other BB. A global availability analysis technique is presented for
finding out operations whose scheduling induces legal code motions.

How to compensate for side effects of code motion:

Some code motions require the insertion of copies of operations in order to
preserve the semantics of conditional execution. A technique based on
Boolean queries is proposed to tackle this issue, thereby broadening the
range of legal code motions.

How to control the growth of the number of states:

As a result of the insertion of copies, code motion may lead to a growth of
the number of states. On the one hand, such a growth may represent the
price to pay for a shorter schedule, but on the other hand, it may be caused
by the introduction of redundant states. A technique exploiting the notion
of state equivalence is presented to eliminate redundant states in the
course of the scheduling process.

4.1 Fundamental notibns

In our approach, the parallelizer employs code motion in the context of global
scheduling. Recall that the parallelizer visits BBs during a top—down
traversal of the BBCG. Given the currently visited basic block, say BB,,

49

50 Exploiting instruction—level parallelism: a constructive approach

operations are selected for scheduling in the current state appointed within
BB;, say S; k- Not all operations to be scheduled in s; are necessarily linked
to BB,. Some operation o, may be linked to a basic block BB, reachable from
BB;. When operation o, is scheduled in state S; o it is as ifJ on were moved
from BB; to BB;. We assume that each time an operation oy, is scheduled in
some state within BB,, the link A such that o, & BB, is marked as scheduled.
Such a link is said to be a scheduled link, written scheduled(}). As a
consequence, during the construction of a solution, some links are scheduled
and others, unscheduled. When the construction of a solution is completed,
the links from operations to BBs are all scheduled.

In order to determine if a code motion is legal, we rely on the notion of
scheduled links, along with the notion of data dependence, which was
introduced in Chapter 2 and is formalized in the following. The formulation
assumes a DFG=(V, E) and operations oy, 0n,, v; € V.

Data dependence

Since our parallelizer performs resource—constrained scheduling, not all
nodes in the DFG are actually relevant, since some of them do not imply
occupation of resources. For instance, branch and merge nodes are not
mapped to any module of the network graph (NWG). To simplify further
formulations, we introduce a function 6 : V — B, defined as follows:
0w = {true, if (w(v;) = branch) A ((v,) # merge) @D

1 false, if (w(v;) = branch) v (w(v;) = merge) ')

After an operation op is scheduled, some operations which are data
dependent on o, may become available for scheduling. In order to identify
these operations, we first find the data—dependent operations immediately
reachable from op. During this procedure, we discard the nodes of the DFG
which are irrelevant from the point of view of resource occupation. A node v,
such that 0(v,) = false can thus be overlooked. Control dependences are
disregarded by discarding all operations reachable through control edges.
Theses notions are formalized below. Let N(p) be the set of nodes included in
some path p and E(p) denote the set of edges contained in path p.

DEFINITION 4.1

A path p with o B o, and op, 0 € V is a cleared path iff it satisfies the
following conditions:

o B(op) = B(oy) = true,
e Vv, € N(p)\{om, 0n} : 6(v,) = false,
o Ve € E(p): e is a data edge.

Code motion 51

DEFINITION 4.2

The set of data consumers immediately reachable from op,, written CONS(op),
is the set of all operations o, € Vwith om B, o, such that p is a cleared path.

Conversely, due to the need to check if all data values consumed by a given
operation are actually produced, we define the concept of data producers.

DEFINITION 4.3

The set of data producers immediately reaching oy, written PROD(0p), is the
set of all operations oy, € V with o 2 o, such that p is a cleared path.

Notice that CONS(on) represents the set of operations which are data
dependent on oy, whereas PROD(oy,) represents the set of operations on which
0q, is data dependent.

Having introduced these essential notions, we show how code motion is
supported in our parallelizer.

4.2 Modeling code motion

Given a DFG=(V, E) and a BBCG=(U, F), we assume that every node v € V
is initially linked to exactly one node u € U. Each of such links is called an
initial link. An initial link points to the initial position of an operation in the
control flow prior to any code motion. In the next chapter, a more elaborate
initialization scheme is proposed in which the links are established
differently. For a given initialization, the effect of code motion is modeled as
follows. Assume that an operation oy is linked to some basic block BBj by
means of link A, . The motion of operation o, from BB to some basicblock BB,
is modeled by creating a new link A, to BB, and by deleting the old link A,.
Code motions through not more than one pair of branch or merge nodes are
illustrated in the BBCGs of Figure 4.1. These are referred as local code
motions. They are similar to some of the primitive code motions defined in
Percolation Scheduling [48]. In the figure, a black circle denotes the BB
currently visited by the parallelizer. Arrows represent links emanating from
operation on. Each link denotes the position of o, in the control flow. Links
A, and X', point to locations of operation oy before code motion. Conversely,
links A, and A', point to positions after code motion.

Figure 4.1a depicts the so—called useful code motion [62], which occurs when
an operation moves between control-equivalent BBs. A code motion to a basic
block BB, that does not dominate the original basic block BB; is illustrated
in Figure 4.1b. To preserve the semantics of conditional execution (as will be
discussed in Section 4.4), this motion requires the insertion of a “copy” of op,

52 Exploiting instruction—level parallelism: a constructive approach

which is modeled by the link A’,. For this reason, such code motion is
sometimes called duplication-up [54]. Figure 4.1c illustrates a code motion
from a basic block BBJ- that does not postdominate the new basic block BB..
Since it represents the motion of a conditionally executed operation ahead of
the branch junction, it is known as pre-execution. Finally, Figure 4.1d
illustrates the unification [48] of two “copies” of oy, into a single link.

useful duplication—up pre—execution unification

(a) (b) (c) (d)

FIGURE 4.1. Examples of local code motions

The scope of code motion can be broadened to comprise several BBs, leading
to the so—called global code motions. The idea of global code motion is
illustrated in the BBCGs of Figure 4.2. Dashed arrows indicate possible
upward code motions. Motions between gray circles are local, whereas
motions between black circles are global. Note that these global code motions
could be obtained by the successive application of local code motions, like in
Percolation Scheduling [19][27] and similar methods [54]. As opposed to
Percolation Scheduling, our approach performs global code motion between
two basicblocks in one step, without having to rely on the iterative application
of local code motions between intermediate BBs. In other words, we do
support local code motions, but we do not use them as primitive transforma-
tions to induce global code motions, as will be shown in Section 4.3.

Although the modeling in this chapter assumes upward code motions, our
method supports downward code motion by means of an initialization
procedure, as will be explained in Chapter 5.

Code motion 53

FIGURE 4.2. Local code motion versus global code motion

Let us introduce some extended path queries, derived from the basic path
queries in Table 3.1, which allows us to distinguish between different kinds
of code motion. The purpose of introducing such extended queries is twofold.
On the one hand, they are helpful in describing and explaining several issues
addressed in this chapter. On the other hand, one of them is used to handle
code compensation (see Section 4.4.3) and others can be used to include new
features in the constructor (see Section 4.6).

Code motions can be distinguished by using the path queries introduced in
Table 3.1. Let BB, designate the BB currently visited by the parallelizer.
Suppose that oy is linked to some BBj such that BB, A BBj. Assume that oy
is about to move to BB;. Table 4.1 expresses the code motions in terms of path
queries. Unification is omitted in the table, since it can be identified by testing
if more than one link is pre—executed.

TABLE 4.1 Extended path queries for distinguishing code motions

CASE CODE MOTION PATH QUERY

(a) useful BB, equiv BB;

(b) duplication—up —(BB; dom BBJ-) A (BBJ- pdom BB))
(c) pre—execution (BB, dom BBJ.) A —'(BBj pdom BB;)
(d) |duplication + pre—execution |~ (BB, dom BBJ-) A —'(BBj pdom BB;))

Examples of code motions corresponding to the cases distinguished in Table
4.1 are given in Figure 4.3. In each case, BB, is denoted by a black circle,
whereas BBJ- is denoted by a gray circle.

54 Exploiting instruction—level parallelism: a constructive approach

FIGURE 4.3. Examples of code motions for the cases in Table 4.1

Speculative execution

The examples in Figure 4.4 illustrate code motions leading to different forms
of speculation. In Figure 4.4a, after operation d is moved from BB J to BB I,
this operation is executed unconditionally, although d should be executed
only if the outcome of conditional c; turns out to be true. Consequently, the
result of operation d has to be discarded on path (I, B,,K,M,,L), whereas it
is committed on path (I,B;,J,M;,L). Another situation is illustrated in
Figure 4.4b. Assume that operation a is scheduled in BB I and operation d
isunscheduled. Note that operation g can be moved from BB Lto BB Ion path
(I, B4, K,M;, L), since the data dependence between operations a and g is
satisfied. However, the data dependence between operations d and g
obstructs the motion on path (I, B;,J,M,,L). To make the motion legal, a
replica of g is inserted in BB J. This means that, after code motion, the
execution of operation g is speculative regarding the path (I, B, J,M,,L). If
this path is taken during execution, the operation is executed twice. The
result of the first execution is discarded, whereas the second is committed.
Essentially, speculation arises from code motion under two circumstances:

e When, after code motion, the operation executes on control paths on which
it does not execute before code motion (Figure 4.4a).
e When the operation executes on exactly the same control paths before and

after code motion, but the motion is blocked on some path due to a data
dependence on an unscheduled operation (Figure 4.4b).

Code motion 55

[al]
[b]
[cq]
[dl
[el

[f]
[g] |

[a]
[b]
[eq]
[d]

[e]
[f]
[g] |
[h] |

else

FIGURE 4.4. Examples of speculation under different circumstances

Let us now analyze the types of code motion in Table 4.1 with respect to the
first form of speculation. Cases (¢) and (d) lead to pre-execution, that is to say,
the moved operation o, executes ahead of at least one branch junction B
such that the operation is control dependent on conditional c¢,. Therefore,
these two types of code motion always lead to speculation. However, the first
form of speculation does not occur for cases (a) and (b). On the other hand,
each of the cases of code motion in Table 4.1 may give rise to the second form
of speculation, since the moved operation might depend on an unscheduled
operatlon linked to some basic block BB, such that BB; P1 Z1BB, and
BBk BB , where p; and p, are subpaths of some path p. Clearly, th1s kmd
of speculatlon can be excluded beforehand if BB, and BB are “adjacent”, i

if there is no BB, in between BB; and BB on path p-

It is important to notice that, as a result of the possible insertion of copies,
there may be more than one link emanating from a given operation. From now
on, let A(o,) denote the set of all links emanating from operation oy.

Recall that, given a BB;, the predicate G(BB,) represents the execution
condition of the group of operations condensed into BB;. Assume that an
operation o, is moved from BBJ. to BB,. To model speculation properly, a

56 Exploiting instruction—level parallelism: a constructive approach

distinction should be made between the condition under which oy, is executed
and the condition under which the result is actually committed. The first
condition is represented by G(BB,) and the second by G(BBJ-). Since the
information regarding the second predicate would be lost after code motion
(because the old link }, and possible copies A', are deleted), it is captured in
the new link A, by associating a predicate with the link itself, as explained
in the following.

It is assumed that, before the construction of a solution starts, the predicate
of every initial link A, written G(}), is initialized with the predicate of the BB
to which it points, as shown in Algorithm 4.1. The predicate G(A) can be
interpreted as the execution condition of operation o, when no code motions
at all are performed.

ALGORITHM 4.1. Algorithm for initializing the predicates of all links

foreach BBj ecU
foreach A such that o, S BBJ-, on €V,
G\ := G(BBJ-);

Assume that we want to model the motion of operation o, to basic block BB;.
Anewlink A, is created and its predicate G(A,)is obtained from the predicates
of the old links. In determining this predicate, the following two properties
of conditional execution are observed:

e The values required for executing an operation o, may be computed by
data producers executing on distinct control paths.

o The value computed by some operation o, may have no consumer on some
control path.

The procedure to determine the predicate G(),) is performed in two phases.
In the first phase, we determine the predicate under which data values are
produced for an operation oy executing in basic block BB,, written
Gplon, BB)). To illustrate this notion, we reconsider the example in Figure
4.4b. Assume that operation ais already scheduled in BB Iand that operation
d is unscheduled. Assume that operation gis about to move from BB L to BB
I. Note that PrROD(g) = {a,d}. Since d is unscheduled, the motion of operation
g is blocked by the data dependence on operation d, which is linked to BB J.
As a consequence, the required data value is not yet produced under predicate
G(J) = c;. As a consequence, the data value is only produced under predicate
Gplg, D) =¢;.

Algorithm 4.2 shows how the predicate Gp(o,, BB,) is determined. The
underlying idea is that a data value is not produced under some predicate

Code motion 57

G(M) if A is unscheduled. The nested loops check all the links emanating from
every data producer oy, that are pointing to some BB reachable from BB,. The
Boolean product of the complements of the predicates of unscheduled links
gives the condition under which data values are produced.

ALGORITHM 4.2. Algorithm for determining the predicate Gp(on, BB,)
Gp := G(BB));
foreach o,, € PROD(0y,)
foreach A € A(op) with o,n»&»BBk A BB; 5 BB,
if (—scheduled(}))
Gp:=Gp- GO);

In the second phase, we determine the predicate under which the data value
computed by an operation oy executing in basic block BB, is actually
consumed, written G(oy, BB,). This condition is captured by a predicate that
takes into account the fact that operation o, may not be executed on all paths
starting from BB, Algorithm 4.3 shows how to obtain the predicate
G(on, BB,), where the loop performs the Boolean sum of all predicates of the
old links A, to be replaced by the new link A, after the motion, that is to say,
the links emanating from o, pointing to some basic block reachable from BB;.

ALGORITHM 4.3. Algorithm for determining the predicate G(on, BB;)
Go:=0;
foreach), € A(on) with on 23 BB; A BB; % BB,

Finally, the predicate of a new link A, modeling the code motion of an
operation op to basic block BB, is given by the following equation:

G(Aa) = Gplon, BB)) - G(on, BB)). (4.2)

The concept of predicate of a link represents the condition under which the
result of operation oy is committed in BBs reachable from BB,. Therefore, an
operation oy is speculatively executed when its committing condition differs
from its actual execution condition within BB, as formalized below:

DEFINITION 4.4
An operation oy, is speculatively executed within some basic block BB, iff:

3h € Alon) : 0n 2 BB; A (GOV # G(BB,)).

58 Exploiting instruction—level parallelism: a constructive approach

An implicit assumption throughout this thesis is that there exists a sufficient
number of registers for storing the results of speculatively executed
operations. This is a particular aspect of the more general assumption that
register allocation occurs after scheduling. In Chapter 7, an extension is
suggested for taking into account the effect of a fixed number of registers.
However, we do not assume special hardware support for committing
speculative results in execution time [62]. Essentially, this mechanism
consists in keeping speculative results in a dedicated buffer until the outcome
of the required tests is known. Then, those results are committed by allowing
them to update the register file. On the one hand, such hardware support is
unnecessary in our approach, since semantics is preserved via bookkeeping
and code compensation. On the other hand, as pointed out in [30], the
advantages of such hardware—based speculation relies on its combination
with dynamic scheduling and dynamic branch prediction. Although efficient
when aiming at average execution time, these techniques can not improve
worst—case execution and, consequently, are not suitable under time—
constraints.

Another aspect of hardware support concerns the handling of exceptions. It
seems reasonable to expect that operations prone to raise exceptions should
not occur very often in the tasks of a digital system that are subject to
time—constraints. Therefore, we assume for simplicity that when an
operation (if any) might raise an exception, its speculative execution is
inhibited. However, this assumption can be relaxed with special hardware
support, as suggested in [62] for instance. A comprehensive overview of
hardware support for speculation can be found in [30]. In particular, the use
of hardware support for speculation in HLS is addressed, for instance, in [32].

4.3 Availability analysis

In DFGs containing no conditionals, availability analysis is very simple.
Essentially, an operation is available if it is not yet scheduled and all its
predecessors are scheduled. However, availability analysis for DFGs contain-
ing conditionals is a more elaborate task, since it has to take into account
conditional execution.

Each time a BB is visited, say BB,, the set A, of available operations at BB;
is evaluated according to the dependences in the DFG and subject to the
delays of the modules in the NWG. In this section, we show how to evaluate
which operations are elements of the set A,

Since our goal is to induce global code motions, we search for available
operations beyond the current BB. As a consequence, the set A; may contain

Code motion 59

operations which are linked to different BBs reachable from BB;. In
determining .4;, only data dependences are considered. Control dependences
are disregarded, since they would unnecessarily restrict code motion
beforehand. The fact that we are not enforcing control dependences does not
mean that we are ignoring the effects of conditionals. It should be noted that,
despite the possible violation of control dependences, semantics is preserved
via code compensation (see Section 4.4).

The remaining of this section is organized as follows. We first formalize the
notion of available operation and then we show how to determine the initial
set of available operations. Afterwards, it is shown how available operations
can be incrementally computed after some operation is scheduled in the
current state and how to evaluate the available operations at the next states.
The section concludes with comments on how to take account of multicycling
effects.

As opposed to the simpler analysis for DFGs free of conditionals, the
availability analysis for more general graphs relies on the following notions:

e An operation o, may be available on a given control path but unavailable
on another when o, is conditionally executed.

e An operation o, may be available on a given control path, but unavailable
on another when oy, is blocked by a data dependence on some operation
which is conditionally executed.

Availability of an operation

An operation oy is considered available at a basic block BB; if it executes on
some path from BB; to the sink and if o, can be legally moved to BB;. This
happens when there is some link from operation o, to a basic block BB,
reachable from BB, and there exits at least one path from the source to BB,
on which the input data values of o, are already produced. This notion is
formalized below:

DEFINITION 4.5
An operation oy is available at BB,, written available(o,, BB,), iff:

on$» BB; A BB; % BB; A Gplon, BB)) is satisfiable.

Initial and incremental availability

The inputs of the DFG are the primary data producers. Let the set of inputs
of the DFG be INP(V) = {v; € V]|w(v,) = input }. Recall that the parallelizer
performs a top—down traversal of BBs. Let BB, be the first BB visited during
the traversal of the BBCG. The set of operations initially available, written

60 Exploiting instruction—-level parallelism: a constructive approach

A, is obtained by finding all the operations o, that are consumers of input
values and by selecting those whose producers on, are all inputs of the DFG,
as follows:

Ag={on € |J CcONS(v,)|Vom € PROD(O) : 0y € INP(V) }. (4.3)
v;Emp(V)

Let us now consider how to update some generic availability set, say Aj, after
some operation om is scheduled within basic block BB,. First, the already
scheduled operation op, is excluded from the set A.. Then, the operations
which become available due to the scheduling of oy, are added to A, if they
satisfy the criterion formulated in Definition 4.5. These operations are a
subset of CONS(op,), because the scheduling of oy, is a necessary condition for
the scheduling of its consumers. This procedure is summarized in Algorithm
44,

ALGORITHM 4.4. Incremental availability analysis algorithm
A; = A Mok
foreach o0, € CONS(oy)
if (available(on, BB,))

Availability at the next state

Assume that BB, is the currently visited BB. After the current state, say S
is scheduled, one or more next states are appointed by the parallelizer. Recall
that, if no conditional is scheduled in s. i 1o @ next state is appointed within the
same basic block BB;. However, if at 1east one conditional is scheduled in s. o
next states are appomted in other BBs, since the conditional causes a branch
in the control flow.

When the next state falls within BB, all operations available on exit from S; k
are available on entry to Sik+1 However when the next states fall within
other BBs, say BB. and BBy, an operation available on exit to s. ik is not
necessarily available on entry to both Si 0 and S, Since the operatlon might
be conditionally executed. Thus, the set of operatlons available on entry to one
of the next states is a subset of the operations available on exit from the
current state. This notion is formalized in the following.

Given two states s, ik and 850 which fall within basic blocks BB, and BB
respectively, with s; 0 € SUCC(S ;1) and BB _>BB the set of avazlabl]e
operations at BB is obtamed as follows

Aj = {on € A;|31 € Alon) : 00y BB, A BB, 5 BB,). (4.4)

Code motion 61

Modeling the effect of multicycling

Although several operations may be available for scheduling at a given BB,
they may not be available at the same state. To illustrate the effect of
multicycling on the availability set, consider the DFG sketched in Figure
4.5a. The DFG has a single BB for simplicity. Assume that one adder and one
multiplier represent the resource constraints and that an addition takes one
clock cycle, whereas a multiplication takes two cycles. In Figures 4.5b to 4.5g,
the evolution of scheduling is shown, state after state. Notice that the current
state is indicated in gray. Observe that operations a and d are available at
state s,. Since t©(a) = ©(d), they are both scheduled in state s, as shown in
Figure 4.5c. Note that the scheduling of operation a makes b available,
whereas the scheduling of d makes operation e available. However, b and e
are not available at the same state. Since a multiplication takes two cycles,
the value computed by d can be consumed only at state s, or later.
Consequently, operation e is available at state s,, whereas operation b is
available at state s.

d (b) (©)
b
€ Spl & d Sp a d
syl |d sq |[d
sole|b solelb
¢ 83 b sg b

(a) (e) ®

FIGURE 4.5. The effect of multicycle operations on availability

In summary, given a basic block BB, the operations in .4; may be available
at distinct states, as a consequence of possibly different delays of their
immediate data producers. For this reason, given the current state Sik within
BB,, the set A, is split into a collection of availability sets A1 k4 associated
W1th states s; | ,. However, there is no need for maintaining availability sets
Alk + for more than D successive states starting from s; ik where D denote
the ceiling of the maximal operation delay. Every set Al k + x 18 obtained from
the set A; by selecting the operations whose data producers have been
scheduled long enough before the state Sik+x is reached. A function denoted

62 Exploiting instruction—level parallelism: a constructive approach

as max_displacement(oy, s;), which is described in Appendix B, performs
the selection as follows:

A = { oy € A;|max_displacement(op, S;) = X} (4.5)

i,k+x
For the example in Figure 4.5, the status of the availability sets at every state
is given in Table 4.2. Since the maximal delay is 2, the set A is formed by two
subsets A and A, _ ; (the first index is dropped for simplicity). Note that, on
entry to state s;, the availability set is formed by subsets A; = {b} and
A, = {e}, meaning that only bis available at s,, since the predecessor of e is
amulticycle operation. Observe that, since b can not be scheduled in state s,
due to resource constraints, it remains available on entry to state s,.

If multicycle operations do not occur, there is no distinction between A, and
Ai,k' This is, by the way, the form adopted by most methods developed in the
compiler domain. These methods do not provide support for the effects of
multicycle operations at the level of availability analysis. Instead, they treat
amulticycle operation, say v;, as a chain of [d(vi)-[one—cycle operations, like
in [3] for instance. However, artificial constraints have to be added to avoid
the illegal preemptive scheduling of operations in the chain.

TABLE 4.2 Availability sets for the example in Figure 4.5

CASE CURRENT A Ay A,
STATE

(b) S0 {a,d} |Ag={a,dl |A; =0
() s1 {b,e} [A; = {b} A, = {e}
(d) 82 be} |Ay ={be} |A;=0
(e) s3 {c} Az = Ay ={d
® S4 {c} Ay = {c} A; =0
(g S5 0 Ay = Ay, =0

4.4 Code compensation

To support unrestricted code motion, it is not enough to provide mechanisms
for inducing it. Code motions may have side effects which must be
compensated with extra code. However, the greedy insertion of compensation
code may prevent satisfaction of time—constraints. In this section, we address
code compensation mechanisms oriented towards the synthesis of time—
constrained systems. After introducing the notion of compensation code and
briefly reviewing related work, we show how the Boolean queries defined in

Code motion 63

the previous chapter can be used to replace the frequent depth—first search
traversals used in classical handling of code motion, which are the main
source of bookkeeping overhead. Then we show a code compensation
technique that does not increase schedule lengths during global scheduling,
given an arbitrary priority encoding, a desirable feature for handling tight
time—constraints.

FIGURE 4.6. Examples in which code compensation is obligatory

To introduce the notion of code compensation, the examples in Figure 4.6 are
used. Assume that an adder and a subtracter are available and that the
comparison incurs no delay (its outcome is a flag set by the subtracter). A
situation where compensation code is needed is shown in Figure 4.6a.
Suppose that BB K is currently visited and that operation b is already
scheduled. Consequently, operation his available at the first state within BB
K, thereby inducing the code motion of operation h from BB L to BB K, which
saves a cycle. Since h has to be executed on both paths, a copy of h must be
inserted in BB J. Another situation is shown in Figure 4.4b, repeated in
Figure 4.6b for convenience, where speculation occurs when g moves from BB
Lto BB I. Note that g can move up on path (I, B;, K, M;, L) only. However, the
operation is blocked on path (I, B,,J, M, L) due to the data dependence on d.
For correctness, a replica of g must be inserted in BB J to compensate for the

64 Exploiting instruction—level parallelism: a constructive approach

effect of the motion when the outcome of c; is true. These examples are
deliberately chosen such that the depicted code motion is vital for decreasing
the schedule length of the longest control path.

It may be important to note that not all code motions lead to speculation, that
non-speculative code motions may also require compensation code (e.g.
Figure 4.6a) and that not all speculative code motions need compensation
code (e.g. Figure 4.4a).For each code motion, a bookkeeping procedure checks
where compensation code is needed (if any) and inserts the necessary copies.
In the next subsection, different bookkeeping methods are analyzed.

4.4.1 Related work

Several techniques for inserting compensation code are reported in the
literature. They vary depending on how ILP is exploited. For instance, in
Trace Scheduling (TS) [22] code compensation is performed after the main
trace is completely scheduled. Copies of operations are inserted off-trace
during a bookkeeping phase. However, the code compensation mechanism
may insert redundant copies. Despite some improvements [26][62], the
main—trace—first approach limits the control over off-trace penalties.

Percolation Scheduling (PS) [48] performs code compensation locally, within
the scope of a primitive code motion. For this reason, it is difficult to control
the global impact of compensation code on schedule lengths.

Global Selective Scheduling (GSS) [46] is an approach more conscious of
penalties imposed by compensation code. After each code motion,
bookkeeping is performed by a depth—first traversal of the so—called control
flow graph from the operation’s new position to the original location.
Compensation code is inserted before merge junctions during the traversal.

As we aim at time—constrained applications, we must have control over the
impact of code motion on all paths. For this reason, our constructive approach
exploits global code motion. However, global code motion leads to a more
complex compensation mechanism than the local code motions in PS, because
operations move over a longer distance in one step, possibly crossing several
merge junctions and perhaps being blocked by data dependences in some
paths (recall Figure 4.6). As opposed to GSS, our bookkeeping does not rely
on one depth—first traversal per code motion. Instead, our idea is to encode
the mechanism in Boolean form [58]. This allows us to replace the traversal
by a few efficient queries (recall Tables 3.1 and 4.1).

4.4.2 Bookkeeping code motions

In this section, we show how the queries in Table 3.1 are used to identify when
and where code compensation has to be inserted. We address the code motion

Code motion 65

of an operation o, € V, or of a conditional ¢, and we assume that either o,
or ¢, is moved from BBj to BB, such that BB, 2 BBj. Code compensation is
necessary under two circumstances:

e When the motion of the operation is such that there is some path from the
source to BBJ. not including BB, (recall Figure 4.6a). This leads to the
insertion of compensation code into some BB unreachable from BB;, but
reaching BBJ.. This is called duplication and we say that copies are inserted.

o When the motion succeeds on one path but is blocked on some other path
due to a data dependence (recall Figure 4.6b). This leads to the insertion
of compensation code into some BB reachable from BB,. This scheme is
called replication and we say that replicas are inserted. (Note that this is
the necessary support for the second form of speculation in Section 4.2)

In the following, we explain how to perform bookkeeping under these
circumstances, without jeopardizing schedule lengths.

When the proposition BB; dom BBj holds, there is no need for duplication,
because the execution of oy, in its new BB guarantees that o, is executed on
all control paths including its original BB. As a consequence, a necessary and
sufficient condition for duplication is —(BB; dom BBj). Algorithm 4.5 shows
how to determine the BBs in which an operation has to be duplicated. In the
algorithm, the function support(G) denotes the set of all Boolean variables
occurring in G. The outer loop iterates over all merge junctions “crossed”
during the motion. Next, every BBy being a predecessor of such a junction is
checked. If BBy reaches the original position of the operation, but it is not
reached from the new position, BBy is inserted in the set Where. In the end,
this set contains all BBs in which copies have to be inserted.

ALGORITHM 4.5. Algorithm for finding out where to duplicate an operation

procedure whereDuplicate(BB,, BBJ.)
Where := §);
foreach M, with ¢, € support(G(BB;))
foreach BBy € PRED(M,)
if (BBx 5BB. A —(BB,; % BBy))
Where : = JWhere U{BBy};
return(Where);

Algorithm 4.6 shows how to determine the set of BBs where the motion of oy,
is blocked by a data dependence. The outer loop enumerates every operation
O such that there is a data dependence between oy, and o,. In the inner loop,
every link from op, pointing to some BB reachable from BB, is checked. Every

66 Exploiting instruction—level parallelism: a constructive approach

basic block BB, pointed by an unscheduled link is inserted in the set Where.
In the end, this set contains all the BBs in which replicas must be inserted.

ALGORITHM 4.6. Algorithm for finding out where to replicate an operation

procedure whereReplicate(o,, BB,)
Where : = §;
foreach 0,, & PROD(0,)
foreach) € A(or) with o, 2 BB, A BB, % BB,
if (—scheduled(A))
Where := Where U{BB,};
return(Where);

The compound effect of duplication and replication is captured by Algorithm
4.7. First, the necessary and sufficient condition for duplication is checked.
If it turns out to be true, the sets returned by Algorithms 4.5 and 4.6 are
merged; otherwise, only the second algorithm is performed. The returned set
contains all the BBs in which either copies or replicas of o, have to be
inserted.

ALGORITHM 4.7. Algorithm for the insertion of compensation code

procedure whereCompensate(o,, BB, BBJ.)
Where : = §;
if (—=(BB; dom BBJ.))

Where : = Where U whereDuplicate(BB;, BBJ.);
Where : = Where UwhereReplicate(op, BB));
return (Where);

Now the code motion of a conditional is addressed. This motion is similar to
the motion of an ordinary operation, except for the fact that it also induces
changes in the control flow. This leads to a more elaborate mechanism,
because some BBs might be created, some deleted and the order of
conditionals might be changed. To keep track of changes in the control flow
induced by the motion of a conditional ¢, we rely on the notion of a
conditional subgraph induced by c,, as formalized below.

DEFINITION 4.6

Given a BBCG=(U, F), the junctions Bi,M; € U and a conditional ¢, €V,
the conditional subgraph induced by c,_is a graph CS, = (U',F") such that:
e U’ ={u; € U|B, dom u; A M, pdom u, },

e F' = {(u,u) €Flu,uy, €U}

Code motion 67

Reconsider the example of Figure 3.6, which is partially copied in Figure 4.7a
for convenience. Assume that conditional c; moves from BB, to BBs. A
branch must occur just after the new position of ¢5. One way of modeling this
is by moving the entire conditional subgraph induced by c5. The result is
shown in Figure 4.7b, where the moved subgraph is shaded. Notice that
duplication is required in this example, because the proposition
—(BBg dom BB;) holds in Figure 4.7a. As a consequence, conditional c is
duplicated into BB, which induces the duplication of the whole subgraph,
along with the links pointing to its nodes. Compare Figures 3.6a and 4.7¢ to
observe the effect of the duplication of a conditional as a reorganization of the
behavioral description.

(c)

FI1GURE 4.7. The result of moving a conditional for the example in
Figure 3.6

68 Exploiting instruction—level parallelism: a constructive approach

Casting the motion of a conditional ¢, as the motion of the conditional
subgraph induced by c, allows us to share the bookkeeping functions
designed for ordinary operations, instead of relying on special duplication
mechanisms for conditionals. The difference does not lie in where copies are
placed, but in what is copied, whether a single operation or a whole subgraph.

As code motion of conditionals is likely to lead to code expansion, most
methods inhibit it to a certain extent [4][46]. However, for the class of
applications at which we are aiming, it might be mandatory to fully support
the motion of conditionals for the sake of time—constraint satisfiability. We
address this issue in the sequel.

4.4.3 Overcoming the effects of greedy choices

In this section, we show that code compensation may increase schedule
lengths, as a result of greedy choices. However, this effect can be analyzed by
using one of the extended queries in Table 4.1 and it can be controlled by
allowing changes in the original control flow during the scheduling process.

Duplication

Assume for simplicity the duplication of an ordinary operation o, € V,,
although the reasoning below is also valid for a conditional. Recall that
duplication is needed when the proposition — (BB, dom BBJ.) holds. This can
occur in two different scenarios, as follows.

When the proposition BB, pdom BB, holds, the duplication of o, into BBs on
different control paths cfoes not increase the number of operations to be
executed on any path, since operation o, has to be eventually executed on
every control path including BBJ- (recall Figure 4.3b). However, when the
proposition does not hold, the number of operations to be executed does
increase in at least one control path (recall Figure 4.3d), thereby possibly
increasing its schedule length.

Consider the example in Figure 4.8a, where BBs are numbered in topological
order. Suppose that BB is currently being visited. Assume that operation oy,
moves from BBg to BB;. Note that a copy of oy, has to be inserted in BBy for
compensation. Notice, however, that o, should originally not execute on the
highlighted path in Figure 4.8a, but it will be executed on this path after the
“insertion” of the copy in BBg. As it can not be evaluated a priori whether an
idle resource will be available in BB to accommodate the operation, this code
motion might lead to a longer schedule, possibly jeopardizing time—
constraint satisfiability.

Code motion 69

FIGURE 4.8. Example of how to avoid that the insertion of
compensation code might increase schedule lengths

In many cases, this issue is alleviated by the fact that a code motion with
jeopardizing side—effects is simply not induced when another permutation IT
is used to construct an alternative solution. However, this may not always be
possible. Since most scheduling mechanisms always “fill” a free resource
when there is some available operation capable of occupying it, there might
not exist an alternative priority encoding IT able to prevent a code motion
whose required compensation code jeopardizes time—constraint satisfiability.
To avoid that the insertion of compensation code might hamper the proper
exploration of alternative solutions, we propose a technique that changes the
control flow and overcomes the problem, as follows.

70 Exploiting instruction-level parallelism: a constructive approach

Let us come back to the example in Figure 4.8, where the motion of operation
op from BBg to BB, implies the decision of inserting a copy in BBg. The key
idea to overcome the problem is to postpone the decision until BBy is visited.
We determine the path requiring compensation code and restructure its basic
blocks, thereby conserving the number of operations to be executed. Figure
4.8b illustrates the idea for the above mentioned motion. Note that the
subgraph CS; was duplicated in a way somewhat similar to the motion of a
conditional, thereby avoiding the “inclusion” of operation o, on the path
highlighted in Figure 4.8b. (For simplicity, the duplication of conditional Cg
is omitted in the figure). It is important to note that the extended query (d)
in Table 4.1 is used to detect when this mechanism must be performed.

Replication

In order to control the impact of replication, a similar expedient can be used.
Suppose that BB is the currently visited BB for the example in Figure 4.8a.
Assume that operation o, is moved from BBg to BB, and suppose that the
motion is blocked at BB, due to a data dependence. The simple replication
of op In BB; would cause the execution of this operation on the path
highlighted in Figure 4.8a. Similarly to the previous example, the solution is
to restructure the affected paths, as shown in Figure 4.8c. On the other hand,
the fact that oy is executed twice in path (BB, BB, BBé, BB, BB,)does not
increase the length of this path, because the execution of o, in BB, uses an
otherwise idle resource.

It should be noted that the above described technique can be disabled if the
time—constraint is not tight and it can be enabled on demand, as a last resort,
if the time—constraint can not be met otherwise.

4.5 Exploiting state equivalence

In the previous section, we have shown that code compensation can be used
to broaden the range of legal code motions. Although code motion and
speculation can shorten schedules and thereby grant time—constraint
satisfiability, the insertion of compensation code may increase the number of
states or the microcode size, which might not be affordable for embedded
systems.

To overcome this side—effect, we propose in this section a technique for
constraining code expansion by eliminating redundant states while applying
code motion and speculation. This is performed in such a way that the
remaining code expansion closely represents the price to pay for a better
schedule. Equivalent states are detected and merged while the SMG is

Code motion 71

constructed on the fly, during global scheduling. In spite of the fact that these
redundant states would be eliminated later on during sequential synthesis,
their presence not only slows down scheduling, but also impairs the
exploration of alternative solutions. The proposed technique is based on
availability analysis and on our Boolean encoding for conditional execution.

A survey of techniques based on state equivalence for logic-level synthesis
can be found in [16]. To our knowledge, no method provides a strict checking
of state equivalence, while simultaneously applying code motions and
speculation during global scheduling. One reason is that built-in scheduler
heuristics used in classical approaches make it expensive to predict future
scheduler decisions. Another reason is that information on conditional
execution is not properly maintained such that it could efficiently be
recovered on the fly. In our method, this information is explicitly available,
since it is encoded in Boolean form in the very beginning, it is updated after
each code motion, and it is efficiently recovered any time a query is answered.

This section is organized as follows. First, the concept of state equivalence in
the SMG is formalized. Then, we formulate the criterion for on—the—fly
detection of state equivalence and we comment on some aspects of the
implementation. To conclude the section, experimental results are summa-
rized and discussed.

4.5.1 Equivalent states in the SMG

To illustrate the notions introduced in this section, we refer to the example
in Figure 3.6, which is copied as part of Figure 4.9 for convenience. The BBCG
in Figure 4.9b is derived from the description sketched in Figure 4.9a.
Assume that the SMGs in Figures 4.9¢ and 4.9d are obtained from the
description in Figure 4.9a. The arrows pointing to a state in the SMGs
indicate the conditionals scheduled in that state.

The notion of truth assignment to the conditionals in a state

Among the operations scheduled in a given state s;, some may be conditionals.
Let {cy,cy,...,cn} represent the set of conditionals scheduled in state s;.
During execution, a truth assignment to these conditionals determines their
Boolean—valued outcome and can be represented by a Boolean product
G =1y 15 .. 1 .. - Iy, where each literal 1, represents the guard ¢, orits
complement. For instance, in the example of Figure 4.9d, the predicate
G = T, - cyrepresents the effect of a setting of data for which the outcome of
conditional ¢, turns out to be false, and the result of conditional c, becomes
true.

72 Exploiting instruction—level parallelism: a constructive approach

FIGURE 4.9. The relationship between a BBCG and derived SMGs

The notion of enabling predicate of a transition

Our parallelizer schedules states in a top—down manner. After scheduling a
state s;, the next states appointed by the parallelizer are unscheduled. For
this reason, all possible transitions from state s; are provisionally
constructed, although some of them may be merged later on, as a result of
merging equivalent next states. Suppose that {c;,cy,..,cs} is the set of
conditionals scheduled in state s;. The parallelizer constructs 2" edges
leaving s;, each of them representing the effect of a different truth
assignment to the conditionals scheduled in s;- Every transition (s, sj) owns
a predicate G((s;, sj)) =1y -lp-..- 1 -...- 1. Later on, each time two
transitions are merged, the predicate owned by the resulting transition is
obtained by the Boolean sum of the predicates of the merging transitions. If
no conditionals are scheduled in state s;, there is a single transition (s, s)
leaving s; and G((s;, sj)) = 1. Consider the examples in Figures 4.9¢ and 4.9d,
where constant predicates are omitted for simplicity. Note, for instance, that
the predicate owned by transition (s,, sg) in Figure 4.9¢ is G((s,,s¢) = 1,
since no conditional is scheduled in state s 4 Observe also that the predicate
owned by transition (s, s,) is G((s1,s9)) = ¢, for the SMG in Figure 4.9c and

Code motion 73

G((sq,85)) = T - €, for the SMG in Figure 4.9d. Notice that the predicate for
the second case contains two guards, because two conditionals are scheduled
in 8. Although four transitions would be expected to leave state s, in Figure
4.9d, only three of them remain in the final SMG, because the transitions with
predicates c; - ¢, and ¢, - T, were merged into the transition (s, s5), whose
predicate can be written as G((s1,s3)) = ¢, - ¢ + ¢; - Ty = ¢;.

In summary, given a SMG=(S, T), every edge (s, sj) € T owns an enabling
predicate G((s;, sj)). The value of G((s;, sj)) is determined at execution time by
atruth assignment to the conditionals scheduled in state s;. Among the edges
leaving s;, the transition actually taken during execution is the one whose
predicate evaluates to true. It might be worthwhile to notice that the enabling
predicate of a transition is in general a sum of Boolean products, that the
predicates of outgoing transitions of a state are mutually exclusive for a
deterministic FSM and also that the sum of all those predicates must be a
tautology.

These notions are used in the following to formulate the concept of state
equivalence in the SMG.

A reformulation for the notion of state equivalence

The classical notion of state equivalence has its roots in the synthesis and
optimization of sequential circuits. It relies on a FSM model, consisting of an
automaton which consumes a sequence of inputs and generates a sequence
of outputs. Two states, say s, and sy, are equivalent if the output sequences
of two instances of the FSM, one of them initialized in state s, and the other
in state sy, match for any input sequence [16][31].

Since HLS precedes sequential synthesis in the design flow, the HLS
representation for the control unit is more abstract and typically based on a
symbolic description of a FSM. In this model, an output pattern of the
symbolic FSM is associated with the set of operations executing in a given
state, which is sometimes called a bundle in compiler—technology terminology
[22]. An input pattern of the symbolic FSM is associated with the predicate
representing a truth assignment to the conditionals scheduled in the
previously executed state.

Since we can not use the classical notion of state equivalence, we rely on the
following concept of equivalent states in the SMG. Assume that OP, denotes
the bundle containing the operations scheduled in some state s,. Let
(Sp>Sp 415~ » Sy +) b€ a path in the SMG and let (OP_,OP__,...,OP__,)be
the sequence of bundles associated with each state on that path.

74 Exploiting instruction—level parallelism: a constructive approach

DEFINITION 4.7
Let sp be a state and let ((s,s,,1),(S, 41,8, ,9),(S, 1 _1,S,.1) be a
sequence of k transitions starting at s,. Given a sequence of predicates
G = (G4, Gy, -, Gy)such that G; = G((s,s, ;) with 1 < i < k, the sequence

of bundles induced by G, written OP(sy, G4, Gy, ..., Gy), is the sequence
(OP,,OP ., .. OP__,).

For instance, for the example in Figure 4.9¢, the sequence of predicates
(€1,Cg, 1,¢5) induces the sequence of bundles (OP,,OP,, OP,, OP OPy).
Similarly, for the example in Figure 4.9d,the sequence (€; - Ty, 1, c3) induces
the sequence of bundles (OP;, OP,, OP;, OPg). Note that these sequences of
bundles represent the operations executed on the highlighted paths in those
figures.

Now we are able to introduce the notion of state equivalence in the SMG, as
follows:

DEFINITION 4.8

States s, and sy, are schedule equivalent, written s, @ Sm, if and only if
OP(sy, Gy, Gg, ... ,Gy) = OP(s, Gy, Gy, ... ,Gy), for every possible
sequence (G, Gy, ..., Gy).

This definition is the reformulation, from a HLS perspective, of the classical
concept for sequential synthesis defined in [31] and it can be interpreted as
follows. In order to be equivalent, not only the bundles of operations
scheduled in states sy and sy must coincide, but also the bundles of every
state reachable from them under a same sequence of enabling predicates. The
notion of schedule—equivalent states is illustrated in Figure 4.10. In the SMG
of Figure 4.10a, the operations scheduled inside states are shown explicitly
and enabling predicates with constant value are omitted.

Note that duplication of conditionals has occurred: conditional ¢, is scheduled
in states s, and s, and c,is scheduled in states s; and s, 5. Note, for instance,
that states s, and s, are not equivalent, since OP, = OP,. On the other
hand, several states in the SMG of Figure 4.10a are equivalent, namely
S5 = S19, Sg = 813, S7 = Sy, Sg = 815, Sg = S1g and sy, ¢ s17- Let us consider
states sg and s;5, for instance. Observe that not only the equality
OP(sg,C5,1,1,1) = OP(sy5,C5,1,1,1) holds, but also the equality
OP(sg,c3,1,1,1) = OP(sy3, cg, 1,1, 1).

Therefore, all the shaded states in Figure 4.10a can be considered redundant
and can be merged with their respective equivalent states, as shown in Figure
4.10b. Our goal is to avoid the construction of a solution like the one in Figure
4.10a. However, the concept of state equivalence assumes that the SMG is

Code motion 75

completely constructed. Since during scheduling, some states and transitions
are not yet defined, the formulation above can not be applied directly. In the
sequel, we show how to exploit the notion of state equivalence on the fly in
order to prevent the scheduling of redundant states.

[b[d[C3sg s12
C3 C3

sil_Jel] [If] Jss

N/

so[gl |

/

S10

s11 (a)
V

FIGURE 4.10.1llustrative example for state equivalence

4.5.2 On-the-fly detection of state equivalence

Before presenting our criterion for on—the—fly detection of state equivalence,
we formulate some essential notions. The first of them is the concept of a
sequence of transitions. Although a sequence of transitions may be not
completely defined in the course of the scheduling process, it can be captured
by a predicate, as illustrate below.

Consider the example in Figure 4.11. Let sy, be a state within a basic block
BB,. Suppose that an operation o, is to be executed in some state, say sy,
reachable from sp,. As a consequence, this operation must be linked to some
BB, such that there is a path p with BB, P BBJ.. Assume, for instance, that
G(BB,) = ¢, - ¢, and that G(BBJ-) =Ty €y * Cg - C4, as illustrated in the

76 Exploiting instruction—level parallelism: a constructive approach

fragment of BBCG given in Figure 4.11a. Since BB. ; precedes BB on path p,
the guards c; and ¢, must be associated with branches occurrmg after BB;

on path p. This illustrates that a predicate determining a sequence of
transitions starting from s, to sy can be obtained by eliminating from
predicate G(BBJ-) the guards in common with G(BB,). This is implemented by
a Boolean operator called smoothing. The smoothing of a predicate G with
respect to guard c, written £.(G), is obtained by dropping from consideration
all the occurrences of guard c in G [16]. For instance, for the example in
Figure 4.11a, the predicate I = c; - €, is obtained by smoothing in the
predicate G(BB) the guards which appear in support(G(BB,)). Note that the
predicate T determmes the sequence of transitions hlghhghted in Figure
4.11b. This notion is formalized below.

SMG
(b)

FIGURE 4.11. An illustration of how to interpret the smoothing with
respect to the predicate of a basic—block

DEFINITION 4.9

Let I'; € T denote some transition of the SMG. We say that a sequence of
transitions (3,7 ,,...,7,)is induced by a predicate T, if and only if I" - G(J’)
is satisfiable for every transition 7', in the sequence.

Code motion 77

For instance, the predicate I' = ¢, - T, - ¢; induces the sequence of transi-
tions highlighted in Figure 4.9¢, but not the sequence (s, s5), (s3, 8g), (S5, Sg)).
Note that a given predicate may induce different sequences of transitions,
depending on how the operations are scheduled in the states. For example,
assuming that the SMGs in Figures 4.9¢c and 4.9d are alternative solutions,
the predicate I = €, -+ €, - ¢4 induces the distinct sequences of transitions
highlighted in each of those figures.

Havingintroduced these basic notions, we can now formalize the relationship
between the DFG and the SMG by utilizing the BBCG. Let {c,,c,, ..., ¢y} be
the set of all conditionals in the DFG and let I" be a predicate. If an operation
0y, is linked to some BB, such that G(BB,) - T" holds, then the operation must
be executed in some state reachable through the sequence of transitions
induced by predicate T

A criterion for detecting state equivalence

Our goal is to detect equivalent states, not after scheduling is completed, but
during the construction of the SMG itself. Given a basic block BB;, recall that
R,(n) represents the resource occupation in some state s, and that A;
denotes the respective set of available operations. For s1mp1101ty, let us drop
the first index from now on, so that they are denoted as A, and Ry,
respectively. Given a state s,, already scheduled, a state sy, still to be
scheduled, and the pairs (A, Ry) and (A, Ryw) , we want to check if s, and
sm will turn out to be equivalent. Based on the initial status on entry to states
sn and sy, we have to predict if the process of scheduling, starting at those
states, results on equivalent sequences of bundles.

In our approach, the choices of the scheduler can be predicted at low cost,
since heuristics are removed from the scheduler and placed in the external
explorer. Besides, our Boolean encoding for conditional execution provides an
efficient way of checking if the operations to be scheduled in states reachable
from s, and sy are executed under exactly the same predicates. The
on—-the—fly detection of state equivalence relies on the three following key
properties:

¢ Given the pairs (Ap, Ry) and (A, Rm), it is straightforward to predict if the
bundles associated with states s, and s, will coincide.

e Itis possible to tell in advance if some operation, say oy, will eventually be
scheduled in states reachable from s, and sq,.

e An operation 0, may be executed, possibly on different paths in the SMG,
but under the same sequence of enabling predicates.

Each of the properties listed above is formulated in the following, where we
assume a state s, within some basic block BB, and a state sy, within BBj.

78 Exploiting instruction—level parallelism: a constructive approach

Scheduler predictability

With respect to the first of these properties, recall that, for our scheduler, the
set of operations selected to be executed in a given state s, depends only on
the resource occupation and on the available operations on entry to sy, as well
as on a given priority encoding II. As a consequence, if the equality
(Ap, Ry) = (Am, Ru) holds, then OP, = OP,, also holds.

Reachability from available operations

Let ®(oy) denote the set of operations reachable from operation oy in the
DFG=(V, E) excluding branch and merge nodes, which is obtained as follows:

R(oy) = {07 € V]oy 50, A (B(0,) = true)}. (4.6)

Now, given a state s, within BB,, let us find the set of all operations that are
eventually executed on some path from BB, to the sink. This set can be found
by applying the concept of reachability above to each operation available at
state sp. This set, written as ®,(Ay), is obtained as below:

Foi(An) = {0, € |J Rloy)|0,4 BB, A BB, £BB, }. (4.7)
0,EA,

As a consequence, if it is known that ®,(A;) = %j(Am), we can conclude that
the same set of operations is bound to be executed in states reachable either
from sp or from sp. However, this does not guarantee that a given operation
is executed on different paths under exactly the same predicate, which
motivates the ensuing analysis.

Execution under a same sequence of enabling predicates

Remember that an operation 0, may be linked to several BBs reachable from
some BB, as a result of code motion. To capture the joint effect of all “copies”
of 0,, we first find the set of all links emanating from o, that are linked to some
BB reachable from BB,. This set, written as A,(0,), is obtained as follows:

Ay(0;) = {A € Alo,)| 0,2, BB, A BB, % BB, } (4.8)
The joint execution predicate of an operation 0, on all control paths including
a given BB,, written as G;(0,), can be expressed as follows:

Gio) = > G (4.9)
LEA(0,)

Assume that operation o, will be scheduled in some state sy reachable from
sm (reconsider Figure 4.11). Let us now find a predicate able to induce a
sequence of transitions leading to sy. Since such a predicate should take into

Code motion 79

account only the effect of conditionals still to be scheduled from sy, to sy, we
have to drop all the guards of conditionals scheduled prior to sy, i.e., all the
guards in G(BB,). Therefore, given a state sp within a basic block BB;, the
predicate inducing a sequence of transitions leading to some state sy in which
operation o is executed, written I',(0,), is obtained by Algorithm 4.8.

ALGORITHM 4.8. Algorithm for determining the predicate I';(0,)

Fi(oz) = Gi(oz);
foreach ¢ € support(G(BB,))
[i(0,) 1= $(T(0,));

With this notion in mind, given states s, and s, within basic blocks BB, and
BBJ-, respectively, if we find out that I';,(0,) = I‘J-(oz) = I', we can conclude that
operation o, will be executed, on different paths starting from s, and sp,, but
under sequences of transitions induced by a same predicate T.

Now, we are able to formalize the criterion for on—the—fly detection of state
equivalence.

THEOREM 4.1

Let sy and sm denote states within basic blocks BB; and BBJ-, respectively.
Assume that all availability sets are ordered according to a given priority
encoding I1. The equivalence s, $ sm holds for a given I, if and only if all the
following conditions hold:

e Ay, = A and Ry = Ry,

o %I(An) = %J(An) = R,

e Yo, € }:T5(0,) = Fj(oz).

PROOF OUTLINE

To prove this theorem, assume a path p from s, to the sink and a path q from
sm to the sink, such that both p and q are determined by sequences of
transitions induced by the same sequence of enabling predicates, say G. Let
Sn+x and sp, , , represent states reachable via paths p and q, respectively,
through a number x of transitions. Assume by hypothesis that
Alix-1=Ay.x1andR ;=R ., ;. Sinceboth availability sets are
ordered according to a same priority encoding II, the scheduler will select
exactly the same operations in both cases, i.e., OP +x-1=OP_, ;. Asa
consequence, resource occupation on exit to both states will be the same, i.e.,
R, +x = Ry Note that the set A, , , can be expressed as the union of two
components. The first is constructed by taking the remaining (unscheduled)
elements of set A, _,, that is to say, AL, 1\OP_ .. ;. The second
consists of new elements made available by the operations just scheduled.

80 Exploiting instruction—level parallelism: a constructive approach

Notethat A, \OP_ ., ,=A_ .. ;\OP_ . _, forthefirstcomponent.
For the second, recall that A, , y and Ay, , x are subsets of F;(An) and T, (An).
Since the theorem’s second condition ensures that the supersets coincide and
since the third condition guarantees that the new operations to be included
in both A, ,; and A, ., will be the same for an arbitrary sequence of
predicates (enabling the transitions on paths p and q, we conclude that
A, 4« = A, Since the theorem’s first condition enforces the proven
hypothesis to hold for x = 1, we conclude by induction that OP, ., = OP_, .
for an arbitrary x. R

Similarly to the classical concept of state equivalence, the states of the SMG
can be organized as a unique partition in terms of equivalence classes [16].
As a result, if a new SMG is constructed with a single representative state
from each class, no other equivalent SMG has fewer states [31]. However,
since Theorem 4.1 assumes a fixed but arbitrary priority encoding II, we
conclude that our technique guarantees a minimal state equivalent SMG,
given an arbitrary priority encoding. As our approach allows the exploration
of alternative SMGs induced by different priority encodings, it provides a
clean solution to the optimization of the number of states.

4.5.3 Comments on the implementation

An efficient implementation for Theorem 4.1 is obtained as follows. The pair
(Ap, Rp) is stored in a table for every scheduled state sy,. For a given “empty”
state sp about to be scheduled, we first check if the necessary condition
(Am, Rm) = (Ap, Ryp) is satisfied. This test can efficiently be performed by
means of a hash table. Only if a hit occurs, state sy, has to go through the
whole test on equivalence, as summarized in Algorithm 4.9.

ALGORITHM 4.9. An algorithm for exploiting state equivalence

procedure equivalent_state(sy,)
if (3sp € S|(Ap,Rp) = (A, Rm)) /* necessary condition */
if (sn e Sm) /* Theorem 4.1 */
return (sp);
return(none);

procedure handle_current_state(sy,)
Sp = equivalent_state(sy,);
if (sp = none)
merge Sy With sp;
else
schedule sp;

Code motion 81

The test on the second condition of Theorem 4.1 is performed efficiently by
keeping the sets ®.(An) and %j(Am) ordered by the priority encoding.
Checking the third condition is fast, since it relies on queries involving
predicates whose number of guards is bounded by the depth of conditional
nesting, typically a small fraction of the total number of tests.

The use of a table to check the initial status on entry to states s, and sy, is
similar to the implementation suggested in [4] for the sake of loop pipelining.
However, that method does not handle state equivalence. Although it is
shown in [4] that the test (A, Ry) = (A, Rm) is a necessary and sufficient
condition for detecting the boundaries of a pipelined loop body, it represents
just a necessary condition for state equivalence.

4.5.4 Experimental results

To evaluate the impact of the described technique, we have performed a series
of experiments, organized under the following set—up. Speculation can be
performed through an unrestricted number of branches. Global code motions
leading to duplication of ordinary operations or duplication of conditionals
are enabled (the latter changes the control flow). A randomly generated
sequence of priority encodings is used to construct a large number of
solutions, from which statistics are derived. As a result, we can evaluate the
average impact of our technique for an arbitrary priority encoding. The
examples used for the experiments are listed in the first column of Table 4.3.
Each example is submitted to distinct resource constraints, which are labeled
in the fourth column, leading to different cases for each example. The
resource constraints corresponding to these cases, along with the adopted
operation delays, are described in detail in Appendix A.

In a first experiment, we compare the number of states with and without the
exploitation of state equivalence. Results are shown in Table 4.3. The mean
value for the schedule length of the longest path in the SMG is denoted by L;
in the table. Both the mean value and the standard deviation are given for the
number of states. The last column quantifies the relative increase of the
number of states which would occur, had we not exploited state equivalence.
It was observed that the values of L; coincide in both cases and for every
example. This is an evidence that, without exploiting equivalence, we are
looking at too many “equivalent” solutions and thus paying too high a price
for the same schedule quality.

The mean value for the number of states is given in the shaded columns.
Observe that, without exploiting equivalence, the size of the SMG seems
unpractical for DFGs of reasonable size. Besides, for DFGs with complex
control flow, as it is indeed the case for the last example, the expansion is

82 Exploiting instruction—level parallelism: a constructive approach

probably not affordable for embedded systems. To overcome expansion, most
methods either restrict the types of code motion allowed [4]1[46][62] (e.g. by
disallowing the duplication of conditionals), or have to rely on smart
heuristics to alleviate the problem [4]. The results in the shaded columns give
some evidence that, when state equivalence is exploited, some restrictions
usually imposed on code motions can be relaxed, since the state expansion
will be controlled by the on—the—fly merging of equivalent states.

TABLE 4.3 The impact of on-the—fly exploitation of state equivalence

without with

example | nodes | BBs | case | L

waka 46 10
[72]
kim 48 10
{371

rotor 66 10

s2r 122 22

[52]

kim_big | 464 | 52

vl o2 RNol NolwNeNe 2 ol NolwNe N IS Nole- No-lhN

[37]

The standard deviation for the number of states is denoted by oin the table.
Notice that the value of o tends to grow when state equivalence is exploited.
This shows that the size of the SMG is actually more sensitive to the priority
encoding than we could tell if the technique had not been applied. This means
that the solutions, apparently with about the same number of states during
exploration, may end up in very different SMG sizes. As a consequence, not
merging equivalent states on the fly is likely to impair exploration. Therefore,

Code motion 83

further phases of a design flow, like sequential synthesis, might not be able
to compensate for the overlooking of superior solutions in earlier phases.

To quantify the impact on runtime, we have measured the average time to
build up a SMG for an arbitrary priority encoding. Average runtime with and
without exploiting state equivalence are expressed in seconds for a
HP9000/735 workstation. The results in Table 4.4 show that our technique
accelerates the construction of solutions. The reason is that the time actually
spent on state equivalence checking is less than the time to schedule all
redundant states. The speed gain is shown in the last column of Table 4.4.

TABLE 4.4 Average time to construct a solution

example | case |without gain
rotor A 0.10 1.2
E 0.09 11
s2r A 0.58 1.3
E 0.52 1.1
kim_big A 26.7 2.2
C 27.6 24
D 26.0 2.5

4.6 Discussion

In this chapter, we have shown how code motion is supported within our
constructive approach. Our modeling of code motion relies on two basic
concepts: link and predicate. These concepts allows us to combine graph
algorithms and Boolean techniques in the implementation of the HLS tool.

Some HLS methods for control-flow dominated applications do not support
speculation at all [9][12][37]. Our support for speculation is more general
than most related HLS methods: although pre—execution is allowed in
[34]1[52][54][72], the second form of speculation presented in Section 4.2 is
either not supported or neglected. In particular, the method reported in [52],
which also relies on Boolean manipulation, is limited by the model adopted
for scheduling. In that approach, a linear-time sequence of time steps is
employed in such a way that it would be cumbersome to support the
scheduling of an operation more than once per trace. As a consequence, the
support for speculation in [52] is limited by the absence of powerful code
compensation techniques. In our approach, however, where the notion of state
is predominant over the notion of #ime step and where states are clustered
within BBs, this support is naturally provided via code compensation.

This chapter has also shown that global code motion can be induced by
determining the operations available for scheduling in a given state,

84 Exploiting instruction—level parallelism: a constructive approach

regardless of their original position in the control flow. Despite the fact that
the main notions for availability analysis are not new [4][19][46][62], those
classical analyses from the compiler arena rely on a so—called control flow
graph representation. We have shown how to cast those notions into a
different representation, which is based on a DFG, a BBCG and Boolean
queries. Although as general as the above mentioned techniques, our
availability analysis is relatively simpler for two main reasons. On the one
hand, the so—called anti—dependences and output-dependences [30][46]
occurring in classical compiler representations are eliminated by the DFG
representation. On the other hand, our Boolean queries replace the
traversals traditionally employed to search control paths for new available
operations. Since most HLS approaches are based on some form of DFG
representation and since public-domain programs for Boolean manipulation
(such as BDD packages) are widely available, our formulation for availability
analysis and code compensation can be incorporated by other HLS
approaches at the expense of a few extensions.

Although the restriction to certain types of code motion is common practice
in the compiler—technology domain [4][46][62], such an expedient is not
suitable for time—constrained systems, because some “forbidden” code
motions might be essential for time—constraint feasibility. The use of Boolean
queries to identify different types of code motion, as summarized in Table 4.1,
allows the implementation of a flexible HLS tool for exposing parallelism.
Although unrestricted code motion is supported by the approach, some types
of code motion could be disabled on demand depending on how tight the time
constraint is. For instance, the cases (b) and (d) in Table 4.1 tend to increase
the number of states. They could be disabled by an option of the tool if the time
constraint is not tight. Therefore, a HLS tool with unrestricted code motion
capability and with facilities for inhibiting code motion on-demand provides
more control on the quality of the final solution than a tool limited beforehand
by built—in heuristics. The price to pay for such flexibility seems affordable
for the following reasons. First, the queries in Table 4.1 involve predicates
that are always Boolean products, leading to a worst—case complexity that is
polynomial with the number of guards of a predicate. Second, since the
number of guards in the predicate is bounded by the depth of conditional
nesting (typically a fraction of the total number of conditionals), the
average—case complexity is likely to be small in most practical cases.

Even though unrestricted code motion (especially duplication of conditionals)
may increase the number of states, we have shown that it can be supported
without inserting redundant states, by detecting and merging equivalent
states on—the—fly. Experimental results give evidence that if a HLS tool is
required to make use of flexible code motions in order to face a tight
time—constrained problem, the size of the SMG would be unpractical without

Code motion 85

on—the—fly exploitation of state equivalence. Besides, our technique speeds
up the construction of solutions, since a large reduction on the number of
states can be obtained by the use of an efficient state equivalence checking.
Since the flow of control forks in two or more states each time conditionals are
scheduled, top—down scheduling would result in a tree structure. Actually,
some approaches are reported [33](34] where top-down scheduling is
performed on a tree structure and states may be merged later on, during a
bottom—up rescheduling phase [34]. Unlike those methods, our technique
finds join junctions in the SMG dynamically.

Now, let us focus on some aspects of the exploration of alternative solutions.
It should be noted that, since the priority encoding IT induces an ordering on
each set A, and different orderings typically induce distinct code motions, our
approach provides a mechanism to seek for the code motions leading to
high—quality results. Different priority encodings typically lead to different
number of states (see standard deviations in Table 4.3). Since our method
guarantees a minimal state equivalent SMG for a given 11, the optimization
of both schedule length and number of states can be achieved by the
exploration of solutions induced by different priority encodings.

Chapter

5 Code-motion pruning

In this chapter, two techniques for improving the exploitation of ILP are
proposed. The first technique is a method able to examine data—flow
information in such a way that potential downward code motions are
captured by the links. The second technique is a method to prune inefficient
code motions. It relies on the idea that, given an arbitrary priority encoding,
code motion is worth doing as far as it does not jeopardize the schedule length
of any control path. The main topics of this chapter are:

e How to capture data-flow information in the links:
We propose a data—flow analysis technique based on freedom for downward
code motion. The analysis is efficiently performed starting from a DFG.

e How to prune inefficient code motions:
Given some priority encoding, the result of the above mentioned analysis
is used to induce a precedence relation, which is employed to modify the
original linear ordering determined by the priority encoding. This gives
rise to a reordering of the sets of available operations. Such a reordering
prevents code motions that are not worth doing, since (as will be shown) the
operations moved can not be accommodated within the available resources.

¢ Experimental evidence of impact on search space:
A set of experimental results gives evidence that the pruning technique
improves the quality of global scheduling. It is shown that the application
of the technique increases the density of promising solutions in the search
space, paving the way to a faster exploration of alternative solutions.

5.1 A data-flow analysis technique

In this section, we introduce a data—flow analysis technique that finds a new
set of links from the set of initial links. Given some operation o, and its initial
link, each new link is determined such that o, being linked to some basic
block BBj implies o, to be scheduled in some BB reaching BBj orin BBJ. itself,
but not any further down in the flow of control. We henceforth refer to this new
set of links as the lowest links. We first introduce some fundamental notions
and then we formulate our analysis. To illustrate the notions addressed
throughout this section, we refer to the example shown in Figure 5.1, where
a behavioral description, its BBCG and the initial links are shown. The
respective DFG is illustrated in Figure 5.2.

87

88 Exploiting instruction—level parallelism: a constructive approach

5.1.1 Fundamental notions

The traditional representation for global data—flow analysis [1] is a so—called
control flow graph, whereas we rely on a DFG. For this reason, the notions
introduced in this section are the counterparts of classical concepts of global
data—flow analysis in the DFG domain.

[a]
[bl
[d]
[e]
[t;]
[£]

[g]
[h]
[i]
K}
[k]
[ta]
[11

else

[m]

(a) (b)

FI1GURE 5.1. A behavioral description, its BBCG and initial links

We say that a value xis used in some basic block BB, if x is consumed by some
operation linked to BB,. A value is used on some path p if it is used in some
BB included in p. One of the keys of our analysis is the notion of live value.
Avalue xis live at abasic block BB, if x is produced by an operation not linked
to BB; and x can be used on a path from BB, to the sink, as formalized below.

DEFINITION 5.1

The value computed by an operation o, is live at basic block BB;, written
live(oy, BB,), if and only if both following conditions hold:

* 0,3 BB;,
¢ Jom € cons(on) : IBB; € U: o 44 BB; A BB; % BB;.

Code—motion pruning

89

03

FIGURE 5.2.

The DFG for the example in Figure 5.1

The set of operations whose output values are live at a given basic block BB,
written LIVE(BB,), is obtained as follows:

LIVE(BB,) = { oy € V,|live(oy, BB)) }.

The sets LIVE(BB;) can be efficiently computed for every BB; during a
depth—first traversal of the DFG. Table 5.1 shows the sets of operations whose
output values are live at a given BB for the example of Figure 5.1. Although
inputs are live at some BBs, we omit them in the table because they are not
relevant for our coming analysis.

TABLE 5.1 Sets LIVE(BB,) for the example in Figure 5.1.

(5.1)

BB;

BB

BB;

BB,

BBs

BBg

BB,

0

{a,b,d,e}

{a,d,e}

{a,b,d,e,f,g,h}

{a,b,g}

{d,fh}

90 Exploiting instruction—level parallelism: a constructive approach

For simplicity, we henceforth refer to the output value of an operation o, as
“the value 0,”, whenever clear from the context. Therefore, we can simply say
that o, is used or oy, is live at a given BB.

5.1.2 Formulation of our analysis technique

In this section, we show some properties of the flow of data that are observed
when we try to perform downward code motion. We illustrate these properties
with the example in Figure 5.1, which is repeated in Figures 5.3a and 5.3b for
convenience.

Given some operation, assume that we want to move it towards the sink as
far as possible. The ability to move is constrained by the DFG. Below, we
explain, by means of examples, how the data flow restricts moving operations
downwards.

[a]
[b]
[d]
[e]
[t1] |
[f]

F4
[h]
[i]
51
[k]
[to]
[1]

else

(a) (b) (c)

FIGURE 5.3. Illustration of how to find the set of lowest links

Consider the links emanating from operations h and f. Note that, in both
Figures 5.3b and 5.3c they point to BB, and BB,, respectively, which are the

Code-motion pruning 91

latest BBs prior to the selection of a value for variable z. If, for instance, hwas
moved to BB, the value f, which is live at BB, would be destroyed. The same
argument is valid for operations m and 1, whose links in Figure 5.3¢ are kept
pointing to the same BBs as in Figure 5.3b. Moreover, as his bound to precede
M, and gis used by h, operation gis also kept linked to BB;. Note that those
links point to the latest BB in which the operations can be executed, because
any motion further down would be illegal.

Consider now the links from the conditionals. Observe that the links from
each conditional ¢, are kept pointing to the BB which immediately precedes
By. This captures the property that the outcome of a conditional must be
available prior to a branch in the control flow. The links from operations e and
k, which are used by tests t, and t,, respectively, are pointing to the same BBs
as the conditionals ¢; and c,. This captures the property that e and t; must
precede c¢;; k and t, must precede c,, which in turn are bound to the BBs
preceding the branches B, and B, respectively.

Let us now focus on the links moved, which are highlighted in Figure 5.3c. The
link from operation b has moved down to BB,. Note that, since band g assign
distinct values to variable w, neither the value g nor the value b could move
further down without destroying the other. On the other hand, note that the
link from operation anot only has moved to BB, butis alsoreplicated to point
to BB;. Operation a assigns a value to variable t, which is used by operation
hin BB;. However, if we move operation a to BB, the value of variable t will
be undefined if a control path through BB, is taken, which is incorrect,
because the value ais live at BB,, (recall Table 5.1). However, as a replica of
operation a is inserted in BB;, where the value ais actually used, no value
is undefined. Observe that operation d was duplicated such that its links
point to BB; and BB,,. This operation could not move further down, because
the value d is used by operations f and g in BB, and BBj, respectively.
Although the value d is used by operation min BBy, there is no use to restore
this value locally, because it is already defined in every control path including
BBg. Finally, note that the links from operations i and j have moved down to
BB, since the values i and j are neither used in BB nor in BB,

In summary, given an operation oy, we want to re-link on, to the latest BB
down on a given control path where the execution of o, would neither destroy
a live value on some other path, nor render o, undefined. In the following,
we formalize the mechanisms illustrated so far.

For the formal analysis, it is essential to check the destruction of some value
by downward code motion. This test can be performed as follows.

Given two operations o, and oy, assume that o, moves from a basic block
BB, down to a basic block BBj. If both values o, and oy, are live at BBj and

92 Exploiting instruction—level parallelism: a constructive approach

both operations reach the same merge node in the DFG, then the value oy, is
destroyed by the code motion. This is formalized below.

DEFINITION 5.2

Given the basic blocks BB, and BBJ. with BBiiBBj and an operation oy,
linked to BB, the motion of o, from BB, to BBj kills a value computed by
some other operation, written kill(oy,, BB, BBJ.), iff:

Jopn,v € V: (0n,0m € LIVE(BB)) A 0n 5V A o5V A (wv) = merge).

For instance, the motion of operation ffrom BB, to BB, would kill the value
h, because both values f and h are live at BB, (see Table 5.1) and both
operations reach the same merge node (see Figure 5.2).

When performing downward code motion, it might be necessary to insert
copies or replicas of operations, as illustrated in Figure 5.3 for operations a
and d. During our data—flow analysis, we want to make sure that replicas are
inserted only where strictly necessary. Suppose that u; and u; are arbitrary
nodes of a BBCG=(U, F) and let X denote a set of arbitrary nodes of the BBCG.

DEFINITION 5.3

X co—dominates u, written X edom u;, if every path from the source to u;
includes at least one node u; € X.

In the example of Figure 5.3, for instance, the set {BB,, BB;} co-dominates
BBg.

Assume that, given the links from the same operation to distinct BBs, we
want to check if semantics is preserved when one of them is removed. Suppose
that operation oy, is linked to basic block BBJ.. Suppose that oy, is also linked
to some other basic block BB, where the value oy, is used, and that BB, is
reachable from BB.. We want to check if the replica of o, in BB, is redundant.
In other words, we want to check if the value oy, is kept defined correctly on
all control paths including BB, if the replica is removed.

This procedure can be performed as shown in Algorithm 5.1. The set X
contains all BBs linked to operation oy,. For a given BB, in set X, ifevery path
from the source to BB, includes an element of X\ {BB,}, a value oy, is defined
whichever the path taken from the source. As a consequence the link A,
represents a redundant replica and is removed.

Notice that Algorithm 5.1 can be used to prevent the unnecessary linking of
operations to every BB where the value oy, is used. In Figure 5.3c, for
example, although the value d is used in BBy, operation d is not linked to it,
because d is already linked to the elements of set {BB,, BB;}, which

Code—~motion pruning 93

co—dominates BBg. On the other hand, the value ais used in BB, and, even
though already linked to BB, operation ais also linked to BB because {BBg}
does not co-dominate BB;.

ALGORITHM 5.1. Algorithm for removing redundant links
procedure remove_redundant(oy,)

X:= {BB, € U|om25BB,J;
foreach BB, € X with omgﬁBBz

if (X\{BB,} cdom BB,)
remove Az

Fundamentally, we want to check the legality of moving an operation oy, from
BB, down to BBJ-. This means that oy, should not move if it kills a value, no
conditional should move past the point where the control-flow decision is due
and no operation should move through the sink. This is formalized below.

DEFINITION 5.4
Given the basic blocks BB; and BB, with BB, % BB, the operation op, is free
to move from BB, to BBj, written fgree(om, BB,, BBj;, iff:

—kill(on,, BB;, BBJ-) A (o(om) # conditional) A (BBj # sink).

Our central idea is to find the boundaries for downward code motions.
Assume that we move an operation oy, downwards on some path p from a
basicblock BB, towards some basic block BB,.. Aboundary for downward code
motion can be found by checking iteratively if the operation is free to move
between “adjacent” BBs on path p. The idea is illustrated in Algorithm 5.2,
where the last basic block on path p satisfying that property is returned,
namely BBj.

Algorithm 5.2 is deliberately written to explicate the main idea of our
analysis. However, a more efficient version is used in our implementation in
which depth-first search is used to avoid enumeration of paths.

ALGORITHM 5.2. Algorithm for checking Definition 5.4 iteratively

procedure find_boundary(om, BB;, BB,)
foreach p = (BB;,BB,, ;, "+ ,BB;,BB;,, - - - ,BB,) with BB; E BB,
for G:=itok — 1)
if (— free(opy, BBj, BBJ-H))
return(BBj);
return(BB,);

94 Exploiting instruction—level parallelism: a constructive approach

In the following, we show how to obtain a new set of links such that every
operation op, is linked to its boundary for downward code motion on all control
paths where o, executes. Algorithm 5.3 describes how to derive the set of
lowest links from the set of initial links. In this algorithm, the operations in
the DFG are visited using depth—first search and it assumes that each
operation o, owns a Boolean—valued attribute for marking its visiting status.

ALGORITHM 5.3. Algorithm for finding the lowest links

procedure find_lowest_links()
mark initial links;
foreach v, € INP(V)
foreach o, € CONS(v,)
visit(om);
delete initial links;

procedure visit(0y,)
if (op, is visited)
return;
mark o, as visited;
foreach o, € CONS(op,)
visit(0op);
foreach BB, with om»;BB
foreach BB with on;;E’;BB
BBJ -flnd boundary(om, BB;, BBy);
create a new link A such that oy, »;E. BB
remove_redundant(0my);

In the first procedure of Algorithm 5.3, the initial links are marked so as to
distinguish themselves from the new links to be created. Then, the operations
are visited recursively (via the second procedure), starting from every
operation being an immediate consumer of an input value. After the traversal
is completed, the initial links are deleted.

In procedure visit(on,), the idea is to propagate a given operation oy, from its
initial BB towards the initial BB of some consumer o,. As the consumer o,
itself might have been propagated from its initial BB to some other basic
block, links are moved down as much as possible in the BBCG. Clearly, if the
BB which immediately precedes the sink node is reached, there is no way to
move further down. Due to the recursive call, the operations close to the
outputs are re-linked first, whereas the operations nearby the inputs are
re—linked last, according to an inverse topological ordering. In this procedure,
om denotes the operation currently visited, which is linked to its initial basic

Code-motion pruning ' 95

block BB;. This operation produces a value that is consumed by operation oy,
which is hnked to some basic block BB, such that there is a path p with
BB; P BB, Ideally, the procedure tries to link on, to BBy This is performed
by first finding the lowest links of operation oy (recurswe call). However, the
downward motion might be blocked somewhere on path p, in between BB,
and BB, if the operation is not free to move further down. Consequently, BB
represents the latest basic block downwards on path p where the operatlon
can be legally moved. As a consequence of the recursive call, when every
consumer op is visited and linked, the producer oy, itselfis linked. Then, all
the links that become redundant after the linking of 0, are removed. Observe
that the initial links are all removed by Algorithm 5.3. For this reason, when
we refer to a link from now on, we mean a link determined by that algorithm,
unless otherwise specified.

In summary, the new set of links obtained by Algorithm 5.3 capture the
maximal freedom for moving operations downwards. As a consequence, the
following theorem holds.

THEOREM 5.1

If there is a path p from the source to a basic block BB; such that operation
om was not scheduled within any BB included in path p, and if there exists
a lowest link connecting operation oy, with BB, then o, must be scheduled
within BB

PROOF
There are two cases in which a lowest link is obtained, as follows:

Case 1: BBj # BB, in Algorithm 5.3

Under this assumption, we conclude from Algorithm 5.2 that procedure
free(onm, BB,, BB +1) must have returned false. As a consequence, the
following predlcate holds:

kill(Om, BB BBJ +1) V (0(oy) = conditional) v (BB = gink).

This means that postponing the scheduling of oy, to BB +1eitherkills avalue,
or a conditional moves beyond a decision point of the control flow, or the
operation illegally moves through the sink. Since from the hypothesis, o, was
not scheduled prior to BB and can not be scheduled any later, o, must be
scheduled in BB

Case 2: BBJ- = BBk in Algorithm 5.3

Under this assumption, there must be some operation o, reachable from oy,
and linked to BB, for which Case 1 holds. Since oy, is reachable through data
edges in the DFG, oy is data dependent on op,. Assume that the scheduling
of oy, is postponed to BB, i1 Since from the hypothesis, 0, was not scheduled
before BB and o, can not be moved to BB +1(Case 1), the data dependence

96 Exploiting instruction—level parallelism: a constructive approach

between oy, and o, will be violated if the scheduling of o, is postponed to
BBj +1- Hence, o, must be scheduled within BBJ.. d

In other words, Algorithm 5.3 identifies the constraints imposed on
downward code motion by the flow of data.

5.2 Pruning inefficient code motions

Recall that the sets of available operations are ordered according to some
priority encoding II. In this section, we show how the lowest links, obtained
by the data—flow analysis described in the previous section, can be used to
modify the ordering of the sets of available operations in such a way that
ineffective code motions are prevented. First, we introduce the basic notions
with a couple of examples. Second, we show how a precedence relation can be
obtained from the lowest links. Then, we show how the pruning of inefficient
code motions can be formulated as a dynamic reordering of the sets of
available operations.

5.2.1 Motivation

In the compiler arena, most of the early ILP techniques are oriented to
architectures where resources are abundant, like VLIW machines [22][48].
Some approaches reorient such techniques to architectures with scarce
resources [62]. In both scenarios, the techniques aim at speeding up average
program runtime.

In the context of HLS, due to the requirements dictated by embedded
systems, the architectures of ASICs and ASIPs are designed with as few
resources as possible. The amount of resources is just enough to comply with
the requirements of a single application or of a bounded application domain.
As a consequence, the direct application of ILP techniques developed in the
compiler domain may create an unbalance between the parallelism exposed
and the parallelism that can actually be exploited.

To illustrate such unbalance, we refer to the simple examples in Figures 5.4
and 5.5. In each example, a behavioral description and its respective BBCG
are shown, along with two alternative solutions induced by different priority
encodings IT; and IT,. Only the links relevant for our analysis are shown. In
addition, suppose that one adder, one subtracter and one comparator are the
available resources.

Let us first consider code motion ahead of a branch junction, as illustrated in
Figure 5.4. Solution SMG,, shown in Figure 5.4c, is induced by an encoding

Code—motion pruning 97

IT; such thatb < m, & Solution SMG,, shown in Figure 5.4d, is induced by IT,
such that a < m, b. Note that the operations a and b are available at state s,,
within BB I. We conclude that the schedule length of the left path is increased
by the execution of b in the first state of SMG,, as compared to SMG,. The
reason isthat aand b can not be scheduled in a same state because ©(a) = t(b)
and a single subtracter is available. Note that, although operation a must be
executed before the branch junction, the execution of b can be postponed until
after the branch, since it does not necessarily have to execute on the left path.
Consequently, solution SMG1 is inferior and it is convenient to prevent its
construction. For this purpose, we should be able to detect beforehand that
the pre—execution of b before a may lead to an inferior result. Actually, the
links emanating from a and b hint the criterion for such detection, as follows.

[a]

[e4] s

[b] o

[d]

else
[e]
[£] sile]b
1 C1
description [d[T Js2
Hl = (b’a,d’eaf) /
I, = (a,b,d,e,f s3[f] 1]
[+[-]>]

resource constraints BBCG SMGq SMG2

(a) (b) (c) (d)

FIGURE 5.4. Example of code motion ahead of branch junction

On the one hand, ais linked to I and must be scheduled within BB I, because
the result of a must be available prior to branch B, in the control flow. On the
other hand, operation b does not necessarily have to be executed in BB I, the
only requirement being its execution prior to operation d. Therefore, it seems
that when the precedence in the control flow between the BBs pointed to by
the links from a and b coincides with the precedence in the priority encoding,
abetter solution is obtained. This suggests that, in the case such a coincidence
does not hold, we should reorder available operations to avoid the
construction of an inferior solution. For instance, given the encoding I1; in
Figure 5.4c, if we reorder a and b in the availability set A, the code motion
of b that places it in state s, is prevented and solution SMG1 is not

98 Exploiting instruction—level parallelism: a constructive approach

constructed. This is the key for the pruning technique to be described in this
section.

Let us now consider code motion ahead of a merge junction, as illustrated in
Figure 5.5. On the one hand, solution SMG,, shown in Figure 5.5¢, is induced
by priority encoding II; such that g <, d A g <p f. On the other hand,

solution SMG,, deplcted in Figure 5. 5d is 1nduced by II, such that
d < m 8 A f< m, &- Assuming that operations a, b and e are already
scheduled operatlons d and g are simultaneously available at BB J and
operations f and g are simultaneously available at BB K. Observe that the
duplication of g into BBs J and K does not increase the schedule lengths of
any path since g has to be executed on both control paths anyhow. However,
it might increase the number of states. For instance, note that states s; and
s, in SMG; can not be merged by the technique described in the previous
chapter, since they are not equivalent. If we compare solutions SMG; and
SMGy,, we conclude that the larger number of states in SMG; occurs because
g is moved across the merge junction, but it can not be accommodated in a
same state with either d or f, because t©(d) = ©(g) = ©(f) and only one
subtracter is available. Note that such code motion is actually unnecessary.
Although the results of d and f must be available before the merge junction,
the execution of g can be postponed until after the merge. The code motion of
g might be beneficial if the involved operations happened to map to different
module types or if more resources were available.

V
sola]b[Cy] EE.
T Cq C1
sgle] 1] [Igf ‘S1Szle| I | [1d] Js1

Y T

e oy . { > - g 85 S4
description

1 = (a’ b> Cl: e> h9 g; f, d) S6E@j S5,
IT, = (a,b,cq,e,h,f,d, g) ‘L é
resource constraints BBCG SMGq SMGg

(a) (b) (e) (d)

FIGURE 5.5. Example of code motion ahead of merge junction

Code~motion pruning 99

Similarly to the previous example, the links emanating from the operations
mapping to a same module type hint us some criterion to reorder operations.
For the second example, such a reordering will prevent the construction of
SMG;,, which is inferior with respect to the number of states.

The examples analyzed above illustrate that availability analysis may expose
too much parallelism. Since we can not simply restrict availability analysis
beforehand without limiting the design space exploration, we have to find
another mechanism. Actually, the parallelism exploitable can be hinted by a
convenient interpretation of the links: given two available operations
mapping to a same module type, the execution of the operation that is linked
to the currently visited BB should have the priority over the other. This
suggests that a reordering of the availability sets has the effect of pruning
inferior solutions from the search space. Henceforth, we refer to this kind of
pruning as code-motion pruning (CMP).

Since the set of links emanating from the operations in the DFG changes after
each code motion and is also affected by code compensation, the reordering
must be determined on the fly, depending on the decisions taken dynamically
by the scheduler as it proceeds. As illustrated in Figures 5.4 and 5.5, such a
reordering is likely to have an impact not only on schedule length (for code
motion ahead of branch junctions), but also on the number of states (for code
motion ahead of merge junctions).

5.2.2 A precedence relation based on the links

The examples in the previous section suggest that, if some operation a
precedes some operation b in terms of lowest links, a should be scheduled
before b, even if b precedes a in the priority encoding I1. Such precedence,
hinted by the lowest links, can be modeled by a precedence relation, as
follows.

To begin with, precedence should be defined only between operations
mapping to a same module type, because only in that case their parallel
execution might be impaired due to the lack resources.

According to Theorem 5.1, if an operation a is linked to the currently visited
basic block, say BB;, and there is an operation b linked to some other basic
block BBJ- such that BB; A BBJ-, operation a must be scheduled in BB;, where
operation b does not necessarily have to be scheduled, since bhas the freedom
to move down to BBJ.. This suggests that operation a should have the priority
over operation b. These notions are formalized below.

100 Exploiting instruction—level parallelism: a constructive approach

DEFINITION 5.5

Given the set of lowest links A and some A € A, let < Ai denote the
precedence relation induced by the set of links A when the basic block BB;is
visited. We say that a precedes b at basic block BB;, written a < Ai b, 1ff

((a) = 1(b)) A((a = b) V (ads BB; Ab=tBB))).

Note that, in the term (a = b) ensures that the relation is reflexive. Notice
also that two operations are not ordered by the precedence relation if they are
linked to the same BB. In addition, observe that the relation is anti-symmet-
ric, but it is not transitive.

Below, we show how this precedence relation can be combined with the
priority encoding to prevent the induction of inefficient code motions.

5.2.3 Reordering the sets of available operations

Recall that the priority encoding IT induces a linear order <y such that
a <y b denotes that a has priority over b. Recollect that < is used to keep
the sets of available operations ordered. To influence the induction of code
motion, we modify the linear ordering implied by < - Given two operations
a and b, our idea is to make the precedence relation < A prevail over the
priority encoding either when a < Ai b or when b < A Otherwise, the
ordering induced by the priority encodlng is maintained. This notion is
formalized by defining a new linear ordering < i for each BB;, as follows:

a<pbe@<,;b)V(=b <, 8 A @ <b). (5.2)

The linear order < m,i represents the modification of the original linear order
defined by the pmorlty encoding such that the information captured by our
data—flow analysis technique is taken into account. Assume that we order
every set A. ik according to the relation < i Suppose that two operations
a,b e A, o Wthh map to a same module type tm, are such that a < i b,
although b precedes ain the priority encoding IT. We conclude that ais linked
to basic block BB, and that b is linked to some other basic block BBJ If the
scheduler selects a to be scheduled in state s; K the code motion of b from BB.
to BB, is prevented if no more resources of type ty are free within BB;. In
other Words reordering the set A, k effectuates the pruning of code moves

The reordering does not move an operation to a basic block, say BB;, on some
control path p, under two circumstances, namely:

e Ifthe code motion may increase the schedule length of some other control
path q that also includes BB, (recall Figure 5.4).

¢ Ifthe code motion may unnecessarily increase the number of states (recall
Figure 5.5).

Code—motion pruning 101

However, the method is heuristic: it may exclude beneficial moves. Yet, our
criterion is more conscious of scheduler decisions and of data—flow properties
than most of the built—in heuristics found in the literature. For instance, the
heuristic reported in [62] gives priority to the operations whose initial BB is
being visited, but no support is provided to check if the operations could move
further down in the flow of control.

Another example is the method reported in [46], where available operations
are prioritized according to two main heuristic criteria, namely the
topological ordering of the operations in the control-flow graph and the
so—called degree of speculativeness. Although that method relies on a quite
different representation, we could approximately capture both criteria in our
context as follows: available operations are ordered according to a topological
ordering of their initial BBs. These criteria make three main greedy
assumptions. First, the topological ordering relies on the initial position of
the operations in the control flow. It overlooks the fact that the initial position
may be arbitrary and, since only upward code motions are supported by that
method, the effect of possible downward code motionsis not captured. Second,
the criteria enforce unnecessarily the order of operations linked to mutually
unreachable BBs. Third, the criteria enforce the precedence of operations
linked to BBs on a same control path. Assume, for instance, that operations
P, q and r are linked to BBs P, Q and R, respectively. If these BBs are such
that P % Q AR, the order (p,q,r) is enforced, regardless of which BB is
currently visited. In other words, the criteria overlook the fact that the
scheduling of some operations can be postponed. In our technique, however,
we not only define a precedence relation for each visited BB depending on the
current set of links, but also our relation is not transitive to avoid enforcing
an order of available operations induced by the precedence of their associated
BBs on a given path.

Note that the methods [46][62] rely on built—in heuristics, i.e., an ordering
criterion determines a single priority—list leading to the construction of a
single solution, as opposed to our notion of several priority encodings
inducing the exploration of alternative solutions.

5.3 Experimental results

In this section, we show the effect of applying CMP during the exploration of
alternative solutions. First, we look at the overall impact of the technique on
the search space. Afterwards, we report experimental results showing the
impact of that technique on both the schedule length and the number of
states. The experiments are performed for several examples extracted from
the HLS literature under the following set—up. Essentially, all the types of

102 Exploiting instruction—level parallelism: a constructive approach

code motion discussed in the previous chapter are allowed, along with both
forms of speculation. In addition, our technique for exploiting state
equivalence on the fly is enabled for all experiments. For every experiment,
we perform two runs: one without and one with CMP.

Our objective is to evaluate the impact of the technique for an arbitrary
priority encoding. For this purpose, several priority encodings are generated
such that the position of each operation in a permutation is determined at
random. The solutions induced by each priority encoding are computed.
Then, the schedule length of the longest path and the total number of states
are measured for each solution. Some statistics on the measured values are
examined.

5.3.1 The impact on the search space

In order to ease the interpretation of the results in this section, assume that
the ith solution in the search space is identified by the pair (L;, S;), where L;
denotes the schedule length of the longest path in the respective SMG and S;
denotes its number of states. In addition, since different values of L; are
obtained for different solutions, we say that the range of schedule lengths,
written AL, is the difference between the maximal and the minimal values
observed for L; among a set of generated solutions. Similarly, the range of
number of states, written AS, is the difference between maximal and minimal
values observed for S,.

To illustrate the overall effect of the technique, we select the example “s2r”
[62] and, given a set of resource constraints, we apply a sequence of 100
randomly—-generated priority encodings, thereby constructing 100 solutions.
Different runs of the experiment are performed for different resource
constraints corresponding to cases A, B and C (see Appendix A). For each of
these cases, we provide plots for the search space induced by the randomly—
generated priority encodings.

Let us first illustrate the effect observed in the search space when the
experiments are performed without CMP, as shown by the plot in Figure 5.6.
The number of available resources decreases for cases C, B and A in this order
(the number of instances of “alu”is 3, 2 and 1, respectively). In the plot, each
point represents a different solution, the vertical axis indicates the number
of states and the horizontal axis represents the schedule length of the longest
path in terms of number of clock cycles. Compare cases A, B and C with
respect to the observed ranges of schedule lengths. Note that AL = 3, for case
C, AL = 4, for case B and AL = 7, for case A. We observe that AL increases
when the number of resources decreases. Similarly, if we compare the number
of states for cases A, B and C, we can say that AS also increases when the

Code—motion pruning 103

number of resources decreases. Informally, we can say that the tighter the
resource constraints are, the more spread out the search space becomes. This
is a first experimental evidence that not all ILP exposed is beneficial. On the
contrary, parallelism that is uncovered but is not accommodated leads to the
generation of many inferior solutions in the course of the optimization
process.

states »
110 T T T T T T T T
© ’A‘ o
B o+
o oo
100 |- ° ° .
° °
Y °
® 8 °
3 °
90 + o @ g i
° °
° § 8 °
> 8 8 °
80 |- ° g 8 ° |
® ° 3 @
® ® AP o 8 °
° °
n0r H ° 3 8 T
o °
g * : ® . ’
<o 8 Lol
°
60 - B ’ ° ° 7
: . s e
8 + ° °
50 oot ° g
E I . .
© o
4
40 + .
o
°
30 I ! 1 L 1 1 1 1
8 10 12 14 16 18 20 22
schedule length

FIGURE 5.6. The search space without code—motion pruning

Let us now observe what happens when the same experiments summarized
in Figure 5.6 are performed such that solutions are computed by exactly the
same priority encodings, but then with the application of our CMP technique.
The new results are plotted in Figure 5.7. By comparing Figures 5.6 and 5.7,
we conclude that AL is reduced from 3 to 2, for case C; from 4 to 3, for case B
and from 7 to 2, for case A. Similarly, AS also exhibits a reduction, although
in a smaller scale. Note that inferior solutions with respect to schedule
lengths are pruned from the search space and that CMP causes the solutions
to “shift” towards the optimal schedule length. In case A, for instance, assume
that the optimal schedule length is L; = 14. Note that, unlike Figure 5.7, no
solution with optimal schedule length is generated in Figure 5.6 for case A,

104 Exploiting instruction-level parallelism: a constructive approach

although exactly the same set of priority encodings is used in both runs. This
means that the original priorities of some operations in several permutations
were modified by CMP such as to generate solutions with shorter schedule
length. Without CMP, we would need to generate more permutations in order
to increase the probability of an optimal solution being induced.

states
110 T T T T T T Ll T
Ao
B .
o o
100 F 4
o
90 o ° B
kel
©
§ g ©
80 |- g 8 -
70 | ¢ 8 4
o g
(o3
+ g @
60 |- § -
©
* 8
. 8 o
50 | g .
(3
40 - -
30 1 1 1 1 1 1 i 1
8 10 12 14 16 18 20 22
schedule length .

FIGURE 5.7. The search space with code-motion pruning

However, note that several solutions with a small number of states are
pruned, especially when their schedule lengths are far from the optimum. In
Figure 5.6, for instance, the solutions (18,34) and (17,38) are generated.
These solutions are not generated when CMP is applied. This observation
suggests that the application of CMP may prevent the construction of cheap
solutions when the global time—constraint is not tight. On the one hand, this
disadvantage could obviously be overcome by disabling pruning if the global
time—constraint is not too tight, although possibly at the expense of larger
search times. On the other hand, it is unlikely that code motion would have
an essential impact under loose time—constraints. Therefore, in such a
context, a HLS tool with on-demand code motion capabilities is likely to

Code—motion pruning 105

achieve a reduction of the number of potential solutions to be explored and
still keep acceptable solutions in the search space, simply by inhibiting some
code motions (like duplication of conditionals). Yet, CMP seems to perform
well with respect to the number of states under tight time—constraints. For
instance, note that in Figure 5.7, case A, more solutions with low number of
states are generated with L; = 15 than in Figure 5.6. A similar result can be
observed for case B with L; = 9. For case C, the quality in terms of states is
essentially the same for L; = 8 in both figures.

In the next two sections, we refine our evaluation of the impact of CMP by
analyzing detailed statistics for several examples.

5.3.2 The impact on schedule length

Let us first observe what happens with the schedule lengths when we apply
CMP. Table 5.2 reports statistics for the schedule length of the longest path
for several examples shown in the first column. Each different case in the
second column corresponds to distinct resource constraints, as described in
Appendix A. The third column shows the best schedule length known for each
case. Two sets of results are shown: one without and one with CMP.

Each set of results is organized in three columns. The first two columns show
the mean value an the standard deviation for the schedule length of the
longest path. The last column reports the percentage of solutions with the
best L;, i.e., it represents the density of observed solutions with minimal
schedule length, which is referred to as the density of promising solutions.

Note that the mean value either decreases or remains the same for all
examples when pruning is applied. Notice also that, for a given example, the
fewer resources are available, the more reduction is obtained on the mean
value. This observation can be interpreted as follows. The fewer resources are
available, the less code motions are effective and, consequently, the more
code—motions are pruned. Therefore, our technique has the effect of
compensating for the unbalance between the exposed ILP and the exploitable
ILP. In addition, notice that the standard deviation decreases for most
examples under CMP. This means that the technique not only shortens
schedule lengths on average for a same set of priority encodings, but also
spreads them over a smaller range of possible schedule lengths.

Observe that CMP increases the density of promising solutions in the search
space for all the examples, except for a few of them where the density remains
the same. It is important to note that the fewer resources are available, the
more impact CMP has on the density. For data paths with few resources, such
as in cases A, B, E and F for the example “s2r” (see Appendix A), the

106 Exploiting instruction—level parallelism: a constructive approach

percentages obtained without pruning are very low. As a consequence, we
conclude that many more solutions should be explored under tight time—
constraints if no mechanism is employed to compensate for the unbalance
between exposed ILP and exploitable ILP. In this context, CMP seems to be
an efficient mechanism.

TABLE 5.2 Results showing the impact of CMP on schedule length

example | case | best without with
Ly mean | o[%] mean | [g]

waka A 7 7.8 8.5 7.8 8.5
B | 7 8o| 78| 79| 83

kim B 8 9.0 5.3} 8.8 4.6
C 6 7.0 6.6 6.9 5.7

rotor A 11 136 128 11.0 0.0
B 8 8.3 55} 8.0 0.0

C 7 7.0 0.0] 7.0 0.0

E | 9 | 1068 54 08| 36

F 8 8.0 0.0 | 8.0 0.0

G 8 8.0 0.0 8.0 0.0

s2r A 14 18.0 9.5 14.7 3.5
B 8 104 7.8 9.5 6.1

Cc 9.1 9.0 8.9 8.7

E 12 15.0 84 13.1 5.7

F 8 10.3 821 10.0 7.6

G 8 9.7 114 .: 94(11.0

kim_big A 49 64 6.2 59 4.5
C | 49 63| 5.1} 59| 4.3

D 47 61 5.9 58 5.0

It is interesting to observe that for the example “rotor” in cases A and B the
pruning is such that all the solutions generated have minimal schedule
lengths. Note that this situation can occur without CMP only if the number
of resources is increased as in case C, where all the exposed parallelism is
accommodated within the available resources.

Let us now focus on the example “kim_big”. Table 5.3 reports densities of
solutions representing various potential local-optima in the range from

Code—motion pruning 107

L; = 49to L; = 59.For each case, the percentages without and with CMP are
presented. Note that, when CMP is applied, the densities increase for every
potential local-optimum and for all reported cases. It is interesting to notice
that for case A no solution with L; < 53 is observed within the set of
generated solutions when CMP is disabled, whereas solutions with L; in the
interval 49 < L, < 53 are observed when CMP is applied. This means that,
without CMP, more solutions have to be explored on average in order to reach
local optima of good quality.

In order to ease the interpretation of the results in Table 5.3, we organize the
results in the chart of Figure 5.8 for the example “kim_big”, case D. In the
figure, the horizontal axis represents different time constraints T,.. The
vertical axis represents the percentages obtained by adding the densities of
all solutions with L; < T, for a given T.. In other words, it represents the
density of solutions satisfying a given time constraint T.. Results are shown
with and without CMP and are distinguished by the areas shaded in black and
gray, respectively.

TABLE 5.3 Densities of potential local-optima for the example “kim_big”

case

A | without| 0.0] 0.0] 0.0] 0.0] 0.1] 0.0] 0.4] 0.6] 1.9] 3.8] 53
with| 0.1| 0.2| 0.0| 0.6] 1.3| 24| 3.6| 6.3| 9.8/12.6|142
C | without| 0.0 0.0] 0.0] 0.1] 0.1| 05] 0.2| 1.0]| 2.3| 48| 53
with| 0.1 0.0| 02| 0.7| 1.0| 2.1| 4.8| 6.4| 9.8]/13.4|17.3
D | without| 0.0] 0.0] 0.0] 0.3]| 05| 1.1] 14| 18| 6.0| 7.0/10.8
with| 0.2] 0.6| 1.0| 14| 2.6| 46| 6.3| 89|102]16.6|16.2

Note, for instance, that when T, = 56, then 5% of the solutions observed
without CMP satisfy the time constraint, against about 25% when CMP is
applied. Similarly, when T, = 58 those percentages are about 18% and 52%
without and with CMP, respectively. Observe also that approximately 70% of
the solutions observed without CMP have L. > 59, whereas only 30% of such
low—quality solutions are observed with CMP.

Those results provide evidence that CMP increases the number of solutions
satisfying a given time constraint. Since the reported statistics are obtained
with randomly—-generated priority encodings, it is reasonable to expect that
the technique should reduce search times in a way largely independent of the
choice of a local search algorithm for the explorer.

108 Exploiting instruction—level parallelism: a constructive approach

density [%]

100

% B vith
without

80

70

60

50

40

30

20

FiGURE 5.8. Density of solutions satisfying a given time constraint

5.3.3 The impact on the number of states

Although the minimization of schedule lengths is the primary issue for
time—constrained applications, it is also convenient to observe the effect of
CMP with respect to the number of states.

Table 5.4 shows the mean value and the standard deviation of the total
number of states for the same examples in Table 5.2. Note that, when pruning
is applied, the mean value decreases or remains the same in most examples,
except for the case E of examples “rotor” and “s2r”, and for cases A and C of
example “kim_big”. However, in these cases the increase on the mean value
is less than 8%. With respect to the standard deviation, it decreases in several
cases and in others a slight growth is observed.

Therefore, the results suggest that the technique can be applied to prune
inferior solutions in terms of schedule lengths, whereas the side effect of
possibly increasing the number of states is negligible on average.

Code—motion pruning 109

TABLE 5.4 Results showing the impact of CMP on the number of states

example | case without with
waka A
B
kim B
C
rotor A
B
C
E
F
G
s2r A
B
C
E
F
G
kim_big A
C
D

5.3.4 Comparison with other methods

In this section, our goal is to provide extra evidence that our approach can
reach high—quality solutions, by comparing our schedule lengths with those
obtained by other methods.

In Table 5.5, we compare our results with heuristic methods (TBS, CVLS and
HRA) and one exact method (ST) in terms of schedule lengths of the longest
path. The resource constraints are shown at the top of the table. Our results
are shown in the shadowed row and results from other methods are
assembled at the bottom. Note that our method reaches the best published
results.

In Table 5.6, we capture the effect of the pipeline latency imposed by the
advance choice of a controller. A pipeline of two stages is adopted such that

110 Exploiting instruction-level parallelism: a constructive approach

each conditional has a delay slot of 1 cycle. Note that our approach can reach
the same schedule lengths obtained by the exact method described in [52].
This agrees with the fact that we support essentially the same types of code
motion as the method in [52], which provides one of the most general sets of
code motions reported in the HLS literature, despite its large runtime.

TABLE 5.5 Comparison of schedule lengths with other methods

waka | kim | maha[49] parker[49]

add 1 2 1 2 1 2
sub 1 1 1 3 1 3
cmp 1 1 -

ST [52] 7 5 4
TBS [34] 7 - 5 - - -
CVLS [72] | 7 5 4 5 4
HRA [37] 7 7 8 - - -

TABLE 5.6 Comparison of schedule lengths with the method in [52]

rotor s2r

alu | 1 2 3 4 1 2 3 4 3
mul | 0 0 0 0 2 2 2 2 2

For the example “kim_big”, we are unfortunately not able to make an
accurate comparison. This example is obtained from a DFG in [37], but we
were obliged to adapt the original graph to our DFG model and also to comply
with some restrictions of format imposed by our current implementation.
Therefore, the example “kim_big” refers to a DFG slightly different from the
original DFG, which prevents a precise comparison with the method in [37].
However, let us illustrate the difference with a few values. The best schedule
lengths obtained in [37] are 47, 46 and 46, for cases A, C and D, respectively,
whereas the best schedule lengths for the example “kim_big” using our
approach are 49, for cases A and C and 47, for case D. The difference in
schedule lengths is small enough to suggest that the same results in [37]
would be reached, should our implementation restrictions be overcome.

Code—motion pruning 111

5.4 Discussion

In this chapter, a data—flow analysis technique was proposed for extending
our approach with the capability of handling downward code motion, as
opposed to most global scheduling methods [19]1[46][62]. The underlying idea
is to propagate operations downwards in the flow of control as much as
possible. The resulting set of links, the so—called lowest links, can be used
instead of the initial links. As a consequence, the analysis is executed only
once, as a pre—processing step, before the construction and the exploration of
alternative solutions. Since downward code motions are captured by the
initialization, only upward code motions are performed during global
scheduling, without loss of generality. Note that the proposed analysis is
fundamental to capture conditional execution properly. Since the lowest links
are such that operations are linked only to the BBs where their computed
values are used, we can ensure that the execution condition and the
committing condition are equal for each operation. This is the underlying
hypothesis of our modeling for speculation (recall Definition 4.4).

An example of scheduling method which supports downward code motion to
a certain extent is Tree-Based Scheduling (TBS) [34]. First, the control flow
graph is converted into several trees, each tree representing a structure of
nested conditional constructs. The conversion is performed by duplicating all
the operations after join junctions. Then, operations are propagated towards
the leaves of each tree. However, downward code motion is performed only
within the scope of a single tree. Unlike TBS, our method is global: operations
can move down possibly across various subgraphs representing nested
conditionals. Besides, in TBS, the goal of downward propagation is merely to
guarantee that operations execute only on control paths where their values
are actually used, instead of our more general capturing of maximal freedom
for downward code motion. Moreover, TBS does not handle the replication of
operations on a same control path, which limits the range of legal downward
code motions.

Our data—flow analysis suggests, as a by—product, a criterion for pruning
inefficient code motions. Code—motion pruning is formulated as a reordering
of the availability sets such that the code motions possibly increasing the
schedule lengths are not effectuated. The price to pay for including the
dynamic reordering expressed in Equation 5.2 seems affordable for the
following reasons. The test a < ; b can be implemented in constant time. The
test a < Alb may require the enumeration of all links from a and b.
Therefore, the test a < i b takes O(|A(a)| + |A(b)|), i.e., it is bounded by
the total number of copies of a and b, typically a small fraction of the total
number of operations.

112 Exploiting instruction-level parallelism: a constructive approach

Even though the basic properties of the data—flow captured by our techniques
are also observed by other methods, classical approaches exploit them in the
form of built—-in schedule heuristics. In other words, the scheduling order of
some operations is unnecessarily enforced, thereby preventing the explora-
tion of possibly superior alternative solutions. Although our method is
carefully designed to avoid the greed of classical built—in heuristics, it still
has the theoretical drawback that optimal solutions might be excluded. In
spite of this fact, experimental results indicate that the pruning increases the
density of promising solutions, especially under tight resource constraints.
Thisis typically the case for HLS. Although the technique might prune cheap
solutions with respect to the number of states, this effect is smaller for
solutions whose schedule lengths are close to the optimum, i.e., this side effect
can be considered marginal under tight time constraints. Since code—motion
pruning improves the quality of global scheduling and since the inherent
dynamic-reordering mechanism relies on an efficient test on precedence, we
conclude that the technique represents a viable option for a HLS tool.

Moreover, code—motion pruning could be used on demand. For instance, in
the early (more iterative) phases of a design flow, quick exploration is
imperative and the CMP should be enabled. On the other hand, in the late
phases of a design flow, more time can be spent with optimization. For this
reason, the CMP could be switched off in order to explore possibly cheaper
solutions overlooked by the early quick exploration.

Chapter

6 Towards loop pipelining

In the previous chapters, techniques are proposed to overcome the limited
ILP within BBs by exposing and exploiting parallelism beyond basic-block
boundaries. Similarly, to surmount the limited ILP within a single iteration
of a loop, this chapter discusses techniques to uncover parallelism beyond
iteration boundaries. It shows how our approach can be extended to include
the pipelining of loops containing conditional constructs.

6.1 Motivation

Let us illustrate some basic notions with the simple example in Figure 6.1.
Assume that the fragment of DFG in Figure 6.1a represents the body of a loop,
i.e., the operations to be executed in each iteration of a loop. Suppose that one
adder and one subtracter are available and assume that execution takes a
single cycle for both module types. In the figure, different superscripts denote
operations executed in different iterations of a loop. For simplicity, the test
governing the exit condition of the loop is omitted.

Assume that the loop body is scheduled such that the available parallelism
is uncovered only within the scope of a single iteration of the loop. In each
valid schedule, each iteration of the loop takes at least three cycles to execute
and new output values are generated after every three cycles. An example of
such a schedule is given in Figure 6.1b.

We can consider uncovering parallelism by constructing a new loop body
comprising the operations associated with successive iterations of the
original loop, as shown in Figure 6.1c. In other words, the original loop is
turned into a multi-iteration loop. This is called loop unrolling. Note that if
this scheme is used, two sets of output values are generated (one for each
iteration in the loop body) in each interval of 5 cycles.

Alternatively, if we consider that another iteration of the loop can start before
the previous iteration has finished, extra parallelism is uncovered without
the need for unrolling the loop. This technique is known as loop pipelining.
For instance, the execution of operation a in the second iteration can be
performed simultaneously with the execution of operation d in the first

113

114 Exploiting instruction—level parallelism: a constructive approach

iteration, as shown in Figure 6.1d. As a consequence, although each iteration
still takes three cycles to complete, new results are produced after every two
cycles. We say that the loop body is operating as an execution pipeline. In
order to start the pipeline, some operations are executed in a so—called
pre—amble. Conversely, in order to drain the pipeline, some operations are
executed in a so—called post~amble. We henceforth refer to the pipelined loop
body as the kernel. In the example of Figure 6.1d, the operation in state s,
forms the pre—amble, whereas the operations in states s; and s, form the
post—amble. The kernel consists of the operations in states s, and s,. If it is
required that the algorithm should process new data every two cycles, we
conclude that the first two solutions do not satisfy the time constraint,
whereas the last solution does.

a C
b d s
s1
(a) J
S92
) s3
S1 sS4
5 !
(b) (c) (d)

FIGURE 6.1. Illustrative example for loop unrolling and pipelining

Since the loop body operates as a pipeline, the notions of data—introduction
interval and latency can be associated with the execution of the loop. The
data-introduction interval of a loop, written DII, is the minimal number of
clock cycles required between the execution of successive iterations of the
loop. The latency of the pipelined loop is the length of the interval between the
arrival time of input data and the time at which the computation of the
respective output values is completed. For instance, for the example in Figure
6.1d, the piris 2 cycles, whereas the latency is 3 cycles. On the other hand, for
the example of Figure 6.1b both D11 and latency are 3 cycles, since the loop
body is not pipelined.

Towards loop pipelining 115

Essentially, the idea of loop unrolling is to increase the number of operations
within the loop body in order to increase ILP. On the other hand, the
underlying idea of loop pipelining is to execute operations from different
iterations of the original loop body, but without increasing the number of
operations in the kernel. Loop pipelining achieves the effect of scheduling
with full unrolling [4], while producing less code than loop unrolling [30]. For
. these reasons, in the remainder of this chapter, we focus on loop pipelining.
A comprehensive study of loop unrolling can be found in [30].

A common requirement when dealing with time—constrained applications is
that the total number of iterations of a loop should not depend on the setting
of the data [36][70]. Therefore, we address the pipelining of loops whose total
number of iterations can be determined at compile time (e.g. “for” loops).

In the examples in this chapter, we assume a time constraint in the form of
a specified upper bound for the D1 of a loop. We also assume, for simplicity,
that only data dependences within the scope of a same iteration of a loop are
present. Section 6.5 discusses ways of relaxing these assumptions.

6.2 Fundamental notions

Let us now introduce some essential notions used throughout this chapter. A
graph representing a loop is a directed cyclic graph (DCG). ADCG can be seen
as a directed acyclic graph (DAG) that is made cyclic by the insertion of edges
with special properties. To stress some properties of edges, we adopt the
classification of edges proposed in [14], as summarized below.

Let G = (V,E)be adirected graph and let G = (V,X) be a rooted tree whose
edges X connect all the nodes of G. An edge (u,v) € Eis classified as follows:

e (u,v)is atree edge if (u,v) € X;
e (u,v)is a forward edge if uis an ancestor of vin Gy.
e (u,v) is a back edge if v is an ancestor of u in Gr.

e (u,v)is a cross edge if neither v nor u is an ancestor of the other in Gr.

Recall that, after scheduling a current state s;, our parallelizer appoints next
states and constructs the transitions from s, to the next states. Since the flow
of control forks when conditionals are scheduled, if our technique of merging
equivalent states is not applied, the constructed transitions will form a tree
rooted at the source, whose edges connect all the states created by the
parallelizer. This is the tree used as the reference to classify the edges
throughout this chapter. As a consequence, the edges inserted by merging
equivalent states are either forward or cross edges and their insertion turns

116 Exploiting instruction-level parallelism: a constructive approach

the tree into a DAG. As will be seen, the pipelining of loop bodies causes the
insertion of back edges, turning the DAG into a DCG.

When operations are enclosed in the body of a loop, their execution is repeated
several times, giving rise to distinct iterations. We refer to the operation
executed at a given iteration as an instance of the operation at that iteration.
Given an operation oy, the instance of oy, at iteration j is written as o{l. We
refer to the superscript j as the iteration number. Throughout this chapter,
the “instance of an operation” at some iteration is simply called “instance”,
whenever that is clear from the context.

6.3 Related work

Modulo scheduling (MS) [39] is one of the most popular pipelining techniques.
It assumes a fixed D11, which is calculated beforehand. Given a value for b1,
if an operation is scheduled at cycle step ¢, the instance of this operation in
iteration j is scheduled at cycle step ¢ + j - DII. Resource constraints must be
satisfied for all the operations scheduled within the same cycle modulo piI.
The main disadvantage of MS is that it does not handle loop bodies with
conditional constructs directly. MS requires the prior application of auxiliary
mechanisms, addressed as hierarchical reduction or if-conversion, in order
to transform a multi-BB flow graph into a single-BB flow graph, as explained
below.

Given the innermost conditional of a structure of nested conditional
constructs, hierarchical reduction [40] consists of three main tasks. First, the
BBs associated with the “then” and the “else” branches are scheduled
independently. Second, the BB with shorter schedule length is padded with
null operations (“nops”) until it has the same length of the BB with longer
schedule length. Third, the entire conditional construct is encapsulated as a
single entity. The process is repeated for the next levels in the hierarchy of
conditional nesting from the innermost to the outermost conditional.
However, since hierarchical reduction preserves the original control struc-
ture, it restricts code motions. In if~conversion [5], each operation is guarded
with a predicate associated with the tests on which the operation is control
dependent. An operation is executed only when all the guards in the predicate
evaluate to true. In other words, control dependences are expressed as data
dependences. Consequently, the operations in the loop body are scheduled as
if they were within a single BB, thereby overlooking conditional resource
sharing, because mutually exclusive operations may compete for a same
resource. Since the mechanism enforces control dependences, if-conversion
restricts speculative execution. In summary, despite its efficiency, MS
requires mechanisms to handle conditionals that restrict code motion and
speculation.

Towards loop pipelining 117

An alternative for producing software pipelining is to use loop unrolling as
the underlying mechanism. An example is Perfect Pipelining (PP) [2], which
unrolls the loop a certain number of times and schedules the operations until
a repetitive pattern is detected for the pipelined kernel. Some rules are
necessary during the construction of a schedule to ensure that a pattern will
eventually emerge. In [3][4], PP was extended to handle conditionals, such
that no restriction is imposed on code motion within the unrolled loop body.
One disadvantage of PP is that the convergence to a pattern may be slow in
some cases [4]. The main advantages of the method in [3][4] is the graceful
handling of conditional constructs that does not restrict code motion, along
with the orthogonality between parallelization and scheduler heuristics. This
eases the control of the quality of the generated solutions.

Another way of generating a pipelined loop body is by performing code motion
across back edges of a cyclic flow graph. This is the underlying mechanism of
Enhanced Pipeline Scheduling (EPS) [17][18]. Initially, an empty state is
appointed just after the entry point of the loop. This state is “filled” with
available instances of operations belonging to the first iteration. Then, the
operations in the “filled” state are moved from the loop body to the pre—amble
and new instances of those operations are added to the loop body. In general,
each time an instance o' is moved to the pre—amble, another instance o' *1is
inserted into the loop body. After “filling” a given state, next states are
appointed and available instances are determined among the instances
currently within the loop body. The process is repeated until all the operations
in the original loop body have been moved once across a back edge. Since
operations are moved from one iteration to another, but the number of
operations in the loop body is conserved, this mechanism produces loop
pipelining without the need for detecting a pattern. The main advantage of
EPS is its ability to gracefully and efficiently handle conditionals within the
loop body. The main disadvantage is that availability analysis is limited to the
instances within the loop body, even if the available resources are poorly
utilized. This restricts the exploitation of ILP to a certain extent. Also, the
stop criterion for moving operations across back edges is completely arbitrary,
which may prevent the generation of superior solutions. Moreover, since the
criterion is not affected by the application of different priority encodings,
design space exploration may be impaired.

In the context of HLS, there are approaches that treat loops, but do not allow
loop pipelining, such as Path-Based Scheduling (PBS) [12] and Tree—Based
Scheduling (TBS) [34]. In [12], for example, back edges are “broken” to obtain
an acyclic control-flow graph prior to the application of the PBS algorithm.
On the other hand, most of the loop pipelining techniques in the HLS
literature restrict the handling of conditionals constructs [13][24][36].
Rotation Scheduling (RS) [13], for instance, has a mechanism of moving

118 Exploiting instruction—level parallelism: a constructive approach

operations around the loop that is similar to EPS, but it relies on a
formulation based on a DFG without conditionals. The method in [52] deals
with acyclic DFGs containing conditionals, but only performs loop pipelining
for cyclic DFGs without conditionals. Although the method in [32] combines
speculative execution and loop pipelining, it is based on speeding up
execution via branch prediction and, consequently, it is not suitable to
applications oriented to worst—case execution. A recent approach [55]
extends RS to combine both loop pipelining and the handling of conditional
constructs. However, it employs greedy heuristics to maximize conditional
resource sharing prior to loop pipelining.

6.4 Our approach for loop pipelining

Among the classes of loop pipelining algorithms summarized above, the one
based on detection of a pattern [4] seems the most suitable to our approach,
for the following reasons:

e Parallelization is orthogonal to scheduler heuristics.
This allows us to borrow loop pipelining techniques from [4], without the
need to introduce scheduler heuristics in the constructor engine, thereby
keeping heuristics in the explorer engine, for the sake of proper design
space exploration.

e Detection of patterns and of equivalent states can be combined.
The mechanism for inducing loop pipelining suggested in [4] relies on an
equivalence relation defined in terms of available instances of operations.
This relation is used to detect a repeating pattern for the kernel of a
pipelined loop. Given the states sp and sy, if the process of scheduling
starting in each of them produces the same pattern and s, reaches sy, state
Sm can be merged with s, closing a cycle in the SMG. Recall that our
detection of equivalent states also merges states in the SMG. Although
state equivalence is not addressed in [4], our parallelizer can be extended
to perform loop pipelining by building upon this previous work.

¢ Loop pipelining can be seen as code motion between iterations.
When loop unrolling is used as the underlying mechanism for inducing loop
pipelining, the BBCG associated with the unrolled loop body is a DAG to
which our modeling of code motion can be directly applied, along with
code-motion pruning. In other words, code motion beyond iteration
boundaries is modeled as code motion across basic-block boundaries.

In the remainder of this section, we describe how our constructor can be
extended to induce loop pipelining. ILP is uncovered by implicitly unrolling
the loop for the sake of availability analysis and by scheduling states forming
an acyclic SMG until the merging of states adds the back edges, thereby

Towards loop pipelining 119

forming the pipelined kernel and distinguishing it from pre—amble and
post—amble.

6.4.1 Required extensions

Since the SMG generated by loop pipeliningis cyclic, the evaluation of the cost
of a solution can not rely on measuring the schedule length of some path p
(Lp) from source to sink, as it is the case for acyclic SMGs. For instance, if a
time constraint T, is imposed as an upper bound on the pi11, the number of
steps to execute a cycle should be measured instead, in order to check if T, is
satisfied. Given a back edge (sj, s;), the schedule length of the respective cycle
is the schedule length of the path from s; to s;, as formalized below.

DEFINITION 6.1
Given a simple cycle ¢ = (s(,8,...,8 _1,80) in a SMG, the schedule length of
cycle c, written L., is the number k of states included in the path

{S0» 8155 S 1)

In the context of loop pipelining, L. should replace L in the cost function used
in the optimization problem, since L. represents the DII.

To support loop pipelining, the sets of available operations should contain
instances of operations belonging to distinct iterations of a loop, i.e.,
A= (.., 01;1, ol ,..}, where i = j possibly holds. In the loop pipelining
technique described in [4], a constraint has to be applied in order to guarantee
termination: the instances of operations in every set A, should contain
instances of at most W successive iterations, where W is an arbitrary natural
number. It is as if available instances of operations were confined to a window
comprising W successive iterations. The value of Wis a parameter of the loop
pipelining algorithm and it does not need to be the same for every loop. The
algorithm is such that, when all the instances with minimal iteration number
are scheduled, this iteration is shifted out of the window and a new iteration
is shifted into it, thereby sliding the window one iteration further. For this
reason, we say that available instances of operations are confined to a sliding
window of size W. As a consequence, the following extensions should be made:

e The set of available operations A, may contain instances of operations
belonging to at most W successive iterations of aloop. In other words, if the
minimal iteration number of the instances in A, is i, then only available
instances o’ such that j < i+ W are included in A,.

¢ Apriority has tobe associated with each possible instance inside the sliding
window. Therefore, given a loop body with N operations, the priority
encoding becomes a permutation IT consisting of W distinct instances of
each operation, i.e., |[II| = W - N.

120 Exploiting instruction-level parallelism: a constructive approach

Although the sliding window constrains the scope of globality to at most W
successive iterations of a loop, the value W can be changed, since it is a
parameter of the loop pipelining algorithm. Fortunately, this constraint
imposed on availability analysis is acceptable and even desirable in practice
for two reasons. First, it provides a way of controlling the size of the search
space, since a reduction in W decreases the number of distinct permutations.
Second, it contributes to controlling the growth of the number of states. The
reason is that, when a loop body containing conditional constructs is unrolled,
the number of control paths increases with the size of the window. A similar
concept of window is used in [47] to make loop parallelization affordable in
terms of code expansion.

6.4.2 Basic principle

Let us illustrate the basic idea of the detection of a pipelined kernel.
Reconsider the DFG in Figure 6.1a, assuming that it represents the body of
a loop. Suppose that we choose a sliding window of two iterations (W = 2).
This means that we are allowed to look for available instances among those
belonging to two successive iterations of the loop.

Figures 6.2a to 6.2e show the scheduling process, state after state, where the
set of available instances is shown for each state. Since operations a and ¢
depend only on the inputs, their instances in iterations 0 and 1 are available
at state s, (Figure 6.2a). After a0 is scheduled in state Sg» b? becomes
available at state s, (Figure 6.2b). When ¢® and b° are scheduled in state s,
d? becomes available (Figure 6.2¢). Note that d° is the last unscheduled
instance from iteration 0. When d° is finally scheduled in state s, (Figure
6.2d), all instances from iteration 0 are scheduled and, for keeping the size
of the sliding window, we are allowed to seek for available operations among
the instances from iteration 2. Note that a! is also scheduled in state So,
which contains instances from different iterations, paving the way to loop
pipelining. Note that the set A, contains ¢! (which could not be scheduled in
state s,), b! (which becomes available after al is scheduled) and the instances
a2 and c? (available in the new iteration “added” to the window). Note that
the sets A; and A, are similar, except for the superscripts. As a consequence,
the process of scheduling starting at state s; generates a sequence of states
whose operations are identical to those in the sequence of states starting at
state s;, except that the operations execute in different iterations, as
indicated in Figure 6.2e. This suggests that the repetitive pattern should
become the kernel of a pipelined loop body, by merging s, with state Sy, as
shown in Figure 6.2f. Consequently, the detection of a pattern can rely on the
set of available operations without the need for scheduling any further. In
addition, the merging of the states with same available instances causes the
insertion of back edges.

Towards loop pipelining 121

(a) (e)
E— 1 el

A, = {a%c% al c
A; = (b%c%al,ch
A, = {d% al, cl}

Ay = b1, cl a2 c%

A, = {d}, a2 c%

= h2 o2 53 .3
(c) (0.0 alcl) Ag = {b%,c%a%,c?}
Ag = {d?,a3,c%)

= {b%c0 al,cl}

o = {d% al, cl} . °
[] °
[] ®
®
AO = n{aO, CO’al,cl} v
: A, = (b%c%al,ch (50
—— A2 — {dO’al’cl} ‘>
So | :
——— Ay = {bl,cl,a%,¢?) @
S3

FIGURE 6.2. An illustration for the detection of a repetitive pattern

The idea illustrated in this example is formalized in [4] and it is based on an
equivalence relation on the sets of available operations, as summarized
below. Let X = { ..., 03;1, .. } be a set of instances of operations. Given an
integer c, the set X®is the set { ..., 01n+ ‘.. },1e., X®and X contain instances
of exactly the same operations, but the iteration numbers differ by a constant
c. In the following definition, let Z be the set of integers.

DEFINITION 6.2

Given two sets A and B of instances of operations, A is equivalent to B,
written A = B, iff:

deeZ:A =B

122 Exploiting instruction—level parallelism: a constructive approach

Now we are able to introduce the basic principle for detection of a pipelined
kernel. Let sp be an already scheduled state and let s, be an “empty” state
about to be scheduled. Consider a state s; € PRED(sy). Recall that Ry
represents the resource occupation in state s,. In the loop pipelining
algorithm in [4], when A, = A, Ry = Ry and s, % sy, the state sy, is
merged with state s;, such that each transition (s;, sp) becomes a back edge.

Both our scheduling mechanism and our availability analysis satisfy the
requirements for the correct detection of a pipelined kernel, as described in
[4]. Termination is guaranteed by providing a sliding window of size W. Proofs
of correction and termination for the loop pipelining algorithm are given in
[4]. Algorithm 6.1 illustrates how the detection of a pipelined kernel is
combined with the detection of equivalent states, by modifying the
procedures in Algorithm 4.9.

ALGORITHM 6.1. Combining detection of kernel and of state equivalence

procedure merging_state(sy,)
if (Isp, € S|Ap = A A Ry = Ry) /* criterion in [4] */
if (S -5 Sm)
return (sy);
else
if (sp 2 spm) /* criterion in Theorem 4.1 */
return (sp);
return(none);

procedure handle_current_state(s)
Sn = merging_state(smn);
if (sn, # none)
merge sy, with sp;
else
schedule syy;

In the first procedure, the condition for detecting a pipelined kernel proposed
in [4] is tested beforehand. If that condition holds and the outcome of the test
on reachability is true, the merging of sy, with s, will insert a back edge.
However, if the result of the test on reachability is false, either a cross edge
or a forward edge will be inserted when states s, and s, are detected to be
schedule equivalent.

6.4.3 An example

In this section, we show a simple example of how our constructor can manage
loop pipelining. In Figure 6.3a, the behavioral description of a loop body is

Towards loop pipelining 123

given, along with the resource constraints. We assume that the test takes zero
cycles (its outcome is a flag set by the subtracter) and that the conditional has
zero delay. To simplify the example, we assume that the loop is executed an
infinite number of times (i.e. there is no exit test).

[c]
[q]

[r]
[ul ¢

W =2
1+1,]'.'1+1,

Hl = (c},rl,¢c ql, q1+1,u1’u1+1)

description A

©(q) = 1(u) = adder
1(¢) = 1(r) = subtracter
n(adder) = n(subtracter) = 1

resource constraints

(a) W

BBCG

(b) (c)

FIGURE 6.3. An example of loop body to be pipelined

In Figure 6.3b, a BBCG and a SMG are given for the loop whose body is in
Figure 6.3a. This SMG is obtained if the sliding window comprises a single
iteration (W = 1, i.e. no loop pipelining). Figure 6.3c contains a priority
encoding, which is a permutation IT of instances of the operations within a
sliding window of two successive iterations (W = 2). In the permutation, i
denotes the minimal iteration number currently within the sliding window.

124 Exploiting instruction—level parallelism: a constructive approach

This figure also contains a BBCG for the loop body unrolled W times,
although we also indicate the dashed subgraph that will emerge when the
window is slid one iteration further. Our constructor appends one instance of
such a subgraph to the BBCG each time a new iteration is added to the sliding
window. Note that the links emanate from instances of operations in distinct
iterations. In particular, note that distinct instances of the conditional
(c? ¢!, c?) are linked to the BBs preceding the branch nodes.

In the following, we describe the process of constructing a SMG, state after
state, for the example in Figure 6.3 when W = 2. The process is illustrated
in Figures 6.4 and 6.5, where unscheduled states are shaded, the current
state has a heavier outline and edges inserted via merging of states are
highlighted. Since we have already illustrated in Chapter 3 how a SMG is
derived from the BBCG, here we show the SMG directly, for simplicity of
presentation. The sets of available instances at each state are shown in Table
6.1. For instance, when s, is appointed, the set A, contains instances of
operations that depend only on the inputs.

Current state: s, (Figure 6.4a)

Since conditional c?is scheduled in 80, two next states are appointed, s; and
Sqg. As q° is also scheduled in Sy, instance u® becomes available at state So,
but not at state s;, because u® depends on r?if the outcome of c? is false. On
the other hand, r® remains available at state s, but not at state s,, because
r? does not execute on the path taken when the outcome of ¢? is true.

Current state: s, (Figure 6.4b)

When r?is scheduled in state s, instance u® becomes available at state Sg.
Since q! is scheduled in state s, too, instance ul! also becomes available at
state s,.

Current state: s, (Figure 6.4c)

Instances c'and ! are scheduled. Since clis an instance of a conditional, two
next states are appointed, s, and s;. Since q! is scheduled in state So,
instance u! becomes available at S5, but not at s,, because it depends on r!
if the outcome of c! is false. Instance r! is available at sy, but not at s,
because it is not executed when the outcome of ¢! is true.

Current state: s; (Figure 6.4d)

Instances ¢! and u® are scheduled. As a conditional is scheduled, two next
states are appointed, s4 and s,. Since u?, which was the last unscheduled
instance with minimal iteration number, is scheduled in state s 3, the sliding
window is shifted one iteration further and we can now search for available
instances from iteration 2. As a consequence, instances c?,r?,q2 become
available at both s; and s.,. Note that rlremains available at sg only, whereas

u! remains available only at state Sq-

Towards loop pipelining 125

FIGURE 6.4. Pipelining the loop body in Figure 6.3 (Part I)

126 Exploiting instruction—-level parallelism: a constructive approach

Current state: s, (Figure 6.4e)

Since u?, the last instance from iteration 0, is scheduled in state s 4, available
instances from iteration 2 (c2 r2, q2) become available at state sg- The
scheduling of r! makes u! available at state Sg-

Current state: s; (Figure 6.4f)
Only u® can be scheduled at s5. Consequently, iteration O is completed and
instances ¢2, r2, g become available at state Sg.

Current state: s; (Figure 6.4g)
Note that both Ag = A, and s, 5 s hold. For this reason, s, is merged with
s and the back edge (sg, s;) is inserted.

Current state: s, (Figure 6.5a)
Note that A; = A,, —(s, ol s;) and s, 2 s is detected. For this reason, s is
merged with s, and the cross edge (sg, s,) is inserted.

Current state: sg (Figure 6.5b)
Note that Ag = Ajand s, 5 s g hold. When sg is merged with s,, a back edge
(s4,85) is inserted.

Current state: s, (Figure 6.5¢)
Note that Ag = A, and s, % sy hold. When Sg is merged with s,, a back edge
(s5,8,) is inserted.

TABLE 6.1 The sets A, for the examples in Figures 6.4 and 6.5

state available instances

Sg AO — {CO, I‘O, Cl, rl, qO’ ql}
S1 |A; = {r%cl, 1l qY

89 A2 — {cl’rl’ql,uO}
S3 A; = {c!, rl, ul ul}
S¢ A, = {r},u"

S5 Ay = {u® ul}

Sg AG — {I‘l, c2, rZ’ q2}

8y A7 — {CZ, I.2’ q2,111}
Sg A8 = {02, r2, q2’111}
Sg A9 — {CZ, I.2’(:12,111}

Note that the final SMG in Figure 6.5¢ contains three cycles. Each cycle has
instances of operations from distinct iterations of the loop, which is therefore

Towards loop pipelining 127

pipelined. In this figure, the pre—amble is automatically separated from the
kernel as a result of the insertion of back edges (the same would be valid for
the post—amble, which does not occur in this example, because we are
assuming an infinite number of iterations for simplicity).

FIGURE 6.5. Pipelining the loop body in Figure 6.3 (Part II)

It may be interesting to observe some sequences of bundles induced by
sequences of enabling predicates. For instance, assume a sequence of
predicates where the outcome of the conditionals alternate between true and
false,ie., G; = (c,T,1,¢,1,5,1,¢,1,C, 1, ...). Figure 6.6a shows the sequence of
bundles induced by G;. Figure 6.6b illustrates a sequence of bundles induced

128 Exploiting instruction-level parallelism: a constructive approach

by a sequence of predicates in which the outcome of the first two tests is false
and the outcome of all other tests is true, i.e., G, = (¢,1,¢,1,¢c,¢,1,c,1,...).
The arrows indicate the arrival time of input data for each new iteration of
the original loop body (from iteration 1 on), along with the time where output
data is available. Note that in both cases pII = 2.

in e, q° in c%,q°
1.1 0 .1
c5,q rv,q
in rl, u® out in cl,ul out
2 2 1.2
c ?q r ’q
in ul out in c?,ul out
— — — — — —
c5,q ¢, q
in r3, u? out in u2 out
c5q c5,q
u’ out us out
— _—
® []
[] ®
® (a) ° (b)

FIGURE 6.6. Sequences of bundles for the example in Figure 6.5¢

Compare Figure 6.5¢ with Figure 6.3b, assuming a time constraint of two
cycles for the pi1. The SMG in Figure 6.3b does not satisfy this time constraint,
whereas the one in Figure 6.5¢ does. Note also that the SMG in Figure 6.5¢
has alarger number of states. The growth of the number of states can be seen
as the price to pay for time—constraint satisfiability.

6.5 Discussion

This chapter has shown that the pipelining of loops with conditional
constructs can be interpreted as code motion across iteration boundaries. The
chosen loop—pipelining algorithm relies on loop unrolling as an implicit
mechanism for exposing parallelism. States are scheduled until a pipelined
kernelis detected. Such choice turns the problem of finding a pipelined kernel
into the problem of moving operations across basic blocks. This allows us to
reuse the methods proposed in the previous chapters, thereby integrating
loop pipelining in our constructive approach. Consequently, our support for

Towards loop pipelining 129

upward and downward code motions, along with techniques like code
compensation, availability analysis, on-the—fly detection of equivalent
states, and code—motion pruning can all be employed for the pipelining of
loops containing conditional constructs.

Although we focussed on the impact of schedule lengths on the pi1, latency can
also be evaluated by measuring the schedule lengths of paths from a state in
which input data arrives to a state in which the corresponding output data
is available. Since different permutations typically lead to distinct pipelined
kernels, it is possible to explore alternative SMGs with different pi1, latency
and number of states.

For simplicity, we have assumed throughout this chapter only data
dependences within the scope of a same iteration. However, some loops give
rise to dependences between instances of operations in different iterations,
the so—called loop—carried dependences [30]. Availability analysis can be
extended to cope with this kind of dependences. The modeling of loop—carried
dependences and its relationship with a DFG is addressed, for instance, in
[13][28]. Besides, we have focussed on pipelining a single loop, even though
the method can be further extended to cope with nested loop structures by
applying loop pipelining in a hierarchical way. First, the innermost loop is
pipelined. Then, loop pipelining is applied to the outer loop in the next level
of the hierarchy of nesting. In the outer loop, the kernel of the inner loop is
encapsulated as a single entity, which is considered as a “complex” operation.
The operations in the pre—amble and post—amble are not encapsulated and
can therefore be scheduled simultaneously with the operations in the outer
loop. The process is repeated from the inner to the outermost loop.

Since the pipelining of loop bodies containing conditionals tends to increase
the number of states, the flexibility granted by the sliding window should be
employed to avoid paying too high a price for time—constraint satisfiability.
In practice, it may be convenient to start the design space exploration by
checking if the time constraint can be satisfied by simply applying code
motion to the loop body. This can be done by setting W = 1. If the time
constraint can not be satisfied, then loop pipelining should be enabled by
setting W > 1.

Although the pipelining of loops containing conditional constructs represents
a topic for further research, a rough implementation of the method in [4]
already indicates some of the issues that have to be solved to make this
technique affordable within our approach. For instance, one of the difficulties
preliminarily detected when using the algorithm in [4] is that it may converge
faster to a pattern on some control paths than others. As a consequence, the
final SMG sometimes contains not only loops with pipelined kernels, but also

130 Exploiting instruction—level parallelism: a constructive approach

loops with multi—iteration bodies. In other words, we have detected in a
preliminary implementation that the algorithm in [4] has the disadvantage
of sometimes generating a kernel that is just a scheduled version of the
unrolled loop body, instead of a pipelined version. As a result, if a SMG
contains various cycles, the ones which comprise actual pipelined kernels are
compact, while the ones with unrolled bodies exhibit a larger number of
states. The cause of this side effect seems to be the generality of the criterion
of kernel detection used in [4]. This criterion, which is summarized in
Algorithm 6.1, seems too weak for avoiding unrolled bodies. A more elaborate
criterion should be investigated as a way to avoid a large number of inferior
solutions. One possible line of research is to exploit the time constraint itself
to enforce precedence of operations. This extra precedence can be used to
restrict or reorder the set of available operations and thereby overcoming
undesirable loop unrolling. A recent technique [44] that exploits time—
constraints is applied successfully to DFGs without conditional constructs.
We believe that the combination of some ideas from that related work with
some concepts described in this chapter may lead to promising results.

In summary, by choosing an algorithm that gracefully handles conditional
constructs and is largely free of restrictions, our approach seems able to
combine loop pipelining with code motion and speculative execution,
although more research is needed to make the pipelining of loops containing
conditional constructs mature for the HLS of time—constrained systems.

Chapter

'7 Conclusions

7.1 Concluding remarks

In this thesis, we have proposed an approach for exploiting ILP during the
high-level synthesis of synchronous digital systems. The approach supports
ILP techniques like code motion, speculative execution and can be extended
to include loop pipelining. It is oriented towards applications in which the
operation of the digital system should comply with a global time—constraint.
Given a behavioral description of the digital system and a set of resource
constraints, the goal of the approach is to find a symbolic FSM whose critical
execution path complies with a pre—specified time constraint. For this reason,
we have directed the application of ILP techniques towards worst—case
execution time, as opposed to traditional approaches, which aim at speeding
up average execution time.

We have shown that various classical approaches rely on an aggregate of
heuristics for generating a single solution, hopefully satisfying the time
constraint. Since it is difficult to control the quality of the final result, those
approaches can jeopardize time—constraint satisfaction. Our approach
distinguishes itself from others, because it allows the exploration of several
alternative solutions. In order to provide proper design space exploration, our
constructive approach relies on three engines which co—operate in the
generation of alternative FSMs with different schedule lengths and number
of states. The constructor manages the application of ILP techniques, the
explorer is responsible for searching for the best solution and the Boolean
oracle answers queries about conditional execution. An important feature of
the approach is that it allows us to trade search time against solution quality.
For instance, in the early (more iterative) phases of a design flow a quick
search can be used, while broader neighborhoods can be explored in the final
optimization phase.

Support for upward and downward code motion

We have shown that code motion can be modeled by reorganizing the links
between operations and basic blocks. In our approach, downward code motion
is performed during an initialization phase and upward code motion takes
place in the course of global scheduling.

131

132 Exploiting instruction-level parallelism: a constructive approach

Support for speculative execution

It was pointed out that traditional approaches efficiently cope with the side
effects of code motion by means of hardware support for committing or
discarding speculative results at execution time. Although efficient for
applications aiming at speeding up average execution, such a technique is not
suitable when we have to guarantee compliance with the time constraint. We
have proposed a method for keeping track of speculative execution based on
Boolean predicates. An important aspect of this method is that, when
combined with code compensation, there is no need for specialized hardware
support, since the side effects of speculative execution are handled in
software.

Availability analysis

The mechanism of inducing code motion presented in this thesis relies on the
global computation of the operations available for scheduling at a given state.
The proposed technique captures major achievements from the compiler
domain while keeping one of the most popular HLS representations, namely,
the DFG. The key is to combine graph manipulation for keeping track of data
dependences with Boolean techniques for dealing with conditional execution.

Code compensation

The technique of inserting compensation code to preserve the semantics of
conditional execution was addressed as a way of broadening the range oflegal
code motions. We have shown that this classical compiler technique can be
incorporated in a HLS tool by reformulating the traditional path queries as
a combination of Boolean queries and simple graph handling. Since our
approach is directed towards worst—case execution (as opposed to paralleliz-
ing compilers), we have proposed a technique to avoid that code compensation
might jeopardize time—constraint satisfiability.

Boolean encoding for conditional execution

The backbone for most of the techniques we proposed is a simple and efficient
Boolean encoding for conditional execution. Boolean predicates are defined
in terms of the outcome of conditionals and used to implement queries. Most
of the employed queries involve two predicates which are Boolean products.
In the worst case, these queries can be performed in low—order polynomial
time. Although other queries may have higher complexity, the encoding
guarantees that the number of Boolean variables is bounded by the depth of
conditional nesting, which in practice is typically a small fraction of the total
number of conditionals. Therefore, all the queries can be efficiently handled
by the Boolean oracle.

Conclusions 133

An important practical aspect of our Boolean modeling of conditional
execution is that public-domain packages for Boolean manipulation are
widely available in the design automation community. Therefore, our
formulation for availability analysis and code compensation holds the
promise of allowing existent HLS tools to benefit from global scheduling at
the expense of a few extensions.

On-the—fly detection of equivalent states

One of the main advantages of removing built—in scheduler heuristics is that
it makes the detection of equivalent states affordable, due to the predictabil-
ity of scheduling selection. This fact, combined with an efficient way of
encoding and recovering information on conditional execution, allows our
approach to guarantee a minimal state equivalent SMG for a given priority
encoding. As a consequence, the optimization of the number of states can be
achieved via exploration of alternative solutions. To our knowledge, no other
scheduling method supports on—the—fly detection of equivalent states while
simultaneously applying code motion and speculative execution.

As opposed to most traditional approaches, which disregard the use of some
code motions for the sake of avoiding code expansion, we have shown some
experimental evidence that the merging of equivalent states allows us to
make more flexible code motions affordable. The technique works not only as
a mechanism for restraining code expansion (because a smaller number of
states is obtained), but it also speeds up the process of scheduling (because
less states are actually scheduled).

Code-motion pruning

One of the major results reported in this thesis refers to the unbalance
between the parallelism exposed by the application of ILP techniques and the
parallelism that can actually be exploited. Experimental results indicate that
not all ILP exposed is beneficial. Parallelism that is exposed but is not
accommodated within the available resources leads to the generation of many
inferior solutions in the course of the optimization process. We have proposed
a technique to cope with such an unbalance, the so—called code—motion
pruning (CMP). This technique first captures the constraints imposed to
downward code motion. Then, these constraints are used as a criterion to
select the most efficient code motions. We have shown experimental evidence
that the solution space has higher density of good—quality solutions when
CMP is applied. As a consequence, for a given local-search method and for a
same number of explored solutions, the application of CMP is likely to lead
to a superior local optimum. Conversely, a smaller number of solutions has
to be explored to reach a given schedule length, what correlates to a reduction
of search time.

134 Exploiting instruction—level parallelism: a constructive approach

Extension for loop pipelining

The close relationship between code motion and loop pipelining was pointed
out as a last topic in this thesis. Uncovering ILP across iteration boundaries
was modeled as exposing ILP across basic block boundaries. This formulation
allows loop pipelining to benefit from all the techniques mentioned above. A
very important consequence of this modeling is that we do not have to restrict
code motion for supporting the pipelining of loop bodies containing
conditional constructs, as opposed to the most popular methods. Moreover, we
have shown that the detection of a pipelined kernel and the detection of
equivalent states can be integrated in the same mechanism of merging states.

Flexibility

An important practical aspect of our approach is its flexibility of use. For
instance, although largely unrestricted code motions are supported, some
kinds of code motion could be enabled or disabled on demand. Code—motion
pruning can be switched on and off, depending on how much time can be
afforded during exploration. The size of the sliding window can be adjusted
to restrain code expansion, depending on how tight the constraints are. The
parameters of a given search method can be modified for trading—off solution
quality against search time. Due to its flexibility, our constructive approach
represents an alternative method in between monolithic exact methods such
as [52] and approaches based on an aggregate of unrelated heuristics such as
[54].

7.2 Topics for further research

Even though promising results are obtained with the application of our
techniques, some issues still have to be addressed to bring the approach closer
to practical application. The most important extensions and improvements
are discussed below.

Incorporating register allocation

We have focussed on scheduling with the assumption that the allocation of
registers is performed afterwards. This is a common situation in HLS, where
the number of registers is not necessarily fixed beforehand. It may be
interesting to perform register allocation for each generated solution in order
to take the number of implied registers into account during the exploration
of alternative solutions.

The main notion guiding register allocation is the concept of lifetime of a value
[16]. This is the interval between the time at which a value is computed and

Conclusions 135

the latest time when it is consumed. The analysis of lifetimes can be extended
to deal with SMGs by using our Boolean modeling for conditional execution,
as follows. Assume that an operation xis linked to some basic block my means
of a link A. Assume that operation x is scheduled in some state sp. The
register storing the value x can be reused to store another value, say y, in
some state s, when one of the following circumstances holds:

e The value xis not consumed by any operation scheduled in any other state
reachable from s,.

e State s, and sy, are mutually unreachable (the execution of operations x
and y is mutually exclusive).

e State sy, is reachable from sy, through a sequence of transitions induced by
some predicate I'and I" - G()\) is not satisfiable (this means that operation
xwas speculatively executed on the taken control path and its output value
is discarded).

In summary, classical lifetime analysis [16] can be extended with our Boolean
queries to take the effects of mutually exclusive execution and speculative
execution into account.

Fixed number of registers as extra resource constraints

We have addressed only the resource constraints imposed by the allocated
functional units. However, the approach can be further extended to include
a fixed number of registers as extra resource constraints. If no free register
is available to store the result of a moved operation, this code motion must be
prevented. The support for viewing a fixed number of registers as resource
constraints is essential to the code generation for programmable ASIPs. It is
also useful in the HLS of ASICs, because the number of registers implied by
a given schedule might turn out to be excessive and a more practical number
should then be used as a constraint during a new iteration through the design
flow.

Extra pruning by exploiting the time constraint

In this thesis, we have focussed on techniques that avoid jeopardizing
time—constraint satisfiability: unrestricted code motions are largely sup-
ported, code compensation mechanisms are carefully designed, no built-in
scheduler heuristics are used and design space exploration is emphasized. In
addition, our code-motion pruning utilizes precedence and resource
constraints for improving the quality of the generated solutions. However, we
do not exploit the ¢time constraint itself for the sake of pruning. Recently,
powerful techniques [44][67] are proposed for taking advantage of time
constraints. The time constraint dictates a reduction of scheduling freedom,

136 Exploiting instruction—level parallelism: a constructive approach

thereby discarding inferior solutions. The tighter the time constraint, the
larger the reduction becomes. Experimental results illustrate the efficiency
of those techniques when applied to DFGs without conditional constructs.
Since the efficiency of those techniques is not yet demonstrated when applied
to DFGs with complex control-flow and under a general speculative
execution model, we believe that the integration of those techniques with our
work should be investigated. As our techniques and those described in
[44][67] address issues that are essentially complementary, their combina-
tion seems promising.

As afinal remark, it may be worth mentioning that speculative execution and
code motion are recently receiving more attention in HLS [32] [36] [52] [54],
although most of the work focuses on speeding up average execution. We
believe that this trend is likely to be accentuated also in favor of
time—constrained systems. The reason is that simple expedients as allocating
more resources for the data path in order to grant time—constraint
satisfiability can not be conceived as permanent solutions in the absence of
support for exploiting ILP. In face of complex emerging applications
combining intensive data—flow, complex control—flow and time constraints,
the exploitation of parallelism available within basic blocks is likely to be
insufficient to ensure the satisfaction of a tight time—constraint.

References

[1]

9]

[10]

(11]

A. Aho, R. Sethi and J. Ullmann, “Compilers — Principles,
Techniques, and Tools”, Addison—Wesley, 1986, pp. 631-632.

A. Aiken and A. Nicolau,“Perfect pipelining: A new loop
parallelization technique”, Proc. European Symposium on
Programming, pp. 221-235, 1988.

A. Aiken and A. Nicolau,“A Realistic Resource—Constrained
Software Pipelining Algorithm”, Advances in Languages and
Compilers for Parallel Processing, MIT Press, Cambridge, Mass.,
pp. 274-290, 1991.

A. Aiken et al.,“Resource—Constrained Software Pipelining”,
IEEE Transactions on Parallel and Distributed Systems, vol. 6,
no. 12, pp. 1248-1270, December 1995.

J. Allen et al., “Conversion of control dependence to data
dependence”, Proc. Symposium on Principles of Programming
Languages, pp. 177-189, January 1983.

S. Amellal and B. Kaminska,“Functional Synthesis of Digital
Systems with TASS”, IEEE Trans. on Computer Aided Design,
vol. 13, no. 5, pp. 537-552, May 1994.

U. Banerjee et al.,“Automatic Program Parallelization”,
Proceedings of the IEEE, vol. 81, no. 2, pp. 211-243, February
1993.

R. Bergamaschi et al.,“Area and Performance Optimizations in
Path Based Scheduling”, Proc. European Conference on Design
Automation, pp. 304-310, 1991.

R. Bergamaschi et. al.,“Control-Flow Versus Data—Flow Based
Scheduling: Combinining Both Approaches in an Adaptive
Scheduling System”, IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, vol. 5, no.1, pp.82—-100, March 1997.

M. Berkelaar and L. van Ginneken, “Efficient Orthonormality
Testing for Synthesis with Pass—Transistor Selectors”, Proc.
ACM/IEEE Int. Conference on Computer Aided Design, pp.
256-263, 1995.

E. Berrebi et. al.,“Combined Control Flow Dominated and Data
Flow Dominated High-Level Synthesis”, Proc. 33rd ACM/IEEE
Design Automation Conference, pp. 573-578, 1996.

137

138

[12]

[14]

[15]

[21]

(22]

[23]

[24]

Exploiting instruction—level parallelism: a constructive approach

R. Camposano,“Path-based scheduling for synthesis”, IEEE
Trans. on Computer—Aided Design, vol. 10, no.1, pp. 85-93,
January 1991.

L.-F. Chao et. al.,“Rotation Scheduling: A Loop Pipelining
Algorithm”, Proc. 30th Design Automation Conference, pp.
566-572, 1993.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest,“Introduction to
Algorithms”, McGraw-Hill Book Company, 1991.

De Man, H. et al.,“Architecture Driven Synthesis Techniques for
VLSI Implementation of DSP Algorithms”, Proc. of the IEEE, pp.
319-335, 1990.

G. De Micheli,“Synthesis and Optimization of Digital Circuits”,
Mc Graw-Hill, 1994.

K. Ebcioglu,“A compilation technique for software pipelining of
loops with conditional jumps”, Proc. 20th Annual Workshop on
Microprogramming, pp. 69-79, December 1987.

K. Ebcioglu and R. Nakatani, “A New Compilation Technique for
Parallelizing Loops with Unpredictable Branches on a VLIW
Architecture”, in Languages and Compilers for Parallel
Computing, edited by D. Gelernter et al., MIT Press, 1989, pp.
213-229.

K. Ebcioglu and A. Nicolau,“A global resource—constrained
parallelization technique”, Proc. of the ACM SIGARCH Int.
Conference on Supercomputing, pp. 154-163, 1989.

J. Eijndhoven, G. G. de Jong and L. Stok,“The ASCIS Data Flow
Graph - semantics and textual format”, EUT Report 91-E-251,
Eindhoven University of Technology, 1991.

J. Eijndhoven and L. Stok,“A Data Flow Exchange Standard”,
Proc. European Conference on Design Automation, pp. 193-199,
1992.

J. A. Fisher,“Trace Scheduling: A technique for global microcode
compaction”, IEEE Trans. on Computers, vol. C-30, no. 7,
pp-478-490, July 1981.

D. D. Gajski et al.,“High—Level Synthesis: Introduction to Chip
and System Design”, Kluwer Academic Publishers, 1991.

G. Goossens et al.,“Loop optimization in register—transfer
scheduling for DSP-systems”, Proc. 26th Design Automation
Conference, pp. 826-831, 1989.

[25]

[26]

[27]

[31]

[32]

References 139

G. Goossens et al.,“Integration of Medium—Throughput Signal
Processing Algorithms on Flexible Intruction—Set Architectures”,
Journal of VLSI Signal Processing, vol. 9, no. 1, pp. 49-65, 1995.

T. Gross and M. Ward,“The suppression of Compensation Code”,
Advances in Languages and Compilers for Parallel Processing,
MIT Press, pp. 260-273, 1991.

R. Gupta and M.L. Soffa,“Region Scheduling: An Approach for
Detecting and Redistributing Parallelism”, in IEEE Trans. on
Software Engineering, vol. 16, no. 4, pp. 421-431, April 1990.

M.J .M. Heijligers,“The Application of Genetic Algorithms to
High—Level Synthesis”, PhD. Thesis, Eindhoven University of
Technology, 1996.

M. J. M. Heijligers et al.,“NEAT: an Object Oriented High—Level
Synthesis Interface”, Proc. of the IEEE International Symposium
on Circuits and Systems, pp. 1.233-1.236, 1994.

J. L. Hennessy and D. A. Patterson,“Computer Architecture — A
Quantitative Approach”, 2nd edition, Morgan Kaufmann
Publishers Inc., 1996.

F. J. Hill and G. R. Peterson,“Computer Aided Logical Desigh
with Emphasis on VLSI”, John Wiley & Sons, Inc., 4th edition,
pp. 267-274, 1993.

U. Holtmann and R. Ernst,“Combining MBP-Speculative
Computation and Loop Pipelining in High—Level Synthesis”,
Proc. European Design and Test Conference, pp. 550-555, 1995.

P.Y. T. Hsu and E. S. Davidson, “Highly Concurrent Scalar
Processing”, Proc. of the 13th Annual International Symposium
on Computer Architecture, pp. 386-395, June 1986.

S.Huang et al.,“A tree-based scheduling algorithm for control
dominated circuits”, Proc. ACM/IEEE Design Automation
Conference, pp. 578-58, 1993.

K. Kennedy, “A Survey of Data Flow Analysis Techniques”, in
“Program Flow Analysis: Theory and Applications”, edited by S.
Muchnick and N. Jones, Prentice~Hall, 1981, pp.17-18.

A. Kifli,“Global Scheduling in High—Level Synthesis and Code
Generation for Embedded Processors”, PhD. Thesis, Catholic
University of Leuven, Belgium, 1996.

T. Kim et al.,“A Scheduling Algorithm for Conditional Resource
Sharing — A Hierarchical Reduction Approach”, IEEE Trans. on
Computer Aided Design, vol. 13, no. 4, pp. 425-438, April 1994.

140 Exploiting instruction—level parallelism: a constructive approach

[38] R. P. Kleihorst et al.,“MPEG2 Video Encoding in Consumer
Electronics”, Journal of VLSI Signal Processing, vol. 17, pp.
241-253, 1997.

[39] M. Lam,“Software pipelining: An effective scheduling technique
for VLIW machines®, Proc. SIGPLAN’88 Conf. on Programming
Language Design and Implementation, pp. 318-328, June 1988.

[40] M. Lam, “A Systolic Array Optimizing Compiler”, Kluwer
Academic Publishers, Norwell, Massachusetts, 1989.

[41] M. S. Lam and R. P. Wilson,“Limits of Control Flow on
Parallelism”, Proc. ACM/IEEE International Symposium on
Computer Architecture, pp. 46-57, 1992.

[42] S.—Z. Lin, C.-T. Hwang and Y.—C. Hsu,“Efficient Microcode
Arrangement and Controller Synthesis for Application Specific
Integrated Circuits”, Digest of Technical Papers of the
International Conference on Computer—Aided Design, pp. 38-41,
1991.

[43] J. L. van Meerbergen et al.,“PHIDEO: High Level Synthesis for
High—-Throughput Applications”, Journal of VLSI Signal
Processing, vol. 9, pp. 89-104, 1995.

[44] B. Mesman et al.,“Constraint Analysis for DSP Code
Generation”, Proc. 10th International Symposium on System
Synthesis”, pp. 33—-40, 1997.

[45] M. C. McFarland, A.C. Parker, R. Camposano,“The High-Level
Synthesis of Digital Systems”, Proceedings of the IEEE, vol. 78,
no.2, pp. 301-318, 1990.

[46] S.—M. Moon and K. Ebcioglu,“An Efficient Resource—Constrained
Global Scheduling Technique for Superscalar and VLIW
processors”, Proc. Int. Symposium and Workshop on
Microarchitecture (MICRO-25), pp. 55-71,December 1992.

[47] T. Nakatani and K. Ebcioglu,“Making Compaction—Based
Parallelization Affordable”, IEEE Trans. on Parallel and
Distributed Systems, vol. 4, no. 9, pp. 1014-1029, September
1993.

[48] A. Nicolau,“Uniform Parallelism Exploitation in Ordinary
Programs”, Proc. International Conference on Parallel
Processing, pp. 614-618, 1985.

[49] A. C. Parker et al., “MAHA: A program for datapath synthesis”,
Proc. ACM/IEEE Design Automation Conference, pp. 461465,
1986.

[60]

[61]

References 141

C. Papadimitriou and K. Steiglitz,“Combinatorial optimization:
algorithms and complexity”, Prentice Hall, pp. 3-8, 454455,
1982.

R. Potasman et al., “Percolation Based Synthesis”, Proc.
ACM/IEEE Design Automation Conference, pp. 444—449, 1990.

I.Radivojevic and F.Brewer,“A New Symbolic Technique for
Control Dependent Scheduling”, IEEE Transactions on Computer
Aided Design, vol.15, no. 1, pp. 45-57, 1996.

M. Rim and R. Jain,“Representing conditional branches for
high-level synthesis applications”, Proc. ACM/IEEE Design
Automation Conference, pp. 106-111, 1992.

M. Rim, et al.,“Global Scheduling with Code—Motions for
High-Level Synthesis Applications”, IEEE Trans. on VLSI
Systems, vol. 3, no. 3, Sept. 1995, pp. 379-392.

J. Siddhiwala et al., “Scheduling Conditional Data—Flow Graphs
with Resource Sharing”, Proc. Great Lakes Symposium on VLSI,
1995, pp. 94-97.

L.C.V. dos Santos et al.,“A Constructive Method for Exploiting
Code Motion”, Proc. ACM/IEEE International Symposium on
System Synthesis, pp. 51-56, 1996.

L.C.V. dos Santos et al.,“Combining code motion and scheduling”,
Proc. ProRISC/IEEE-Benelux Workshop on Circuits, Systems
and Signal Processing, pp. 279-284, 1996.

L.C.V. dos Santos, “A method to control compensation code
during global scheduling”, Proc. ProRISC/IEEE-Benelux
Workshop on Circuits, Systems and Signal Processing, pp.
527-534, 1997.

L.C.V. dos Santos, “Modeling speculative execution and
availability analysis with Boolean expressions”, to appear in:
Proc. ProRISC/IEEE-Benelux Workshop on Circuits, Systems
and Signal Processing, 1998.

L.C.V. dos Santos et al., “A Code—Motion Pruning Technique for
Global Scheduling”, to appear in: ACM Transactions on Design
Automation of Electronic Systems, vol. 5, n. 2.

P. Slock et al.,“Fast and extensive system—level memory
exploration for ATM applications”, Proc. 10th ACM/IEEE Int.
Symposium on Systems Synthesis, pp. 74-81, September 1997.

M. Smith, M. Horowitz, and M. Lam._,“Efficient Superscalar
Performance Through Boosting,” Proc. International Conference

142

[63]

[64]

[67]

[68]

[69]

[70]

[72]

Exploiting instruction—level parallelism: a constructive approach

on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-5), pp. 248-259, 1992.

L. Stok,“Architectural Synthesis and Optimization of Digital
Systems”, PhD. Thesis, Eindhoven University of Technology,
1991.

M. T. J. Strik et al.,“Efficient Code Generation for In-House
DSP—Cores”, Proc. European Design and Test Conference, pp.
244-249, 1995.

R.M.H. Takken,“Controller Design for a Single—chip MPEG-2
Encoder”, Master thesis, Eindhoven University of Technology,
August 1995.

A. H. Timmer,“From Design Space Exploration to Code
Generation — a constraint satisfaction approach for the
architectural synthesis of digital VLSI circuits”, PhD. Thesis,
Eindhoven University of Technology, 1996.

A. H. Timmer and J. A. G. Jess,“Execution Interval Analysis
under Resource Constraints”, Digest of technical papers of the
International Conference on Computer—Aided Design, pp.
454459, 1993.

A. H. Timmer et al.,“Conflict Modelling and Instruction
Scheduling in Code Generation for In-House DSP Cores”, Proc.
32nd Design Automation Conference, pp. 593-598, 1995.

R. Vaessens, E. Aarts, J. Lenstra, “A Local Search Template”,
Computers and Operations Research, vol. 25, no. 11, pp. 969-979,
1998.

J. Vanhoof et al., “High-Level Synthesis for Real-Time Digital
Signal Processing”, Kluwer Academic Publishers, pp. 12-26,
149-166, 1993.

K. Wakabayashi and T. Yoshimura,“A resource sharing and
control synthesis method for conditional branches”, Proc.
ACM/IEEE Int. Conference on Computer Aided Design,
pp.62-65, 1989.

K. Wakabayashi and H. Tanaka,“Global scheduling independent
of control dependencies based on condition vectors”, Proc.
ACM/IEEE Design Automation Conference, pp.112—115, 1992.

A. van der Werf et al.,“I. McIC: A single Chip MPEG2 Video
Encoder for Storage”, Proc. International Solid State Circuits
Conference, pp. 254-255, 1997.

Appendix

A Experimental set—-up

In this appendix, we summarize the resource constraints and delay values for
the examples used in the experiments reported in this thesis.

In Table A.1, the examples are listed in the first column, along with the
references to the papers where they are introduced. The second and third
columns give an idea about DFG and BBCG sizes, respectively. In the fourth
column, different labels are associated with the distinct sets of resource
constraints reported in the last five columns. The labels are used to refer to
the respective constraints in the tables of results included in this thesis.

TABLE A.1 The resource constraints for the employed examples

example | nodes | BBs | case resource constraints

alu {add [sub |mul {emp

waka 46 10
[72]
kim 48 10
[37]

rotor 66 10

[52]

s2r 122 22

[52]

Kim_big | 464 | 52

[37]

=Neolv - Rol NolvlNeoR- M2 Kol NoNoNeol -l Kol Rov i
C OO WNHPB WNHWNMER B WN MO o o
HHEHROODOOCDOCOoOOOOoo oo oo o Hlo
HNHOOOOOCOOOoco 000 O Ok Ho K
M- HNDNMNONNOOOOMNMNO O OO oo
HHROODOODocooOOocooo o0 0ok HHK

143

144 Exploiting instruction—level parallelism: a constructive approach

In Table A.2, we illustrate the operation assignment tand the operation delay
d(v) for each of the cases described in Table A.1. This information is organized
in two distinct groups of columns, where each column corresponds to an
operation type t, € Towith T, = { +, —, >, <, X }. The entries in the first
group show the selected module type ts for each operation v with w(v) € T,,.
Acronyms are used to identify module types such as adder (add), subtracter
(sub), arithmetic—logic unit (alu), comparator (cmp) and multiplier (mul). The
entries in the second group represent the delay d(v) for each operation v with
o(v) € T,. In addition to the information in this table, we assume dii(ts) = 1
for each module type tg. Also, we assume that every conditional cis such that
d(c) = 0, i.e., the delay slot is zero and we suppose 2—way branch capability.

TABLE A.2 Operation assignment and operation delay information

example case operation assignment delay
+ - I><| x + - | < X
waka [72] A add [sub |ecmp| - 1 1 1 -
B alu | alu {emp| - 1 1 1 -
kim [37] B,C add |sub |emp| — 1 1 1 -
rotor [52] [AB,C,D| alu [alu |[alu|[alu| 1 1 0 1
EFGH | alu |alu|alu [mul| 1 1 0 2
s2r [52] ABCD | alu [alu [alu[alu| 1 1 0 1
EFGH | alu {alu |alu {mul]| 1 1 0 2
kim_big [37] | A,C,D add |sub {cmp |mul| 1 1 1 1

In all the distinct cases described for the examples “rotor” and “s2r”, a
single—port look—up table is also available and it is modeled as an operation
with unit delay.

As a last observation, we should mention that the example “kim_big” is
obtained from a DFG in [37], but we were obliged to adapt the original graph
to our DFG model and also to comply with some restrictions of format imposed
by our current implementation. Therefore, the example “kim_big” refers to
a DFG slightly different from the original DFG.

Appendix

B Auxiliary information

This appendix describes a function used in Chapter 4 when taking the effect
of multicycling into account during availability analysis. Algorithm B.1
shows how to evaluate the function max_displacement(oy, s ; k) which is used
in Equation 4.5. Let begin(s, k) denote the number of cycles required to
execute the states of a path from the source to s, k but excluding s; ik Given

a link A with o, 4 BBy, let end()) denote the time when the execution of Om
is completed on some path from the source to BBy.

Given an available operation o, and the current state Si 1o the described
function evaluates the maximal displacement between the time when the
current state s; | starts executing and the time when the output values of the
producers on, are all computed. This displacement represents the “distance”
between the current state and the state at which o, is available.

ALGORITHM B.1. Algorithm for the function used in Equation 4.5

function max_displacement(op, s lk)
d=0;
foreach o, € PROD(0,)

foreach A with o 5 BBx A BBy % BB,

if (begin(s; k) < end()))
d := max(d, end(A) — begin(s; ;));

return (d); ’

145

Biography

Luiz Cl4audio Villar dos Santos was born on November 21, 1963 in Arapongas,
Brazil. In the period between 1978 and 1981, he worked as a clerk in his
hometown, where he concluded high school.

He studied Electrical Engineering at the Federal University of Paran4, in
Curitiba, Brazil, from which he graduated with honors on February 17, 1987.
He received the degree of Master in Computer Science on May 30, 1990, from
the Federal University of Rio Grande do Sul, in Porto Alegre, Brazil.

From June 1990 to April 1991, he worked on IC design at the Catholic
University of Louvain—la—Neuve, Belgium. Then, he returned to the Federal
University of Rio Grande do Sul, where he worked as an assistant researcher
until February 1993. On March 1993, he joined the Computer Science
Department at the Federal University of Santa Catarina, in Florianépolis,
Brazil. He is on leave from that university since November 1994, when he
started working towards a doctorate in the Design Automation Section of the
Department of Electrical Engineering of the Eindhoven University of
Technology.

He expects to receive the degree of doctor based on the work presented in this
thesis on November 23, 1998. Afterwards, he shall return to Brazil and
resume his research and teaching activities as an assistant professor at the
Federal University of Santa Catarina. His research interests include
synthesis of digital circuits and computer architecture.

147

Stellingen

behorende bij het proefschrift
Exploiting instruction-level parallelism: a constructive approach
van Luiz Cldudio Villar dos Santos

1. Thefollowing statement should not be taken to the letter: “The CDFG representation
maintains the control structure specified by the designer ... Data dependency
information is represented only within the basic block; data dependencies across
basic blocks are not explicitly represented. A synthesis system that works from the
CDFG representation must maintain the basic block structure ... This is one of the
major disadvantages of using a CDFG representation directly for synthesis”. [D. Gajski
and L. Ramachandran, IEEE Design and Test of Computers, Winter 94, p. 47].

[this thesis, chapters 2/4]

2. When addressing high-level synthesis scheduling in the presence of conditionals, all
“exact” methods are indeed exact, but some are “less exact” than others.

[this thesis, chapter 3]

3. The use of the notion of mutually exclusive operations is not a main issue in
high-level synthesis, because it perpetuates a way of modeling not appropriate for
complex control-flows.

4. The developer of a high-level synthesis optimization tool should avoid restrictions,
but welcome constraints.

5. CAD consists of a few tools and a lot of HAD (human-aided design).
6. Writing a thesis suggests, after all, a conservative attitude.
7. The systematic use of a diary to make appointments with friends is an exaggeration.

8. Some teachers teach us what we should learn. Some teachers teach us how we should
learn. Some teachers teach us how we should not teach.

9. Inthe early eighties, the Vatican has played distinct political roles in Poland and in
Brazil. From the point of view of pursuit of freedom, these roles were contradictory.

10. The following two sentences are equivalent in their ability to motivate further work:

* ‘Improvementsin science are either evolutionary or revolutionary. The former consists
of compounding little steps, each related to perfecting the solutions to some problems.
The latter involves radical changes in the way in which problems are modeled and
solved. ... Architectural and logic synthesis have been revolutionary, ... An
evolutionary growth of synthesis is likely in the near future. Many techniques need to
be perfected, and many problems, which were originally considered of marginal
interest, need now to be solved.” (Giovanni De Micheli, “Synthesis and Optimization of Digital
Circuits”, p. 560).

® “You are late for dinner and the dishes are piled up.”

	Summary
	Samenvatting
	Contents
	Acknowledgements
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix A
	Appendix B
	Biography
	Stellingen

