Precedence probability, prediction interval and a combinatorial identity

Citation for published version (APA):
Chakraborti, S., \& Laan, van der, P. (1998). Precedence probability, prediction interval and a combinatorial identity. (Memorandum COSOR; Vol. 9812). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/1998

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Department of Mathematics and Computing Sciences

 of TechnologyMemorandum COSOR 98-12

Precedence probability, prediction interval and a combinatorial identity
S. Chakraborti
P. van der Laan

Precedence Probability, Prediction Interval and A Combinatorial Identity

S. Chakraborti
University of Alabama
Tuscaloosa, AL
U.S.A.
and
P. van der Laan ${ }^{*}$
Eindhoven University of Technology
Eindhoven
The Netherlands

SUMMARY

Precedence tests are simple yet useful nonparametric tests based on two specified order statistics from independent random samples or, equivalently, on the count of the number of observations from one of the samples preceding some order statistic of the other sample. The probability that an order statistic from the second sample exceeds an order statistic from the first sample is termed the precedence probability. When the distributions are the same, this probability can be calculated exactly, without any specific knowledge of the underlying common continuous distribution. This fact can be utilized to set up nonparametric prediction intervals in a number of situations. In this paper, prediction intervals are considered for the number of second sample observations that exceed a particular order statistic of the first sample. To aid the user, tables are provided for small sample sizes, where exact calculations are most necessary. The same tables can be used to implement a precedence test for small sample sizes. Finally, a combinatorial identity is proved.

Keywords: Distribution-free; Extremes; Exceedance and Precedence; Nonparametric; Order statistics.

[^0]
1. Introduction

Let $X_{(1)}<X_{(2)}<\ldots<X_{(m)}$ be the order statistics of a random sample of size m from a continuous c.d.f. F and let $\mathrm{Y}_{(1)}<\mathrm{Y}_{(2)}<\ldots<\mathrm{Y}_{(\mathrm{n})}$ be the order statistics of a second, independent, random sample of size n from a continuous c.d.f. G. Consider the probability that the jth Y-order statistic exceeds the ith X-order statistic, $\left.\theta=\theta_{i j}(F, G)=P\left(Y_{(j)}\right) X_{(i)}\right)$. The parameter θ can be interpreted in several ways. Two such interpretations are: (i) it is the probability that the number of Y observations that precede $\mathrm{X}_{(\mathrm{i})}$ is at most equal to $\mathrm{j}-1$ and (ii) it is the probability that the number of Y observations that exceed $\mathrm{X}_{(\mathrm{i})}$ is at least equal to $\mathrm{n}-\mathrm{j}+1$. According to the first interpretation, θ is termed a "precedence" probability whereas according to the second interpretation θ is referred to as an "exceedance" probability. Both interpretations can be found in the literature as the quantity θ arises in various applications. The fields of applications include quality control and reliability where θ can be associated with the so-called "warranty time" of a product. In these problems, the underlying probability distributions are often not completely known and frequently can not be assumed to be normal. Thus, a study of the precedence probability, from a distribution-free point of view is useful.

The study of precedence and exceedances goes back to at least the early 40's. Some of this literature will be referred to later on. Nelson (1963) proposed a simple nonparametric test, called the precedence test, for the usual two sample problem $\mathrm{H}_{0}: \mathrm{F}(\mathrm{t})=\mathrm{G}(\mathrm{t})$. Against the one-sided alternative $\mathrm{H}_{1}: \mathrm{G}(\mathrm{t})<\mathrm{F}(\mathrm{t})$, that the Y 's are stochastically larger than the X 's, the precedence test rejects H_{0} iff, say, $Y_{(j)}>X_{(i)}$. Thus the precedence probability θ is simply the power of the precedence test.

The concept of precedence (or exceedance) is easy to grasp and is intuitively appealing (one just needs to compare two ordered values from the two samples) to practitioners in many
statistical inference problems. Since a precedence test is based on ordered values, in situations (such as life-testing) where data are collected sequentially, such a test can lead to savings in time and resources by allowing an early decision (rejecting H_{0} or not) before all the data are collected.

Recently, there has been a resurgence of interest in precedence tests. Nelson (1993) revisited the precedence test. Lin and Sukhatme (1992) studied "best" precedence tests under Lehmann alternatives. Liu (1992) investigated some properties of precedence probabilities, and obatined some results, mainly for the equal sample size case. Chakraborti and van der Laan $(1996,1997)$ provided comprehensive surveys of the area of precedence and precedence-type tests for two- and multi-sample problems, for the complete and the right-censored data, respectively. Further, van der Laan and Chakraborti (1998) studied "best" precedence tests, based on power, for several types of Lehmann and proportional-hazards alternatives. In this paper the focus is mainly on the precedence probability and in this context the problem of some nonparametric prediction intervals is considered based on exceedance statistics. Necessary formulas and tables are presented so that these can be implemented in practice. In the sequel, an interesting combinatorial identity is obtained.

2. Precedence Probability and Prediction Intervals

First note that in general an expression for the precedence probability θ can be easily obtained from the distributions of the order statistics $X_{(i)}$ and $Y_{(j)}$. It can be shown (see for example Chakraborti and van der Laan, 1996; hereafter referred to as CV) that θ depends on the unknown c.d.f.'s only through the so-called "conversion" function $C(u)=\mathrm{FG}^{-1}(u), 0<u<1$. Thus θ can be calculated explicitly when the conversion function is completely specified. This includes common situations where parametric model assumptions (such as normal or exponential) are made about F and G .

However, when $\mathrm{F} \equiv \mathrm{G}$ (for example, under H_{0}), $\mathrm{C}(\mathrm{u})=\mathrm{u}$, and the expression for θ reduces to an incomplete beta integral that can be calculated using tables of the incomplete beta function or via the c.d.f. of a binomial distribution. Note that in practice there are situations where the precedence probability θ, when $F \equiv G$, is important. This is particularly true in problems of prediction. Suppose that a random sample of observations is available from some (continuous) population and based on this sample one wishes to estimate some characteristics of a future sample drawn from the same population. For example, the interest might be to estimate the number of observations in the second random sample that will exceed (or precede) some ordered (say the median or the largest) value of the first sample. This type of problem is important, for example, in studies of the extremes (in environmental monitoring; hydrology, etc.) and in quality control. For instance, in a production process producing a certain type of light fuses, it might be of interest to estimate, with some degree of confidence, the number of fuses in a future sample that would last longer than say the longest working fuse from the current sample. Such a number or the proportion could be interpreted as one measure of the "quality" of this type of fuses.

Since E is a random variable, an answer to the above problem might be given by a prediction interval. For various problems in the context of prediction intervals the reader is referred to the recent book by Hahn and Meeker (1991). For a brief introduction, one can also refer to Vardeman (1992). For our problem, let V_{i} (or E_{i}) denote the number of Y observations that precede (or exceed) $X_{(i)}$. The statistic V_{i} is called a "precedence" statistic and a test based on V_{i} is called a "precedence" test (on the other hand one could just as easily use the "exceedance" statistic E_{i}, and could call the resulting test an "exceedance" test). Recall that according to the first interpretation of the precedence probability, θ is simply the c.d.f. of V_{i} at $j-1$. Also, since $P\left(V_{i} \leq j-\right.$

1) $=P\left(E_{i} \geq n-j+1\right)$, one can consider either the exceedances or the precedances in testing hypotheses or in constructing prediction intervals.

When $\mathrm{F} \equiv \mathrm{G}$, it has been shown that (see for example, CV)
$P\left(V_{i}=\mathrm{v}\right)=\frac{\binom{i+\mathrm{v}-1}{\mathrm{v}}\binom{m+n-i-\mathrm{v}}{n-\mathrm{v}}}{\binom{m+n}{n}}, \quad \mathrm{v}=0,1, \ldots, \mathrm{n} ; \mathrm{i}=1,2, \ldots, \quad \mathrm{~m}$.
Remark 1 For $1 \leq \mathrm{a}<\mathrm{b} \leq \mathrm{m}$, it can be seen that $\mathrm{P}\left(\mathrm{X}_{(\mathrm{a})} \leq \mathrm{Y}_{(\mathrm{j})} \leq \mathrm{X}_{(\mathrm{b})}\right)=\mathrm{P}\left(\mathrm{a} \leq \mathrm{W}_{\mathrm{j}} \leq \mathrm{b}-1\right)$, where W_{j} is the number of X 's preceding $\mathrm{Y}_{(\mathrm{j})}$. The distribution of W_{j} can be obtained from (1) by writing m for n and j for i . This result gives a nonparametric prediction interval for $\mathrm{Y}_{(\mathrm{j})}$ based on two X-order statistics. See Fligner and Wolfe $(1976,1979)$ for further details.

Remark 2 The probability distribution of E_{i}, the number of Y "exceedances" (the number of Y 's that exceed $\mathrm{X}_{(\mathrm{i})}$) follows from (1) and is given for completeness

$$
\begin{equation*}
P\left(E_{i}=e\right)=\frac{\binom{i+n-e-1}{n-e}\binom{m-i+e}{e}}{\binom{m+n}{n}}, \quad \mathrm{e}=0,1, \ldots, \mathrm{n} ; \mathrm{i}=1,2, \ldots, \mathrm{~m} \tag{2}
\end{equation*}
$$

Remark 3 In some applications (such as in the analysis of extremes) the probability distribution of F_{i}, the number of Y observations that exceed $\mathrm{X}_{(\mathrm{m}-\mathrm{i}+1)}$, the ith largest (note that $\mathrm{X}_{(\mathrm{i})}$ is the ith smallest) of the X's, is needed. This exceedance probability is easily obtained from (2) by substituting $\mathrm{m}-\mathrm{i}+1$ for i . After some simplification the result can be expressed as
$P\left(F_{i}=f\right)=\frac{i}{m+n} \frac{\binom{m}{i}\binom{n}{f}}{\binom{m+n-1}{i+f-1}}, \quad \mathrm{f}=0,1, \ldots, \mathrm{n} ; \mathrm{i}=1,2, \ldots ., \mathrm{m}$.

These and other related expressions have been obtained by several authors, particularly in the 50 's and the 60 's, using a variety of mathematical-statistical as well as combinatorial techniques. The starting point for many of these works appears to be the classic paper by Wilks
(1942). Some rather old but still useful references on this topic are: Gumbel and von Schelling (1950), Epstein (1954) and Rosenbaum (1954).

The distribution of E_{i} is computed and presented in Tables 3 and 4 for selected 'small' values of m and $n: m, n=3(2) 15$ and $i=(m+1) / 2$ and $i=m$. Thus, the tables cover exceedances above the median and the largest, respectively. Note that for values of m, n and i not covered by the tables, it is not hard to use the explicit formulas given above. First, these tables can be used to implement a precedence test as proposed in Nelson (1963). To illustrate this, for example, suppose $\mathrm{m}=9, \mathrm{n}=9$ and a size $\alpha=.05$ precedence test is desired at the X -median, so that $\mathrm{i}=5$. Using Table 4, the rejection region can be found as follows. Since $V_{5}=n-E_{5}$, where E_{5} is the number of Y's exceeding $X_{(5)}$, from Table 4, we first find the smallest integer r so that $P\left(E_{5} \leq r\right) \geq .95$. This yields $\mathrm{r}=9$ so that $\mathrm{n}-\mathrm{r}=2$ and the precedence test has rejection region $\mathrm{V}_{5} \leq 2$, with an exact size equal to .0379 . Also, using either of the two interpretations for θ, this corresponds to $\mathrm{j}=3$ and the precedence rejection region can be equivalently expressed in terms of two order statistics: $\mathrm{Y}_{(3)}>$ $X_{(5)}$. Secondly, tables 3 and 4 are useful in the calculation of prediction intervals. This is discussed in the following section.

2.1 Prediction intervals

The exact distribution of the exceedance statistic when $\mathrm{F} \equiv \mathrm{G}$, can be used to set up a prediction interval on the number (or the proportion) of future observations that exceed a current order statistic. For example, suppose $m=9, n=7$ and $i=5$, so the interest is in the number of future exceedances in sample of size 7 over the median of a current sample of size 9 . The distribution of Y-exceedances over the X -median, E_{5}, in this case is found from Table 3 and is given in Table 1 for quick reference.

Table 1: Distribution of number of exceedances E with $m=9, n=7$ and $i=5$

	0	1	2	3	4	5	6	7
prob	0.02885	0.09178	0.16521	0.21416	0.21416	0.16521	0.09178	0.02885
cuprob	0.02885	0.12063	0.28584	0.50000	0.71412	0.87937	0.97115	1.00000

From Table 1 it is seen that the distribution of E_{5} in this case is symmetric and bimodal. The number of future observations that are expected to exceed the current sample median is 3.5 . Now, suppose we want a 90% prediction interval on E_{5}, the number of Y -observations exceeding the X -median. From Table 1, using the cumulative probabilities (cuprob), it is found that the required prediction interval is between 1 and 6 , with both endpoints included. This interval is conservative in the sense that the exact confidence coefficient is 0.9423 , which is higher than the nominal 0.90 . Equivalently, the proportion of future observations that The distribution given in Table 1 also demonstrates the well-known fact not all typical confidence coefficients might be available for all m, n and i , owing to the discreteness of the E_{i} statistic. In general, a two-sided prediction interval $[a, b]$ for E_{i}, with confidence coefficient 1- α, can be calculated by solving for two integers a and b so that

$$
\begin{equation*}
\sum_{e=a}^{b} \mathrm{P}\left(\mathrm{E}_{\mathrm{i}}=\mathrm{e} \mid \mathrm{F} \equiv \mathrm{G}\right)=1-\alpha, \tag{4}
\end{equation*}
$$

where $P\left(E_{i}=e l F \equiv G\right)$ is given by (2).
When i corresponds to the median of the X-sample, the distribution of E_{i} is symmetric. In this case one can set a to be the largest integer such that $\sum_{e=0}^{a-1} \mathrm{P}\left(\mathrm{E}_{\mathrm{i}}=\mathrm{elF} \equiv \mathrm{G}\right) \leq \alpha / 2$ and take $\mathrm{b}=\mathrm{n}-\mathrm{a}$.

In some problems only a one-sided prediction interval (or a prediction bound), say of the form [0,c] is needed. In this case (4) can be easily modified and tables 3-4 can be used to find the interval.

Now suppose that for the same m and $n, i=9$, so that the interest is in the number of future exceedances over the largest value of the current sample. For this case, the distribution of E is found from Table 4 and is given in Table 2.

Table 2: Distribution of number of exceedances E with $m=9, n=7$ and $i=9$

	0	1	2	3	4	5	6	7
prob	0.56250	0.26250	0.11250	0.04327	0.01442	0.00393	0.00079	0.00009
cuprob	0.56250	0.82500	0.93750	0.98077	0.99519	0.99913	0.99991	1.00000

Thus there is a 11.25% probability that in a future (Y-) sample of 7,2 will exceed the largest of the current (X-) sample of 9 observations from the same continuous population. As it might be expected, this distribution is highly skewed to the right. The probability is over 56% that none of the Y-sample values will exceed the maximum. It may be noted that for these small values of m, n there are no prediction intervals for E_{9} (exceedances over the current maximum), given typical confidence coefficients such as 0.95 or 0.90 .

```
<<Tables 3 and 4 Here>>
```


Normal Approximation

Though exact formulas are given, when m and n are large, the practitioner may find it more convenient to employ a normal approximation to calculate a and b. To this end, note that it has been shown (see for example, CV, equation (8)) that V_{i} has, approximately, a normal distribution. Specifically, when $F \equiv G$, and m and n are large, the precedence statistic V_{i} is approximately normally distributed with mean $\mu=n\left(1-\frac{i}{m}\right)$ and variance $\sigma^{2}=n\left(\frac{m+n}{m}\right)\left(\frac{i}{m}\right)\left(1-\frac{i}{m}\right)$. It follows that a normal approximation to and b are

$$
a=n-\left[\frac{n}{m}\left\{i-z_{\alpha / 2} \sqrt{i(m-i)\left(\frac{1}{m}+\frac{1}{n}\right)}\right\}\right]
$$

and

$$
\begin{equation*}
\mathrm{b}=\mathrm{n}-\left[\frac{\mathrm{n}}{\mathrm{~m}}\left\{\mathrm{i}+\mathrm{z}_{\alpha / 2} \sqrt{\mathrm{i}(\mathrm{~m}-\mathrm{i})\left(\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{n}}\right)}\right\}\right]-1 \tag{5}
\end{equation*}
$$

respectively, where $\mathrm{z}_{\alpha / 2}$ is the upper $100 \alpha / 2$ th standard normal percentile and $[\mathrm{x}$] denotes the greatest integer not exceeding x. Using these formulas for our example, with $m=9, n=7, i=5$ and $\alpha=.10$, we get $\mathrm{a}=1$ and $\mathrm{b}=6$, the same solutions that were found using the exact distribution.

2.2 A combinatorial identity

Recall that the precedence probability θ is simply the value of the c.d.f. of V_{i} at $j-1$. Thus, when $F \equiv G$, we have

$$
\begin{align*}
& \theta=P\left(V_{i} \leq j-1\right) \\
& =\sum_{\mathrm{r}=0}^{\mathrm{j}-1} \mathrm{P}\left(\mathrm{~V}_{\mathrm{i}}=\mathrm{v}\right) \\
& =\sum_{\mathrm{v}=0}^{j-1} \frac{\binom{i+\mathrm{v}-1}{\mathrm{v}}\binom{m+n-i-\mathrm{v}}{n-\mathrm{v}}}{\binom{m+n}{n}} . \tag{6}
\end{align*}
$$

On the other hand, when $F \equiv G$, the probability θ can also be viewed (see for example, van der Laan, 1970; Liu, 1992) as the probability that at least i of the X 's are in the first $\mathrm{i}+\mathrm{j}-1$ positions out of the total $m+n$ ordered X's and Y's, where m X's and n Y's are drawn from the same distribution. It follows that
$\theta=\sum_{r=i}^{i+j-1} \frac{\binom{m}{r}\binom{n}{i+j-r-1}}{\binom{m+n}{i+j-1}}$
Thus (6) should be equal to (7). The result is stated as a combinatorial identity in the following lemma. An alternative algebraic proof is also provided below.

Lemma

$\sum_{r=0}^{j-1} \frac{\binom{i+r-1}{r}\binom{m+n-j-r}{n-r}}{\binom{m+n}{n}}=\sum_{r=i}^{i+j-1} \frac{\binom{m}{r}\binom{n}{i+j-r-1}}{\binom{m+n}{i+j-1}}$

Proof

Note that we can write

$$
\sum_{r=i}^{i+j-1} \frac{\binom{m}{r}\binom{n}{i+j-r-1}}{\binom{m+n}{i+j-1}}=\sum_{r=0}^{j-1} \frac{\binom{m}{i+r}\binom{n}{j-1-r}}{\binom{m+n}{i+j-1}}
$$

so we need to show that
$\sum_{r=0}^{j-1} \frac{\binom{i+r-1}{r}\binom{m+n-i-r}{n-r}}{\binom{m+n}{n}}=\sum_{r=0}^{j-1} \frac{\binom{m}{i+r}\binom{n}{j-1-r}}{\binom{m+n}{i+j-1}}$.
Canceling the common factorials on both sides, it can be seen that the above amounts to showing that

$$
\begin{equation*}
\sum_{r=0}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}-\sum_{r=0}^{j-1}\binom{i+r-1}{i-1}\binom{m+n-i-r}{m-i}=0 \tag{9}
\end{equation*}
$$

Proof of (9) is given by induction on j .
For $\mathrm{j}=1$, (9) is true since
$\binom{i}{i}\binom{m+n-i}{m-i}-\binom{i-1}{i-1}\binom{m+n-i}{m-i}=0$.
To illustrate the general approach, note that for $\mathrm{j}=2$ we have to show that

$$
\begin{equation*}
\binom{i+1}{i}\binom{m+n-i-1}{m-i}+\binom{i+1}{i+1}\binom{m+n-i-1}{m-i-1}-\binom{i-1}{i-1}\binom{m+n-i}{m-i}-\binom{i}{i-1}\binom{m+n-i-1}{m-i}=0 \tag{10}
\end{equation*}
$$

For this, using the well-known identity
$\binom{M}{s}+\binom{M}{s-1}=\binom{M+1}{s}$, so that $\binom{M}{s}-\binom{M+1}{s}=-\binom{M}{s-1}$,
for any positive integer M and any non-negative integer $\mathrm{s}=0,1, \ldots, \mathrm{M}$, we get,

$$
\begin{aligned}
& \binom{i+1}{i}\binom{m+n-i-1}{m-i}-\binom{i}{i-1}\binom{m+n-i-1}{m-i}=\binom{m+n-i-1}{m-i}\binom{i}{i} \\
& \binom{i}{i}\binom{m+n-i-1}{m-i}-\binom{i-1}{i-1}\binom{m+n-i}{m-i}=-\binom{m+n-i-1}{m-i-1}
\end{aligned}
$$

and therefore the L.H.S. of (8) equals

$$
-\binom{m+n-i-1}{m-i-1}+\binom{i+1}{i+1}\binom{m+n-i-1}{m-i-1}=0
$$

Now we suppose the identity (1) is true for fixed j, then we have to prove that the identity is also true for $\mathrm{j}+1$. Thus we have to prove

$$
\begin{equation*}
\sum_{r=0}^{j}\binom{i+j}{i+r}\binom{m+n-i-j}{m-i-r}-\sum_{r=0}^{j}\binom{i+r-1}{i-1}\binom{m+n-i-r}{m-i}=0 \tag{11}
\end{equation*}
$$

Note that the second sum can be rewritten as

$$
\begin{equation*}
\sum_{r=0}^{j-1}\binom{i+r-1}{i-1}\binom{m+n-i-r}{m-i}+\binom{i+j-1}{i-1}\binom{m+n-i-j}{m-i} \tag{12}
\end{equation*}
$$

By the induction hypothesis, the first sum in (12) is equal to

$$
\sum_{r=0}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}
$$

so that the left hand side of (11) equals

$$
\sum_{r=0}^{j}\binom{i+j}{i+r}\binom{m+n-i-j}{m-i-r}-\sum_{r=0}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}-\binom{j+i-1}{i-1}\binom{m+n-i-j}{m-i}
$$

which reduces to

$$
\sum_{r=1}^{j}\binom{i+j}{i+r}\binom{m+n-i-j}{m-i-r}-\sum_{r=0}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}+\binom{j+i-1}{i-1}\binom{m+n-i-j}{m-i}
$$

The last expression can be further simplified as follows

$$
\begin{aligned}
& =\sum_{r=1}^{j}\binom{i+j}{i+r}\binom{m+n-i-j}{m-i-r}-\sum_{r=1}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}-\binom{i+j-1}{i}\binom{m+n-i-j}{m-i-1} \\
& =\sum_{r=2}^{j}\binom{i+j}{i+r}\binom{m+n-i-j}{m-i-r}-\sum_{r=1}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}+\binom{i+j-1}{i+1}\binom{m+n-i-j}{m-i-1} \\
& =\sum_{r=2}^{j}\binom{i+j}{i+r}\binom{m+n-i-j}{m-i-r}-\sum_{r=2}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}-\binom{i+j-1}{i+1}\binom{m+n-i-j}{m-i-2} \\
& =\sum_{r=j-1}^{j}\binom{i+j+r}{i+r}\binom{m+n-i-j}{m-i-r}-\sum_{r=j-1}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}-\binom{i+j-1}{i+j-2}\binom{m+n-i-j}{m-i-j+1} \\
& =\sum_{r=j}^{j}\binom{i+j}{i+r}\binom{m+n-i-j}{m-i-r}-\sum_{r=j-1}^{j-1}\binom{i+j-1}{i+r}\binom{m+n-i-j+1}{m-i-r}+\binom{i+j-1}{i+j-1}\binom{m+n-i-j}{m-i-j+1} \\
& =\binom{i+j}{i+j}\binom{m+n-i-j}{m-i-j}-\binom{i+j-1}{i+j-1}\binom{m+n-i-j+1}{m-i-j+1}+\binom{i+j-1}{i+j-1}\binom{m+n-i-j}{m-i-j+1} \\
& =\binom{m+n-i-j}{m-i-j}-\binom{m+n-i-j}{m-i-j}=0,
\end{aligned}
$$

and the proof is complete.

References

Chakraborti, S. and van der Laan, P. (1997): "An overview of precedence tests for censored data," Biometrical Journal, 39, 99-116.

Chakraborti, S. and van der Laan, P. (1996): "Precedence tests and confidence bounds for complete data: an overview and some results," The Statistician, 45, 351-369.

Epstein (1954): "Tables for the distribution of the number of exceedances," Annals of Mathematical Statistics, 25, 762-768.

Fligner, M. A. and Wolfe, D. A. (1976): "Some applications of sample analogs to the probability integral transform and a coverage property," American Statistician, 30, 78-85.

Fligner, M. A. and Wolfe, D. A. (1979): "Methods for obtaining a distribution-free prediction interval for the median of a future sample," Journal of Quality Technology, 11, 192-198.

Gumbel, E. J. and von Schelling, H. (1950): "The distribution of the number of exceedances," Annals of Mathematical Statistics, 21, 247-262.

Hahn, G. J. and Meeker, W. Q. (1991): Statistical intervals: a guide for practitioners, John Wiley.
van der Laan, P. and Chakraborti, S. (1998): "Precedence tests and Lehmann alternatives," submitted.
van der Laan, P. (1970): Simple distribution-free confidence intervals for a difference in location, Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.

Lin and Sukhatme (1992): "On the choice of precedence tests," Communications in Statistics, Theory and Methods, 21, 2949-2968.

Liu (1992): "Precedence probabilities and their applications," Communications in Statistics, Theory and Methods, 21, 1667-1682.

Nelson, L. S. (1993): "Tests on early failures-the precedence life test," Journal of Quality Technology, 25, 140-149.

Nelson, L. S. (1963): "Tables for a precedence life test," Technometrics, 5, 491-499.
Rosenbaum (1954): "Tables for a nonparametric test for location," Annals of Mathematical Statistics, 25, 146-150.

Vardeman, S. B. (1992): "What about the other intervals," American Statistician, 46, 193-197.
Wilks, S. S. (1942): "Statistical prediction with special reference to the problem of tolerance limits," Annals of Mathematical Statistics, 13, 400-409.

Table 3. Distribution of E for exceedances over the median

Table 4: Distribution of E for exceedances above the largest

[^0]: *Address for Correspondence: Department of Mathematics and Computing Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: pvdlaan@win.tue.nl.
 Support provided in part by NATO Collaborative Research Grant No. CRG920287.

