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Abstract: This article discusses the stochastic behaviour of a two-unit parallel redundant repairable 
system with statistically dependent  units. Important performance measures for the system, namely 
reliability, mean time to system failure, availability, stationary availability, joint availability and interval 
reliability are obtained in an explicit form. The transient behaviour of the system is characterised for a 
wide class of repair time distributions. The lifetimes of the units are modelled as bivariate exponential to 
capture the statistical dependence of the units. The article concludes with a detailed investigation of the 
stochastic point process induced by entries to various states, which correspond to the number of failed 
components in the system. 

Keywords: Stochastic process; Parallel redundancy; Reliability (interval); Availability (joint); Intensity 
function; Product density 

Motivation 

The analysis of a parallel redundant system where the units can be repaired on failure has extensive 
literature. The fundamental and original contribution is due to Gaver (1963, 1964), who considered a 
two-unit parallel redundant  system with constant hazard rate (for the individual independent units) and 
arbitrarily distributed repair times. Gaver used supplementary variables (Cox, 1955) to derive the mean 
time to system failure and stationary availability. Ever since this reported research there have been many 
attempts to derive the mean time to system failure (MTSF) and stationary availability under relaxed 
assumptions on the lifetime and repair time distributions of the units in the system. Some of the notable 
contributions are Kodama et al. (1974), Linton (1976), Subramanian et al. (1979), Takeda et al. (1979), 
Ravichandran (1981), Osaki (1985) and Liebowitz (1986). Ravichandran (1991) reviewed the state of the 
art for this system. An explicit derivation of the system's operating characteristics, when the failure and 
repair rates are non-constant, is not easy and regenerative simulation (Rubenstein, 1981) is a meaningful 
alternative. 
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Figure 1. Para l le l redundancywi th  dependent  un i t s rep resen ted  by a two-componen t se r i e s sys tem 

There  are several directions in which the fundamental system can be extended to meet the reality of a 
practical situation. In this article the situation is analysed where the units are not statistically indepen- 
dent: it is assumed that common cause failures may occur, which destroy both units simultaneously. 
Harris (1968) used a bivariate exponential (BVE) distribution to model the lifetimes of the units and 
derived the MTSF by using the supplementary variable technique for an arbitrary repair time distribu- 
tion. Osaki (1970, 1980) extended the analysis to obtain the availability of the system by using a variant of 
a semi-Markov process with some non-regeneration points. 

Here it is shown that the analysis of a two-unit dependent  parallel system can be carried out by using 
an appropriate imbedded renewal process. Using the imbedded renewal process, explicit expressions for 
several operating characteristics, such as reliability, MTSF, availability, stationary availability, joint 
availability and interval reliability are obtained. The transient behaviour of the system for a wide class of 
repair time distributions is also reported. Finally, the intensity functions associated with the counting 
process of various stochastic point events are investigated; the expected value of the counting measure of 
the number of events in (0, t) and its variance are derived. 

There is yet another interesting way to approach the case of parallel redundancy with dependent  
units. Using a BVE to represent the lifetimes of the units, it is easy to see that the hazard rate in various 
states (which are defined by the number of failed units) is expressed as a sum of two terms, one 
corresponding to the 'baseline' hazard rate for the system and the other due to common cause failure. In 
other words: the system's hazard rate equals the hazard rate of a two components series system, 
consisting of components C a and C2, where: 
1. C 1 represents a two unit parallel redundant  system which units have independently (exponentially) 

distributed lifetimes. 
2. C 2 represents an artificial component,  used (in this particular case) to model dependence between the 

units of component C 1 (see Figure 1). 
From this point of view, the system is a specific, but interesting example of the additive hazards 

model, proposed and reviewed in Pijnenburg (1990) in contrast to the proportional hazards model of Cox 
(1972). 

1. Model description 

A representation for the joint survival function of the lifetimes of the components 1 and 2 is given by 
the BVE introduced by Marshall et al. (1967). Hence 

Pr{X 1 > t , ,  X 2 > t2} = e x p ( - h l t  I - h z t  2 - A , 2  max(t1, t2) ) (1.1) 

where tl, t 2 > 0 and A1, A2, A12 are non-negative constants. It is useful to note that: 
1. The joint lifetime of both components is characterised by (1.1), hence the instantaneous failure rate, 

when both units are operable, is A 1 + A 2 + A12. 
2. The lifetime of unit 1 (2), when the other unit is not operating, is negative exponentially distributed 

with parameter  A 1 --b AI2 (A 2 + A12 ). 
3. The time until both units fail simultaneously, due to common cause, is negative exponentially 

distributed with parameter  A12. 
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Figure 2. One-s tep  transit ion diagram, similar units 

Observations 1-3 are crucial for the subsequent analysis and bring out the additive hazard nature 
(from various sources) of the system. Some of the mathematical properties and results of the BVE can be 
found in Barlow and Proschan (1975, pp. 128, 129). 

The following model assumptions are made: 
1. The system consists of two units in a parallel configuration. The system requires only one unit for 

operation. 
2. The units are repairable. On failure they are repaired by a single server repair facility with FIFO 

repair policy. Repairs are assumed to restore the normal operational efficiency of the units perfectly. 
3. The identification of the operable and non-operable status of a unit is perfect. A unit is switched from 

the operating position to the repair facility and vice versa instantaneously. 
4. The lifetimes of the units are statistically dependent  as they are subjected to a common cause failure 

which occurs with rate A12. The joint lifetime distribution of the units is represented by the BVE (1.1). 
5. The repair time durations of the units are identically distributed random variables with pdf g(-).  

2. Stochastic behaviour of  the system 

For the present analysis the units are assumed to be physically identical but statistically dependent.  A 
state description of the system can be given as the number of units operating (or under failure). Let X( t )  
be the state of the system at time t, representing the number of failed units in the system. Then Figure 2 
gives the one-step transition diagram of the system. State 2 is said to be the down state and the states 0 
and 1 are called up states. 

Questions about the operating characteristics can be translated into equivalent questions about the 
process {X(t), t > 0}. At time t = 0 we assume the system is operable with both units working. The 
various operating characteristics given X(0) = 0 are expressed in Table 1 in terms of the X( t )  process. 

To study the behaviour of the induced stochastic process it is convenient to introduce the events E i as 
Ei: Entrance into state i, i = 0, 1, 2. 
Table 2 summarises the various possibilities for the occurrence of Ei-events and the properties 
associated with them. 

In our analysis the occurrence of El-events plays a crucial role as they are not only regenerative, but 
also form a renewal process (Cox, 1962). We exploit this structure of the El-events in obtaining the 
system's operating characteristics. 

Table 1 

Measure  Symbol Expression in te rms of  {X(t),  t > 0} 

Reliability R(t) R(t) = P r l X ( u )  ~ 2, 0 < u < t I X(0)  = 0} 
Availability A(t)  A(t)  = Pr{X( t )  ~ 2 ] X(0)  = 0} 
Interval reliability R(t, ~') R(t, r )  = Pr{X(u)  * 2, t _< u < t + ~- I X(0) = 0} 
Joint  availability A(tl,  t 2) A(tl,  t 2) = Pr{X(t  1) ~ 2, X ( t  2) ~: 2 ] X(0) = 0} 
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Table 2 

Event Possible occurrences Description Nature of the event 

E 0 Initial occurrence Both the units are operating Regenerative 
E 0 From state 1 By repair completion Regenerative 
E~ From state 0 By failure of one of the units Regenerative 
E 1 From state 2 By repair completion Regenerative 
E 2 From state 0 By failure of both the units Regenerative 
E 2 From state 1 By failure of operating unit before repair completion 

of the other unit Non-regenerative 

Notation 

We conclude this section with a brief list of the notation that is used in this article: 
f ( t )  = pdf of a random variable. 
F(t )  = f J ( u )  du. 
i f ( t )  = 1 - F(t) .  
f~n)(t)= n-fold convolution of f ( t )  with itself. 
f * ( s )  = Laplace transform of f ( t ) .  
* = Convolution symbol: f ( t )  * g( t )  = f d f ( u ) g ( t  - u) du. 

F-0(t) = e x p ( -  (2A + Xa2)t). 
Fl(t)  = e xp ( - ( A  + Ale)t). 
f l ( t )  = (A + A12) e xp ( - (A  + a12)t). 

3. The imbedded renewal process 

Let X~I be a random variable representing the time interval between successive visits to state 1. At 
every new visit to state 1 an El-event occurs. Let  {t i} be the epochs at which an El-event occurs. Then 
the durations {ti+ 1 - t  i} are realisations of the random variable XII. By the observed property of the 
El-events, the durations {ti+ 1 -t~} correspond to intervals in a renewal process. The pdf of the random 
variable XI~ characterises this renewal process. The random variable X11 is composed of three distinct 
parts (as detailed below) corresponding to the possible paths taken by the process {X(t), t >_ 0}: 
a) The process starts from state 1, visits state 2 by the failure of the operating unit before the repair 

completion of the other unit, and recovers subsequently, resulting in an occurrence of E 1 . 
b) The process starts from state 1, visits state 0 after repair completion of one of the units before failure 

of the other unit, and enters state 1 by failure of one of the units, inducing an El-event. 
c) The process starts from state 1, visits state 0 after repair completion of one of the units before failure 

of the other unit, enters state 2 (causing a system failure) and recovers through a repair completion, 
causing the occurrence of an El-event. 
Before writing a formal expression for the pdf of the random variable XII, we need to obtain the pdf 

of the random variables characterising an entry to the states 1 and 2 from state 0. Using fo~(t) to denote 
the pdf of the random variables representing the length of a stay in state 0, followed by a transition to 
state i we have 

f o , ( t )  = 2A e x p ( -  (2A + A l z ) t ) ,  (3.1) 

f02(t)  = A,2 exp( - (2A + Al2)t ). (3.2) 

From (3.1)-(3.2), the earlier description of the process, the independence of the failure and repair times 
and the repair policy of the units, f l l ( t )  is 

f ~ ( t )  = g ( t ) F ~ ( t )  + [ g ( t ) f f l ( t ) ]  * fo l ( t )  + [ g ( t ) f f l ( t ) ]  • f02(t)  * g ( t ) .  (3.3) 
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Relation (3.3) completely characterises the renewal process induced by El-events. It is evident that the 
random variable Xll is proper. Its Laplace transform fl*l(s) is 

2A + A l z g * ( s  ) _ 1). (3.4) 
2A +A12+s 

From (3.4) the expected value ~[Xll ] of Xll is 

g*(a +axz ) 
~z[Xll ] = /.£ "[- (1 + a , 2 / ,  ) (3 .5 )  

2A + A12 

where/z is the mean repair time. 
To go further, the pdf of a modified version of the random variable Sll is needed. Denote by Sll the 

time interval between two successive visits to state 1 (i.e. two occurrences of El-events), with the 
provision that in between these visits the process X( t )  does not visit state 2, the system's down state. 
This pdf is denoted as fll(t)  and is obtained by dropping the first term in (3.3) (transitions 1-2-1) and 
the third term (transitions 1-0-2-1) and retaining the second term (transitions 1-0-1). Hence, 

f l l ( t )  ---- [ g ( t ) F l ( t ) ]  * f o l ( t ) .  (3.6) 

The density given by (3.6) for obvious reasons is defective. Its Laplace transform is given by 

)~'~(s) = 2 a g * ( a  + '~12 q-S) 
(3.7) 

2A + a12 q- S 

4. Reliability and availability 

It is now possible to obtain the operating characteristics of the system under investigation. Let Rl(t) 
and Al(t )  be the reliability and the availability of the system, conditioned on an El-event at the time 
origin. Thenext result specifies these measures. 

Result 1. Let 

a( t )  = G ( t ) f f , ( t )  + [g( t l f f l ( t ) ]  * Fo(t) .  

then 

(4.1) 

o o  

Rl( t  ) =or(t) + Y'~ f(~)(t)  * or(t), (4.2) 
n=l  

A , ( t )  = a ( t )  + E f(~)(t)  * ol(t). (4.3) 
n= l  

The derivation of expressions (4.1)-(4.3) is achieved by observing the stochastic behaviour of the 
system. The function a(t)  is used both in the reliability and availability function. It represents the 
probability that in an interval initiated by an El-event, the system neither fails nor induces the 
occurrence of an El-event. The derivation is obtained by considering the mutually exclusive cases that 
the repair, which commenced at the time origin, is completed or not before time t. Further, expressions 
(4.2) and (4.3) are obtained by classifying the time interval under consideration as: 
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a) No occurrence of El-event in (0, t). 
b) Several occurrences of El-events in (0, t) and the last one occurs in (u, u + du), u < t. 

In (4.3) the system can visit state 2 in between two successive El-events, whereas in (4.2) such visits 
are not possible. These requirements are met by using the functions f n ( ' )  and fn ( ' ) .  

It should be remarked that (4.1)-(4.3) are fundamental for the analysis of the system and the 
reasoning used in their derivations is typical and standard for the subsequent results in this work. 

Expressions (4.2) and (4.3) give the two key operating characteristics of the system. More details 
regarding their behaviour and computational feasibility are postponed to the second part of this article. 
Two important summary measures associated with the performance of the system, viz. the mean time to 
system failure (MTSF) and the stationary availability (/3) of the system, are derived. They are well known 
in reliability literature (Birolini, 1985) in terms of their direct physical interpretation. 

The best starting point for the MTSF and /3 is directly from the Laplace transforms of (4.1)-(4.3). 
From (4.1), 

1 ( 1  1 )  
-- + g * ( h + h l 2 + S )  2 A + h 1 2 + s  h + A 1 2 + s  " a*( s) h + h 1 2 + s  

Using X to represent the lifetime of the system starting with an El-event at the origin, the reliability 
Rl(t) of the system is equivalent to Rl(t) = Pr{X > t} and MTSF = E[X] = R~(s) l s=0. 

From (4.2), 

a*(s) 2A + ~-12 + s - ~ .g* ()t + ~.12 + s )  

R ~ ( s )  1 - fl'~ ( s )  ( 2 A + A 1 2 + s _ 2 A g , ( A + A 1 2 + s ) ) ( A + A 1 2 + s )  (4.4) 

and 

2A +A12-  Ag*(h  +A12 ) 
MTSF = (2A + ~12 - 2Ag*(A +/~.12))(/~. -Jr- ~12)"  (4.5) 

Using (4.3), the Laplace transform of the availability of the system conditioned on an event E 1 is 

At(s) 

1 -f~l(S) 

2A +A12+s  - a g * ( a  + A12"k-S) 
(4.6) 

((2A + A,2 + s + )tl2g*()t +/~'12 "+- S))(1 -- g * ( s ) )  + sg*(A + ~t12 "+- S))(a  "+- ~'12 -{- S) 

The stationary availability of the system conditioned by an event E 1 at the origin (in any case, the 
stationary availability is independent of the initial event at time t = 0) is obtained as the limiting value of 
Al(t) as t ~ oo. By the key renewal theorem, 

1 2A + A12- Ag*(A "[- A12 ) 
[ a ( u )  du = . (4.7) 

/3 ~ [ g l l ]  Jo (A + A12)(~(2A + ~12) -Jr- g* (A  + hi2)(1 + Ale/z)) 

An alternative way to compute the stationary availability is by using Tauberian theorems, which state 
that /3 may be computed as /3 = lims_~0sA~'(s). 

The stationary measure/3 can also be obtained directly from the stochastic process X(t), the number 
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of failed units at time t. Using the imbedded renewal process corresponding to the entries of the 
El-events and arguments similar to the derivation of (4.2) and (4.3), X(t) is characterised. Define 

P i ( t ) = P r { X ( t ) = i l E  1at t = 0 } ,  i = 0 , 1 , 2 .  

By the stated behaviour of the process, it follows that 

o~ 
e i ( t )  = Ti(t) + • f(l~)(t) * Yi(t) (4.8) 

n=l  

where 

yo(t) = [g( t ) f r l ( t ) ]  * fro(t),  (4.9a) 

y l ( t )  = G ( t ) f f l ( t ) ,  (4.9b) 

y2(t) = "G(t)FI(t ) + [g ( t ) f f l ( t ) ]  * foz( t)  * G ( t ) .  (4.9c) 

The key renewal theorem (Smith, 1958) applied in (4.8) gives the stationary distribution {%.} of the 
process X( t )  as 

g*(A + 112 ) 

rr°= / ,(21 +112 ) + g * ( 1  +112)(1 + 112/A, ) ' (4.10a) 

(21 +112)(1 - g * ( X  +112)) 
rq = (1 + 112)(I*(21 +t12) + g * ( 1  +112)(1 + A,2/z)) ' (4.10b) 

/x(1 + 112)(21 + 112 ) - (21 + 112)(1 - g * ( a  + 112)) + 1 ,2~(1 + 112)g*(1 + 112 ) 
,-a- 2 

(1  + 112) (tZ(21 + 112 ) + g *(1  + 1,2)(1 + 1121/,)) 

(4.10c) 

It is easily verified that ~'0 + rrl, determined by (4.10a-c), agrees with the stationary availability /3 
obtained in (4.7). 

Expressions (4.8)-(4.10) capture the stationary distribution of the process {X(t), t > 0}. In Pijnenburg 
et al. (1991) the stationary distribution of the process {X(t), t > 0} is investigated, under the additional 
condition that the process has not visited state 2. Further, the limiting residual lifetime distribution is 
subject of research. Such limiting distributions conditioned on an event whose probability tends to zero 
in the long range, are known as quasi-stationary distributions in stochastic process literature (Cavender, 
1978) and they are useful when the system rarely enters the failed state during its life. This aspect has 
not been widely used in the reliability literature: in fact, the only known reported contribution in this 
context is that of Kalpakam et al. (1983). 

5. More general performance measures 

Expressions (4.2) and (4.3) give the reliability and the availability of the system, conditioned by an 
El-event at the time origin. It is quite easy and useful to extend these measures for an event E 0 at the 
time origin. Using Ro(t) and Ao(t)  to represent the reliability and availability under the changed initial 
condition, we readily obtain 

Ro(t  ) - f ro ( t )  +fo l ( t )  * R , ( t )  (5.1) 
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and 

Ao(t ) =fr0( t )  + [ f0i( t )  +f02(t)  * g ( t ) ]  * Al( t  ) (5.2) 

where Rx(t) and Al(t) are determined by expressions (4.2) and (4.3). 
The derivation of (5.1) and (5.2) is based on considering whether there is a failure or not in the time 

interval under consideration. When there is no failure in (0, t), with probability fr0(t), the system is 
obviously reliable in (0, t) (and hence available at t). When there is a failure, an El-event is induced and 
hence the required probability is related to Rl(t) and Al(t)  as in the second terms of (5.1) and (5.2). 

The analysis is now extended to some of the more general operating characteristics namely interval 
reliability and joint availability. As expected, the imbedded renewal process described by (3.3) will play a 
dominant role in the derivations. Define 

R l ( t , ~ - ) = P r { X ( t ) = O V X ( t ) = l , t < u < t + ~ ' l E  1at t = 0 } ,  

A l ( t l ,  t2) = P r { g ( t )  = 0  V X ( t )  = 1, t = / 1 ,  t21E 1 at t = 0 } .  

The function Rl(t, ,c) represents the probability that the system is available for a duration ~-, beginning at 
time t, conditioned by an El-event at the origin. This function is a combined measure of availability and 
reliability introduced earlier. The measures reliability (Rl(t)) and availability (Al(t)) are recovered from 
RiO, "r) by setting t and ~-, respectively, to zero. The function Al(tl ,  t 2) represents the joint probability 
that the system is available at the time epochs t I and t 2, given an E~-event at t = 0. Explicit expressions 
for the interval reliability and joint availability are obtained below. 

Result 2. The interval reliability of the system, conditioned by an Ea-event at t = 0, is given by 
o o  

Rl(t ,  ~) =¢p(t, ~-) + • f t f~ ) (u )q~( t -u ,  "r) du (5.3) 
n = l  "t) 

where 

= f:+~g(u)Fl(u)Fo(t  + ~" - u) du ¢p(t, ~') G'(t + ~') frl(t + ~') + 

+ f t t+r f l l (U)R l ( t  + ' r - t t )  du. 

Result 3. The joint availability of the system, conditioned by an El-event at t = 0, is given by 
o o  

Al(tl, t2) = qs(t~, t : )  + ]~ ["f~7~(u)O(tl-u, t2-u)  du (5.4) 
n = l  "lJ 

where 

fti2g ( u ) frl( U ) Ao( tO(t 1, t2) =-G(t2)ffl(t2) + t 2 - u )  du 

+ fti2f~(u) f~2-"g(u+v)A~( t2 -u-v )  d v d u  

fo fo -- ftt2--Ul tl - -  - 'lg(u)Fl(u) f o l ( v ) A l ( t 2 - u - v )  dv du + g ( u ) F l ( u ) F o ( t e - u  ) d u +  

So -- it t2-u So :2-u-v + 'g(u)Fi(u) _ufo2(V ) g ( w ) A l ( t 2 - u - v - w ) d w d v  du. 
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Expression (5.3) is obtained by classifying the events according to the number of El-events which 
occurs in the intervals (0, t) and (t, t + ~-). In gift, ~-) the first two terms follow from the non-occurrence 
of an Ex-event in both (0, t) and (t, t + ~-) and the third term follows from a non-occurrence in (0, t) and 
one or more occurrences in (t, t + ~'). Finally, the integral in (5.3) represents the probability of exactly n 
occurrences, n > 1, in (0, t) and any number in (t, t + ~). The derivation of (5.4) is rather delicate and 
involves a careful follow-up of the process until time t 2. The major classification is the number of 
occurrences of El-events in (0, t l ) .  The further subclassification is based on whether the process is in 
state 0 or state 1 at time tx and whether the process remains in this state or not during (t~, t2). 

6. Intens i ty  of  the event E i 

In this section we study the point events generated by the process {X(t), t > 0}. The objective is to 
obtain expressions for the expected value, the variance and covariance of the counting measures 
associated with the Ei-events (i = 0, 1, 2). The next observations follow from the discussion of the 
stochastic process {X(t), t _> 0}. 
a) The process {X(t), t > 0} induces the event E i corresponding to the entry to state i (i = 0, 1, 2). 
b) The entries to the states 0 and 1 are regenerative. Also, the events E 0 and Ea induce a sequence of 

renewal events. 
c) The entry to state 2 is non-regenerative if it occurs from state 1 (hereafter called a /3-event) and is 

regenerative if it occurs from state 0 (hereafter called an a-event). 
Let N/(t) be the counting measure associated with event i, i = 0, 1, a , /3 .  The objective is to obtain 

IF[N/(t)], Var[N/(t)] and Cov(N~(t), Nt3(t)). The basic approach is to use the product densities associated 
with the events. The product densities are the counter parts of renewal density in the context of 
non-renewal stochastic point processes and are systematically discussed and illustrated in Srinivasan 
(1974) and also in Cox et al. (1980). 

The analysis begins with E~-events. By the assumed stationarity of the X(t)-process the counting 
process N/(0, t) would be represented by N;(t). The renewal density of El-events is used to obtain the 
expected value and the second order characteristics. Further, define 

1 
h l ( t  ) = lim 7 P r { N l ( t  + At) - N l ( t  ) = l I E  1 at t = 0), 

~ t ~ 0  Ptt 

and, for t I 4 = t2,  

1 
lira AtlAt2  Pr {NI( t i h l ( t l '  t 2 )  = a q ,  AtzoO +At i )  - N l ( t i )  = 1, i =  1, 21E 1 at t = 0 } .  

The functions hi(t) and hl(t l, t 2) can be interpreted as follows: hl( t )At  represents the probability of 
an occurrence of an El-event in (t, t + At), and h~(t~, t2)At iAt  2 represents the joint occurrence of an 
El-event in (ta, t 1 + At 1) and another El-event in (t2, t 2 + At2). From the renewal nature of El-events 
and the possibility that the required event in (t, t + At) may be the first or any subsequent event, 

h l ( t  ) = f i  f ~ ) ( t )  (6.1) 
n = l  

and, for t I < t2,  

hl( tl,  t2) = hl( t l )h l (  t 2 -  t l ) .  (6.2) 

In (6.2) and later product densities the assumption t~ < t 2 is made; for obvious reasons the roles of t 1 
and t 2 are interchanged if t 2 < t 1. 
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The expected number of El-events in (0, t) is obtained by integrating the function hi(u) over (0, t). 
The second factorial moment is (Cox et al., 1980) 

- = , h , ( t l ,  t2) dt I dt2, (6.3) ~_{N, ( t ) [N, ( t )  1]} fo<ttt2< t 

t l  4- t  2 

and hence 

, t2<t_ h l ( t l '  t2) dt ,  d r2+  IE[Nl(t)] - {~[Nl(t)]} 2. (6.4) Va r [Nl ( t ) ]  = _fo<t, 

l l  4:t  2 

The stationary frequency A 1 of El-events is obtained from the limiting behaviour of hi(t): 

1 2A + A12 
A 1 = l imh l ( t )  - -  = . (6.5) 

t - - * m  ~[Xll  ] /x(2A +A12 ) + g * ( A  + A12)(1 + A,2/.t ) 

Subsequently, the asymptotic behaviour of hl(t  l, t 2)  for t~ --, •, t 2 --+ 0% t2 - -  t l  = r is 

lira h~(t l, t2) = A l h , ( r ) .  (6.6) 
t l ,  t 2 --+ oo 
t 2 - - I  I ='/" 

Finally, in the stationary case the variance of El-events in an interval of length r, denoted by V~(r) is 
obtained by using (6.6): 

T f0U V , ( r ) =  lim Var[Na( t l ,  t2) ] = A i r ( I - A i r  ) + 2 A l l  h i ( v - u )  du dr .  (6.7) 
Jo 

/ 2 - - t l ~ T  

The point events E 0 can be examined in the same way. 
A more interesting sequence of point events is generated by E2-events. It is clear that in the stationary 

case the frequency A 2 of E2-events is A 2 = A n + Ate, where A,  and A s are the stationary frequencies 
corresponding to a and /3 events. 

The stationary intensity associated with E 2 events is 

1 
h2(t)  = At-,01im .---/N,(atPr .t + At) - N2(/)  = l I E  1 at t = 0}. 

It is immediate that 
o~ 

h2(t ) = a ( t )  + Y', f ~ ) ( t )  * a ( t )  
n = ]  

where 

a ( t )  = [ g ( t ) F l ( t ) ]  * fo2(t)  + G ( t ) f l ( t  1. 

Alternatively, 

h2( t )  = h a ( t )  +ht3( t )  

where 

h, , ( t )  = a ~ ( t )  + Y'~ f(l~ ) * a~ ( t ) ,  
n = ]  

and 

cx~ 

ht~(t) = at3(t) + E f(a~)(t) * ate(t),  
n = l  

(6.8) 

(6.9) 

(6.10) 

a~( t )  = [ g ( t ) f f l ( t ) ]  * f o 2 ( t ) ,  al3(t ) = G ( t ) f l ( t  ). 
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Hence, 

A2 

and 

oo 

[ a(u) du = 
IF[ X l l  ] J0 

2h + ) h 2 -  2Ag*(A +a12 ) 

/x(2a -Jr- )t12 ) + g * ( A  +3.12)(1 q'- /~12]d,) ' 
(6.11a) 

1 £~  A12g *(A + ,h,2 ) 

A,~ [~[Xl1 ] . a,~(u) dU=l~(ZA+A12)+g,(A+Aiz)(l+hi21x), (6.11b) 

1 £0~ (2A + ~12)(1 --g*(,/~ +)112)) 
at3 = I:[)(n] u as(u  ) du = ~(2A +hi2  ) + g * ( A  + Al2)(1 + Aiz/z ) (6.11c) 

The a-events, generated as a special sequence of Ez-events, are regenerative (more specifically, they 
are renewal as well). The second-order prop6rties are similar to El-event or E0-event, and hence are not 
repeated here. However, the fl-events are non-regenerative and it is useful to obtain the second-order 
properties of the counting process No(t). This is obtained by Using the appropriate product densities. 

Define, for t i 4= t2, 

1 
ht3°(tl' t2) = aq,limA/2---,0 At1 At2Pr{Nt3(ti+Ati)  -N~( t i )  = 1, i =  1, 21E x at t = 0 } .  

Then 

= f l ( t l ) G ( t l )  ct2-qJo g( l l  + u) ht~o( tl, te) ~ ( t l  ) ht3( t2 - tl - U ) du 

oo 

+ y, So, = G(v )  h o ( t 2 - t i - u )  d u d v .  (6.12) 

Expression (6.12) is derived by considering the following specifications. It is required to obtain a/3-event 
(a transition of state 1 to state 2) at t I and another/3-event at t 2 (t I 4: t z) conditioned by an El-event at 
the origin: 
a) The fl-event realised at t 1 may be caused by the repair not being completed until t I and a failure of 

the operating unit at t 1. This gives the term f l(tl)G(tl).  
b) The fl-event realised at t 1 is non-regenerative, and the (elapsed) repair duration at t I is precisely the 

time until the last El-event. For the occurrence of a /3-event at t2, a repair completion is necessary 
between t 1 and t2: this gives the term {g(t 1 + u)/G(t l )}  du. 

c) When the repair (which began at the last El-event before t 1) is completed, a fresh El-event is 
generated and using this, the required/3-event at t 2 is identified as the first-order product density in 
the appropriate interval. 

d) Alternatively, the fl-event at t 1 may be preceded by several El-events before t I and the last one 
occurred at t~ - v, so that the elapsed repair duration of a unit at t~ is v. Then the rest of the analysis 
is followed by using reasoning similar to a)-c). 
The stationary behaviour hoo(r) of hoo(tl, t2) , with t 2 - t I = % is equivalent to 

h°0(~') = tl, limt2 --'* °° hoo(tl, t2 )= qlim-'~ nE= l v u f / ' f ( ~ 7 ) ( q - - v ) f l ( v ) £ g ( u + v ) h 0 ( r - - u )  d u d v  
/ 2 - - / l ~ T  

t !  
= lim f fo ( r ,  t l -  v) d m ( v )  

t 1 ----~ oo -' 0 

where 

f#(r, v) =fl(V)fog(U + v)h#(r-u) du 
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and m(v) is the renewal function for Xn:  

m(v )  = Y'~ F[~)(v). 
n = l  

From the key renewal theorem, 

1 
EIx,,] f0 v) du. (6.13) 

To complete the analysis of the stochastic point events associated with event E2, an expression for the 
second-order cross product densities is obtained. 

For tl < t2, 

h ~t3( tl, t2) 

1 
= lim - - P r { N ~ ( t l + A 1 ) - N ~ ( t l ) = l ,  N t 3 ( t 2 + A 2 ) - N t 3 ( t 2 ) - - - l l E  l a t  t = 0 } .  

~1, A2--*0 A1A2 

The function ht3,(tl, t z) is defined similarly by interchanging the role of a and /3. 
From the renewal nature of the a-events it immediately follows that 

t 2 - - t  1 

h~t~(t 1, t 2 ) = h ~ ( t l ) f o  g(u)ht~(tz-t I -u )  du, (6.14) 

£ = lim h~(t~,t2)=A~ g(u)ht3(z-u ) du. (6.15) 
' , , t2  
t 2 - - I  1 ~ T  

With the observation that the /3-events are non-regenerative and every fl-event is followed by an 
El-event, for t~ < t 2, 

=fl(tl)G(tl) ctz-qJo g(tx + v) ht~,( tl, t2) G(t ) h (t2-t'-v) dv 

oo 

+ ~ f t ' f [~)( t l -v) f l (V)G(v) f '2- t~g(u+v)h~( tz - t l -u  _ du dr .  (6.16) 
n = l  'J~ J O 0  G(v) 

The limiting behaviour of ho~(tp t 2) with tl, t 2 ~ ~ and t 2 - t~ = z is 

1 ~. 
h ~ ( r )  = ~[XI1] f0 fot(T' V) dv (6.17) 

where 

[,~('r, v) =fl(v) f:g(u + v)h,~(r -u )  du. 

Relations (6.1)-(6.17) summarise the properties of the counting measures associated with the 
Ei-events. Among the relations connecting the counting measures is the covariance function of the 
counting process associated with a- and fl-events in (0, t): 

t 
Cov[N~(t) ,  Nt~(t)] = f0fo {h~(u, v)+h¢~(u, v)} du dv-~_[N,(t)l~_[Nt3(t)]. 
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The covariance function in the stationary case, over an interval of length ~-, is given by 

Cl(t ) --- lim Cov[N~(/1, t2) , No(tl, t2) ] 
t l ,  12--~ o¢ 
t2- - t l=T 

du dv-aoa , 2 

7. Time dependent analysis 

The above analysis is useful in obtaining the stationary performance measures of the system, such as 
the MTSF and the steady state availability. Although considerable effort may be necessary to obtain the 
time dependent behaviour of the system from these results, a computationally simple procedure gives the 
transient behaviour of the {X(t), t > 0}-process, when the repair time distributions are of phase type 
distributions (Neuts, 1975). 

On considering phase type distributions there are two important observations: 
a) A phase type distribution is composed of exponential stages and hence the repair time behaves in a 

Markovian fashion. 
b) The lifetimes of the units are represented by the BVE (1.1), and their marginals are negative 

exponentials, so the residual lifetime of the units is Markovian. 
Observations a) and b) together imply that the system can be viewed as a Markovian system with an 

enlarged state space and hence the time dependent behaviour of the system is governed by the 
Chapman-Kolmogorov equations. Secondly, the stationary distribution of the process is easily obtained 
by setting the time derivative to zero in the Chapman-Kolmogorov equations. 

The generator of the Markov process under consideration, is found as follows. Let the repair time be 
characterised by a phase type distribution with representation (a, T) (see Neuts, 1981), where a is the 
initial state probability vector. The description 0, 1, 2 is still being used to represent the number of failed 
units in the system. However, when the state of process X(t) is 1 (this implies one unit is operating and 
one unit is under repair), the state description is not adequate and need to be extended to include the 
phase in which the repair is to render the process {X(t), t > 0} Markovian. Thus, the state space 
description of process {X(t), t > 0} is extended to {0, (1, i), (2, i)}, 1 < i < m, to include provisions for the 
repair phase of the unit. We re-designate the state space as {0, 1, 2}: the set of states {(j, i)}, 1 < i < m, 
is represented by j,  j = 1, 2. The generator Q* of this Markov process is given by 

0 
- (2A + A12 ) 

Q* = T O 

0 

1 2 
2Aa A12a ] 

--  ( l~ "~- l~12 ) Im x m "~- Z (1~ "4-1~12 ) I m x m , 

T°t~ T 

where T O satisfies Te + To = 0. Subsequently, the 
applying standard Markov theory. 

desired operating characteristics can be obtained 

8. Concluding remarks 

In this article we have given the derivation of several operating characteristics for a two-unit parallel 
redundant repairable system with dependence between the units. Several measures have been provided 
in closed form. The analysis is elegant in view of the imbedded renewal process, associated with the 
stochastic behaviour of the system. The model considered here is motivated by potential practical 
applications and the approach used in this article reflects a blend of practical and academic interest. The 
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p a p e r  advances  the  s ta te  of  ar t  of  a two-uni t  pa ra l l e l  r e d u n d a n t  system, a bas ic  m o d e l  in re l iabi l i ty  
model l ing ,  to an i m p o r t a n t  d imens ion  of  d e p e n d e n t  units.  Severa l  var ia t ions  of  models ,  l ike in te rmi t -  
tent ly  used  systems and  imper fec t  switch-over ,  may  be  h a n d l e d  s imilar ly  (Sr inivasan et  al., 1980; 
Rav ichandran ,  1991). In  p r inc ip le  the  analysis  can be  e x t e n d e d  to more  than  two d e p e n d e n t  c o m p o n e n t s  
by using a mul t iva r i a t e  exponen t i a l  d i s t r ibu t ion .  However ,  it seems  more  in te res t ing  to explore  the  use of  
mul t iva r i a te  d i s t r ibu t ions  o t h e r  than  B V E  to hand le  d e p e n d e n c y  s t ructures ,  even in the  context  of  
two-uni t  systems. Some of  the  issues a re  u n d e r  inves t iga t ion  and will be  r e p o r t e d  subsequent ly .  
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