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Chapter 1

Introduction

Inductive datatypes, datatypes where elements of the type occur as “subcomponents”
of other elements of the type, are an essential feature of all modern programming
languages. Commonly used examples of such types are for example binary trees where,
a tree can have other binary trees as subtrees, or cons-lists, where the tail of a cons-
list is another cons-list. A standard mathematical method for reasoning about such
datatypes and programs operating with these types was developed by Malcolm [42].
He constructed an elegant generic theory of free inductive datatypes using category
theory based on the concepts of functors and initial algebras. By generic we mean
parameterised by the shape of the datatype.

A limitation of this theory is that it only deals with free datatypes, types without
rules specifying equality of elements or restrictions on the construction of elements.
In practice there are many common datatypes that are not free. For example, join-
lists have associativity laws on the join operation, and height-balanced trees can not
be constructed using arbitrary subtrees. Fokkinga [24] extended Malcolm’s theory to
datatypes with laws, but was not able to handle restrictions on the construction of
elements (subtyping).

Other, set-theoretical, theories [43] about inductive datatypes can handle both laws
and subtyping but have as disadvantage that they treat laws and subtyping as dual
concepts. This complicates reasoning about datatypes that combine both laws and
subtyping. An example of a type combining both concepts is the AVL-tree, where
different trees can be used to represent the same set of values (law), but where it is not
allowed to join two arbitrary AVL-trees to construct a new valid AVL tree (restriction).

The goal of this thesis is to develop a theory about inductive datatypes that can han-
dle laws and subtyping in a uniform way. The theory should predict when (recursively
defined) operations are well-defined and when they are uniquely defined. The the-
ory should also provide a sound basis for the construction and verification of generic
programs.

The theory of inductive datatypes presented in this thesis was inspired by the category-
theoretical approach but uses a point-free relational calculus to model both datatypes
and programs. One of the main advantages of using the relational calculus is that it

1




2 CHAPTER 1. INTRODUCTION

opens up the possibility of working with lattices where extreme solutions to equations
are uniquely defined. Category theory always gives solutions “up to isomorphism”
that are often less suitable for direct manipulation. The extreme solutions of lattice
equations provide unique, canonical representations of the concepts that are being
modelled. Datatypes and programs are usually specified as solutions to equations

Another advantage of the lattice structures that are available when working with re-
lations is the abundant possibility for using Galois connections. Identifying Galois
connections and using their calculational properties is a recurring theme throughout
the thesis. We prefer a calculational style for constructing and presenting proofs and
Galois connections are a great tool for this purpose.

We identify a special class of relations that can be used as representatives for datatypes.
These datatypes are the elements of a complete lattice where the ordering represents
(the combination of) subtyping and quotient formation. Combining these aspects in a
single ordering allows us to find solutions for specifications involving both restrictions
(subtyping) and laws (quotients). Combining these features is often difficult in other
formalisms for datatypes. This ordering is a vital tool for achieving our goal of a
uniform treatment of laws and subtyping.

Our datatype construction methods are inspired by categorical datatype theories and
we will construct a category where objects and arrows are relations. Categorical notions
like functors, natural transformations and F-algebras lead to relational constructions
that are useful for the construction of datatypes and programs.

A variant of F-algebras is used for the introduction of inductive datatypes and struc-
tural recursion. An important aspect of datatype construction is simulation, imple-
menting one datatype using another datatype. The notion of simulation can easily be
formulated in our theory.

Inductive types that simulate each other form equivalence classes. We prove the re-
markable result that every equivalence class contains one special representative. The
special representatives form a complete lattice, using our special ordering of datatypes.
The elements of the lattice represent all inductively defined datatypes for a given in-
duction structure. Using this lattice, we can describe inductive datatypes with both
laws and restrictions as an extreme fixpoint. We will give an equivalent characteriza-
tion of the extreme fixpoint using a Galois connection. This Galois connection, which
defines a closure operation, turns out to be very convenient for proving properties of
inductive datatypes.

Laws and restrictions can be specified with equations, which can be combined to a
single specification of the datatype. Not only are datatypes described as solutions
of equations, but recursively defined operations on these inductive datatypes are also
specified as solutions of equations. We will show that a large class of “recursion struc-
ture” equations for operations on inductive datatypes have at most one solution, so
they are suitable as a specification.

Another subject investigated in this thesis is conditions under which parameterisation
of inductive datatypes with laws and restrictions is possible. Here we demonstrate that,
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if the law and restriction equations satisfy certain naturality (“polymorphy”) criteria,
parameterisation is possible.

1.1 Overview

We continue with a short overview:

Chapter 2 contains some preliminaries for the rest of the thesis. Subjects are our proof-
format and some standard results about orderings and lattices. The definition and uses
of Galois connections at the end of the chapter are important for understanding the
remainder of the thesis.

Chapter 3 gives an axiomatisation of the SPEC-calculus, a point-less relational calculus.
Some easy consequences of the axioms are shown and alternatives for strengthening
the axiomatisation are also presented.

Chapter 4 explores some important algebraic properties of the SPEC-calculus. Topics
include factors (a kind of inverse of relational composition), distribution properties and
Galois connections between lattices constructed with special classes of specs. Elements
of these special classes can be used to represent subsets of the universe over which
a relational calculus is constructed. The connection between the SPEC-calculus and
relational calculus with points is studied by considering the consequences of adding an
extensionality axiom to the SPEC-calculus.

Chapter 5 has as subject how Partial Equivalence Relations (pers) can be used to
represent types and three new orderings between pers are discussed. One ordering
corresponds to subset construction, one to quotient construction and the third ordering
is a combination of the two previous orderings. The lattice properties of the orderings
are studied and we prove that the pers form a complete lattice under the combined
order. Functions between types represented by pers are modelled by a special class of
relations called the difunctionals and a small calculus of type judgements is developed
for typing difunctionals and other relations. Notions like functionality, injectivity,
totality and surjectivity can be modelled using the judgements in the calculus.

Chapter 6 introduces some basics concepts from category theory and an interesting
category called Difun, based on pers and difunctionals, is constructed. We construct
operations and notions in the SPEC-calculus corresponding to functors and natural
transformations in Difun.

Chapter 7 shows the construction of SPEC operations corresponding to Cartesian prod-
ucts and disjoint sum in Difun. Some natural transformations with Cartesian products
and disjoint sums that will be useful later for program and datatype construction are
also given in the chapter.

Chapter 8 studies the construction of inductive datatypes by generalising the stan-
dard categorical construction with F-algebras to datatypes with partial and/or non-
injective constructors represented by F-inductive algebras. A notion of simulation and
isomorphy of F-inductive algebras is developed and classes of isomorphic algebras are
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studied. It turns out that every isomorphy class can be represented by a special kind
of F-inductive algebra called an F-inductive type. The F-inductive types form a lat-
tice under the special ordering on pers developed in chapter 5. Another subject is
the construction of recursively defined programs on inductive datatypes and how these
programs can be specified as the unique solutions of equations.

Chapter 9 shows methods for the construction of inductive datatypes specified by
equations. Two classes of equations are considered. The first class specifies laws on the
datatype and examples like associativity, commutativity and unit laws are discussed
for an interesting group of datatypes that is called the Boom-hierarchy. The second
class of equations specifies restrictions on the arguments of constructors like height-
balancedness of trees. An advantage of the theory presented in this thesis is that
these two classes of equations can be combined without difficulty. An example of a
datatype with both laws and restrictions presented in this chapter is the stack datatype.
Another subject of this chapter is the existence of solutions to a class of specifications
of recursively defined programs working on datatypes specified with equations. We can
give a necessary and sufficient condition for programs performing structural induction
on the inductive datatype. The chapter is concluded with a discussion of many-sorted
datatypes.

Chapter 10 contains conclusions about the results presented in the thesis.



Chapter 2

Preliminaries

This chapter gives some preliminaries for the rest of the thesis. There is no new theory
contained in this chapter and every result can be found in the literature. Readers
familiar with the style of the “Eindhoven-school” will recognize most of the notations,
definitions and conventions introduced in the first section. The second section contains
results about posets and lattices that are used extensively in this thesis. This is also
standard theory, but some notations and terminology about Galois connections are not
standard. We assume that the reader is familiar with elementary predicate calculus
and set theory.

2.1 Proof format and notation

2.1.1 Proof format
The proof format we adopt for this thesis is called “linear proofs” and was designed by

Wim Feijen [17]. It consists of formulas connected by transitive relations, with hints
why the relation is valid. A typical proof looks like:

P

1A

{ Hint why P 1 Q }

A

{ Hint why Q < R }
R

Here we have proved that P < R. Extra assumptions can be introduced by prefixing
them with e in the hint. For example:

P
g { T, Hint why P < Q, assuming T' }
Q
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< { Hint why Q < R }
R

Here we have proved that P < R « T.

An often-used form of linear proof is called cyclic inclusion. In this case we have the
same first and last formula and we have proved, if the connecting relation is anti-
symmetric, that all formulas are equal to each other. The version of cyclic inclusion
with as ordering the implication of boolean expressions is known as cyclic implication.

2.1.2 Quantifications

Quantifications play an important role in our calculations. All quantifications are
written using the same standard notation:

Q(dummies | predicate | range)

Here Q is called the quantifier and determines the operation that is applied to the bag
that is defined by (dummies | predicate | range) . Examples are 3 with operation V, V
with operation A and Y~ with operation +. For the quantification to be well-defined it
is necessary that the operation be symmetric, associative and total on the elements of
the range part. This is not always sufficient for quantifications over infinite bags. For
example, taking the sum over all natural numbers is not well-defined.

The item dummies is a (possibly empty) list of variable names, separated by commas.
They act as bound variables in the predicate and the range.

The predicate determines which values for the dummies are admissible in the range. The
bag consists of all values of the range expression that are permitted by the predicate
as instantiation for the dummies.

Example: Y(z |z € ItA-1<2<32})=14+0+1+4=6

Dummy z can take values —1, 0, 1 and 2; so the bag consists of the values (—1)2, 02,
1% and 2? and the value of the quantification is the sum, 6.

The empty bag will be denoted by . A quantification over @ has as result the unit of
the operation of the quantification (if it exists). So 30 = 0, V@) = true and 30 = false
ete.

For quantifications without dummies we define:
Q(!true ! R)=R
Q( ! false | R) = Q0
The first one corresponds to a quantification over a one-element bag.

If the type of the dummies is clear from the context and there are no further restrictions
on them then we will often omit the predicate and simply write Q(d !! R)

Some often-used elementary rules for the quantifier calculus are given below. In the
following formulas d, d1 and d2 stand for a (possibly empty) list of dummies, z for
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a single dummy and e, el and e2 for an expression. The operation corresponding to
quantifier Q is ®. :

Rule 2.1: (Range-Split)

QdiP 'R) = Qd:PASIR)® Q(d!PA-S|R)
O
Rule 2.2: (Nesting)

Qdl ;P Q(2:R:S))
Q(d1:: Q(d2: PAR:S))

Q(d1,d2 1 PAR S)

The dummies d2 may not occur (free) in d1 or P.
O

In the following two rules [z := €] P stands for P with all free occurrences of z replaced
by e.

Rule 2.3: (One-Point Rule)’

Qs ! P R)
= { oV(d,z ! P, z=¢),znotfreeine }
Q(d ! [z :=€]P ! [z:=¢€]R)
O

This rule is often used for the elimination of quantifications. In that case d is empty
and the last formula is almost always immediately rewritten to [z := e]R or Q0 (if
allowed). The rule may, of course, also be used in reverse order for the introduction of
quantifications.

Rule 2.4: (Leibniz, Substitution)
Q(d: P [z :=€l]R)
= { eV(d | P el =e2),znotfreeinel ore2 }
Q(d ! P [z:=e2R)
O
This rule is the bag equivalent of the Leibnitz rule for functions.
The following rule is only valid for idempotent operation ®:
Rule 2.5: (Generalised Range-Disjunction)
Q(d1 ! P R)

= { eV(d1:P:3(d2::S)),d2not freeindl, Por R }
Q(d1,d2 PAS | R)
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This rule is used for the introduction of new dummies in quantifications. It is usually
followed by some applications of the one-point rule to remove old dummies.

A special form of quantification is set formation. It is defined by:
Definition 2.6: (Set Formation)

{d.P.RY=U(d: P:{R})
O

Another quantification-like notation is
3(d: P R)

This is not really a quantification, because we do not have a corresponding ® operator.
Its value is true if there exist unique values for the dummies such that both P and
R are true and otherwise it is false. The 3!-quantification does have all properties of
normal quantifications mentioned above except for range-split and generalised range
disjunction.

Our format for writing function spaces differs from the conventional method in that
we write the range on the lhs and the domain on the rhs, reversing the direction of the
arrow. Writing f € B<—.A means that f is a total function, mapping elements from
A to elements of B. One of the advantages of this convention is that determining the
type of the composition of several functions is easier than with the usual convention.

We write function composition with a raised infix dot and function application with
a lowered infix dot. The relation between composition and application is the usual
(f - 9).z = f.(g.2).

A convention that we sometimes use is overloading function application to subsets of
the domain, for f € B<—A4 and A D C we write f.C for {e iz eC fz} Thisis
only used in situations where it is clear from the context which form of application is
meant.

The priority of all pre- and postfix operators is equal and higher than the priority of
any infix operator. Function application is the infix operator with the highest priority.

2.2 Posets and complete lattices

Orderings form an essential part of the theory that is presented in this thesis. This
section introduces some basic notions about orderings, like partial orders, posets, com-
plete lattices and Galois connections together with some elementary but often used
theorems. For more background see e.g. Davey and Priestley [16] or Birkhoff [13].

We start by giving the definition of a poset:
Definition 2.7: (Poset)

For set A and binary relation < on A, (A, =) is a poset (partially ordered set) iff for
all z,y,2z € A:
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(a) z=xz (Reflexivity)

(b) z=3yAy=<z = z=2z (Transitivity)

() z=xyAy=<z = z=y (Anti-symmetry)
0O

Given a poset we can construct new posets with functions to the original poset as
elements and the “lifted” version of the original ordering as ordering:

Lemma 2.8: (Lifting)
For poset (A, <) and set B, (A<=B, <) with f < gAaV(z !z € B! fx < g.7) is also

a poset.
O

An often-used method for proving the equality of two elements of a poset is formulated
in the next lemma;:

Lemma 2.9: (Indirect equality)
For poset (A, <) and X,Y€A:

V(Z:i1ZeA ' Z = X = Z <XY)
X =Y
YZ:ZcA'X = Z = Y = 2)

a

We continue with a list of definitions:

Definition 2.10:(Monotonicity)
For posets (A, %) and (B, C) and function f € B<—A, f is monotoniciff forall z,y € A:

z3y = fzxCfy
Function f is anti-monotonic iff for all z,y € A:
r=3y = fyCfz

a

Note that an anti-monotonic function from (A, <) to (B,C) is a monotonic function
from (A, <) to (B,3). We use the notational convention that the mirrored version of
an ordering denotes the reversed order,ie. r > y=y<zandz Jy=yC z.

Definition 2.11:(Least Upper Bound)
For poset (A, <) and B C A, z € A is the least upper bound (lub) of B iff for all y € A:

VizizeBlz=xy) = zXy
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Definition 2.12:(Greatest Lower Bound)
For poset (A, <) and B C A, z € A is the greatest lower bound (glb) of B iff for all
y € A:

VizizeB y=<z) = y=<z
O
The uniqueness of these bounds is easy to prove. Existence is, however, not guaranteed.
Definition 2.13:(Bottom and Top)

For poset (A, <), the top is defined as the least upper bound of A (if it exists) and the
bottom is defined as the greatest lower bound of A (if it exists).
O

This thesis uses only one special kind of lattice, the complete lattice, so we omit the
more general definitions of a lattice, semi-lattice etc.

Definition 2.14:(Complete lattice)

Poset (A, <) is a complete lattice iff least upper bounds and greatest lower bounds exist

for all subsets of A
[}

For proving that a poset is a complete lattice it is sufficient to show that just one of
the two kinds of bounds exists as stated in the following lemma:

Lemma 2.15:(Complete lattice)
For poset (A, <),

Greatest lower bounds exist for all subsets of A

Least upper bounds exist for all subsets of A4

2.2.1 Fixed point theorems

Extreme solutions to equations are often used as a means to define new notions and
many of the properties of those notions follow from being an extreme solution. The
most important theorem about fixed points for this thesis is the Knaster-Tarski theo-
rem:

Theorem 2.16:(Knaster-Tarski) For complete lattice (A4, <) and monotonic func-
tion f € A<—.A, the equations

z=fux
fr=<zx
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have the same least solution denoted by pf. It is completely characterised by the
following equations:

(a) fuf=unf (Calculation rule)
(b) ufl3z <« fo<z forallze A (Induction)
a

There is also the dual theorem for greatest solutions:

Theorem 2.17:(Knaster-Tarski) For complete lattice (A, <) and monotonic func-
tion f € A<—A, the equations

x=fzx
= fx

have the same greatest solution denoted by vf. It is completely characterised by the
following equations:

(a) fuvf=vf (Calculation rule)
(b) z=3vf <« z=fz, forallz € A (Induction)
0

The original Knaster-Tarski theorem is somewhat stronger, stating that there is a
complete lattice of fixed points, but the version given here contains all that is needed
for this thesis. The rolling rule is a “folk theorem” from lattice theory that seems to
be missing in the standard literature (although it is sometimes given as an exercise).
It turns out to be quite useful for us:

Lemma 2.18:(Rolling)

For complete lattices (A, <) and (B,C) and monotonic functions f € B<—A and
g € A<—B:

(a) w(f-9) = fulg-f)
q (b) v(f-9) = fvig-f)

2.2.2 Galois connections

The use of Galois connections is another powerful method for defining new notions in a
calculus with orders. It turns out that many definitions in this thesis can be expressed
very compactly using Galois connections. We start by giving the definition:

Definition 2.19:(Galois Connection)

For posets (A, <) and (B,C) and functions f € B<—A and g € A<—B, we say that
(f,9) is a Galois connection iff for all z € A and y € B we have: '

fzly = 2349y
O

We also use the terminology that f and g are Galois adjoints, where f is called the
lower adjoint and g is called the upper adjoint. The definition given here is somewhat
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more restrictive than necessary, the poset requirement normally being weakened to pre-
order. Some properties of Galois connections between posets are given in the following
three lemmas:

Lemma 2.20:(Cancellation)

Given a Galois connection as defined in (2.19), we have:

(a) z = g.(fx)

(b) flgy) C y

(c) fz = f(g9.(fx))
g @  9(f(gv) = gu

The functions in a Galois connection are monotonic:
Lemma 2.21:(Monotonicity)
Given a Galois connection as defined in (2.19), we have, for all w € A and z € B:

(a) z=2w = fzCfw
o ® 2Ly = gzxgy

Galois adjoints are uniquely defined by one of their components: given the lower adjoiﬁt
there is at most one upper adjoint and vice versa:

Lemma 2.22:(Unicity)
For posets (A, =) and (B,C) and functions f € B<—A and g € A<B,

(a)  f has at most one upper adjoint.
(b) g has at most one lower adjoint.
[}

We denote the upper adjoint of f by f* (if it exists) and the lower adjoint of g by ¢°
(if it exists). Note that f and b are functions that are dependent on the posets (A, <)
and (B, C).

We can say much more if we are working with complete lattices instead of posets. We

use V/ as the quantifier for the least upper bound and A as the quantifier for the greatest
lower bound of complete lattice (A, <); We use L for the lub (least upper bound) and

[ for the glb (greatest lower bound) of complete lattice (B, C). The existence of Galois
adjoints is closely connected to distributivity properties over the bounds of the lattices:

Lemma 2.23:(Distributivity)
For complete lattices (A, <) and (B,C) and function f € B<—A

f exists

i

fVC = L(f.C), for all subsets C of A
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Lemma 2.24:(Distributivity)
For complete lattices (A, <) and (B,C) and function g € A<—B

¢° exists

il

N(g.C) = ¢.I'C, for all subsets C of B

O
It is also possible to express f* in terms of f and ¢’ in terms of g:
Lemma 2.25:

For complete lattices (A, <) and (B, C), functions f € B<—A and g € A< and for
allz € Aand all y € B:

(£, 9) is a Galois connection
=

gy=V(Ez i fzCy'2) A fa=Tlz1z=g2"2)
O

Galois connections can be used for the construction of a complete lattice from a poset.
The construction of a Galois connection between the poset and a complete lattice gives
us a complete lattice structure for (part of) the poset:

Lemma 2.26:

For poset (A, =), complete lattice (B, C), functions f € B<«—A4 and g € A<—B:

(£, 9) is a Galois connection
=
(9-B, X) is a complete lattice

O

We end this chapter with a very important lemma combining fixed points with Galois
connections: fusion. The conditions of the lemma as they are given here are stronger
than necessary, but weakening would introduce continuity conditions that we want to
avoid here.

Lemma 2.27:(Fusion)

For complete lattices (A, <) and (B, C), monotonic functions f € A<—A, g € B<B
and h € A<—B:

(a) pf2hpg < f-h=h-g (u-fusion)
(b) wuf=hpg < f-h = h-g A htexists (u-fusion)
() wuf=hupug < f-h=h-g A hiexists (u-fusion)
(d hvg=vf < h-g = f-h (v-fusion)
(&) hvg>=vf < h-g = f-h A R exists (v-fusion)
(f) hvg=vf <« h-g=f-h A K exists (v-fusion)
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Chapter 3

The SPEC-calculus

The SPEC-calculus is an (incomplete) point-free axiomatisation of the set-theoretic
calculus of relations over a fixed set (universe). It is the basic calculational framework
for this thesis. The calculus is presented using a layered approach. Every layer is
introduced separately after which the interfaces with the previous layers are given.
For every layer or interface we also give some often-used lemmas that follow from
them. The axiomatisation is followed by a section describing possible strengthenings
of the axiom system and the chapter finishes with an interesting non-relational model.
The axiomatisation presented here was developed by the research group lead by R.C.
Backhouse at Groningen University and Eindhoven University.

Axiomatisation of the relational calculus is an old subject in mathematics, it having
been studied in the 19th century by, most prominently, De Morgan and Schréder.
More important for us is the work of Tarski [56]. An overview of the history of the
relational calculus can be found in Maddux [40]. More recent work is the generalisation
of a relational calculus to an allegory (Freyd and Scedrov [26]). Our axiom set is
weaker than the classical axiomatisations because we do not assume the existence of
complements, but is stronger than an allegory. A SPEC-calculus is a special case of a
one-object allegory. An important new aspect of this axiom set is the frequent use of
Galois connections allowing a very concise formulation of properties of the relational
calculus that is amenable to formal manipulation. It turned out during the development
of this calculus that the choice of axioms is very important for concise and easy-to-find
proofs.

Definition 3.1: (SPEC-calculus)

A SPEC-calculus is a 5-tuple (S, C,u,0,I) where S is a set, C is an ordering on S, v is
a total endofunction on S, o is a total binary endofunction on & and I € S. It satisfies
axioms (3.2), (3.3), (3.5), (3.10), (3.11), (3.14) and (3.16) given below.

O

The axioms for a SPEC-calculus are given in forthcoming sections of this chapter.
These axioms have as one of their models the relations over some set A when we
instantiate:

15
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S & PAxA
RCS & RCS (relational inclusion)
Rv & {z,y!(z,y) €R | (y,2)} (relational inverse)
ReS & {z,y,2! (z,y) €R A (y,2) €S} (3,2)} (relational composition)
I & {z,ze€ A (z,2)} (diagonal relation)

We will refer to this model as the set-theoretic model of a SPEC-calculus. The term spec
is used for elements of S to avoid confusion with the relations from the set-theoretic
model. Specs will be denoted by capital letters.

3.1 The lattice layer

The first layer in the axiomatisation imposes a lattice structure on the specs. The
set-theoretic relations on universe A are the subsets of Ax.4. This subset structure is
axiomatised in the lattice layer.

Axiom 3.2: (SPEC-Lattice)
(8, C) is a complete lattice.
O

We denote the least upper bound with the [ quantification, greatest lower bound with
the [ quantification, the lub of two specs R and S by RU S and the glb by R S,
the bottom of the lattice by LL, the top by TT and the reverse ordering by 3. The
infix operators M and U have the same priority, lower than the priority of o. The lub
operation is pronounced as cup and the glb operation as cap.

The correspondence with the set-theoretic model is as follows (with 7 a set of relations
or specs):

U7 < UT  (relational union)

N7 & NT  (relational intersection)
RUS & RUS (relational union)
RNS & RNS (relational intersection)

1 < 0 (empty relation)
T & Ax A (full relation)
RCS & RCS (relational inclusion)

Another aspect of the subset structure of the lattice of relations is the distribution of U
over N and vice versa. These distribution properties do not follow automatically from
the complete lattice structure, an extra axiom being required for this in the SPEC-
calculus:

Axiom 3.3: (Distributivity)
For all specs R, (RM)* and (RL)® exist.
0O

The distributivity properties following from this axiom are used often but the adjoints
themselves are not. This is the reason why we do not introduce a separate notation for
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the adjoints. The symmetry of the U and 1M gives us also the existence of the adjoints
of the other sections: (MR)! = (RM)! and (LUR)" = (RU)’. We end this section with a
corollary stating the axioms the way they are usually used in proofs:

Corollary 3.4: (Lattice layer)
For specs X and bags of specs T,

(a) X2JUT = V(Z:ZeT:X3Z) (Least Upper Bound)
) MNT3X = VY(Z:Ze€T:Z3X) (Greatest Lower Bound)
(c) X £ 7 (Top)

(d) 1 cCc X (Bottom)

() XnNUT = WZ:ZeT:XnZ) (Distributivity)

() Xul7T = [(Z:ZeT:XUZ) (Distributivity)

3.2 The reverse layer

Set-theoretic relations are sets of pairs and the reverse layer axiomatises the fact that
elements in a pair can be swapped. The postfix operator v corresponds with swapping
all the pairs in a relation. We formulate the defining axiom with a Galois connection:

Axiom 3.5: (Reverse)

For all specs X and Y we have:
XuCY = XCVYu

O

We can instantiate the lemmas about Galois connections for this axiom. This yields
the following properties: (Parts (a) and (b) need a little calculation. Note that (b) is
an equivalence.)

Corollary 3.6: (Reverse)
For specs X and Y and bag of specs 7,

(a) Xw = X (Cancellation)
(b) XuvdYv = XY (Monotonicity)
(c) UTyw = WZ:ZeT:Zv) (Distributivity)

5 (d) (NT)y = TW(Z:ZeT:Zv) (Distributivity)

A set-theoretic relation R is symmetric iff for z and y: (z,y) € R = (y,z) € R. This
notion can be expressed in the SPEC-calculus using the u operator:

Definition 3.7: (Symmetry)

Spec X is symmetric iff Xuv = X.
O
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We will sometimes have to prove that a spec is symmetric. This can be done by mutual
inclusion, but proving one inclusion is sufficient:

Lemma 3.8: (Symmetry)
symmetricX = XvC X vV X C Xu

]
Proof:
Xuv=X
= { anti-symmetry }
XuEX A XLCXv
= { axiom 3.5 }
XvE XV XLCXu
O

Instantiating this lemma with TT and LL results in:
Corollary 3.9: (Symmetry)

(@)  TTu = TT (Reverse)
5 (b) Llv = 1L (Reverse)

3.3 The composition layer

The composition layer axiomatises the relational composition operation. Other rela-
tional calculi denote composition by juxtaposition, or use a semicolon as operator. We
use the symbol o because we view function composition as a special case of relational
composition and want “functional” relational expressions to have the same appearance
as their functional counterparts.

The “normal” method for writing a function as a relation is using the graph of the
function defined by graph(f) = {z,y |y = f.z ! (z,y)}. This has as disadvantage
that functional and relational composition do not correspond to each other. Functional
composition does correspond to relational composition in the set-theoretic model if we
represent function f as the relation {z,y | y = f.z | (y,2)}:

{eyiy=rfz!(a)}{ayiy=g2! (y,2)}
= { relational composition }
{z.y,z21z=fy N y=g2!(z,2)}
= { one-point rule }
{z.21z=f(g2) | (z,2)}
= { function composition }

{z,212=(f-9)2 (z,2)}
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This way of viewing functions is consistent with using the <— for function spaces and
writing application with the function on the lhs and argument on the rhs. Function
application becomes an instance of relational composition if we represent the argument
as a singleton subset of the diagonal relation; the lhs of the resulting singleton relation
is the function result.

The axiomatic structure of composition contains four axioms. There is one axiom about
composition on its own, then two axioms for relating composition with the lattice and
reverse structure, respectively. Finally there is an axiom relating all three layers of the
axiomatisation.

The first composition axiom states properties of o on its own:
Axiom 3.10:(Monoid structure)
(8,0,1) is a monoid. Le., for all specs X,Y and Z:

(a) (XoY)eZ = Xo(YoZ) (Associativity)
(b) Xol = X = ToX  (Unit)
0O

The next axiom relates composition to the lattice structure:
Axiom 3.11:(Factors)

For all specs X, (Xo)* and (cX)! exist.
O

The importance of the adjoints of the sectioned compositions can be seen in the multi-
tude of names and (re)discoveries of them in the literature. The oldest reference that
we know about is by Dilworth [18] where they are called residuals. We use as name
for the adjoints the factors as given by Conway [15] and use as notation the division
notation from Hoare and He [33], but interchanging the left and right factor notation
to make applicability of the cancellation laws easier to spot. The definition becomes:

Definition 3.12:(Factors)
For all specs X, Y and Z, the operations \ and / are defined by:

(a) XYL Z = YLCX\Z (Right factor)
(b) YoXLCZ = YLCZ/X (Left factor)
O

The infix operators \ and / have a higher priority than . The interpretation of the
factors in the set-theoretic model is the following:

R\S < {x,y:V(z:(z,w)ER:(z,y)GS'):(x,y)}
S/IR & {z,y:1V(zi(y,2) €R | (z,2)€9) ! (z,9)}

Instantiation of the properties of Galois connections yields the following corollary for
the left factor (the right factor has dual properties):

Corollary 3.13:(Factors)
For all specs X,Y and Z and bags of specs T,
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(a)
(b)
(c)
(d)
(e)
(f)
(8
o ®
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X C (XY (Cancellation)
X/YY C X (Cancellation)
XY = (XoY)/YoY (Cancellation)
(X/YY)Y = X/Y (Cancellation)
XCY = XoZLCYoZ (Monotonicity)
XCY = X/ZCY/Z (Monotonicity)
UT X = LW(T-X) (Distributivity)
n7/x = (T/X) (Distributivity)

Formula (3.13b) shows why X/Y is called a left factor of X.

The interface between composition and reverse is given in:

Axiom 3.14:(Contravariance)

O

(XoY)u =YuoXu

As a consequence of this axiom we have:

(3.15) I =1

Proof:

a

JTu

{ unit, reverse }
Juu o Ju

{ contravariance }
( Iol U)U

{ unit }
JTuu

{ reverse }
I

Axiom 3.14 together with Ju = I is equivalent to saying that v is a contravariant
monoid automorphism.

The last axiom for a SPEC-calculus is the Dedekind rule, a name given by Riguet
[53]. The term modular identity is also used for this axiom, in particular by Freyd
and Séedrov [26]. The axiom is the only one involving all three layers of the SPEC-
calculus. There are several equivalent forms for this axiom and we made an arbitrary
choice, other versions being used as often as this one.

Axiom 3.16: (Dedekind, Modularity)
For all specs X, Y and Z,

a

XoY M Z C Xo(Y N XuoZ)
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The alternative form for the Dedekind rule is the following corollary (it is actually
equivalent to (3.16)):

Corollary 3.17:(Dedekind, Modularity)
For all specs X, Y and Z,

YoX N Z C (YN ZoXu)oX
0O

The two forms can be derived from each other by substituting Xv for X, Yu for Y
and Zv for Z, applying (3.6b) followed by simplifying using the rules for reverse. The
Dedekind rules are so important and so often used that it is not possible to give a short
selection of consequences. The next chapter will show many examples of their use.

3.4 Strengthening the axiomatisation

The SPEC-calculus is a rather weak axiom system for the set-theoretic relations and
stronger axioms are used in the other axiom systems mentioned in the beginning of
this chapter. This section takes a closer look at four possible strengthenings of the
SPEC-calculus.

3.4.1 Complements

The set-theoretic relations have a powerset structure, and this means that every relation
on A can be complemented with respect to A X A. For every relation R, there is a
unique relation ~R satisfying

RN-R=0 AN RU-R=AxA

—R is both the largest relation satisfying the first conjunct and the smallest relation
satisfying the second conjunct. In the SPEC-calculus the largest spec satisfying the first
conjunct is (RM)¥.LL and the smallest spec satisfying the second conjunct is (RU)®.TT.
The equality of these so-called pseudo-complements is not guaranteed by the axioms
for a SPEC-calculus and we must add another axiom for the existence of complements:

Axiom 3.18:(Complements)

For all specs X, (XML 1L = (XU)'.TT.
O

A SPEC-calculus satisfying (3.18) is called a complemented SPEC-calculus. Earlier
work to which the author contributed assumed a complemented SPEC-calculus (see
for example [2][4]), but this was abandoned because all important results could be
achieved without resorting to complements. The discipline of not using complements
in proofs often resulted in simpler and easier to understand proofs of properties earlier
proved with complements.
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3.4.2 Desargues rule

While complements are probably not a useful addition to the axiom system, the De-
sargues axiom looks more promising. This axiom is a stronger version of the Dedekind
rule (Dedekind is a simple instantiation) whose only disadvantage seems to be that
there are six variables in the formula:

Axiom 3.19:(Desargues)
For all specs P, @, R, S, T and U:

(PoT M QoUs)o(TvoR M UsS) I PoR M QoS
=
T-U . PUDQ M RoSu
O

It is not difficult to prove this axiom in the set-theoretic model of relations. The
Desargues axiom is mentioned in Freyd and Séedrov [26] but looks absent from other
axiom systems in the literature. Assuming this axiom can simplify the construction of
Cartesian products (one axiom becomes a theorem) and is also useful for shortening
proofs of properties about the distribution of o over M that are now proved using
Dedekind.

The Dedekind rule can be obtained by a simple substitution in Desargues: P := X,
Q:=IR:=Y,8:=2Z2,T:=1and U := Xu. So Desargues is clearly stronger then
Dedekind but what about the converse? It turns out that there exist models for the
SPEC-calculus where Desargues is not valid and one such model will be given in the
section about models. So Desargues is strictly stronger then Dedekind. This axiom
was recognised in a very late stage during the writing of this thesis, so the consequences
of replacing Dedekind by Desargues in the definition of a SPEC-calculus could not be
incorporated. It is an important subject for further study.

3.4.3 Cone Rule

Given two SPEC-calculi a new SPEC-calculus can be constructed by considering as
specs all pairs with as first component a spec from one SPEC-calculus and as second
component a spec from the other SPEC-calculus, all operations being defined coor-
dinatewise. This method not only works with pairs but can of course also be done
with triples etc. We call a SPEC-calculus constructed using this method a product
SPEC-calculus.

A product SPEC-calculus is in general not isomorphic to relations in the set-theoretic
model. Take as basis SPEC-calculi relations over a singleton set, i.e. a SPEC-calculus
calculus with only two specs 1l and I = TT. The product SPEC-calculus has 4
different specs ((LL, LL), (LL, TT),(TT, 1L),(TT,TT)). This is clearly not isomorphic
to relations over a set A, since there are 204°) relations in P(A x A).
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The cone rule is an axiom that can be used to distinguish between product SPEC-
calculi and “ordinary” SPEC-calculi. It is valid in the set-theoretic model but does not
hold in product SPEC-calculi (an exception must be made for trivial one-spec calculi):

Axiom 3.20:(Cone Rule)
For all specs X,

TToXoTT =TT = X#1L
)

A SPEC-calculus satisfying the cone rule is called a unary SPEC-calculus . Most theory
developed in this thesis is valid in all SPEC-calculi, but we sometimes need the stronger
assumption of a unary SPEC-calculus. We use the term binary SPEC-calculus for the
product of two unary SPEC-calculi, ternary SPEC-calculus for the product of three
unary SPEC-calculi etc.

3.4.4 Extensionality

Set-theoretic relations can be written in a unique way as a union of singleton relations —
relations consisting of exactly one pair. The extensionality axiom is used for modelling
this property in a unary SPEC-calculus. To do this modelling we introduce the SPEC
equivalent of a singleton relation, the singleton spec:

Definition 3.21:(Singleton)
A spec X is singleton iff it has the following four properties:

a) X # U
(b) I 3 XoXu
(c) I 3 XuoX

5 (d) X = XoTlToX

It is not difficult to show that this corresponds to singleton relations in the set-theoretic
model. We can now state the extensionality axiom:

Axiom 3.22:(Extensionality)

For all specs R,

R =U(X: singleton.X AN R 3 X | X)
(]

A SPEC-calculus satisfying this axiom is called an eztensional SPEC-calculus. One
of the most important properties of a unary extensional SPEC-calculus (proved in the
next chapter) is that every spec can be written in a unique way as the cup of singleton
specs. This property is essential for the following representation theorem:

Theorem 3.23:(Relational representation) A unary extensional SPEC-calculus
is isomorphic to the set-theoretic relations over {X | singleton.X | X oXu}. Spec R
corresponds to relation R via:
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(a) R = {X | singleton X A R J X | (XoXv,XveX)}
b)) R = UXY ! (X,Y)eR ! XoTroY)
0

This theorem is also proved in the next chapter. The extensionality axiom is a very
powerful tool allowing us to translate proofs in the set-theoretic relational calculus to
proofs in the SPEC-calculus but, as with complements, the gain for the theory seems
minimal. Proofs without extensionality are usually more elegant and only very few
interesting properties really rely on extensionality. More about extensionality can be
found in the work of Rietman [52] and in the next chapter of this thesis.

3.5 A geometric model

The SPEC-calculus is, as already mentioned, not a complete axiomatisation of the
set-theoretic relations. Section 3.4.3 already exhibited a SPEC-calculus that is not
isomorphic to any relational calculus (and does not have the cone rule). This section
will show a family of models having the cone rule and where not every member satisfies
Desargues.

Consider a projective geometry, that is a set M (called points) together with a set
L C P(M) (called lines) such that for every two different points there is precisely one
line containing both points and for every two different lines there is precisely one point
in the intersection of the lines. Add a new point co (constructing a new set of points
M) and add for every point in M a line with only co and the point (constructing a
new set of lines £’). This is no longer a projective geometry but two different points
are still on precisely one line. We can now construct a SPEC-calculus:

e Specs: subsets X C M'such that X = 0§ vV o0 € X.
e Ordering: C.
e Reverse: identity function.

e Composition: XoY = {p,q,r ipe X AqeY Ap#qrnIl leLl 'pgre
Diry U {pgipeX AqgeY Ap=gq ! p}

o Identity: {oco}.

The proof that this is indeed a SPEC-calculus is not difficult but a lot of work and is left
to the interested reader. The interesting thing about this model is that many SPEC-
calculus theorems turn out to be equivalent to geometric theorems. One “geometric
translation” is the following:

Represent a point by the spec containing the point together with co, represent a line
by the spec containing all points on that line together with co. The composition of
two points is the line through both points if the points are different and the point itself
if the points are the same. The cap of specs is the intersection. Doing this for the
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Dedekind rule we see that it states that if Z is on the line through X and Y then Y is
on a line through X and Z.

This also means that a counterexample to some geometric property gives a counterex-
ample for the corresponding property in the SPEC-calculus. One interesting geometric
theorem is Desargues theorem, which is a theorem for plane geometry that is not valid
in all projective geometries. If we use the construction above starting with a projective
geometry not satisfying Desargues theorem then the end result will be a SPEC-calculus
not satisfying the Desargues rule (3.19), thereby proving that the Desargues rule is
strictly stronger than the Dedekind rule.

3.6 Conclusion

The SPEC-calculus is a (weak) axiomatisation of the set-theoretic relations. The use
of Galois connections helps in giving very compact axioms for the calculus. There are
models for a SPEC-calculus that are not isomorphic to set-theoretic relations, but the
addition of the cone rule and extensionality as extra axioms does give a structure iso-
morphic to set-theoretic relations. A point for further research is the question whether
the Dedekind rule should be replaced by the Desargues rule.
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Chapter 4

Algebraic properties of the
SPEC-calculus

The aim of this chapter is to construct a toolkit of algebraic properties of the SPEC-
calculus. The axioms of the SPEC-calculus are simple, low-level properties and proofs
for the higher level results in other parts of the thesis would become very cumbersome
without such a toolkit. Another objective of this chapter is to demonstrate various
proof techniques that can be used in the SPEC-calculus. Almost all results in this
chapter can be found in the literature, but the proofs given there often involve com-
plements (which we do not assume) or are unnecessarily complicated.

The toolkit that is given here is not only intended to prepare for the subsequent chapters
of this thesis, but also contains many general results that may be of interest for other
applications of the SPEC-calculus that are not discussed here. The structure of our
toolkit is as follows:

We start by examining how properties of composition carry over to properties of fac-
tors. This is followed by a section in which we discuss various forms of distribution
of composition over cap. The third section shows how Galois connections between
lattices of subsets of the specs can be used to derive many useful properties in the
SPEC-calculus. The fourth section discusses the relationships between three different
ways of representing a subset of the universe as a spec. The fifth section is about ex-
tensionality and the final section shows methods for the construction of certain useful
classes of specs.

4.1 Factors

Galois-connected functions often “inherit” algebraic properties from each other and
this is also the case for composition and factors. The axioms in the composition layer
were all formulated using the o operator because this operator is used more often in
our calculations, but equivalent axiomatisations using factors are also possible. In

27
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this section we examine how the axioms about composition are formulated in terms of
factors and give some lemmas following from such an axiomatisation.

The first axiom about composition is the monoid structure, stating that composition is
agsociative and has as unit /. The associativity of composition leads to three versions
for the corresponding axiom for the factors. These three versions are constructed by
starting with the expression R 1 SoT oU and factoring two specs to the other
side of the inclusion, leaving either S, T or U on the rhs. This factoring can be done
in two different ways due to the associativity of composition, resulting in the following
three equivalences:

R/(T-U)3 S = (RIU)T 23S
(S\R))UT = S\(RU) 3T
(SeTN\R U = T\(S\R)2U

These equivalences are universally quantified over R, S, T and U and each equivalence
can be turned into an equality using the principle of “indirect equality” (2.9) . Thus
we obtain the following three equalities for the equivalences above:

Lemma 4.1: (Factors)

R/(T-U) = (R/U)/T

(S\R)/U = S\(R/U)

(SeTI\R = T\(S\R)
O

Each of these three equalities is equivalent to composition being associative (assuming
the composition-factor Galois connection). The property that I is the unit of com-
position also has a corresponding property for factors. The equivalence form of this
property is

INR3S = RIS = R/IIJS
Using indirect equality this becomes:
Lemma 4.2: (Factors)

I\R = R = R/I
O

The contravariance of reverse over composition can be translated to a property of
factors using the following equivalences:

(R/S)o O T
{ reverse }
R/S 3 Tv
{ factors }
R JTueS
{ contravariance, reverse }
R 3 (SueT)u
{ reverse }

fl

I

1l
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Ro 1 SuoT
= { factors }
Su\Rw J T

Using indirect equality this becomes the following lemma:
Lemma 4.3: (Factors)

(R/S)> = Su\ R
O

The Dedekind rule does not seem to have an elegant version using factors. The Galois
connection gives us also some other often-used properties that were not mentioned
before. The universal distribution of the adjoints over glb or lub means in particular
that they also distribute over the glb or lub of the empty set of specs:

Lemma 4.4: (Zero)

() LLoX = 1L = Xoll
(b) TT/X = 1T = X\TT
O

The last properties of the factors that we discuss here follow from a simple rearrange-
ment of the original Galois connection:

R/ISTIT = SCT\R

This shows a second Galois connection, this time between R/ and \R. As usual with
Galois connections we instantiate the cancellation, monotonicity and distributivity
properties:

Corollary 4.5: (Factors)
For all specs X, Y and Z and bags of specs 7,

(a) X C Y/(X\Y) (Cancellation)

(b) X C (Y/X)\Y (Cancellation)

(c) X\Y = (Y/(X\Y)\Y (Cancellation)

(d) Y/X = Y/((Y/X)\Y) (Cancellation)

) XCVY = Z/X 2Z/Y (Anti-Monotonicity)
) XCVY = X\Z1JY\Z (Anti-Monotonicity)
(g Y/UT = TN(Z:ZeT  Y/Z) (Distributivity)

(h) UT\Y = TW(Z: ZeT : Z\Y) (Distributivity)

a

Note the reversal of the ordering in (4.5e) and (4.5f). This is explained by the fact that
R/ and \R are Galois-connected functions when viewed between the posets (S, C) and

(8,9).

Instantiating (4.5g) and (4.5h) with an empty bag of specs yields the last lemma of
this section:
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Lemma 4.6: (Factors)

Y/ = L\Y = TT
O

4.2 Distribution of composition over cap

Composition is universally Li-distributive, but distribution of composition over M is in
general not valid. In this section we investigate conditions under which distribution
over a binary M is allowed. The results can easily be generalised to distribution over
arbitrary finite M.

Several forms of distribution will be examined, starting with the most straightforward
form:

(RNS)oT = RoTNSoT

This is for distribution from the right; distribution from the left is valid under sim-
ilar conditions (apply v to everything). Since T is monotonic we already know one
inclusion, i.e. :

(RNS)eT C RoTNSoT

The main lemma about this form of distribution gives sufficient conditions for the other
inclusion in situations where one or two of the variables are universally quantified:

Lemma 4.7: (o-MN Distribution)

(a) V(R (RNS)oT = RoTNSoT) <« S 3 SeToTu

(b)  Y(R,S$:(RNS)eT = RoTMNSeT) « I 3 ToTu

() VR, T (RNS)eT = RoTNSoT) « § = SoTT
o

Proof of (4.7a):

(RNS) T

3 { S 3 SoT oTu; monotonicity }
(RN SoeToTu)eT

3 { Dedekind }
RoTNST

The other two parts follow immediately from this since I J T o Tu implies
S J SeToTu (compose with S on both sides and use monotonicity) and
S = §oTT implies S I SeToTuv (TT I T o Tu and monotonicity). This com-
pletes the proof of the lemma.

The conditions stated in the lemma are actually quite sharp because the implication
is an equivalence in a complemented SPEC-calculus. The proofs in the = direction
in the complemented calculus are done by choosing appropriate instantiations for the
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quantified variables (R := =5, S := I, T := TT) followed by some simple manipulation
to eliminate the negations in the inclusion.

The second form of distribution we investigate is the Dedekind rule. This axiom only
gives an inclusion, but for many proofs an equality would be desirable. The distribution
property that we are interested in is conditions for:

(RN SeTw)oT = RoTNS

(conditions for distribution from the left will be dual). ' The lemma we have for the
distribution is

Lemma 4.8: (o-N Distribution, Dedekind)

(a) VIRIW(R M SoTv)eT = RoTNS) = § 3 SoTueT
(b) Y(R,S: (RN SoTu)oT = RoTNS) = I 3 TueT
El(c) VR, T!/(RMN SoTW)oT = RoTNS) = S = 85oTT

By the Dedekind rule there is only one inclusion to prove in the < direction:

RoTNS
. {8 2 8oTuoT }
RoT M SoTuoT

{ glb, monotonicity }
(R SeTu)oT

]

This proves (4.8a); the other two components of the lemma follow immediately (same
principle as used in the proof of lemma (4.7)). The proofs in the = direction are done
by instantiating (4.8a) in both cases with S o T'u for R and then, in the case of (4.8b),
I for S and, in the case of (4.8c), TT for T. Some simple manipulation then leads to
the desired expression on the rhs. Note that the equivalences in this lemma do not
depend on the existence of complements and are valid in every SPEC-calculus.

The third distribution property examined here can be seen as a cross between the
previous two:

(RNS)oeT = RoTNS
The lemma we have for this distribution is

Lemma 4.9: (--MN Distribution)

(a) V(R (RNS)oT = RoTNS) « S 3 So(TuuT)
(b) V(R,§: (RNS)sT = R-TNS) = I 3T
2@ VRTI(RS)eT = ReTNS) = § =87

For this property it is not the case that one inclusion is always valid so both inclusions
have to be considered in the proof for the < direction:
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RoTn§gs

J { o8 3 8c(TouT);Se(TouT) 3 ST }
ReT N ST

3 { monotonicity }
(RNS) o T

3 { ¢S 3 8o(TulT);Se(TuT) 3 SoTu }
(RN SeTo)oT

3 { Dedekind }

R-TnNnS

The proof above is an example of the use of cyclic inclusion. All expressions are equal
to each other, in particular the first and the third one. The remaining two parts of
the lemma are simple consequences of this part. The proof for the = direction of
(4.9b) is done by instantiating (4.9a) with I for both R and S, the proof for (4.9c)
by instantiating (4.9a) with S for R and TT for T. The condition for (4.9a) is sharp
because by instantiating R with -S (in a complemented SPEC-calculus) and S we
obtain conditions together equivalent to S J S o (Tu U T).

The distribution properties, with the exception of (4.9a), are used quite often and the
classes of specs associated with these distribution properties occur so often that they
deserve special names.

From (4.7b) we distinguish the class of all specs R satisfying I 2 R o Ru. The inter-
pretation in the set-theoretic model is that relation R satisfies:

V(z,y,2 | (y,2)€ERA (z,7)€R | y = 2)

This means, because we view relations as taking their argument from the rhs, that
R is a (partial) endofunction on the universe. This class of specs is also used in the
lhs-distribution version of (4.8b). This class of specs has been given different names in
the literature, for example simple by Freyd and Stedrov. Backhouse et al. [3, 4, 2] use
the name imp (from implementation) and call the dual concept (see next paragraph) a
co-imp . This suggests that one of them is more fundamental than the other one and to
avoid this suggestion we use the terms left-imp and right-imp, showing the symmetry
between the two concepts. The specs satisfying I J R o Ru are called left-imps, the
corresponding predicate is limp.

In (4.8b) and the lhs-distribution version of (4.7b) we see the class of all specs R
satisfying I 3 Ru o R. Set-theoretically this means that relation R satisfies:

i.e. Ris a (partial) injection on the universe. This class of specs is also known under
several different names. We use the term right-imp with corresponding predicate rimp.

In (4.7¢), (4.8c) and (4.9c) we identify the class of specs R satisfying R = Ro TT,
in the set-theoretic model V(z,y,z || (y,z)€R = (y,2z)€R). This means that an
element of the universe on the lhs is either paired with all elements of the universe
or not paired at all, partitioning the universe in two parts. This gives a method for
representing subsets of the universe as specs using (y,z)€R = y&S to represent
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subset S of the universe as relation R. We call this class of specs the left-conditions,
predicate lc. This name was suggested by Wim Feijen. Schmidt and Stréhlein [54]
use the name vectors for this class of specs. From the lhs-distribution versions of the
above mentioned properties we obtain the class of specs R satisfying R = TT o R,
also a method for representing subsets. This class is called the right-conditions, the
corresponding predicate rc.

In (4.9b) we see another class of specs: the class of specs R satisfying I 3 R. Set-
theoretically this becomes V(z,y | (y,z)€R | £ = y). This means that relation R
consists only of pairs with the same lhs and rhs. It gives a third method for representing
subsets using (z,z)€R = z€S to represent subset S of the universe as relation R.
This class is called the partial identity relations, or pids for short. The corresponding
predicate is pid. Backhouse et al. used the term monotype, whilst Freyd and Scedrov
refer to coreflexives.

Summing up, we introduce the following definitions:

Definition 4.10:(Classification)

(a) lmp.R &4 I 13 RoRv (Left-imp)

(b) rimp.R & I 3 RueR (Right-imp)

(c) lcR & R = RoTT (Left-condition)

(d) rc.R & R = TT R (Right-condition)

(e) pidR & I JR (Partial Identity Relation)

4.3 Lattices and Galois connections

The Galois connections we have seen thus far, (3.5) for reverse and (3.11) for compo-
sition, were all on the whole lattice of specs. In this section we will show that some
interesting Galois connections can be constructed by working with a lattice of a subset
of the specs.

Given a complete lattice (S, C), we are first interested in conditions under which (77, C)
with 7 C S forms a complete lattice. We know from (2.15) that it is sufficient to prove
either that glbs exist for all subsets of 7 or lubs exist for all subsets of 7. A simple
condition guaranteeing the existence of the bounds is that we can use either the glb
or lub from the original lattice (S,C) as glb or lub for (7,C). This is the case if 7
is closed under glb or lub of (S,C). If T is closed under both lub and glb then it is
called a sublattice.

Five new lattices will be introduced in this section; the first one is (7,C) with 7
defined by ReT = R C T for some fixed spec T. The new lattice has the same lub
as the original spec-lattice since LI/ € T holds for every & C T. The (rather trivial)
proof of this fact goes as follows:

HueT
{ ReT = RLC T}
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Uucr

{ lub }
Y(R'REU'!R C T)

{ ReT = RC T}
V(R ReU | ReT)

{ucrt }

true

I

il

This lattice is used in the following Galois connection where T = TT o f T
Lemma 4.11:

For all limps f, all specs X, and all specs Y satisfying TT o f I Y:
YL Xof = YofeCL X
O

The lhs inclusion is in the lattice of specs at most TT o f and the rhs inclusion is in the
normal spec-lattice. The proof of this lemma goes as follows (using cyclic implication):

YT Xof
{ TefavY}
YNTTof C Xof

Il

= { Dedekind }
YofomTM)ef C Xof

= { monotonicity, top }
Yofu C X

= {13 fofu}
YofuE Xofofu

= { monotonicity }
YC Xof

Instantiation of the standard Galois connection properties yields as most interesting
result that of distributes over all glbs in the lattice of specs and, in so doing creates a
glb in the lattice of specs at most TT o f. The glb in the latter lattice is the same as
the cap of the spec-lattice except for the glb of an empty set which is TT o f instead
of TT. This means that of distributes over all non-empty caps:

Lemma 4.12:(Distributivity)

For all non-empty sets of specs & and all limps f:
MY o f = rl(l,{ of )
O

The results above can be dualised by using a spec f satisfying I I fuo f and working
in the lattice of specs at most f o TT. In that case there is a Galois connection with
the functions fo and fue.

The second lattice that we are going to use is constructed by only working with the
transitive specs. Transitivity of specs is defined by:
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Definition 4.13:(Transitivity)

A spec R is transitive if Ro R © R
O

The interpretation of transitivity in the set-theoretic model is that relation R satisfies
Nz,y,2 ! (z,9)eR A (y,2)€ER | (z,2)€R), the standard notion of transitivity of a re-
lation. The definition for the lattice becomes Re7 = Ro R C R. The transitive
specs are closed under the cap of the spec-lattice. That is, [/ € 7 holds foralli/ C T

MUeT
= { ReT = R-RC R}
Mu.Mu C MU
= { gb }
Y(R!ReU MM C R)
. { ReU = MU C R }

Y(R!ReU | R-R C R)
{ ReT = R-RC R}
V(R | ReU | ReT)
{uUcT }

I

true

The Galois connection used comes from a very simple function: the identity (embed-
ding) function. This function distributes universally over 1 so it has a lower adjoint
and we denote that adjoint with a postfix . Lower adjoints of embedding functions
are called closures. An extensive treatment of closures can be found in [1]. The lower
adjoint used here defines the transitive closure operation:

Definition 4.14:(Transitive closure)

The function * (called transitive closure) mapping specs to transitive specs is defined

by the following Galois connection for all specs X and all transitive specs Y
XCVY = XtCcvY

[}

There is an invisible identity function applied to the first ¥ in the formula. Instantiation
of the Galois connection cancellation properties leads to the following lemma:

Lemma 4.15:(Transitive closure)

For all specs X and all transitive specs Y:

() X C Xt
(b) X*++ = X+
() YT =Y

O

The lub in the lattice of transitive specs does not coincide with cup in the spec-lattice
because LI does not preserve transitivity, but calculating the lub is simple as is shown
in the following calculation for all sets of transitive specs i and all transitive specs Y
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VIR'REU R C Y)
{ spec-lub }
U/ cCcy

{ (414) }
Hr cvy

1l

The last step is necessary because the second inclusion is in the spec-lattice, not in the
lattice of transitive specs. The result is formulated in:

Lemma 4.16:(Least Upper Bound)

The lub in the lattice of transitive specs of set U of transitive specs is (/)" .
O

The third lattice that we will exploit is the lattice of all specs that are both transi-
tive and symmetric. The set-theoretic interpretation is that the relation is a partial
equivalence relation on the universe and that is the reason that we use the term per
for such specs. As a definition:

Definition 4.17:(Per)

A spec R is a periff R is transitive and R is symmetric.
O

The pers form a sublattice of the lattice of transitive specs, meaning that every per is
transitive and that lubs and glbs of sets of pers calculated in the lattice of transitive
specs are again pers. The transitivity part of the per-ness is trivial; we only have to
prove that the result is symmetric. This is easy for the glb because reverse distributes
universally over the spec glb and thus over the transitive glb. We need an extra lemma
for the lub:

Lemma 4.18:(Transitive Closure, Reverse)

For all specs R: RTv = Rut
O

The proof uses that the reverse of a transitive spec is again transitive and is a nice
example of the use of the principle of indirect equality. For all transitive specs Y

RtvC Y
= { reverse }
Rt C Yo
= { transitive closure, Yu is transitive }
R C Yu
= { reverse }
R Y
= { transitive closure }

Rt C Y
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The fact that the lub of a set of pers in the lattice of transitive specs is symmetric is
now trivial to prove. For set U of pers:

(Led)ro
{ (4.18) }
(Ued)o*
{ reverse }
(U@))*
{ pers are symmetric }

(L)

The pers play an essential role in this thesis as representations of types but treatment
of this aspect is postponed until the next chapter. To distinguish pers from ordinary
specs we use the following convention:

Convention 4.19:(Pers)

Pers are denoted by capitals early in the alphabet, i.e. A, B, etc. and from now on all
specs denoted in this way will be pers, even if this is not explicitly declared.

a

The Galois connection that is shown in the next lemma defines what is called a (left)
domain-operator:

Lemma 4.20:(Domains)

For all pers A and specs R:

O
Proof:

il

I

ReTTMIC A = REC AoTT

Ro-TTNIC A

{ <0 AcTTNIC A = A C AoTr, NI on both sides }
RoTTNI C AT NI

{ <: NI on both sides, =: Ae TT NI C ATl }
RoTTNI C AoTT

{ e trading (4.21), lc.(A~TT) }
RN IoTu C AoTT

{ unit, top }
RC ATT

There are two unfulfilled proof obligations in the above: we used that Ao TT NI C A
for every per A and we used a new lemma called trading. These unfulfilled proof
obligations are marked with a bullet. First the per property:

In

Ao-TT I
{ Dedekind }
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Ao (TT M Auvol)

= { symmetry of pers, unit, top }
Ao A

C { transitivity of pers }
A

The trading lemma used in the proof of (4.20) is the following:

Lemma 4.21:(Trading)

For all specs R, S, and T and all left-conditions L:
RoSNTCL = RMNOToeSv T L
m}

Proving one implication is sufficient because the other implication can be derived by
substituting R:=T, S := Su and T:=R.

Proof:
RoSNTC L
< { Dedekind }
(RN ToSu)eSCL
<= { top, le.L }
(RN ToSu)oTr C LoTT
&= { monotonicity }
RNToSu C L
0

The lower adjoint in the Galois connection, the function X +— X o TT 17, is used so
often that it deserves a special notation. Its dual X ~ TT o X M [ is also given a
special notation here:

Definition 4.22:(Domains)

For all specs X, the postfix operators < and > are defined by:
X< & XoTTnlI
X> & TreXnI

0O

The set-theoretic interpretation of < is that (y,2) € R< = z = y A 3(z ! (y,2)€R),
i.e. R< is the pid representation of the subset of the universe that occurs in the lhs
of pairs in R. This is why R< is called the left-domain of R and dually R> is called
the right-domain of R. Symmetric specs have the same left and right domains and
we introduce a special domain notation for such specs to avoid choosing one domain
operator over the other:

Definition 4.23:(Domains)

For all symmetric specs X the postfix operator x is defined by:
Xx & X<
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or, equivalently,
Xx & X>
O

The = operator has the combined properties of the < and > operations.

An interesting property of the domain Galois connection is that this connection not
only works between the specs and the pers but also between the specs and the lattice
of pids. This lattice is an example of a lattice constructed by taking all specs included
in a given spec, in this case I. Instantiating the Galois connection properties does
not give many useful results, but two are worth mentioning: the monotonicity and
lub-distributivity (for the connection with pids):

Lemma 4.24:(Domains)

For all specs R and S and bags of specs T
(a) R C S = R<LC S< (Monotonicity)

(b) uns< = WT-<) (Distributivity)
The domain operators can be used to give an alternative definition for pids:
Lemma 4.25:(Domains, pids)

Forallspecs R: R = R< = pidR = R = R>
O

We only prove the first equivalence, the proof of the other equivalence being dual. The
= implication follows from R = Ro TT NI C I, for the < implication we obtain
RC RoTTNIfrom RC Iand R O ReoTT MI from the per-ness of pids and
(4.20).

Many more interesting results about the domain operators can be obtained by using
another Galois connection, this time between the lattice of pids and the lattice of left-
conditions. The left-conditions form a lattice with same lub and glb as the normal
spec-lattice, i.e. they form a sublattice. The Galois connection comes in two versions:

Lemma 4.26:

For all pids A and all left-conditions L:

() AcTT C L = ACLAI
(b)) LC A-TT = LI C A
() L =ATT = Ll =A

]

We only give the proof of the first version, the proof of (4.26b) being dual (replace all
C’s with J’s):

{
T
{ o-M Distribution (4.9¢), lc.L }
T C (LNI) o TT
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= { monotonicity }
ALC LI
{ A = A<, pid.A }
AoTTnI C LNI
&= { monotonicity }
AeTT C L

(]

There is a simpler proof of (4.26a), but that proof does not dualise to a proof of (4.26b).

Having a Galois connection with inclusions in both directions (as in (4.26a) and (4.26b))
means that all inclusions in the cancellation properties become equalities and that the
connected functions are real inverses of each other. This is a very powerful property
to have.

Lemma (4.26) is the last example in this section of a Galois connection using a lattice
built with a subset of the specs, but we will show new examples in the next section. We
finish this section by using the Galois connections and other lemmas above for proving
some extra properties of the domain operators. The first lemma formulates the trading
rule (4.21) using the left-domain operator:

Lemma 4.27:(Domain Trading)

For all specs R, Sand T: (Ro SMT)< = (R N To Su)<
O

The proof is done using indirect equality, for all pids A:

(R-SNT)<C A

{ domains }
RoSNT E AoTT

{ (421), le.(A-TT) }
RMOToSu C AoTT

{ domains }
(RN ToSu<C A

il

O

A corollary of this lemma is the formula for the left-domain of an intersection:
Corollary 4.28:(Domains)

For all specs Sand T: (SNT)< = I N ToSu
O

Proof:
(SHT)<

= { unit }
(IoSNT)<
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{ domain trading }
(I N ToSv)<

{ (425) }
I M ToSu

Il

O

Two corollaries of the corollary are found by instantiation. The first one is an alterna-
tive definition of the domain-operator:

Corollary 4.29:(Domains)

For all specs R: R< = I N Ro Ru
0O

Proof: instantiate (4.28) with R for both S and T'.
0O

The second corollary is an often-used property of pids:
Corollary 4.30:(Pids)

For all pids A and B: ANB = A~ B
O

Proof: instantiate (4.28) with A for S and B for T and use that glb, composition and
reverse of pids gives a pid as result.
O

The next lemma is an instantiation of the Galois connection (4.26). Instantiating A to
R< and L to R~ TT in (4.26¢c) gives us:

Lemma 4.31:(Domains)

For all specs R: R<o 1T = RoTT
O

Lemma (4.26) is also essential in the proof of the following lemma:
Lemma 4.32:(Domains)

For all specs Rand S: R< E S< = RoTI C SoTT
0

Proof:

Il
A 1N
e

[¢]

[=p]

=]

=

Q

=]

A

[S——;

I £ S«

il
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The previous lemma is used in the proof of the next lemma about the domain of a
composition:

Lemma 4.33:(Domains)
For all specs R and S: (Ro S)< = (Ro S<)<

O
Proof:
(RoS)< = (RoS<)<
= { (4.32) }
RoSoTT = RoS<oTT
= { (4.31) }
true
O

The next lemma shows the relationship between composing with a domain and glb-ing
with the corresponding left-condition:

Lemma 4.34:(Domains)
For all specs R and S: S<e R = RMSoTT

]
Proof:
S<o R
= { definition < }
(IMSeTr)oR
= { o Distribution (4.9¢), lc.(S o TT), unit }
RMNSoTT
O

A simple, but often used, corollary of this lemma is found by instantiating it with R
for S:

Corollary 4.35:(Domains)

For all specs: R<o R = R
O

Combining this corollary with (4.29) gives as result:

Lemma 4.36:

For all specs R: R T R<RuoR
O
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Proof:
R
- { (435) )
R<-o R
= { (429) }
(IMRo-Ry-R
C { monotonicity }
RoRuoR
O

Lemma (4.34) is used in the proof of the final lemma of this section:

Lemma 4.37:(Domains)

For all specs Rand pids A: AcR = R = R<C A
O
Proof:
AR = R
= { = A<, (4.34) }
RMNA-TT =R
= { glb
RC A-TT
= { domains }
R<C A
O

This section showed that Galois connections are a powerful tool for deriving algebraic
properties. Another important aspect is that it is often helpful to restrict calculations
to a limited part of the original lattice of discourse: none of the connections mentioned
in this chapter are valid when working in the full lattice of specs. The lattices used in
this section occur frequently in other parts of this thesis.

4.4 Representing sets

We have previously seen two methods for representing subsets of the universe as specs,
the pids and conditions. We will also use a third method, called squares, in subsequent
chapters. This section illustrates the relationships between the different methods of
representation.

In the set-theoretic model we can represent subset S of the universe as a relation R in
several different ways. Some methods that prove useful are:
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Pids : (2,9) ER = 2=yAz€ES
Left — conditions: (z,y)€ R = z€ 8
Right — conditions: (z,9)€ R = y€ S
Squares : (z,y)eR = z€SAyeS

The SPEC characterisations of pids and conditions were given earlier in this chapter,
the squares are defined by:

Definition 4.38:(Square)

A spec Ris a square if R = Ro TT o Ru
O

It is not difficult to show the equivalence of the point-wise definition and the SPEC-
definition in the set-theoretic model (hint: show first that all squares are symmetric).
The squares form a complete lattice with the same glb as the normal spec-lattice. To
prove this we first show that all squares are symmetric:

R
{ definition square, reverse }
Ruuo TTuo Ru
= { reverse }
( RoTT o Ru)u
{ definition square }

Ru

The claim that squares are closed under cap can now be proved; for all sets of squares

T:

nr

{ definition square, monotonicity }
M7 o TT = T(Tv)
= { reverse }
M7 o TT o (MT)v
= { squares are symmetric, so cap of squares is also symmetric }
O7 o 1T o NT
{ monotonicity }
T o (MT)eo NT
{ (4.36) }
nr

iy

I

iy

We express the relationships between pids, (left-)conditions and squares with Galois
connections. The Galois connection between pids and left-conditions was given in the
previous section but is repeated here for ease of comparison:

Lemma 4.26:

For all pids A and all left-conditions L:
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(426a)A-TT L = ACLNI
(426b)L C A-TT = LI C A
(426c) =A-TT = LNl = A

The new lemmas expressing the relationships are:

Lemma 4.39:

For all left-conditions L and all squares S:
(a) LoLoE S = LCESoTT
(b) SE LoLv = ST C L
(¢) S=LoLv = SoTT =1L

O

Lemma 4.40:

For all pids A and all squares S:

(a) AeTTALC S = AL SNI
(b) S C AoTToA = SNIC A
€) § = AeTToA = SN = A
O

We prove (4.39a) in such a way that replacing all C’s with J’s gives a valid proof for
(4.39b):

LoLuC S

{ definition square, calculus }
LoLu & SoTToTloSu
&= { monotonicity }
L C SoTT

{ oL = LoLuoTT,see below }
LoLuoTT C SoTT
= { monotonicity }

LoLuC S

Il

There is still a small proof obligation:

L

C { (436), top }
LoLvoTT

C { le.L, top }
L

We also give a proof for (4.40a) that is valid with both inclusions:

AeTToALC S
= { top, symmetry pids }
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AeTT o TT o Av C S

{ (4.39a), le.(A-TT) }
AoTT C SoTT

{ (4.26a), le.(S - TT) }
ALC SoTTnI

{ ¢ SNI = SoTI NI, see below }
ALC snI

il

il

Again we have a proof obligation left over:

Ninr

{ monotonicity, top }
SeoTrnI

{ domains }
SeSuvn I

{ monotonicity, top }
SeTToeSu I
= { definition square }

SnI

il I

in

This completes the proofs of the two Galois connections. We will see the application
of these connections in the next chapter.

4.5 Extensionality

Extensionality is a property that allows the translation of set-theoretic proofs about
relations to proofs in the SPEC-calculus. The idea is that a unary extensional SPEC-
calculus is isomorphic to a relational calculus with the singleton squares of the SPEC-
calculus as universe, i.e. there is a one-to-one correspondence between specs and rela-
tions and the relational operators correspond to the SPEC operators. In the remainder
of this section we assume that the SPEC-calculus that we are using is unary and
extensional.

The extensionality axiom (3.22) is formulated using singleton specs and the elements
of the relations are pairs of singleton squares. The relationship between singleton specs
and pairs of singletons squares is formulated in the following lemma:

Lemma 4.41:(Singleton)

For all singleton squares X and ¥ and all singletons Z:

(a) singleton.(X o TT oY)

(b) singleton.(Z o Zv) A square.(Z o Zv)

(c) singleton.(Zve Z) A  square.(Zvo Z)

(d Z=XoTToY = ZoZuv=X AN ZuvoZ =Y
0
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The proofs of (4.41b), (4.41c) and (4.41d) are simple instantiations of the definitions
with a little bit of rewriting using the cone rule and the fact that Ro TT = Ro Ruo TT
for all specs R. The proof of (4.41a) is similar, but there is one complication: the
imp-ness conditions in the definition of singleton become I J X and I 0 Y after
rewriting. We have to prove that singleton squares are pids.

I
J { e singleton.X }
X o Xvu
= { e square.X, squares are symmetric }
XoTT o Xue X
= {Tron—H_OXUOX}
XoTT o X
= { e singleton.X }
X

a

The correspondence between spec R and relation over singleton squares R is given by:
(442) XoTT Y C R = (X,Y)eR, for all singleton squares X and Y.

Or equivalently (using (4.41d)):
(443) Z T R = (ZoZv,Zvo Z)ER, for all singletons Z.

This correspondence is a one-to-one correspondence if every spec can be written in
a unique way as the cup of singletons. The corresponding property for sets (every
set is a unique union of singleton sets) is well-known from set-theory. The unique
way of writing a spec as a cup of singletons in the SPEC-calculus is a consequence of
the extensionality axiom (3.22): if we assume that two specs contain the same set of
singletons then the extensionality axioms states that the two specs are equal (they are
both equal to the cup of the singletons).

We have shown a one-to-one correspondence between specs and relations, but this does
not yet prove that the SPEC-calculus is isomorphic to the relational calculus. We also
have to show that the operations carry over. This is not difficult for cap and reverse
(this is left as an exercise to the reader) but there are some complications for cup and
composition.

The most difficult part in the proof for cup is that we have to prove that for singleton
Z and bag of specs 7: Z C UT = 3I(R! ReT ! Z C R). Proof:

IR RET | Z C R)

{ (4.44), singleton.Z }
d(R | RET | RNZ # 11)

{ cup, contrapositive }
U(R ! RET | RNZ) # 1L

{ distributivity }

1l

Il
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UTnz # 11
{ (4.44), singleton.Z }
Z cur

The first and last steps in the above proof use an important property of singletons that
is called atomicity:

Lemma 4.44:(Atomicity)

For all specs R and all singletons Z: Z C R = RNZ # 1L
O

This property is called atomicity because it states that a singleton can only be com-
pletely contained in another spec. In other words, an atom is not divisible into two
parts. Since singleton specs are non-empty, only the “<” part needs a proof:

R

f

{ singleton.Z, smgletons are limps and rimps }
ZoZuoRoZuoZ
= { singleton.Z, domains }
LoZ>0Tl oZ<oRoZ>0TT 0Z<o0 Z
= { domains }
ZoTTo(ZoTTARNTT 0 Z) o T o Z
| { monotonicity }
ZoTT o (RNZ) o TT o Z
= { e RNZ # 11; conerule }
ZoTT o Z
= { singleton.Z }
Z
O

The remainder of the proof of the correspondence of the cup operator on specs and the
cup operation on relations is easy and left to the reader. The proof for the correspon-
dence of the composition operators also has its difficult part. The difficult part here is
proving for all specs R and S and all singleton squares X and Y that:

XoTT oV E ReS =
A(V | singleton.V A square.V | X o TT oV L R A VoTT oY C §)

We are going to show that every singleton square V such that

VE(XeR>rnN(SeY)<satisfies XoTToVC R A Vo TT Y C S and that
such a V exists. We only prove X o TT o V' C R, the prooffor Vo TT oV L S being
dual:
R
| { pid.X, X is singleton square (see above) }
Xe°R

= { singleton.X }
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XoTToXoR
| { domains, V C (X o R)> }
XoTT oV

We prove the existence of such a V' by proving that (X o R)> M (S0 Y)< # LL. From
extensionality it then follows that there is at least one singleton V such that

V E(XoR)>N(S°Y)<. Such a V is a pid, so it is symmetric and a symmetric
singleton is a square.

(XeR>N(SY)< # 1L

{ (4.30) }
(XoRpo(Se¥)< # 1L

{ cone rule, domains }
TToXoRoeSoYoTl = TT
= { «XoTT oY C R S; monotonicity, top }
TToXoXoTT oYY oIl = TT

{ X and Y are singleton squares }

1l

true

The other parts of the proof of the correspondence of the composition operators are
straightforward and left to the reader. Extensionality and its consequences are rarely
used but were given here mainly for completeness sake. This is also the reason for not
doing all proofs in full detail in this section; the interested reader can fill in the details
that were omitted here. The main stumbling blocks in the proofs having been treated
in this section.

4.6 Classification rules

The previous sections identified some interesting classes of specs but didn’t give many
methods for recognizing elements from these classes by examining the structure of
the expression defining the spec. This section provides some of the missing methods,
sometimes repeating previous results for completeness sake. The proofs of the lemmas
in this section are trivial and left to the reader.

We start by giving conditions under which an expression is a limp. The conditions for
expressions to be rimps are dual.

Lemma 4.45:(Limp)

(a) limp.(fmR) <« Ump.f

(b) limp.fu = rimp.f

(c) limp.(feog) « limp.f A limpyg
5 (d) imp.f <« pid.f

The conditions for right-conditions are dual to those for left-conditions:
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Lemma 4.46: (Left-condition)

(a)  le(RUS) < IR A IeS
(b)  le(RNS) = le.R A IcS
(c) lccRv = reR
(d)  Ie(RoS) « I8
(e) le.(R/S) « rc.S
(f) le.(R\S) « .S

O
Lemma 4.47:(Pid)

(a)  pid.(AUB) pid A A pid.B

(b)  pid.(ANR) <« pid.A

(¢) pid. Av = pid.A

(d) pid(A-B) < pidA A pidB

(e) pid A = per. A A limp.A
g {f) pid. A = per.A A rimp.A

Lemma 4.48:(Square)

(a)  square.(ANB) <« square.A A  square.B
(b) square.Av = square.A

Lemma 4.49:(Per)

(a)  per.(ANB) <« per.A A per.B
(b) per.Av. = per.A
(c) per.A < square.A

5 (d) per.A < pid.A

These are the “typing-rules” for expressions built using the basic operations of the
spec-calculus. We end this section with the base cases for the typing, the types of the
constants 1L, TT and I:

Lemma 4.50:(Bottom, Top and Identity)

(a) square. il A pid.lL A le.ll A rell
b) square. 7T A lcTT A reTT
(b) sq

(c) pid.I
O

The rules that are given above are usually sufficient for determining whether a spec
belongs to one of the classes introduced in this chapter.



Chapter 5

Pers as types

The main goal of this thesis is to develop a theory of datatypes and programs using
these datatypes in the SPEC-calculus. That means that types, programs and type-
judgements are all expressed in the calculus and that we should be able to do all our
calculations (datatype construction, program construction, type inference etc.) using
the same calculus. In the previous chapters we introduced the SPEC-calculus and
developed a toolkit for calculations within the calculus. In this chapter we will show
how we can use a particular class of specs (the pers) to represent types and we will
show how we can use them for type-judgements on specs.

An important result is that we can identify a special class of specs playing the role
of functions on types represented as pers. This class, called the difunctionals, has
properties similar to those of functions on sets.

5.1 The monotype system

The monotype system for typing specs, as defined by Backhouse et al in for example
[1], can be seen as precursor of the type system that is used in this thesis. The basic
idea is that a type is a subset of the universe and this subset is represented as a pid, a
monotype in Backhouse’s nomenclature.

Two type-judgements are defined in the monotype system, one for arbitrary specs and
one especially for left-imps:

Definition 5.1: (Monotype judgements)

For all specs R and f and all pids A and B:

(a) Re€eA~B &2 AR =R =R-°B

(b) feEA«<—B & A fofu AN f>=B8B
0O

Interpreting A and B as sets, R € A ~ B means that R relates elements of 4 with
elements of B and f € A<—B that f is a total function mapping elements of B to

o1
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elements of A. The domain operators give a “least” type for specs: For all specs R, all
left-imps f and pids A and B:

(52) ReA~ B R<C A
(5.3) feA<B f<E A A f>

The lattice ordering on pids corresponds to subtyping and pids can be used for domain
restrictions on specs and left-imps. For pid C:

(54) CoR € ANC ~ B « ReA ~ B
(5.5) RoC € A~ BNC <« RecA~ B
(56) feC € A« BNC « feA< B

This can be useful to make type considerations explicit in calculations as is shown in
for example [42].

-

It turns out that is possible to construct a surprisingly powerful theory about types,
including initial inductive datatypes, by working with pids as representations of types
as demonstrated in the work of Backhouse et al. [1, 2, 4]. But there are also some
drawbacks and in our opinion the most important one is the problem of constructing
types with laws. Types with laws are abundant in practical programming and a good
type-theory must allow for the construction of and reasoning about these types.

5.2 Pers as types

The per-system was designed to capture two important methods for relating types to
each other in a single system: imposing laws (creating equalities between elements) and
imposing restrictions (subtyping). It can be seen as a generalization of the monotype
system, which only allows subtyping: the type of a spec R is completely determined
by R< and R> and the C order represents subtyping. In this section we will develop a
method for typing a spec using per-valued domain operators and introduce an ordering
on pers reflecting both laws and restrictions.

A common method for the introduction of a type is to give a base domain and then
form a quotient by introducing equalities on the elements of the domain. A typical
example of this approach is the way integers are introduced given pairs of natural
numbers: (a,b) 2 (c,d) iff a + d = b+ c. This equality introduces equivalence classes
on the pairs and every class corresponds to one integer. The mapping of an element of
the base domain to its equivalence class is the quotient-map. In this case we have the

mapping
(a,0) = {(c,d) |a+d=b+c}

as quotient-map. This simple example demonstrates that it is desirable to be able to
express types constructed using quotients if we design a type-system. A second wish
for such a type-system is that we are able to construct subtypes. For example, the
even integers can be constructed from the integers by restriction to pairs with an even
sum. In this chapter we will show that we can have both quotients and subtypes if
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we represent types with pers. The monotype system becomes a special case of the per
system.

Representation of a quotient by a per is easy if we view the quotient map as a set-
valued function and use the isomorphism between relations and set-valued functions.
The resulting relation is transitive since every element of the domain is mapped to
its equivalence class and this equivalence class is mapped to itself; the relation is
symmetric because if element z is mapped to a set containing y then y is mapped to a
set containing z (z and y are both in the same equivalence class). This means that the
resulting relation is a partial equivalence relation, so it is a per in the SPEC-calculus.

Using pers to represent types is a method that is also used in other formalisms like
the lambda calculus where pers over the natural numbers are used as a model (see for
example [48]). Examples of using pers as types that are more closely related to the
use in this thesis can be found in the work of Mili et al [47] and in the work of the
Ruby group [38]. An important difference with these uses of pers is our emphasis on
orderings and lattice structures on pers allowing us to define pers (= types) as extreme
solutions of equations. This will be important for the construction of inductive types.

5.3 Orderings on pers

Orderings and lattices play an important role in our calculations and therefore we
examine useful orderings on pers. The normal SPEC-ordering = has.already been
examined in the previous chapter (the pers form a complete lattice under C) but C
is quite meaningless as comparison of two pers viewed as representations of types. In
this section we will investigate three new orderings on pers that do have a meaningful
interpretation on pers viewed as types.

5.3.1 Pers as sets of classes

The elements of the quotient are the equivalence classes of the pers, so they are subsets
of the universe. If we represent the quotient by a per then the natural representation
of an element of the quotient is as a non-empty square because a per is the union of
the squares representing the equivalence classes. This is demonstrated in the following
definitions and lemmas.

Definition 5.7: (Class)

A spec R is a class iff R is a square and R # 1l.
[}

Definition 5.8: (Element)

For class X and per A: XeA 2 XCAANXoA=X
0O

The interpretation of X €A is that X is an equivalence class of A, so X is a representa-
tion of an element of the quotient represented by A. The first conjunct in the definition
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of X €A states that X is a part of an equivalence class of A, the second conjunct states
that X consists of complete equivalence classes of A. Together this means that X
is a single equivalence class of A. The definition of X€A can be simplified for pids
tclass. X A pidA AN X C A = XoA =X,s0XecA = X [CA
for pid A. The trivial proof of this fact is left to the reader.

The statement that every per is the cup of its elements is an alternative way of stating
the extensionality axiom:

Lemma 5.9: (Extensionality)

The following three statements are equivalent:

(a) V(A per A A = LU(X ! XeA X))

(b) V(A pid A A = UX ' XeA X))

(c) Y(R!\ R = UW(Z ! singleton.Z A Z C R Z))
O

The last expression is the original definition of extensionality for a SPEC-calculus. We
prove the equivalence of the three statements using cyclic implication. Because (5.9a)
= (5.9b), since all pids are pers, it is sufficient to prove (5.9b) = (5.9c) and (5.9¢) =>
(5.9a). The proof of (5.9b) = (5.9¢) is the most difficult part:

R
2 { lub }

L(Z | singleton.Z AN Z C R Z)
d { see below }

UX,Y I Xe€R< AN YE(XoR)»> XoTToY)
= { nesting }
UX i XeR<UY | YEXR)> ! XoTToY))
= { distribution }
U(X !X €R<! XoTToL(Y Y e(XoR)>'Y))
= { (5.90) }
~ U(X ! X €R<! XoTTo(X o R)>)
= { domains, distribution }
U(X | X €R<! XoTToX)oR
= { definition square, (5.9b) }
R<o R
{ domains }

Il

R

The proof obligation for the second step above is:
X€eR< ANY €(XoR)> = singleton(XoTT oY) A XoTT oY C R

The fact that X o TT o Y is a singleton is a consequence of lemma, (4.41a) and the fact
that elements of pids are singletons. The other conjunct is proved as follows:
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R

| { X CR<}
XoR

= { square.X }
XoTToXoR

= { domains }
XoTT o (X o R)>

- {Y E(X-R)> }

XoTT oY

This completes the proof of (5.9b) = (5.9¢c). Now we prove (5.9c) = (5.9a):

A

{ domains, per.A }
AoAxo A
= { (6.9¢) }
Ao l(Z | singleton.Z N Z C AxiZ)oA
= { distributivity }
U(Z | singleton.Z AN Z C Ax! Ao Zo A)

cC { singleton.Z N Z C Ax = square.(Ao Z o A),
ZCAx = AoZ-Ac A}
U(X  XeAd | X)
C { XeA = X C A lub }

A

This completes the proof of lemma (5.9).
O

A fourth equivalent way of expressing extensionality provides a method for proving the
equality of two specs in an extensional SPEC-calculus:

Lemma 5.10: (Extensionality)

A SPEC-calculus is extensional iff for all specs R and S and all pers A:
V(X 1 X€A 1 XoR = Xo8) = AR = A-S
O

Proof:
We first prove that the statement follows from extensionality as defined earlier:

V(X ! XeA ! XoR = X o8)
{ XeA = XoeA=X)
V(X1 XeA ! XoAoR = XoAoS)
= { Leibniz }
AeR = Ao S
= { extensionality (5.9a) }
U(X ! XeA ! X)oR = LU(X ! X€A ! X)oS
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{ distributivity }
UX 1 XeA ! XoR) = LI(X | XeAd ! X 5)
= { Leibniz }
V(X 1 XA 1 XoR = Xo08)

For implying extensionality we prove (5.9a):

UX i1 Xed:! X) = A
{ Xed = A-X = X, distributivity, unit }
Aocll(X | XeAd ! X) = Aol
{ assumption }
VY 1 YEA Yo U(X 1 XeAd ! X) = Y)
{ see below }
true

1]

The last step needs some extra work:

Y
= { Yed }
YoA
J {XeAd = XCA}
Yol(X | Xed | X)
3 { Yed }
YooY
= { perY }

Y
O

Having a notion of elements enables us to define a subset ordering on pers in the obvious
way:

ACB 5 V(X !XeA!@ XeB)

But we don’t use this as a definition because it has two big disadvantages. It contains a
quantification and using this definition almost always involves extensionality. A defini-
tion that does not involve quantifications and is usable without assuming extensionality
is the following:

Definition 5.11:(Subset)

For pers A and B, the subset relation is defined by:
ACB &2 AC BAAB = A
0O

We justify this definition of the subset ordering by proving that it is equivalent to the
extensional definition:
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Lemma 5.12:(Subset)

In an extensional SPEC-calculus:

ACB = V(X XeA, XeB)
O
Proof:
V(X | Xe€A | XeB)
= { definition € }
V(X ' X€EA!X C B A XoB = X)
= { calculus }
V(X 1 XEA!X T B) A V(X !X€A!XoB = X)
= { lub, unit }
(X 1 XeA!X) T B A V(X X€A!XoB = Xol)
= { extensionality (5.9a) (5.10), unit }
ACEB AN AocB=A
O

Note that the definitions of X€A and X C A are the same; a set with only one
element is identified with its element. The C-ordering coincides with C on pids
(Ao B = AMNB), so it is a true generalisation of the subset ordering of the mono-
type system. The pids of the monotype system form a complete lattice under the
subset ordering but the pers do not form a complete lattice under the C-ordering:
there is a bottom (LL) but no top. For example, both I and TT are maximal under
the C-ordering.

The subsets of a given per A do form a complete sublattice of the lattice of all specs
contained in A. The lub in this lattice is the normal SPEC-cup, but is denoted by U,
the glb is the normal SPEC-cap except for the glb of an empty collection which is A.
The glb is denoted by N. A nice property that this lattice has in common with the pid
lattice is that composition is also the glb:

Lemma 5.13:

For pers A, B and C such that B C A and C C A:
BNnC = B-C
O

Proof:

BNC
= { BAC = BNC,CCA }
BN AC
- { 492),CCA = CCABCA = B =DBoA }
(BnA) - C
= {Bca}
BoC
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It is sometimes useful to have a definition of C that has only one conjunct and the
following lemma supplies such a definition:

Lemma 5.14:(Subset)

ACB = A = AxoB
O
Proof:
A C B :
= { definition C }
ACB A AeB = A
= { =: Axo, domains; «<=: Ax C ], unit; anti-symmetry }
AC A<eB A AsBLC A A AL A-B
= {=>:AsigA;c:Ao,AoAzA;AgAXoB=>AngB}
ALC A=cB A AxoB L A
= { anti-symmetry }
A = Axo B
O

The fact that the C -ordering does not give information about quotient-forming sug-
gests that we need another ordering on pers. Another reason for considering a different
ordering is that the construction of inductively defined types is linked to solving re-
cursive equations on types. A complete lattice would simplify this construction. The
C -ordering on pers does give a complete lattice but this ordering says nothing about
the relationship of pers seen as the representation of types, making it unusable for our
purposes.

5.3.2 Pers as quotients

Taking a quotient is equivalent to dividing collections of elements into classes. This
corresponds in the per representation to joining elements (classes) together to form the
new elements of the quotient. Formally we can express that per A is a quotient of per
B as follows:

(5.15) V(X 1 XeB13(Y | Yed ' X C Y))
(5.16) Ax C Bx

Part (5.15) states that every element of B has been put in one of the classes of A,
(5.16) says that everything in A has been formed from parts of B. The definition given
here is only a usable definition in an extensional SPEC-calculus because of the use of
€ and quantifications, so we would like to have an equivalent definition that is also
usable in ordinary SPEC-calculi. We are going to prove that the conjunction of (5.15)
and (5.16) is equivalent to

(51T BEC A A AoB = 4
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in an extensional SPEC-calculus. This definition is also usable in a non-extensional
SPEC-calculus. The equivalence of the two definitions is proved by mutual implication.
First we prove that the conjunction of (5.15) and (5.16) implies (5.17)

A

= { extensionality }
LY 1 YeAd YY)

d { monotonicity }

UX,Y':XeB A YeA A X

= { eV(X | XeB | 3(Y | YeA |
U(X | XeB | X)

= { extensionality }

Y X)
c

C
X C Y)); gen. range disjunction }

B
A-°B
3 { domains }
Ao Bx :
3 { e Ax C Bx; domains }
A
- {BC AA=AcA}
A-B

Now we prove that (5.17) implies (5.15) and (5.16). Conjunct (5.15) is proved by:

AV 1 YeA, X CY)
& { class.(A o X o A) (see below), calculus }
AoXoA€A A XC AoXoA
{ class.(A o X o A) (see below), definition € }
AoXoAoA = Ao XoA N AcXcAC A AN XL AoXoA

&= { AcA = A, eAdeB = A BLC A}
AeXoALC AoBoA AN X T BoXoB
= { monotonicity, calculus }
XCB A XeB =X
<= { definition € }
XeB

There is still something left to prove in the proof of (5.15): class.(A X o A) « X€B.
First we prove that Ao X c A # 1l:

AoX oA

3 {eBC A}
B-Xo-B

= { e XeB }
X

- { «XeB }

1L
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Now the remaining proof obligation, omitting all w’s because all specs in the proof are
symmetric:

AeXoAoTT oA XA
= { square.X }
AeXoTToXoAo
= { cone rule, X o
AoXoTToXo A
= { square.X }
AoX oA

>
S
e
-
o
o

O
Conjunct (5.16) is proved by:

Ax

{ eA° B = A, domains }
(A B)>

{ domains }

I

in

Bx

From the calculations above we can conclude that B E A A AoB = Aexpresses
that per A represents a quotient of per B. We introduce a special notation for this
relationship between pers:

Definition 5.18:(Quotient Order)

AdB &4 BLC A A A-B = A
]

The quotient order is a partial order on pers, but the pers do not form a lattice under
the quotient order. Lattices with the quotient order can be constructed if we restrict
ourselves to pers with same domain. This follows from the following lemma:

Lemma 5.19: (Quotient Order)

AdB = B LC A A Ax = Bx
0

The quotient order coincides with the reversed SPEC-ordering for a collection of specs
with the same domain. For proving (5.19) it is sufficient to prove

BLC A = (AeB=A4A = A= = Bx):
AeB = A
= { <o *B C A Hence AcBC Ao A=A=AoBx C Ao B;
—:AoBoBx=AcB }
AeBx = A
= {:> *B T A, Hence Bx T Ax C (Ao Bx)> C Bx <: domains
Ax = Bx
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Lattices with the quotient ordering can be constructed using the following lemma:
Lemma 5.20:(Quotient Lattice)

For per A, ({B | B<«iA | B},<) and ({B | AaB | B}, <) are complete lattices.
a

Because all pers in the two sets have the same domain (Ax), the <i ordering is the
same as the reversed SPEC-ordering J. This means that we can use the glb and lub
on pers from the previous chapter for these lattices. The lub is the glb from the pers
(ordering is reversed), that is, the normal SPEC-cap except for the lub of an empty
collection, which is A for ({B ! BaA | B}, <) and A= for ({B | A«B | B},<). The
glb is the lub from the pers, that is, the transitive closure of the SPEC-lub except for
the glb of an empty collection, which is Ao TT o A for ({B | BaA ! B},«) and A for
({B ! A«B ) B},«).

Another alternative for the definition of the quotient ordering that we will sometimes
use is given in the following lemma:

Lemma 5.21:(Quotient Order)

Ad9B = A°B = A A Ax = Bx
0O
We prove this by showing equivalence with (5.19). For this it is sufficient to prove
Ax = Bx => (AeB=A = BLC A)
AoB = A
= { @ Ax = Bx,Hence AcB J AoBx = AoAx = A }
AoBLC A
= { < Aoy=: Ax C A}
Ao B C A
= { e Ax = Bx, domains }

8y
M
N

O

We remarked at the end of section 5.3.1 that the subset ordering does not result in a
complete lattice on the set of all pers. The quotient lattices have the same problem,
namely too many pers are incomparable, and the set of all pers does not form a complete
lattice under the <i order. The «i order only gives information about quotient formation
and is not usable in situations where subsets are constructed.

We need an ordering on pers that encompasses both subset and quotient construction
and gives us a complete lattice. An ordering satisfying these criteria will be constructed
in the remainder of this section and it turns out that this new ordering can be viewed
as a combination of the subset and quotient ordering.

5.3.3 Decomposing pers

Calculations with pers can often be simplified if we write the pers as the composition
Ao E (:= E o A) of two components:
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e A: the domain that it is operating on, i.e. a subset of the universe. This can be
represented by a pid.

e E: the quotient map extended to the whole universe, i.e. a partitioning of the
universe. This can be represented by a partition, a per containing I.

We extend the quotient map to the universe because this allows us to restrict our
attention to total quotient maps, and thereby simplifies the calculations. The idea of
decomposing a per into a partition and a pid was originally suggested by Jaap van de
Woude and some of the results and proofs are his. We first formalize the notions of
partition and extension in the SPEC-calculus:

Definition 5.22:(Partition)

A spec E is a partition iff per. E A I C E.
0

Since partitions are also pers we will use capitals early in the alphabet to denote
partitions, preferably E' and D. This is just a preference, not a notational convention.

Definition 5.23:(Extension)

A partition E is an extension of per A iff A C E.
]

Using (5.14) we see that the definition of E being an extension is equivalent to
(5.24) A = Ax-E
and that per A is written as the composition of a pid and a partition.

The decomposition of pers is not unique since the extension of the quotient-map is
not unique. Examining the two extreme extensions we find that the smallest extension
under the C-ordering is AU, but this extension doesn’t seem to be useful. The
extension that we will use is the largest extension; one class containing everything
outside the domain is added. We introduce a new operator for this extension:

Definition 5.25:(Greatest Extension)
For per.A we define

Ax A& AJAN (AJA)
0O

The fact that Ax is the greatest extension can be proved by instantiating the next
lemma:

Lemma 5.26:(Extension)

For all pers A and symmetric specs X:
XoAx = A = AC X A X C Ax
O
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Proof:

XoAx = A
{ anti-symmetry }
XeAx T A AN AL XoAx
{ =104, Ax C I; «<: Ax C A, o Ax; domains }
XeAC A N ACX
{ factors }
X CA/A N AC X
{ ¢ X = Xu, reverse, definition % }
XCAx AN AC X

Ml

O

The result that every extension of A is contained in Ax follows immediately from this
lemma. We prove that A is itself an extension by choosing appropriate instantiations
for X. For X = AUI we obtain as result

(527 AC Ax A I C Ax

Proof:
ALC Ax AN I C Ax
= { lub }
AC AUl A AUl € Ax
= { AUI is symmetric, (5.26) }
(AUD) o Ax = A
= { distribution, domains }
AUAx = A
= { AxC A}
true
O

Instantiating (5.26) with X = Ax gives us (using A C Ax):
(5.28) AxoAx = A
Instantiation with X = Ax o Ax is used in proving the transitivity of Ax:
(5.29) Ax o Ax C Ax
Proof:

Ax o Ax T Ax
{AC A, A= A-A}
AC AxoAx AN AxoAx T Ax

{ (5.26) }
APQOAXOASEZA
{ AxoAx = A = Axo A }
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Ao Axo A = A
[ AxoAx = A, A = A-4 }

true

I

]

The definition of Ax guarantees symmetry and combined with transitivity (5.29) and
its containing I (5.27) we have proved that Ax is a partition.

Not every composition of a pid and a partition corresponds to a per. The composition
of a pid and a partition is always transitive but not always symmetric. A necessary
and sufficient condition is given in

Lemma 5.30:

For pid.A and partition.E we have

per(AeE) = AoE C TToA
0
Proof:
per (Ao E)
= { transitive.(A o E), reverse, symmetry of pids and partitions }
AoE = EoA
= { anti-symmetry, reverse, symmetry of pids and partitions }
AE E EoA
= { < AC ;= Ay Ac A=A}
A-E C AocE-A
= { domains }
AoE C AcENTIoA
= { cap }
AoE C TToA
O

5.3.4 The per lattice

Let’s take a closer look at pids and partitions. We have shown in the previous chapter
that the pids form a complete lattice under the C -order, and from lemma (5.20) it
follows that the partitions, the pers <il, also form a complete lattice. The ordering on
the partitions is the reversed SPEC-ordering J.

Given the orderings on pids and partitions we can construct combined orderings on
pers decomposed into pids and partitions. In principle there are two possible combined
orderings, for pers A and B:

A= C Bx A Ax C Bx

Ax C Bx A Ax - Bx

The first of these two orderings is not very interesting because we can prove the fol-
lowing result in a complemented SPEC-calculus:
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A< T Bx A AxC Bx = Bx=1 V Ax = Bx

This severely limits the applicability of the first ordering. The other ordering does have
desirable algebraic properties, most importantly that we have a complete lattice. We
first introduce a notation for our ordering:

Definition 5.31:(Per Order)

A9B & A=x[C Bx A Bx C Ax
)

This ordering has a very meaningful interpretation if we view pers as types with classes
as elements. The two conjuncts of (5.31) have two different effects: Bx T Ax means
that A has at least the same equalities on the elements of the universe as B, but might
have more. In the example of the integers and pairs of natural numbers in section 5.2
we see that we have introduced extra equalities. Parts of the universe that were in the
domain of B but are no longer in the domain of A are added to the extra class in Bx
that is outside B. The other conjunct Ax T Bx states that A is only defined on (a part
of) the domain of B, parts outside the domain of B cannot be added. In the example
of the even integers we see that the integers are restricted to those pairs of naturals
with an even sum. The per order corresponds to combining two important methods of
type construction: adding laws and imposing restrictions. A < B means that A can be
formed from B using these two methods.

The definition of the ordering given above has advantages for investigating lattice
properties but for most other uses we prefer the following equivalent definition:

Definition 5.32:(Per Order)

AdB = AoB=A
O

The equivalence of (5.31) and (5.32) is proved by showing that the definition of (5.31)
implies that of (5.32), followed by proving that the definition of (5.32) implies that of
(5.31).

A-B

= { (5.28) }
Ao Bxo Bx

= { & Ax C Bx, domains }
A o Bx

C { #Bx C Ax }
Ao Ax

- { AoAx = A, (5.28) }
A

= { e Ax C Bx, domains }
Ao Bx

C {(B<CB)

Ao B
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Ax
= {.AOB:A}
(- B)x

C { domains }
Bx
Bx C Ax

= { (5.25), symmetry of Bx }
BxoALC A

= { ®AoB = A, Hence Ax C Bx }
BxoBxe AL A

= { #AeB = A, BxoBx = B }
true

O

We prove that the pers form a complete lattice under the < -ordering by first showing
that the decompositions of pers form a complete lattice followed by establishing a
Galois connection between this lattice and the poset of pers under the < -ordering. We
can then conclude using lemma (2.26) that the pers form a complete lattice under the
< -ordering.

The first proof obligation for the proof sketched above is:

({4,E | pid A A partition.E A per.(AcE) ! (4, E)},(C,2)
is a complete lattice

Proof: The lub of the lattice is the pairing of the lub of the pid-lattice under the [
-ordering and the lub of the partition-lattice under the J -ordering (glb under the C
-ordering). For proving this it is sufficient to show that the set is closed under the com-
bined lub operation, for § C {4, E | pid.A A partition.E A per.(Ao E) (A, E)},
A= {A,E | (AE)eS; A}, = {A,E ! (A E)eS | E}:

UA.T1E
= { distributivity, definition A }
U4, E | (A, E)eS ' A-E)

C { definition &, cap }
U(4,E | (A,E)eS | A- E)
C { per(A=E), (530) )

U(A,E ! (4,E)eS | TT o A)
= { distributivity }
T o LA

Using (5.30) we conclude that LIA o € is a per and that the decompositions form a
complete lattice. The next step in proving that the pers form a complete lattice under
the < -ordering is the construction of a Galois connection between the pers and the
decompositions: for pid A, per B and partition E such that per.(Ao E)
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(Bx, Bx)(C, 3)(A, B)
{ pairing }
B<xC A A EC Bx
{ definition ¥, cap, reverse, symmetry of E, factors }
B<C A A EoBEC B
{ domains, I C F, symmetry of B and E }
Bo-A=B AN BoE =8B
{ <« BoFEcAocA = BoEocA BoAocFEcE = BoAoE,
=>: substitution }
BoEcA =B AN BoAoE =B
{ per.(A o E), definition <« }
BaA-FE

Il

I

I

il

From the fact that every per can be written as the composition of a pid and a partition
it follows now, using (2.26), that the pers form a complete lattice. Application of
lemma (2.26) also has as condition that the pers with < form a poset but this is trivial
to establish and left to the reader. As conclusion of the proofs above we have proved
the following theorem:

Theorem 5.33: (Per-Lattice)

The pers form a complete lattice under the < -ordering
O

The bottom of the lattice is 1L and the top is I. The lub and glb of the lattice
can be expressed using other constructs from the SPEC-calculus, but as these explicit
formulations are not suitable for manipulation and are also not needed in the remainder
of this thesis, we omit such formulations here.

The glb operator of the lattice plays an important role in our theory about inductive
datatypes with laws and therefore we introduce a special notation for it:

Definition 5.34:(Per-glb)

The infix operator a is defined by, for all pers A, B and C:
A <4 BAC = A<«B A A«C
O

We do not know an explicit formula for AA B that is convenient to work with for all
A’s and B’s, but for some A’s and B’s we can give a practical formula. Two “practical”
formulas are given in the next two lemma’s:

Lemma 5.35:(Per-glb)

For pers A and B such that Ao B = Bo A we have ANAB = A B
0

It is easy to see that Ao B = B o A implies that A o B is a per (left to the reader).
The fact that AANB = Ao B is proved using indirect equality:
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X < AAB
{ definition A }

X<4A AN X«B
{ definition < }

XeA=X AN XoB =X
{<=:X°BOA0A=XOBOA,X0AOBOB:XDADB;
=: substitution }

XoBoA =X A XoAdoB =X
{eA-B =B-A}

1l

f

Il

XoAoeB =X
= { definition <« }
X aA-B

O

Lemma 5.36:(Per-glb)
For pers A and B such that Ax = Bx we have ANB = (AUB)* and (4 AB)x = Ax

0O
This is also proved by indirect equality, but this time with a per X satisfying X= = Ax

X < AAB
{ definition A }
X<4A A X4«B
{ o Xx = Ax e Ax = Bx; (5.21) }
XaA A XaB
{ quotient lattice }
X a (AUB)*
{ ¢ Xx = Ax, e Ax=Bx; (5.21), Ax = Bx = (AUB)*x = Ax }
X <« (AuB)*

Il

The calculation above is only a valid proof of ANB = (AUB)* if (A AB)x = Axand
(AUB)* x = Ax The latter is easy to prove and left to the reader. The former follows
from Axo TT o Ax 4 AAB < A and some simple domain properties. The fact that
AAB < A follows directly from the definition of a glb whereas Axo TT o Ax « A AB
is proved by:

AxoTT 0o Ax « AAB
{ definition A }
AxoTToAx 4« A AN AxoTToAx « B
{ definition < }
Ao TToAx 0 A = AxoTToAx A AwoTToAx o B = AxoTToAx
= { domains, ¢ Ax = Bx, Leibniz }
TToBx o B = TT o Ax
= { o Ax = Bx, domains }

il
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true

Earlier we mentioned that the per order could be seen as a combination of the subset
order and the quotient order. This claim is substantiated by the following lemma:
Lemma 5.37:(Per Order)

(a) A<B I(C 11 ACC AN CaB)
_(b) A<B = 3C1AaC A OCB)

i

The proofs of this lemma in the < direction are simple because both the subset and
quotient ordering imply the per order and the lhs follows then from the transitivity of
the per order. For the proofs in the = direction we provide instantiations for C. For
(5.37a) we choose ALIB; for (5.37b) there is no choice, the only possible instantiation
for C being AMB. The subset and quotient order definitions have two conjuncts, a
per order part and a SPEC-lattice order part. The choices made above fulfill the
requirements for the SPEC-lattice order parts immediately. The per order parts proof
obligation is to prove, assuming A< B, that A <« AUB < Band A < ANB < B. This
can be done by distribution over cup or cap followed by using Ao B = A.

We end this section with some miscellaneous properties of the orderings on pers that
are needed later in this thesis:

Lemma 5.38: (Per Orderings)

(a) ' A<B = Ax q Bx

(b) Ad4B A C<aD = A-C aBe°D

(c) ACB = BoAx « A « B

(d A<C AN BCC = AAB C A

(e) AaB = A<dB A Ax = Bx
() AaqB = Bo.TMleB 1A« B
(g) AaBaC = A«aB«aC A AaC

O

We give only a sketch of the proofs needed for this lemma. The proofs are easy and the
details are left as an exercise. For (5.38a) we use that the < ordering coincides with C on
pids. For (5.38b) we use that pers are symmetric. Note that (5.38b) only makes sense
if Ao C and B o D are pers. This fact (in particular A o C' is symmetric) is used in its
proof. The proof of (5.38¢) uses lemma (5.14). Note that A«B = per.(B o Ax). The
proof of (5.38d) is somewhat more complicated than the other proofs. The essential idea
is proving AAB = (AAB)=o A by mutual inclusion in the per lattice. Part (5.38e)
is proved by proving A 1 B <« A<B A Ax = Bx. The proof of (5.38f) uses
BoTToB = AoTT o A for the “=” direction and (5.38a) for the other direction.
The proof of (5.38g) also uses (5.38a).
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5.3.5 Relational type-judgements and domain operators

In the previous section we have shown how we can use pers to represent types and we
introduced some partial orders on pers. We will show in this section how we can use
pers to type specs and introduce some operators for this purpose.

The elements of a per are its equivalence classes and stating that a per is a domain
of a spec should mean that the spec respects the equivalences in the per. This means
in the set-theoretic model that elements of the universe that are equivalent in the per
should be handled equivalently by the spec. For right domains this can be expressed
as follows, where S is a spec and x is an equivalence class represented as a class:

V(p,a,7 i (¢,7) €z i (p,g) €S = (p,r) €S)

In the SPEC-calculus this becomes S 3 Soz. The equivalence between the formula in
the model and the spec-formula is easy to see: because z is symmetric we can replace
the = by = and then we shunt (p, ¢) € S to the domain of the quantification. We call
a class satisfying the condition a right equivalence class of S and of course we also have
the dual notion of a left equivalence class. Our definition is thus:

Definition 5.39:(Left and Right Equivalence Class)

For spec R and class z we define:

RIzxzoR
R3Roz

T 15 a left equivalence class of R 2
Da: s a right equivalence class of R &
An example: consider the relation between pairs of natural numbers defined by
((43,5),(m,n)) € T = i+ 2n = j + 2m. This represents the doubling function on
integers. The classes of the integers are both left and right equivalence classes of T'.
Note that, although T only relates even integers on the lhs with integers on the rhs, all
the integers are still left equivalence classes. For a class z representing an odd integer
we simply have zoT = 1L, so this is certainly included in 7. On the other hand the
even integers do not completely cover the rhs of T, all integers are needed to completely
cover the rhs.

We want to capture this kind of situation in a definition for domains. An appropriate
definition should ensure that both the integers and the even integers are left domains
of T, but that only the integers form a right-domain. The considerations above lead
to a definition like: for per A (this represents a type, a collection of classes) and spec
R we have that A is a right-domain iff

V(z iz €A xis aright equivalence class of R) AN ADR>

The second conjunct ensures that A completely covers the rhs of R. The formula
above is not very practical because it contains a quantification, but removing this
quantification is simple and we express the notion of a domain as a type-judgement:

Definition 5.40:(Domains)
R:A— A AcR=R
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R:—A & RoA=R
0

We pronounce R: A— as “A is a left domain of R” or “R respects A on the left hand
side” and R: —A as “A is a right domain of R” or “R respects A on the right hand
side”. We can combine judgements about left and right domains in one judgement:
R: A— and R: — B combine to R: A— B. Another way of seeing a judgement with
only one domain is simply assuming that the missing domain is I, and this will be
our convention for type-judgements: all judgements are binary and missing pers are
assumed to be I.

We only give one type-deduction rule in this section, other deduction rules can be found
in the last section of this chapter. The proof of the following lemma is trivial and left
to the reader.

Lemma 5.41:(Domains)

R:A— <« R: B— A B<dA
R: —A « R: —B AN B«A
0O

Now we have defined domains we look for characterizations of the domains belonging
to a given spec. We will show that for a given spec there exist both least and greatest
domains under both the J and < order and that the collection of all domains is com-
pletely characterized by the least domain under the < order. We will do our calculations
only for right domains, but everything can be dualized to left domains.

In the previous chapter we introduced the > operator using a Galois correspondence.
An alternative definition can be given using the following lemma:

Lemma 5.42:(Least Domains)

R> = M(A ! ReA=R'A)
0

This lemma clearly shows the reason why we call R> the least right domain of R. One
inclusion is for free since Ro R>= R. We prove the other inclusion:

MA!'R-A=RA) 1 R>
{ glb }
V(Ai RoA=R! AJR>)
{ domains, (4.20) }
V(A RoA=R | TT-AJR)
{ top, monotonicity }
true

Il

We define the greatest domain in a similar way:
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Definition 5.43:(Greatest Domains)

Rv 5 U(A!R-A=R: A)
0

We pronounce R as “greatest right domain of R”. There are two problems with this
definition: it is not obvious that LI(...) is a per and this definition is in terms of a
quantification and we would prefer a simple closed formula. A closed formula is given
in the following lemma and in the proof of this lemma we also prove that definition
5.43 indeed defines a per-valued operator.

Lemma 5.44:(Greatest Domains)

R~ = R\Rn (R\R)u
O

R is clearly a per since it is the intersection of transitive specs and it is its own reverse.
We fulfill our proof obligations by first showing that R is a right domain of R, giving
us the C inclusion:

R o (R\R 1 (R\R)v)
| { RRR31}
R

3J { cancellation }
R o R\R
d { calculus }

R o (R\R M (R\R)v)

Proof “2J7”:
R\RM (R\R)» J U(A ! ReA=R | A)
= { symmetry }
R\RIU(A ! ReA=R: A)
= { factors, distribution }
RIU(A} Re-A=R ! RoA)
{ substitution }
RIJUA!R-A=R!R)
{ calculus }
true

I

The greatest domain is a special case of what is called the symmetric quotient in for
example [54]. There the relation syg(R, S) is defined as the largest symmetric relation
X such that R X T S and a closed formula using complements is given. Our greatest
right domain of R is equal to syq(R, R).

The domains of a given spec are completely determined by the least and the greatest
- domain of that spec. We have the following lemma:
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Lemma 5.45:

RoA:RER\;AgR>
O

The proof of this lemma is trivial. In the = direction we use (5.42) and (5.43). For the
<« direction we calculate: R = Ro R~ 1 RoeA O Ro R> = R. Interpretation of the
operator in terms of classes shows that R consists of the maximal right equivalence
classes of R, which means that we cannot enlarge any class z € R~ without falsifying
R J Roz. R~ is a partition (because [ is always a right domain and thus is contained
in R~) and contains a single class for the elements of the universe where R is not
defined on the rhs. In terms of our operators we can formulate that as:

Lemma 5.46:

R~ 3O Rox
0O

The proof of this lemma is easy and left to the reader (hint: use (5.44) and
R> = Roxo R>x = R> oR>>§).

The definitions and properties above are only for right domains, but we have of course
also left domains:

Definition 5.47:(Greatest Domains)

Rs & R/RN (R/R)u
O

All properties of right domains can be dualized to properties of left domains.

These calculations were about the least and greatest domains under the 3 order. We
now continue with the < order. The greatest domain under the < order is quite trivial:
I is always a domain and I is the top of the per lattice, so the greatest domain in the
per-lattice is simply I. The least domain is more interesting:

Definition 5.48:(Equivalence Domains)

R- 5 A(A'RoA=R: A)
O

As above, this is not the kind of definition that we want to use in our calculations.
Although it is clear that we are defining a per and there are also no problems with the
minimality, it is not obvious that we are defining a domain and the quantification is
also undesirable. Both problems are solved in the following lemma:

Lemma 5.49:(Equivalence Domains)

R~ = R>o RN
O

The first part of the proof of this lemma shows that R>o RN is indeed a per. We can
use lemma 5.30 for this:
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TT o R>
{ least domains, top }
RueR
{ cancellation }
RuoRoR\R
{ least and greatest domains }
R>o R~

i

i

Because it is the composition of right domains of R, we immediately see that R>o R
is also a right domain of R. This give us one inclusion: R><R>oR~. We prove the
other inclusion:

R>0o R~ < R~

{ glb }
V(A ! RoA=R! R>oR~<A)

i

We prove this last formula by mutual inclusion after rewriting the < inclusion to
R>cR~oA = R>o RN

R>o R~
{ per.R~ }
R>o R~o RN
{ ® ReA = R; lemma 5.45 }
R>0R~o A
{ *RoA = R; lemma 5.45 }
R>o0RNnoR>
= { per.R>, R>cR~ = RnoR> )}
R>o R~

It

]

I

This completes the proof of lemma 5.49. From the calculation above and lemma 5.41
we can immediately conclude

Lemma 5.50:(Equivalence Domains)

RoA=R = R-<A
(]

This means that the collection of domains is completely characterized by the least
domain under the < order. The interpretation of the per R~ is about the same as that
of R, except that the class consisting of everything outside R> is eliminated by the
composition with R>. The > operator constructs a right domain; the corresponding
left domain operator is defined in

Definition 5.51:(Equivalence Domains)

R< = R<oRv
O
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All properties of the right domain can be dualized to properties of the left domain.

The equivalence domain is an important operator that will be used quite often in the
remainder of this thesis and therefore we prove some useful properties of the operator.

Lemma 5.52:

For spec R, per A and O € {J,=,C} we have
(a) A- = A
(b) RvoeR 1 R-
(¢) R-AOR = R--A O R-
(d) R-x = R>
a
Proof (5.52a):
A~
= { 549 }
A> o AN
= { per.A }
Ax o Ax
= { extension }
A
Proof (5.52b):
RuoR
| { cancellation }
RueRo R\R
3 { least and greatest domains }
R> o RN
= { 5.49 }
R~

Proof (5.52¢): < is easy. = proceeds as follows. First instantiating the rhs with C for 1.
R- JR-0A
= { def , glb, reverse }
R\RJ R--A A RARJ AR~
= { factors }
RIRoR--A AN R

= R~
{ e RJR-A; RoR-

Rvo
:R}

true

Now with J for <.

R-o A

d { least domains }
R>0(ROA)>

- { *R-AJR}

R o R>
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{ (5.52d) }
R>

Proof (5.52d):
TT o R~
= { 549 }
-[T o R\, o R>
{R~3TI}
TT o B>

Il

O

We conclude this section with a small lemma giving a method for the construction of
subtypes of a per:

Lemma 5.53:(Subtype construction)

R:A—A = RNA C A
O

There is only one problematic part in the proof of this lemma. One has to establish
that RMA is a per. Transitivity is easy to prove, but symmetry is more difficult:

RMA

= { reverse }
(RNA)wu

= { RNA J ((RNA)v)< (see below), (RMA)v: A—, RNA C A }
((RNA) - (RNA))v

= { reverse }
(RNA) o (RNA)u

= { RNA J ((RNA)v)< (see below), (RMA)u: A —, RNA C A }
(RNA)v

We still have to prove RM1A 3 ((RMA)v)<, which is equivalent to RMA 3 (RNA)>.

RNA

= {eR:A— }
Ao (RNA)

3 { monotonicity, per.A }
(RNA)u o (RNA)

| { domains }

(RHA)>

The remainder of the proof of (5.53) is easy and left to the reader.
0



5.4. POINTWISE CALCULATIONS IN THE SPEC-CALCULUS 77
5.4 Pointwise calculations in the SPEC-calculus

Until now we have avoided pointwise calculations as much as possible, because they are
only valid in the model of set-theoretic relations. This sometimes complicates proofs
of theorems that are quite trivial pointwise, but require a lot a manipulation in the
axiomatic system. In this section we develop some theory that allows us to do pointwise
calculations inside the axiomatic system. We will assume extensionality throughout
this section.

The role of the “points” in our calculations is played by the classes and we start by
examining under which conditions we can meaningfully write the predicate z(R)y, with
intended meaning that class z is related to class y by spec R. It is clear that we can only
do this if z is an element of a left-domain of R and y is an element of a right-domain
of R. This leads to the condition:
J(A,B ' R:A—B . z€ANy€EB)
We can simplify this expression to
(5.54) RJz.R A R Roy

The equivalence of the two expressions is easy to see: the implication in the “=”
direction follows immediately from the definitions of — and €, for the “<” direction
we instantiate with z U [ for A and y U [ for B.

The expression z o R oy has only two possible values: expanding the definition of squares
we get £o TT oxe Royo TT oy and we know from the cone-rule that this has as possible
values Ll and xo TT oy. This leads to the following definition:

Definition 5.55:(Relates)
For classes z and y and spec R satisfying (5.54) we define

Z(R)y & ZoRoy=2xo0TlToy (= zoRoy# 1)
O

This is pronounced as “R relates = to y”. The (.) predicate has almost the same
properties as its counterpart in the set-theoretic relations. Some useful properties are
given in

Lemma 5.56:

Assuming R,S: A—B,T: B—C, w,z € A, y € B and z € C we have:

(a) y(Ru)z = z(R)y (Reverse)
(b) =(BnS)y = =z(R)y A =(S)y (Cap)
(c) z(RUS)y = z(R)yV z(S)y (Cup)
(d)  x(S-T)z = yiyeB:x(SyAyT)z) (Compose)
(e) RCS = V(z,yiz€ A Ay € BAz(R)y: z(S)y) (Extensionality)
(f) w({A)z = w= (Equality)
O
Proof:

Part (5.56a) is trivial, (5.56b) is proved using definition z(R)y = zoRoy = zoTT oy
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and lemma (4.7a) , (5.56¢) uses definition z(R)y = zoRoy # 1L. We prove the
remaining three parts below:

Part (5.56d):
z(S-T)z
= { relates }
zoSoToz £ 1L
{ eS:—B }
zoSoBeToz # 11
{ extensionality }
toSolU(lyiyeB ly)oToz # 11
{ distribution }
Uy 1 y€ B zoSoyoToz) # 1L
{ bottom }
Iy yeB zoSoyoToz # 1)
{ square.y }
Iy 1y€B zoSoyoTToyoToz # 1)
{ calculus }
HyiyeB i zeSey# 1L A yoToz # 11)
{ relates }
Ay 1y € B xSy Ay(T)z)

il

n

M

I

Il

Part (5.56e), “«=” direction (the other direction is left to the reader):

S

= { eS:4A—B }
A-SoB

= { extensionality }
UzizeAiz)oeSoU(y yeB y)

= { distribution }
U(z,y i z€ AANy€eB ! zoSoy)

= { relates, unit }
Uz, y iz € AANyeBAz(S)y ! zoTToy)

| { oV(z,yizcANyeBAz(R)y ! z(S)y) }
Uz,y iz € ANyeBAz(R)y ! z0TToy)

= { relates, unit }
U(z,y il z€ ANy € B | z0oRoy)

= { distribution }
UrzizecAiz)eRol(ylye By

= { extensionality }
A°RoB

= { eR: A—B }
R

Part (5.56f), “=” direction (the other direction is left to the reader).
We prove w = wnz. Then, by symmetry, it follows that z = wNz so w = z:
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w
= { square.w, z # 1L, cone rule }
wo [T ogogo Tl ow
woeAoxoxoAow
= {zeAd}
WoToxow
= { (5.13), w, zCA }
wnNx

5.5 Difunctionals

In this section we examine a special class of specs that can be viewed as “functional”,
in the sense that classes on the rhs of a spec have a unique image on the lhs.

Note that we see functions as having their arguments on the rhs and their results on
the lhs, this being consistent with writing the application of function f to element z
as f.r .

For a domain (per) A we want to give a spec-formalization of spec R being “functional
to A”. Of course we want R to respect the classes of A so the first part is R: A—.
Assuming this we can write the property that R relates classes on the rhs to unique
elements of A as:

V(x,y,z VY, 2 € AN y(R).T A Z(R)ib , y:z)

We want to get rid of the quantification and obtain an expression only depending on
R and A. This is done in the following calculation:

V(z,y,2 ' y,2€ AN yY(R)z A z(R)z | y=2)
{ generalised range disjunction, reverse, equality }
V(y,z 1 y,z€ AN 3(z 11 y(R)z A z(Rv)z) | y(A)z)
{ composition }
V(y,z 1 y,z€ A A y(Ro Ru)z | y(A)z)
{ extensionality, R: A— }
RoRWC A

I

This leads to the following definition:
Definition 5.57:(Functionality)

R:A— & R:A— ANAJRoRu
a

The <— is the second of our type judgements. In the next section we will see three other
judgements for totality, injectivity and surjectivity. We can combine all these judge-
ments by superposition of symbols, for example R: A«<~B = R: A«— A R: —B.
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We have the same convention for omitted types in judgements as with —: they are
always I, so R: < is the same as limp.R

The class of functional specs is quite large. Almost all specs that we have encountered
so far are functional to some domain. Characterizing the functional specs is easy:

Lemma 5.58:

E(A :: RA(——) = R;]RDRUQR
m}

If there is an A such that R: A < then R = AcR 3 RoRuoR, and if R J RoRuoR
then we have that R: Ro Ru<—. Limps, rimps, left conditions, right conditions, pers
and squares are all examples of specs that satisfy the condition above. The class as
a whole is known under several different names in the literature: for example pseudo-
invertible relations [37], regular relations [6] and difunctional relations [36, 54]. We call
this class the difunctional specs or for short the difunctionals:

Definition 5.59:(Difunctionality)

A spec R is difunctional iff R J Ro RuoR.
O

Note that since we have Ro Ruo R J R for every spec R we could also have used
(5.60) R is difunctional & R = RoRuoR

as definition for difunctionality. We use the following convention:

Convention 5.61:(Difunctionals)

Difunctionals are denoted by lowercase characters f, g, h, etc. and from now on all
specs denoted in this way will be difunctionals, even if this is not explicitly declared.
O

We introduced functionality using the uniqueness of the image of a right-equivalence
class. We can use this for the definition of function application:

Definition 5.62:(Application)

For f: A<~B, y € A and z € B we define f.z by

y=rfz = y(f)z
]

This is a good characterization, but sometimes we need a closed formula. A suitable
expression is given in the following lemma:

Lemma 5.63:(Application)

For difunctional f and class z such that f J fox # 11 we have
fx = f oxo fu
O

Proof: we instantiate definition 5.62 with fozo fu for y and 1] for B. Before we can
use the definition we have to check the preconditions: f: —zUJ , ¢ € zUI and that for
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all A such that f: A<— we have foxzo fu € A. The first follows directly from f 3 fou,
the second is true for all classes and for the third precondition we use both f 3 foz
and fexz # LL. Also, foxo fuis a class. We complete the proof of the lemma:

foxofu= fzx

{ application }
fezofu(f)z

{ relates }
fo{[;ofuofo;z;;é_]_L

{ per.z, reverse }
foxo(fox)uofom;é_u_

{oforz 1}

true

Il

1]

I

a

We introduced difunctionals using “unique images” but this is not the only way. We
could also have taken the path of pseudo-invertibles (see [37]). We define pseudo-
invertibility as follows:

Definition 5.64: (Pseudo-Invertible)

A spec R is pseudo-invertible iff
3(A4,B,S | R: A—B A S: B—A | R-S=A A S°R = B)
O

The spec S can be viewed as an inverse of R with respect to A and B. We show that
there is only one possible candidate for S, namely Ru. Substitution gives us then that
R is difunctional. Vice versa, for a difunctional R we can take Ro Ry, Ruc R and R
for A, B and S to make the rhs of the definition true. From this we can conclude that
difunctionality and pseudo-invertibility are the same. We still have to prove that Ru
is the only candidate for S: we only prove one inclusion, this being sufficient because
of symmetry.

Ru

= { eR: A— }
Ruo A

= { e RoS=A }
RuoRoS

| { least domains }
R>o 8

| { «SeR=B (=R>1Bx }
Bxo S

= {eS:B—)
S

The equivalence domain gives us another method for the introduction of the difunc-
tionals. We have already seen that R> is at most Rue R. This upper bound is achieved
iff R is difunctional:
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Lemma 5.65:

difunctional.R = R- = RuoR

O
Proof:
R~ = RuoR
= { equivalence domains }
R- J RuoR
= { equivalence domains }
R~oR> 1 RuoR
= { least domains }
R~MTTeR J RuoR
= { monotonicity, top }
R~ J RuoR
= { greatest domains, symmetric.(RuoR) }
R\R J RuoR
= { factors }
R 3 RoRueR
= { difunctional }
difunctional R
a

As usual we can dualize the lemma: difunctional.R = R< = Ro Ru.

A pointwise interpretation of the lemma (combined with its dual) is that a difunctional
R is a bijection between the maximal left-equivalence classes and the maximal right-
equivalence classes of R.

We end this section with some algebraic properties of difunctionals:

Lemma 5.66: (Difunctionals)

(a) per.(f o fv)
(b) per.(fue f)
(c) difunctional. fu

(d)  difunctional.(f M g)
(e)  difunctional. (fUg) < fogo = 1L A fuog = 1L

(£) difunctional.(f - g) transitive.(f- o g<)
O

The proof of this lemma is straightforward and left to the reader.
5.6 Injectivity, surjectivity and totality

Functionality is not the only property of a spec that we are interested in; we show in this
section how we can define injectivity, surjectivity and totality (the -ity properties) for
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a spec. We use the same approach that we followed with functionality, namely starting
with the familiar pointwise definitions of the concepts we derive a spec-formalization.

We begin with injectivity; for a spec R: — A we want to derive a spec-formulation for
the predicate that R is injective on A. A pointwise formulation for this is:

V(z,y,2 | T,y € AA 2(R)z A 2(R)y | t=1)

This is the same expression that we had for functionality, if we replace R with Ru.
So we can substitute Ru for R in the formula for A<— and obtain the expression for
injectivity. We use the symbol — to indicate that we exchanged left and right in the
expression for functionality. So we define:

Definition 5.67:(Injectivity)

fr—A & fi—ANADfoof
0O

We used an f in this definition because every injective spec is also difunctional. We
have the same convention for leaving out the argument that we had for functional
specs: — on its own means —J. This is the class of the right-imps. Injectivity can
also be combined with other type judgements, like functionality, by fusing the symbols
together

We continue with totality and surjectivity (sometimes called right-totality and left-
totality). We only derive the expression for totality, the derivation for surjectivity
being dual. For a spec R: — A we have the following pointwise formula for R being
total on A:

V(ziz€A! Iy y(R)z))

There are many equivalent expressions for totality, the one that is calculated below
being chosen for its duality with the definition of injectivity:

Yz izeA 3y y(R)z))
= { reverse, calculus }
Vi ize€ A3y z(Ry)y A y(R)z))
{ composition }
V(iziz€ A z(Rvo R)z)
{ generalised range disjunction }
V(z,y ' z,y€ ANz=y | z(Rvo R)z)
{ equality, substitution }
V(z,y ! z,y € AN z(A)y | z{Rv o R)y)
{ extensionality, R: —A }
AC RueR

Il

Il

This gives us the following definitions for totality and surjectivity:
Definition 5.68:(Totality)

R:—A & R:—AANRwWRJA
O
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Definition 5.69:(Surjectivity)

R:A— A& R:A— AR-Ru3J A
O
Combined judgements are expressed with fused symbols; for example combining func-
tionality, surjectivity and respecting a right domain uses the symbol —, where
[ A=—Bis equivalent to f: A—B A A= fo fu,
We mentioned that the expression above is only one of the possible definitions of
totality. The following two lemmas give some other possibilities for definitions of
totality and surjectivity:

Lemma 5.70:(Totality)

The following three expressions are all equivalent to R: —A:

(a) Rt —AANTIoRIA
(b)) R: —A A R>= Ax
(c) R~ A

]

Lemma 5.71:(Surjectivity)

The following three expressions are all equivalent to R: A—:

(a) R:A— A RoTT J A
(b) R: A— A R< = Ax
(¢) R<<aA

O

We only prove lemma 5.70, the proof of lemma 5.71 being dual. Since the definition of
—A and the three expressions of the lemma have as common part R: — A (for (5.70c)
this is R~ < A) we have to prove the equivalence of Rue R J A, TToR 3 A, R> 3 A>
and R~ J A under the assumption R: — A.

Proof:

RuoR A

= { monotonicity }
TTeRIJA

= { least domains }
R> 1 Ax

= ~{ monotonicity, least domains }
R>cAJA

= { ® R: —A, greatest domain }
R>oR~J A

= { def~ }
R-JA

= { domains }
RueRJA
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5.7 Type-deduction rules

In the previous sections we defined five basic type-judgements: respecting a domain,
functionality to a domain, surjectivity to a domain, injectivity on a domain and to-
tality on a domain. Respecting a domain is implied by the other four notions but
these other notions can be combined independently, giving us a total of 16 different
type-judgements. We treat the components of a type-judgement separately to avoid
a combinatorial explosion. Since injectivity and functionality have basically the same
properties (swap left and right) we only need to give rules for one of them. In this
section we treat functionality, the properties of injectivity can be derived immediately
from these. We have the same duality for totality and surjectivity, and we only give
properties of totality.

The rest of this section gives a systematic overview of the properties respecting a
domain on the left, functionality and totality when applied to specs that are constructed
using the basic operations v, I, LI and o. The proofs of the lemmas in this section are
easy and are left to the reader.

Lemma 5.72:(Type Reverse)

(a) Rv:A— = R:—A

(b) Ru: A«— = R:—A

(c) Ru: —A = R:A—
]

Lemma 5.73:(Type Cap)

(a) RNS:(ANB)— <« R:A— A S:B—
(b) RNS:(ANB)«~ < R: A« A S:B<
O

Lemma 5.74:(Type Cup)

(a) RUS:A— <« R:A— A S:A—
(b) RUS: —A <« R:—AANS:—A
0O

Lemma 5.75:(Type Composition)
(a) RoS:A— <« R:A—
(b) ReS: A<~ <« R:A<B A S:C<— A (BJCV B<«()
(¢c) ReS:—A « R:—C AS:B—AA(CIBV B«C()
0

We can simplify (5.75b) and (5.75¢) if we have C equal to I. This corresponds to
limpness of S or totality of R. This gives us the following lemma:

Lemma 5.76:
(a) RoS:A«— <« R: A< A S: <«
< R:

(b) RoS: —iA — A S: —A
0
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The final lemma of this section is the generalization of lemma 5.41 to the functionality
and totality judgements:

Lemma 5.77:

(a) R:A— <« R: B« A ADB
(b) R: —A < R:—B A Bad
a



Chapter 6

The category of total difunctionals

Category theory has become popular in computing science as a method for describing
and defining datatypes and operations on these datatypes. Some examples of the
use of category theory for this purpose can be found in for example [23, 24, 31, 42,
49, 55]. This chapter gives a short introduction to some basic notions from category
theory, followed by the construction of an interesting category called Difun based
on a SPEC-calculus. Then we show how to find constructions in the SPEC-calculus
corresponding to categorical constructions in Difun. The algebraic properties of the
new constructions are also investigated.

6.1 Short introduction to category theory

This section gives a short introduction to some basic concepts of category theory. The
definitions that are given here have been copied from Pierce [50] (with some small
adaptations in notation) and the reader is referred to this book or other introductions
to category theory like [7, 39] for a more extensive introduction to category theory.
Only those parts of category theory that are essential for the understanding of the
remainder of this thesis are presented here.

Category theory is a framework that allows the expression of a common structure in
many mathematical theories. The primitive concept in category theory is the arrow
(this can often be interpreted as a function) and the source and targets of these arrows
are called the objects of the category. The action of the arrows on their source objects
are not described by an internal structure of arrows and objects but by the properties
under composition with other arrows. A formal definition:

Definition 6.1: (Category)

A category C consists of a collection of objects and a collection of arrows with functions
dom, cod, o and id such that:

1. For every arrow f we have objects dom.f and cod.f, the domain and codomain
of f. respectively. Writing f € B «<— A means A = dom.f A B = cod.f. The
collection of all arrows with domain A and codomain B is denoted by C(A, B).

87
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2. For all arrows f and g such that dom.g = cod.f there is a composite arrow gof
with go f € cod.g < dom.f. The o operator is associative:

ho(gof) =(hog)of
for all f, g, h such that cod.f = dom.g and cod.g = dom.h.

3. For every object A we have an identity arrow id.A with id.A € A < A. The
identity arrow is an identity of o: for f € B < A we have

idBof=foidA=f

O

Pierce uses the notation f:A—B for f € B < A, but this could cause confusion with
the relational type judgements and is therefore not used here. Note how impracti-
cal the rule for the typing of compositions becomes had we used Pierce’s notation.
This is a consequence of using the function composition symbol in combination with
the — for typing functions. Other authors (e.g. [24]) use the reverse composition
f;9 = go f to circumvent this problem, but this shifts the problem to function ap-
plication: (f;g).z = g.(f.z). Also note that the composition operator is partial. The
domain and codomain have to match exactly, otherwise the composition is not defined.

A simple example of a category is the category Set with as objects sets where feB<—A
if f is a total function with domain set A and codomain set B. In Set the codomain
is not the same as the range of a function. For example, the squaring function from
reals to reals is not the same as the squaring function from reals to non-negative reals.

Our first categorical concept is the notion of isomorphy:
Definition 6.2: (Isomorphy)
Objects A and B are isomorphic iff there exist arrows f and g such that

fog=1id. A A gof =1id.B.
0O
The arrows f and g are called isomorphisms. It is easy to prove that given one of the
isomorphisms the other is uniquely determined. Proving this is left as an exercise to
the reader. In the example Set we see that the notion of isomorphy of sets in set theory
is the same as in category theory and that the two arrows are each other’s inverse.

The concepts of initiality and terminality play a central role in our use of category
theory:

Definition 6.3: (Initiality)

Object A is an initial object iff for every object B there is exactly one arrow f with
fEB<— A
O

Definition 6.4: (Terminality)

Object A is a terminal object iff for every object B there is exactly one arrow f with
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feA<—B
O

Not every category has initial or terminal objects, but if they exist then they are
unique up to isomorphism. Arrows from a terminal object to an object A are called
global elements or constants of A. The category Set has a single initial object, the
empty set, and all one-element sets are terminal objects. Constants from a set A are
functions mapping the single element of a terminal object to an element of A. Every
element of a set can be picked out by a constant.

Isomorphisms, initiality and terminality are all inside a single category, but we are often
interested in mappings between two (not necessarily different) categories. Functors
are structure-preserving mappings between categories and they are the arrows in the
category of categories where the objects themselves are (small) categories.

Definition 6.5: (Functor)

For categories C and D a functor F such that F' € D <« C maps objects of C to objects
of D and arrows f € A <— B of C to arrows F.f € F.A <— F.B of D. This mapping
has to satisfy the following two conditions:

1. F.(id.A) = id.(F.A), for all objects A of C
2. F.(gof) = F.go F.f, for all arrows f and g of C such that dom.g = cod.f

]

A functor with the same source and target category is called an endofunctor. It is easy
to see that functors preserve isomorphisms, but initial and terminal objects are not
necessarily preserved. Some simple examples of functors are the identity functor, an
endofunctor that does nothing, and constant functors that map all objects to a fixed
object A of the target category and all arrows to id.A.

For a non-trivial example of a functor, consider for given categories C and D the product
category CxD. The objects in this category are pairs of objects of C and D and the
arrows are pairs of arrows from C and D, ie. if fe A« BinCand g€ F < Gin D
then there is (f, g)€(A4, E) < (B, Q) in CxD. Compositions and identities are defined
coordinatewise.

Several functors can be defined using product categories. For every category C there
is the doubling functor § where 6 € CxC < C. This functor maps object A to object
(A, A) and arrow f to arrow (f, f). For a product category C x D there are two
projection functors, « € C <— CxD and > € D « CxD defined by <« .(A4, B) = A,
< (f,9)=171,>» .(A,B) =B and > .(f,g) = g for objects A and B and arrows f
and g. Functors with as source a product category are called binary functors .

Functors often play the role of type-constructors in category-theory-based type theories.
A simple example of this is list construction. Given a set A we can construct the set
List. A of all finite lists over A and given a total function f from A to B we can construct
a list-homomorphism List. f from finite lists over A to finite lists over B mapping the
list (2o, 1, .., Tn-1] t0 [f.zo, f-T1, .., f-Tn-1]. List is a functor.
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A functor is a structure-preserving map between categories, but the abstraction can be
taken one step further. We are often interested in structure-preserving maps between
functors, an arrow in a category where the objects are functors. This is done with the
so-called natural transformations:

Definition 6.6: (Natural Transformation)

For categories C and D and functors F,G € D < C a function 7 mapping every C-
object A to a D-arrow 7.4 € G.A «— F.A is a natural transformation from F to G,
notation 7 € G < F, iff

G.for.A = 1.BoFE.f

for every C-arrow f € B «— A
a

We use a dot over the arrow because of the lifting that is going on. An example of a
natural transformation is the singleton-list constructor. For every set A let 7.4 be the
function from A to List.A mapping an element of A to the singleton list containing
that element. Now 7 is a natural transformation from the identity functor to the list
functor. That is, for all f € B <— A we have List.foT.A = 7.Bof.

This example shows how identity structures (the structure of Set) are preserved by
mapping to singleton-lists. Another example of a natural transformation is the reverse
function on lists, which is a natural transformation from List to List.

There are many other constructions in category theory that are of interest for the
SPEC-calculus, but the constructions of this section are the most important ones for
us and the remainder of this chapter shows how to build a category using the SPEC-
calculus and develop SPEC-constructions that can play the roles of functors and natural
transformations. Later chapters examine how particular constructions of functors from
category-theory can be performed in our category and examine the algebraic properties
of the corresponding SPEC-operations.

6.2 The category Difun

The type judgements developed in the previous chapter can be used to construct a
number of categories. The objects of those categories are the pers. We could for
example for (R, B, A) € B <— A use the judgement R: B—A. This would construct
a category that is similar (but not isomorphic for cardinality reasons) to the category
Rel of binary relations between sets. The arrow is chosen to be a triple because spec
R usually does not have a unique type judgement and every arrow must have a unique
domain and codomain. Another possibility is using the judgement R: B<—A, giving
something similar (not isomorphic, again for cardinality reasons) to the category Pfn
(the category of partial functions between sets).

The category Set has proven to be very useful for the description of the construction
of datatypes and (functional) programs using these types (see for example Malcolm
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[42]) and the category that is constructed here is in many aspects similar to Set. We
assume that the underlying SPEC-calculus is unary.

Definition 6.7: (Difun)
The category Difun is defined by

e Objects: pers

Arrows: Difun(A, B) is the collection of all triples (f, B, A) such that f: B<—A

Domains: dom.(f, A, B) = B and cod.(f, A,B) = A

Composition: (f, A,B)o(g,B,C) = (feg,A,C)

Identity: id.A = (A, A, A)

O

The arrows are triples because a difunctional f can have more than one <— type
judgement and an arrow must have unique domains. The reader can check for himself
that the definition above indeed satisfies all the requirements of a category.

Two pers A and B are isomorphic in Difun iff there exist f and g such that f: A <~ B,
g: B« A fog = Aandge f = B. From the pseudo-invertibility characterisation
of difunctionals it follows then that ¢ = fu and that f: A x> B. Formulated as a
lemma this becomes:

Lemma 6.8: (Isomorphy)

Pers A and B are isomorphic iff there exists a difunctional f such that fo fu = A
and fue f = B
O

This means that f is a one-to-one mapping between elements of A and B in the
interpretation of pers as types with equivalence classes as elements. This corresponds
to the normal notion of isomorphy of sets. Difun is in many aspects similar to Set and
the other witnesses of this similarity can be found in the initial and terminal objects:

Lemma 6.9:

Difun has a unique initial object 1L and has as terminal objects the classes.
O

Viewing pers as sets of elements, LI corresponds to the empty set (the initial object of
Set) and the classes correspond to one-element sets (the terminal objects of Set). Since
all terminal objects are isomorphic we can choose a representative, and the obvious
candidate for this role is of course TT because this is the only class whose existence
follows directly from the SPEC-axioms. The proof of the facts that the classes are the
pers isomorphic to TT and that L is only isomorphic to itself are straightforward and
left to the reader.
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Now we only have to prove that 1L is an initial object and that TT is a terminal ob ject.
The initiality of 11 is proved by showing the existence and uniqueness of arrows with
codomain B for all pers B:

f:B < 1L
= { definition «<—, 1l C fuo f }
fefo & B AN Bof=f A foll =Ff

Il

{ bottom, zero }
f=41

The terminality of TT is proved by showing the existence and uniqueness of arrows
with domain B for all pers B:

f:TT < B
{ definition <, f o fu
TTof =f A foB
{ calculus }
f=TTreB

c T}
f A TTef=TreB

1l

a

There is one-to-one correspondence between constants of a per A (arrows from a ter-
minal object to A) and elements of A, since for f: A<—~TT and z € A we have the
following Galois connection:

r = f o f U = T o TT = f
The proof of this connection is trivial and left to the reader. The one-to-one corre-
spondence follows from the use of the equality as ordering.

6.3 Relators

In this section we investigate functors for Difun. Since our goal is to perform all
calculations in the SPEC-calculus we are looking for SPEC-operators that can play
the role of functors. We do our calculations first for endo-functors and generalise this
later to products of Difun.

A functor consists of two parts, one operating on ob jects and one operating on arrows,
but it is sufficient for Difun to only define a single operation on specs. Such an operator
will be called a relator and a relator F' used as functor maps object A to object F.A and
arrow (f, A, B) to arrow (F.f, F.A, F.B). Although F is only applied to difunctionals
in Difun, our aim is to develop a total operation on specs. This is done because it
makes calculations in the SPEC-calculus much easier. One doesn’t have to check that
the argument of a relator is a difunctional and it allows generalisations of functional
categorical notions to notions about relations.

Examining the definition of a functor gives us three conditions that a relator has to
satisfy:
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1. per.A = per.(F.A)
2. f:A«—~B = F.f: FFA<——F.B
3. F.(fog) B F.foF.g

The remaining condition, the preservation of identity arrows, follows from the first
condition. Condition 3 gives us the first property desired for a relator:

F(RoS) = FRoF.S

Condition 1 can be rewritten to F.A = F.Ao (F.A)v for per A. Assuming condition 3
this follows if we require that F' commutes with v. This gives us a second property for
relators:

(F.R)v = F.(Rv)

This allows us to write F.Rv without having to specify precedence. The two previous
properties already gave us F.f: F.A—F.B (assuming f: A<—B). A third property
of relators is needed to complete the obligations for a functor: F.A 3 F.fo F.fu and
F.fuoF.f 1 F.B. A simple and sufficient condition is to demand monotonicity:

FRIFS <« R3S
Combining gives us the following definition for relators:
Definition 6.10:(Relators)

A total function F from specs to specs is a relator iff for all specs R and S:

(a) F(RoS) = F.RoF.S
(b) (F.R}v = F.(Rv)
g (¢ FRIJIFS <« RS

Relators were originally defined for the monotype system by Backhouse and made pub-
lic at a summerschool on Ameland in 1989. The definition was published in Malcolm’s
thesis [42]. Their definition is the same as the one given here with one extra condition,
F.I T I, that is essential for the preservation of monotypes (pids). Bird and de Moor
[10] don’t have (6.10b) as an axiom. Instead they show that (6.10b) and (6.10c) are
equivalent assuming a “tabularity” axiom on all specs.

The definition given above is for unary relators; they map one spec to one spec. In
category theory we have product categories and functors going from and to these
product categories; The corresponding notions in the SPEC-calculus are built using
binary SPEC-calculi. The category Difun x Difun has as objects pairs of pers (4, B)
and as arrows pairs of triples ((f, 4, C), (g, B, D)) such that f: A<—C and g: B<—D.
Functors from Difun x Difun to Difun then correspond to relators from binary specs
to specs satisfying:

Definition 6.11:(Binary Relator)

A total binary function ® from pairs of specs to specs is a binary relator iff for all specs
R, S, T and U:
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@ [RS)(T®U) = (ReT)®(SoU)
(b) (R®S)v = Ru®Su
L ©  R®SITOU « RIT ASIU

Realizing that there are also o, v and J operations in binary SPEC-calculi shows us
that this really is the same definition as with unary relators. Tagging the operations
in the binary SPEC-calculus with a 2 and those in the unary with a 1 and switching
to prefix notation for the relator, (6.11a) to (6.11c) can be rewritten to:

(d) ®'(R: S) o ® '(Ta U) =1 ®-((Ra S) °2 (Tv U))
(e) (®.(R,9))n1 =1 ®.((R,S)v)
) ®.(RS) 3 ®(T,U) « (R,S) 3, (T,U)

The generalisation from unary and binary relators to relators between SPEC-calculi
with arbitrary arities is easy and left as an exercise to the reader.

All functors mentioned in the section about category theory have a corresponding
relator in the SPEC-calculus. In particular:

e The identity relator: ZR = R
¢ The constant relators: for all pers A, A*.R = A
¢ The doubling relator: 6.R = (R, R)

® The projection relators: R« S=R, R>S =8

A construction for the List relator will be given in the chapter on inductive types.
There are many methods for the construction of relators from other relators and four
of them are given in this chapter. Other methods can be found in following chapters.
The two most common methods for the construction of relators from other relators is
relator composition and tupling:

Definition 6.12:(Relator Composition)

For relators F' and G such that source of F' is the target of G the relator FG is defined
by
FGX = F.(G.X)
O
Definition 6.13:(Relator Tupling)
For relators I and G the relator (F,G) is defined by:

(F,G).(X,Y) = (F.X,G.Y)
O

This definition can of course be generalised to non-binary tuples also. An example
combining relator composition and tupling: for per A and binary relator ® the sectioned
relator A® can be defined as ®(A*,Z)5. A binary relator with one of its arguments
fixed to a per is a unary relator. The last construction method of this section is:
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Definition 6.14:(Isomorphic Relators)
For relator F' and spec 7y: F.J«—, define for all specs R:

FT''R & quoF.Rovy
O

Relator F is called isomorphic to F' because F.A is isomorphic to F7.A for all pers A.
The isomorphisms are F.Ao«y and yuo F.A.

Relators preserve all orders and type judgements encountered so far:
Lemma 6.15:(Relators)

FRCFS <« RCS

FRaFS < R<«S

FRCFS <« RCS

F.RaF.S < RaS
FR:FA— < R:A—
FR: FA— < R: A<
FR:FA— <« R:A—
FR: —FA <« R:—A
FR: -F.A < R:—A
DF.R: —FA <« R: —A

The proof of this lemma is trivial and omitted. Having distribution over o, it is natural
to look at the distribution over the factors. It turns out that there is only an inclusion:

Lemma 6.16:(Relators)

F.R\F.S 1 F.(R\S)
F.R/F.S 1 F.(R/S)
O

The proof is again trivial; use the Galois correspondence, distribute the relator and use
cancellation and monotonicity. Lemma 6.15 showed that relators preserve domains,
i.e. if A is a right-domain of R then F.A is a right-domain of F.R, but this does not
necessarily mean that relators distribute over the domain operators. There are only
inclusions for least and greatest domains, but it is possible to achieve equality for least
domains by adding an extra condition. Distribution over the equivalence domain is
still an open problem: inclusion can be proved for every relator, but it turns out that
there is equality for almost every relator. The question whether distribution is valid in
general is still open.

Only distribution over right-domains is considered in this section, but every result
can be dualized to left-domains. Relators distribute over greatest domains with an
inclusion:

Lemma 6.17:(Greatest Domains)

(F.R)~ 0 F.(R™)
O
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Proof:
(FR)~ 3 F(Rv)

= { symmetry, def ~ }
FR\F.R 3 F.(R>)

{ factors }
FR J FR o F.(R)

{ relators, greatest domains }
true

]

Equality is in general not true; consider for example the relator 11 °.

Relators distribute over least domains also only with inclusions, but an extra condition
on the relator allows equality.

Lemma 6.18:(Least Domains)

F.(R>) 3 (F.R)>
0

The proof is an instantiation of the Galois-correspondence for least domains (4.20):

TT o F.(R>)
{ top }
FIT o F(R>)
= { relators, least domains }
F.(TT<R)
{ relators }
F.R

N

L

a

In practice we often use another lemma that gives us an equality instead of an inclusion:
Lemma 6.19:(Least Domains)

F.(R>) = F.I+(F.R)>
O

Proof:

F.(R>)

= { relators }
F.I-F.(R>)

3 { (6.18) }
F.Io(F.R)>

= { least domains }
FINTToF.R

3 { top, relators }
FINF(TToR)
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3 { monotonicity, least domains }
F(R>)
0O

There is also an inclusion with the distribution using the per-order:

Lemma 6.20: (Least Domains)

F.(R>) < (F.R)>
O

Proof:
F.(R>)<(F.R)>
= { relators }
F.(R>)oF.I+(F.R)>
- {(619) }
F.(R>) F.(R>)
= { pers }
F.(R>)
O

Equality instead of inclusions can be obtained by imposing an extra condition on the
relator: .

Lemma 6.21:(Least Domains)

V(R!\ F(R>)=(F.R)>) = IJFI
O
Relators satisfying I 3 F.I are called strong relators and are used in the monotype-

system because they preserve monotypes (in the monotype-system they are simply
called relators there and our relators are called weak relators).

The proof of the lemma is trivial: in the “=" direction, instantiate the lhs with I for
R giving F.I = (F.I)> C I; in the “«” direction we calculate:

(F.R)>
J { eIJFI}
F.I-(F.R)>
- { (619) }
F.(R>)
- { (6.18) }
(F.R)>
Distribution of relators over the equivalence domain also gives inclusions for both SPEC
and per order:
Lemma 6.22:(Equivalence domains)

(F.R)» 3 F.(R")
(F.R)- < F.(R>)
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Proof:

(F.R)~

= { def> }
(FR)\O(FR)>

3 { greatests domains }
F.(R~)o(F.R)>

= { relators }
F.(R~)oF.Io(F.R)>

= { least domains }
F.(R~) o F.(R>)

= { relators, def » }

(F.R)- <« F.(R~)

{ equivalence domains }
FRoF.(R-)=FR

{ relators, equivalence domains }

il

1l

true
O

These inclusions are valid for all relators, but it turns out that there is almost always an
equality. For difunctionals there is always (F.f)- = F.foF.fu = F.(fo fu) = F(f~)
and we will show that there is distribution for almost every relator that we can con-
struct. There are no counterexamples for distribution at the moment, although Oege
de Moor discovered that the finite set functor from the category Set (related to the
List-functor, but constructs finite sets instead of lists) would provide a counterexample
when it is extended to relations. Unfortunately, we have not been able to prove that
there exists a finite set relator in the SPEC-calculus. We come back to the problems
with this relator in the chapter about types with equations.

So, for the moment, it is not clear whether distribution is valid for all specs and all
relators, but all relators encountered so far do distribute. The reader can prove this for
himself for the identity, constant, doubling and selection relators. The three methods
for the construction of relators from other relators preserve the distribution properties:

Lemma 6.23:
If (F.R)> = F.(R-) and (G.R)> = G.(R>) for all specs R then:

(a) FG.(R-) = (FG.R)~
(b)  (F,G).((R,8)-) = ((F,G).(R,S))-
a (c) F'(R-) = (F'.R)-

The proofs for F'G and (F,G) are simple and left to the reader (for (F,G) use that
(R, S) = (R~,5>)), but the proof for F is not easy and is given here: '

The first step is to show that o (F7.R)>ou is a per:
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ryo(FV_R)>of}/uo(fyo(F7,R)>o'yu)u
= { reverse }
Yo (F7.R)»oyuoyo(FY.R)»oyu
= { def F7 }
Yo (FV.R)ro F1.Io(F7.R)»oryu
- { FYRoF".I = F'.R, (550) }
7°(F7.R)>0(F7.R)>O’YU
= { pers } .
fyo(F7_R)>ofyu v

This is used in the following calculation:

(F.R)» = (F.R)»oyo(F7".R)>oyu

{ per.(yo(F7.R)»oyv), (5.50) }
F.R=F.Royo(FY.R)-oyu

{ def F7 }
F.R=~0F7".Ro(F*.R)»ou

{ domains }
F.R=yoF".Ronu

{ def P}

true
Now it’s time for the proof of the distribution, assuming (F.R)> = F.(R-):

F7.(R»)

= { det F7 }
fyqu_(R>)ofy

= { ¢ F.(R-) = (F.R)- }
7U0(F,R)>ofy

= { see above }
7uo<F_R)>o'yo(F7,R)>ofyuof)/

= { ¢ F.(R-) = (F.R)~ }
yuo F(R-)oryo (F7.R)=oyuoy

= { def F7 }
F7.(R-)o(F".R)»o F.I

= { F".R-F".I = F".R, (5.50) }
FY(R>)o(F".R)~

= { (622) }
(F7.R)-

O

A remarkable property of relators with as domain a unary extensional SPEC-calculus
is that they are either constant, or order-isomorphisms (and thus injective). This is
expressed in the following lemma:
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Lemma 6.24:(Relators) For all non-constant relators F and specs R, S from a unary
extensional SPEC-calculus:

FRIFS =R3S
0O

This lemma has to be rewritten a bit before it can be proved. Constant relators are
characterized by F. 1L = F.TT and the “=” can be replaced by a “:>” since the other
implication follows from monotonicity. ThlS gives us:

F1LL#FTT AFRJFS = RJS.

Shunting twice delivers the version of the lemma, that is proved here:
“(RIS)ANFRIFS = F1lL=FTT

Rewriting —=(R J S) gives us

~(R 2 5)
{ extensionality }

-Y(Z | singleton.Z AN S 2 Z'R 3 Z)
{ De Morgan }

Z | singleton.Z AN S 23 Z!~(R 3 Z))
{ atomicity }

IHZ | singleton.Z A S 13 Z!RNZ = 1)

I

Il

We assume that singleton a satisfies S 3 a and RMa = 1L in the following proof:

Fil

= { ®RMNa = 11;zero }
F(_ﬂ_ oQqu o (Rﬂa) oQqu o _IT)

= { distribution, singletons are difunctional }
F(TTo(auo Roau N avoaoqu)eTT)

= { aveacav = av = auo TT o qu , monotonicity }
F(TT caue Roguo TT)

| { * F.R 3 F.S; relators }
F,(TToauoSoauoT]—)
. {eS3a)

F(TToauegoqguoTT)

= { singletons are difunctional }
F(TT cquo TT)

= { singletons are non-empty, cone rule }
FT

Note that this proof does not use that F' commutes with u. Every non-constant mono-
tonic function that distributes over o is injective.
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6.4 Natural transformations

Natural transformations are introduced following the same strategy as used with func-
tors; construct a notion in the SPEC-calculus that can be used as a natural transfor-
mation in Difun. For relators F' and G a natural transformation 7 from F to G can
be constructed by defining

T.A = (G.AoyoF.A,G.A,F.A)
if v satisfies the following conditions: for all difunctionals f,

G.foydyeF.f
v: GI<FI

The type judgement for «y is used for proving that 7.4 is an arrow between the correct
objects. The proof is easy and left to the reader. Now we can prove the other part of
the definition of a natural transformation:

G.f,A,B)or.B = 7.Ac F(f,A,B)

The proof of this equality is trivial for the domain parts; the difunctional part is proved
by cyclic inclusion:

G.foG.BoyoF.B

= { o f: A<= B;relators }
G.AoG.foyoFB

3 { eGfoy I yoFf }
G.AovyoFfoFB

= { e f: A< Bjrelators }
GAoyoFAoFf

3 { o f: A< B, relators }
G.f o G.fuoyo Ff

| { eG.fuoy O v o F. furelators }
GfornyoPF.fooFf

3 { o f: A< B;relators }

G.feGBoyoF.B

The desired equality is between the first and the fourth line. The proof given here was
inspired by a proof constructed by Paul Hoogendijk. As with relators, we don’t want
difunctionality conditions in our definitions and this leads to the following definition
for a natural transformation in the SPEC-calculus:

Definition 6.25:(Natural Transformation)

For relators F' and G, a spec v is a natural transformation from F' to G (notation
v: G<F) iff for all specs R:

G.Royd~veF.R
v: GI—FI
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Note that not every natural transformation according to this definition also gives a
categorical natural transformation in Difun. Functionality and totality of v are also
necessary for this. Also note the type judgement notation for naturality; the naturality
type of a spec gives us important information about the algebraic properties of the spec
and naturality properties can often be derived in a way similar to the way conventional
type judgements can be derived. A collection of naturality type inference rules is given
later in this section.

Sometimes there is a need for other notions of naturality in our calculations. We can
use the reverse inclusion from the SPEC-calculus or strengthen even further to equality.
This leads to the following definitions:

Definition 6.26:(Natural Transformation)

For relators F' and G, spec v, naturality-type judgements >, <~ and <» are defined
by: '

V:G>F & y:GI—FIAVY(R) G.RoyC yoF.R)

7:G<F & y:GI—FIAY(R ! G.RoydyoF.R)

7:G<>F & y:GI—FIAV(R! G.Roy=+voF.R)
0O
A simple example of a natural transformation is found in the so-called isomorphic
relators:

v: F <> F7

The easy proof of this claim is left to the reader. An informal interpretation of natural
transformations is that they are transformations between relators and do not “look
into” the arguments of these relators. This can be seen more formally in the strong
link that exists between naturality properties and polymorphism of functions. See
Reynolds [51], Wadler [58] or De Bruin [14] for more information about this subject.

One of the uses of natural transformations is in the construction of relators from other
relators:

Lemma 6.27:(Subrelators)
For a difunctional spec yv: F «» F, define the relator F, by

F,R & quoF.Roy
)

This is the same formula that was used for isomorphic relators, but the condition on
7 is different. The proof that the subrelator construction indeed constructs a relator
is trivial and left to the reader. This method of construction is called subrelator
construction because for every per A:

F,A<F.A
Extra conditions on 7 allow even stronger results:

v: —=FI = FW.A CF.A
y: —FI = F,AaF.A
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We already saw that relational type judgements are not unique. A spec can satisfy more
than one judgement. The same goes for naturality type judgements and subrelators
provide us with an example of this. For a difunctional v with v: F' <> F' there are
three other valid judgements:

v F <> F,
’Y:F»yu@F
7: Fyu<> F,

There is not only a natural transformation between F,u and F,, but even a natural
isomorphism. This is the combination of having a natural transformation between the
relators and the relators being isomorphic to each other. In this example we have for
every per A that F,u.A is isomorphic to F,.A with isomorphisms F.A 0~y and yue F.A.

Although the subrelator construction looks very similar to the construction of iso-
morphic relators, they are clearly different in their algebraic properties and their use.
Isomorphic relators are mainly used in the proofs of properties of other constructions,
while subrelators are important as a method for the design of datatypes. An open prob-
lem for subrelators is whether they distribute over the equivalence domain operator. All
other methods (in this and following chapters) for the construction of relators preserve
or guarantee distribution but distribution of subrelators is still an open problem.

This section is concluded with a collection of naturality-type judgement rules. Only
rules for the <« judgements are given. The reader can derive the rules for the other
judgements using y: FroG = yu: G<F and v: F<»>G = y: F<G A 7v: FRG.
The proof of the lemma is easy and left to the reader.
Lemma 6.28:(Natural Transformation)
aoff: F<G <« a: F<“H A f: H<G
H~: HF < HG <« v: F<G
FHIoyoeGHI: FH<-GH < ~v:F<G
Uyiy€el 17): F<G < VY(y ! yel' | v: FXQ)
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Chapter 7

Disjoint sum and Cartesian product
relators

Disjoint sum and Cartesian product are probably the most common methods used for
the construction of datatypes. This chapter starts by giving a categorical definition
of disjoint sum and Cartesian product functors, followed by a construction of the
corresponding relators. The SPEC properties of these relators are examined in the
final section of this chapter. The SPEC axiomatization as developed in this chapter is
based on the work presented in [1].

7.1 Categorical construction

The method that is used for the introduction of disjoint sum and Cartesian product
in this section is not the only possible one. Other conventional introductions use for
example categorical notions like adjunctions, but it is our intention to restrict the
number of category theory notions to a minimum, and it is possible to do without
these notions. The construction in this chapter is equivalent to using (co-)products.
The terms disjoint sums and Cartesian product are normally only used for the (co-)
product notions in the category Set, but the interpretation and properties are very
similar in Difun and therefore we borrow these names.

The approach of this thesis is to use the already given notions of initial and terminal
objects for the definition. The constructions for disjoint sum and Cartesian product
have a similar structure and we will only do the construction of a disjoint sum in full
detail. The construction of the Cartesian product is only sketched.

Given a category C we can construct for every pair of objects A, B of C a category X, ;
defined by:

o Objects: pairs (f, g) with f and g arrows of C such that dom.f = A, dom.g = B
and cod.f = cod.g.

105
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* Arrows: pairs (h, (f,g)) with h an arrow of C and (f, g) an object of ¥, p such
that dom.h = cod.f = cod.g.

* Domains: dom.(h, (f,9)) = (f, g) and cod.(h, (f,g)) = (ho f,hog).
Composition: (m, (k,1)) o (h, (f,9)) = (moh,(f,g)).
Identity: id.(f,g) = (id.(cod.f),(f,9)) = (id.(cod.g), (f,q)).

The reader can check for himself that this indeed defines category. Now category
C has (binary) disjoint sums iff for every pair of objects A, B from C there exists an
initial object (<, ;, 4>, ) in &, ;.

The fact that an initial object is an object gives us three properties for the so called
mjections:

dom.=, , = A
dom.<>, , = B
cod. <+, , = cod.=>, ,

From the initiality follows that for every pair (f, g) of arrows of C with cod. f=cod.g
there is a unique arrow (h, (<=, ,, ¢, ,)) from (=45 4p) to (f,g) in , , where
A = dom.f and B = dom.g. The h in this unique arrow is denoted by fv, 9. Using
the definition of the codomain and the existence and uniqueness of the arrow we can
see that fv, ,g is characterized by:

h=fv,59 = ho=,, =f ANhot, =g

Using the v as defined above we can construct a binary functor + from CxC to C. This
is done as follows:

o For objects A and B from C: A+B = cod.—, , = cod.4=, 5.

o For arrows f and g from C: f+g = (=, ,0f)v,. .. (+,,0g) where
A= cod.f and B = cod.g

The proof that + is a functor is simple and left to the reader. Interpretation of the
constructions above in Set shows that we are constructing disjoint sums. For two sets
A and B there are two injection functions mapping them to disjoint parts (“left” and
“right”) of set A+B. fvg is a kind of case statement: when applied to an element
of a disjoint sum it applies f if the argument comes from the “left” part and g if the
argument comes from the “right” part.

The construction of the Cartesian product is categorically dual to the disjoint sum
construction. For every pair of objects A and B from C construct the category II, ,
defined by:

e Objects: pairs (f,g) with f and ¢ arrows of C such that cod.f = A, cod.g = B
and dom.f = dom.g. '
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o Arrows: pairs (h, (f,g)) with k an arrow of C and (f, g) an object of I, , such
that cod.h = dom.f = dom.g.

e Domains: cod.(h, (f,9)) = (f,g) and dom.(h,(f,g)) = (foh,goh).
o Composition: (m, (k,1)) o (h,(f,g)) = (moh,(k,l)).
o Identity: id.(f, g) = (id.(dom.f),(f,9)) = (id.(dom.g), (£, g))-

Category C has (binary) Cartesian products iff for every pair of objects A and B of C
there exists a terminal object (<, 5,>, ;) in II, ;. The so called projections satisfy:

cod.<, , = A
cod.>, , = B
dom.<, , = dom.>, ,

The unique arrow from (f, g) to the corresponding terminal object has as first compo-
nent fa, g, which is characterized by:

h=fa,,9 = <,50h=f A>,,0h=g

The functor x is defined as follows:

e For objects A and B from C: AXB = dom.<, , = dom.>, ..

e For arrows f and g from C: fxg = (fo<, ,)a
A = dom.f and B = dom.g

cod. f,cod.g (g 0 >>A,B) where

Interpretation in Set: for two sets A and B we can interpret Ax B as the set of pairs
(#,y) with € A and y € B. The function fag maps a value z to the pair (f.z, g.z)

7.2 SPEC construction

The goal of this section is to establish sufficient conditions under which there exist dis-
joint sums and Cartesian products in the category Difun. This is done by constructing
—, >, v, <, > and A satisfying the conditions in the previous section and ensuring that
the + and X definitions construct relators.

The injections and projections are families of specs, but we can use the same approach
as with natural transformations: take one spec and the family is constructed by com-
posing with the appropriate domain:

.5 = A+Bo—

.5 = A+Bot
Cp = <o AxB
>>A,B = >0 AXB

The + and x in these formulas are relators that we still have to construct. From the
dom and cod properties of the projections and injections the following judgements are
required:
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a5t A+B<A
<, A+B<B
<5t A<—AXB
>, B—AxB

And the type judgements for v and a:

[V,59: C<=A+B « f: C<~A A g: C<=B
fo,59: AXB<=C < f: Ae~C A g: B<=C

Now we can derive SPEC-formulas for v, ,+ and x. For f and g such that f:C<—A
and g: C<~B we calculate:

fV489
{ domains }

[V 59°A+B

3 { type =,, }
fVA,Bg° ap°“PapY

= { characterization v }
fe 48"

It

Using this method one can also derive fv 489 3 9o, zu. Combining the two results
gives us:

va,Bg 3 f°‘—>A,BU U go<=, Y
This suggests the following definition for v:
Definition 7.1: (Junc)

RvS & Ro—u Ll So¢u
]

Applying the definition of the +-functor from the previous section gives us a definition
for the + relator:

Definition 7.2: (Disjoint Sum)

R+S & (5oR)v(+08) = —3oRo—u U =0 So¢u
O

A similar calculation for the Cartesian product leads to the following definitions:
Definition 7.3: (Split)

RaS & <o R >»ue§
O

Definition 7.4: (Cartesian Product)

RxS & (R°<<)A(S°>>) = <UoRok [T >vo0S0>
O

These definitions are not enough to guarantee that we have constructed disjoint sums
and Cartesian products in the category Difun. The first thing to check is whether
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+ and x are indeed relators. The fact that the monotonicity and commuting with
v conditions are satisfied follows directly from the shape of the defining expressions,
but extra axioms are necessary for the distribution over composition. We could add
as axioms that 4+ and x defined as above are relators, but these axioms would be
rather weak. The conditions of the categories also state properties of the composition
of junc and split with injections or projections and about domains of junc or split, and
only demanding distribution over composition does not give enough information. We :
postulate the following axioms: i

Axiom 7.5: (Disjoint Sum)

(Remu U So¢=v)o(—oT Ll ¢=2ol) = RoT U SoU
O
Axiom 7.6: (Cartesian Product)

(Rox M Sox)o(«uoT M»uelU) = RoT M SoU
0O

A simple expansion of the definitions shows that these axioms guarantee that -+ and
x distribute over composition, so the remaining condition for relators is fulfilled.

The next step of the construction of disjoint sum and Cartesian product in Difun is
making sure that the types of the injections, projections, junc and split are correct.
This is done by first determining the types of <+, =, <« and » according to the SPEC-
judgements and then deriving from these the types of injections and projections.

The types of — and < are simple to determine: instantiating (7.2) with I for R and
11 for S gives

<oy = [4+11

And instantiating (7.5) with I for R, 11 for S, I for T and 1L for U gives:
—uo— = [

From this calculation (and a dual one for <) we conclude:

Lemma 7.7: (Disjoint Sum)

T+ 1les]
Tl
]

Until now we had complete duality between disjoint sum and Cartesian product, but
this duality is broken if we want to use the axioms given above to determine the types
of « and ». Dualizing (7.7) we desire

<vok = IXTT
<ogu = [

but this can not be derived from (7.4) and (7.6) alone. Instantiation of the axioms in
the previous formulas leads to following equalities:

KQUok = KUok [ >uoTl o>
<ot = (« M TTex)o(<u M »uoTT)



110 CHAPTER 7. DISJOINT SUM AND CARTESIAN PRODUCT RELATORS

These equalities can be established by adding an extra axiom for the projections:
Axiom 7.8: (Cartesian Product)

TTog = TTo>»
O

The corresponding axiom for disjoint sum would be <o 1L = =0 11, but this already
follows from the normal SPEC-axioms. Using the extra axiom we can dualize the
calculations for the type of the injections and find as type for the projections:

Lemma 7.9: (Cartesian Product)

< I IXTT
> [eTT %I
O

Other useful properties of injections and projections follow by instantiating (7.5) and
(7.6) with I for R and U, and (disjoint sums) 1L or (Cartesian product) TT for S and
T:

—uoé> = ||
Koxu =TT

Now it’s time to calculate the type of the categorical injections and projections. The
complete calculation for <, ; is given as an example and afterwards we generalize the
results to the other projections and injections.

<<A,BUO<<A,B

= { def<,,and >, , }
AxBo<uo<oAxB

= { «: —IXxTT }
AXBoIxTToAxB

= { relators }
Ax (BoTToB)

€4, °%4,8Y

= { def<, ,and>, , }
<o AxBo<u

= { Cartesian product }
<<c(<<quo<<|_|>>uoBo>>)o<<u

= { distribution }
Ko<uoAokogu M «o»uoBo>ogu

= { «:Ie—, <o>u =TT }
AN TTeBoTT

Dualizing these calculations to — 4.5 Bives as result:

sy = A+(AelloA) = A+1L
S,puo,, = AUlLoBoll = A
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Combining the results above with the difunctionality of categorical injections and pro-
jections (easy proof, left to the reader) and using lemma 5.77 with A D A1 TT o Bo TT,
Ax (BeTToB)<1IAXB and A+B 2 A+l we arrive at the following judgements:

45 A+B<sA
+, 5 A+B<>B
<, 5 A<—~AXB
>, Be—AXB

The results for <=, ; and >, , were obtained by dualizing the derivations for —, ,
and <, ;, respectively. Note that we derived a stronger result than necessary for +> AB
and <, ;. The injectivity of the injections was not stated in our original specifications
but was found by calculation.

The final step in the proof that we constructed disjoint sums and Cartesian products
is ‘establishing the existence of the unique arrows. This has two components: the
arrowness and the uniqueness. The arrowness is an instance of the relational type
judgements for v and a:

Lemma 7.10:

(a) RaS:AxB— <« R:A— A S:B—
(b) RaS: AxB< <« R: A< A S:B<
(¢) RaS:AxB— <« R:A— A S:B— A RoSu= RoTToSu
(d) RaS:—A < R:—AANS:—A
() RaS:—A < (R: »AANS: —A) VvV (R: —AANS: —=A)
(f) RaS:—A < R:—AANS:—A
() RvS:A— < R:A— A S: A—
(h) RvS: A< & R:A<— A S: A<
(i) RvS:A— < (RiA—AS:A—)V (R:A— AN S: A—)
() RvS:—A+B « R:—A A S:—B
(k) RvS: —>A+B < R: A AN S:—B A RuoS =11
& R:—AANS: —B

o) RvS:—A+B

The proof of this lemma is not difficult, except for part (7.10c). The proof of this part
requires some more advanced manipulation with domain and distribution properties.
The proofs of the other parts of the lemma are simple expansions of the definitions.
Proving the lemma is left to the reader.

Parts (7.10b), (7.10f), (7.10h) and (7.101) prove that we are indeed constructing arrows
in Difun. Before we can continue with the uniqueness proof we need one more lemma
about equality of arrows. In the category there is only equality between arrows, but
in the SPEC-calculus we also have inclusions and we exploit this to prove equality of
arrows in Difun. Equality can be proved by combining type judgements with a single
inclusion:

Lemma 7.11:

f=9 « ftA=BANg:A=BAg1f



112 CHAPTER 7. DISJOINT SUM AND CARTESIAN PRODUCT RELATORS

Proof: ~
f
J {OfIA—,g:Ae}
goguef
- {eg37f}
ge fuof
;‘. {.f:—_‘Bag:—'B}
g
O

Only the uniqueness of the arrow for Cartesian product is proved below, but this proof
can be dualized to disjoint sums as well. We assume for f and g that:

f:1A<=C A g: B<—C
and have to prove that
h=fa,,9 = <,z,0h=fA>,,0oh=g
fa, 59 is defined as fag and both the lhs and the rhs of the equivalence above im-

ply that h: AxB<=C. The equivalence is proved by mutual implication. The proof
obligation for the “=" direction is:

<apofog=f N>, ofag=g
and the proof obligation for the “<” direction is:
h = (<<A,B ° h)A(>>A,B ° h)

We only prove the first conjunct for the first proof obligation, the proof for the second
conjunct being similar. From the types we can deduce, using lemma 7.11, that it is
sufficient to prove only an inclusion for the second proof obligation, we prove the “C”
inclusion.

Proof “=":

<u5°fag

= { def <4 }
<o AXBo fag

= { of: A—, g: B—; (7.10a) }
<o fag

= { (78) }
(«MTTes)ofag

= { (76) }
[ TTeg

= {og:—ic,f:—C'}
f

Proof “«":
(€apoh)a(>,50h)
= { def <, ,, >, 5,4 }
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<Vo<oAXBoh M »ue»ocAXBoh
- { oh: AxB— }
<uokoh M »Uo>oh
| { def x, monotonicity }
IxIoh
- { o h: AxB—; AxBaIxI }
h

This completes the proof that given specs —, =, < and > satisfying the axioms of
this section we can construct disjoint sums and Cartesian products in Difun.

7.3 Algebraic properties

This chapter is concluded by a further investigation of the algebraic properties of
disjoint sum and Cartesian product. While in the previous sections we were mainly
concerned with properties that were necessary for Difun, in this section we will look at
properties with respect to arbitrary specs and we investigate the naturality properties.
Finally we will give some examples of natural transformations that can be used for the
description of the notions of symmetry and associativity without points.

We start with some useful results about split and junc with respect to composition.
The proofs of these properties are simple and left to the reader:

Lemma 7.12:

(a) RvSeTH+U = (RoT)v(SoU) (Fusion)

(b) TxUoRaS = (ToR)a(UoS) (Fusion)

(c) RoSYT = (ReS)v(R-T) (Distribution)

(d) SaTeR T (SoR)a(ToR) (Distribution)

(e) RvSo— = R (Calculation rule)
() RvSo¢+ = S (Calculation rule)
(g) <«oRAS = RoS> (Calculation rule)
(h) >oRAS = SoR> (Calculation rule)

O

The inclusion in (7.12d) comes from the fact that composition does not distribute
over cap with equality. The theory from chapter 4 can be applied here for finding
conditions under which distribution is allowed. The lemmas 4.7a, 4.7b and 4.7c can be
instantiated for split giving the following result:

Lemma 7.13:(Distribution)
SaToR = (SeR)a(T-R)

&=
S 3 ScRoRv
vV I3 ReRu
V. §=8eTT

O
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The next lemma gives some domain properties. It is hard to say something useful
about the least right domain of a junc or the least left domain of a split, but there
are simple formulas for the other least domains. In the previous chapter we suggested
that the equivalence domain commutes with almost every relator, and disjoint sum and
Cartesian product are two relators that commute with the equivalence domain:

Lemma 7.14: (Domains)

(a)  (RvS)< = R<U S<

(b) (RaS)> = R>n 8>

() (R+S)» = R-+5-
. (d (RxS)» = R-xS-

The proofs of (7.14a) and (7.14b) are straightforward and left to the reader, but the
proofs of the rest of the lemmas are quite complicated and are given in full detail here.
We start off with a small lemma about equivalence domains:

Lemma 7.15:

R- a« (RUS)> <« RuoS =11

a
Proof:
R-<(RUS)-
= { domains }
R = Ro(RUS)-
= { ®RueS=11;R<oS =1L }
R = R<o(RUS)o(RUS)~
= { domains }
R = R<s(RUS)
= { ®RvoS=11;R<oS =11 }
true
a

This lemma is the kernel of the proof of the distribution. Because + is a rela-
tor we already know that (R+S)~ < R-+S». The other inclusion is proved below.
The fact that the relator +1L is equal to Z=" combined with lemma 6.23c gives us
(R+1L)» = R-+1L. The dual (LL4S)> = 11+S> is proved dually.

(R-+S5>) o (R+S)~»
= { disjoint sum }
(R-+1L U 11L4S5>) o (R+8)>
= { distribution }
Rr+1L o (R+S)- U LL+S> o (R+5)>
= { see above }
(R+LL)»o(R+S)> U (LL+S)> o (R+S)>
{ disjoint sum, (7.15), (R+1L)ve 11 +S = 1L, (LL+S)veR+11 = 11}
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O

(R+1L)» U (LL+9)~
{ see above }
R-+11 U 1145~
{ disjoint sum }
R~+5~

The proof of the distribution of » over x also uses an extra lemma:

Lemma 7.16:

For every binary relator ®: (R®TT)» 2 (R®S)~

O

Proof:

i

Iil

i

0

(R®TT)> J (R®S)~

{ domains }
(R®TT)>o(RQ TT)» I (R®S)>

{ (R®TT)> 3 (R®S)> }
(R®TT)N I (R®S)-

{ def ~, symmetric.(R®S)~ }
R®TT J R®TT o (R®S)>

{ relator ®, domains }
R®TT 3 R®TT o R-®S5> o (R®S)~

{ domains, relators }
RQTT J IQTT e RS~ (R®S)>

{ domains }
R®TT J IQTT o« R®S

{ relators }
true
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We prove only one inclusion of the distribution here; the other one ((RxS)> 3 R~xS>)
follows from x being a relator. We also use that xTT is the same as Z<, implying
that (RXTT)> = R-xTT (and of course the dual theorem for TT x). The proof of the
distribution is now very simple:

R-x S5~

{ Cartesian product }
R-xTT M TT xS+

{ see above }
(RxTT)> N (TTx9)~

{ (7.16) }
(RXS)>
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Our exploration of the algebraic properties of disjoint sum and Cartesian product is
continued with an investigation of the naturality properties of the injections, projec-
tions, junc and split. The following lemma gives the results, the proofs are simple and
left to the reader.

Lemma 7.17:(Naturality)

(a) > &
(b) e >
(c) < wox
(d) > > <X

() RaS:HF+G < R:H<F A S: H&G

(f) RaS:H>F+G « R:HA>F A S:HWSG
D(g) RVS:FxG<H < R:F<H A S:G<H
For binary function ® the function F ® G is defined by (F @ G).z = (F.z) ® (G.z).
There is only one naturality property for split because compose does not distribute over
cap in general. This chapter is concluded with two examples of natural transformations
that can be used to express symmetry and associativity of binary specs.

The first one is a spec that swaps its argument pair, i.e. swap.(z,y) = (y, z), the second
one is specified by assoc.(z, (y, 2)) = ((z,y), 2). Definitions in SPEC-terms are given
in:

Definition 7.18:(Swap & Assoc)

(a) swap & »a<
(b) assoc & (< a4 (<o3))a (»o>)
O

That swap and assoc satisfy the specifications above is exemplified in the following
lemma:

Lemma 7.19:

For all specs R, S and T
(a) swapoRAS = SaR
g (b)  assoce Ra(SaT) (RaS)aT

The proof of this lemma is straightforward, except for the distribution over A in the
first step. The correctness of the distribution follows from lemma 7.13, third disjunct.
The lemma is used in the proof of the following naturality properties:

Lemma 7.20:

For all specs R, S and T

(a) RxSoswap = swapoSxR

(b)  (RxS)xTeassoc = assoco Rx(SxT)
[

The proof is an instantiation of lemma 7.19 using SxR = (So<)a(Re >) and
Rx(SXT) = (Re<)a((Se<o3)a(T o> o)) followed by x —  fusion.
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swap and assoc are used in the definitions of symmetry and associativity for specs.
First we define the notion of a binary spec. This is simply a spec operating on a pair:

Definition 7.21:(Binary Spec)

A spec X is binary iff X o IxI = X.
O

And for binary specs we define symmetry and associativity by:
Definition 7.22:(Symmetry & Associativity)

A binary spec X is symmetric iff X oswap = X.
A binary spec X is associative iff X o X xToassoc = X oIxX.
O

A pointwise interpretation of these formulas shows that we are indeed formalising
symmetry and associativity.
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Chapter 8

Inductive types

The datatypes (pers) considered thus far have a very simple structure. We can con-
struct types with zero elements (L) or exactly one element (TT), we have a universal
type I and we can construct Cartesian products (records) and disjoint sums (unions) of
given datatypes. This is not enough for normal programming practice. We need to be
able to construct recursively-defined types and operations working on those types. Ex-
amples of commonly used, recursively defined types include lists, trees and the natural
numbers.

A typical example of a function defined on the natural numbers is the function 2x
specified by:

2x0 = 0
2x.(n+1) = 2xmn+2

This defines 2x by structural induction. Elements of the natural numbers are either
constructed by the constant function 0 or by applying the function + 1 to another
natural number. These functions are called the constructors of the natural numbers.

Notice that on the rhs of the definitions we applied 2x only to the argument of the
constructor. This guarantees (with a suitable induction principle) that the function is
uniquely defined. Had we defined

2x(n+1) = 2x(n+2)-2

(this is also valid for multiplying by 2) then the function f.n whichis 0 forn = 0
and 2n + 2 otherwise would also have been a solution.

An induction principle is also important. Consider the type of the natural num-
bers extended with two new numbers co and —oo satisfying co +1 = oo and
—00+1 = —oo. Then the function defined as 2x on the standard natural num-
bers and 2x.c0 = oo satisfies the specification, but it is not the only solution:
2x.00 = —o00 also gives a solution. There is now more than one solution because
2x.00 can not be calculated by a terminating recursion. This is the consequence of an
induction principle: the fact that every natural number is constructed by a finite num-
ber of applications of the constructors guarantees that the recursion in the definition
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of 2x will terminate. A precise definition of this induction principle will be given in
another section.

The combination of specifying a function on all constructors of a type, applying the
function only to the arguments of the constructor on the rhs and an induction principle
gives us the unicity of a solution to the specification. The existence of a solution is a
separate issue that will be discussed in another section. For the moment it is sufficient
to know that totality and injectivity of the constructors guarantees the existence of a
solution. The constructors of the natural numbers are total and injective.

The natural number type is the simplest non-trivial example of an inductive datatype,
but it illustrates all important characteristics: constructor(s), and definition of func-
tions on the type by structural induction. The next step is to investigate how con-
structors and structural induction work for general inductive datatypes. A natural
approach is to view a datatype as a set and a constructor as a function with as range
(a subset of) the datatype. The domain of the constructor is a set that may depend
on the datatype again. One way of doing this is by fixing the domain to be the result
of the application of an endofunctor of Set to the datatype. So in general constructors
7 of datatype A satisfy:

TEA<—FA
where F' is a functor from Set . This also works for constants of the type, because we
can take F' = 1°, where 1 is a set containing a single anonymous element and use

the isomorphy between elements and functions from a one-element ‘domain. For the
natural numbers we have : :

0eIN «— 1°IN
+1€ N «— Z.IN

Using the functor approach we can also give a general form for the specifying equations
of a function defined by structural induction. If constructor 7: A <— F.A and we want
to specify X : B <— A then the equation has as form:

Xor = foFX

where f: B < F.B. In the 2x example we can rewrite the specification to:
2x o0 = 00 1°.2x
2xo+1 = (+2)Z.2x

This shape guarantees that the recursion is only performed on the argument of the con-
structor, but it is quite restrictive. For example the equation for the factorial function
fac.(n +1) = (n+1) x fac.n cannot be transformed to this shape, because the
n can only be used in the recursive call and not afterwards. Later on we will generalise
to less restrictive forms of structural induction, but for the moment we restrict our
attention to this form of equation.

Sets of equations can be transformed to a single equation by combining them with v.
Using the distribution of o over v and v - + fusion the set of equations becomes a
single equation of the correct shape. In the 2x example we get:

2x o (0v+1) = 0v(+2) o 1°.2x +Z.2x
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We can view 0v+1 € IN < 1*.IN + Z.IN as a single constructor for the natural
numbers, and this constructor is surjective. The original constructors can be retrieved
from this single constructor by composition with the injections.

8.1 F-algebras

In this section we will show a categorical approach to the definition of inductive
datatypes, based on the approach sketched in the previous section.

A standard method for the construction of an inductive type using category theory
[32, 42, 43] is defining it via the category of F-algebras (in fact defining it to be the
initial object). This is a categorical statement of the initial algebra approach that can
be found, for example, in the work of Goguen et al [29, 30].

Given a category C with an endofunctor F' we define the category of F-algebras over
C by :

Definition 8.1: (F-algebra)
The category of F-algebras over C is defined by:

e Objects: arrows 7 € cod.7<—F.(cod.T) from C (F-algebras).

o Arrows: triples (f,0,7) € 0<—7 where f € cod.c<—cod.T is an arrow from C and
o and 7 are F-algebras such that fo7 = oo F.f inC.

e Domains: dom.(f,0,7) = 7 and cod.(f,0,7) = o.

e Composition: (f,0,7) (g,7,p) = (fe° q,0, p)-

Identity: id.7 = (id.(cod.T),,7) where id in the rhs is taken from C.

O

The objects of this category are called F-algebras and the codomain of an F-algebra
is called the carrier of that algebra. The arrows are called F-homomorphisms.

Let’s consider as an example the construction of the natural numbers in Set. The
functor corresponding to the constructors is F.X 2 1+4X. A function f on the
natural numbers with as range A is defined by structural induction by supplying a
value for f.0 (g € A < 1, f0 = g.z where z is the unique element in 1) and method
for calculating the value of f.(n + 1) from fn (h€ A< A, f.(n+1) = h.(f.n)).
The function f is completely determined by g and h. Both the junc of the constructors
of the natural numbers (0* v (+ 1)) and gvh are F-algebras and f can be defined as
the first component of an arrow in gvh <— 0° v (+ 1). Expanding the definition of an
arrow in the category of F-algebras and using some elementary properties of disjoint
sum we see that f is the unique function satisfying
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folO =g AN fo(+l)=hof

This is a variable-free version of the definition of f by structural induction. The
F-algebra 0°v(+ 1) is an initial object because a unique function f exists for every
F-algebra gvh.

Our main interest is in the initial object of the category of F' -algebras and not the
properties of the category itself. This is the reason for introducing the following defi-
nition:

Definition 8.2: (Initial F-algebra)

For endofunctor F, arrow 7 € B < F.B is an initial F-algebra iff 7 is an initial object
in the category of F-algebras.
[}

The constructor of the datatype corresponding to functor F' can be defined as an initial
F-algebra. An initial F-algebra in Set can be interpreted as the constructor function
of the free type corresponding to the functor F. The natural numbers are the free type
for functor F.X & 1+X. Some other examples of free types in Set are cons-lists with
values from set A (functor F.X & 1 + AxX) or binary trees with values from A in the
leaves (functor F.X 24 A + X x X).

A property of an initial F-algebra that is easy to prove is that it has an inverse. For an
initial F-algebra 7 € B<—F.B, consider the unique arrow (v,Fr,7) € Fore—1 (F.1is
also an F-algebra). Now 7oy = id.Bandy o7 = id.(F.B). The former is proved by
showing that (7 o ,7,7) € 7<—7 and is therefore equal to id.r=(id.B, r, 7), the latter
follows from the fact that (v, F.7,7) is an arrow so yo7 = F.roFy = F.(id.B).
In Set this means that an initial F-algebra is not only functional and total, but also
surjective and injective.

A problem with the initial-object approach is the question of the existence of initial
objects in the category. In Set the existence is not guaranteed for every endofunctor,
but for the functors that we usually consider (the polynomial functors) there is always
an initial object. The situation is simpler in Difun; we now prove that for every
endorelator F' there exists an initial F-algebra in Difun:

Lemma 8.3: (Initial F-algebra)

For endorelator F, (uF, uF, F.uF) is an initial F-algebra in Difun.
O

We wrote uF here but didn’t specify which lattice is meant. This is not a problem
because the least fixpoint in the SPEC-lattice and the least fixpoint in the per-lattice
coincide. Writing pF' for the least fixpoint in the SPEC-lattice we calculate:

uF oA = uF
&= { p-fusion }

VX1 FXeA = F(XoA)
= { relators }

A= FA



8.1. F-ALGEBRAS 123

Instantiating this calculation with uFu for A gives us the proof that uF is a per. If A
is a per that is a fixpoint of F' then we obtain uF' < A, i.e. pF is also the least fixpoint
in the per-lattice.

The next step in the proof of lemma (8.3) is showing that (uF, uF, F.uF) is an F-
algebra in Difun. This is equivalent, using uF° = F.uF, to proving pF': pF' < pF.
Expanding the definition of <— has as result that the proof obligation reduces to
showing that pF' is a per, and that has already been established.

Our next task is to establish the existence of a unique arrow from pF' to arbitrary
F-algebra o in the category of F-algebras over Difun. We prove that ((F'; o), 0, uF)
is the unique arrow, where (F'; o)) is defined by:

Definition 8.4: (Catamorphism)

For relator F' and spec R the F-catamorphism of R is defined by:
(F;R) 2 wu(X — Ro-FX)
a

We usually omit the relator “F” in (F; o)) if it is clear from the context which relator
is meant.

There are two proof obligations: we have to prove that (¢) is an arrow in Difun with
the correct type and we have to prove that (o)) is the only solution of

X:: XopuF = ooFX

i.e. there is only one arrow between uF and o. The first obligation is fulfilled by
proving the following lemma about the typing rules for the catamorphism:

Lemma 8.5: (Type catamorphism)

(a) R:A— = (R): A— uF
(by R:A<— FA = (R): A<« uF
(¢) R:A—FA = (R): A—yuF
g (d R:A—FA = (R): A—uF

The proof of (8.5a) is trivial for the left-domain part (only the calculation rule for
fixpoints is used). The right-domain is proved by:

(R)euF = (R)
= { p-fusion, definition catamorphism }
V(X ' RoFXouF = RoF(XouF))
= { relators, fixpoints }
true

For (8.5b) we need a lemma about how the composition of a catamorphism and a
reversed catamorphism can be written as a single least fixed point. Such a combination
is called a hylomorphism and later we will see that large classes of recursive programs
can be written as hylomorphisms.
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Definition 8.6: (Hylomorphism)

For relator F' and specs R and S the F-hylomorphism of R and S is defined as:
[F;R,S] 2 wX — ReFXoS)
O

Again we usually omit the relator if it is clear from the context. The lemma about the
composition of a catamorphism and a reversed catamorphism is the following:

Lemma 8.7: (Hylomorphism)

[RS] = (R)o (s
O
Proof:
[7.S] = (R)- (S v
= { w-fusion, definitions hylomorphism and catamorphism }
V(X ' ReF(Xo(Su)o)oS = RoFXo(Sov)
= { relators, calculation rule, definition catamorphism, reverse }
true

The proof of the preservation of functionality as is stated in (8.5b) is simple now:

A 2 (R)o (R
= { 87 }
A 3 [R,RY
&= { induction, definition hylo }
A J RoFA-Ru
= { eR: A< FA}
true

Parts (8.5c) and (8.5d) are proved with a single proof. The proof of (8.5d) is the same
as that of (8.5c), only the inclusion is in the opposite direction.

pF 23 (R)o- (R)

<= { w-fusion, definition cata }
Y(X I F((R)ooX) 3 (R)ooReFX)
“= { relators, monotonicity }

F.(R)v 3 (R)voR
{ assumption, 8.5a, relators, calculation rule }
F.(IRDUOF.A _:_I F.(IRDUORUOR
= { monotonicity }
FA 23 RyvoR
{ assumption }
true

i

Il
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The assumption used in the last step is R: — F.A for the proof of (8.5¢) and would
be R: — F.A for the proof of (8.5d). So if o: A <~ F.A then by (8.5b) and (8.5d)
we have (o)): A <~ uF and this is the desired type. The fact that (o)) is a solution
to the equation X o uF' = o o F.X is trivial because uF can be absorbed and the
equality is established by the calculation rule. The uniqueness of the arrow is the last
part of the proof of lemma (8.3). We show that (o] is the only X : A <~ puF such
that X o uF' = ¢ o F.X by instantiating theorem (8.8) with R equal to o, thereby
completing the proof of lemma (8.3).

The unique extension property can be seen as the SPEC-version of stating the initiality
for an initial F-algebra:

Theorem 8.8: (Unique Extension Property)
X = (R) XopF =X A X = RoFX

a

The proof for the implication in the = direction is an application of lemma (8.5) and
the calculation rule for fixpoints. The implication in the < direction is proved by:

X = (R)
= { e X=XopuF }
XopuF = (R)
= { p-fusion, definition cata }
VY1 XoFY = RoF(XoY))
<= { relators, monotonicity }
X = R-FX

O
The rhs of the unique extension theorem can be combined to a single equation:

XouF =X A X = ReFX
{ substitution }
XopF =X A X = RoF(XouF)
{ relators, fixpoints }
XopF =X AN X = RoF.XouF
{ substitution }
RoFXopFopul = RoFXopF AN X = RoFXouF
{ per uF }
X = RoF. X opuF

Il

1i

1l

So, phrased as a lemma, we obtain:
Lemma 8.9: (Unique Extension Property)

X=(R) = X =RoFXouF
O
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8.2 F-inductive algebras

Working with initial F-algebras gives.quite a powerful theory of inductive datatypes,
see for example [9] for a demonstration of the development of algorithms using relational
catamorphisms, but many real-life inductive datatypes don’t fit this framework. The
problem is that all constructors constructed from initial F-algebras over Set or Difun
are total and injective. For many practical datatypes this is not the case. The restric-
tiveness of injectivity is exemplified by join-lists: we have that [1, 2]-+[3] = [1]4+[2, 3],
s0 the + constructor is not injective. The restrictiveness of totality is exemplified by
height-balanced trees: we cannot combine a tree of height 4 with a tree of height 7, so
the constructor is not total.

Switching to the category of F-algebras over a category of partial functions or partial
difunctionals does not solve the totality problem because initial objects in general don’t
exist for the functors that we are interested in. The initiality gave us two properties:
the existence and the uniqueness of solutions for specifications. The important one
here is the uniqueness: the specifying equations can have at most one solution. We
keep the functionality and surjectivity requirements for the constructor of the datatype
and investigate the conditions under which the specification has at most one solution.
The surjectivity and functionality requirements are sometimes called “no junk” and
“no confusion” (see Meseguer and Goguen [46]).

We saw in the previous section that the proof of the unique extension property of the
catamorphism operator does not depend on properties of the argument of the cata-
morphism. This gives us hope that we don’t need to introduce extra properties for the
more general form of inductive datatype introduced in this section. The specification
of our problem is now as follows: given a functional and surjective spec 7: Aw— F.A,
under what condition does the pair of equations:

(810) XoA = X
(811) Xo7 = RoF.X

have at most one solution. Equation (8.10) is necessary for a unique solution because
if X solves (8.11) then X o A also solves it. We only want to impose conditions on T,
not on R.

Applying o Tu on both sides of (8.11) gives, in combination with (8.10), that X solves
the equation for [R,7v] (X:: X = Ro F.X o u), so this gives us a candidate for the
unique solution. p-Fusion is the standard technique for proving that something is equal
to a least fixpoint and (8.11) provides the key for this application:

Xofr,7v] = [R,7Y]
& { p-fusion, definition hylo }

V(Y i XoroFYoru = RoF(XoY)or)
= { relators, (8.11) }

true

From this we conclude that [r,7v] = A is a sufficient condition for having at most
one solution for the combination of (8.10) and (8.11). Note that the functionality or
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surjectivity of 7 play no role in this proof, it being only used for guessing a candidate
for the unique solution. The condition [7,7v] = A turns out to be so important that
it deserves a special name:

Definition 8.12:(F-inductive algebra)

For endorelator F', spec 7 is an F-inductive algebra with carrier Aiff 7: A — F.A and
[F;r,7v] = A

O

This definition can be interpreted, assuming continuity properties, as stating that every
element of A can be constructed using a finite number of applications of the constructor
7. Using 0 applications one can only construct the elements of the empty type 1L,
with 1 application the elements of type 7 o F.LL o 7u, with 2 applications the elements
of 7o F.(T o F.1L o 7U) o 7u etc. The limit of this process is [F; 7, 7v].

Summing up the preceding calculations results in the following theorem:

Theorem 8.13:(Unique Extension Property)

For F-inductive algebra7: A — F.A :
XA =X AN XorT =RoFX = X = [R,7Y]
0O

Our aim was to construct an inductive datatype with a constructor, but definition
(8.12) does not mention functionality or surjectivity of 7. This is not a problem because
functionality and surjectivity follow immediately from the definition:

Lemma 8.14:(F-inductive algebra)

For F-inductive algebra 7: A — F.A we have 7: A v—
]

Proof:

T o Tu
= { er:A—FA}
ToF.AoTu
= {elrnr] =4}
T o Fr,79] 0 7u
= { calculation rule, definition hylo }
[rs ]
= { o[, TUH = A }
A

8.2.1 Constructors

Using the techniques described in this chapter we can build algebras for many com-
mon datatypes, like the natural numbers: u(X — TT+X) (TT corresponds to a 1-
element set), and cons-lists over a type A: u(X ~ TT + AxX) (singleton and cons-
constructor). The separate constructors for these datatypes can easily be extracted
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from the least fixpoint; if F' is a sum relator then we can write uF as the junc of two
constructors. We define a sum relator by:

Definition 8.15:(Sum Relator)

Relator F is a sum relator iff F.T <« I+1
0O

We give the extraction of the constructors for all F-inductive algebras, not just uF.
We assume 7: A — F.A is an F-inductive algebra and F is a sum relator.

.
= { e7: — FA, Fsumrelator=> FA < FI «I+] }
Tol+] :
= { e disjoint sum }
T o vV
= { disjoint sum }
(10 =) v (10 +2)

A small example using constructors: the length function on cons-lists. For
FX = TT+X and G.X = TT + AxX we can construct uF with constructors
0° & pFo — and +1 & plFo < (the constructors of the natural numbers) and pG
with constructors [/* & pGo < and>~ & uGo < (the constructors of the cons-lists).
The set of equations:

length o [|* = 0°

length o>— = +1 o> o Axlength

has a unique solution: length = (G;0° v (+1 o >)).

Typically a sum relator F is of the form F.X = G.X + H.X, for some relators G and
H. For such relators we can also give type judgements for the constructors:

To 1 A<— G.A
To¢> 1 A<— H.A

We prove this claim for 70 <. The proof for the other constructor is dual.

A

- { 7:A— FA (814) }
ToTU

= { e7: — F.A Fsumrelator = F.A « F.I < I+] }
Tol+loTu

- { disjoint sum }

To <— o (To <——))u

To— o(G.A
{ disjoint sum }
T o GA+HA o —
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= { e7: —FA }
To <

= { e7:A— }
AoTos

8.2.2 Simulations

The notion of simulation of a datatype by another datatype plays an important role
in programming. A simple example of simulation is the datatype of booleans, con-
structed with constructors false® and not. This is an F-inductive algebra with the
same relator as for the algebra of the natural numbers. We can simulate the booleans
by the natural numbers by mapping every even number to false and every odd num-
ber to true, the constant 0 constructor simulates the constant false constructor and
the successor constructor simulates the not constructor. The simulation mapping is
functional (every number corresponds to at most one boolean) and surjective (every
boolean is simulated). Formally we define simulation of F-algebras as follows:

Definition 8.16:(Simulation)

For F-inductive algebras 7: A — F.A and o: B — F.B we say that 7 2 o (pronun-
ciation: 7 simulates o) iff there exists an a.: B — A such that ¢ o7 = oo F.a.
]

The equation « e 7 = ¢ o F.a guarantees that elements of B can be built in the same
way as corresponding elements of A, i.e. if an element of A in the right domain of «
can be constructed with a certain combination of constructors then the corresponding
construction in o constructs the a-image of that element. For a simulation as defined
above, type B is called the abstract type, type A is called the concrete type and function
o is called the abstraction function or simulation . Note that the F-inductivity of the
algebras guarantees that there is at most one simulation between two algebras:
a = [o,7].

The fact that simulations are functional and surjective is expressed in the following
lemma:

Lemma 8.17:(Simulation)

For F-inductive algebras 7: A — F.A and 0: B — F.B such that 7 2 ¢ with simu-
lation @ (= [o,7v]) we have a: B

O
Proof:
aocou = B
= { a = [o,7v], 0 is an F-inductive algebra }
Ilo', Tu]] oqu = [[o', au]]
= { p-fusion, definition hylo }

VY {iogoFYoruoau = go F(Y oqu) o gu)
<= { relators }
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TUov = Flau o gu
{ reverse,ac7 = goFa }

I

true

The R relation between algebras is transitive and reflexive, so it is a preorder. The
proof of this claim is fairly trivial. For transitivity: if 7 2 ¢ with simulation o and
o X pwith simulation § then 7 2 p with simulation 3 - «. For reflexivity: 7: A — F.A
simulates itself with simulation A. The 2 relation is not a partial order because it is not
anti-symmetric. Consider for example the F-inductive algebra [|*v(> o »>u) for relator
F.X = TT+X with as carrier the cons-lists over TT. The carrier has as elements lists
over a one-element set, so there is a unique list for each length. The algebra simulates
the algebra of the natural numbers 0° v (+ 1) by representing number n with the list of
length n. The natural numbers simulate the algebra by representing a list by its length.
The algebras [|*v(> o »v) and 0° v (+ 1) simulate each other but are not equal.

Because the 3 relation is a preorder we can construct a category of F-inductive algebras
based on the 2 relation:

Definition 8.18:(Category of F-inductive algebras)
The category of F-inductive algebras is defined by:

e Objects: F-inductive algebras

Arrows: (0,7) €Eoc —Tiff T2 0

Domains: dom.(0,7) = 7 and cod.(0,7) = ¢

e Composition: (o, 7) o (1,p) = (o, p)

Identity: id.7 = (7,7)

O

This is the standard construction for making a category from a preorder. We could
have added the simulation to the arrow, but this is not necessary because there is at
most one simulation between two given F-inductive algebras. The initial objects of the
category of F-inductive algebras are the initial F-algebras from the category Difun
and there is a unique terminal object LL: 1l — F. I . The proof of this claim is
easy and left as an exercise to the reader. Two F-inductive algebras that simulate each
other are automatically isomorphic objects in this category because there is at most
one arrow between any two objects. Meseguer and Goguen [46] define the notion of an
absitract data type as an isomorphism class of algebras.
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8.2.3 F-inductive types

The simulation preorder can be used to make a partial order by selecting one element
of every class of mutually simulating algebras and restricting the pre-order to those
elements. Something similar was done with the initial F-algebras over Difun, where
there can be many initial algebras, all isomorphic, but a special one, pF', was selected
because it had nice properties. We start by giving a definition for isomorphy of F-
inductive algebras:

Definition 8.19:(Isomorphic F-inductive algebras)

F-inductive algebras 7: A — F.A and 0: B — F.B are isomorphic (notation 7 ~ o)
iff there exists an a: B x> A such that ¢ o7 = 0o F.
O

The o in (8.19) is called the isomorphism. An alternative definition for 7 ~ ¢ would
have been that 7 and ¢ simulate each other, but the definition given in (8.19) is more
convenient for further manipulation. We will prove the equivalence of the definition in
(8.19) with

T A T20 AN 0T

now. It is clear from the definition of simulation that (8.19) implies 720 with simula-
tion a. The fact that 27 with simulation av follows from:

Quog

= { e0: —FB,a: B}
au o g o Fa o Foau

= { eaer =0ecFa }
au o ¢ o T o Flow

= {e7:A—,a:—A}
T o F.au

The proof that mutual simulation implies (8.19) is also not difficult; If 720 then
a = [o, 7] satisfies a: B<«— A and a o7 = 0 o F.i, s0 the only thing that remains
to be proved is a: B — A. From o7 follows that [7,ou] satisfies [r,0u]: A «— B,
which is equivalent to [7,0u]u: B — A. The proof is completed by proving that
[r,ou]v = Jo,7v] =

[r,ou]v = [o, 7]
&= { p-fusion, definition hylo }
VY 1 (te FY ooulu = g o FYu o 7U)
= { reverse, relators }
true
O

The initial F-algebra pF" has the important property that the constructor is the same
as the carrier and it would be nice if we can find an algebra with carrier identical to
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constructor in every class of isomorphic F-inductive algebras. The definition of F-
inductive algebra can be simplified under the assumption that the carrier is equal to
the constructor.

Lemma 8.20:(F-inductive algebra)

Per A is an F-inductive algebra with itself as carrier if AF.A A A= Ao pF o A
O

Instantiating (8.12) gives us as definition that per A has to satisfy A: A — F.A and
A = [A, A]. The first condition can be simplified to A < F.A, the second one to
A = AopFoAbecause AdF.A = AouFoA = [A4A]:

AopFoA = [A A]

<= { p-fusion, definition hylo }

V(Y ! AcFY oA = Ao F(AoY o A)o A)
{ relators }

V(Y i AeFY oA = Ao FAoFY o F.Ao A)
{ e A FA }

true

i

O

The pers satisfying A9F.A A A= Ao pF o Aform an interesting class, but we will
restrict our attention to a subclass called the F-inductive types that is defined by:

Definition 8.21:(F-inductive type)

A per A is an F-inductive type iff AAF.A N A<uF
O

Every F-inductive type is an F-inductive algebra because ApF = A= Ao uF o A,
but not every per that is an F-inductive algebra is also an F-inductive type. For a rela-
tor F'such that uF' # 1l and (uF)x # (vF)xitcan be proved that per vF o TT o vF
is an F-inductive algebra but not an F-inductive type. The proof of this claim is left
as an exercise to the reader.

One of the most important reasons for working with F-inductive types instead of using
F-inductive algebras is that they form a complete lattice under the <-order, allowing
us to use extreme solutions of equations as definitions of datatypes. Examples will be
given in the next chapter.

Lemma 8.22:(Lattice of F-inductive types )

(F-inductive types,<) is a complete lattice with the same least upper bound as the
per-lattice.
a

The pers A such that A<uF form an initial segment of the per-lattice and are therefore
closed under the per-lub. Relator F' is a monotonic function on the per-lattice, and
this means that the post-fixpoints of F', the pers A such that A < F.A, are closed under
the per-lub. The combination gives us that the F-inductive types are closed under the
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per-lub, so they form a complete lattice with as lub the per-lub. The bottom of the
lattice is Ll and the top is pF.

Earlier we mentioned that we want to choose one representative from every class of
isomorphic F-inductive algebras. The main result about F-inductive types allowing
such a choice is that every class of isomorphic F-inductive algebras contains exactly
one F-inductive type, giving a one-to-one correspondence between F-inductive types
and classes of isomorphic F-inductive algebras. We have the following theorem:

Theorem 8.23:(Algebra - Type correspondence)

For F-inductive type A and F-inductive algebra o: B — F.B we have the following
Galois connections:

(a) ZAR o = Av (o)
(b) o RITA = (o)-> A
5 () ZTA=~o = A = (o)

The Galois connections are between the pre-order of the F-inductive algebras and the
lattice of the F-inductive types. One of the adjoint functions is the identity function
Z embedding the F-inductive types into the F-inductive algebras. The other adjoint
R + (R)> should have the F-inductive types as range. This is proved with the follow-
ing lemma:

Lemma 8.24:(Catamorphisms)

(R)~ is an F-inductive type for every spec R.
O

The fact that (R)> < /.LF follows immediately from the domain properties of catamor-
phisms. So it remains to prove:

(R)- < F.(R)~

{ domains } .
(R) - F(R)- = ()

{ calculation rule, definition catamorphism, relators }
Ro F((R) - (R)-) = (R)

{ domains, calculation rule, definition catamorphism }
true

Now we can prove Galois connection (8.23a):

AR o
{ definition 2 }

Ja'!a:B— A acA = oo Fa)
{ domains, A < uF }

Jaia:B—Aia =ccFa A aouF = a)
{ one-point-rule, unique extension property }

I

1l
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(e): B— A
{ domain catamorphisms, domains }
A > (o)

a

Instantiating the proof above with (o))~ for A yields (o) 2 0. We prove o % (o)> by
showing (o])v to be the simulation:

(o)< 0
= { domains, o F-inductive algebra, (8.12) }
(o) oo o F((o) o (o))
= { relators, calculation rule, definition catamorphism }
(e)v o (o) o F(o]v
= { (o) difunctional, domains }
(o)- o F.(o)v

Now we can prove (8.23b):

c R A
{ (o)~ R 0 and o R (o), see above }
(0)- 2 A
{ (8.23a) }
(o) > (4)>
{ A F-inductive type = (A) = A = (4A) = A }
(o) > A

It

I

Galois connection (8.23c) is the combination of (8.23a) and (8.23b) using the definition
of ~ and the anti-symmetry of .
0

Knowing that an F-inductive type is an F-inductive algebra, we can take another look
at the unique solution of (8.10) and (8.11) for the special case that 7 is an F-inductive
type. Substituting A for 7 the equations become:

(825) X oA = X

(826) XoA = R-F.X
From (8.25) and A < uF it follows that X o uF = X and from the combination of
(8.25) and (8.26) it follows that X = Ro F.X. Together this implies, by the unique

extension property for catamorphisms, that the unique candidate for the solution is
simply (R]), independent of which particular F-inductive type is used.

8.3 Parameterised inductive types

Many modern programming languages allow the construction of inductive datatypes
that can be parameterised by another datatype. A standard example is the cons-list
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construction. One can define a type class of cons-list that can be instantiated to lists
of booleans, list of numbers etc. We want to have the same capability in the SPEC-
calculus. So, for example, we want to be able to define an operator that, given as
argument a type (a per), produces as result the type of cons-lists over the argument
type.

At the end of section 8.1 we saw that we can construct cons-lists over a type A by
w(X +— TT + AxX). The endorelator X — TT + AxX can also be seen as the
binary relator (¥, X) — TT + Y xX, namely by fixing the first argument to per A.
Partially applying a binary relator to a per results in a unary relator and the corre-
sponding inductive type is produced by simply taking the least fixpoint. This is the
general principle for producing a parameterised inductive type for the cases with total
and injective constructors. Given a binary relator ®, construct u(A®) as the inductive
type parameterised with A.

From now on we will abbreviate the function X — u(X®) to the prefix-operator w.
The fact that @ maps a per to per is a consequence of the more general theorem:

Theorem 8.27:(Map)

For binary relator ®, w is a relator.

O
Proof:
wR J wS
= { p-fusion using identity function }
V(X 1 R®X 1 S®X)
& { relators }
R 35

(wR)v = w(R)

= { pfusion }

V(X ! (R®X)s = Rv® Xv)
{ relators }

Il

true

wRewS = w(R-S)

<= { p-fusion }

V(X 1 ROX owS = (Ro8)®(X o wS))
{ relators }

V(X 1! R®X cwS = R®X » S ® wS)
{ calculation rule }

I

true

The interpretation of w as a type constructor on pers is clear. Let’s now consider
the interpretation on arbitrary specs. Writing 7 for wl, we can derive the following
equation for wR using the calculation rule and relator properties:
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WReT = 71 o RRI o I @ wR

Interpreting this equation pointwise we see that it means that R is applied to all
parameter components of the argument, but that the structure does not change. Such
an operation is called a map operation in functional programming, and therefore we
call the relators that are constructed using this method map relators.

One property that the map relators share with the polynomial relators is, given that
the » operation distributes over the underlying relator, it also distributes over the map.

(@R) = w(R>)
{ domains, wRowl = wR, wl is aper }
(wR)> e wl = w(R)
= { u-fusion, definition w }
VY I (WR)> 2 IQY = R- ® ((wR)>Y))
{ relators }
VY i (wR)»oIQY = R-Q® (wR)- o IQY)
<= { calculation rule, monotonicity }
(R® wR)> = R- ® (wR)>
{ V(P Q1 (PEQ)- = Pr3 Q) }

true

0l

]

O

The map relator construction is the least fixpoint of a relator if the argument is a
per, so then the result is an inductive datatype with total and injective constructors
(an initial algebra). But we also want to be able to parameterise inductive types with
non-total or non-injective constructors like join-list or height-balanced tree. This is
possible if the type construction is completely polymorphic, i.e. does not “look inside”
the parameter type. A datatype like sorted list over type A can only be constructed
if one has an ordering on the elements of type A, so a general construction for every
parameter type is impossible. Another problematic type is the finite set construction
where an equality test is necessary for the construction.

The problem is, given a type-constructor ¢ (a total function from pers to pers), to
construct a map-like relator that agrees with ¢ on pers. Our solution is to construct
the relator as a subrelator of the map relator:

(8.28) pR & w R

There are some conditions that have to be imposed on © to make this a good choice.
The first is of course the naturality condition needed for subrelator construction:

pl:w <> w
Secondly. we need that the subrelator agrees with ¢ when applied to a per. This means
that pA = w,A should hold for all pers A. This holds iff

cpA = @l o wA, for all pers A.

The naturality condition guarantees that the relator is polymorphic and does not look
inside the parameter. In the following chapter we will show how parameterised types
like join-lists and finite bags can be constructed using this method.
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8.4 Other recursive programs

At the beginning of this chapter we mentioned the factorial function as an example
of a recursively defined relation on an inductive datatype that cannot be expressed as
a catamorphism. The catamorphism recursion scheme turns out to be too restrictive
for many practical purposes. In this section we will examine more general recursion
schemes allowing the specification of many “standard” programs.

The factorial function was given as an example of a function that can not be expressed
as a catamorphism. From this example we will generalise a new shape for specifications
having at most one solution and the catamorphism is another instance of this shape.
The factorial function is defined by (after removing variables):

fac o 0° = 1% o TT
fac o +1 = x o (+1)x] o Nxfac o Ial

After juncing together this becomes:
fac o (0°v+1) = 1°v(x o (+1)xI) o TT+(Ixfac) o TT+(INal)

Abstracting from this concrete example and adding the domain condition we obtain
the following set of equations where 7: A — F.A is an F-inductive algebra:

(820) XoA = X
(830) XoT = RoeG.Xovy

This form of specification is much more general than the equations for the catamor-
phism but is still not general enough. One kind of specification that can not be brought
into this shape is the specification of a relation that has not just a single element of an
inductive type as argument, but has other arguments as well. A simple example is the
addition of two natural numbers specified by:

add o INx0* = «

add o Nx(+1) = +1 o add
Combining into a single equation leads after some calculation to the following equation:
add o Nx(0v+1) = <v+1 o (NxTT)+(INxadd) o ((Ix —=)v(Ix <))

and abstraction from this example leads to the specification, for F-inductive algebra
T7:A— F.A:

83) XoHA = X
(832) XocHr = RoGXoy

We will derive conditions under which this specification has at most one solution.
Expressed as a theorem we obtain the following result:

Theorem 8.33:(Unique Extension Property)

For F-inductive algebra 7: A — F.A, relator G, relator H with an upper Galois adjoint
on lattice ({B i1 BCA},C) and spec y withV(B | BC A ! yo HF.B C GH.Bo~):

XoHA =X AN XoH7T =ReGXoy = X = [GR,yHTm
0
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The condition on 7 looks like the naturality property v: GH < HF but is truly
weaker. Instantiating the theorem with F.X=TT+X, GX=TT+(IxX), HX=X,
7=TT+(INaI) and A =1N as used in the factorial example demonstrates a v that
satisfies the condition in the theorem but that does not have the naturality property.

The proof of the theorem uses the fact that the definition of F-inductive algebra (which
uses a hylomorphism that is defined as a least fixpoint in the SPEC-lattice), can
be expressed using another hylomorphism defined as a least fixpoint in the lattice
({B i BC A},C). We want to use

[Fi7,7v] = w(B = 7o F.Bor7u)

where the rhs least fixpoint is taken in the lattice ({B |} B C A}, C). We need to check
two conditions for proving the equality of the fixpoints using mutual inclusion and the
induction rule for least fixpoints. The first condition to check is that B +— 7o F.B o 7u
is a monotonic endofunction on ({B !} B C A}, ), ensuring that the least fixpoint is
well-defined and thereby allowing us to use induction for proving the C inclusion.
The fact that B +— 7o F.B o v is an endofunction follows from 7: A < F.A, which
follows from the assumption that 7 is an F-inductive algebra using (8.14). The second
condition to check is that [F; 7, 7] C A, allowing us to use induction for proving the
= inclusion. This follows immediately from the F' -inductivity of 7.

We prove theorem (8.33) by mutual inclusion:

[GiR,yeHr] C X
= { induction, definition hylomorphism }
RoGXovyoH7Tu C X

{ (8.32), (8.31) }
XoHrtoHTu T XoH.A

{ o 7 F-inductive algebra; (8.14), relators }

1]

f

true

X C [G;R,v< HrY] :
{ ® 7 F-inductive algebra; (8.31) }
XoH.[F;7,79] T [G;R,v o H.1]
= { ® H has an upper adjoint; u-fusion (lattice ({B ! B C A} D) }
V(BiBC A XoH(reFBoty) T RoG.(XoH.B)oyoH.u)
{ relators }
V(BIBCA!XoHtoHF.BoHrv C RoG.X o GH.B oo H.1U)
{ (832) }
VBIBCA ReGXoyoHFBoH7u T RoG.X o GH.B oy o H.1u)
= { monotonicity }
¥(BIBCAyoHF.B C GH.Bov)

1l

1]

-

Note that H only has to have an upper adjoint for B C A, not for all specs. Several
special cases of (8.33) have been studied in the literature. The factorial function can
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be written as an instance of a so-called paramorphism [45], which is defined as the
solution of the equations:

XeA = X AN Xor = RoF(IxX)o F.(Aal)
This shape of specification corresponds to primitive recursion if 7 is the algebra of the

natural numbers (relator F.X = TT+X). If we it with m* v g for R where meIN and
g has type IN <= INxIN then the solution of the equation (called f here) satisfies

fOo=m A f(nt+l) = gn(fn)
which is the standard way of defining a function by primitive recursion.

Another special case of (8.33) is the mutumorphism [24] where two specs are defined
in a mutually recursive way:

XoA = X A Xor = RoF(XaY)
YoAd = Y A Yor = SoF(XaY)

These equations can be combined by working in a binary SPEC-calculus:
(X,Y)e0A = (X,)Y) AN (X,Y)obr = (R,S) e dFX.(X,Y) o 6F.(Ia])

This has the correct shape for (8.33). The doubling relator § has as upper adjoint the
I operation.

A third special case is the zygomorphism [42], where also two specs are defined but one
of these specs only depends on itself:

XoA = X A Xor = RoFX
YeA = Y A Yor = SoF(XaY)

These equations can also be transformed to the correct shape using a binary SPEC-
calculus, resulting in the equation:

(X,Y)o6A = (X,Y) ,
(X,Y) o b1 = (R,S) o (F <, Fx)6.(X,Y) o (F.I,F.(Ial))

The shape of theorem 8.33 is general enough for almost all practical structural induc-
tion specifications, although it is sometimes quite a lot of work to transform a given
specification to this shape. Combining equations for each constructor to a single equa-
tion means that one often has to introduce extra natural transformations. A small
calculus of natural transformations between common relators is very useful for this
purpose. A good basis for such a calculus (for the monotype system, but adaptable to
our situation) can be be found in [1].

8.4.1 Injective F-inductive algebras

Theorem (8.33) guarantees the uniqueness of solutions to a large class of equations.
But, a problem with the F-inductive algebra approach for structural induction is the
existence of solutions to the specifying equations:

(834) X o HA = X
(8.35) X o H7 = RoG.X oy
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We will show that solutions always exist, independent of R, if the F-inductive algebra
T is injective and v satisfies some domain properties. The theorem that we are going
to prove is the following:

Theorem 8.36:(Unique Extension Property)

For F-inductive algebra 7: A — F.A, relator G, relator H with an upper Galois ad-
joint on lattice ({B |} BCA},C) and spec v: — HF.A satisfying v> C (H.7)> and
V(BIBCA|y-HF.B C GH.Bov):

XeHA =X A XoHr = RoGXoy = X = [G;R,veH7
O

The = implication follows from theorem (8.33) and the fact that [G;R,~ o H.1v]
satisfies (8.34) is trivial to prove. We show that [G; R, o H.7v] satisfies (8.35):

[GiR,vo H1u] o Hr
= { calculation rule, definition hylo }
R o G.[GsR,yeH71Y] o v o H7u o Hr
= { TueT = 7>0 F.A (see below), relators }
R o G[G;R,yoHru] o yoH7> o HF.A
= { relators, domains }
RoG.[G5R,ye Hru] oyo (H1)>0 HIo HF.A
= { relators, e > C (H.7)>, v: — HF.A }
R-G.[G;R,yo Hrv] oy

We prove Tuo T = 7> 0 F.A by

TuoT
= { e7:—FA}
TUoTo LA

{ domains }
>0 F A

{ er: = FA}
T>oTuoT

{ domains }
TuoT

i

i

a

The theorem shows that unique solutions for the structural recursion equations exist
if the inductive datatype only has restrictions. In the next chapter we will investigate
conditions for the existence of solutions when there are laws. We will demonstrate there
that conditions have to be imposed on R for guaranteeing the existence of solutions.

The extra domain conditions that were imposed on v are rather weak. If we start off
with a spec 7y that only satisfies the condition V(B | B C A ! Yo HF.B T GH.B-~),
then we can safely restrict it to

Yo Hr> o HF.A
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without changing the solution to (8.34) and (8.35) because
[G;R,vo H7v] = [G; R,y o Hr>o HF.A o H.1!]

Adding the restriction preserves the “naturality” property, so there is still at most one
solution. We prove this preservation property by:

GH.B o v o Ht> o HF.A

| { eV(BIBCA |y HF.BC GHB-v) }
v o HF.B o H71> o HF.A

3J { relators, F.Bo 7> 1 7>0 F.B (see below) }
v o Hr> o HF.B o HF.A

= { relators, e BC A }
v o Hr> o HF.A o HF.B
F.Bort>

= { domains }
FBNTTor

= {r:—FA}
FBMN TToreFA

3 {eBCAT™CI}

7> FFB T TToT0o F.B
= {7 C TTer }
>0 F.B

8.5 F-reductivity

We chose F-inductive algebras as generalisation of initial F-algebras, but this is not the
only possible choice. Another approach is based on the fact that the set of equations

XoA =X
XorT = RoFX

can be rewritten to the single equation
(837) X = RoFX oty

if 7 satisfies 7: A == F.A, which is the case for an initial F-algebra. The equation
(8.37) has as advantage over the original specification that solutions always exist, in
particular the least solution [R,7v]. The notion of F-reductivity was invented by
Doornbos and Backhouse [19, 20, 21] for the investigation of conditions under which
(8.37) has at most one solution. Doornbos also describes a notion called F-inductivity
in his thesis [19], but this is not the same as our notion.

The definition of F-reductivity uses a new operator \ called the monotype factor that
is defined by the following Galois connection (both orderings in the pid-lattice):
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(Re-A<C B = ALC R\B
The notion of F-reductivity is defined by
Definition 8.38:(F-reductivity)

A spec R is F-reductive iff (A — R\F.A) = I.
O

The least fixpoint in this definition is in the pid-lattice. We have the following theorem
about the unique solution of (8.37):

Theorem 8.39:(F-reductivity)
For F'-reductive spec S we have the following unique extension property:

X = RoFXoS = X = [RS]
O

The proof of this theorem can be found in [5].

Working with F-reductivity has as advantage that one is no longer restricted to algebras
with their functionality for determining whether there exists a unique solution for the
equation we are interested in. An important disadvantage of F-reductivity is that the
equation (8.37) does not have a unique solution if we are working with types with
laws, like for example join-lists. The reverse of a constructor of a type with laws is in
general not F-reductive, so theorem (8.39) can not be used. This precludes using the
reductivity theory for many common datatypes with laws.

There seems to be a close correspondence between F-inductivity and F-reductivity. For
almost any result about F-inductivity there exists a similar result about F -reductivity
and vice versa. For example, our theorem (8.33) was inspired by theorem 35 in [5]:

Let R be an F-reductive spec, a.: HG < GF and G a relator that has an upper adjoint
for pids. Then « o G.R is H-reductive.

Having the similarity in results one would expect that the proofs of the results would
also be similar, but this is not the case. Further research into the relationship of
F-inductivity and F-reductivity is necessary.



Chapter 9

Equational specification of
datatypes

-The previous chapter introduced a general theory about inductive datatypes and recur-
sively defined programs on these datatypes, but did not give methods for the construc-
tion of instances of these inductive types (except for the trivial cases of uF and LL).
The main subject of this chapter is to give methods for the construction of inductive
types with properties expressed by equations.

An important theme in this chapter is the shape of equations expressing properties
of inductive datatypes. We would like to solve equations using the Knaster-Tarski
theorem, but this requires monotonicity of the specifying equations. The “obvious”
shape of equations expressing laws or restrictions is not suitable for Knaster-Tarski
and we will show how and when these equations can be transformed to a suitable form.

A problem in the previous chapter was that we defined programs by sets of equations
with at most one solution, but were not able to provide conditions under which a
solution exists. For inductive types augmented with equations specifying laws or re-
strictions we can derive conditions under which the catamorphism equation does have
a solution. This is demonstrated by the Boom-hierarchy, an important class of pa-
rameterised inductive types. Finally, we examine many-sorted algebras and show that
the techniques developed for inductive types can also be used for the construction of
many-sorted algebras.

9.1 Constructing F-inductive algebras

This section will show a method for the construction of F-inductive algebras based
on imposing laws and restrictions on the carrier of the algebra. The process we have
in mind is as follows. Beginning with a free algebra isomorphic to uF, we want to
refine the type by imposing a succession of laws and/or restrictions. At each stage, the
algebra constructed should be F-inductive. Thus, the general step is, given F-inductive
algebra 7: A — F.A, to construct a new F-inductive algebra 6: B — F.B where B

143
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is formed by imposing laws (quotients) and restrictions (subtypes) on A. This means
(see (5.37)) that B < A. The obvious candidate for J is then B o 7 and our first task
is to find a necessary and sufficient condition on B making § an F-inductive algebra.
Such a condition is expressed in the following lemma;

Lemma 9.1: (F-inductive algebras)

For F-inductive algebra 7: A — F.A and B 1 A, Ber is an F-inductive algebra iff
Boer = BoroF.B.
O

For Ber to be an F-inductive algebra we need to have a per C such that Bor: C — F.C
and C = [Ber,(Ber)v]. By (8.14) this implies Bor: C x—, s0 C = (Bor) o (Ber)u
which gives us, using 7: A«— and B < A, that C = B. Substituting C by B
has as result that the condition for F-inductivity becomes Bor: B — F.B and
B = [Ber,(Ber)v]. Instantiation of the definition of the type judgement and us-
ing Bo B = B simplifies Ber: B — F.B to Bor = BoroF.B. The other condition,
B = [Ber,(Ber)d], follows from Bor = BoroF.B:

B = [Bor,(Ber)Y]

{ B<4 }
BoAoB = [Ber,(Ber)y]

{ 7 F-inductive algebra }
Bo[r,7v] o B = [Bor,(Bor)y]

1]

<= { u-fusion, definition hylo }
V(X::BOTOF.XOTUOB=B°TOF.(B°X°B)°(B°T)U)
4= { relators, reverse, monotonicity }

Bor = BoroF.B
a

For the special case where the algebra is an F-inductive type A: A — F.A, the con-
dition in (9.1) specialises to Bo A = Bo Ao F.B. This condition can be simplified,
using B4 A, to B < F.B and from A 4 pF and B < A it follows that B « pF'. This
means that B is an F-inductive type such that B < A.

An important problem is the existence of solutions of the structural induction specifi-
cation:

(92) XeB =X A Xof = RoFXob

and the relationship with the existence of solutions to the structural induction specifi-
cation for the original algebra 7:

(93) XeA =X A Xor = RoFXor>

The domain restrictions are added because we are working with possibly non-total al-
gebras (see section 8.4.1 for more details about the domain restriction). We investigate
two special cases for B, imposing restrictions (B C A) and imposing laws (B<A). Im-
posing restrictions on the carrier (B C A) does not influence the existence of solutions,
as is formulated in the following lemma:



9.1. CONSTRUCTING F-INDUCTIVE ALGEBRAS 145

Lemma 9.4: (Restricted F-inductive algebra)
For F-inductive algebra 7: A—F.A, B C A such that Bor = BoroF.B and § = Bor:

XoA=X A Xorm =RoFXor>
=
(XoB)oB = XB A (XeB)od = RoF.(XoB)od>
O

The proof of the first conjunct is trivial, the second conjunct is proved by

XoBof
{d6:B— }
Xob

= { 6 = 70 F.Bod> (see below) }
XorToF.Bod>

= {eXoe7 =RoeFXor> }
RoFX o7>0F.Boj>

= { FBod> = §>o F.B <« §6: — F.B,7> 1 (Ber)> = 6> }
RoF.X oF.Bod>

= { relators }

RoF.(X o B)od>

)

= { 6: B—, B<aA, domains, 7: Ax— }
ToTuo{

= {0:B—,Bor = 4,6: —FB }
ToF.Boduof

| { domains }
7o F.Bo 4>

g {TA_7BQA}
BoToF.Boé>

= { Bor = §,8: — F.B, domains }
)

The interpretation of this lemma is that if the carrier of F-inductive algebra 7 is
restricted to some per B, and if (9.3) has a solution, then (9.2) also has a solution,
being the solution of (9.3) restricted to B. For imposing laws we obtain the following
result:

Lemma 9.5: (Lawful F-inductive algebra)

For F-inductive algebra 7: A—F.A, B<iA such that Bor = BoroF.B and § = Bor:
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XoAd =X AN XoeT =RoeFXor> A XoB =X

XoB =X AN Xo§d=RoFXo6>
]

From BaAwehave X o B = X = Xo.A = X, reducing the proof obligation to:
XeB =X = (Xor=RoFXor> = Xo§ = RoFXo0)
This is proved by:

Xobd = Xor

= {eXoB =X}
Xod =XoBorT

= { 6 = Bor }
true

RoFXor> = RoF.X 06>

<= { monotonicity, § = Bor }
> = (BOT)>
= { 7 A —, domains }

(A>o7')> = (B>°T)>
{ A> = B> « BqA }

true

I

a

The interpretation of lemma (9.5) is that imposing a law does not change the solution
of the structural induction specification but can invalidate it. The specification with
the law has a solution if the original specification has a solution and this solution also
has the new carrier as a right domain.

9.2 Equations

Join-lists and height-balanced trees have been mentioned as examples of inductive
types, but a method for the construction of these and other types with possibly non-
injective or non-total constructors was not given. This section will show a method
for the construction of inductive types with properties specified by equations. We will
consider two types of equations, first equations that specify a quotient type construction
(laws) and then equations for subtype construction (restrictions). The calculations
in this section are done with F-inductive types instead of with F-inductive algebras
because the lattice properties of F-inductive types are essential for definitions of types
as extreme solutions of equations.

The non-empty join-lists form an example of a type with non-injective constructors,
because for join-lists a, b and ¢ we have the following equality:
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(@b +Hc = a+(b+c)

Such an equation specifies a law, an equality between two elements of the inductive
type that are constructed in different ways. Written without variables this equation is
transformed into:

44 o H-XxT o assoc = o [xX4+

The relator corresponding to non-empty join-lists over A is F.X = A+XxX and we
start the construction of the lists with as base type the non-empty join-trees pF. This
F-inductive type has two constructors, leaf : uF <— A and join: uF < uF x pF.
Following the type-with-law construction in the previous section, using that pF is an
F-inductive type, we want to construct an F-inductive type JL <1 uF, the non-empty
join-lists. The constructors of this new type are 7: JL <— A and +: JL «— JLxXJL
and they can be written as the composition of JL and the corresponding constructor
of uF:

T

{ definition constructor }
JLo <3
= { JL<auF }

JLo pF o —
= { definition constructor }
JL o leaf

Similarly we have + = JL o join.

The law equation is given using the constructors from JL but can be rewritten to a
form using the constructors of uF. We demonstrate this on the lhs of the equation,
the calculation for the rhs being similar:

+H- o ++xTI o assoc
= { + = JLojoin }
+ o (JL o join)xI o assoc
= { relators }
+H o JLXI o joinx I o assoc
= { +:— JLxJL }
+ o joinx 1 o assoc
= { + = JLeojoin }
JL o join o joinx I o assoc

The rewritten version of the law equation becomes:

JL o join o joinxI o assoc = JL o join o I xjoin

We want JL to be as large as possible under the « order, equating as few elements of
uF' as possible. Generalising from this particular example we have some F-inductive
type B (uF in the example) and want to construct another F-inductive type X, X«B,
X as large as possible under the <-order, such that
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(06) Xof = Xog
where f and g have type B <~ C for some type C (uF' x (uF x pF) in the example).
We want a largest solution in the per-lattice, but the equations that X has to satisfy
are not in the correct shape for Knaster-Tarski, so it is not immediately clear that
-2 largest solution does exist. We will show later on in lemma (9.8) that equations
for laws of the form (9.6) can be rewritten in a form suitable for Knaster-Tarski, but
first we examine another type of equation corresponding to restrictions (or non-total
constructors).

Height-balanced trees are an example of an inductive type with a non-total constructor.
The aim is to construct a subtype of the non-empty join-trees where every tree is
height-balanced, i.e. the height of the left and the right subtree differ by at most one
at every level of the tree. One way of doing this is by constructing functions that return
the height of the left or the right subtree and only keeping those trees for which the
difference is at most one. The standard function calculating the height of a subtree
is partial because singleton trees don’t have subtrees, but we do want singleton trees
to be height-balanced. This can be achieved by using 0 for the height of subtrees of
singleton trees and adding 1 to the height of subtrees of trees constructed with the join
constructor. We specify the function lheight for the height of the left subtree by:

lheight o leaf = 0°

lheight o join = 1+ o height o < o uF x puF
The two equations can be combined to a single definition with the junc operation using
leafvjoin = pF and TT + pF x pF = pF:

lheight & 0° v (1+ o height o <) o uF
The function height is the function calculating the height of a tree by structural induc-
tion and can be defined as an F-catamorphism:

height & (0° v (1 4 o maz))
with maz the maximum function on natural numbers. The function calculating the
height of the right subtree can be defined by:

rheight & 0° v (14 o height o >) o pF'
The relation between natural numbers expressing that their difference is at most one
is (14+)UINU(1+).
There are several ways of combining the preceding notions for expressing the restric-
tion of height-balancedness. The form chosen here has as advantage that it can be
transformed to the correct shape for using Knaster-Tarski (see lemma (9.9)). The
specification for height-balanced trees is to construct an F-inductive type X C pF
satisfying:

(I+)UINU( 4)v)olheight o X 2T  rheight o X
We are looking for the <-largest X because we want to keep as many trees as possible.

Generalisation of the specification above yields the following shape of equations for
subtyping: given an F-inductive type B, find the per-lattice greatest F-inductive type
X C B such that:
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(9.7) RoX 3 foX

where R: A — B and f: A <— B for some type A. Again we have an equation that
does not have the correct shape for Knaster-Tarski, but we will show that both the
equation for laws and the equation for subtyping are special instances of a more general
equation that does have the correct shape for Knaster-Tarski.

In both equations we have an F-inductive type B and want to construct the largest X
in the per-lattice satisfying:

X<«B
X<aFX

and an extra condition ((9.6) or (9.7)) that is not of the form X < ¢.X as is required for
Knaster-Tarski. Additionally we require in the case of a law that the greatest solution
satisfies X<1B and in the case of a restriction satisfies X C B. We will show that
(9.6) and (9.7) can be rewritten in the form X <P where P is a constant per depending
on the desired property for the type under construction. We start with the equation
for laws. The per P is formulated in the following lemma, assuming f,g have type
B <= C for some per C and B is an F-inductive type:

Lemma 9.8: (Law equation)

For spec X with X o B = X andper P & pF U (fogu U go fu)*:
XoP = X = Xof = Xog

(]

Proof:
XP = X

1]

{ definition P, XeB = X A BapuF = XopuF = X}
Xo(fogoUgefut C X
{ factors }
(fego U gef)f T X\X
{ X\ X transitive, transitive closure }
foguUygoefu T X\X
{ factors, cup }
Xofego B X A Xogofu C
{ Galois connection (see below), TT o
Xof DL Xeg A XogL Xof
{ anti-symmetry }
Xof = Xog

]

X
f =

Il

TToyg }

1l

The penultimate step uses a generalisation of (4.11). Specifically, for f: A <— and specs
X and Y satisfying X o A = X andY T TT o f the following Galois connection can
be proved (straightforward generalisation of the proof for (4.11)):

YCXof = YofoL X

Lemma (4.11) is an instantiation with A = T
a
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Note that the per P that is defined in (9.8) satisfies
P aufF

We will show later that this helps to guarantee that the constructed type is an equiv-
alence relation on B. Another useful property of P is that it satisfies the equation,
ie. Pof = Pog. This result is obtained by instantiating (9.8) with P for X,
using that P is a per. The proof above doesn’t show or use that P is a per; the
perness of P follows from (f o gu U go fu)* < pF using (5.37), which follows from
fegu L gofu: — pF' | which follows from f,g: B <— and B < uF.

For the equation corresponding to restrictions we have another lemma. We assume
here that R: A — B, f: A <~ B for some type A and that B is an F-inductive type:

Lemma 9.9: (Restriction equation)
For spec X with X: B< andper P & puF M fuoR:

PoX = X = RoX 1 foX
(]

Proof:

hU

o X = X
{ definition P, distribution, R: — B, X: B «— }
pFeX N fooRoX = X
{B<epuF AN X:B— = X:uF—, cap }
X C fooRoX
{ Galois connection (see proof (9.8)), Ac R = R,
X € BoTl = fuoTT }
foX C RoX

]

0O
The fact that P as defined above is a per and satisfies PCuF follows using (5.53) from
fue R: uF — pF which follows from R: — B, f: <~ B and B < pF. The result
that P satisfies

P CuF
guarantees, as we will show later, that the constructed type is a subset of B. Per P also
satisfies its equation (Ro P 3 f o P). We would like to prove this by instantiating
(9.9) with P for X but this is not allowed because P: B — does not hold in general.
A separate proof is necessary :

fo(uF M fuoR)
= { pers }
fo(uF N fuoR)e (uF N fooR)

cC { monotonicity }
f°fU°R°([LF M onR)
c { type fand R }

Ro(uF N fuoR)
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9.2.1 F-inductive closures

The inductive type that we want to construct by adding the equation(s) corresponding
to P to base type B is the greatest solution of the equation:

X a« FXAPAB

The conjunct F.X is added to make this largest solution F-inductive. The result that
the equations expressing laws and expressing restrictions are both special cases of the
same monotonic equation in the per-lattice seems to be new and is a considerable
simplification compared with, for example, categorical approaches to datatype con-
struction with equations. Also important for manipulation is the fact that both types
with laws and types with restrictions are greatest solutions. In contrast, set-theoretic
approaches often define types with laws as least solutions and types with restrictions
as greatest solutions, making it difficult to combine laws and restrictions.

The type to be constructed can be defined as the greatest solution of an equation
and this normally means that many properties will be proven using induction. In this
special case we can do something else because it can also be expressed as an upper
adjoint in a Galois connection. This has two major advantages: first, the standard
properties of Galois connections can be instantiated giving “free” results about the
type, and secondly, proofs using the Galois connection are usually proofs consisting of
equivalences while proofs using greatest fixpoints and induction use (cyclic) implication
and are in general longer and more complicated.

In lemma (8.22) we saw that the lattice of F-inductive types is the lattice of post-fixed
points of I taken from the lattice of pers below pF and that the lub is the same as the
lub of the per-lattice. This last statement is another way of saying that the identity
function from F-inductive types to pers below pF distributes over lubs. This means
that the identity function has an upper adjoint, mapping pers below uF' to F-inductive
types. We use this to define a new operator:

Definition 9.10:(F-Inductive Closure)

The F-inductive closure operator || is defined by the following Galois connection: for
all F-inductive types A and all pers B, B < uF:

A«B = AQLBJF

The lhs inclusion is in the lattice of pers below pF, the rhs inclusion is in the lattice of
F-inductive types. The F' subscript is usually omitted if the relator is clear from the
context.

0

This is the second example of a closure operator defined using a Galois connection. The
transitive closure is defined as a lower adjoint of the (identity) embedding of transitive
specs in the standard spec-lattice. Closure operators that are defined as an upper
adjoint of an embedding are sometimes called kernels [28]. The type with equations
construction can now be expressed using the F-inductive closure:
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Lemma 9.11:

For per P, P <« uF, and F-inductive type B:

v(X = FX APAB) = |BAP]
O

The greatest fixed point is calculated in the lattice of pers below pF. The equality in
the lemma is proved using indirect equality. Both (X +— F.X A P A B) and [BAP]
are F-inductive types and we assume that the X used below is also F-inductive to allow
the substitution that is necessary for a proof by indirect equality:

X« ’_B/\PJ
{ (9.10) }
X aBAP
= { monotonicity }
X « FuX » FXAPAB) A B A P
{ calculation rule }
X 9 v(X — FX AP A B)
&= { induction }
X « FXABAP
{ X is F-inductive }
X 4 BAP

I

1l

0

We continue with the investigation of the algebraic properties of the |-] operation:
Lemma 9.12:(F-Inductive Closure)

(a) 4] « F|4]

(b) [4] @ uF

(c) 4] <« A

(d) |[A]<«|B] « A<B

(e) [A] = A & AAFA A AauF
) |[A] € |[Bl « A C B

(8) |Al«|B]auF < AaB<pF

]

Parts (9.12a) and (9.12b) state that the range of |_| operator is the lattice of F-
inductive types. Parts (9.12c) and (9.12d) are instantiations of cancellation and mono-
tonicity properties for Galois connections. Part (9.12e) is the combination of (9.12¢)

with the other cancellation property. We prove the remaining parts, starting with
(9.12f):

Al < |B]

{ (5.38¢c) }
|B] e |Al= a |A] <« |B]

{ «AC BjACB = AqB, (9.12d) }
|B] o [A]x « |A]

Il

1l
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Il

]

{ |B] e |A]xis an F-inductive type (see below), definition || }
I_BJ o LAJ}E 14 A
(oA C B (519, )
|B] o |A]x <« Bo Ax
{ (5.38b) }
|[B|<B A [A]x < Ax
{ (9.12¢), (5.38) }
true

We still have something to prove for the third step above:

1]

<=

B) e |AJx < F(B]=|AJ) A LB)o|AJx < uF
{ relators, domains, |B] < pF, (5.38b) }
|B|o|A]x <« F.|B]oF.Io(F.|A])x
{ relators, unit, (5.38b) }
|B] <« F.|B] A |A]x <« (F.|A))x
{ (9.12a), (5.38a) }
true

We finish with the proof of (9.12g):

I

I

]

i

|A| < |B] <t uF
{ (5:38¢) }
|A] < |B] <« uF' AN |A] < pF
{ (9.12¢), (5.38f) }
lA] < |B]<|pF] AN pFoTTopF < |A] < uF
{ oA < B < puF;(9.12d), (9.12b) }
pF o TT o uF < |A]
{ wF o TT o uF is an F-inductive type (see below), definition || }
pFoTTouF < A
{ o A uF, (5.38) }
true

The penultimate step used that uF o TT o uF is an F-inductive type. One part of the
proof obligation for this claim, uF o TT o uF' <« uF, is trivial and the other part,
PF o TT o pF' <« F.(uF o TT o puF'), is proved by:

-

I

I

BE o TT o pF
{ top, calculation rule }
pF o TT o uF o F . puF o FIT o F . uF
{ relators }
PF o TT o pF o F.(uF o TT o uF)
{ top, calculation rule, relators }
pF o TT o F(uF o uF o uF o puF')
{ per uF, calculation rule }
wE o TT o puF
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9.2.2 F-inductive type construction

We continue with the investigation of the use of the F-inductive closure for the con-
struction of F-inductive types. The first property that we prove is that adding laws
is really a quotient-type construction. A per P constructed from law equations satis-
fies P <t pF and we would like, given an F-inductive type B, the type constructed by
adding the laws to B, [ BAP/, to form a quotient of B, i.e. |[BAP|aB

Unfortunately this depends not only on the laws but also on the base type B. Con-
sider the law represented by P = pF o TT o uF (for a non-empty WF) which can be
interpreted as imposing that all elements of the type are equal to each other. From
[BAP]<BAP we have that [BAP]<P, but P is a class and has only a single element.
This means that [BAP| = 1L or [BAP] = P. Combined with |[BAP|<B we
obtain LlL<iB or P<aB which can be simplified to B = Ll or B «i uF'. The former,
imposing laws on an empty type, is not very useful so we see that it is necessary to
demand B < pF if we want that imposing a law on B constructs a quotient of B. The
interpretation of B < uF' is that B is a non-restricted type and all constructors of B
are total.

The condition B < uF is not only necessary but is also sufficient as is shown in the
following lemma:

Lemma 9.13:(Quotient Construction)

For F-inductive type B:
PapF AN BauF =  |BAP|aB
]

|BAP]<B
{ ® B < puF;B is an F-inductive type; (9.12¢) }
|BAP]| < |B] <t uF
= { (9.12) }
BAP a B« puF
{ BAP a B « puF, (5.38g) }
BAP < uF
{ BAP < uF, (5.38¢) }
(BAP) = (uF)«
= { (5.36) }
Bx = Px = (uF)x
{ ePapuF A BauF;(538) }
true

]

O

This quotient construction is known in the literature as constructing a congruence
relation. Inductive types X < pF satisfy X = X o F.X O XxoFX = FX. Such
a type X is sometimes referred to as an F-congruence.

~ There are no extra constraints on the base type for subtype construction:
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Lemma 9.14:(Subtype Construction)

For F-inductive type B:
P C uF = |BAP| C B
O

|BAP| C B
{ B is an F-inductive type, (9.12¢) }
[BAP] C |B]
= { (9.12f) }
BAP C B
= { B a uF, (5.38d) }
P C uF

Il

O

The construction of an F-inductive type will in practice often start with pF, the
F-inductive type without any laws or restrictions, followed by adding the desired prop-
erties represented by pers. One important question is then whether the order in which
the properties are added influences the end result. It would be desirable that the order
is not important and this is indeed the case. We have the following lemma:

Lemma 9.15:(F-Inductive Closure)

LLAJAB] = [AAB]
8]

Proof by indirect equality with F-inductive type X:

X <[4 AB)

{ definition |.| }
X <« |AJAB

{ glb }
X«a|4 AN X«B

{ definition |_] }
X<A AN X«B

{ glb }
X « ApB

{ definition |_| }
X <« |AAB|

Il

Il

O

A consequence of this lemma is that a type constructed by sequentially adding proper-
ties, which would normally result in nested F-inductive closures, can be written as the
F-inductive closure of the per-glb of the pers representing the properties. The per-glb
is associative and commutative, so the order in which the properties are added does
not influence the end result.
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9.2.3 Example: Stacks

A well-known example of a type with a law and a restriction is the stack. We want to
construct stacks over a given type A and have three constructors:

empty : Stack «<— TT
push : Stack <— Ax Stack
pop : Stack < Stack

There is one law on stacks:
pop o push = > o AxStack

This law states that popping an element after pushing an element leaves the stack
unchanged. There is also a restriction:

TT o pushu 3 TT o pop

This restriction states that popping is only allowed on stacks that were constructed by
pushing (non-empty stacks). The relator corresponding to Stack is

FX = TT+(AxX + X)

The equations above satisfy the conditions for law and restriction equations and the
Stack type can be constructed using the F-inductive closure.

9.2.4 Solutions for structural induction

In this section we will combine the results of section (9.1) with the construction of
F-inductive types via closures to find conditions under which there exists a solution X
for the structural induction specification:

(9.16) X o [AAB] = X A Xo|AAB| = RoF.X o |AnB)>

We assume that A < pF (A encodes laws) and B C uF (B encodes restrictions).
From (9.4) and (9.14), |[AAB] C |A], it follows that we can use the solution to

(917)X0,_AJ =X A XOI_AJ = ROF.XOLAJ>,

restricted to | AAB]. The next question is then of course whether (9.17) has a solution.
Here we can use lemma (9.5) because from (9.12g) we know |A| < pF'. Specification
(9.17) is equivalent to:

(918) XopuF = X A XopF = RoeFXo(uF)> A Xol|A] = X

The first two conjuncts have a unique solution, (R]), so the complete specification (9.18)
has a solution iff (R) o [A] = (R). This last condition can be simplified because

(9-19) (R) - |4] = (R) (R)-A = (R)
which is proved by:

i

(B) - LAl = (RD

{ domains, [A] is a per }

I
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(R) < |4]
{ (R)> is an F-inductive type (8.24), definition || }
(R)- « A
{ domains, |A] is a per }
(R) oA = (R)

Il

Summing up, the calculations above proved the following lemma:
Lemma 9.20:(Structural Induction)

For pers A< puF and B C pF, specification (9.16) has as solution (R]) o |AAB] if
(R)-A = (R).
]

Per A is the per-glb of the pers corresponding to the laws that are used for the con-
struction of |AAB|. Using
So(CAD) =8 = S.C =8 A SoD =G,

the condition (R]) e A = ((R) is equivalent to demanding that all constituents of A are
right domains of (R)). These constituents are normally constructed using the method
described in (9.8) with B instantiated to puF. If A is constructed from functions
f,9: pF <= C for some per C then, applying (9.8), we obtain

(0.21) (R)-A = (R) = (R)of = (B)-yg,
i.e. the catamorphism has to satisfy the law equation. The condition for having a

solution to (9.16) has been simplified to (R) satisfying the equations for the law part -

of |AAB] but this is still a condition expressed in terms of (R]) and not directly in R
itself. We will show later that a simple condition in terms of R is possible for some
common laws like commutativity, associativity and unit laws.

9.2.5 Parameterised types with equations

At the end of section (8.3) a condition was given under which an inductive type could
be parameterised. In this section we investigate conditions under which an inductive
type constructed using equations can be parameterised. As before we assume that we
have a binary relator ® and abbreviate u(R®) to wR.

For a given parameter type A we can construct an A®-inductive type |P.A] g (the
subscript denotes the relator that is used for the closure) and we would like to extend
this type construction to a relator. We write P.A here, instead of a fixed per, because
the per representing the equations can also depend on the parameter type A. The
relator construction is possible if the following two conditions are satisfied:

(9.22) |Pl]1g:w <> w
(9.23) |P.Alag = |PI]|1g 0 wA, for all pers A

The constructed relator is the subrelator @ py,, and @ ps,, A = |P.A]ag for all
pers A. Using lemma (5.35) and assuming (9.22) we have that
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[P1rgowA = |PI|re A wA. This is used in the following proof by indirect equal-
ity of (9.23) where X is an A®-inductive type:

X« LPAJ A®
{ X A®-inductive type, definition |_] }
X «PA
{ ePA = PIAwA}
X a PIAwA
{ glb, X A®-inductive type = X I®-inductive type (see below),
definition |_| }
X « LP IJ I® A wA

n

i

The fact that X is an A®-inductive type = X is an I®-inductive type follows from
X <wA < wland X < A®X < I®X. We also have to check that |P.I|;q A wA is
an A®-inductive type. Part |P.J|;5 A WA < wA of this proof obligation is trivial.
We prove | P11y cwA < A®(|P.I|rg o wA):

A®(|P.I]1g o wA)

= { relators }
I®|PI|1g - AR wA

> { (538b), ‘_PIJ]@ < I®|_P.IJ]®, A®wA = wA }
LP..[J]@ o wA

The calculations above introduced a new condition:
(9.24) PA = PI A wA, for all pers A
and we still have to prove (9.22):

V(R ! wRo |PI)rg = |PI)rg e wR)
{ transitivity pers }
V(R :{: wR o LP}IJI@ = I_PIJI@OWR l_PIJ]@ = LPIJ[@O'UUR)
reverse
V(R [P1jjgowRo [Pl = |PI|gowR)
{ |P.I]1g e wR = ([P.I]1g o RRI) (see below), (9.19) }
V(R !} |Pjig @R o PI = |PI]sg o wR)
{ ePl:iw <> w }
¥(R !} |P)rg o PIowR = |P.I|sg e wR)
{ |PI]rp « PI}
true

fl

M

Il

The third step in the proof above used that |P.J|;g o wR can be written as a cata-
morphism. This is proved by:

LP.IJ]@ cwR = (”_PIJ[@ o R®ID
{ UEP catamorphism }
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|PI|1gowR = |P.I|1g o RI o IQ(|PI]1g o wR) o wl
{ relators }

|P.I|;gcwRowl = |Pllrg o I®|PI]ig © R® @R o wl
{ |PIlig <« IQ|PI|;3, R® wR = wR }

true

Il

The conditions for the construction of a relator have been reduced to conditions on P,
condition (9.24) and an extra condition introduced in the last proof, P.I: @w <> w.
We proved the following lemma:

Lemma 9.25:

IfPA = PI A wAforallpers Aand P.J: w <> w then |P.Aj49 = w|py),,A for
all pers A.
O

The next question is how to establish these conditions for a P corresponding to a
collection of equations for laws and restrictions. Such a P is normally the per-glb of
the pers corresponding to the different equations. The conditions on P in (9.25) are
compositional, i.e. if the components of P satisfy the condition, then P also satisfies
the condition. We prove this for a P that is the per-glb of two components but this
proof can easily be generalised to more components. For the first condition in (9.25)
we prove, supposing P.A = Q.A A R.A:

P.A
= { assumption }
QAARA
= { oQA = QIAwA RA = RIAwA }
QI ANwAANRIAwA
= { glb }
Q.J A RI A wA
= { assumption }
P.J A wA

The second condition of (9.25) is a naturality condition. The preservation of the
naturality properties of the components of a per-glb is a consequence of the following
lemma:

Lemma 9.26:(Naturality)

AB:F < F = AAB:F < F
O

Proof:
V(R !} F.Ro (AAB) = (AAB)° F.R)

{ transitivity pers }
V(R FRo(AAB) = (AAB) o F.Ro (ApB) = (AAB) o F.R)
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Il

{ reverse }

V(R i (AAB) e F.Ro (AAB) = (AAB) < F.R)
{ domains, per-glb }

V(R |} (AAB)eF.ReA = (AAB)oF.R A (AAB)oF.RoB = (AAB)oF.R)
{ ®A,B: F <& F }

V(R 1} (AAB)eAoF.R = (AAB)sF.R A (AAB)oBoF.R = (ApB)°F.R)
{ AAB <« A, ANB < B}

true

I

0

The next task is to find conditions on the equations such that the constituent per P
satisfies PA = P.I A wA for all pers A and P.]: w <> w. We start with the per
corresponding to the law equation.

The functions f and g in the equation depend on the parameter type and this is
made explicit by writing f.A and g.A. From P.J: w <> w it follows using (5.35) that
PI AwA = wAo PI and we are looking for conditions on f.A and g.A ensuring
that P.A = wAo P.JI. A sufficient condition is given in the following lemma:

Lemma 9.27:

For all pers A:
fA=wmAcfl AN gA=wAogl AN flo(gv:w <> w

@A U (fAo(g.A) U g.Ao (f.AN) =
@A o (@I U (fIo (gD U gl (f.I))*)

a
wAU(f.Ae(g. A U g.Ao(f.A)u)F
= { ofA=wAofI AN gA = wAogl }
wAU (wAe flo(gl)vewA U wAogdo(f)uowA)*
= { distributivity }
wAU (wAo (flo(gl)w U g0 (fI)w)o wA)*
= { eflo(g)v:w <> w,wAowA = wA }
wAU (wAo (fo(gl)v U g.Io (fI)u))*
= { ofIo(g9):w <> w,wAewAd = wA; (9.28) }
wA U wAo (flo(gl)v U gIo(fI)u)*t
= { distribution, relators }
wA e (wlU(fdo(gI)e U g.Io(fI)u)")
O

The proof above used the following lemma about transitive closures:
Lemma 9.28:

AeR = AcRoA = Ao.Rt = (A-R)*
D .
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The transitive closure of a spec is defined using a Galois connection in this thesis but an
equivalent definition can be given using a least fixpoint: S* = p(X — SU S0 X).
The equivalence of both definitions is not difficult to prove and left to the interested
reader. We prove the lemma by:

AoR*¥ = (Ao R)*

= { wfusion, S* = p(X —» SUS-X) }
V(X 11 Ao (RURoX) = Ao RUAoRoAoX)
& { distributivity }

AocR = Ao Ro A
O

We still have to prove the naturality condition P.J: w <> tw. This is done in the
following calculation:

wlU (fIo(gl)e U glo(fI)v)T:w <> w

= { naturality }
wl:w <> w A (flo(gl)v U glo(fl))t:w <> w
<= { relators, naturality (see below) }

fIe(gv U gle(fllv:iw <> w
=
f

{ naturality, reverse }
Io (gI)U w > W

The condition here was already a condition in (9.27). The second step of the proof
above uses

R:F<»F = R:F<F

This result is the combination of the following two naturality properties:
R:F<F = R':F<&F
R:FA>F = R':FASF

We only prove the first one, the second one follows by symmetry:

FSoRt J R*oF.S
{ factors }
(F.S°R*)/F.S 13 R*
{ transitive closure, (F.S o R*) / F.S is transitive (see below) }
(FS<RY)/FS 3 R
{ factors }
FSe¢R™ 0 R-F.S

1l

The transitivity of (F.S ¢ R*) / F.S is proved by
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(FSoR*)/F.S 3 (FSoR*)/FS o (FScR*)/FS

= { factors, cancellation }
FSeRt 1 (FSoR*)/FS o F.S o R*
<= { cancellation }

FSoR* 3 FSoR*toR*
{ R* 2 RtoR* )}

true
O

Summing up, we obtained as conditions for the parameterisability of types constructed
by a law equation specified with functions f.A and g.A that it is sufficient that:

fA=wmAofl AN 9gA=wAogl A flo(gl)v:w <> w
The last condition is usually the result of separate naturality properties of f.I and g.I:

(929) fA = wAofl A gA = wAogl A flgl:w <> F,forsomere-
lator F.

The associativity law for non-empty join-lists is an example of a law where the equation
satisfies condition (9.29). The relator for this example is AQX = A + XxX and wA
has as constructors leaf.A: wA < A and join.A: wA < wA x wA. The functions
for the associativity equation are:

fA = joinA o join.AX1I o assoc A gA = joinA oI X join.A

We only check the conditions in (9.29) for f.A, the proofs for g.A being similar. The
constructor join.A can be written as wA o <. This is used in the following proof of
fA = wA-e fI

join.A o join.A x I o assoc
= { joinA = wAo + }
wAo = o(wAo +)xI o assoc
= { wA = @A~ wA, calculation rule, definition w }
wA o A+ WAXwWA o ¢ o (wAo +)xI o assoc
= { naturality < }
wA o + o WAXwWA o (Ao <)xI o assoc
= { relators, wA o wA = wAowl }
wA o > o WA X wA o (wle «>)xI o assoc
= { naturality + }
wA o A+ wAXxwA o ¢+ o (wlo «)xI o assoc
= { calculation rule, definition w, wA o wA = wAowl }
wAowlo < o(wlo «)xI oassoc
= { joind = wlo « }
wA o join.I o join.] x I o assoc

The other condition, f./: w «» F, is proved for relator F.R = wR X (wR x wR):
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wRowlo < o(wle ¢=)xI o assoc
= { relators, calculation rule }

wl o« R+ wRXwR o o (wlo +>)xI o assoc
= { naturality « }

wl o < o wRXwR o (wlo <)xI o assoc
= { relators, calculation rule }

wl o < owlIxI o (R + wRXxwR o +)xwR o assoc
= { naturality <, relators }

wl o < o (wle +)xI o (WR X wR) X wR o assoc
= { naturality assoc }

wl o ¢ o (wlo <>)xI o assoc o wR X (wR x wR)

So we can conclude that the type of non-empty join-lists is indeed parameterisable.

The next problem that we want to solve is finding conditions on the restriction equation
such that the corresponding per

PA = wAn (fAu-RA

satisfies PA = P.I A wA for all pers A and P.J: w <» w. The following lemma can
be used for the naturality requirement (instantiate with w for F' and (f.I)v o R.I for
S):
Lemma 9.30: (Naturality)

S: F1T — FT7 = FINS: F < F

O
Proof:
(FINS)oF.X
= { S§: F.TT — F.TT, distribution, relators }
FX N FTToSo F(TT o X)
= { domains }
FX N FIT S FT o (F.X)>
= { domains }
FX N (FX)<o FTT 0§ F.TT
= { domains }
FX 1 F(XoTT)oSoFTT
= { §: F.TT — F.TT, distribution, relators }
FXo(FINS)
a

So we obtain as condition (f.J)ve R.I: wTl — wTl. From P.J: w <» w and the
fact that @wA is a per follows that the condition P.A = P.I A wA is equivalent to
PA = wAo PJIowA. We calculate:
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wAo (@I N (f.I)ve RI) o wA
= { distribution, (f.J)oe RI: @wTT — @TT, @ T 3 wTT o« wA }
wAowlowA M wAo (fI)vo RIowA
= { relators, per A }
wA N wAo(fl)vo RIowA
= { ofA = flowA, RA = RI-wA }
wA N (fAuoRA

The condition (f.I)vo R.I: @wTT — wTT is normally obtained using type deduction
from R.I,f.I: — wTT. Combining the calculations above, we have derived as condi-
tion for the parameterisability of the subset type construction:

(931) fA = flowA A RA = RIowA A RIfI: — wTT

Height-balanced trees provide an example of a type where the equation satisfies these
conditions. The specs in the equation are

J.A = 0°9(1+ o height. Ao <) o wA and
RA = ((I+)UNU1+)0) o 0°9(1+ o height. A o) o wA,

where height is defined by
height. A & (A®;0° v (14 o maz)).

The first step in the proof that the conditions in (9-31) are satisfied is showing that
height.A = height.] o wA:

(A®;0° v (1+ o maz)) = (I®;0° v (1+ o maz)) o wA

<= { w-fusion, definition catamorphism }
V(X 11 0°v(1+ o maz) o A®(X o wA) = 0°v(1+ o maz) o I®X o wA)
< { monotonicity, relators }

VX 118X o AQwA = I®X o wA)
{ calculation rule, definition w }
true

We only prove f.A = f.JowA, the proof of RA = R.JowA being similar:

0°v(1+4 o height. A o <) o wA
= { height. A = height.] o wA }
0°v(1+ o height.] o wA o <) o wA
= { products }
0°v(14 o height.] o < o wA x 1) o wA
= { fusion }
0°v(1+ o height To<) o T + wAxI o wA
= { WA = A+ wAxwA, wA is a per, relators }
0°v(14 o height.] o <) o wl o wA

The proofs of f.I: — wTT and R.I: — wTT are also similar and we only do the proof
for f.I:
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0°v(1+ o height.] o <) o wl o wTT
= { relators, calculation rule }
0°v(1+ o height.] o <) o TT + wIlT X wTl o wl
= { fusion, 0*: — 1T }
0°v(1+ o height.] o < o @Il X wTT) o wl
= { products, relators }
0°v(14+ o height.] o @TT o < o wl X wl) o wl
= { fusion }
0°v(1+ o height.] o wTT o <) o I+(wl x wl) o wl
= { calculation rule, relators, height.I o wTT = height.I (see below) }
0°v(1+ o height o <) o wl

The last step used height.I o wTl = height.I which is proved by:

(0°v(1+ o maz)) = (0°v(1+ o maz)) c wTT
= { p-fusion, definition catamorphism }
V(X 11 0°v(1+ o maz) o I®(X e wTT) = 0°v(1+ o maz) o I®X o wTT)
{ calculation rule, relators }
V(X 11 0°9(1+ o maz) o IQ(X o wTT) = 0°v(1+4 o maz) o TTQ(X o wTT))
= { definition ®, fusion, monotonicity }
0°c7 = 0°TT
{0°:—7TT }

Hl

true

We can conclude that the type of height-balanced trees is indeed parameterisable.

9.2.6 Example: the Boom-hierarchy

The Boom-hierarchy is a hierarchy of types with laws that was first described by
Hendrik Boom and later became prominent by its use as the basis types of the Bird-
Meertens formalism {11, 12, 34, 35]. The types in the Boom-hierarchy are parameterised
(we use A for the parameter and B for the carrier) and have three constructors:

e [|: B <= TT, constructing an “empty” element.

e 7: B <« A, constructing a singleton element from an element of the parameter
type.

e +H: B «— BxB, joining two elements together.

The relator corresponding to these constructors is defined by
A®X & TT+(A+XxX)

We denote u(R®) by wR. For the base type of the hierarchy, the type without any
laws, the constructors are defined as follows:
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| = wdo —

T = whAo ¢ o —

H = wAhAo + o
We will show that all types in the hierarchy except the last, finite sets, can be param-
eterised. The first type in the hierarchy is the free type. Every subsequent type is
constructed by adding laws to the foregoing type of the hierarchy. The constructors
of the types in the hierarchy are constructed by pre-composing the constructor of the
free type with the new carrier.

The type Tree is made from the free type by adding laws making [ both a left and a
right unit of ++:

Treeo+Holal = TreeowA
Treeo+HoIn[] = TreeowA

The functions + o [Jal, wA and -+ o 4[] all have type wA <— wA and, for A = I,
naturality type @w <> w, so this type can be parameterised. We have

Tree = |lunit Arunit] 4

where per lunit is defined as in (9.8) from the functions ++ o []al and wA and per
runit is constructed from + o Ja[] and wA

The third type in the hierarchy is made from the second by adding a law making the
-+ operator associative. This is similar to the example with non-empty join-lists that
was used in the beginning of this chapter, trees with an associative join and units are
known as join-lists, here denoted by List. The equation for associativity law is the
following;:

List o + o ++xIoassoc = List o+ o Ix(+)

Both -+ o +xTI o assoc and + o Ix(+) have type wA <~ wA x (wA x wA) and,
for A = I, naturality type @ <> wx(wxw), so this type can also be parameterised.
We have

List = |lunit Arunit passo| ag
where per asso is constructed from ++ o Hx 1 o assoc and 44+ o Ix(+).

The fourth type in the hierarchy is the type of bags, constructed by adding a law
making + commutative. This type is denoted by Bag and the equation for the law is

Bag o -Hoswap = Bago -+

Both ++ o swap and ++ have type wA <~ wA x wA and, for A = I, naturality type
w <> wXw, S0 again we can parameterise. We obtain

Bag = [lunit Arunit passopcomm ] 46
where per comm is constructed from - o swap and +.

The last type in the hierarchy is the type of finite sets, constructed by adding a law
making +- idempotent. We denote this type by Set. The equation is :

Seto++olnl = SetowA
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The per-typing for H o Ial and wA is all right, both having type wA < wA, but
the naturality is a problem. We only have w <« w for -+ o Ial, so parameterising is
not possible with the techniques that have been developed here. We still have

Set = [lunit ATunit A assopcommpidem] 4

where per idem is constructed from -+ o Ial and wA but it is not clear whether there
exists a Set relator.

We obtain interesting results for conditions under which the types from the Boom-
hierarchy are domains of catamorphisms. It turns out that if the arguments of the
catamorphism obey equations similar to the ones for the constructors then the types
with laws are domains. An A®-catamorphism has as general shape (Rv(SvT')) where
R: — TT gives the action to be taken on empty elements, S: — A the action for
singletons and T': — I'xJ the action for the join of two elements. We abbreviate
(Rv(SvT)) to () to keep the expressions manageable. We start, using (9.21) for the
left unit law:

Dotrollal = Qewd
{ catamorphisms, constructors }
ToxQelar = 0
{ catamorphisms, constructors, Cartesian product }
To(ReTNa) = (0
{ distribution, R: — TT }
ToRaI-([) = ()
= { domains }
T o RaI o ([D< = (H)<

I

1L

Il

This means that the value of R must be a left unit of T for the range of the catamor-
phism. A dual calculation for the right unit law leads to the condition:

ToIARo (H)< = (H)<
The results of the calculation for the associativity law is the condition:

T o TXI oassoc o (D<x ((D<x (<) = T o IxXT o ()< x (()< x ()<)

The interpretation of this condition is that T is associative on the range of the cata-
morphism. For the symmetry law we obtain as condition:

T o swap o (oxQ< = T o Qex()s
So T must be symmetric on the range of the catamorphism. For Set we have a more
complicated situation. We are not able to remove the catamorphism itself from the
condition:

To0a® = 0O
A more complete treatment of the Boom-hierarchy as defined here can be found in the
work of Hoogendijk [34, 35], including for example how filter and reduce operations
can be defined.
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9.2.7 Example: Arrays

The datatype of Arrays was discussed by Bird in [12]. This is a parameterised type
with both laws and restrictions (we use A for the parameter and B for the carrier) and
has three constructors:

e 7: B <~ A, constructing a 1x1 array from an element of the parameter type.

® above: B «<— BXB, constructing a new array by putting one array above another
array.

o beside: B < Bx B, constructing a new array by putting one array beside another
array.

The relator corresponding to these constructors is defined by
ARX & A+(XxX+XxX)

We denote u(R®) by wR. For the free type corresponding to this relator, the type
without any laws and restrictions, the constructors are defined as follows:

T = whAo —
above = whAo & o
beside = whAo > o

Arrays satisfy three laws:

1. The above operation is associative
2. The beside operation is associative

3. The above and beside operations “abide” with each other: for arrays P, @, R
and S, the following equality holds:

(P beside Q) above (R beside S) = (P above R) beside (Q above S)

Or, in a more graphical form:
PlQ)_ |1 P]Q
R | S|~ RS

The restrictions for arrays are that only arrays with the same width can be put above
each other and that only arrays with the same height can be put beside each other.

Bird has severe problems handling the partiality of the above and beside constructors
and often has to add qualifications like “provided that (some expression) is defined” to
definitions. Our theory gives a formal justification for the assumptions that he makes.

The first two law equations can be expressed in the form of equation 9.6 as:
Array o above o abovexI o assoc =  Array o above o Ix above

and
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Array o beside o besidex I o assoc =  Array o beside o I x beside

We can transform the third law equation to a point-free form by assuming that the lhs
and rhs of the following equality are both applied to ((P,S),(Q,R)):

Array o above o besidex beside o (& x K)a((> x >) o swap)

Array o beside o abovex above o (K X >)a(K X > o swap)

This equation also has the correct shape (equation 9.6) that our formalism can handle.

We introduce four extra functions to express the restrictions on the construction of
arrays. We define catamorphisms that calculate the “lengths” of the 4 sides of an
array:

toplength & (1° v (K vadd))
bottomlength 2 (1° v (> vadd))
leftlength & (1° v (addv <))
rightlength & (1° v (addv >))

The function add above is the addition of natural numbers. We can express that only
two arrays with the same width can be placed above each other by demanding that

toplength o Array = bottomlength o Array

This equation holds on all “levels” of the array. If two arrays are placed above each
other, then the new top length can only be equal to the new bottom length if the top
length (= bottom length) of the upper array equals the bottom length (= top length)
of the lower array.

The equation can easily be transformed to the desired shape (formula 9.7) for restriction
equations:

toplength o Array 2 bottomlength o Array
bottomlength o Array 3 toplength o Array

The restriction that only arrays with the same height can be put beside each other is
expressed similarly:

leftlength o Array 1 rightlength o Array

rightlength o Array 1 leftlength o Array

Parameterising the Array construction, extending the construction above to a relator
is possible. The equations given above do have the naturality properties, (9.29) for
laws and (9.31) for subtyping, that are sufficient for parameterisability.

Checking the naturality properties does require some rather long, but not difficult
calculations. The calculations for the law equations are similar to the calculations used
for the associativity law for non-empty join lists and the calculation for the subtyping
equations is similar to that for height-balanced trees. The details of the calculations
are left to the reader.
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9.3 Transformers

The calculations with catamorphisms in section 9.2.6 show an interesting pattern. For
the left-unit law we calculated (with some substitutions and application of the rules
for disjoint sum):

(Ro(SVT)) e wAe > o <> o(whAo <5 o TT)al =

Rv(SVT) e = o ¢ o (RY(SVT) e < o TT)al o (Rv(SvT))
The subexpressions with wA and Rv(SvT) have a similar structure:

(Ro(SVT)) o @wA = @.(Rv(SVT)) o (Rv(SvT))
where X = X o = o = o (X o < o TT)al.
The proof of the equality only uses the following property of (Rv(SvT)), Rv(SvT)
and wA: .

(Rv(SVT)) e wA = Rv(SvT) o AQ(Rv(SvT))
The function @ satisfies the following condition for all R, S and T

ReS =ToA®R = Ro®.S = ®.TR
The function @ is an example of a transformer as introduced in Fokkinga’s Ph.D. thesis
[24], here translated to a SPEC-calculus definition:

Definition 9.32:(Transformer)

For relators F', G, H and J, the function @ is a transformer of type (F,G) — (H,J)
if for all R, S and T

GRoS8 =ToFR = JR-®S = &.T-HR
O

The categorical definition in [24] has functors instead of relators and R, S and T are
arrows with appropriate types. Many laws on an F-inductive type can be specified
using two transformers of type (F,Z) — (H,Z) for some relator H. For transformers
® and ¥ the equation in (9.8) becomes:

X o QuF = X o W.uF

The condition under which a catamorphism has the type with law as a domain can
also be simplified for laws constructed with transformers:

(R) o ®.uF = (R) o W.uF

{ ® and ¥ transformers (F,Z) — (H,Z), (R) e uF = Ro F.(R) }
®.R-H(R) = U.Ro H.(R)
&= { domains }

®.Ro (H.(R))< = U.Ro (H.(R))<

il

A special case arises for the equation X o d.uF = Xo w1F', the unit laws being
an example of this kind of equation. In general there is no transformer ¥ with type
(F,I) — (Z,Z) such that W.uF = uF, so specification with two transformers is not
possible. For this situation we calculate:
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(R) o ®uF = (B)ouF

<= { @ transformer of type (F,Z) — (Z,Z), (R) o uF = Ro F.(R) }
®.R-(R) = (R)
<« { domains }

®.Ro(R)< = (R)<

All laws in the Boom-hierarchy, except Set, can be specified using the transformer
methods described above. The unit laws have one transformer and pF, the associativity
and commutativity laws have two transformers. For Set we have on one side uF but
we are unable to find a transformer for the other side. This is a problem of the SPEC-
approach because there is a candidate, ®.X = X o ¢ o ¢ oIal, that would
work in a functional setting but this ® only satisfies the condition in the definition of
transformer for R’s that are left-imps.

Fokkinga uses transformers in his thesis to define algebras with laws. Given two trans-
formers ® and ¥ he considers algebras 7 such that ®.7 = W.r. These are the lawful
algebras and they also form a category. Initial objects exist under suitable conditions
in this category of lawful algebras. This initial object corresponds to our type with law
constructed using the method described in this chapter. His method is potentially more
powerful than our method in the sense that he also has the possibility to specify laws
on F-algebras with transformers of type (F,Z) — (H,J) where J is not an identity
functor while our equational definition method corresponds to using (F,Z) — (H,T)
transformers. However, this freedom is not exploited in his thesis. A later article by
Fokkinga [25] uses equations similar to ours as the basis for a transformer approach to
datatypes with laws. The transformer method is an elegant way of introducing laws in
a categorical theory of algebra because of its simplicity, avoiding the complications of
the more traditional methods using signatures (see for example [22, 57]). A weakness of
the transformer method is that there does not seem to be a simple way of generalising
the construction method to subtypes like height-balanced trees.

There is still an important open question about the relationship between the trans-
former method and our method. It is unknown whether every equation that is allowed
in our system can also be expressed using transformers. We don’t know any counterex-
amples but we also have no idea how such a result could be proved.

9.4 Abstract Datatypes

The theory developed for constructing a single inductively-defined type can also be
used for the construction of mutually recursive inductively-defined types. This is done
by working in a binary SPEC-calculus if we are defining two types, in a ternary SPEC-
calculus for three types etc..

A simple example of this technique is the construction of the natural numbers as two
types, the even and the odd numbers. We have three constructors:
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0°: even < TT,
00 even < odd and
oe: odd < even.

The corresponding relator is defined by
F.(A,B) & (TT+B,A)

The least fixed point of F is a per consisting of two components, the even numbers
and the odd numbers. The constructors can be defined in the usual way. Adding laws
and restrictions to inductive types in non-unary SPEC-calculi is performed using the
same techniques that we developed for unary SPEC-calculi.

Abstract datatypes can not only have multiple carrier types but can also have functions
with as range a type that is not being constructed by the constructors. A good example
is the abstract datatype of stacks. Although there is only one type being constructed,
Stack, normal specifications also define two functions that do not have Stack as range.
Constructing the constructors and extra functions of an abstract datatype is not always
possible using our methodology, but we show that, if the extra functions are specified
using equations of an appropriate shape, we can still construct solutions for equations.
We demonstrate the construction method using stacks as example.

The constructors for stacks over a given type A are:

empty : Stack <— TT
push : Stack <— Ax Stack
pop : Stack < Stack

with equations

pop o push = > o AxStack
TT opushu 377 ° pop

Stacks also have two extra functions:

top: A < Stack
1sempty : IB <— Stack

These functions are specified by the following equations:

top o push = <o AxStack
isempty o empty =  true®
isempty o push = false® o Ax Stack

Every equation has the same shape; the function f that is being defined satisfies
fog =h

where g and h are functions independent of f and the type judgements of all functions
match. Applying o gu to both sides yields:

f ogogu = ho gu
Because g is functional we can conclude
f 3 hogo
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and f can be defined as h o gu on the range of g. For the functions of the stack datatype
we get as candidates:

top = < o pushu
isempty = true® o emptyy U false® o pushu

These are partial definitions; the functions are not defined outside the domain that was
specified by the equations. Larger solutions to the equations may exist. The particular
shape of the equations allows us to find candidates for a solution to the specification,
but there are of course also other shapes of equations for which solutions exist.

9.5 Conclusion

We showed that many equational definitions of properties of inductive datatypes can be
captured in a per-lattice based theory of datatypes. The most important result of this
chapter is that many common forms of equations in definitions of abstract datatypes
are instances of one general equation in the per lattice and that the greatest solution
of this equation is the datatype that is to be constructed.
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Chapter 10

Conclusions

This thesis is intended to contribute to a long tradition in the application of the cal-
culational method to the mathematics of program construction. The tradition, begun
by Dijkstra and Feijen, has been exposed in a number of theses of which we men-
tion particularly that of A.J.M. van Gasteren [27] on the presentation of mathematical
proofs.

The calculational method has as goal to shift the balance between inspiration and per-
spiration. Inspiration is identifying the right concepts and finding the right formalisms
in the process of managing complex problems. Transpiration is the hard work of calcu-
lating a solution to the problem, once the inspirational process is complete. Inspiration
is “hard” because it requires intellectual effort, whereas transpiration is “hard” in the
sense of requiring much toil. An optimum balance is achieved when the final calculation
is guided by the shape of the mathematical formulation of the problem.

The topic of this thesis is the use of a point-free relational calculus for modelling in-
ductive datatypes with laws and restrictions. We chose to explore the use of point-free
relational calculus rather than a pointwise calculus in order to achieve a greater degree
of conciseness. Proofs using the point-free calculus are in general much easier to con-
struct than pointwise proofs since the latter tend to involve complicated quantifications
with a myriad of dummies. Working with a point-free calculus has not only proved to
be an advantage for the calculus used in this thesis, but also in other formalisms like
category theory or the Bird-Meertens formalism.

The choice of axioms and mathematical tools turned out to be very important for the
usability of the calculus. Some important aspects of our methodology that turned out
to be critical are:

e The use of complete lattices. Every monotonic endofunction on a complete lattice
has least and greatest fixedpoints, giving a simple and powerful method for the
definition of new constructions.

e Using Galois connections. This is also an important tool for the definition of
new constructions. Their use in proofs is important too. It turns out that many
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algebraic properties of the constructions we are interested in follow immediately
from general Galois connection properties. The use of Galois connections has
also simplified many proofs.

e Fusion properties. Fusion properties arise from the combination of fixpoints and
Galois connections. Elsewhere [9, 41, 44] they have proved to be indispensable
in program transformation. Here they have been invaluable in condensing proofs
and suggesting proof strategies.

e Not using complements. This is to some extent a matter of style because a
relational calculus with complements would have been equally usable for the
purposes of this thesis. Limiting the possibilities of the calculus proved useful
in finding elegant proofs for properties that were previously proved with “ugly”
proofs involving complements.

The work in this thesis has been much influenced by earlier theories of datatypes based
on category theory, although we have not needed to use category theory directly. A
particular influence has been the work of Malcolm [42] which made the categorical
notion of an initial F-algebra accessible to a much wider audience and laid the basis
for a generic theory of free datatypes. Also relevant has been Fokkinga’s [24] fine-tuning
of Malcolm’s work and his extensions to types with laws using transformers. One of
the reasons why we did not use category theory more heavily is that a combination of
laws and restrictions seems difficult to formulate in category theory.

Characteristic of our approach is that types and programs are both relations and can
be mixed in calculations. In our calculus a relator is a single mapping from relations
to relations, whereas in category theory a functor is a pair of mappings, one defined
on objects (types) and one defined on arrows (programs). In addition, a natural trans-
formation in our system is a single relation as opposed to a family of arrows. The
internalisation of these notions in a single calculus simplifies calculations by reducing
the formal overhead. :

The relational calculus is a rich calculus and there are several possibilities for modelling
types. The method used in this thesis, using partial equivalence relations (pers), led
to the discovery of a new complete lattice on pers where the ordering corresponds to
subtype and quotient type formation.

Inductive types, where every element can be constructed using a finite number of
applications of a constructor, are defined using greatest fixed points of monotonic
functions in the per-lattice. The collection of inductive types with a given recursion
structure, specified by a relator, forms a complete lattice with the same ordering as
the per lattice. Inductive types satisfying law and restriction equations are constructed
using a Galois connection between the per lattice and the lattice of the inductive types.
An important result is that law and restriction equations are both instances of a more
general class of equations and can be combined without problems. This contrasts
with other formalisms where laws and restrictions are dual notions and combination is
difficult.
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Many recursively defined programs on inductive datatypes can be defined as unique
solutions of equations. Doornbos proposes the notion of F-reductivity [19] in order
to model termination properties of structural recursion. In essence, F-reductivity for-
malises the idea that elements of an inductive datatype must be reduced within a
finite number of steps to their basic components. Doornbos considers a special class
of equations for which the existence of solutions is trivial, but the uniqueness of so-
lutions makes essential use of the reductivity property. The disadvantage is that the
theory does not appear to extend to types with laws. The main distinction between our
theory of F-inductivity and the theory of F-reductivity can be formulated as that F-
inductivity formalizes that every element of an inductive datatype can be constructed
with a finite number of steps. The shape of equations that we consider for specifying
structural recursion is such that the uniqueness problem can be resolved by using F-
inductivity, but the existence of solutions remains an issue when types with laws are
combined with complicated patterns of structural recursion.

The programs resulting from the constructions above are relations and can be non-
deterministic. Functionality requirements are not necessary for having unique solutions
to the equations used for specifying recursive programs on inductive datatypes. The
relevance of this to practical program development is not discussed here but is evident
in many publications. See for example Bird and De Moor [10] or Berghammer and von
Karger [8].

Another topic for further research is infinite datatypes, types containing elements that
can not be constructed with a finite number of applications of constructors. A typical
example of such a datatype is infinite lists. The definition of an inductive datatype
that is given in this thesis has two components, one specifying the recursion structure
and one specifying the finiteness of construction of elements. It seems that dropping
the second component from the definition would allow infinite datatypes but the con-
sequences of this choice are not clear yet.

A small open problem that needs further research is the existence of a finite set relator.
It is not difficult to define such an operator on pers, but extending the operation to all
specs in the standard way results in a function for which we are unable to prove that
it is a relator.

There is also a more fundamental problem with the calculus that is used in this thesis. A
datatype constructor that is commonly used in functional programming is the function
space constructor. This construction can not be modelled in our calculus because of
cardinality problems. Functions having function (or relation) parameters, like the fold
in Miranda/Haskell/Gofer, are not objects of the calculus and have to be defined in
other ways, for example as solutions of parameterised equations. How this problem
can be solved is not clear yet. One approach might be weakening the axioms of the
calculus but this will probably invalidate many of the results obtained thus far.

The relational calculus is a small calculus but proved to be a surprisingly strong tool for
modelling (inductive) datatypes and programs. The simplicity of the characterisations
in the calculus of many important notions about datatypes and programs and the ease
of calculation with these notions shows that the relational calculus is an excellent tool
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for reasoning about these subjects.
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Samenvatting

Introductie

Het- onderwerp van dit proefschrift is de wiskundige modellering van inductieve
datatypes en recursief gedefiniéerde programma’s op deze datatypes. Inductieve
datatypes zijn types waarbij de elementen van het type weer subcomponenten van het
type kunnen bevatten. Enkele veel gebruikte voorbeelden van inductieve datatypes zijn
0.a. binaire bomen, waarbij bomen kunnen worden geconstrueerd door het samennemen
van twee subbomen, en cons-lijsten, waarbij een nieuwe lijst kan worden geconstrueerd
door het op kop toevoegen van een waarde aan een bestaande cons-lijst.

De twee bovengenoemde types zijn voorbeelden van zgn. vrije types. Dit zijn types
zonder wetten en restricties die de constructie van elementen beinvioeden. In de prak-
tijk zijn er echter ook veel datatypes waarbij wel wetten en restricties gelden. Wetten
definiéren gelijkheden tussen elementen, zoals b.v. de commutativiteit van de vereni-
gingsoperator op twee bags bij het datatype bag: AUB = BUA voor alle bags A en
B. Restricties leggen beperkingen op bij de constructie van elementen, b.v. bij hoogte-
gebalanceerde binaire bomen mogen de hoogtes van de linker en rechter subboom van
een element ten hoogste 1 verschillen.

Grant Malcolm ontwikkelde een elegante wiskundige theorie voor vrije datatypes en
recursieve programma’s op deze types, gebruikmakend van zgn. F-algebra’s uit de
categorie theorie. Maarten Fokkinga breidde deze theorie later uit naar types met
wetten. Hun theorién behandelden echter geen types met restricties. Andere theorién
van datatypes kunnen wel wetten en restricties modelleren, maar behandelen deze
vaak als duale concepten, wat het combineren van wetten en restricties in één datatype
bemoeilijkt.

In dit proefschrift wordt een wiskundig model voor inductieve datatypes ontwikkeld
waarbij wetten en restricties op een uniforme manier worden behandeld en probleemloos
te combineren zijn. Wetten en restricties kunnen via vergelijkingen worden gedefiniéerd.
Recursief gedefiniéerde programma’s op de inductieve datatypes kunnen worden gespeci-
ficeerd als unieke oplossingen van vergelijkingen en de theorie uit dit proefschrift geeft
condities waaronder oplossingen van deze vergelijkingen bestaan.

Categorie-theoretische begrippen zijn een bron van inspiratie voor de theorie uit dit
proefschrift, maar de modellering die hier gebruikt wordt wijkt duidelijk af van wat
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gebruikelijk is. Als basis wordt een puntvrije relationele calculus gebruikt. In tegen-
stelling tot categorie theorie, waar alles strict getypeerd is, is deze relationele calculus
ongetypeerd. Relaties worden gebruikt om zowel datatypes als programma’s te model-
leren. Typering wordt intern, in de calculus, gedefiniderd. Het proefschrift bevat een
uigebreide introductie op de relationele calculus (SPEC-calculus) die als basis van de
modellering wordt gebruikt.

Naast de relationele calculus spelen volledige tralies een belangrijke wiskundige rol
in dit proefschrift. Een volledig tralie heeft als belangrijke eigenschap dat monotone
functies altijd unieke extreme fixpoints hebben. de zgn. Knaster-Tarski stelling. Dit
biedt de mogelijkheid om canonieke representaties te definiéren voor begrippen waarbij
categorie-theoretisch alleen een klasse van “isomorfe oplossingen” gedefiniderd wordst.
In de categorie theorie moet vaak ook nog veel gedaan worden om het bestaan van
“oplossingen” aan te tonen.

Een andere wiskundige techniek die in dit proefschrift veel gebruikt wordt is het
definiéren van nieuwe begrippen met behulp van Galois connecties. De combinatie
van volledige tralies, fixpoints en Galois connecties maakt het vaak mogelijk om een-
voudige en compacte bewijzen van stellingen in een calculationele stijl te construeren.
Voor bewijzen en afleidingen wordt in het hele proefschrift zoveel mogelijk deze stijl
gebruikt. Dit sluit ook goed aan bij de keuze voor een puntvrije relationele calculus.

Constructie van datatypes en programma’s

Datatypes en programma’s worden beide gemodelleerd als relaties. De partiéle equiva-
lentie relaties (pers) uit de relationele calculus worden gebruikt voor de representatie
van datatypes. Typering van relaties kan dan worden unitgedrukt in de relationele
calculus zelf. Ook standaard begrippen als functionaliteit, injectiviteit, surjectiviteit
en totaliteit kunnen relationeel worden gedefiniéerd.

In dit proefschrift wordt een nieuwe ordening op pers geintroduceerd waarbij de pers
een volledig tralie vormen. De interpretatie van deze ordening is dat een type “kleiner”
is dan een ander type als het eerste type kan worden geconstrueerd uit het tweede
type door het toevoegen van extra gelijkheden (wetten) en het weglaten van elementen
(restricties). Het blijkt dat deze ordening de verbanden tussen types veel beter kan
weergeven dan de standaard relationele ordening op pers.

De categorie-theoretische aanpak van Malcolm, Fokkinga e.a. is gebaseerd op categorién
waarbij de objecten datatypes zijn en de pijlen functies. In dit proefschrift wordt een
categorie (Difun) gedefiniéerd die in vele opzichten vergelijkbaar is met de door hen
gebruikte categorieén. De objecten zijn pers en de pijlen zijn de zgn. difunctionele
relaties.

De categorische constructie van datatypes vormt de inspiratie om de relationele calcu-
lus zodanig uit te breiden dat dezelfde constructies ook in Difun mogelijk zijn. Voor
categorische begrippen zoals functors e.d. kan relatief eenvoudig een corresponderend
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begrip in de relationele calculus geconstrueerd worden. Ook de constructie van ba-
sistypen, zoals Cartesisch product en disjoint sum, is na een kleine uitbreiding van de
relationele calculus in Difun mogelijk.

Een categorie van F'-algebra’s, die categorisch de basis vormt van de modellering van
vrije datatypes, kan eveneens met behulp van Difun worden gedefinieerd. Een bijzon-
dere klasse van F-algebra’s, de F-inductieve algebra’s, speelt hierbij een belangrijke
rol. Deze klasse representeert die inductieve datatypes waarbij ieder element met een
eindig aantal applicaties van constructoren te construeren is. De F-inductieve alge-
bra’s blijken te kunnen worden gepartitioneerd in klasses van onderling simulerende
datatypes. Iedere klasse van elkaar simulerende datatypes blijkt één bijzonder ele-
ment te bevatten dat kan worden gebruikt als canonieke representant van de klasse.
Deze representanten (F-inductieve types) vormen samen weer een volledig tralie met
de eerdergenoemde ordening op pers als ordening. Het lege type vormt de bottom van
het tralie, en het vrije type de top.

Voor de vergelijkingen die wetten en restricties definiéren wordt als oplossing een F-
inductief type gezocht waarbij het kleinste aantal elementen uit het vrije type zijn
samengevoegd of verwijderd. Dit betekent dat de grootste oplossing in het tralie van
de F-inductieve types wordt gezocht. Veelgebruikte vormen van vergelijkingen voor
wetten en restricties kunnen worden getransformeerd naar een vorm waarbij een groot-
ste fixpoint van een monotone functie op het tralie wordt gevraagd. Omdat wetten en
restricties allebei grootste oplossingen zijn, zijn ze eenvoudig met elkaar te combineren.

In het proefschrift wordt de constructie van een aantal bekende datatypes gedemon-
streerd. Voorbeelden die behandeld worden zijn o.a.: natuurlijke getallen, cons-lijsten,
hoogte-gebalanceerde bomen, de types van de Boom-hierarchie (Tree, List, Bag en Set),
stacks en arrays. Het blijkt dat de vergelijkingen van de wetten en restricties (indien
aanwezig) van deze types de juiste vorm hebben om de constructie van het datatype
met behulp van de theorie uit dit proefschrift mogelijk te maken.

Een ander onderwerp dat besproken wordt is de constructie van geparametriseerde in-
ductieve datatypes. Hierbij wordt, gegeven één of meer argumenttypes, een inductief
datatype geconstrueerd. De cons-lijst constructie kan bijvoorbeeld geparametriseerd
worden met een argument voor het type van de lijstelementen. Als als argument
booleans gebruikt worden, zal de typeconstructie als resultaat cons-lijsten over de
booleans hebben etc.. Parametriseerbaarheid is geen probleem bij vrije types, maar het
blijkt dat de vergelijkingen voor wetten en restricties aan een aantal extra eisen moeten
voldoen om een nette parameteriseerbare type constructie te krijgen. De extra eisen
op de vergelijkingen zijn zogenaamde “natuurlijkheids”-eigenschappen die specificeren
dat de typeconstructie niet “in” het argumentdatatype mag kijken bij de wetten en
restricties.

Recursieve programma’s op de inductieve types kunnen ook met behulp van vergelij-
kingen gespecificeerd worden. Bij een grote klasse van recursiestructuren blijkt dat de
inductie eigenschappen van het datatype garanderen dat er ten hoogste één oplossing
van de specificerende vergelijkingen bestaat. Of er werkelijk oplossingen bestaan blijkt
af te hangen van de vergelijkingen voor het datatype en de operaties in het recursieve
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programma. Restricties blijken geen invloed te hebben op het bestaan van oplossingen,
maar wetten kunnen het bestaan van oplossingen onmogelijk maken.

In het proefschrift worden ook nog een aantal onderwerpen voor toekomstig onderzoek
besproken. Interessante open problemen bestaan er o.a. bij datatypes met oneindige
elementen (b.v. oneindige lijsten zoals die gebruikt worden bij functioneel program-
meren) en bij het bestaan van oplossingen voor de vergelijkingen van recursieve pro-
gramma’s als de recursie structuur ingewikkeld is en er wetten zijn voor het datatype.
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STELLINGEN

behorende bij het proefschrift

Inductive Datatypes with Laws and Subtyping

A Relatio;al Model

van

Ed Voermans

. De relationele calculus is een uitstekende manier om inductieve datatypen te
modeleren.

. Alhoewel het volledige tralie zijn van een ordening een zware eis is, is het ge-
bruik ervan geheel gerechtvaardigd vanwege de grote calculationele voordelen.

. Galois connecties vormen een fundamenteel onderdeel van de wiskundige fun-
dering van de informatica en zouden al vroeg in een informatica studie behan-
deld moeten worden.

. De per ordering <1 (p. 65 van dit proefschrift) is de natuurlijke manier om
verbanden tussen datatypen via wetten en restricties te formaliseren.

. De vaak geuite bewering (zie o.a. [1]) dat adaptive coding altijd superieur is
aan semi-adapative coding is niet waar. Dit hangt af van de gebruikte mod-
elering voor de kans distributies bij semi-adaptive coding.

[1] Text Compression; Timothy C. Bell, John G. Cleary and Ian H. Witten;
Prentice Hall 1990

. Statische modelerings methoden voor datacompressie houden te weinig reken-
ing met de interne structuren van te comprimeren datatypen.

. Het verschil in garantie voorwaarden voor computer software en computer
hardware geeft een duidelijke indicatie van het verschil in kwaliteit van het
productie proces.

. Het rendement van besparings maatregelen voor energie en water wordt groter
als het vastrecht wordt afgeschaft en alle kosten worden opgenomen in de prijs
per m® of KWh.



9.

10.

11.

De profilering van algemene universiteiten t.0.v. technische universiteiten op
het gebied van beta-opleidingen berust meer op propaganda overwegingen dan
op wetenschappelijke of educatieve gronden.

Het zou verboden moeten zijn om van bestaande gebruikers geld voor “up-
grades” van software te vragen totdat alle bekende fouten verholpen zijn.

De Nederlandse gewoonte om 1 wachtrij per kassa te gebruiken, i.p.v. een geza-
melijke wachtrij voor alle kassa’s, geeft aan hoe weinig Nederlandse bedrijven
geven om de tijd van hun klanten.
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