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1 Introduction
This report presents a set of Object-Oriented (OO) programs that should help the reader to design OO programs
for High Energy Physics reconstruction. The writing of these examples seems appropriate at a moment that a
large group of people is leaving the FORTRAN language and embrace the OO concepts [Boo94]. Talking with
people shows that the step from FORTRAN to C++ [Str97] is easily made. Positive comments on C++ usually
concern the pointer handling in C++. Most people that start with OO design are looking for a guide for choosing
the appropriate classes. The creation of a class specification that later hides many implementation details is not
easily understood. It is difficult to give reasons why one design is better than another (motivation of the design).

Apart from the performance and functional aspects of the software product other aspects can be important as well.
OO languages and techniques are generally recognised to be a better vehicle to guarantee several non-functional
aspects (e.g. adaptability, modularity).

OO languages facilitate the modelling of real-world objects. This makes it easier to verify that specifications meet
the requirements. The step from loose requirements to specification is smaller. However, the accompanying design
needs more thought to meet the more detailed and complex specification.

OO languages help to hide tedious implementation details. The resulting software can therefore, with less side
effects, be modified at a few well defined places. Extension of the software is more easily possible because the
language helps in creating objects with small interfaces thus limiting the number of places where code must be
adapted or extended.

A method needs to be found to bridge the gap between the C++ programmer and the OO designer. The first knows
how to make a working C++ program, the second knows how to create a set of classes and objects that meet
several non functional constraints (such as: different implementations are supported, classes can be reused in other
programs). The courses by Kunz are well appreciated by most and give a manual for the language. They provide
a limited insight in the design process. The CERN recommended books on software design comprise the most up
to date and yet accepted reading material. However, the existing literature does not seem to be convincing to the
physicist. A reason can be that the cited examples and constraints are not felt to be significant to the physicist’s
problems. It was therefore thought advisable to create a set of examples that are recognised as relevant examples.
Several implementations should be provided for these examples. Disadvantages and advantages of the different
designs should be pointed out. The elaboration of examples that refer to the patterns in the book Design Patterns
[GHJV94] seemed reasonable. The use of the STL library [MS96] was recommended.

The method adopted here is to start with a simple example, provide a simple solution and then complicate the
problem or extend the boundary conditions. Examples were found by listening to presentations by persons from
different projects within CMS.

The following examples are worked out in this report:

1. SiBT [ea96] calibration Good opportunities for layering and abstraction are introduced by looking at as-
pects of the detector that need to be hidden to the different software components.

2. Detector layersA complex set of complex objects with a structure that should support efficient track recog-
nition can be proposed. The opportunity for using STL is exploited.

3. Local pattern recognition (in progress)An application of the open-closed principle as elaborated for CMS
reconstruction.

4. Reconstruction algorithm versions (not done)The Ecole Polytechnique people introduced the concept of
sheets to cater for different versions of the algorithms. The introduction of a pattern from [GHJV94] seems
advisable.

The readers are assumed to be familiar with the Object Methodology Tool (OMT) notation used for the Ratio-
nal/Rose tool. Explanations of the meaning of class diagrams and scenario diagrams are not provided. The reader
is assumed to have read the Booch book on the subject.

The software described in the examples is available. Exercises are specified to assist the reader in trying different
design issues. The best way to learn handling a new technique is by applying the rules and see what they do for
you.

The number of comments in the code have been kept low. Quite a lot of the code is described in the text and the
comments in the code only help to focus the attention of the reader. In principle every method should have a header
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that describes the purpose of the method and its pre- and post- conditions. This is not done for the same reasons.
Entry assumptions are usually described in the text and the end results of the method as well.

The main purpose of these examples is to show possible class structures. No emphasis is placed on finding fast
track fitting algorithms or complex detector structures. Therefore, the examples only use simple straight line fits
and detectors with a simple geometry.

Layering is a well known and important technique to structure the software. The software is divided in layers. Each
layer uses the facilities of the layer immediately below. A layer does not see the implementation of this layer or the
facilities of the layers that are lower. Each layer delivers higher level abstractions than the layer below. Layering
is one of the issues in the presented examples.
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2 SiBT example
The first example is based on the work associated with the Silicon Beam Telescope (SiBT) that is developed by
the Helsinki Institute of Physics. At the time of writing, SiBT is installed at CMS/H2 testbeam at CERN. It was
chosen because at that time the conversion from Geant3 to Geant4 was undertaken and the design issues related
with the associated SiBTOO software are also met in the context of CMS reconstruction software.

2.1 SiBT description

The telescope is built on an optical precision bench. The telescope consists of 8 assemblies of silicon detector
strips called planes. The planes are placed in pairs such that one plane of a pair is aligned horizontally and the
other plane is aligned vertically. The plane pairs are evenly spaced and the distance between the first and the last
plane is approximately 50 cm.
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Figure 1: Diagram of SiBT layout (courtesy of Aatos Heikkinen)

Fig. 1 (not on scale) explains the basic SiBT properties. A particle passing SiBT from front to end excites the
silicon strips through which it passes, thus provoking an electronic signal from the crossed strip and some of its
neighbours depending on the particle energy and momentum. In Fig. 1 the first plane is vertically aligned and
the second plane is horizontally aligned. The signals recorded in the vertically (horizontally) aligned planes with
horizontal (vertical) strips inform about the y- (x-) coordinate of the intersection of the particle trajectory with the
plane.

A strip provides two digital numbers: a noise and a signal number. The noise relates to the signal level when no
particles pass. The signal is a measure for the excitation of the strip by a particle. The decision whether a particle
has excited a strip is based on the signal/noise ratio that should be larger than a plane dependent constant. The
criterion for the passage of a particle is given by: at least two neighbouring strips have the required signal/noise
ratio. The track of a particle is determined by the measured excitations of the silicon strips. A sequence of
three to four horizontal measurements is called a horizontal projection and a sequence of three to four vertical
measurements is called a vertical projection.

The planes are carefully aligned. However, small misalignments may subsist. These are measured during a calibra-
tion session. A set of measurements of well defined particle tracks is used. Through each set of track measurements
a straight line is fitted. For each plane the difference between the measured interaction coordinate and the point
where the fitted line crosses the plane is determined. Statistics on the differences are done to establish the realign-
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ment coordinates of the individual planes.

2.2 Analysis
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Figure 2: Class diagram based on SiBT analysis

SiBTOO is the model of the SiBT detector written in an object oriented language (C++). SiBTOO has a certain
configuration. A number of planes (8) at given positions are composed of a number of strips (1024). A plane has
a horizontal or vertical orientation determined by the orientation of the strips. Above, a class diagram based on
the analysis of the problem domain is presented. The analysis is based on the physical lay-out of SiBT and the
following two use-cases: Find tracks and Calibrate SiBT.

1. Find tracks An event consists of a set of acquisition values generated by SiBTOO or read from disk (off-line
case, simulation) or recorded by SiBT (on-line case). All acquisition values are associated with strips that
can be activated by the passage of one or more particles. Activated strips are recognised by the acquisition
values. A hit is represented by a strip of which the value satisfies a number of criteria. Neighbouring hits of
the same plane are combined to a Cluster. Clusters from planes with the same orientation are combined to a
candidate projection. A projection is a candidate projection of three to four clusters through which a straight
line can be fitted. A track is the combination of two projections, one from each orientation. Per event one
or zero tracks are returned. Difficult to solve ambiguities arise when more than one track is created. For
simplicity reasons this is not addressed.

2. Calibrate SiBT A set of tracks is used to determine the best alignment constants for the eight planes of
SiBTOO. A number of times the following calibration procedure is done. A straight line is fitted through all
tracks of the set. For every track from the set for every plane the difference between the cluster coordinate
and the straight line coordinate is calculated. The mean and the deviation of the offsets of a given plane over
all tracks are calculated. From these values an improved set of alignment constants is calculated.
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The above two use-cases and the structure of SiBTOO lead to the identification of a certain number of classes and
their associations shown in Fig. 2.

While defining the classes, one should keep in mind that some boundary conditions exist: the configuration of
SiBTOO can change, the calculation of projections can change, the track finding and line fitting can change. The
calibration can change. Instead of at most one track, several tracks can be returned. The off-line treatment of
SiBTOO should resemble the on-line SiBTOO as much as possible.

2.3 Design

The scenario diagrams are used to show where the responsibilities are put for the different classes identified above.
The objective is to hide as much as possible unnecessary details concerning a given class from the other classes.
Main is the actor for the use-cases mentioned above. A first design decision is to hide the structure of SiBTOO from
Main that provides the acquisition values received from the equipment. The SiBTOO class is made responsible for
the calculation and assignment of values to the strips as defined by the acquisition values stored in Event. In this
way modifications in the SiBTOO hardware are hidden toMain.

Track fitting To have close resemblance with the on-line case, SiBTOO is modelled to receive one event at the
time and find the tracks corresponding with the event. In the off-line case a set of events can be calculated or
fetched from a storage medium after which SiBTOO is invoked once for every event from the set.

Because planes differ in orientation, offsets and possibly the number and quality of strips can differ, SiBTOO
distributes the unmodified acquisition values of the events over the planes. Acquisition values contain encoded
results of SiBTOO. Per strip, the noise and signal values are stored. At some time in the future the event contents
can be changed. For example, instead of returning the acquisition values of all strips, only activated strips are
returned by the hardware and the acquisition values must contain the strip and plane identifier. The planes calculate
the individual strip values and assign them to the strips. Differences between planes are localised to the plane and
not visible to SiBTOO as a whole.

Main TrackPlane

Assign(value)
Assign(values)

FindTracks(event)

SIBTOO

FindProjection

ProjectionStrip List Projection Line

GetCluster

CreateTrack

Valid?

Createprojection

CreateCluster

Fit

Figure 3: Scenario for track fitting

A scenario for track fitting is shown in Fig. 3. This represents one of a set of possible scenarios. This one is
chosen as a first possibility based on some design criteria explained below. Design decisions concern the choice of
classes that contain cluster recognition code. Clusters could be recognised by the plane or by SiBTOO. In favour of
SiBTOO is: clusters from different planes need to be visible to the whole of SiBTOO to later create projections. In
favour of the plane is: each plane has a specific orientation and delivers either a horizontally or vertically projected
cluster; consequently, there are two types of clusters as there are two types of planes (horizontally and vertically
aligned). We choose the plane for the location of the cluster calculation code. This implies that the Cluster class
must be defined such that they contain sufficient information to construct a track. In this design, alignment and
conversion factors are hidden in the planes responsible for creating the clusters. The location of identified clusters
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(in the plane or in SiBTOO) cannot be determined yet.

Clusters are calculated from the plane- and strip- characteristics and represent a point in space. The cluster contents
is based on the needs for projection and track recognition in a Cartesian coordinate system independent of SiBTOO
geometry. The appropriate geometry of a track, line, circle or helix can be chosen independent of the SiBTOO
properties. Information about the size of the cluster and the intensity of the signal must be foreseen for later
extensions when more than one track may pass through a plane and a cluster can represent the passage of one or
more particles.

The SiBTOO object takes all clusters from either the horizontal or the vertical planes and creates horizontal and
vertical projections. All possible combinations of clusters from four or three different planes with the same ori-
entation are tried. Two possibilities are immediately obvious: (1) the projection finds the appropriate (vertical or
horizontal) planes and selects a given cluster from each plane and (2) SiBTOO selects all posible clusters combina-
tions from the planes and creates a projection with as parameter the selected cluster set. During the development of
the program a third possibility was implemented. A projection-list is created with as parameter the set of horizontal
or vertical planes. The projection-list creates as many projections as there are combinations of three or four clusters
belonging to different planes with the same orientation. This choice allows to encapsulate the cluster selection for
projection finding into one class and makes the cluster independent of the plane layout or plane characteristics.

TheValid method of the projection returns True if it can fit a line through the clusters.

To create a projection from the clusters stored inside the planes, the following design is proposed. The location of
the cluster can be fixed inside the planes. The clusters in the plane are ordered in a list. By asking a plane for the
current or next cluster, all possible combinations of clusters, one from each plane can be stored into projections
(lists of clusters). SiBTOO creates a projection-list. The projection list creates projections to which clusters from
different planes are added. Each projection tests whether the proposed cluster list is a valid one by fitting a line
through them.

All valid projections are combined to all possible tracks by selecting all possible pairs of horizontal and vertical
projections. One single track is returned toMain if one vertical and one horizontal projection is found, otherwise
a set of zero tracks is returned toMain. Extensions for the return of more tracks will be considered for the design
but are not actually implemented.

The track finding algorithm is hidden fromMain. Cluster determination is hidden from SiBTOO thus catering for
plane dependent cluster calculations.

The current design has consequences for the initialisation. When SiBTOO is activated with new acquisition values
and new strip values, references to formerly calculated clusters, projections and tracks must be removed.

Main

Align

Get(statistics)

StoreAlignment

Plane TrackSIBTOO

Calibrate(trackset):alignment

Database

StoreAlignment

Projection Line

GetProjection

Intersect
Intersect

AddDeviation

ClearStatistics

Figure 4: Scenario for calibration
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Calibration A scenario for calibration is shown in Fig. 4. Main asks SiBTOO to calibrate itself with a set
of tracks. The decision is taken to store statistics on differences between fitted lines and the measured clusters
within the associated plane. This enables the use of plane dependent weight factors or to execute plane dependent
calculations. Before calibration starts, statistics calculated during a former calibration round must be removed. For
each track in the set of tracks, each projection is asked to calculate the difference between the fitted line and the
clusters of which the projection is composed. The plane that corresponds with a cluster is found and the deviation
is added to the plane statistics.

Once all tracks are done, SiBTOO acquires the statistic results, calculates alignment improvements and communi-
cates them to the planes. After the calibration,Main stores the returned calibration constants in a database.

Another way (not shown here) to perform calibration is to split the invocation of SiBTOO in three parts. In the first
part SiBTOO is initialised for calibration and all former statistics are removed. In the second part,Main invokes
SiBTOO with Calibrate for every single track. In the third part,Main must invoke SiBTOO to determine the
deviations. Based on their values,Main can restart the calibration for the set of tracks or store the values in the
database. There are no good arguments on the basis of the available knowledge to determine whether one of the
two designs is superior to the other.

2.3.1 Tentative class definitions

The above analysis and responsibility allocation permits us to do a more detailed design of the classes. In fig. 2
classes and associations are shown but no suggestion about the realization of these associations is done. From
the scenarios above the association between some classes can be designed with the appropriate language facilities.
During the realization of the classes, improvements and modifications are needed. The design in this section
represents a first effort not hindered by implementation details. The classes of the final design presented in section
2.4 differ slightly from the here presented classes.

Within SiBTOO an array of 4 horizontal and 4 vertical Plane objects can be defined. Within a Plane an array
of 1024 Strip objects can be defined. Planes are not visible outside SiBTOO and Strips are not visible outside a
Plane object. Arrays are chosen because the number of planes and strips is relatively fixed and changes only after
elaborate hardware modifications. The cluster is a number of contiguous strips that have a value higher than a
given threshold. Although shown in the analysis (see Fig. 2), no need for the introduction of a Hit class exists.
A Cluster class contains a variable number (> 1) of strips. The actual strips are not important to the cluster. The
position of the strips associated with a cluster contains enough information for the track calculation.

In Fig. 5 the classes with their methods and attributes as needed so far are shown.

SiBTOO The SiBTOO class has an interface that is the interface between all classes defined within SiBTOO and
the SiBTOO invoking classes (in this case Main). Three public methods are definedCreate, FindTracksandCali-
brate. Apart fromCreate, the interface is completely determined by the two scenarios.Createinitialises SiBTOO
and determines all hardware determined numbers within SiBTOO. Private attributes are the set of horizontal and
vertical planes and the set of horizontal and vertical projections. The set of reconstructed tracks is returned as a
parameter byFindTracks.

Plane The Plane is clearly the most complex class. It contains information about its position (Coordinates),
the deviations calculated during the calibration efforts (Statistics), conversion factors (Alignments), equipment
(StripArray) and measurement results (ClusterSet). All these attributes are hidden.

A set of public methods is delivered to manipulate the Plane contents. TheCreate routine sets all hardware
and position parameters that do not change. The alignments are set to zero and are later determined by doing a
calibration. The orientation of the plane is determined at the creation of SiBTOO by assigning a plane to either
the set of horizontal or the set of vertical planes. TheAssignmethod is used to assign a set of values to the Strips
based on the measurements contained in the ChannelSet parameter. As shown in the track fitting scenario once the
strip values are determined the new clusters can be calculated. It is possible that more than one cluster is measured.
The clusters are stored in a certain order. The methodFirst returns the first cluster and the methodNextreturns the
consecutive Cluster or null when no more clusters follow the last returned one. The methodCurrent returns the
last Cluster returned from SiBTOO by former invocations toNextandFirst. Projections are made of all possible
cluster combinations of three or four horizontal or vertical planes.

8



Projection

Create(ClusterSet)
Orientation():hv
Valid():boolean

ClusterSet

Cluster

Coordinate
Orientation():hv

Size
Weight

Create(....)
FindTracks(event):TrackSet
Calibrate(TrackSet)

SIBToo
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Event ChannelSet

Get(index):ChannelSet
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Plane
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First():Cluster

AddDeviation(Coordinate)
Get(Statistics)

StoreAlignment(Coordinate)

Track

Valid():boolean
Calibrate()
Create(Projection-2)

Line

Create(ClusterSet)

Parameters

Intersect(Coordinates):Coordinate

First()Coordinate
Next()Coordinate

Projection-2

StripArray

Next():Cluster
Current():Cluster

Figure 5: Association realizations

The calibrate scenario necessitates some additional methods. Statistics are gathered within the plane about the
deviations calculated over a set of tracks. The routineClearStatisticsis needed to clear the results of a former
calibration. The methodAddDeviationadds a new deviation to the plane as calculated from the track fit. The
methodGetreturns the result of all gathered statistics. The methodStoreAlignmentspecifies the alignment that is
calculated for this plane.

Strip The Strip class is intimately linked with the Plane class. The noise level, the value and the coordinates
are implemented as public attributes for fast access within Plane. When, in a later stage, the event contents are
modified, these attributes can be replaced with methods that calculate the corresponding values. A Strip needs
to be created with theCreatemethod. TheAssignmethod takes the encoded value given as parameter, computes
noise and signal value and stores them into the Strip attributes.

Event, ChannelSet Both classes are composed of arrays of integers in which strip- and noise values of the
Strips are encoded. Each has a public routineGet. Event.Get(index)returns the ChannelSet belonging to the Plane
identified by the index parameter.ChannelSet.Get(index)returns the encoded value belonging to the strip identified
by the index of the earlier specified Plane.

Cluster The Cluster is a class that represents the position of the passage of a particle through a Plane. The
criteria whether a certain set of strips represents the activation by a particle are the responsibility of the Plane
class. Coordinate is a public attribute to be used by the Projection and Track classes. Coordinate is represented
in a coordinate system that is independent of the Planes. Width gives the size of the cluster determined by the
number of activated strips and Weight determines the importance of the Cluster. Weight has value 1 or 0. Zero
means dummy or not applicable cluster. A publicOrientationmethod returns whether the Cluster originates from
a horizontal or vertical Plane.

Projection SiBTOO assigns three or four clusters from the same number of different Planes to the projection at
the invocation ofCreate. After termination, theValid method returns True if the clusters are aligned otherwise it
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returns False. TheIntersectmethod determines the coordinate where the line fitted for the projection intersects a
plane and adds the deviation between cluster coordinate and line coordinate to the plane statistics. ClusterSet is a
public attribute that can be used by the Track.

Track At invocation ofCreate, two projections, one for each orientation, are assigned to Track. InCreate, a line
is fitted through them. If no fit can be done, the publicValid method returns False otherwise True. At invocation
of Calibrate, the intersection point between each of the eight planes and the fitted line are calculated. The method
First returns the cluster coordinate of the first plane. The methodNextreturns the deviation of the next plane.

Line The line is created from the ClusterSet communicated at invocation ofCreate. The intersection point with
a plane specified by the parameters is returned after invocation ofIntersect. To hide the plane code from the Track
and vice versa, the cluster contains the plane coordinates from which it originates.

Number():integer

First():T
Next():T

List of 
T

Enter(T)

Cluster
List of List of

Track

List of 
Projection

Remove(T)

Figure 6: Lists

2.3.2 Lists

The use of lists is suggested by the above design. There are sets of Clusters in a Plane, sets of Clusters that
represent a Projection, sets of Tracks and sets of Projections. The members of the sets are used in a certain order
and the number of set members is variable. This observation indicates the storage of the members in a list with a
variable number of items. It is not a very encouraging prospect to do all the work for a list of Clusters and then
redo the same work for Tracks, etc.. The Template facility (or generic Class) offered by C++ makes it possible to
specify a class ”List” of a not yet known type. Every time a list of a given type is needed a concrete instance of the
list is defined. In Fig. 6 the template class list is defined with the possibility to enter and remove items from the
list. Three concrete instances of List are shown as well.

The code for a Projection depends on the orientation of the Projection. This means that IF statements are needed to
test the orientation and execute the appropriate part of the code. The IF statements can be avoided (thus simplifying
the code) by using inheritance. An abstract Cluster and Projection are defined that are specialised to the concrete
classes Cluster-H, Cluster-V, Projection-H and Projection-V. This is shown in Fig. 7. Code particular to horizontal
and vertical projections are thus assigned to different classes. At this moment it is difficult to decide whether also
two classes Plane-H and Plane-V are appropriate.

Projection

Projection-H Projection-V Cluster-H Cluster-V

Cluster

Figure 7: Projection and Cluster inheritance
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2.4 Implementation

In the above we have done a top-down approach. Using the class diagrams and scenarios, a more detailed design
and implementation are done in this section. The lowest level classes are implemented first and other classes are
built on top, finally ending with a SiBTOO program in which tracks are recognised and calibration can be done.
The final code is shown in appendix A.

List The most basic class is the list that will be used at many places. It is organised in a singly linked list. The
variableheadpoints to an object of class Link. Inside link, the attributeval is a pointer to an object of the parameter
class T. The attributenextpoints to the next Link object in the list. The pointercur is an attribute of list and points
to the currently accessed item in list. The attributenumberrepresents the number of items in the list.

template<class T> class list{
// parametrised class List
// singly linked list of items
// initialised with zero items, with head and cur initialised to null
protected:

class Link{
public:

Link* next;
T* val;
Link(Link* n, T* v) {next = n; val =v; } ;

};
Link* head; // head of singly linked list
Link* cur; // last selected item

public:
int number; // number of items in list
list() {head = null; cur=null; number=0; };
˜list(){
while ( head != null){

cur = head;
delete head->val;
head = head->next;
delete cur;}

};

A constructor and destructor are defined. After creation,numberis equal to zero andheadandcur are null (empty
reference). The destructor assures that all elements in list are removed before the list descriptor is removed. Other
attributes of list are :

� enter- enters an element into the list

� first - returns the pointer to the first element in the list, null if no elements are there.

� next- returns the next element in the list

� current- returns a pointer to the last accessed element in the list

� sequel- returns whether there are elements in the list after the last accessed one.

void enter(T* item) {
Link* temp = head;
if (item != null){

head = new Link( temp, item);
number ++;}

};
T* first() {cur=head;

if (cur == null) { return null;}
else {return (cur->val);}
};

T* next() {
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if (cur == null){ return null;}
else {cur = cur->next;

if (cur == null){return null;}
else {return (cur->val);}
}

};
T* current() {

if (cur == null){ return null;}
else {return (cur->val);}
};

bool sequel(){
if (cur == null){ return false;}
else {return cur->next != null;}
};

The invocation offirst initialises the value ofcur. As long ascur is null, current returns null andsequelreturns
false. When the last element has been accessed, the invocation ofnextreturns null andcur is set to null. Once the
value ofcur = null, the methodfirst needs to be reinvoked to access again elements in the list. The use ofsequel
will become clear at a later stage in the implementation.

event, channelset Both classes are added for debugging purposes and are shown in appendix A without further
comment.

cluster, strip and plane The class cluster plays a central role in SiBTOO. It uses a class coordinate that repre-
sents the cluster coordinates in a Cartesian coordinate system. A cluster represents a longitudinal coordinate (sc)
in one plane determined by the s-coordinate along the s-axis of SiBT and a transverse coordinate (tc) that is either
the x- or y- value of the cluster. The size attribute is a measure for the number of strips constituting this cluster.
Remark that it is assumed that at least two strips constitute a cluster. This is refelected in the code of the plane
shown later. A constructor defines the coordinates and size of the cluster. A destructor is not needed as no further
structure is defined.

class coord{
public:
float x,y,z;
};

class cluster{
protected:
coord cc; //coordinates of cluster
public:
float size; // number of hits (>1)
float weight; // weight =0 for dummy cluster
float s_c; // coordinate along s_axis (z_axis)
float t_c; // coordinate along transverse axis (x_ or y_ axis)

cluster(float cx,float cy,float cs,float sz) {
cc.x = cx; cc.y = cy; cc.z = cs; weight =1.; size = sz; }

};

The strip class is shown below and is self-explanatory.

class strip {
public:
int noise; // noise measurement value
int value; // value caused by passage of particle
float dist; // distance from origin along x- or y-axis
float width; // width of strip along x- or y-axis
float length; // length of strip over s-axis
};
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The plane class is clearly one of the more complex classes. It contains an array of strips, a list of clusters, the
coordinates in space of the lower left corner of the plane, and the statistics represented bymeanandnr -the number
of entries over whichmeanis calculated-. In the constructor an empty list of clusters is defined and the lower
hand coordinates of the plane specified in the constructor parameters. The noise of the strips is initialised to 1 as
for cluster calculation the acquired value is divided by the noise and division by zero is not allowed. This way a
test on zero is not needed (efficiency). Two virtual methods are defined:storealignmentandaddclusterthat need
different implementations dependent on the projection orientation (shown below). Theadddeviationmethod adds
a new difference value to the plane and recalculates the mean deviation.

const int nstrip = 1024; // number of strips in plane
class plane {
protected:
list<cluster>* clusters; // cluster set
strip sl[nstrip]; // array of strips
float x,y,s; // coordinates of lower left corner of plane
float mean; // statistics
int nr; // number of entries

public:
plane(coord c){
clusters = new list<cluster>; // empty cluster list to allow

// access to clusters
x = c.x; y=c.y ; s = c.z; // coordinates of plane
mean = 0.; nr = 0; //statistics for calibration
for (int i = 0; i<nstrip; ++i) {

sl[i].value = 0;
sl[i].noise = 1;} // to prevent division by zero

}
cluster* first(){return clusters->first();};
cluster* get(){return clusters->current();};
cluster* next(){return clusters->next();};
bool sequel(){ return clusters->sequel();};
void assign(channelset s);
void clearstatistics(){ mean = 0.; nr = 0;};
float meandev(){ return mean;};
float scoord() { return s;};
virtual void storealignment(float cc){ };
void adddeviation(float dt){

if (nr == 0) {mean = dt; nr = 1;}
else { mean = mean*(nr/(nr+1)); nr ++; mean = mean+(dt/nr);}
};

virtual void addcluster(float t_c, float s_c, float sz) { };
};

Below, the cluster calculation after assignment of the measured values is shown in theassignmethod. The pa-
rameter,ss, is of type channelset in which the measured values of this plane are defined. First the strip values are
initialised and a new empty cluster list is set up.

The clusters are calculated by doing a loop over all strips. At the line marked by (==>) a hit has been found and
all consecutive strips are inspected to verify whether they also represent a hit. Two valuesi andk represent the first
and last strip associated with the cluster. To test whether the ”while loop” must end, a booleanb is used. The end
criterium of the while loop is thatk<nstrip andsl[k] contains a hit. However, because the test onk must be done
first and only whenk<nstrip the test onsl[k] can be done, the present construction with a boolean is used. When
k>i and at least two consecutive hits have been found, a cluster is added to the attributeclusters-the cluster list of
the plane-.

void plane::assign(channelset ss){
for (int i = 0; i< nstrip; ++i) {

// strip value and noise from channelset
sl[i].value = ss.strip(i,1);
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sl[i].noise = ss.strip(i,2);} // strips initialised

delete clusters; // remove former clusters
clusters = new list<cluster>; // create empty cluster list
for (i = 0; i< nstrip; ++i) {

// determine clusters
if (sl[i].value/sl[i].noise > hitquot){ // hit found in strip i

float total =sl[i].value-sl[i].noise;
float posit = sl[i].dist*total;
int k = i+1;
bool b = (k < nstrip);
if (b) {b = b & sl[k].value/sl[k].noise > hitquot;}

==> while (b) {
total =total+(sl[k].value -sl[k].noise);
posit = posit+sl[k].dist *float(sl[k].value-sl[k].noise);
k++;
b = (k < nstrip);
if (b) {b = b & sl[k].value/sl[k].noise > hitquot;}
} // end while (b) loop

k--; // k always one too large
if (k > i) {

//more than two consecutive hits, add cluster
addcluster(posit/total, s,

sl[k].dist-sl[i].dist+sl[k].width);}
i = k+1;} //skip already inspected strips

} // end if ( sl[i]........
} // end assign

horizontal cluster and plane Both cluster and plane need the inherited classes vplane, hplane, hcluster and
v cluster to make the code independent of the orientation. Below is shown how. A cluster is defined by three
coordinates of which in a particular plane only two are interesting: the transverse and the longitudinal coordinate.
Therefore, a horizontal (or vertical) cluster can be defined with these two coordinates and the other coordinatey
(x for the vertical cluster) is filled with 0. The code ofassignis orientation independent as long as clusters of the
right orientation are created and added to the attributeclusters. This is possible when theaddclustermethod of
plane creates clusters with the correct orientation (vertical or horizontal). This is assured by definingaddcluster
virtual in plane and specifying it for hplane and vplane separately.

class h_cluster: public cluster{
public:

h_cluster(float cx,float cs,float sz)
:cluster(cx, 0., cs, sz) { // y-coordinate =0

t_c = cx; s_c = cs; }
};

For a plane three methods are orientation dependent: the constructor,addclusterandstorealignment. For the cal-
culation of the strip coordinates different sizes for horizontal and vertical planes are possible, defined by constants
xwidthandywidth. In the constructor hplane (vplane) the correct values along the x-axis (y-axis) are defined.

In addclustera horizontal (vertical) cluster is created with new. The right cluster coordinate along the x-axis
(y-axis) is calculated by adding the x- (y-) coordinate of the plane.

The methodstorealignmentis self explaining.

class h_plane: public plane{
public:

h_plane(coord cc): plane(cc) {
for (int i = 0; i<nstrip; ++i) {

sl[i].dist = xwidth*float(i); // x-position of strips from x=0
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sl[i].width = xwidth; // dx width of strips
sl[i].length = length;} // thickness of strip over s-axis

}
void addcluster(float t_c, float s_c, float sz) {

// add x coordinate of plane to position within plane
h_cluster* h_cl = new h_cluster(t_c+x, s_c, sz);
clusters->enter( h_cl);

}
void storealignment(float cc){ x = x+cc;};
};

line, projection A line is defined in a flat plane and is given by the formula

t = ts tg � s+ s off (1)

where soff and and tstg represent the offset and slope respectively. The constructor creates a line with the
specified offset and slope. Thefit method takes as parameter a list of clusters.Fit is independent of the orientation
of the clusters. It is assumed that they are all horizontal or vertical. The following items are calculated for all
clusters c:

P
c sc,
P

c sc � tc,
P

c tc,
P

c sc � sc and
P

c tc � tc. In the usual way the offset and and slope are
calculated from these values. The methodfit returns false if the number of clusters is smaller than three, determinant
is smaller than 0 or�2 is greater than some constantlinchi. Otherwise,fit returns true.

class s_line{
public:
float s_off;
float ts_tg;
float chi;

s_line(float xt,float yt,float of){
s_off = of; ts_tg = yt; chi = 0;}

bool fit(list<cluster>* proj) {
cluster* clpt = proj->first();
int ncl =0; // number of clusters
float S_s = 0.; float S_ss = 0.;
float S_t = 0.; float S_tt = 0.; float S_st = 0.;

while ( clpt != null){
if (clpt->weight > 0){

ncl = ncl + 1; // number of entries
S_s = S_s+clpt->s_c; //sum over s
S_t = S_t+clpt->t_c; //sum over t
S_ss = S_ss+clpt->s_c*clpt->s_c; //sum over s*s
S_st = S_st+clpt->s_c*clpt->t_c; //sum over t*s
S_tt = S_tt+clpt->t_c*clpt->t_c;} //sum over t*t

clpt = proj->next();
}

if (ncl < 3){ return false;} // at least three coordinates required
float det = float(ncl)*S_ss - S_s*S_s ;
if (det <= 0) { return false;}
s_off = (S_ss*S_t - S_s*S_st)/det;
ts_tg = (ncl*S_st - S_s*S_t)/det;
chi = S_tt-s_off*S_t - ts_tg*S_st;
return abs(chi) < linchi;

};

The projection contains a list of clusters that define the projection and a line as defined above. The constructor
defines an empty list of clusters and a line with offset = 0, slope = 0 and�2 = 0. The methodaddadds a cluster
to the list of clusters. The assumption is that only clusters of a given orientation are entered. This is not checked.
Thevalid method invokes the linefit of the cluster list and returns the result of the fit to thevalid invoking code.
The methodtline calculates the t-coordinate of the line for a given s-coordinate defined as the parametersc.
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The methodAddDevneeds more explanation. The assumption is that clusters are added in the plane number order,
i.e. first a cluster of plane 0 then of plane 1 and finally clusters from planes 2 and 3 are entered. The first cluster
to be returned is the cluster from plane 3 or failing that one from plane 2. At the start ofAddDev, the variablecp
contains the first cluster of the projection and the indexi is initialised to 3. In the while loop it is checked that
the cluster s-coordinate is equal to the plane s-coordinate. When this is not the case, plane i did not contribute to
this projection andi is decreased until both s-coordinates match. For matching coordinates the t-coordinate value
of the cluster is subtracted from the line coordinate and added to the deviation statistics of the plane. The loop is
executed over all clusters in the projection and ends whenclp� >next()returns null, meaning that all clusters from
clp have been used.

const int nplane = 8; // number of planes in SiBT
class projection{
protected:
list<cluster>* clp; // pointer associated cluster
s_line line; // fitted line
public:

projection(): line(0,0,0) { clp = new list<cluster>; }
˜projection(){ delete clp;}

bool valid(){ return line.fit(clp);}
float tline( float sc){ return line.ts_tg*sc + line.s_off;}
void add(cluster* clref) { if (clref != null) {clp->enter(clref);}}
void AddDev( plane* planes[]){

cluster* cp = clp->first();
int i = (nplane/2)-1;
while (cp != null) { // assume that clusters come from 3,2,1,0

while (cp->s_c != planes[i]->scoord() & i >0) { i--;}
planes[i]->adddeviation(cp->t_c - tline(cp->s_c));
cp = clp->next();} // end while over clusters

}
};

projlist, track The class projlst is added to construct all projections possible from a set of four horizontal or
four vertical planes. The class is mainly introduced to avoid duplification of code for projection finding in the
horizontal and vertical plane. A destructor and constructor are needed to initialise attributelp and remove the list
of projections pointed to bylp.

FindProj is the main method that takes an array of planes as parameter.FindProj can be invoked for horizontal
and vertical planes. It is based on the following principle. Suppose that each plane contains two clusters, notated
as:pxcy denotes cluster y of plane x. For example:p0c1 is cluster 1 of plane 0. The following projections are then
constructed in this order:

p0c1 p1c1 p2c1 p3c1

p0c2 p1c1 p2c1 p3c1

p0c1 p1c2 p2c1 p3c1

p0c2 p1c2 p2c1 p3c1

p0c1 p1c1 p2c2 p3c1

Etc....

p0c2 p1c2 p2c2 p3c2

such that all combinations have been done. In the last case it can be seen that for all planes the last cluster has been
used. In all other cases there is at least one plane where cluster 1 has been used. This leads to the introduction of
the booleanb for which the value true represents: there is a plane that has not returned the last cluster. Booleanb
= false means: all planes have returned their last cluster. Testing whether the last cluster is returned is done with
the methodsequelthat returns true if there is a cluster left in the list of clusters in the plane.

The first projection,pp, is found by returning the first cluster from each plane. The valid projection,pp, is entered
in the projection listlp. The initialisation oflp is discussed later. The booleanb is True when other projections are
possible. The second part ofFindProj is started at the sign==>. Another booleansw is introduced. Whensw is
true, the next cluster of a plane is solicited or the first cluster in case no more clusters are left in the plane. Variable
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sw is set to true at the start of the loop over the planes to assure that always a fresh cluster is entered from plane 0.
Variablesw is true for plane i+1 when the first cluster had to be reread from cluster i. In all other casessw is set to
false. Whensw is false the current cluster is taken from the plane. Whensw is true, the next cluster (if available or
the first cluster) is inserted in the projection.

At the end of the loop over the planes, a valid projection is added to the list. The loop over all projections is ended
whenb reaches false. At the end ofFindProj the attributelp contains a list of 0 or more valid projections.

It is, of course, possible that a plane contains no clusters. Thenfirst returns null. Inentera test on null is done.
Nothing is entered in the list when the argument ofenter is null. This caters for projections with less than four
clusters.

class projlst {
protected:
list<projection>* lp;

projlst() { lp = null;}
˜projlst() { if (lp != null) { delete lp;} }

public:
projection* first() { return lp->first();}
virtual projection* newproj() { return new projection();}
int number() { return lp->number;}
virtual void FindProj(plane* planes[]){
// find the list of projections in array of planes

bool b = false;
projection* pp = newproj();
for (int i = 0; i<4; ++i){

pp->add(planes[i]->first());
b = b | planes[i]->sequel();} // more than one cluster in plane?

// b implies there is a plane with more than 1 cluster
// not b implies all planes have less than 2 clusters
if (pp->valid()){lp->enter(pp);} // if good projection add to lvp
else {delete pp;} // else remove contents and memory

==>
// try all possible cluster combinations from vertical planes that have clusters

cluster* cp;
while (b){

pp = newproj();
b = false;
bool sw = true;

// sw implies get next cluster from plane or first one
// not sw implies get current cluster from plane

for (i = 0; i<4; ++i){
if (sw) {cp = planes[i]->next();}
else { cp = planes[i]->get();}
if (cp == null) { cp = planes[i]->first();}
else { sw = false;}

// sw remains true when first cluster was taken from former plane
pp->add(cp);
b = b | planes[i]->sequel();} // end for (i=0; i<4)

// not b implies last cluster is found in all planes

if (pp->valid()){lp->enter(pp);}
else {delete pp;}

} // end of while(b)
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} // end of FindProj
}; // end of projlst class

A track is composed of one valid horizontal and one valid vertical projection. Two methods,hproj andvproj,
return the horizontal and vertical projection respectively. A destructor is needed to remove the horizontal and
vertical projection when the track is deleted.

class track{
projection* hpr;
projection* vpr;
public:

track(projection* h, projection* v) {hpr = h; vpr = v;}
˜track() { delete hpr; delete vpr;}

projection* hproj() {return hpr;}
projection* vproj() {return vpr;}
};

horizontal projection list A horizontal (vertical) projection and projection list have been defined as well. Their
reason of existence is explained in the paragraph on visualisation of data structure. The methodnewprojis used to
havepppoint to horizontal (vertical) projections. Consecutively, a horizontal projection list is filled with horizontal
projections.

The methodFindProj is the application interface to projlst. It initialiseslp with an empty list of horizontal projec-
tions after whichFindProj is invoked and all manipulations inFindProj only take place on horizontal projections.

class h_projlst: public projlst {
protected:
projection* newproj(){ return new h_projection();}
public:
void FindProj(plane* planes[]){
// find the list of projections in array of vertical planes

delete lp; // remove old list
lp = (list<projection>*) new list<h_projection>;
projlst::FindProj( planes);
}

};

SiBTOO The class SiBTOO represents the silicon beam telescope SiBT. It consist of four horizontal and four
vertical planes. Additionally it maintains a list of horizontal and vertical projections in the attributeslhp and lvp
respectively. A constructor is provided. Remark thatlhp andlvp are initialised with hprojlst and vprojlst respec-
tively. No destructor is provided because SiBTOO is never removed. If SiBTOO is removed in an application, a
destructor is needed to remove the planes and the projection lists.

Two methods are providedFindTracksandCalibrate. FindTracksinitialises the strip values of all 8 planes, finds
the vertical and horizontal projections and if one projection is found in each direction a track is returned. The
methodCalibrate takes as input a list of tracks and loops over all tracks. For each track and for each projection
in the track, deviation statistics are added to all planes. After treating all tracks, the mean deviations stored in the
planes are added to the plane coordinates.

class SiBTOO{
plane* hplanes[nplane/2]; // 4 horizontal planes
plane* vplanes[nplane/2]; // 4 vertical planes
h_projlst* lhp; // list of horizontal projections
v_projlst* lvp; // list of vertical projections

public:
SiBTOO() {
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// initialise with 0 projections
lhp = new h_projlst();
lvp = new v_projlst();

//initialise plane coordinates
for (int i = 0; i<nplane/2; ++i){

coord cc;
cc.z = 2*i*(sbt_ds-0.05)/nplane;// s-coordinate
cc.x = .1; // x-coordinate
cc.y = cc.x; // y coordinate
vplanes[i] = new v_plane(cc); // vertical plane
cc.z = cc.z+.05; // s-coordinate

// (slightly different from
// vertical plane s-coordinate)

hplanes[i] = new h_plane(cc);} // horizontal plane
}

track* FindTracks(event ev){
for (int i = 0; i<nplane/2; ++i){

vplanes[i]->assign(ev.plane(i*2)); // vertical plane strips
hplanes[i]->assign(ev.plane(i*2+1));};// horizontal plane strips

// clusters of event are found and stored in planes

lvp->FindProj( vplanes); // lvp contains vertical projections
lhp->FindProj( hplanes); // lhp contains horizontal projections

// only one projection from each orientation is allowed
if(lhp->number() == 1 & lvp->number() == 1)

{return new track(lhp->first(), lvp->first());}
else { return null;}

}

void Calibrate(list<track>* lst){
for (int i = 0; i<nplane/2; ++i){

vplanes[i]->clearstatistics();
hplanes[i]->clearstatistics();}

track* trp = lst->first(); // get first track from list
while (trp != null) { // loop over all tracks

// horizontal projections
trp->hproj()->AddDev( hplanes);

// vertical projections
trp->vproj()->AddDev( vplanes);

trp = lst->next();} // end while over all tracks
// realign planes
for (i = 0; i<nplane/2; ++i){

hplanes[i]->storealignment(-hplanes[i]->meandev());
vplanes[i]->storealignment(-vplanes[i]->meandev());}

}
};

Show contents of SiBTOO For every class aprint function is added. Below, theprint function of SiBTOO
is shown. It prints the contents of the horizontal and vertical projections and of the individual planes. Here the
inheritance of vertical planes and horizontal planes is motivated as theprint function of the horizontal plane prints
that it is a horizontal plane without any test on orientation parameters. Instead of printing, more sophisticated
graphics visualisation routines can be foreseen that actually exploit the orientation of the object to visualise.

void SiBTOO::print(){
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lhp->print(); lvp->print();
for (int i = 0; i<4; i++){

vplanes[i]->print(); hplanes[i]->print();}
}

void h_plane::print(){
cout << " HORIZONTAL "; plane::print();
cout << " clusters are: \n"; clusters->print();
cout << " --------------------- H_PLANE \n \n";
}

Finally, theprint of the list is shown. For every item in the list, it invokesval->print(). This means that every class
for which a list is defined, should provide its ownprint() method. More elaborate code is shown in the appendix
A.

void list::print(){
cout << " list with " << number <<" entries \n" << flush;
int k =0; Link* temp = head;
while (temp != null){

cout << " item "<< ++k << ": "; temp->val->print();
temp = temp->next;} // get next element from list

}

2.5 Evaluation

In a design it is always difficult to decide whether efficiency should be the most important aspect or generality.
This is the case in the design of the sline class. Thetline code of the projection class uses the tstg and soff
attributes of line directly to calculate the intersection point. When other lines instead of straight lines are used, this
is unacceptable. Then a mehodt coordinateof line should return the transverse coordinate given the longitudinal
coordinate. Substituting the line class for circle or helix class leaves thetline method of the projection class
unmodified.

For performance reasons also the strips are arranged in an array and attributes of strips are addressed directly and
not via a method.

As can be seen in the code it is assumed that the minimum number of activated strips in a cluster is 2. This shows
in the design of theassignmethod where two variablesi andk are used with the assumption thatk > i for a valid
cluster. Another point is the assumption that the number of horizontal planes and vertical planes is the same as
reflected by the choice of a constantnplanesthat represents all available planes.

It is also debatable whether the inheritance for creating horizontal and vertical clusters, projections and planes is
really necessary. These points are addressed in the excercises below. However, the introduction of more special-
ization in the planes favours the actual design choice of using inheritance.

A few clear advantages and general design rules need to be pointed out:

� Information hiding The clearest example is the list, where all pointer handling or list structure is hidden
from the other classes. The structure of the list (e.g. doubly linked) can be changed without any changes to
the remaining code. Other examples are:

– ProjLst The algorithm to attribute clusters to a projection is completely confined to the ProjLst class.

– Projection The testing of the validity of a projection and the determination of the measurement mis-
match of projection clusters is confined to the projection.

– PlaneThe calculation of clusters is confined to the plane class. Differences between horizontal planes
and vertical planes can be added without modifications to the code.

– Line The line fitting algorithm is confined to the sline class.

� Divide and Conquer The above cited classes show that to each class a limited functionality is attributed.
The development of small pieces of code with a limited functionality is easier than making large monolithic
pieces of code.
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� Performance Most classes have interfaces defined by functions. A few classes allow direct access to at-
tributes. This is done for classes where little change is expected or/and that are used by a very limited (; 4)
number of classes.

� Case dependencyMethods that contain many IF statements usually contain too much functionality. The
use of inheritance to separate these functions to simplify the code is then recommended. Here, this is done
for planes with horizontal and vertical orientation. Inheritance leads to more complexity due to the multiple
definitions. The advisability of inheritance must be judged on the basis of the properties of the individual
cases. Here, we are confronted with an unclear case.

� Generality When inheritance is used, the danger exists that almost identical code that differs at only a few
locations is repoduced as many times as there are derived classes. It is advisable to construct methods in the
base class that can be used as much as possible for all inherited classes. This is established forFindProj,
AddDevandassign.

� Layering The code is built up of classes with more and more capability by exploiting the functionality of
the classes from lower layers (for example: a projection that uses a cluster that is based on strips).

Not following these guidelines leads to monolithic programs with many dependent execution paths that are difficult
to test and maintain. In such programs, modifications have the nasty habit not to stay localized but needing
unexpected additional modifications. For example in this example responsibiliy for cluster allocation, projection
finding, line fitting etc are assigned to different classes. Another possibility is to group all this functionality inside
the SiBTOO class. The other classes are then reduced to simple data containers. It is left as an execercise to the
reader to see the consequences for the final code.

2.6 Exercises

1. Remove all horizontal and vertical inheritance and add a boolean to the base class to assign an orientation to
the class. Modify all orientation dependent methods to obtain the same results as before.

2. Change the vertical plane such that there is an empty space between any two strips.

3. Change the line fitting and add the possibility to do a circle fitting. Both fit possibilities exist simultaneously.
Straight line fits are done for four cluster projections and circle fits are done for three cluster projections.

4. Change the number of planes from 8 to 10.

5. Calculate the cluster width in an orientation dependent way.

6. Treat the planes as pairs and calculate clusters on a pair basis. This should lead to quite a lot of changes. Try
to identify the code that needs no change.

7. Determine the quality of the realignment by calculating the standard deviation of the plane alignment statis-
tics during calibration.

8. Make the list of clusters an ordered list and order clusters according to s coordinate value.

9. Change the code such that the type checking of C++ verifies that vertical (horizontal) clusters are added to
vertical (horizontal) projections.
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3 Layers example
This example is based on the layers that can be identified in the CMS detector. The layer structure is used to do a
fast track searching algorithm starting from the outside of the detector and ending at the centre. Within a detector
installation different types of detectors can be found. It is shown how the SiBT can be considered as a detector
type from the set of detector types that constitute the detector installation (this is actually not true but is assumed
as a hypothetical example).

3.1 Layers description

In Fig. 8, a detector installation composed of several detectors with a circle symmetric layout is shown. Particles
originate at the centre and the passage of the particles is recorded by the detector through which they pass. De-
tectors in the detector installation can have different characteristics. Several types of detectors can be discerned
and usually detectors of the same type are organised in one layer around the centre. The detectors have one thing
in common: the detection of the particle within the detector volume. Per particle that passes, several points are
measured where the particle interacts with the detector. This is similar to SiBT where the passage of a particle is
detected at eight different places. The number of places that a particle can be detected, can change from detector
to detector. Also the sensitivity for a particular type of particle changes from detector to detector. Although SiBT
was capable of detecting the passage of at most one particle, other detectors are capable of detecting the passage
of several particles simultaneously.

s

r

Figure 8: Diagram of detector layers

A series of points that are associated with the passage of one particle through one detector is called a track segment.
The determination of a track segment inside a detector may change from detector to detector. In some detectors
track segments are identified by fitting a straight line through the measurement points, in other detectors a helix or
circle is fitted through the points.

In this section a series of segments from a set of detectors associated with one particle is called a track. An
algorithm tries to combine all track segments to a candidate track. An example algorithm looks at the largest outer
circle and determines all the points at which a particle leaves the detector installation. It associates each track
segment with one particle. For all these track segments it determines the location where the particle enters the
outer layer. It then inspects the next lower layer and combines the track segments that leave the lower layer at
some position, with track segments of the outer layer that enter the outer layer at the same location. This goes on
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until the lowest layer (the centre) is reached. It is possible that a track segment can be combined with more than
one lower level track segment. When n valid combinations are found, n candidate tracks are created. When all
layers have been tried, a helix is fitted through all measurement points of a candidate track. Candidate tracks for
which the helix fit is not good enough are rejected. The remaining candidate tracks are called valid tracks.

3.2 Analysis
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Figure 9: Class diagram based on layers analysis

The classes associated with the analysis are shown in Fig. 9. A detector installation (e.g. CMS) consists of a
set of detectors that are organised in layers. Each detector occupies a volume in space where particles can be
detected. The passage of a particle generates measurement points within the detector volume. These measurement
points are represented in the coordinate system of the detector installation that can be different from the coordinate
system of the individual detectors. For the detector installation a cylindrical coordinate system looks appropriate,
while a Cartesian coordinate system seems reasonable for an individual detector (see SiBT). Measurement points
are measured with a precision that is detector dependent. The measurement points inside a detector define track
segments. Fitting these track segments with a line allows to extend the track segments and determine the exit
and entry points of the segment from/to the detector volume. Track segments leave and enter the volumes with
a certain orientation in space. Track segments are combined to candidate tracks. A track contains a given track
segment only once but a segment may belong to several candidate tracks. Again, a line can be fitted through the
measurement points of a track. The intersection points of this line with the different detector volumes determine
the exit and entry points of the track.

This analysis is based on the description of section 3.1 and the use case described below. It is assumed that for a
given event all detectors have combined the measurement points into track segments.

1. Combine segmentsIt is assumed that detectors return zero or more track segments expressed in the co-
ordinate system of the detector installation. The detector installation is constructed in concentric layers of
detectors. Track segments of adjoining layers are related when their entry- and exit- point at the layer in-
terface coincide and the orientation of the segments is identical. A set of related segments is combined to a
track. Tracks can start at the centre or within the detector installation volume. Tracks can terminate in the
detector installation volume or at the outside of the detector.

3.3 Design

Scenario diagrams are used to show the responsibilities for the different proposed classes.Main is the actor for the
use case mentioned above. The same design aims as those for SiBT are applied here as well. The class Installation
hides all implementation details fromMain.
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Figure 10: Scenario for determining a list of tracks

Combine segments The central idea is to visit each track segment only once during the construction of all
possible tracks. Therefore, it is assumed that in each layer the detectors are ordered according to the angle in the
cylindrical coordinate system and the track segments inside the detector are ordered accordingly. The tracks in
construction should be ordered also according to the angle of the track at the lower layer interface. On the basis of
the angle the next track segment from a layer can be searched or the next track in construction.

The scenario of Fig. 10 supports this construction. Similar to SiBT, a tracklist is constructed. The tracks in the list
are created from a segment or tracks are extended with segments. The track creation and extension is started for a
given layer by creating the tracklist class. The tracklist gets the first layer from the layerlist and asks the layer to
return the first segment from this layer. The layer invokes the detector that returns the segment with the smallest
� angle. The segment is added to the list of tracks as the start of a track. This is repeated for all detectors in the
layer. Invoking all layers -from the outside to the inside consecutively- leads to the construction of all possible
track candidates. In the scenario, after invocation of GetTracks, the track list is created. At the start, track list
retrieves the first (outer) layer from the layer list, continuing for all possible segments in the installation. When all
layers have been invoked, track list asks every track to determine its validity. Invalid tracks are removed. The final
implemented scenario is different from the one proposed here. This is explained in section 3.4.

3.3.1 Tentative class definitions

In this section a first effort is done to determine the required classes with their attributes and methods. The class
set is a guideline for the final implementation presented in section 3.4. The following classes are needed:

Installation The Installation class is the computer model of the whole detector installation. Hidden attributes are
LayerList that represents the list of layers and TrackList that represents the tracks found in the detector installation.
Two public methods are needed: (1)Createto create the whole detector installation (2)GetTracksthat returns the
tracks found in the installation associated with an event. This is in analogy with the SiBT example.

Layer The class Layer models the set of detectors that form a layer around the inner detectors. The ordered list
of detectors is a private attribute of Layer. The public methodsFirstSegmentreturns the segment with the smallest
� coordinate detected within a detector in the layer. The public methodNextSegmentreturns the segments with a�
coordinate that is larger than the former returned segment but with the smallest� coordinate of all not yet returned
segments in this layer. The public methodAssignassigns a set of measurement values to the detectors in the layer.
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Figure 11: Class diagram based on scenario

Detector This class models a piece of equipment called a detector. The private attributeCoordinatesrepresents
the position of the detector in the installation’s coordinate system. Within the detector, measurements are stored
that can be combined to segments. These are represented with the ordered private attributes: ”list of segments” and
”list of measurements”. The public methodAssignassigns a set of measurement values to the detector. The public
methodsFirstSegmentandNextSegmenthave the same functionality as the corresponding methods of the layer.

TrackList The class TrackList represents the tracks that are being recognised on the basis of the measurements
contained in the detector objects. The ordered private attribute ”list of tracks” represents the list of already iden-
tified tracks. The public methodExtendadds new tracks to TrackList or extends tracks within the tracklist. The
publicCreatemethod creates an object of this class.

Track An object of the Track class represents one candidate track. The private attribute ”list of segments”
represents all segments that constitute this track. The private attributesEntry andExit represent the entry and exit
points of the track respectively. The public attributeAddextends the track with a segment. The public attribute
Valid tests whether the track is a valid one.

Segment This class represents the measurements in one detector associated with one particle. The private at-
tribute ”list of coordinates” represents the track measurements expressed in the coordinate system of the installa-
tion. The public attributesExit andEntry represent the points where the particle respectively leaves and enters the
layer associated with this detector. The public methodsEnterandValid add measurements to the segment and test
whether the segment is a valid one, respectively. Validity is tested by fitting a straight line.

Event, LayerSet These classes (not shown in the Fig. 11) represent the measurements associated with the whole
installation, a layer and a detector respectively.

3.3.2 Discussion

The same design strategy has been used as for the SiBT example. There is a clear analogy between installation
and SiBT, planes and layers, strips and detectors, clusters and segments and projections and tracks. Analogous to
the ProjList class a TrackList has been defined. A TrackList object combines the measurements of different layers
to create complete tracks. The particulars of a specific track recognition algorithm are confined to the TrackList
class. The fitting of a line with a particular geometry is confined to the Segment class. As in the SiBT example,
lists of segments, tracks, measurements and detectors are needed.
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3.3.3 Ordered lists

Similar to the lists of SiBT, the lists of the layered installation needs to be ordered according to the� coordinate of
the segment, track or detector. The ordering can be added to the list defined for SiBT, but this is deemed to much
work considering that ordered lists are supported by the STL library [MS96]. Sorted lists are wanted from which
elements can be retrieved ordered according to a key. The key here is the� angle of the installation’s coordinate
system. No random access is wanted. The order in the list of tracks is changed infrequently. This leads us to the
choice of the simplest STL container: the vector. The list is another good candidate but the syntax allowed by the
STL library made it a poor choice.

Vector

Measurements Detectors

Segments Tracks

Vector

VectorVector

Figure 12: Concrete vectors based on STL

Fig. 12 shows the possible vectors that are used throughout this example.

3.4 Implementation

In the above we have done a top-down approach. Using the class diagrams and scenarios a more detailed design
and implementation is done in this section. The lowest level classes are started first and other classes are built on
top, finally ending with a program in which tracks are recognised. The final code is shown in appendix B.

cylpoint, measur In contrast to the SiBT example, a cylindrical coordinate system is needed. A coordinate is
defined by the radius, angle and cylinder axis. The classcylpointhas been defined for that purpose. A measurement
is not associated with a point only but occupies a volume in space. The size of this volume is given by the individual
sizes in the three coordinates. Themeasurclass is derived from thecylpointclass. Another possibility for defining
measuris the definition of an attribute of classcylpoint. This not used as a too complex naming scheme is the
consequence.

class cylpoint{
// point in cylindrical coordinate system
public:
float r; // r coordinate
float phi; // phi angle coordinate
float s; // cylinder axis coordinate
};

class measur: public cylpoint{
// measurement point in cylindrical coordinate system
public:
float dr,ds,dphi; // measurement uncertainties in above
};

The vector ofmeasuris used to show some vector syntax.

Vector The list ofmeasuris introduced to show how vectors are used in this example. An ordered list is required
which means that the ordering needs to be defined. For the purpose of this example measurements are ordered
according to their� value. Theequaland lessthanoperators are defined for themeasurclass. Once they are
defined, ordered vectors can be defined.
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// Define == on measur objects
bool operator==(const measur& m1, const measur& m2)
{ return m1.phi == m2.phi;}

// Define < on measur objects
bool operator<(const measur& m1, const measur& m2)
{ return m1.phi < m2.phi;}

Below, the objectpointsis defined as a vector ofmeasur. The iteratorm is used to access elements in the vector. In
the example,m is started by initialising it with the begin of points. For the next element in the vector it is sufficient
to state (++m)m++. This is done at the end of the for loop. The for loop is ended whenm is equal to value
returned bypoints.end(). Remark thatpoints.end()is a pointer to the last element plus 1. The operationm++ can
be executed onmwhen it has passed the valuepoints.end()but leads to invalid iterators that point to nowhere.

vector<measur> points;
vector<measur>::iterator m;
for (m= points.begin(); m != points.end(); ++m){

cout << "point with radius: " << m->r;
cout <<" and angle: " << m->phi << "\n";}

In the for loop, the phi- and r- attributes of all elements inpointsare printed in the order they are stored. To be sure
that elements in points are ordered according to phi, the order function needs to be invoked, as shown later.

layerset, event The classeventconsists of an array ofnlayerlayersets where the values returned from the equip-
ment are stored. For the example some possible values are stored (see Appendix B). The large difference with
SiBT, where the number of strips is known, is that the number of measurements per detector are not known before-
hand. This has some consequences for the design of thedetectorclass, as shown later.

const int nlayer = 8; // number of layers in installation
class event{
layerset set[nlayer]; // 1 event: nlayer layersets
public:

event(){ initialise }
layerset layer(int pl){ return set[pl];}
};

The rest of the event and layerset class is self explanatory (see Appendix B). However, the structure of the event
data has a large consequence for the whole design, as shown later as well.

segment The segment class uses the same line fitting method as used fro SiBT. A segment has the attributepoints
that represents the measurement points associated with this segment. Measurement points are added piecemeal
with the methodenter. The choice of adding them one by one is suggested by the assumption made on the detector
and the event layout (i.e. variable number of measurements per detector and event structiure not known to detector).
In enterthe new measurement is added topointswith thepushbackmethod delivered by the STL library.

The most complex method isvalid. It returns True when a straight line can be fitted through the points projected
to the plane perpendicular to the s-axis. In contrast to SiBT, the line is not entered as a special class because the
line fit is only needed for the segment determination and not for other purposes. If other fit algorithms are needed,
the wholevalid method needs to be replaced. It can be envisaged to inherit different segments from the base class
segment differentiated according to the type of fit that is applied. Examples are helix-segment or circle-segment
(not done here).

A segment enters the layer at the inside and exits at the outside. An addition to the SiBT methodvalid is added
here. The fitted line is intersected with the layer border. The intersection pointsentryandexit are calculated and
stored in the segment. These two points are used to determine if two segments can belong to one track.

const float linchi = 10.;
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class segment{
public:
vector<measur> points;
cylpoint entry;
cylpoint exit;

void enter(measur* m){ points.push_back(*m);}
bool valid(float r,float phi) {
float ts_tg ,s_off, chi; // line fitting variables
float of, tg; // variables for detector surface
float s,t; // coordinates after transformations
int nms =0; // number of measurements
float S_s = 0., S_ss = 0., S_t = 0., S_tt = 0., S_st = 0.;

if (points.begin() != points.end()){
vector<measur>::iterator m;
for (m= points.begin(); m != points.end(); ++m){

nms = nms + 1; // number of entries
s = m->r*cos(m->phi);
t = m->r*sin(m->phi);
S_s = S_s + s; //sum over s
S_t = S_t + t; //sum over t
S_ss = S_ss+s*s; //sum over s*s
S_st = S_st+t*s; //sum over t*s
S_tt = S_tt+t*t;} //sum over t*t

}
if (nms < 3){ return false;} // at least three coordinates required
float det = float(nms)*S_ss - S_s*S_s ;
if (det <= 0) { return false;}
s_off = (S_ss*S_t - S_s*S_st)/det; ts_tg = (nms*S_st - S_s*S_t)/det;
chi = S_tt-s_off*S_t - ts_tg*S_st;

// calculate entry and exit points of line
entry.s = 0; exit.s = 0; // default values
tg = (sin(phi)-sin(phi+2.*dphi))/(cos(phi)-cos(phi+2.*dphi));
// inner layer, entry point
of = r*sin(phi)-tg*r*cos(phi);
t = tg*s+of; s = (s_off-of)/(tg-ts_tg);
entry.r = sqrt(s*s + t*t); entry.phi = atan2(t,s);

// outer layer exit point
r = r+detcdr+rspace; of = r*sin(phi)-tg*r*cos(phi);
s = (s_off-of)/(tg-ts_tg); t = tg*s+of;
exit.r = sqrt(s*s + t*t); exit.phi = atan2(t,s);

return abs(chi) < linchi;
}

};

One can test whether a vector is empty by comparing the begin and end iterator. When they are unequal, the vector
is filled. This test at the start ofenteris not really necessary because the for loop overm terminates directly when
the vector is empty. In that casenmsis not increased and remains smaller than 3.

The ordering of the segments is important for the track recognition algorithm. By looking at Appendix B it can be
seen that for the segment also theequal(==) and thelessthan(<) operators are defined with as key thephi value
of theexitattribute.

track A track consists of a vector of segments. A point to make is that the ordering for segments is already
defined according to the value of the exit point. Segments in a track are preferably ordered according to their
distance,r, from the intstallation center. This ordering of segments within a track is realized by entering the
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segments in a given order and not applying the STL order method defined on the angle.

The track has an entry and exit point. A track enters from the inner layer and exits at the outer layer. The first
entered segment is found in the outer layer and defines the exit point of the track. The last entered segment is from
the innermost layer and determines the entry point of the track. This is reflected in the code ofenter.

It is assumed that segments from the outer layer are entered to the track first, followed by segments from in-
ner layers according the decreasing segment entry radius value (defined byentry.r). This assumption is a logic
consequence of the chosen track finding algorithm.

class track{
vector<segment> trk; // segments that constitute track
public:
cylpoint entry;
cylpoint exit;
void enter(segment* s){

entry = s->entry;
if (trk.begin() == trk.end()){ exit = s->exit;}
trk.push_back( *s);
}

}

Ordering of tracks is defined on thephi value of their entry point. Remark that the segments are ordered according
to thephi value of the exit point.

detector Detectors are assumed to be flat boxes that are defined by eight corner points:pt[8] . Two lists are
defined in the detector: the list of measurement points and the list of segments composed of these measurement
points. For simplicity it is assumed that a detector can produce only one segment composed of all measurements
in the detector.Detectoris the first class that needs a constructor. The detector class, like all former classes, does
not need a destructor as no pointers to objects need to be initialised withnewthus avoiding the destruction of these
objects. All the objects inside vectors are deleted automatically by the destructor of the vector class.

The constructor defines a detector volume with the eight pt[8] coordinates calculated from ther andphi parameters
of the constructor. One measurement at the time is added to the detector with theaddmethod. The reason for this
is explained when the tracklist is discussed. Before any measurements are added thecleanmethod must be invoked
to remove all former measurement points and associated segments.

Once all measurement points are added to the detector theFindSegmentmethod determines whether the mea-
surements belong to a segment. As already mentioned the segment finding algorithm is a very simple one. All
measurements are taken from the vector of measurements and stored in a newly created vector calledseglst. Re-
mark that the same local objectsg is used to construct the segment. This is allowed becausepushbackmakes a
copy of the item before it is stored into the vector. Thevalid method of the segmentsg is invoked. Its parameters
pt[0].r andpt[0].phi serve to calculate the entry and exit points of the segment. A valid segment is added to the
segment listseglst. Only one segment is added in this case but the introduction ofseglstleaves the possibility to
add more segments in a later stage.

class detector{
public:
cylpoint pt[8]; // detector defined by 8 points in space
vector<segment> seglst; // list of segments
vector<measur> measlst; // list of measurements

detector() { };
detector(float r, float phi){
for (int i = 0 ; i< 4; i++) {pt[i].s = 0; pt[i+4].s=detcds;}
pt[0].r = r; pt[1].r = r;
pt[4].r = r; pt[5].r = r;
pt[2].r = r+detcdr; pt[3].r = r+detcdr;
pt[6].r = r+detcdr; pt[7].r = r+detcdr;
pt[0].phi = phi - dphi; pt[4].phi = phi- dphi;
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pt[3].phi = phi - dphi; pt[7].phi = phi- dphi;
pt[1].phi = phi + dphi; pt[5].phi = phi+ dphi;
pt[2].phi = phi + dphi; pt[6].phi = phi+ dphi;
} // end of detector constructor

void add(measur m){measlst.push_back( m);}
void clean(){

// remove all segments and measurements
seglst.erase(seglst.begin(),seglst.end());
measlst.erase(measlst.begin(),measlst.end());
} // end of clean

void FindSegment(){
if (measlst.begin() != measlst.end()){ // measurements present

segment sg;
vector<measur>::iterator m;
for (m= measlst.begin(); m != measlst.end(); ++m){

sg.enter(m);} // all measurements in one segment
if (sg.valid(pt[0].r,pt[0].phi)){seglst.push_back(sg);}

// add sg to segment list
} // end of if (measlst....

} // end of FindSegment
};

Ordering of detectors is defined on thephi value of theirpt[0] coordinate (see appendix B.

layer The layer contains a set of detectors. The constructor of the layer creates the detectors and stores them into
the detector vectordts. The detectors indtsare ordered according to the� value of one of their corner points (see
Appendix B).

The design of the layer classassignmethod deviates from the ones suggested earlier. These deviations have an
impact on the design of thedetectorandtracklistclasses. The assumption is that for each layer, the event data may
have a different structure. This means that each individual layer is made responsible for the assignment of data to
the detector. The amount of data per detector varies. In the layerset structure it is assumed that the� angle of the
measurement point can be used to attribute a data-item to a detector. Hiding the layerset structure to the detector
means that the layerset methoddetectis asked to return a pointer to the next measurement corresponding with a
given� range. The result of these design decisions is that detectors cannot decide whether the last measurement
point is added to the detector. It is the layer that knows when the last measurement point is furnished to the
detector. This means that the layer first must clean the data in the detector by invoking thecleanmethod of the
detector before invoking theaddmethod of the detector for each individual measurement point. After the insertion
of all measurement points into a given detector, theFindSegmentmethod of the detector can be invoked.

class layer{
public:
vector<detector> dts;

layer(float ri) {
// create a layer with inner circle defined by ri

for (int i=0; i < ndetct; i++){
dts.push_back( * new detector(ri, dphi*i*2));}

sort(dts.begin(), dts.end(),less<detector>() );
} //end of layer constructor

void assign(layerset ls){
float* pm;
measur m;
m.dr =0.; m.dphi = 0.; m.ds =0.;
vector<detector>::iterator d;
for (d= dts.begin(); d != dts.end(); ++d){

d->clean(); // remove segments and measurements
pm = ls.detect(d->pt[0].phi);
while (pm != null){

m.phi = pm[0]; m.r = pm[1]; m.s = pm[2];
d->add(m);
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pm = ls.detect(d->pt[0].phi);} // end of while
d->FindSegment(); // construct segments
} // end of for

} // end of assign
};

In the discussion section 3.5 alternatives for the detector and event design are mentioned.

tracklist Like in the SiBT example, tracklist is the heart of the layers example. In this class the relation between
the individual detectors and layers is made. The algorithm constructs tracks layer by layer starting at the outside
and ending at the inside of the installation. The loop over all layers can be made inside tracklist or inside the
invoking installation. To reduce the complexity of tracklist code, it is chosen to do one layer at the time inside
tracklist. This is in contradiction with our original idea mentioned in section 3.3.1. A vector of tracks is maintained
in the attributetklst. This vector contains the zero tracks, the tracks under construction or the finished tracks after
the treatment of the last layer. No destructor is needed. It is assumed that every time a new set of tracks is calculated
a new tracklist object is created. Therefore, nocleanmethod is needed to remove all former tracks fromtklst.

Only one methodextendwith parameter the current layer is defined. The local objectcr entmaintains the entry
point of the track under consideration. When no tracks are available, its value is set to a value larger than2�. The
methodextendfirst copies the segments of all detectors in the layer into the local objectsglstand orders the list.

In the next stage, segments are added to tracks when the entry point of the track is sufficiently near the exit point of
the segment. When no appropriate track can be found for the segment a new track, composed of this one segment,
is inserted intotklst.

A loop is done over all segments. As long as the exit� value of the segment is less thancr ent, the segment is
entered as a new track. A local objecttk is created, the segments is entered andtk is pushed ontklst. The scope
of tk is left at the end of the while loop andtk is automatically destroyed. This does not affect the track recently
added totklstas a copy oftk is inserted.

When the exit� value is close enough tocr ent, the segment is added to the current track. When thecr entvalue is
less than the exit� value of the current segment, the next track is considered untilcr entis larger thans� >exit.phi-
phidev. Under the assumption that only one segment is found per detector and the detectors are sufficiently widely
spaced, this code works well. However, if segments are close, a track may end up with two or more segments of
one layer. This is in conflict with the track definition.

class tracklist{
vector<track> tklst; // list of tracks
public:
void extend (layer* ly){

float cr_ent; // entry point of current track
vector<track>::iterator t = tklst.begin();
if (t == tklst.end()){ cr_ent = 2*M_PI+dphi;} // empty track list
else { cr_ent = t->entry.phi;}

// store all segments of all detectors in layer ly into sglst
vector<segment> sglst; // list of segments in layer ly
vector<detector>::iterator d;
for (d= ly->dts.begin(); d != ly->dts.end(); ++d){

copy(d->seglst.begin(), d->seglst.end(), back_inserter(sglst));}
sort(sglst.begin(),sglst.end()); // sorted segments of layer ly

// start extension of creation of tracks
vector<segment>::iterator s= sglst.begin();
while (s != sglst.end()){

while ((s->exit.phi < cr_ent - phi_dev) & (s != sglst.end())){
track tk; // new track
tk.enter( s); s++; // track with one segment
tklst.push_back( tk);} // add new track to list

if (s != sglst.end()){
while ( cr_ent < s->exit.phi-phi_dev){
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t ++; // next track
if (t == tklst.end()){ cr_ent = 2*M_PI+dphi;}
else { cr_ent = t->entry.phi;}
} // end while ...

if (abs(s->exit.phi - cr_ent) < phi_dev) {
t->enter( s); s++;} // extend track

} // end of if (s != ....
} // end while (s!=sglst ...

sort(tklst.begin(),tklst.end());
} //end extend

};

The STL convention to copy items and then store them into the vector has a profound influence on the creation and
deletion of objects. Suppose no copies were made by STL. Every time an object of classtracklist is removed, all
segments and the measurements in the segments are removed as well. Consequences are many fold: (1) possibly
all segments in the detectors are removed and a subset of all measurements are removed in the detectors, (2) to
prevent a double removal of some segments and or measurement points, measurements must be removed from the
measurement list in the detector before being put in a segment (3) same thing is true for a segment and (4) each
time a segment is moved to a track, it must be removed from the segment list in the corresponding detector.

When large elements are manipulated in the vector, it is advisable to store pointers to the elements into the vector.
This will increase the performance as much unwanted copying is suppressed. However, a lot of thought must be
put in the removal and creation of elements, as shown above.

installation The installation contains an array of layers and the tracks associated with an event. The constructor
defines the layers by invoking the layer constructorsnlayertimes with an appropriate radius value.

The methodGetTracksdetermines the tracks associated with a given event passed as parameter. The former tracks
are removed by deleting the object pointed at bytklist. For all layers the measurements are assigned to the detectors
after which the tracks intklist are extended with the segments of this layer.

class installation{
layer* ly[nlayer]; // nlayer layers in installation
tracklist* tklist; // list of tracks
public:

installation(){
tklist = new tracklist();
for (int i = 0; i <nlayer; i++) {

ly[i]= new layer(i*(router-rinner)/nlayer + rinner); }
}

tracklist* GetTracks(event ev){
delete tklist; // remove old tracks
tklist = new tracklist(); // new empty track list

// find tracks by going from outer layer to inner layer
for (int i = nlayer-1; i>-1; i--) {

ly[i]->assign(ev.layer(i)); // measurements into layer i
tklist->extend(ly[i]); // tracks include layer i segments
}

// measurements are assigned to layers
return tklist;
}

};

3.5 Evaluation

Having done the detector installation, it is clear that the track returned by the SiBTOO example is not correct.
Too much information is still included in the track that is composed of two projections. SiBTOO should return
a segment. each measurement in a segment should conform with a cluster in SiBTOO converted to cylindrical
coordinates. The y-value of the horizontal clusters and the x-value of the vertical clusters need to be determined.
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An adequate point plus deviations need to be determined. Knowing that several type of detectors are possible, a
base class detector with virtual methods needs to be defined. Other detector types can then be derived from detector
with inheritance. A good example is the derivation of SiBTOO (see Fig. 13).

OthersSiBTOO

Detector

Figure 13: Specialisation of detectors

The use of the STL library has introduced the possibility to return the complete vector of segments from the
detector. The TrackList class exploits this by copying all segment lists of all detectors in a layer in one go to
another ordered segment list. Therefore, theNextSegmentandFirstSegmentmethods defined in section 3.3 have
not been used.

The structure of the event has a large influence on the design. When it can be assumed that for every event the
number of data per detector is constant, the event data can be stored in a large array with pointers to the array
portion that is relevant for a given detector. Every detector knows where its data area starts and how much data it
is supposed to treat. Determining tracks can then be done in one go. The detector removes old results, reads in the
data and constructs accompanying tracks. This is similar to what is done for SiBT but was not done in the layer
example. Another assumption may be that the amount of data for a given detector can change from event to event.
Then a structure needs to be added to the event. The question is whether this structure is known to the individual
detectors. If the structure is unknown to the detectors (because it changes all the time) a design must be done like
was done here withclean, assignandFindSegmentmethods. If the structure is stable but changes from layer to
layer, then it is best to have each layer assign the values to the detectors.

The ”Combine Segments” scenario suggested in section 3.3 is different from the one that is implemented. The
scenario for the implementation discussed in section 3.4 is shown in Fig. 14.

Main track
list

GetTracks

Installa-
tion layer detector track

Enter

Copy(seg)
Extend

FindSegment

Assign(meas)

CleanAssign(layerset)

Create

Figure 14: Implemented scenario for determining a list of tracks

The design of the layers has followed the same guidelines as for the SiBT example. However, a few things can be
said about the layer design not covered by the SiBT design

� Performanceshould especially be considered in relation with the STL library. Another design step is needed
to improve the performance. As suggested in the text, vectors of pointers to items instead of vectors of items
can be used. Additionally, the copying of the segments of the detectors into a one vector can be avoided to
diminish the copying overhead. This will render the code less comprehensible.

� Information hiding The layer structure is hidden fromMain. The detector structure in a layer is hidden to
the installation. The calculation of a track is hidden within the TrackList class. The fitting of a line through
a segment is hidden inside the segment class. The measurement determination is hidden inside the vector. A
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point of debate is what part of the structure of the event should be hidden.

� Layering The abstractions needed are much clearer after this example. An installation returns tracks. An
installation is composed of layers that are composed of detectors. A detector returns segments. A track is
composed of segments such that per layer at most one segment occurs. Inside a detector measurements are
done and measurement points are calculated. A segment is composed of measurement points.

3.6 Exercises

1. Change the event structure such that theassignof a detector is invoked with a pointer to the event data that
concern the detector. The detector should be able to recognize the end of event or know the total amount of
event data that concern it. The methodscleanandFindSegmentare suppressed.

2. Use inheritance to define points with Cylindrical coordinates, Cartesian coordinates and Polar coordinates.
Define the constructors such that for a coordinate of a given type, the values in the two other coordinate
systems are defined as well. Inherit Cylindrical, Cartesian and Polar measurements from the appropriate
point classes.

3. The same as above, but first inherit measurement from point and then inherit the three types of measurements.
Which of the two inheritance hierarchies is the more appropriate one?

4. Change SiBTOO such that it returns segments.

5. Instead of a vector ofmeas, use a vector of pointer tomeas. Carefully consider all ceation and removals of
measobjects. Do the same with vectors of segments.

6. Change theinsertmethod in thetracklist class such that the copying of segments is not needed any more at
the beginning.

7. Change theinsertcode such that a segment can be attributed to two tracks. This means that the track has to
be copied every time another segment of the same layer is a candidate for addition to this same track.
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4 Tracing example
This example builds on the layers example of section 3. It assumes the same simplified layer structure. Particles
are traced through the detectors to determine their trajectory.

4.1 Tracing description

In this section the tracing of a particle trajectory is based on local decisions inside the detector. In the former
example of section 3.1, tracks were determined on a layer basis. This is not done for the trajectory. A particle
enters a detector at a given coordinate of a wall. It traces a trajectory until it hits the opposite or neighbouring
wall of the entered detector. The intersection of the detector wall with the particle trajectory leaving the detector
is called the exit point. At that point the particle enters the neighbouring detector. The exit and entry points of the
particle passing through neighbouring detectors are assumed to be identical for simplicity reasons.

In Fig. 15 the additional structure required of the detectors is shown. For simplicity reasons only the plane
perpendicular on the s-axis of the installation is considered. Each detector has a pointer to its upper, lower, former
and forward detector. The outer and inner layer detectors have no upward or forward detector respectively.

phi_bakphi_bak

r_for

r_bak r_for

r_bak
phi_for

phi_for

Figure 15: Diagram of detector neighbours

In Fig. 15 the phibak pointer points to the neighbour in the same layer with a smaller� angle, the phifor pointer
points to the neighbour in the same layer with a larger� angle, rfor and rbak point to neighbours with a larger
respectively smaller layer radius.

4.2 Analysis

The classes associated with tracing, excluding the ones defined already in Fig. 9, are shown in Fig. 16. A neutral
particle traces one straight trajectory through a detector from entry point to exit point. A charged particle traces one
curved trajectory through a detector. A particle does not interact with the detectors. A detector has 3-4 neighbours.
A particle traces as many trajectories as it passes detectors. There is a relation between the exit point of one
trajectory with the entry point of the consecutive trajectory.

Exit
Point

Entry
Point

1

1

1

1 1 1

1
1

Particle
Neutral Charged 

Particle
Detectortraces traces

Straight
Trajectory

Curved
Trajectory

neigbours

1nn1

1 3-4

1 1
Consecutive

Figure 16: Class diagram based on layers analysis

The following use case is considered:

1. Particle tracing A particle with a certain mass passes through a magnetic field that pervades the whole
installation. Charged particles trace curved trajectories and neutral particles trace straight lines. A particle
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enters the installation at a detector in the innermost layer. It traces a trajectory until it passes the detector
wall. At the exit point it leaves the detector and enters the neighbouring detector at its entry point. The
entry point of the neighbour is equal to the exit point. The particle continues its way from the entry point of
the neighbouring detector until the exit point of the neighbouring detector. This continues until the particle
leaves a detector at the outer layer without entering a neighbour

4.3 Design

The scenario diagrams are used to show where the responsibilities are put for the different classes identified above.
A first design decision is to hide the structure of the installation fromMain that provides the entry point of a
particle.

Main Installation Detector Detector Particle

Trace(Particle)

Trace(Particle)
Intersect(Wall)

valid
Intersection?

Propagate

Trace(Particle)

valid
Intersection?

Propagate

Intersect(Wall)

Figure 17: Scenario diagram for particle tracing

Particle tracing The central idea is to decide inside each detector which neighbouring detector is entered when
the particle leaves the detector under consideration.Main provides a particle with some initial values that enters
the first detector. Dependent on the mass, charge, momentum and orientation of the particle, the particle traces a
curve. This curve is particle dependent and therefore the detector asks the particle to determine the intersection
of the particle trace with one of the four walls. The detector determines whether the calculated intersection point
lies within the detector boundaries. If not, the intersection with the next wall is calculated. When the exit point is
calculated, the particle is propagated to the exit point. At the exit point, the neighbour can be found. The neighbour
is asked to continue the tracing of the particle. When the particle exits the installation, the coordinates and kinetic
parameters of the particle at the exit point of the installation are returned to Main.

4.3.1 Tentative class definitions

Additions to the layers example are mentioned.

detector TheDetectorclass is extended with local attributes that are references to the detector’s neighbour. The
B-field is a local attribute that represents the magnetic field in this detector. The methodTracestarts the tracing of
a particle in the detector.

Particle A Particleclass is introduced. It has coordinates and a direction. The private attributes charge, mass and
momentum determine the curvature of the particle. When the exit point of the particle’s trajectory is known, the
particle’s coordinates are updated with the methodPropagateto continue the tracing in the next detector. Because
charged particles have a different trajectory as neutral particles, inheritance is used to differentiate theIntersect
methods. The charged particle’sIntersectintersects the specified line with a curved trajectory, while the neutral
particle intersects it with a straight trajectory.

Installation The methodTrace is added to trace a particle through the installation. The particle starts at a
detector in the inner layer and terminates at the outer layer. After invocation the particle’s coordinate is the exit
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point coordinate.
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Figure 18: Association realizations

4.4 Implementation

In the above, we have discussed an extension to the layers example. In this section the same approach is followed.
First the particle tracing is considered followed by the geometry and initialisation of the detectors. The final total
code is shown in appendix C and is an extension to the code in appendix B.

vect, particle The particle has a direction and a coordinate. In addition tocylpoint, the classvectis introduced
that is an extension ofcylpoint. Theangleof direction in the plane perpendicular to the s-axis is added to the
coordinate. The classvectinherits from the classcylpoint.

class vect: public cylpoint{
// point with direction in plane perpendicular to s
public:
float angle; // orientation in plane perpendicular to s
};

Theparticle class inherits from thevectclass. This follows from the observation that the location and direction
of the particle are intrinsic properties of the particle. Another more practical argument to use inheritance is the
simplified code that is obtained to access thevectvalues of the particle. The methodPropagateadvances the
particle to the coordinates and direction specified in the parametervc. The methodIntersectis virtual as the
propagation of a particle trough a medium and magnetic field depends on the properties of the particle. In the
particle class it is assumed that a particle needs to be described by its mass and momentum. The methodsIntersect
andPropagateare two separate methods as a particle can intersect with the four walls of a detector. First, it needs
to be determined where the particle trajectory intersects with the detector wall. Intersection with the wall does not
necessarily take place inside the detector volume. A correct intersection takes place within the detector volume.
Consequently the intersection of the particle with one given wall can be chosen by invokingPropagatewith the
chosen intersection point as parameter.

class particle: public vect{
// physical characteristics of particle
public:
float mass; // particle’s mass
float p; // particle’s momentum
void Propagate(vect vc) {

phi = vc.phi; r = vc.r; s = vc.s; angle = vc.angle;}
virtual vect Intersect(cylpoint cc1, cylpoint cc2, float B) {

vect vc;
vc.phi = 4*M_PI; vc.angle =0;
vc.r = 2*router; vc.s =0;
return vc; }

};
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neutral particle The neutral particle is clearly a refinement of a particle. The classneutral particle inherits
from particle. A concreteIntersectmethod is defined for this class. The particle is assumed to move along a
straight trajectory. The particle does not interact with the surrounding material. The wall line is defined by the
two parameterscc1andcc2 that represent two corners of a detector. Some assumptions are made in this method:
(1) the particle trajectory intersects the wall line within a reasonable distance (no parallel lines) and (2) the local
variablestg1 andtg2 never evaluate to1. For production code these assumption cannot be made and necessitate
additional coding.

class neutral_particle: public particle{
// neutral particle trajectory is straight line
vect Intersect(cylpoint cc1, cylpoint cc2, float B) {

double tg1 = tan( angle);
double of1 = r*sin(phi)-r*cos(phi)*tg1;

double tg2 = (cc1.r*sin(cc1.phi) - cc2.r*sin(cc2.phi)) /
(cc1.r*cos(cc1.phi) - cc2.r*cos(cc2.phi));

double of2 = cc1.r*sin(cc1.phi)-cc1.r*cos(cc1.phi)*tg2;

double x = (of2-of1)/(tg1-tg2);
double y = tg1*x + of1;
vect vc;
vc.s = 0;
vc.phi = atan2(y,x);
vc.r = sqrt(x*x + y*y);
vc.angle = angle;
return vc;
}

};

charged particle The classchargedparticle inherits from particle. The attributechargerepresents the charge
of the particle. It can have two values: -1 or +1. A concreteIntersectmethod is defined for this class. The
particle is assumed to move along a circle trajectory. The particle does not interact with the surrounding material.
Like for the neutral particle case, the wall line is defined by the two parameterscc1andcc2. A simple quadratic
equation determines 0, 1 or 2 intersection points. When no intersection point exists a intersection point value is
returned outside the detector volume. When one of the two possible intersection points intersects the wall outside
the detector volume the second intersection point is returned. Of course, this is not necessarily a point within the
detector volume. A check on the correctness of the returned intersection point is done within the detector. Again,
an assumption is made on the trajectory and wall line parameters: the variabletg should never evaluate to1.

class charged_particle: public particle{
// charged particle trajectory is circle
public:
int charge; // particle’s charge (+1 or -1)
vect Intersect(cylpoint cc1, cylpoint cc2, float B) {

double x1 = cc1.r*cos(cc1.phi);
double x2 = cc2.r*cos(cc2.phi);

// calculate centre coordinates of circle
double Radius = curv*p/B;
float xm = Radius*cos(angle+charge*M_PI/2.) + r*cos(phi);
float ym = Radius*sin(angle+charge*M_PI/2.) + r*sin(phi);
// calculate intersection point of line with circle
double tg = (cc1.r*sin(cc1.phi) - cc2.r*sin(cc2.phi)) /

(cc1.r*cos(cc1.phi) - cc2.r*cos(cc2.phi));
double of = cc1.r*sin(cc1.phi)-cc1.r*cos(cc1.phi)*tg;
double a = 1+tg*tg;
double b = 2.*tg*(of -ym)-2*xm;
double c = xm*xm+(of-ym)*(of-ym)-Radius*Radius;
double det = b*b - 4*a*c;
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vect vc; vc.s = 0;
if (det < 0) { // no intersection point

vc.phi = 4*M_PI; vc.r = 2*router;
return vc;}

double x = (-b + sqrt(det))/(2*a);
if (x < min(x1,x2) | x > max(x1,x2)) { // no intersection

x = (-b - sqrt(det))/(2*a);}
double y = tg*x + of;
vc.s = 0; vc.phi = atan2(y,x); vc.r = sqrt(x*x + y*y);
vc.angle = atan2(ym-y,xm-x)-charge*M_PI/2.;
return vc;
}

};

detector::trace Within a detector, a particle is traced from entry wall to exit wall. The methodtrace traces a
particle defined by theptk parameter. Origin and direction of trace are defined byptk. It is assumed that a particle
intersects with the lines defined by corner pairs (pt[2],pt[3]), (pt[1],pt[2]) and (pt[0],pt[3]). The intersection point
with the line defined by (pt[2],pt[3]) is done first under the assumption that the outer wall is the most likely wall to
be intersected. Notice that the parameterptkcan be of classchargedparticleor of classneutral particle. Once an
intersection point has been found (the algorithm assumes the existence of such a point), the particle is propagated
to this intersection point. By setting the detector pointerdtp equal to one of the pointersr fw, ph bk or ph fw,
dtp points to the appropriate neighbour detector that shares the found intersected wall. Accordingly, the detector
invokes thetracemethod of the neighbour detector.

virtual void trace(particle& ptk) {
detector* dtp;
vect cc = ptk.Intersect(pt[2],pt[3], B);
dtp = r_fw;
if (cc.phi > pt[2].phi | cc.phi < pt[3].phi){

cc = ptk.Intersect(pt[0],pt[3], B);
dtp = ph_bk;
if (cc.r < pt[0].r | cc.r > pt[3].r){

cc = ptk.Intersect(pt[1],pt[2], B);
dtp = ph_fw;}

} // end if(cc.phi < pt[2].phi.....
ptk.Propagate(cc); // advance particle
dtp->trace(ptk); // next detector
} // end of trace

dummy detector To terminate the tracing, the classdummydetectoris introduced. Thetrace method of this
class returns without doing anything and consequently terminates the tracing through all neighbouring detectors.

class dummy_detector: public detector{
public:
void trace(particle& ptk) { }
};

layer connections The wanted connection of neighbouring detectors is done in the layer. Two options are created
with as manyconnectmethods (overloading ofconnect).

For the methodconnect(layer* ly)it is assumed that thely parameter points to the neighbouring outer layer. Two
vectors of detectors are used:dtsthe vector of the executing layer andly->dtsthe vector of the outer neighbouring
layer. It is assumed (by construction) that the same number of detectors are found in both layers and that the nth

detector of the one layer is the upper neighbour of the nth detector in the other layer. Connecting detectors within
a layer and between two neighbouring layers is then rather straightforward.

For the methodconnect(detector* dup)it is assumed that thedup parameter points to the neighbouring outer
detector. For the outer layer this is a pointer to adummydetector. The result is that when the trace is invoked of
the outer neighbour of a detector in an outer layer, the tracing stops.
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void connect(layer* ly){
vector<detector>::iterator dup = ly->dts.begin();
vector<detector>::iterator d,dbk = dts.begin();
for (d= dts.begin(); d != dts.end(); ++d){

dbk->ph_fw = d; d->ph_bk = dbk;
d->r_fw = dup; dup->r_bk = d; ++dup;
dbk = d;}

// dbk points to last detector
d = dts.begin(); dbk->ph_fw = d; d->ph_bk =dbk;
} // end of connect(layer)

void connect(detector* dup){
vector<detector>::iterator d,dbk = dts.begin();
for (d= dts.begin(); d != dts.end(); ++d){

dbk->ph_fw = d; d->ph_bk = dbk;
d->r_fw = dup;
dbk = d;}

// dbk points to last detector
d = dts.begin(); dbk->ph_fw = d; d->ph_bk =dbk;
} // end of connect(detector)

installation::Trace The tracing of a particle is started by invoking theTracemethod of the installation for a
suitably chosen particle. It is assumed that such a particle is chosen to be on the inner wall of a detector in the
inner layer. The detector with the right angle is found by invoking the STLfind function that acts on the vector of
detectors till it finds a detector that is equal tokey. The equal operator on detectors is defined to operate on thephi
attribute of the pt[0] corner of the detector. The detectorkeyis defined to be the detector with the wanted pt[0].phi
value. The consequence is that after invocation of find, thewherevariable points to the specified detector. When
no such detector is found, where points to dts.end().

Invoking the trace method of the found detector starts the tracing. Tracing ends when the particle enters a
dummydetector on leaving the outer layer.

void Trace(particle& ptk){
float phip = ptk.phi+dphi;
phip = int(phip/(2*dphi))*2*dphi;
detector key = detector(rinner,phip);
vector<detector>::iterator where = find(ly[0]->dts.begin(),

ly[0]->dts.end(), key);
if (where != ly[0]->dts.end()) {where->trace(ptk);}
else { cout << " COULD NOT FIND DETECTOR for Tracing \n" << flush;}
}

Invocation from Main The invocation fromMain is shown here. Intrlst->tklst a set of tracks is returned by
GetTracks. The inner intersection point of each track is used as starting point for the particle tracing. Particles
with different momenta and masses can be traced to determine whether their exit points are in accordance with the
particle trajectory exit point contained incptkafter termination ofTrace.

tracklist* trlst = instal.GetTracks(ev);
vector<track>* vt = &(trlst->tklst);
vector<track>::iterator t;

charged_particle cptk;
cptk.charge = -1;
cptk.mass = 1;
cptk.p = 1;
for (t = vt->begin(); t != vt->end(); t++){

cptk.phi = t->entry.phi;
cptk.r = t->entry.r;
cptk.s = t->entry.s;
dx = t->exit.r*cos(t->exit.phi)-cptk.r*cos(cptk.phi);
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dy = t->exit.r*sin(t->exit.phi)-cptk.r*sin(cptk.phi);
cptk.angle = atan2(dy,dx);
instal.Trace(cptk);}

4.5 Evaluation

The layer design was such that the extension for particle tracing could be added without problems. No modifica-
tions to the general structure were needed. A problematic area is the design of the particles class in relation with
the detector class. The trajectory of the particle is determined by the physical properties of the particle and the
material of the detector. Assuming that there are more particle variants than detector materials, the detector char-
acteristics are taken as parameter for the particle trace trajectory. This way particles can be added for the known
set of detector textures.
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neigbours
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list of segments

Detector

assign(detSet)

Volume

Trace(Particle)

Texture

Figure 19: Volume and detector class

In the above, the empty space between detectors was neglected. In Fig. 15 it is assumed that detectors touch each
other. This is not the case. Between a layer of detectors, there is a layer of air of a given thickness represented by
the constantrspacein the code. In Fig. 19, a more appropriate design is presented. A volume is defined by its
corner points. A particle is traced through a volume with a certain magnetic field and of a given texture. A detector
inherits from the volume and contains a number of measurements and segments. The installation consists of layers
of detectors separated by a layer of air volumes.

Some points need special attention:

� Coordinate systemMaintaining a cylindrical coordinate system proves to be rather calculation intensive.
Using cylindrical coordinates only to define the layers and detectors is sufficient. A Cartesian coordinate
system looks better in all other cases.

� Information hiding The installationclass and thelayerclass do not know about the propagation of a parti-
cle. A particle can pass from a detector in one layer to a detector of another or same layer without awkward
case sensitive statements.

� PerformancePerformance can be improved by looking at the chosen coordinate system and chosen tracing
algorithm. This can be done without any modification to the total structure.

4.6 Exercises

1. Store the detector coordinates in a Cartesian coordinate system. What other classes need to be modified.

2. Modify theIntersectmethods such that they work under any circumstance without overflow problems.

3. Change the finding of the wanted detector in theTracemethod in theinstallationclass:

� by doing a loop over all detectors and testing their corner pt[0] angle,

� by usingfindand specifying another equal operator.

4. Add the volume class as suggested above and change the installation to include layers of air.
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A SiBTOO code

#include <stdlib.h>
#include <iostream.h>
#include <math.h>

// standard definition of NULL and bool
const int null = 0;

#define bool int
#define true 1
#define false 0

//definition of contants for SiBT geometry
//

const int nplane = 8; // number of planes in SiBT
const float sbt_ds = 200.; // length of SiBT over s-axis
const float sbt_dx = 40.; // width of SiBT over x-axis
const float sbt_dy = 38.; // height of SiBT over y-axis
const float length = .003; // length of strip over s-axis
const int nstrip = 1024; // number of strips
const float xwidth = .9*sbt_dx/nstrip; // width of strip in x direction
const float ywidth = .9*sbt_dy/nstrip; // width of strip in y direction

const int hitquot = 3; // hit is represented by val/noise > hitquot
const float linchi = 10.; // chi of accepted line fit

// definition of classes
//

template<class T> class list{
// parametrized class List
// singly linked list of items
// initialized with zero items, with head and cur initialized to null
protected:

class Link{
public:

Link* next;
T* val;

Link(Link* n, T* v) {next = n; val =v; } ;
};
Link* head; // head of singly linked list
Link* cur; // last selected item

public:
int number; // number of items in list
list() {head = null; cur=null; number=0; };
˜list(){
while ( head != null){

cur = head;
delete head->val;
head = head->next;
delete cur;}

};
void enter(T* item) {

Link* temp = head;
if (item != null){

head = new Link( temp, item);
number ++;}

};
T* first() {cur=head;
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if (cur != null) {return (cur->val);}
else { return null;}
};

T* next() {
if (cur != null){

cur = cur->next;
if (cur != null){return (cur->val);}
else {return null;}}

else {return null;}
};

T* current() {
if (cur != null){ return (cur->val);}
else {return null;}

};
bool sequel(){

if (cur == null){ return false;}
else {return cur->next != null;}
};

void remove(T* item) {
Link** temp = &head; // temp contains the location of the pointer to the item

// temp is initialized with the location of head
for (Link** temp = &head; *temp == null; temp = &((*temp)->next)){

if ((*temp)->val == item){
Link* rm = *temp;
delete item;
delete rm;
temp = &((*temp)->next);
if (cur == *temp) cur = null;} // cur points to removed item,

// so cur is set to null
}

};
#ifdef DEBUG
void print(){

cout << " list with " << number <<" entries \n" << flush;
int k =0;
Link* temp = head;
while (temp != null){

if ( cur == temp) { cout << "current ";}
else { cout << " ";};
cout << " item "<< ++k << ": " << flush;
temp->val->print();
temp = temp->next;}

};
#endif

};

class coord{
public:
float x,y,z;
};

class channelset{
int items[50];
int as;
public:

channelset(){
as = 0;
for( int i =0; i<50; ++i) {items[i] = 0;}

}

int strip(int pl, int st) {
for (int i = 0; i<as ; i = i+3){
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if (items[i] == pl){
return items[i+st];} // hit of channel pl found

}
return 1;} // no hit found

// (minimum noise of 1 to prevent div by zero

void assign( int strip, int value, int noise){
items[as] = strip; as++;
items[as] = value; as++;
items[as] = noise; as++;}

#ifdef DEBUG
void print(){

int i=0;
while (i < as){

cout << " strip " << items[i] <<"; value " <<
items[i+1] <<"; noise " << items[i+2] << "\n" << flush;

i = i+3;}
}

#endif
};

class event{
channelset set[8]; // 1 event: 8 channel sets for 8 planes
public:

event(){
for (int pl = 0; pl <8 ; ++pl){

// if (pl != 2) {
set[pl].assign(40+abs(pl-4),20,4);
set[pl].assign(41+abs(pl-4),21,5);
set[pl].assign(42+abs(pl-4),35,6);

// set[pl].assign(254+abs(pl-4),59,8);
set[pl].assign(255+abs(pl-4),63,9);}

// }
/*
if (pl != 2){

set[pl].assign(40,20,4);
set[pl].assign(41,21,5);
set[pl].assign(42,35,6);

// set[pl].assign(254,59,8);
set[pl].assign(255,63,9);}

}
*/

}

channelset plane(int pl){ return set[pl];}
#ifdef DEBUG
void print(){

cout << " EVENT print \n";
for (int i =0; i<8; ++i){

cout << " Plane " << i+1 << " \n" << flush;
set[i].print();}

cout<< " --------- End Event \n \n" << flush;
}

#endif
};

class strip {
public:
int noise;
int value;
float dist; //distance from origin
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float width; // width of strip
float length; // length of strip over s-axis
};

class cluster{
protected:
coord cc; //coordinates of cluster
public:
float size; // number of hits (>1)
float weight; // weight =0 for dummy cluster
float s_c; // coordinate along s_axis (z_axis)
float t_c; // coordinate along transverse axis (x_ or y_ axis)

cluster(float cx,float cy,float cs,float sz)
{ cc.x = cx; cc.y = cy; cc.z = cs; weight =1.; size = sz; }

#ifdef DEBUG
virtual void print(){

cout << "Cluster " << "t: " << t_c << " s: "
<< s_c << " size: " << size << " \n" << flush;

}
#endif
};

class h_cluster: public cluster{
public:

h_cluster(float cx,float cs,float sz)
:cluster(cx,0.,cs,sz) { // y-coordinate =0
t_c = cx; s_c = cs; }

#ifdef DEBUG
void print(){

cout << "Horizontal " << flush; cluster::print();
}

#endif
};

class v_cluster: public cluster{
public:

v_cluster(float cy,float cs,float sz)
:cluster(0.,cy,cs,sz) { // x-coordinate = 0
t_c = cy; s_c = cs; }

#ifdef DEBUG
void print(){

cout << " Vertical " << flush; cluster::print();
}

#endif
};

class plane {
protected:
list<cluster>* clusters; // cluster set
strip sl[nstrip]; // array of strips
float x,y,s; // coordinates of lower left corner of plane
float mean; // statistics
int nr; // number of entries

public:
plane(coord c){
clusters = new list<cluster>; // empty cluster list to allow access to clusters
x = c.x; y=c.y ; s = c.z; // coordinates of plane
mean = 0.; nr = 0; //statistics for calibration
for (int i = 0; i<nstrip; ++i) {

sl[i].value = 0;
sl[i].noise = 1;} // to prevent division by zero
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}
cluster* first(){return clusters->first();};
cluster* get(){return clusters->current();};
cluster* next(){return clusters->next();};
bool sequel(){ return clusters->sequel();}
void assign(channelset s);
void clearstatistics(){ mean = 0.; nr = 0;};
float meandev(){ return mean;};
float scoord() { return s;};
virtual void storealignment(float cc){ };
void adddeviation(float dt){

if (nr == 0) {mean = dt; nr = 1;}
else { mean = mean*(nr/(nr+1)); nr ++; mean = mean+(dt/nr);}
};

virtual void addcluster(float t_c, float s_c, float sz) { };
#ifdef DEBUG
virtual void print(){

cout << "PLANE coordinates:: " << "x: " << x << " y: " << y <<
" s: " << s << " \n";

for (int i = 0; i<nstrip; ++i) {
if (sl[i].value > 1){

cout << " strip: " << i << " value: " << sl[i].value <<
" noise: " << sl[i].noise << " distance: " <<

sl[i].dist << " \n" << flush;}
}

}
#endif
};

void plane::assign(channelset ss){
for (int i = 0; i< nstrip; ++i) { // strip value and noise from channelset

sl[i].value = ss.strip(i,1);
sl[i].noise = ss.strip(i,2);} // strips initialized

delete clusters; // remove former clusters
clusters = new list<cluster>; // empty cluster list
for (i = 0; i< nstrip; ++i) { // determine clusters

if (sl[i].value/sl[i].noise > hitquot){
float total =sl[i].value-sl[i].noise;
float posit = sl[i].dist*total;
int k = i+1;
bool b = (k < nstrip);
if (b) {b = b & sl[k].value/sl[k].noise > hitquot;}
while (b) {

total =total+(sl[k].value -sl[k].noise);
posit = posit+sl[k].dist *float(

sl[k].value-sl[k].noise);
k++;
b = (k < nstrip);
if (b) {b = b & sl[k].value/sl[k].noise > hitquot;}
}

k--; // k always one too large
if (k > i) {

//more than two consecutive hits, add cluster
addcluster(posit/total, s,

sl[k].dist-sl[i].dist+sl[k].width);}
i = k+1;} //skip already inspected strips

}
}

class h_plane: public plane{
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public:
h_plane(coord cc): plane(cc) {
for (int i = 0; i<nstrip; ++i) {

sl[i].dist = xwidth*float(i); // x-position of strips from x=0
sl[i].width = xwidth; // dx width of strips
sl[i].length = length;} // thickness of strip over s-axis

}
void addcluster(float t_c, float s_c, float sz) {

// add x coordinate of plane to position within plane
h_cluster* h_cl = new h_cluster(t_c+x, s_c, sz);
clusters->enter( h_cl);

}
void storealignment(float cc){ x = x+cc;};
#ifdef DEBUG
void print(){

cout << " HORIZONTAL ";
plane::print();
cout << " clusters are: \n";
clusters->print();
cout << " --------------------- H_PLANE \n \n" << flush;
}

#endif
};

class v_plane: public plane {
public:

v_plane(coord cc): plane(cc) {
for (int i = 0; i<nstrip; ++i) {

sl[i].dist = ywidth*float(i); // y-position of strips from y=0
sl[i].width = ywidth; // y-width of strips
sl[i].length = length;} //length of strip over s-axis

}
void addcluster(float t_c, float s_c, float sz) {

// add y coordinate of plane to position within plane
v_cluster* v_cl = new v_cluster(t_c+y, s_c, sz);
clusters->enter( v_cl);

}
void storealignment(float cc){ y = y+cc;};
#ifdef DEBUG
void print(){

cout << " VERTICAL ";
plane::print();
cout << " clusters are: \n";
clusters->print();
cout << " --------------------- V_PLANE \n \n" << flush;
}

#endif

};

class s_line{
public:
float s_off;
float ts_tg;
float chi;

s_line(float xt,float yt,float of){
s_off = of; ts_tg = yt; chi = 0;}

bool fit(list<cluster>* proj) {
cluster* clpt = proj->first();
int ncl =0; // number of clusters
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float S_s = 0.;
float S_ss = 0.;
float S_t = 0.;
float S_tt = 0.;
float S_st = 0.;
while ( clpt != null){

if (clpt->weight > 0){
ncl = ncl + 1; // number of entries
S_s = S_s+clpt->s_c; //sum over s
S_t = S_t+clpt->t_c; //sum over t
S_ss = S_ss+clpt->s_c*clpt->s_c; //sum over s*s
S_st = S_st+clpt->s_c*clpt->t_c; //sum over t*s
S_tt = S_tt+clpt->t_c*clpt->t_c;} //sum over t*t

clpt = proj->next();
}

if (ncl < 3){ return false;} // at least three coordinates required
float det = float(ncl)*S_ss - S_s*S_s ;
if (det <= 0) { return false;}
s_off = (S_ss*S_t - S_s*S_st)/det;
ts_tg = (ncl*S_st - S_s*S_t)/det;
chi = S_tt-s_off*S_t - ts_tg*S_st;
return abs(chi) < linchi;
}

#ifdef DEBUG
void print(){

cout << "LINE ts_tg: " << ts_tg << " s_off: "
<< s_off << " chi: " << chi << " \n" << flush;}

#endif
};

class projection{
protected:
list<cluster>* clp; // pointer associated cluster
s_line line; // fitted line
public:

projection(): line(0,0,0) { clp = new list<cluster>; }
˜projection(){ delete clp;}

bool valid(){ return line.fit(clp);}
float tline( float sc){ return line.ts_tg*sc + line.s_off;}
void add(cluster* clref) { if (clref != null) {clp->enter(clref);}}
void AddDev( plane* planes[]){

cluster* cp = clp->first();
int i = (nplane/2)-1;
while (cp != null) { // assume that clusters come from 4,3,2,1

while (cp->s_c != planes[i]->scoord() & i >0) { i--;}
planes[i]->adddeviation(cp->t_c - tline(cp->s_c));
cp = clp->next();} // end while over clusters

}

#ifdef DEBUG
virtual void print(){

cout << " projection \n" << flush;
clp->print();
line.print();}

#endif
};

class v_projection: public projection{
public:

#ifdef DEBUG
void print () {
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cout <<" VERTICAL ";
projection::print();
}

#endif
};

class h_projection: public projection{
public:

#ifdef DEBUG
void print () {

cout <<" HORIZONTAL ";
projection::print();}

#endif
};

class projlst {
protected:
list<projection>* lp;

projlst() { lp = null;}
˜projlst() { if (lp != null) { delete lp;} }

public:
projection* first() { return lp->first();}
virtual projection* newproj() { return new projection();}
int number() { return lp->number;}
virtual void FindProj(plane* planes[]){
// find the list of projections in array of planes

bool b = false;
projection* pp = newproj();
for (int i = 0; i<4; ++i){

pp->add(planes[i]->first());
b = b | planes[i]->sequel();} // more than one cluster in plane?
// b implies there is a plane with more than 1 cluster
// not b implies all planes have less than 2 clusters

if (pp->valid()){lp->enter(pp);} // if good projection add to lvp
else {delete pp;} // else remove contents and memory

// try all possible cluster combinations from vertical planes that have clusters

cluster* cp;
while (b){

pp = newproj();
b = false;
bool sw = true;

// sw implies get next cluster from plane or first one
// not sw implies get current cluster from plane

for (i = 0; i<4; ++i){
if (sw) {cp = planes[i]->next();}
else { cp = planes[i]->get();}
if (cp == null) { cp = planes[i]->first();}
else { sw = false;}

// sw remains true when when first cluster was taken from former plane
pp->add(cp);
b = b | planes[i]->sequel();} // end for (i=0; i<4)

// not b implies last cluster is found in all planes

if (pp->valid()){lp->enter(pp);}
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else {delete pp;}
} // end of while(b)

} // end of FindProj

#ifdef DEBUG
virtual void print() {

cout << "projection list \n";
if (lp==null) {cout << " no list present \n";}
else {lp->print();}
}

#endif
};

class v_projlst: public projlst {
protected:
projection* newproj(){ return new v_projection();}
public:
void FindProj(plane* planes[]){
// find the list of projections in array of vertical planes

delete lp; // remove old list
lp = (list<projection>*) new list<h_projection>;
projlst::FindProj( planes);
}

#ifdef DEBUG
void print() {

cout << "\n Vertical ";
projlst::print();
}

#endif
};

class h_projlst: public projlst {
protected:
projection* newproj(){ return new h_projection();}
public:
void FindProj(plane* planes[]){
// find the list of projections in array of vertical planes

delete lp; // remove old list
lp = (list<projection>*) new list<h_projection>;
projlst::FindProj( planes);
}

#ifdef DEBUG
void print() {

cout << "\n Horizontal ";
projlst::print();
}

#endif
};

class track{
projection* hpr;
projection* vpr;
public:

track(projection* h, projection* v) {hpr = h; vpr = v;}
˜track() { delete hpr; delete vpr;}

projection* hproj() {return hpr;}
projection* vproj() {return vpr;}
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#ifdef DEBUG
void print(){

cout << " TRACK \n" << flush;
if (hpr != null) {hpr->print();}
else { cout << " no horizontal projection \n" << flush;}
if (vpr != null) {vpr->print();}
else { cout << " no vertical projection \n" << flush;}
}

#endif
};

class SiBTOO{
plane* hplanes[nplane/2]; // 4 horizontal planes
plane* vplanes[nplane/2]; // 4 vertical planes
h_projlst* lhp; // list of horizontal projections
v_projlst* lvp; // list of vertical projections

public:
SiBTOO() {

// initialize with 0 projections
lhp = new h_projlst();
lvp = new v_projlst();

//initialize plane coordinates
for (int i = 0; i<nplane/2; ++i){

coord cc;
cc.z = 2*i*(sbt_ds-0.05)/nplane;// s-coordinate
cc.x = .1; // x-coordinate
cc.y = cc.x; // y coordinate
vplanes[i] = new v_plane(cc); // vertical plane
cc.z = cc.z+.05; // s-coordinate

// (slightly different from
// vertical plane s-coordinate)

hplanes[i] = new h_plane(cc);} // horizontal plane
}

track* FindTracks(event ev){
for (int i = 0; i<nplane/2; ++i){

vplanes[i]->assign(ev.plane(i*2)); // vertical plane strips assigned
hplanes[i]->assign(ev.plane(i*2+1));};// horizontal plane strips assigned
// clusters of event are found and stored in planes

// VERTICAL projections
lvp->FindProj( vplanes); // lvp contains vertical projections

// HORIZONTAL projections
lhp->FindProj( hplanes); // lhp contains horizontal projections

// only one projection from each orientation is allowed
if(lhp->number() == 1 & lvp->number() == 1)

{return new track(lhp->first(), lvp->first());}
else { return null;}

}

void Calibrate(list<track>* lst){
for (int i = 0; i<nplane/2; ++i){

vplanes[i]->clearstatistics();
hplanes[i]->clearstatistics();}
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track* trp = lst->first(); // get first track from list
while (trp != null) { // loop over all tracks

// horizontal projections
trp->hproj()->AddDev( hplanes);

// vertical projections
trp->vproj()->AddDev( vplanes);

trp = lst->next();} // end while over all tracks
// realign planes
for (i = 0; i<nplane/2; ++i){

hplanes[i]->storealignment(-hplanes[i]->meandev());
vplanes[i]->storealignment(-vplanes[i]->meandev());}

}

#ifdef DEBUG
void print(){

lhp->print();
lvp->print();
for (int i = 0; i<nplane/2; i++){

vplanes[i]->print();
hplanes[i]->print();}

}
#endif
};

int main()
{
SiBTOO sbt;
event ev; // some well chosen values
list<track>* lst = new list<track>;

//initialize SiBTOO
#ifdef DEBUG

ev.print(); // print event contents
sbt.print(); // print all plane contents of SiBTOO
cout << "\n Track list first time \n\n\n" << flush;
lst->print(); // print all tracks

#endif
lst->enter( sbt.FindTracks(ev)); // find one track

#ifdef DEBUG
sbt.print();
cout << "\n Track list 2nd time\n\n\n" << flush;
lst->print();

#endif
sbt.Calibrate(lst); // calibrate with one track

#ifdef DEBUG
sbt.print();

#endif

lst->enter( sbt.FindTracks(ev)); // find same track in calibrated SiBTOO
#ifdef DEBUG

sbt.print();
cout << "\n Track list 3rd time\n\n\n" << flush;
lst->print();

#endif

cout << " main stopped\n";
}
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B Layer code

#include <stdlib.h>
#include <iostream.h>
#include <math.h>
#include <vector.h>
#include <algo.h>

// standard definition of NULL and bool
const int null = 0;

// constants for detector installation
const int nlayer = 8; // number of layers in installation
const int ndetct = 16; // numer of detectors in layer
const float rinner = 20.; // inner radius of installation
const float router = 40.; // outer radius of installation
const float rspace = .2; // space between two layers
const float detcdr = (router - rinner)/nlayer - rspace;

// thickness of detector
const float detcds = 6.2; // length of detector over s-axis
const float dphi = M_PI /ndetct; // angle over which detector extends

// constants for event layout
const int nr_det = 3; // 3 entries per detector in event

// acceptance limits and allowed deviations
const float linchi = 10.; // chi of accepted line fit
const float phi_dev = dphi/100.; // tolerated segment deviations

class cylpoint{
// point in cylindrical coordinate system
public:
float r; // r coordinate
float phi; // phi angle coordinate
float s; // cylinder axis coordinate
};

class measur: public cylpoint{
// measurement point in cylindrical coordinate system
public:
float dr,ds,dphi; // measurement uncertainties in above
};

// Define == on measur objects
bool operator==(const measur& m1, const measur& m2)
{

return m1.phi == m2.phi;
}
// Define < on measur objects
bool operator<(const measur& m1, const measur& m2)
{

return m1.phi < m2.phi;
}

class layerset{
float items[50];
int as,k;
public:

layerset(){
k = 0;
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as = 0;
for( int i =0; i<50; ++i) {items[i] = 0.;}

}

float* detect(float phi ) {
for (int i = k; i<as ; i = i+nr_det){
if (items[i] > phi & items[i] < phi + 2*dphi){

k = i+nr_det;
return &items[i];} // coordinate in detector with

// angle phi
}

k = 0; // start from beginning
return null;} // no hit found

void assign( float phi, float r, float s){
items[as] = phi; as++;
items[as] = r; as++;
items[as] = s; as++;}

#ifdef DEBUG
void print(){

int i=0;
while (i < as){

cout << " angle: " << items[i] <<" r: " << items[i+1]
<< " s: " << items[i+2] << "\n" << flush;
i = i+nr_det;}

}
#endif
};

class event{
layerset set[nlayer]; // 1 event: nlayer layersets
public:

event(){
for (int pl = 0; pl <nlayer ; ++pl){

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.25,0);

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.3,0);

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.5,0);

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.66,0);

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.75,0);

}

for ( pl = 0; pl <nlayer ; ++pl){
set[pl].assign(M_PI/3+dphi*.01+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.25,0);
set[pl].assign(M_PI/3+dphi*.015+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.3,0);
set[pl].assign(M_PI/3+dphi*.017+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.5,0);
set[pl].assign(M_PI/3+dphi*.02+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.66,0);
set[pl].assign(M_PI/3+dphi*.022+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.75,0);
}

}

layerset layer(int pl){ return set[pl];}
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#ifdef DEBUG
void print(){

cout << " EVENT print \n";
for (int i =0; i<nlayer; ++i){

cout << " Layer " << i << " \n" << flush;
set[i].print();}

cout<< " --------- End Event \n \n" << flush;
}

#endif
};

class segment{
public:
vector<measur> points;
cylpoint entry;
cylpoint exit;

void enter(measur* m){ points.push_back(*m);}
bool valid(float r,float phi) {
float s_off, of;
float ts_tg, tg;
float chi;
float s,t; // coordinates after transformations
int nms =0; // number of measurements
float S_s = 0.;
float S_ss = 0.;
float S_t = 0.;
float S_tt = 0.;
float S_st = 0.;

if (points.begin() != points.end()){
vector<measur>::iterator m;
for (m= points.begin(); m != points.end(); ++m){

nms = nms + 1; // number of entries
s = m->r*cos(m->phi);
t = m->r*sin(m->phi);
S_s = S_s + s; //sum over s
S_t = S_t + t; //sum over t
S_ss = S_ss+s*s; //sum over s*s
S_st = S_st+t*s; //sum over t*s
S_tt = S_tt+t*t;} //sum over t*t

}
if (nms < 3){ return false;} // at least three coordinates required
float det = float(nms)*S_ss - S_s*S_s ;
if (det <= 0) { return false;}
s_off = (S_ss*S_t - S_s*S_st)/det;
ts_tg = (nms*S_st - S_s*S_t)/det;
chi = S_tt-s_off*S_t - ts_tg*S_st;

// calculate entry and exit points of line
entry.s = 0; exit.s = 0; // default values
tg = (sin(phi)-sin(phi+2.*dphi))/(cos(phi)-cos(phi+2.*dphi));
// inner layer, entry point
of = r*sin(phi)-tg*r*cos(phi);
s = (s_off-of)/(tg-ts_tg);
t = tg*s+of;
entry.r = sqrt(s*s + t*t);
entry.phi = atan2(t,s);

// outer layer exit point
r = r+detcdr+rspace;
of = r*sin(phi)-tg*r*cos(phi);
s = (s_off-of)/(tg-ts_tg);
t = tg*s+of;
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exit.r = sqrt(s*s + t*t);
exit.phi = atan2(t,s);

return abs(chi) < linchi;
}

};

// Define == on segment objects
bool operator==(const segment& s1, const segment& s2)
{

return s1.exit.phi == s2.exit.phi;
}
// Define < on segment objects
bool operator<(const segment& s1, const segment& s2)
{

return s1.exit.phi < s2.exit.phi;
}

class track{
vector<segment> trk; // segments that constitute track
public:
cylpoint entry;
cylpoint exit;
void enter(segment* s){

entry = s->entry;
if (trk.begin() == trk.end()){ exit = s->exit;}
trk.push_back( *s);
}

#ifdef DEBUG
void print(){

cout << "TRACK with entry.phi: " << entry.phi << " exit.phi: " << exit.phi << "\n";
cout << " entry.r: " << entry.r << " exit.r: " << exit.r << "\n";
vector<segment>::iterator sg;
for (sg= trk.begin(); sg != trk.end(); ++sg){

cout << " segment exit phi: " << sg->exit.phi;
cout << " exit r: " << sg->exit.r << "\n" << flush;
cout << " segment entry phi: " << sg->entry.phi;
cout << " entry r: " << sg->entry.r << "\n";}

}
#endif
};

// Define == on track objects
bool operator==(const track& t1, const track& t2)
{

return t1.entry.phi == t2.entry.phi;
}
// Define < on track objects
bool operator<(const track& t1, const track& t2)
{

return t1.entry.phi < t2.entry.phi;
}

class detector{
public:
cylpoint pt[8]; // detector defined by 8 points in space
vector<segment> seglst; // list of segments
vector<measur> measlst; // list of measurements

detector() { };
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detector(float r, float phi){
for (int i = 0 ; i< 4; i++) {pt[i].s = 0; pt[i+4].s=detcds;}
pt[0].r = r; pt[1].r = r;
pt[4].r = r; pt[5].r = r;
pt[2].r = r+detcdr; pt[3].r = r+detcdr;
pt[6].r = r+detcdr; pt[7].r = r+detcdr;
pt[0].phi = phi - dphi; pt[4].phi = phi- dphi;
pt[3].phi = phi - dphi; pt[7].phi = phi- dphi;
pt[1].phi = phi + dphi; pt[5].phi = phi+ dphi;
pt[2].phi = phi + dphi; pt[6].phi = phi+ dphi;
} // end of detector constructor

void add(measur m){measlst.push_back( m);}
void clean(){

// remove all segments and measurements
seglst.erase(seglst.begin(),seglst.end());
measlst.erase(measlst.begin(),measlst.end());
} // end of clean

void FindSegment(){
if (measlst.begin() != measlst.end()){ // measurements present

segment sg;
vector<measur>::iterator m;
for (m= measlst.begin(); m != measlst.end(); ++m){

sg.enter(m);} // all measurements in one segment
if (sg.valid(pt[0].r,pt[0].phi)){seglst.push_back(sg);}

// add sg to segment list
} // end of if (measlst...

} // end of FindSegment

#ifdef DEBUG
void print(){

cout << " Detector ";
cout << " pt[0].phi: " << pt[0].phi << " pt[0].r: " << pt[0].r;
cout << " pt[2].phi: " << pt[2].phi << " pt[2].r: " << pt[2].r;
cout << " \n" << flush;

if (seglst.size() !=0){
vector<segment>::iterator sg;
for (sg= seglst.begin(); sg != seglst.end(); ++sg){

cout << " segment entry phi: " << sg->entry.phi;
cout << " entry r: " << sg->entry.r << "\n";
cout << " segment exit phi: " << sg->exit.phi;
cout << " exit r: " << sg->exit.r << "\n" << flush;}

} // end of if (seglst.size ...

if (measlst.size() !=0){
vector<measur>::iterator m;
for (m= measlst.begin(); m != measlst.end(); ++m){

cout <<" measurement r: " << m->r <<
" phi: " << m->phi << " \n" << flush;}

} // end of if
} // end of print

#endif
};

// Define == on detector objects
bool operator==(const detector& d1, const detector& d2)
{

return d1.pt[0].phi == d2.pt[0].phi;
}
// Define < on detector objects
bool operator<(const detector& d1, const detector& d2)
{

return d1.pt[0].phi < d2.pt[0].phi;
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};

class layer{
public:
vector<detector> dts;

layer(float ri) {
// create a layer with inner circle defined by ri

for (int i=0; i < ndetct; i++){
dts.push_back( * new detector(ri, dphi*i*2));}

sort(dts.begin(), dts.end(),less<detector>() );
} //end of layer constructor

void assign(layerset ls){
float* pm;
measur m;
m.dr =0.; m.dphi = 0.; m.ds =0.;
vector<detector>::iterator d;
for (d= dts.begin(); d != dts.end(); ++d){

d->clean(); // remove segments and measurements
pm = ls.detect(d->pt[0].phi);
while (pm != null){

m.phi = pm[0];
m.r = pm[1];
m.s = pm[2];
d->add(m);
pm = ls.detect(d->pt[0].phi);} // end of while

d->FindSegment(); // construct segments
} // end of for

} // end of assign
#ifdef DEBUG
void print(){

int i =1;
vector<detector>::iterator d;
for (d= dts.begin(); d != dts.end(); ++d){

cout << i; i++; d->print();}
}

#endif
};

class tracklist{
vector<track> tklst; // list of tracks
public:
void extend (layer* ly){

float cr_ent; // entry point of current track
vector<track>::iterator t = tklst.begin();
if (t == tklst.end()){ cr_ent = 2*M_PI+dphi;} // empty track list
else { cr_ent = t->entry.phi;}

// store all segments of all detectors in layer ly into sglst
vector<segment> sglst; // list of segments in layer ly
vector<detector>::iterator d;
for (d= ly->dts.begin(); d != ly->dts.end(); ++d){

copy(d->seglst.begin(), d->seglst.end(), back_inserter(sglst));}
sort(sglst.begin(),sglst.end()); // sorted segments of layer ly

// start extension of creation of tracks
vector<segment>::iterator s= sglst.begin();
while (s != sglst.end()){

while ((s->exit.phi < cr_ent - phi_dev) & (s != sglst.end())){
track tk; // new track
tk.enter( s); s++; // track with one segment
tklst.push_back( tk);} // add new track to list

if (s != sglst.end()){
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while ( cr_ent < s->exit.phi-phi_dev){
t ++; // next track
if (t == tklst.end()){ cr_ent = 2*M_PI+dphi;}
else { cr_ent = t->entry.phi;}
} // end while ...

if (abs(s->exit.phi - cr_ent) < phi_dev) {
t->enter( s); s++;} // extend track

} // end of if (s != ....
} // end while (s!=sglst ...

sort(tklst.begin(),tklst.end());
} //end extend

#ifdef DEBUG
void print(){

cout << "TRACK LIST \n";
int cnt = 1;
vector<track>::iterator t;
for (t= tklst.begin(); t != tklst.end(); ++t){

cout << cnt << " " ; cnt++;
t->print();}

}
#endif
};

class installation{
layer* ly[nlayer]; // nlayer layers in installation
tracklist* tklist; // list of tracks
public:

installation(){
tklist = null;
for (int i = 0; i <nlayer; i++) {

ly[i]= new layer(i*(router-rinner)/nlayer + rinner); }
}

tracklist* GetTracks(event ev){
delete tklist; // remove old tracks
tklist = new tracklist(); // new empty track list

// find tracks by going from outer layer to inner layer
for (int i = nlayer-1; i>-1; i--) {

ly[i]->assign(ev.layer(i)); // measurements into layer i
tklist->extend(ly[i]); // tracks include layer i segments
}

// measurements are assigned to layers
return tklist;
}

#ifdef DEBUG
void print(){

for (int i=0; i < nlayer; i++){
cout << " Layer " << i << " \n";
ly[i]->print();
cout << " \n" << flush;}

tklist->print(); // print found tracks
}

#endif
};

int main(){
installation instal;
event ev;
tracklist* trlst;
#ifdef DEBUG
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ev.print();
cout << "debug \n";

// instal.print();
#endif

trlst = instal.GetTracks(ev);
#ifdef DEBUG

instal.print();
#endif
cout << " main stopped\n";
}
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C Layer code

#include <stdlib.h>
#include <iostream.h>
#include <math.h>
#include <vector.h>
#include <algo.h>

// standard definition of NULL and bool
const int null = 0;

// constants for detector installation
const int nlayer = 8; // number of layers in installation
const int ndetct = 16; // numer of detectors in layer
const float rinner = 20.; // inner radius of installation
const float router = 40.; // outer radius of installation
const float rspace = .2; // space between two layers
const float detcdr = (router - rinner)/nlayer - rspace;

// thickness of detector
const float detcds = 6.2; // length of detector over s-axis
const float dphi = M_PI /ndetct; // angle over which detector extends

// constants for event layout
const int nr_det = 3; // 3 entries per detector in event

// acceptance limits and allowed deviations
const float linchi = 10.; // chi of accepted line fit
const float phi_dev = dphi/100.; // tolerated segment deviations
const float curv = 100.; // curvature of standard particle

class cylpoint{
// point in cylindrical coordinate system
public:
float r; // r coordinate
float phi; // phi angle coordinate
float s; // cylinder axis coordinate
};

class measur: public cylpoint{
// measurement point in cylindrical coordinate system
public:
float dr,ds,dphi; // measurement uncertainties in above
};

// Define == on measur objects
bool operator==(const measur& m1, const measur& m2)
{

return m1.phi == m2.phi;
}
// Define < on measur objects
bool operator<(const measur& m1, const measur& m2)
{

return m1.phi < m2.phi;
}

class vect: public cylpoint{
// point with direction in plane perpendicular to s
public:
float angle; // orientation in plane perpendicular to s
};
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class particle: public vect{
// physical characteristics of particle
public:
float mass; // particle’s mass
float p; // particle’s momentum
void Propagate(vect cc) {

phi = cc.phi; r = cc.r; s = cc.s; angle = cc.angle;}
virtual vect Intersect(cylpoint cc1, cylpoint cc2, float B) {

vect vc;
vc.phi = 4*M_PI; vc.angle =0;
vc.r = 2*router; vc.s =0;
return vc; }

#ifdef DEBUG
virtual void print() { }
#endif
};

class charged_particle: public particle{
// charged particle trajectory is circle
public:
int charge; // particle’s charge (+1 or -1)
vect Intersect(cylpoint cc1, cylpoint cc2, float B) {

double x1 = cc1.r*cos(cc1.phi);
double x2 = cc2.r*cos(cc2.phi);

// calculate centre coordinates of circle
double Radius = curv*p/B;
float xm = Radius*cos(angle+charge*M_PI/2.) + r*cos(phi);
float ym = Radius*sin(angle+charge*M_PI/2.) + r*sin(phi);
// calculate intersection point of line with circle
double tg = (cc1.r*sin(cc1.phi) - cc2.r*sin(cc2.phi)) /

(cc1.r*cos(cc1.phi) - cc2.r*cos(cc2.phi));
double of = cc1.r*sin(cc1.phi)-cc1.r*cos(cc1.phi)*tg;
double a = 1+tg*tg;
double b = 2.*tg*(of -ym)-2*xm;
double c = xm*xm+(of-ym)*(of-ym)-Radius*Radius;
double det = b*b - 4*a*c;

vect vc;
vc.s = 0;
if (det < 0) { // no intersection point

vc.phi = 4*M_PI;
vc.r = 2*router;
return vc;}

double x = (-b + sqrt(det))/(2*a);
if (x < min(x1,x2) | x > max(x1,x2)) { // no intersection

x = (-b - sqrt(det))/(2*a);}
double y = tg*x + of;
vc.s = 0;
vc.phi = atan2(y,x);
vc.r = sqrt(x*x + y*y);
vc.angle = atan2(ym-y,xm-x)-charge*M_PI/2.;
return vc;
}

#ifdef DEBUG
void print(){

cout << " Charged particle with phi: " << phi <<
" r: " << r << " angle " << angle << "\n" << flush;

}
#endif
};

class neutral_particle: public particle{
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// neutral particle trajectory is straight line
vect Intersect(cylpoint cc1, cylpoint cc2, float B) {

double tg1 = tan( angle);
double of1 = r*sin(phi)-r*cos(phi)*tg1;

double tg2 = (cc1.r*sin(cc1.phi) - cc2.r*sin(cc2.phi)) /
(cc1.r*cos(cc1.phi) - cc2.r*cos(cc2.phi));

double of2 = cc1.r*sin(cc1.phi)-cc1.r*cos(cc1.phi)*tg2;

double x = (of2-of1)/(tg1-tg2);
double y = tg1*x + of1;
vect vc;
vc.s = 0;
vc.phi = atan2(y,x);
vc.r = sqrt(x*x + y*y);
vc.angle = angle;
return vc;
}

#ifdef DEBUG
void print(){

cout << " Neutral particle with phi: " << phi <<
" r: " << r << " angle " << angle << "\n" << flush;

}
#endif
};

class layerset{
float items[50];
int as,k;
public:

layerset(){
k = 0;
as = 0;
for( int i =0; i<50; ++i) {items[i] = 0.;}

}

float* detect(float phi ) {
for (int i = k; i<as ; i = i+nr_det){
if (items[i] > phi & items[i] < phi + 2*dphi){

k = i+nr_det;
return &items[i];} // coordinate in detector with

// angle phi
}

k = 0; // start from beginning
return null;} // no hit found

void assign( float phi, float r, float s){
items[as] = phi; as++;
items[as] = r; as++;
items[as] = s; as++;}

#ifdef DEBUG
void print(){

int i=0;
while (i < as){

cout << " angle: " << items[i] <<" r: " << items[i+1]
<< " s: " << items[i+2] << "\n" << flush;
i = i+nr_det;}

}
#endif
};
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class event{
layerset set[nlayer]; // 1 event: nlayer layersets
public:

event(){
for (int pl = 0; pl <nlayer ; ++pl){

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.25,0);

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.3,0);

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.5,0);

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.66,0);

set[pl].assign(M_PI/4+.5*dphi,
pl*(router-rinner)/nlayer+rinner+detcdr*.75,0);

}

for ( pl = 0; pl <nlayer ; ++pl){
set[pl].assign(M_PI/3+dphi*.01+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.25,0);
set[pl].assign(M_PI/3+dphi*.015+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.3,0);
set[pl].assign(M_PI/3+dphi*.017+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.5,0);
set[pl].assign(M_PI/3+dphi*.02+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.66,0);
set[pl].assign(M_PI/3+dphi*.022+pl*.023*dphi,

pl*(router-rinner)/nlayer+rinner+detcdr*.75,0);
}

}

layerset layer(int pl){ return set[pl];}
#ifdef DEBUG
void print(){

cout << " EVENT print \n";
for (int i =0; i<nlayer; ++i){

cout << " Layer " << i << " \n" << flush;
set[i].print();}

cout<< " --------- End Event \n \n" << flush;
}

#endif
};

class segment{
public:
vector<measur> points;
cylpoint entry;
cylpoint exit;

void enter(measur* m){ points.push_back(*m);}
bool valid(float r,float phi) {
float s_off, of;
float ts_tg, tg;
float chi;
float s,t; // coordinates after transformations
int nms =0; // number of measurements
float S_s = 0.;
float S_ss = 0.;
float S_t = 0.;
float S_tt = 0.;
float S_st = 0.;

if (points.begin() != points.end()){
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vector<measur>::iterator m;
for (m= points.begin(); m != points.end(); ++m){

nms = nms + 1; // number of entries
s = m->r*cos(m->phi);
t = m->r*sin(m->phi);
S_s = S_s + s; //sum over s
S_t = S_t + t; //sum over t
S_ss = S_ss+s*s; //sum over s*s
S_st = S_st+t*s; //sum over t*s
S_tt = S_tt+t*t;} //sum over t*t

}
if (nms < 3){ return false;} // at least three coordinates required
float det = float(nms)*S_ss - S_s*S_s ;
if (det <= 0) { return false;}
s_off = (S_ss*S_t - S_s*S_st)/det;
ts_tg = (nms*S_st - S_s*S_t)/det;
chi = S_tt-s_off*S_t - ts_tg*S_st;

// calculate entry and exit points of line
entry.s = 0; exit.s = 0; // default values
tg = (sin(phi)-sin(phi+2.*dphi))/(cos(phi)-cos(phi+2.*dphi));
// inner layer, entry point
of = r*sin(phi)-tg*r*cos(phi);
s = (s_off-of)/(tg-ts_tg);
t = tg*s+of;
entry.r = sqrt(s*s + t*t);
entry.phi = atan2(t,s);

// outer layer exit point
r = r+detcdr+rspace;
of = r*sin(phi)-tg*r*cos(phi);
s = (s_off-of)/(tg-ts_tg);
t = tg*s+of;
exit.r = sqrt(s*s + t*t);
exit.phi = atan2(t,s);

return abs(chi) < linchi;
}

};

// Define == on segment objects
bool operator==(const segment& s1, const segment& s2)
{

return s1.exit.phi == s2.exit.phi;
}
// Define < on segment objects
bool operator<(const segment& s1, const segment& s2)
{

return s1.exit.phi < s2.exit.phi;
}

class track{
vector<segment> trk; // segments that constitute track
public:
cylpoint entry;
cylpoint exit;
void enter(segment* s){

entry = s->entry;
if (trk.begin() == trk.end()){ exit = s->exit;}
trk.push_back( *s);
}

#ifdef DEBUG
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void print(){
cout << "TRACK with entry.phi: " << entry.phi << " exit.phi: " << exit.phi << "\n";
cout << " entry.r: " << entry.r << " exit.r: " << exit.r << "\n";
vector<segment>::iterator sg;
for (sg= trk.begin(); sg != trk.end(); ++sg){

cout << " segment exit phi: " << sg->exit.phi;
cout << " exit r: " << sg->exit.r << "\n" << flush;
cout << " segment entry phi: " << sg->entry.phi;
cout << " entry r: " << sg->entry.r << "\n";}

}
#endif
};

// Define == on track objects
bool operator==(const track& t1, const track& t2)
{

return t1.entry.phi == t2.entry.phi;
}
// Define < on track objects
bool operator<(const track& t1, const track& t2)
{

return t1.entry.phi < t2.entry.phi;
}

class detector{
float B; // magnetic field in detector
public:
cylpoint pt[8]; // detector defined by 8 points in space
vector<segment> seglst; // list of segments
vector<measur> measlst; // list of measurements
detector* r_bk; // links to surrounding detectors
detector* r_fw;
detector* ph_bk;
detector* ph_fw;

detector() { };
detector(float r, float phi){
r_bk = null; r_fw = null; ph_bk = null; ph_fw = null;
for (int i = 0 ; i< 4; i++) {pt[i].s = 0; pt[i+4].s=detcds;}
B = 1.;
pt[0].r = r; pt[1].r = r;
pt[4].r = r; pt[5].r = r;
pt[2].r = r+detcdr; pt[3].r = r+detcdr;
pt[6].r = r+detcdr; pt[7].r = r+detcdr;
pt[0].phi = phi - dphi; pt[4].phi = phi- dphi;
pt[3].phi = phi - dphi; pt[7].phi = phi- dphi;
pt[1].phi = phi + dphi; pt[5].phi = phi+ dphi;
pt[2].phi = phi + dphi; pt[6].phi = phi+ dphi;
} // end of detector constructor

void add(measur m){measlst.push_back( m);}
void clean(){

// remove all segments and measurements
seglst.erase(seglst.begin(),seglst.end());
measlst.erase(measlst.begin(),measlst.end());
} // end of clean

void FindSegment(){
if (measlst.begin() != measlst.end()){ // measurements present

segment sg;
vector<measur>::iterator m;
for (m= measlst.begin(); m != measlst.end(); ++m){

sg.enter(m);} // all measurements in one segment
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if (sg.valid(pt[0].r,pt[0].phi)){seglst.push_back(sg);}
// add sg to segment list

} // end of if (measlst...
} // end of FindSegment

virtual void trace(particle& ptk) {
detector* dtp;
vect cc = ptk.Intersect(pt[2],pt[3], B);
dtp = r_fw;
if (cc.phi > pt[2].phi | cc.phi < pt[3].phi){

cc = ptk.Intersect(pt[0],pt[3], B);
dtp = ph_bk;
if (cc.r < pt[0].r | cc.r > pt[3].r){

cc = ptk.Intersect(pt[1],pt[2], B);
dtp = ph_fw;}

} // end if(cc.phi < pt[2].phi.....
ptk.Propagate(cc); // advance particle

#ifdef DEBUG
ptk.print();

#endif
dtp->trace(ptk); // next detector
} // end of trace

#ifdef DEBUG
void print(){

cout << " Detector ";
cout << " pt[0].phi: " << pt[0].phi << " pt[0].r: " << pt[0].r;
cout << " pt[2].phi: " << pt[2].phi << " pt[2].r: " << pt[2].r;
cout << " \n" << flush;

if (seglst.size() !=0){
vector<segment>::iterator sg;
for (sg= seglst.begin(); sg != seglst.end(); ++sg){

cout << " segment entry phi: " << sg->entry.phi;
cout << " entry r: " << sg->entry.r << "\n";
cout << " segment exit phi: " << sg->exit.phi;
cout << " exit r: " << sg->exit.r << "\n" << flush;}

} // end of if (seglst.size ...

if (measlst.size() !=0){
vector<measur>::iterator m;
for (m= measlst.begin(); m != measlst.end(); ++m){

cout <<" measurement r: " << m->r <<
" phi: " << m->phi << " \n" << flush;}

} // end of if
} // end of print

#endif
};

class dummy_detector: public detector{
public:
void trace(particle& ptk) {
#ifdef DEBUG
cout << "End of particle trace \n \n" << flush;
#endif

}
};

// Define == on detector objects
bool operator==(const detector& d1, const detector& d2)
{

return d1.pt[0].phi == d2.pt[0].phi;
}
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// Define < on detector objects
bool operator<(const detector& d1, const detector& d2)
{

return d1.pt[0].phi < d2.pt[0].phi;
};

class layer{
public:
vector<detector> dts;

layer(float ri) {
// create a layer with inner circle defined by ri

for (int i=0; i < ndetct; i++){
dts.push_back( *new detector(ri, dphi*i*2));}

sort(dts.begin(), dts.end(),less<detector>() );
} //end of layer constructor

void connect(layer* ly){
vector<detector>::iterator dup = ly->dts.begin();
vector<detector>::iterator d,dbk = dts.begin();
for (d= dts.begin(); d != dts.end(); ++d){

dbk->ph_fw = d; d->ph_bk = dbk;
d->r_fw = dup; dup->r_bk = d; ++dup;
dbk = d;}

// dbk points to last detector
d = dts.begin(); dbk->ph_fw = d; d->ph_bk =dbk;
} // end of connect(layer)

void connect(detector* dup){
vector<detector>::iterator d,dbk = dts.begin();
for (d= dts.begin(); d != dts.end(); ++d){

dbk->ph_fw = d; d->ph_bk = dbk;
d->r_fw = dup;
dbk = d;}

// dbk points to last detector
d = dts.begin(); dbk->ph_fw = d; d->ph_bk =dbk;
} // end of connect(detector)

void assign(layerset ls){
float* pm;
measur m;
m.dr =0.; m.dphi = 0.; m.ds =0.;
vector<detector>::iterator d;
for (d= dts.begin(); d != dts.end(); ++d){

d->clean(); // remove segments and measurements
pm = ls.detect(d->pt[0].phi);
while (pm != null){

m.phi = pm[0];
m.r = pm[1];
m.s = pm[2];
d->add(m);
pm = ls.detect(d->pt[0].phi);} // end of while

d->FindSegment(); // construct segments
} // end of for

} // end of assign
#ifdef DEBUG
void print(){

int i =1;
vector<detector>::iterator d;
for (d= dts.begin(); d != dts.end(); ++d){

cout << i; i++; d->print();}
}

#endif
};

class tracklist{
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public:
vector<track> tklst; // list of tracks
void extend (layer* ly){

float cr_ent; // entry point of current track
vector<track>::iterator t = tklst.begin();
if (t == tklst.end()){ cr_ent = 2*M_PI+dphi;} // empty track list
else { cr_ent = t->entry.phi;}

// store all segments of all detectors in layer ly into sglst
vector<detector>::iterator d;
vector<segment> sglst; // list of segments in layer ly
for (d= ly->dts.begin(); d != ly->dts.end(); ++d){

copy(d->seglst.begin(), d->seglst.end(), back_inserter(sglst));}
sort(sglst.begin(),sglst.end()); // sorted segments of layer ly

// start extension of creation of tracks
vector<segment>::iterator s= sglst.begin();
while (s != sglst.end()){

while ((s->exit.phi < cr_ent - phi_dev) & (s != sglst.end())){
track tk; // new track
tk.enter( s); s++; // track with one segment
tklst.push_back( tk);} // add new track to list

if (s != sglst.end()){
while ( cr_ent < s->exit.phi-phi_dev){

t ++; // next track
if (t == tklst.end()){ cr_ent = 2*M_PI+dphi;}
else { cr_ent = t->entry.phi;}
} // end while ...

if (abs(s->exit.phi - cr_ent) < phi_dev) {
t->enter( s); s++;} // extend track

} // end of if (s != ....
} // end while (s!=sglst ...

sort(tklst.begin(),tklst.end());
} //end extend

#ifdef DEBUG
void print(){

cout << "TRACK LIST \n";
if (tklst.end() == tklst.begin()) { cout << " EMPTY \n";}
int cnt = 1;
vector<track>::iterator t;
for (t= tklst.begin(); t != tklst.end(); ++t){

cout << cnt << " " ; cnt++;
t->print();}

}
#endif
};

class installation{
layer* ly[nlayer]; // nlayer layers in installation
tracklist* tklist; // list of tracks
detector* exitd; // end of tracing detector
public:

installation(){
exitd = new dummy_detector();
tklist = new tracklist(); // for printing empty tracklist
ly[nlayer-1]= new layer(router);
ly[nlayer-1]->connect( exitd);
for (int i = nlayer-2; i > -1; i--) {

ly[i]= new layer(i*(router-rinner)/nlayer + rinner);
ly[i]->connect( ly[i+1]); }

}
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tracklist* GetTracks(event ev){
delete tklist; // remove old tracks
tklist = new tracklist(); // new empty track list

// find tracks by going from outer layer to inner layer
for (int i = nlayer-1; i>-1; i--) {

ly[i]->assign(ev.layer(i)); // measurements into layer i
tklist->extend(ly[i]); // tracks include layer i segments
}

// measurements are assigned to layers
return tklist;
}

void Trace(particle& ptk){
#ifdef DEBUG

cout << " Start particle trace \n" << flush;
ptk.print();

#endif
float phip = ptk.phi+dphi;
phip = int(phip/(2*dphi))*2*dphi;
detector key = detector(rinner,phip);
vector<detector>::iterator where = find(ly[0]->dts.begin(),

ly[0]->dts.end(), key);
if (where != ly[0]->dts.end()) {where->trace(ptk);}
else { cout << " COULD NOT FIND DETECTOR for Tracing \n" << flush;}
}

#ifdef DEBUG
void print(){

for (int i=0; i < nlayer; i++){
cout << " Layer " << i << " \n";
ly[i]->print();
cout << " \n" << flush;}

tklist->print(); // print found tracks
}

#endif
};

int main(){
installation instal;
event ev;
#ifdef DEBUG
/* ev.print();

cout << "debug \n";
instal.print();

*/
#endif

tracklist* trlst = instal.GetTracks(ev);
vector<track>* vt = &(trlst->tklst);
vector<track>::iterator t;

neutral_particle ptk;
ptk.mass = 1.;
ptk.p = 1.;
double dx, dy;
for (t = vt->begin(); t != vt->end(); t++){

ptk.phi = t->entry.phi;
ptk.r = t->entry.r;
ptk.s = t->entry.s;
dx = t->exit.r*cos(t->exit.phi)-ptk.r*cos(ptk.phi);
dy = t->exit.r*sin(t->exit.phi)-ptk.r*sin(ptk.phi);
ptk.angle = atan2(dy,dx);
instal.Trace(ptk);}
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charged_particle cptk;
cptk.charge = -1;
cptk.mass = 1;
cptk.p = 1;
for (t = vt->begin(); t != vt->end(); t++){

cptk.phi = t->entry.phi;
cptk.r = t->entry.r;
cptk.s = t->entry.s;
dx = t->exit.r*cos(t->exit.phi)-cptk.r*cos(cptk.phi);
dy = t->exit.r*sin(t->exit.phi)-cptk.r*sin(cptk.phi);
cptk.angle = atan2(dy,dx);
instal.Trace(cptk);}

cptk.charge = 1;
cptk.mass = 1;
cptk.p = 1;
for (t = vt->begin(); t != vt->end(); t++){

cptk.phi = t->entry.phi;
cptk.r = t->entry.r;
cptk.s = t->entry.s;
dx = t->exit.r*cos(t->exit.phi)-cptk.r*cos(cptk.phi);
dy = t->exit.r*sin(t->exit.phi)-cptk.r*sin(cptk.phi);
cptk.angle = atan2(dy,dx);
instal.Trace(cptk);}

#ifdef DEBUG
instal.print();

#endif
cout << " main stopped\n";
}
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