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Postprocess Galerkin Method for Steady Navier�Stokes

Equations �

Yanren Houy� Kaitai Li

Department of Scienti�c Computing�

Xi�an Jiaotong University�

Xi�an �����	� CHINA

Abstract

A kind of postprocess Galerkin method for steady Navier�Stokes equations with nonsin�

gular solution� which is based on the virtue of Inertial Manifold and Approximate Inertial

Manifold� is presented in this paper� Di�erent from other construction of approximate

inertial manifolds� we use a kind of so�called G� decomposition to get the large and small

eddy components of the true solution� Its attractive advantage is that one could get the

large eddy components exactly� Then the error of the scheme only comes from the approx�

imation of the small eddy components� We prove that the proposed postprocess Galerkin

scheme can greatly improve the convergence rate of the approximate solution with lower

computing e�ort� And we also give an numerical example to verify our result�

Key words� Navier�Stokes Equations� Galerkin method� convergence� nonsingular solution

� Introduction

To improve the convergence rate of the standard Galerkin approximate solutions� many authors
derived new techniques and methods in last decade� For example� Lin Qun���� W� Layton����
J� Xu�	� used extrapolation and two level meshes respectively� Especially� since �
�� when the
concepts of Inertial Manifold �IM��� and Approximate Inertial manifold �AIM��� for dissipative
evolutionary partial di�erential equation were given by C� Foias� G� R� Sell� R� Temam and C�
Foias� O� Manley� R� Temam respectively� a kind of new numerical method called nonlinear
Galerkin method is studied and developed by many authors� see ���� ��� and �
�� etc� This
method is designed for numerically simulating the long time behavior of the solution and its
main advantage is that the related numerical scheme has better stability and convergence rate
than that of standard Galerkin method� The main ideal of this kind of inertial scheme is to
�nd some kind of interactive or approximate interactive rules between large eddy and small
eddy components� Based upon the virtue of IM and AIM� we apply this ideal to simulating the
nonsingular solution of steady Navier�Stokes equations and give a kind of postprocess Galerkin
procedure in this paper� We will show that it can greatly improve the convergence rate of
standard Galerkin solution by using this procedure�

Suppose that u � H be a solution of Navier�Stokes equations� where H is a Hilbert space�
Hm � H is a �nite dimensional subspace� um is the standard Galerkin solution� then

ku� umk � c�
� �

�

m���
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and for general nonlinear Galerkin solution �um

ku� �umk � c���m���

The basic technique of our postprocess Galerkin method is to decompose the true solution u

with respect to um� that is

u � �um � �u� where � �u � u� um� �um � um�

We identify �um and �u with the large and small eddy components respectively� Then we can
exactly derive �um� the large eddy components of u� by standard Galerkin method� For con�
venience� we will use um to denote �um directly� Under this presupposition� we construct an
interactive rule between um and �u� that is a mapping � from Hm to H� such that ��um
can generate a suitable approximation of �u� Then we use the postprocess Galerkin solution
u�m � um � ��um to approximate u and get

ku� u�mk � c�
� ���

�

m�� �

� Preliminary

Consider the Navier�Stokes equations in bounded domain � � Rd� d � �� 	��
�
���u� �u � ru�rp � F in��

divu � � in��
boundary conditions�

��

where u � � � Rd is the �ow �eld� p � � � R the pressure� F the exterior force which
drives the �ow and � � �

Re
� Re � � is the Reynolds number� � and r denote the Laplace

and gradient operator respectively� The boundary conditions can be either �xed boundary of
periodic boundary conditions �� is a cube under this circumstances�

Now we introduce a Hilbert space H� For �xed boundary case� we take

H � fu � L���d� u � nj�� � �� divu � � under week sense g�

And for periodic boundary case� we take

H � fu �
P

k�Z��k ���

uke
ik���x�� ck � c�k�

P
k�Z�

jukj� � ���

divu � � under week sense g�

where ��x is a linear function of x related to the shape of �� Denote by P � L���d � H the
Leray orthogonal projection� we can obtain the abstract Navier�Stokes equation by projecting
�� onto H

�Au�B�u� u � f� ��

where A � �P�� B�u� u � P ��u �ru�� f � PF � As well known� A is a linear unbounded self�
adjoint and positive de�nite operator which possesses bounded inverse A��� then its eigenvalues
and related eigenfunctions are

� � �� � �� � � � � � �m � � � � � ��� m � N �

and
	�� 	�� � � � � 	m� � � � �

�



And we denote V � D�A
�
� � the closure of H under the sense of H� endowed with the norm

kvk � jA
�
� vj where jvj � �v� v

�
� �

R
� v � vdx� For any s � R� As is a power operator� Then the

weak form of �� reads �
�nd u � V such that
a�u� v � b�u�u� v � �f� v� �v � V�

�	

Here
a�u� v � ��ru�rv�

b�u�u� v � ��u � ru� v�

From ���� we know
b�u�w� v � �b�u� v� w �u� v� w � V� ��

jb�u� v� wj � c�kuks�kwks���kvks� �

�u � D�A
s�
� � v � D�A

s���

� � w � D�A
s�
� �

��

where s� � s� � s	 	
d

�
� s�� s�� s	 	 � with �s�� s�� s	� 
� ��� ��

d

�
� ���

d

�
� �� �

d

�
� �� �� If we

denote by Pm the L� orthogonal projection operator from H onto Hm � f	�� � � � � 	mg� the
standard Galerkin approximate solution um � Hm satis�es

a�um� v � b�um�um� v � �f� v� �v � Hm� ��

Because of um � Hm� the L� error estimate can not exceed the L� estimation of um �Pmu� In
fact

ju� umj � c���m��� ku� umk � c�
� �

�

m��� ��

where c � � is a constant depending on f and ��
Moreover� we state the interpolation inequality in Sobolev spaces which will be used in the

following� for v � D�A
�
� � � � 
 � �

kvk� � c�kvk
�jvj���� ��

� G�Decomposition

From the point of view of L� orthogonal projection Pm� the approximate order of Pmu� um is
restricted by ��� Due to the restriction of truncate error� um�Pmu has already been optimal�
Alternatively� from other projection point of view� the results maybe quite di�erent� As we said
in introduction� we can decompose u according to um intuitively

u � um � �u� �u � u� um� �


Identifying um � Hm and �u � V with large and small eddy components respectively� the
standard Galerkin approximate solution um reaches the large eddy components of the true
solution exactly� According to the ideal of IM and AIM� there may exist an interactive rule or
at least some approximate interactive rules between large and small eddies�

In this paper� we call �
 the Galerkin�decomposition of the true solution� simply the G�
decomposition� Of course� when one considers the usual L� orthogonal decomposition� the
small eddy components under the sense of G�decomposition consists of small eddy as well as
large eddy components� In order to understand this G�decomposition deeply� we introduce the
following formal nonlinear  orthogonal projection Qm� V � Vm� where Vm � PmV �

	



Restricting �	 on Vm and subtracting �� from it� we derive

a�u� um� v �b�u� um�u� um� v � b�um�u� um� v
�b�u� um�um� v � �� �v � Vm�

���

That is� �u satis�es the above equation if we substitute �u for u� um� It is a nonlinear equation
of �u� Enlightened by ���� we can formally de�ne the formal nonlinear  orthogonal projection 
operator Qm from V onto Vm��

�
�	 � V� �nd Qm	 � Vm such that
a�	�Qm	� v � b�	� Qm	�	� Qm	� v
�b�um�	�Qm	� v � b�	� Qm	�um� v � �� �v � Vm�

���

Under this  projection � we have

um � Qmu� �u � �I � Qmu�

if we take 	 � u in ���� And �u is  orthogonal with Vm under the sense of ���� G�
decomposition of u is just the result of this kind of  projection �

As to whether ��� can really de�ne a  orthogonal projection or not� it is unnecessary for
our discussion in the rest� On the other hand� �u should be a small quantity compared with
um if m is large enough and we could get another formal linear  projection by omitting the
higher order small item b�	 � Qm	�	 � Qm	� v in ���� In fact� we ever studied this kind
of projection elsewhere in detail� The disadvantage is that the related algorithm is very hard
to be completed in computing� On the contrary� our algorithm developed in this paper by
using the formal  projection Qm can overcome this disadvantage and obtain su!ciently high
convergence rate�

Now based upon G�decomposition of u� the Navier�Stokes equations �	 can be rewritten as

a��u� v �b��u� �u� v � b��u�um� v � b�um� �u� v
�a�um� v � b�um�um� v � �f� v� �v � V�

���

Obviously� we could obtain the small eddy components of u under the sense of G�decomposition
by solving ���� But this procedure is as di!cult as to solving �	 when we consider the complex
form of ����

� Construction of Finite Dimensional Mapping �

As we said in introduction� the aim of this paper is to construct a �nite dimensional mapping
�� Vm � V such that it can form a suitable approximate interactive rule between the large
and small eddy components of the solution� After we get the large eddy components um by
standard Galerkin method� we could use it to obtain ��um which should be a high accuracy
approximation of �u� We expect that um ���um can generate a much better approximation of
u than both standard Galerkin and nonlinear Galerkin approximation� We call this procedure
the postprocess Galerkin procedure� Now� the key problem here is how to construct � such
that the computation of ��um is simple and � can derive a high accuracy postprocess tool�
Of course� we hope � to be a linear mapping�

Based on the above consideration and noticing ���� we will use the linear part of ��� to
determine �� that is ��

�
�	 � Vm� �nd ��	 � V such that
a���	� v � b���	�um� v � b�um� ��	� v

a�	� v � b�	�	� v � �f� v� �v � V�

��	

�



To investigate ��	 more deeply� let us recall the Navier�Stokes equations �	 and its standard
Galerkin approximation ��� Indeed� they de�ne the following two mappings� That is��

�
F � V � V �

�� � V�F�� � V � such that
� F��� v �� a��� v � b����� v � �f� v� �v � V

and ��
�
Fm � Vm � V �

m

�	 � Vm�Fm�	 � V �
m such that

� Fm�	� v �� a�	� v � b�	�	� v� �f� v� �v � Vm�

Then� �	 and �� equivalent to

F�u � �� Fm�um � �� ���

Denoting by DF�u and DFm�um the Frechet derivatives of F and Fm at points u and um�
we get the following two linear mappings from V to V � and Vm to V �

m����
���

� DF�uw� v �� a�w� v � b�w�u� v � b�u�w� v�
�w� v � V�

� DFm�umw� v �� a�w� v � b�w�um� v � b�um�w� v�
�w� v � Vm�

���

In the rest� for the sake of simplicity� we employ the following symbols

L�w� v �� DF�uw� v �� Lm�w� v �� DFm�umw� v � �

And we easily know that

Lm�w� v � L�w� v� b��u�w� v� b�w� �u� v� ���

Then ��	 can be rewritten as�
�	 � Vm� �nd ��	 � V such that
Lm���	� v� � F�	� v �� �� �v � V�

���

Generally� for arbitrary 	 � Vm� whether ��� can determine an unique ��	 or not is uncertain�
At present time� we will only discuss the case in which ��� can generate a single valued mapping
from Vm � V � For this purpose� we need following assumptions and properties�

First of all� we assume that u is a nonsingular solution of �	� For singular case� we will
treat it in the future� Then� DF�u is an isomorphism between V and V � �see ��������� and
there must be some constant �� � � such that

inf
w�V

sup
v�V

L�w� v

kwk kvk
	 ��� ���

inf
v�V

sup
w�V

L�w� v

kwk kvk
	 ��� ��


The next lemma describes under what conditions could the standard Galerkin approximate
solution um be also a nonsingular solution�

Lemma ��� Assume Vm � V is a �nite dimensional subspace and Fm is a smooth mapping
from Vm to V �

m� Let u be a nonsingular point of F and denote

��u � kDF�u��kL�V ��V ��

�



�um � kDF�u �DFm�umkL�V�V ���

If um is close to u so much such that

��u�um � �� ���

DFm�um is an isomorphism between Vm and V �
m� Hence� um is a nonsingular point of Fm�

Proof See ����� �

Corollary ��� Suppose all conditions in lemma ��� hold� Take m large enough such that

�m�� 	
�c��c

�

���
� ���

then um is a nonsingular point of Fm�
Proof From ������
� we know

��u � kDF���ukL�V ��V � � ���� �

On the other hand�

�um � kDF�u �DFm�umkL�V�V ��

� sup
w�v�V

� �DF�u �DFm�umw� v �

kwk kvk

� c�ku� umk � cc��
� �

�

m���

Thanks to lemma ���� we could get the results� �

As a result of lemma ��� and its corollary� it holds that

inf
w�Vm

sup
v�Vm

Lm�w� v

kwk kvk
	

��

�
� ���

inf
v�Vm

sup
w�Vm

Lm�w� v

kwk kvk
	

��

�
� ��	

Further more� by using ���� ��� and ��
� we have

inf
w�V

sup
v�V

Lm�w� v

kwk kvk
	

��

�
� ���

inf
v�V

sup
w�V

Lm�w� v

kwk kvk
	

��

�
� ���

Now let us consider ���� For any given 	 � Vm� we know F�	 � V �� At the same time�
������� show that the bilinear form Lm��� � is weak coercive on V �V � Then� we can obtain
the following uniqueness theorem of ��� by using the generalized Lax�Milgram theorem�

Theorem ��� Suppose that u is a nonsingular solution of �	 and m is large enough such
that ��� holds� Then� ��� is well�posed� Therefore� ��� can de�ne a �nite dimensional
mapping � from Vm to V � Moreover� � is a local Lipschitz mapping� that is� for any bounded
subset B� � Vm with

B� � f	 � Vm � k	k � �g� where � � � � �� is any �xed constant�

there exists a positive constant l� � � such that

k��	�� ��	�k � l�k	� � 	�k� �	�� 	� � Vm�

Proof The proof is quite simple and we omit it� �

�



� Postprocess Galerkin Procedure

In this section� we will use the �nite dimensional mapping � derived in section � to construct
the postprocess Galerkin procedure for numerically solving the Navier�Stokes equations� As the
result of this kind of so called G�decomposition of the true solution� u can be decomposed as
the sum of large eddy and small eddy components� that is

u � um � �u�

where um is the large eddy components of u� The main ideal of our postprocess is to obtain a
suitable approximation of �u by using um and � which is considered as an approximate interactive
rule between above two parts� The theoretical basis of this procedure is the concepts of IM
and AIM which suppose that there at least exist some approximate interactive rules between
the large and small eddy components of the solution of some dissipative systems� in our case�
they are um and �u� After we get um� we want to use ��um to approximate �u and then use
u�m � um � ��um to approximate u� We will show that u�m can approximate u much better
than either um or �um� We call it postprocess Galerkin procedure in this paper and we write it
in following three steps�

�Step �

�
�nd um � Vm such that
a�um� v � b�um�um� v � �f� v� �v � Vm�

�Step �

�
for um � Vm� �nd ��um � V such that
Lm���um� v� � F�um� v �� �� �v � V �

�Step 	 u�m � um ���um�

Following theorem describes the convergence rate of this procedure�
Theorem ��� Assume u is the nonsingular solution of �	� m is large enough such that

��� is valid� Then the postprocess Galerkin solution u�m has the following convergence rate

ku�m � uk �
�c	
��

�
� ���

�

m�� � ���

where 
 � � for d � �� 
 �
�

�
for d � 	 and c	 � c�c�c��

Proof Because m is large enough such that ��� is valid� um is also a nonsingular solution
of �� because of lemma ��� and its corollary� As we know�

u � um � �u� u�m � um � ��um�

Therefore

u�m � u � ��um � �u
�
� e� ���

Our main task is to estimate kek� For convenience� the equation of �Step � can be rewritten
as

a���um� v� b���um�um� v � b�um� ��um� v
� a�um� v � b�um�um� v � �f� v � �� �v � V�

���

Now� subtract ��� from ���� it yields

a�e� v � b�e�um� v � b�um� e� v � b��u� �u� v�

�



Alternatively�
Lm�e� v � b��u� �u� v� ��


Since um is the nonsingular solution of �� and ������� are valid� we have

sup
v�V

Lm�e� v

kvk
	

��

�
kek� �	�

On the other hand� by using ����� and ��� we know

b��u� �u� v �

�
c�k�uk��

�

kvk � c�c�j�uj k�uk kvk� d � ��

c�k�uk��
�

kvk � c�c�j�uj
�
� k�uk

�
� kvk� d � 	�

�	�

Combining �	�� �	� and ��� we have

��

�
kek � c�c�j�uj

���k�uk��� � c�c�c
��

�
���

�

m�� � c	�
�

���

�

m�� �

where 
 � � for d � �� 
 �
�

�
for d � 	 and c	 � c�c�c�� �

In practical manipulating� �Step � of the postprocess procedure must be completed in �nite
dimensional subspace of V � Generally� we choose another constant M � N such that M  m

and restrict �Step � on VM � That is� we alternate �Step � with

�Step �"

�
for um � Vm� �nd �M�um � VM such that
Lm��M �um� v� � F�um� v �� �� �v � VM �

and alternate �Step 	 with

�Step 	" u�mM � um ��M �um�

Corollary ��� Under the assumption of theorem ���� we take M � N large enough� then

ku�mM � uk �
�c	
��

�
� ���

�

m�� � c�
� �

�

M��� �	�

Proof To prove this corollary� we only need to notice M is large enough and

u�mM � u � u�mM � uM � uM � u�

where uM is the standard Galerkin solution of

a�uM � v � b�uM �uM � v � �f� v� �v � VM � �		

Then the remainder of the proof is very simple and we omit it� �

Remark �� Noticing �	�� to balance the two items on the right hand side� we should take

M � m such that �m�� � �
�

���

M��� that is� m �M
�

��� � Thus� the computing scale of �� is much
smaller than that of �		�

Remark �� Observing the postprocess procedure �Step �� �Step" � and �Step" 	� the
computational complexity mainly comes from �Step � which tends to solve a nonlinear system
by some kind of iterative methods� Comparing with �Step �� the computing of �Step" � is
quite simple though the scale of the equation is larger than that of �Step �� because it is a
linear system and only need solving one time during the whole procedure� On the other hand�
to get a standard Galerkin approximation uM which has the same accuracy as u�mM � we must
solve �		 by some iterative method for M  m� As well known� �		 is harder and need
much more iterative steps to convergence than �Step � since M  m� At the same time� the
computing e�ort in �Step" � is almost the same as that of one iterative step of �		� Obviously�
the postprocess method presented in this paper is much cheaper to complete than standard
Galerkin method�

�



Re SGM �kum � uk PGM �ku�mM � uk
�m � 
 �M � �m

��� �����E��� �����E���
�����E��� 
����E��

�����E��� ���������

��� 	���
E��� �����E���
��
��E��� �����E���
��
��E��� ���������

	��� ��

�E��� 	����E���
�����E��� �����E���
�����E��
 ���������

	��� ��

�E��� 	����E���
�����E��� 	���
E���
�����E��
 ���������

���� ���	�E��� ����	E���
���
�E��� �����E���
����
E��� ���������

� Numerical Test

To shed light on the better convergence rate of the postprocess Galerkin method proposed in
section �� we will give some numerical tests by taking example of two�dimensional Kolmogorov

�ows on rectangle � � � ��
�

�
�
�

�
�� ���� ����

Find u � V such that
a�u� v � b�u�u� v � �f� v� �v � V�

�	�

where
V � f	 �

P
k�Z��k ���

	ke
i�k��x�k�y�� 	k � 	�k�P

k�Z��k ���

j	kj��k���
� � k�� � ��� div	 � �g�

f �
�

Re
�sin y� �T � Re � � is the Reynolds number de�ned in ��	�� From the literature of

Kolmogorov �ows �e�g� ��	�� ����� the above equations has a trivial solution u � �sin y� �T for
any Reynolds number� and when we take � � ���� the bifurcation occurs at Re� � 	�����
 � � ��

From �	�� we know

ku�mM � uk �
�c	
��

�
� �

�

m�� � c�
� �

�

M��� �	�

As we said in remark �� we should takeM � m	� On the other hand� we notice that the exterior
force of the Kolmogorov �ows has only two modes as well as the trivial solution has only two
modes� and for any w � �I �P�mV � b�um�um� w � �� That is� for M � �m and some suitable
iterative initial value� the solutions of standard Galerkin method �SGM and the postprocess
Galerkin method �PGM will keep unchanged with the growth of M � Thus� for this concrete
test model� we take M � �m�

Following table gives the comparison of the errors of SGM solutions and PGM solutions for
di�erent Re which is not equal to Re� with � � ����

Just as we discussed in previous sections� our postprocess Galerkin method in this paper is
designed for treating the nonsingular case� that is Re 
� Re�� For singular case� we will deal
with it later�






When Re is very close to Re�� we suppose PGM will lose its higher convergence rate because
�� in ������
 will tend to zero� From the numerical results corresponding to Re � 	��� and
Re � 	��� which are quite close to Re�� PGM has almost the same convergence rate as SGM�
That is� PGM will lose its higher convergence rate near singular point� When Re is far from
Re�� the results show PGM can improve the convergence rate of SGM at about ten times�
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