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Using Wavelets in the Dual Reciprocity Method
H�G� ter Morsche� R�M�M� Mattheij � K� Wang

EMail� morscheh�win�tue�nl

Abstract

Radial basis functions� in especial thin plate splines or conic splines seem to be very
useful in the Dual Reciprocity Method �DRM� for solving partial di�erential equations
by means of BEM� In DRM the radial basis function have been used for computing
a particular solution for an inhomogenuous partial di�erential� Two main steps are
important in applying DRM� First� a function f must be approximated by shifted radial
basis functions� Second� a particular solution must be found in an easy way for the
radial basis function itself� Despite the fact that radial basis functions may have good
approximation properties� the approximation scheme�s involved are far from local� The
consequence is that many coe�cients are needed to represent functions by series of shifted
radial basis functions� which causes a lot of computational e�orts� Wavelets have the
potential to overcome this problem� However� for wavelets the problem of 	nding a
particular solution looks more complicated� In this chapter� it will be shown that for
the so
called hexagonal wavelets in two
dimensions and the Poisson equation� it is still
possible to derive a particular solution by doing elementary function evaluations�

� Introduction

Consider the Poisson equation in two dimensions�

�u�x� � f�x� �x � ���

Here x � �x�� x�� � IR�� � � ��

��x�
	 ��

��x�
is the 
D Laplacian� f is a presribed

bivariate function and � � IR� is a bounded simply connected domain in IR�� To
�nd the function u�x� y�� which satis�es the Poisson equation on � subject to the
Dirichlet condition

u�x� � g�x� �x � 
��

where 
 is the closed piecewise smooth boundary of � and g a prescribed
continuous function� by means of BEM methods� one �rst convert this problem
into an integral as follows�

Let G�x� be the fundamental function corresponding to the Laplacian �� So�
�G�x� � ��x�� where ��x� is the bivariate Dirac delta function� One has
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G�x� �
�


�
log jxj� ���

where jxj �
q
x�� 	 x��� It follows from Green�s second formula that for points

x in the interior of � the following holds�
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where Gx�y� stands for G�x� y� and where n is the outer normal of ��
When x belongs to the boundary 
� then depending on the local smoothness

of 
 at x� the value u�x� in the foregoing equation must be replaced by c�x�u�x�
for some factor c�x�� For instance if 
 is C� at x� then c�x� � ��
� So if x is a
boundary point� we have

c�x�u�x� �
Z
�
Gx�y� f�y� d� �
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�
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which in case of our Dirichlet condition yields an integral equation for the normal
derivative of u on the boundary� If this equation has been solved� then we may
apply formula �
� to obtain the solution u in the interior of �� Evidently� the same
strategy can be used for the Neumann problem �the Dirichlet boundary condition

u�x� � g�x� is replaced by the Neumann boundary condition �u�x�
�n � g�x��

and even for mixed versions of the Dirichlet and Neumann conditions involving
di�erent parts of the boundary �cf� �����

The boundary integral equation ��� contains a domain integral� this is the
integral over �� If a function up can be found such that �up � f � then before
applying numerical methods to solve the integral equation� we �rst reduces the
domain integral to boundary integrals by again using Green�s second formula�
This is� what P�W� Partridge e�a� call in their book ����� the Dual Reciprocity
Method �DRM�� The DRM avoids computing domain integrals� For our Dirichlet
problem this leads to�

Z
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So� the integral equation that must be solved has the form�

c�x� g�x� � c�x�up�x� 	
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To solve this boundary integral equation by means of �nite boundary ele�
ments� one normally needs the values of up�x� and the gradient rup�x� at a
certain set of boundary points� If elementary function evaluations for up�x� and
rup�x� are available� then these values can be computed in a direct way�

In practice the function f will be approximated by a superpostion f �
P

k fk
of functions fk such that for each function fk an analytic expression for a corre�
sponding particular solution can be found straightforwardly� Popular choices are
radial basis functions fk�x� � ��jx � xkj� � where ��r� is a function de�ned on
IR� and �xk� a collection of points� which can be chosen in some way� Since the
Laplacian is translation invariant� we only have to look for a particular solution
of the equation �u � ��jxj�� which may also be considered as a function of jxj
only� Finding a particular solution is then solving an ordinary �D di�erential
equation� In ����� M�A� Golberg ����� gave a survey of the post����� literature
on the numerical evaluation of particular solutions in the BEM until that time�
With respect to the Poisson equation radial basis functions� in especial thin plate
splines or conic splines �cf� ����� seem to be very useful� The disadvantage is
the complexity of the associated approximation problem� since the radial basis
functions are in general not compactly supported�

In this chapter we replace the radial basis functions by compactly supported

D�wavelets� called hexagonal wavelets� which are radial symmetric in some sense�
Then we may pro�t from the fact that in a wavelet expansion of a function
f � a relatively small number of the wavelet coe�cients are needed to represent
the function f � For our applications this means� that by clipping the wavelet
coe�cients of f with are small compared to a certain treshold value� a vast
amount of coe�cients in the wavelet expansion of f can be set to zero� which
reduces the computational e�ort for setting up the boundary integral equation�

In this chapter� we are concerned with the problem of �nding a particular
solution of the inhomogenous Poisson equation when these hexagonal wavelets
are used� It turns out that a particular solution can be expressed in terms of
third order di�erences of a function at the vertices of a cube in IR�� Section 

contains an overwiev of the theory of wavelets in two dimensions� which is needed
to understand the hexagonal wavelets presented in Section �� We also give in
Section � some examples of the consequences of tresholding wavelet coe�cients in
the wavelet expansion of some functions� Finally at Section �� particular solutions
will be derived corresponding to the hexagonal wavelets and a numerical test will
be carried out�

� Wavelets preliminaries

One of the applications of wavelet decompositions in numerical analysis is the
sparsi�cation of full matrices which may occur in the discretisation of integral

�



equations� It is based on the property that a relative high percentage �depending
on the choice of the wavelets� of the wavelet coe�cients in the wavelet expansion
of su�ciently smooth functions f � L��IR�� is closed to zero� In order to under�
stand this property of wavelets� which is important for our contribution to the
dual reciprocity method� this section will contain an introductory overview of the
theory of 
D�wavelets� For �a lot� more information the reader is referred to text
books on wavelets� We mention a few of them here� Daubechies ������ Chui ������
Sidney Burrus e�a ����� and Strang ������

For bivariate functions a wavelet expansion is normally based on three so�
called mother wavelets 	�� 	� and 	�� from which by translations and dyadic
scaling the wavelets are derived� The corresponding wavelet expansion usually
has the form�

f�x� �
�X

j	��

�X
l	�

X
n�ZZ�

dln�j	
l
n�j�x�� ���

where the wavelet coe�cients dln�j have �nite l��norm� i�e��

�X
l	�

�X
j	��

X
n�ZZ�

jdln�j j� 
��

In this expansion the functions 	l
n�j� called wavelets� are de�ned as follows�

	l
n�j�x� � 
j	l�
j x� n� e� � n� e�� �x � IR��� ���

Here n � �n�� n�� � ZZ� and e� and e� are two independent vectors in IR��
which may di�er from the unit vectors ��� �� and ��� ��� Note that k	l

n�jk � k	lk�
where k � k denotes the L��norm in the function space L��IR���

Apparently� the function f is written as a superposition of translated and
scaled versions of the three so�called mother wavelets� It is required thatZZ

IR�

	l�x� d x � � �l � �� 
� ��� ���

So� the mean value of all the wavelets 	l
n�j are equal to zero�

The wavelet expansion of f can also be seen as a decomposition of f into
functions fj corresponding to di�erent space scales� To be more precise� we may
write

f �
�X

j	��
fj�

�



where fj�x� �
P�

i	�

P
n�ZZ� dln�j	

l
n�j�x� �represents� f in the scale space

Wj � IR� spanned by the wavelets f	l
n�j

�� l � �� 
� �� n � ZZ�g� where j � ZZ

is �xed� The spaces Wj are closed linear subspaces of L��IR�� and� in fact� di�
lated versions of the space W
�

f�x� �W
 if and only if f�
j x� �Wj �

Moreover one has�

�i� Wj
T
Wj � f�g �j �� i��

�ii� L��IR�� � � � �	W�� 	W�� 	W
 	W� 	W� 	 � � � �
Here the 	�sign refers to direct summation of spaces� In case the basis

f	l
n�j

�� l � �� 
� �� j � Z � n � ZZ�g is an orthogonal basis in L��IR��� the wavelets
are called orthogonal wavelets� The well�known Daubechies family of wavelets
delivers examples of orthogonal wavelets having �nite supports� However� or�
thogonal wavelets having compact supports lack symmetry properties� A way to
overcome this problem is to leave the orthonormality property and to consider
the more general class of the so�called bi�orthogonal wavelets� In the context of
bi�orthogonal wavelets� one is faced with two wavelet bases of L��IR��� the 	�
basis and the  	 basis� which are mutually related in the following way�

�	l
n�j �

 	k
m�i� � �l�k �n�m �j�i�

For orthonormal wavelet bases� these two bases coincide� It follows straight
forward from the de�nition of bi�orthogonal wavelet bases that the wavelet coef�
�cients dln�j in ��� are given by the innerproducts�

dln�j � �f�  	l
n�j��

For stability purposes it is important that the wavelet bases is a so�called
Riesz�basis� This means that positive constants A and B exist such that for the
wavelet coe�cients in ��� the following inequalities hold�

A
�X

j	��

�X
l	�

X
n�ZZ�

jdln�jj� � kfk� � B
�X

j	��

�X
l	�

X
n�ZZ�

jdln�jj�

If the 	�basis is a Riesz basis then also the  	 basis is a Riesz� basis� The
constants A and B are then replaced by ��B and ��A respectively� We now
return to our scale spaces Wj�

Note that Wj is a direct sum Wj � W �
j 	W �

j 	W �
j of the spaces W �

j � W
�
j

and W �
j which are dilated versions of W �


 � W
�

 and W �


 respectively� The space

W l

 is spanned by the wavelets f	l�x� n� e� � n� e��

��n � ZZ�g� If we add �by a

�



direct sum� all the scaled spaces Wj up to the scale j � k � �� then one obtains
a sequence of spaces �Vk� �k � ZZ�� given by

Vk �
k��X

j	��
Wj�

These spaces satisfy the properties�

�i� � � � � V�� � V
 � V� � � � � �

�ii� f�x� � Vk if and only if f�
x� � Vk���

�iii� 	
k�ZZ

Vk � fog�

�iv� 

k�ZZ

Vk � L��IR���

For the most common wavelets the following property holds�
�v� A function � exists such that

f��x� n� e� � n� e��
��n � �n�� n�� � ZZ�g

is a Riesz�basis of V
�

The sequence of spaces �Vk� is called a multiresolution analysis �MRA� of
L��IR�� and � its scaling function� Often� the scaling function is normalized by
the condition ZZ

IR�

��x� d x � �� ���

However� we prefer to have scaling functions� like the B�splines in the ap�
proximation theory� being a partition of unity� This means�

X
n��n�

��x� n� e� � n� e�� � � �x � IR��� ���

The wavelets� we will apply in this chapter have a nonnegative scaling func�
tion� so one has

ZZ
IR�

��x� d x � �� ���

In general� the construction of wavelets initiates by setting up a multi�
resolution analysis to which an appropriate scaling function � is associated� The
dual wavelets stem from the dual MRA� which is described by a sequence of
spaces  Vk and associated scaling function  �� which has the property�

��n�
�  �m�
� � �n�m�

We summarize some properties in the following list�

�



� Wi �  Wj �i �� j��

� Vk � Vk�� 	W �
k�� 	W �

k�� 	W �
k���

�  Vk �  Vk�� 	  W �
k�� 	  W �

k�� 	W �
k���

� W l
k is spanned by f	l

n�k

��n � ZZ�g�

�  W l
k is spanned by f  	l

n�k

��n � ZZ�g�

� Vk is spanned by f�n�k
��n � ZZ�g�

�  V l
k is spanned by f �n�k

��n � ZZ�g�

!From this list a lot of mutual relations between the wavelets and the scaling
functions can be obtained� These relations will show how close the wavelets are
related to the theory of �lter banks�

Since � � V
 � V�� there exists a sequence of numbers �q
n� such that

��x� �
X
n�ZZ�

q
n �n���x�� ����

It can be shown that for scaling functions having �nite supports� only a �nite
number of elements in the sequence �q
n� di�ers from zero� In such a situation a
sequence is said to be �nite� We like to have �nitely supported scaling functions
and wavelets� so we have to assume that the sequence �q
n� is �nite�

Applying the 
D Fourier�transform � f�x� � "f��� �
RR
IR�

f�x� e�i ��x d x� to

the foregoing relation� one has�

"���� � �
�

X
n�ZZ�

q
n e
�i �n� ��e��n� ��e���� "���� �� ����

Here the dot � stands for the inner�product in IR�� Similarly� since 	l has �nite
support and 	l � W l


 � V�� there exist three �nite sequences �qln� �l � �� 
� ��
such that

	l�x� �
X
n�ZZ�

qln �n���x�� ��
�

Again using the 
D Fourier�transform this yields

"	l��� � �
�

X
n�ZZ�

qln e
�i �n� ��e��n� ��e���� "�l��� ��

�



We introduce now the functions Ml��� as follows�

Ml��� �
�




X
n�ZZ�

qln e
�i �n� ��e��n� ��e�� �l � �� �� 
� ��� ����

The functions Ml��� are 
��periodic with respect to the dual pair of vectors
 e� and  e� de�ned by

e� � e� � ��  e� � e� � ��

 e�� e� � ��  e� � e� � �� ����

So Ml�� 	 
�  e�� � Ml�� 	 
�  e�� � Ml��� �� � IR��� Moreover� one has

"���� � M
�
�



� "��
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�� ����

"	l��� � Ml�
�
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� �l � �� 
� ��� ����

Similar relations hold for the dual wavelets and scaling function� To be
complete we list them here�

 ��x� �
X
n�ZZ�

 q
n
 ���n�x�� ����

 	l�x� �
X
n�ZZ�

 qln
 ���n�x� �l � �� 
� ��� ����

" ���� �  M
�
�



�
" ��
�



�� ����

" 	
l
��� �  Ml�
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� " ��
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� �l � �� 
� ��� �
��

Also the sequences � qln� �l � �� �� 
� �� are assumed to be �nite�

It follows form ��� and ��� that

"	l��� � �� �l � �� 
� ���

"���� �� ��

It is also required that

" 	l��� � �� �l � �� 
� ���

" ���� �� ��

�



So� one has

Ml��� �  Ml��� � � �l � �� 
� ���

M
��� �  M
��� � ��

The duality relations may also be expressed by means of Fourier�transforms�
By setting �
 � ��� ��� �� � �  e�� �� � �  e� �cf� ����� and �� � �� e� 	  e��� it can
be shown that

�X
l	


Mj�� 	 �l�  Mk�� 	 �l� � �j�k �� � IR�� j �� k�� �
��

The functions Ml��� and  Ml��� play an important role in the description
of wavelets with help of �lter banks� The �lter banks are used to decompose a
function in wavelets and also to reconstruct a function from its decomposition�

Decomposition and reconstruction

In practice� the wavelet coe�cients are seldom computed by taking the inner
products with the dual wavelets� If a function f is given� then �rst f will be ap�
proximated by a function f
 � V
 say� by means of an approximation scheme� for
instance by interpolation� The space V
 must have the property that it contains
a �good� set of candidates to approximate the given function f � In the next
section� the space V
 will consist of functions which are continuous and piece�
wise linear on a regular mesh with small mesh size� By taking into account the
approximation error� we replace f by f
� So� we have

f�x� 
 f
�x� �
X
n�ZZ�

an�
 �n�
�x�

�
��X

j	��

�X
l	�

X
n�ZZ�

dlj�n 	
l
n�j�x� �x � IR���

Since� V
 � V�� 	W �
�� 	W �

�� 	W �
��� we may write

f
�x� �
X
n�ZZ�

an����n����x� 	
�X

l	�

X
n�ZZ�

dln���	
l
n����x�� �

�

How the new approximation coe�cients �an���� and the wavelet coe�cients
�dln���� �also called detail coe�cients in this context� at level �� depend on the
approximation coe�cients �a
n� at level �� is shown by the formulas�

�



an��� �
X
k�ZZ�

 q
k��n ak�
�

dln��� �
X
k�ZZ�

 qlk��n ak�
 �l � �� 
� ���

Note the occurence of the coe�cients � qln� �cf� ��� in these formulas� We also
observe that the coe�cients at level �� are of the form

P
k�ZZ�  qlk�m ak�
� where

m � 
n� So� �rst one has to compute the convolution product of the sequences
�an�
� and � ql�n�� which can be considered as a linear �lter proces �convolution�
with frequency response

X
n�ZZ�

 ql�n e
�i �n���e��n� ��e�� � 
Ml����

Then the �output sequence �� �bn� say� is downsampled by restricting to the
elements �b� n�� The �lter proces 	 downsampling is schematically presented in
Figure �
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Figure �� decomposition

On the other hand� if the coe�cients �an����� �dln����� are given then we may
reconstruct the approximation coe�cients �an�
� by means of the formulas�

��
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Also� this can be considered as a linear �lter proces� which is followed by
summation� However� before the �lter process is applied� an upsampling is needed
by inserting zeros� Upsampling of a sequence �
n� gives a new sequence ��n�
such that ��n � 
n for all n � ZZ�� The reconstruction is schematically shown in
Figure 
� The frequency responses of the �lters are given by 
M
���� 
M�����

M����� 
M���� respectively�

�
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Figure 
� reconstruction

The decomposition �lters decompose the function f
 in four functions� the
new approximation function f�� and at level �� the three detail functions g����
g��� and g���� So� f
 � f�� 	 g��� 	 g��� 	 g���� We may continu� using the same
decomposition �lters� to decompose the function f�� into the functions f��� g����
g���� and g���� Then we have� f
 � f�� 	 g��� 	 g��� 	 g��� 	 g��� 	 g��� 	 g���� Of

��



course� we still may go on and decompose the function f�� etc� Since� gl��� �l �
�� 
� �� contains �information� of f
 on the �nest available scale� a lot of detail
coe�cients in �dln���� are expected to be close to zero� By choosing an appropriate
treshold value these coe�cients can be replaced by zero� This also may happen
for the functions gl��� etc� In image processing� this proces is applied as an
e�ective method to compress images� In numerical analysis� this method can be
used to reduce the number of parameters for the representation of a function�
which generally will lead to less computations� An indication for choosing an
appropriate can be the number of vanishing moments of the dual wavelets  	l

�l � �� 
� ��� This is the maximal number m for which

Z
IR�

p�x�  	l�x� dx � � �l � �� 
� �� �
��

for all polynomials p�x� of �total� degree at most m�

Since

dln��� �
Z
IR�

f�x�	l
n����x� dx�

it follows from Taylors formula and the de�nition of m that for functions f�x�
wich are m	 � times continuous di�erentiable the following inequality holds

jdln���j � C

Z
IR�

jx� ajm�� j	l
n����x�j dx� �
��

where a is any point in the support of 	l
n����

The functions  	l we shall apply� have �nite support� so it follows from �
��
that jdln���j is of the order of �diam�support�	l

n�����
m��� where diam is the di�

ameter of the support of 	l� So if the support of  	l is small� we may expect small
values for the numbers dln����

In the next section� we will focuss on speci�c wavelets� called hexagonal
wavelets� Moreover� an one level decomposition will be applied to the Gaussian
function e�x

�

�
�x�

� �

� Hexagonal wavelets

The most frequently used bivariate wavelets have been constructed by means
of tensorproduct of univariate wavelets� In this case� the starting point is a bi�
orthogonal system of wavelets generated by a univariate motherwavelet 	�x�� �we
allow ourselves to use the same function symbols as in the two�dimensional case�
only the number of arguments di�er� its dual  	�x�� and the univariate scaling

�




functions ��x�� and  ��x��� Then� from these functions the bivariate wavelets and
scaling functions can be obtained as follows�

��x� � ��x����x���  ��x� �  ��x��  ��x���

	��x� � ��x��	�x���  	��x� �  ��x��  	�x���

	��x� � 	�x����x���  	��x� �  	�x��  ��x���

	��x� � 	�x��	�x���  	��x� �  	�x��  	�x���

Here x � �x�� x���

In one dimension� one has two reconstruction �lters
p

M
���� and

p

M�����

with two decomposition �lters
p

  M
���� and

p

  M������

These �lters generate the two dimensional �lters using the formulas�

M
��� � M
����M
�����  M
��� �  M
����  M
�����

M���� � M
����M������  M���� �  M
����  M������

M���� � M�����M
�����  M���� �  M�����  M
�����

M���� � M�����M
�����  M���� �  M�����  M�����

Here � � ���� ����

Apparently� in the tensor case a two dimesional �lter is a cascade of two one
dimensional �lters� In one dimension� the �ltersM
���� and  M
���� are examples
of low�pass �lters �integration �lters�� whereas M����� and  M����� are examples
of high�pass �lters �di�erentiation �lters�� So� we may interpret a two dimensional
�lter in our 
D �lter bank� as a cascade of integration or di�erentiation in the x��
direction followed by integration or di�erentiation in the x��direction� However�
it seems to be unnatural to apply tensor product wavelets in problems where
the Laplacian is involved� With respect to the Laplacian� scaling functions and
wavelets which are radial symmetric should be preferred� But� it can be shown
that in the �lter bank setting these scaling functions and wavelets do not exist� A
compromise could be the scaling functions and wavelets introduced by Cohen and
Schenkler in ��
��� Cohen and Schenkler consider scaling functions and wavelets
on an hexagonal grid� T say �cf� Figure ��� which is generated by the vectors

e� � ��� ��� e� � ���
� �

p
�
� �� and e� � �e� � e� � ���

� ��
p
�
� � �cf Figure ���

The space V
 consists of all those continuous functions in L
��IR��� from which

the restrictions to the triangles of T coincide with linear functions� The under�
lying scaling function ��x� is the function� which vanishes outside the hexagon
H �cf Figure ��� This function � is also known as the Courant�Hilbert function�
Evidently� the translations are also adapted to the hexagonal grid� so we de�ne

�n�j�x�� x�� � 
j��
jx� � n� e�� 

j x� � n� e�� �n � �n�� n�� � ZZ���

��



x�

x�

Figure �� Hexagonaal grid T

e�

e�

e�

Figure �� The hexagon H

An elegant representation of the scaling function � can be given in terms
of convolution integrals� In order to obtain such a representation� let U be the
parallelogram

U � fx � �e� 	 �e�
�� � 
 � 
 �� � 
 � 
 �g�

and let U�x� be the characteristic function of U � i�e�

U�x� �

�
� �x � U�
� �x �� U��

Then� ��x� may be represented by means of the following convolution type
integral�

��x� �

Z �



U�x� t e�� d t� �
��

As a consequence� the Fourier�transform of ��x� equals

��



"���� �
�� e�i ��e�

i � � e�
�� e�i ��e�

i � � e�
�� e�i ��e�

i � � e� �� � IR���

!From this� it easily follows that

"���� � �
� �� 	 e�i ��e���� �� 	 e�i ��e���� �� 	 e�i ��e���� "����
��

Hence �cf �����

M
��� �
�
��� 	 e�i ��e�� �� 	 e�i ��e�� �� 	 e�i ��e��� �
��

The scaling function � is invariant with respect to rotation over an angle of

���� i�e�

��Rx� � ��x� �x � IR���

where R is the rotation operator given by the matrix

R �

�
�
� ��

�

p
�

�
�

p
� �

�

�
�

Cohen and Schrenkler � cf �Cohen�� succeeded to compute wavelets 	l cor�
responding to �� which are global rotational invariant with respect to R in the
sense that

	��x� � 	��Rx�� 	��x� � 	��Rx� �x � IR��� �
��

They presented di�erent examples for such functions 	��x�� In this chapter
we will use the function 	��x� which is associated with the following function
M�����

M���� �
�
�
 	 � e�i��e� � 
� ei��e� 	 � e� i��e� 	 
 e� i��e� 	 � e�i��e� 	

� ei��e� � 
 e�� i��e� � 
 e� i��e� � e�� i��e� � e� i��e� � 
� ei���e��e�� 	

� e� i���e��e�� 	 
 e� i���e��e�� 	 � e�i���e��e�� � e�i���e��� e�� �
e�i���e��� e�� � e�i���e��e�� � e�i���e��� e�� 	 ei���e�� e�� � ei���e��� e�� 	


 ei���� e��e�� 	 ei���e��� e�� � ei���e��� e�� 	 
 ei���� e��� e�� 	 
 ei���� e��� e�� 	


 ei���� e��e�� 	 � ei���� e��e��
�
���� �
��

Because of �
��� the function M���� is obtained from M���� by replacing e�
by e�� e� by �e�� e�� Subsequently� the function M���� is obtained from M����
by replacing e� by �e� � e�� and e� by e�� So� the �lters at the reconstruction

��



part of the �lterbank are known for this moment� For the decomposition part�
we need the duals  Ml��� �l � �� �� 
� ��� Again� Cohen and Schenkler presented
in �Cohen� the following formula�

�
  M
��� � �� 	 � e�i ��e� 	 � ei ��e� � e�� i ��e� � e� i ��e� 	 � e�i ��e� 	

� ei ��e� � e�� i ��e� � e� i ��e� 	 � e�i ���e��e�� 	 � ei ���e��e�� �
e�� i ���e��e�� � e� i ���e��e�� � 
 e�i ���e��e�� � 
 ei ���e��e��

� 
 e�i ���e��� e�� � 
 ei ���e��� e�� � 
 e�i ���� e��e�� � 
 ei ���� e��e��

�
��

Finally� the decomposition �lter  M���� is given by

�  M���� � �� ei ��e� � ei ���e��e�� 	 ei ���� e��e�� ����

Evidently� the functions  Ml��� �l � 
� �� can be derived from  M���� by re�
placing the vectors ej in an appropriate way�

Now� our �lter bank is completed� since the �lter coe�cients are known�

Example

As an application we consider the smooth Gaussian function f�x�� x�� � e��x
�

�
�x�

�
��

which is sampled at the points
h �n� e� 	 n� e��� �n�� n� � �N��N 	 �� � � � � N��
withN � 
� and h � ����� In fact the space V
 now consists of the continuous

piecewise linear functions on the hexagonal grid h T � However� sampling the
function f�x� at the grid hT coincides with sampling the function f�hx� at the
grid T � So� we may apply our �lter bank to the matrix an�
 � f�h �n� e�	n� e����
At the grid points of hT � where a sampled value is not available� it is assumed
that an�
 � �� Therefore� we have extended an�
 to the whole grid by zero
padding� This zero padding will introduce boundary errors in the reconstructed
values as will be clear by the next tables� The input of the decompostion part
of the �lter bank is a �� � �� matrix of an�
 values� The output consists of four

�� 
� matrices representing the values of an���� d�n���� d

�
n���� d

�
n��� respectively�

In the four output matrices� we replace all the elements for which the absolute
value is less then a certain treshold value by zeros� Then the reconstruction
part of the �lter bank is applied� For an exact reconstruction� the output of the
reconstruction part �the reconstruction matrix� should be equal to the input of
the decomposition part� Because of tresholding and zeropadding this will not be
the case� In the third column of the tables below we have plot the error ��� which
is the maximum absolute error in the reconstruction matrix� compared to the
original matrix� As will be clear from the tables� this error is mainly caused by

��



zeropadding� The error due to zeropadding will occur at the �boundary� of the
matrix� Therefore� the fourth column contains the absolute error ����� without
taking into account the �rst three colums and rows and the last three columns
and rows of the reconstruction matrix� In ��� the error due to zeropadding is
eliminated� so this error is mainly caused by tresholding� It can be shown that
it is comparable to the treshold value� In the �rst column the di�erent applied
treshold values are listed� The second column gives the ratio of the total number
of nonzero elements of the four output matrices �after tresholding� and the size
of the input matrix �an�
� This ratio is the compression factor�

treshold compr� factor �� ��
���� ��
� ��� ���� ��� ����

����� ���
 ��� ���� ��
 ����

������ ���� ��� ���� ��� ����

� ���� ��� ���� �

f�x�� x�� � exp��x�� 	 x���� h � ����� N � 
�

treshold compr� factor �� ��
���� ���
 ��� ���� ��� ����

����� ���� ��� ���� 
�
 ����

������ ���� ��� ���� �
� ���� ��� ���� �

f�x�� x�� � sin�jx� � ���j 	 jx� 	 ���j�� h � ����� N � 
�

It is clear that small treshold values have negative in#uence on the compres�
sion factors� Since the approximation error by linear interpolation has order h�

and the error due to tresholding is comparable to the treshold value� to use a
treshold value of order h� seems to be a good choice� In the next table� we used
the function f�x�� x�� � e�x

�

�
�x�

� again� but h � ���� is replaced by h � ��� and
N � 
� is replaced by N � ���

treshold compr� factor �� ��
���� ��
� ��� ���� ��� ����

����� ���� ��� ���� 
�� ����

������ ���� ��� ���� ��� ���


� ��� ��� ���� �

f�x�� x�� � exp��x�� 	 x���� h � ���� N � ��

��



� The computation of a particular solution

In this section� we will focus on the problem� how to compute a particular solution
of the di�erential equation �u�x� � f�x� �x � D�� for a given function f�x� and
a bounded domain D� First� the function f will be approximated by piecewise
linear interpolation on a part of the hexagonal grid hT � which contains the given
domain D� Let f
�x� be the approximating function� then

f�x� 
 f
�x� �
X
n��n�

f�hn� e� 	 hn� e����x�h � n� e� � n� e���

where ��x� is our scaling function for the hexagonal wavelets�

Due to linear interpolation� the approximation error on D is of order h�� under
the assumption that f is a continuous function� In order to apply compression�
as demonstrated in the previous section� the decomposition part of the �lter
bank �cf Figure �� associated to the hexagonal wavelets must be used� The
four output matrices of the decomposition part contain the coe�cients for the
decompostion of f
 as given by �

�� In this decomposition the function f
 is
written as a linear combination of dilated and translated versions of the function
��x�� and the three mother wavelets 	��x�� 	��x� and 	��x�� Tresholding the
coe�cients in this combination which are small compared to a given treshold
value will introduce a second error� which can be controlled by computing the
reconstruction error� This error is comparable to the treshold value� Because of
��
�� to �nd a particular solution corresponding to the wavelets� it is su�cient to

�nd a particular solution correponding to functions of the type ���
�l

h x� n� e� �
n� e��� If p�x� is a particular solution corresponding to the scaling function ��x��
then �l h� p�
�l x�h� n� e� � n� e�� is a particular solution for ��
�l x�h�n� e��
n� e��� Therefore we only have to compute p�x��

Evidently� a particular solution p�x� can be expressed by the convolution
integral�

p�x� �

ZZ
IR�

����G�x� ��d �� ����

where G�x� � �
�� log jxj is the fundamental solution correponding to the

Laplacian�

Our main task is to evaluate the integral �����

By substituting expression �
�� into ����� we get

��



p�x� �

Z �




ZZ
IR�

U�� � t e��G�x� �� d � d t �

Z �




ZZ
IR�

U���G�x� � � t e�� d � d t

�

Z �




ZZ
U

G�x� � � t e�� d � d t�

Now� we replace � � ���� ��� by �� � ����� �
�
�� such that � � ��� e� 	 ��� e��

Hence� �� � ��� � �
� �

�
� and �� �

�
�

p
� ����

By setting ��� � t� we arrive at the representation

p�x� � �
�

p
�
R �



R �



R �

 G�x� ��� e� � ��� e� � ��� e�� d�

�
� d �

�
� d �

�
�� ��
�

The next natural step is to represent x � IR� in terms of e�� e� and e� as
follows�

x � �� e� 	 �� e� 	 �� e��

�� 	 �� 	 �� � ��

The numbers ��� �� and �� are called barycentric coordinates of x with
respect to e�� e� and e��

By substituting ��� � �� � u ��� � �� � v and ��� � �� � w� the following
relation is obtained�

p�x� �

p
�

��

Z ��

����

Z ��

����

Z ��

����
log�ju e� 	 v e� 	 w e�j�� du dv dw� ����

Since ju e� 	 v e� 	 w e�j� � �
� ��u � v�� 	 �u � w�� 	 �v � w���� a function

F �u� v� w� for which

�

�w

�

�v

�

�u
F �u� v� w� � log��u� v�� 	 �u� w�� 	 �v �w����

will deliver our p�x� � p��� e� 	 �� e� 	 �� e�� as follows

p�x� �

p
�

��
�� log 
 	 �I �E��� �I �E��� �I �E���F ���� ��� �����

����

Here� I is the identity operator and Ea denotes the backward shift operator
with respect to the variabele a� for instance E��F ���� ��� ��� � F ��� � �� ��� ����

��



In this way� our function p�x� is expressed as a third order �nite di�erence
of a function F �u� v� w� on a cube in IR�� A function F �u� v� w�� satisfying the
previous partial di�erential equation can be found by repeated integration� An
explicit formula is given by the expression

F �u� v� w� � h��u� v� w� 	

h��u� v� w� �log��u� v�� 	 �u� w�� 	 �v � w���� ��
� �� ����

where�

h��u� v� w� �

p
�

�
�u� v�� arctan�

u	 v � 
wp
� �u� v�

� 	

p
�

�
�u� w�� arctan�

u	 w � 
 vp
� �u� w�

� 	

p
�

�
�v � w�� arctan�

v 	 w � 
up
� �v � w�

�� ����

and

h��u� v� w� �
�
�� �
 v � u� w� �
u � v � w� �
w � u� v�� ����

Our conclusion is that p�x� can be found by doing elementary computations�
In BEM also normal derivatives at some boundary points of 
 of are needed�
Formulas for px��x� � �p

�x�
�x� and px��x� � �p

�x�
�x� are given below� In these

formulas� we use again the barycentric coordinates ��� �� and �� of x with respect
to e�� e� and e� and functions Fk���� ��� ���� �k � �� 
�� which play a similar role
as the function F ���� ��� ��� for p�x�� These functions are given by the formulas�

F��u� v� w� �
�


p
� �u� v�� arctan�

u	 v � 
wp
� �u� v�

� 	



p
� �u� w�� arctan�

u	 w � 
 vp
� �u� w�

� 	

��u� v�� 	 �u� w�� � 
 �v � w��� log���u� v�� 	 �u� w�� 	 �v � w����
�
���

F��u� v� w� � ��



�u� v�� arctan�

u	 v � 
wp
� �u� v�

� 	

�



�u� w�� arctan�

u	 w � 
up
� �u� w�

� 	 �v � w�� arctan�
v 	 w � 
up
� �v � w�

� 	

p
�

�
�v � w� �
u � v � w� �� � log��u� v�� 	 �u� w�� 	 �v � w�����


�



Finally� the partial derivatives of p�x� are given by

px��x� �

p
�

��
�I �E��� �I �E��� �I �E���F����� ��� ����

px��x� �

p
�

��
�I �E��� �I �E��� �I �E���F����� ��� ����

Here ��� �� and �� are the barycentric coordinates of x with respect to e��
e� and e��

Example

As a numerical test we solve the Dirichlet problem for

f�x�� x�� �
�

�
�x�� 	 x�� � �� e�x

�

�
�x�

�

g�x�� x�� � e���

on the unit circle x�� 	 x�� � � with boundary 
 � x�� 	 x�� � �� The exact
solution equals u�x�� x�� � e�x

�

�
�x�

� � We solve this problem by using a BEM
method having �� quadratic boundary elements and used the hexagonal wavelets
for deriving a particular solution by the method described in this section with
meshsize h � ����� n � �� and treshold value equals ������ The compression
factor is equal to ��
� �The di�erence between the exact solution and the BEM
solution at certain points in the circle are tabulated below

x� x� wavelet exact

��� ��� �������� ��������
��
� ��� �������� ��������
���� ��� ��

��� ��

����
���� ��� ������� ��������

We conclude that the approximation is of order ����� which is smaller then
h�� However� in general we may not expect to have an approximation order hp�
with p less then 
�
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