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ADAPTIVE DEFECT CORRECTION METHODS 

FOR CONVECTION DOMINATED, 

CONVECTION DIFFUSION PROBLEMS 

V. EnvIN(d, W. LAYTON(2) ANDJ. MAUBACH(3) 

ABSTRACT. We present a posteriori error estimators for a defect correction method for ap

proximating solutions of convection diffusion problems. The algorithms and estimators in

clude the possibility of using in the discretization a nonlinear selection mechanism, which we 

find improves solution qualit} in and near layers. Energy norm and L2 a posteriori error esti

mates are proven for the full algorithm. Two examples of'fully adaptive finite element-defect 

correction calculations are presented. These examples illustrate the scheme as well as the 

reliability of the derived estimators. 

L Introduction. 

This report considers the problem of computing efficiently and to within a preRssig;npd 

error tolerance an approximare solution to the singularly perturbed, that is, cOIwection 

dominated, convection diffusion equations: 

£tU ::= -€~U + v . \7u + gu = /. in n, (1.1 ) 

It = O. on f. ( 1.2) 

In (1.1), (1.2) n C R2 is a polygonal domain with boundary r, v is a gi\'(~n vector fi(·ld Oll 

nand / and 9 are known fundions on n. vVe specifically focus on t he case whe11 (1.1 ) i!" 

convection dominated. i.e. € «O(h). where h is a realizable global (or outer) meshwidth. 
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It is well known that discretization of (1.1), (1.2) for small e is fraught with difficul

ties: low order "upwind" or "donor cell" type discretizations are quite inefficient and 

produce grossly smeared solutions of low quality while higher order ("centered") approxi

mations typically exhibit nonphysical oscillations. Further, even with a "good" discretiza

tion method such as the streamline diffusion method or a defect correction method, the 

overall accuracy is deteriorated by the presence of sharp boundary and interior layers in 

the true solution of (1.1), (1.2). The clear solution to this problem is to place more mf'sh 

points in the small regions where the solution is less regular. To find the regions in which a 

finer mesh is needed, and the degree of refinement needed there, requires an error estimator 

which can be computed from the approximate solution and the problem data. 

Reliability of the a posteriori error estimator, meaning that the estimated error is a 

true upper bound to the true error, is essential. ,f-urther ,foT efficicncy,·the computation 

of the estimator should be far less expensive than simply calculating another approximate 

solution on a further refined mesh. 

It is necessary that error estimation and mesh redistribution takes place in thE' context 

of a "good" discretization method. Minimally, the method should have high accuracy 

in smooth regions, well-supported by local error analysis to elucidate the essential re

quirements, and be globally stable. Further, it is also highly desirable that some sort of 

nonlinearity is introduced in tbe.scheme.to·control {)ver·and·undershoots near the layers, 

[29,30]. (Otherwise a reliable mesh refinement process will refine around these nonphysi

cal oscillations until they are reduced by brute force - clearly not optimally efficif'nt.) \Vt' 

therefore introduce into our approximation a mechanism to nearly eliminate t hrse m'cr 

and undershoots and thereby control excessive refinement near layers. 

The streamline diffusion finite element method [9,10,15,22,23,24] possibly couplf"cl 'with a 

nonlinear shock capturing mechanism is a powerful technique for the approximate solution 

of (1.1), (1.2) - especially coupled with the a posteriori error estimators dew-loped by 

Eriksson and Johnson [101. In this report we consider instead a. discretiza.tion strategy 

based upon a defect correction. finite element method for (1.1). (1.2). This lllC'tilod was 

dC\'eloped by Hemker [12] and IIsed extcnsi\'(~ly, sec, for example, [12.13.14.16j. t() soh'C' high 

I1eYl1olds number compressihll' Aow prohl('lIls. For local and glohal a priori ('ITor ('stilllaU'S 



for defect correction methods see [2,3,l1,18J. Because of the simple structure of the h<'lsic 

defect correction procedure, Algorithm 1. 1, we are able to introduce a nonlinear self"ct ion 

mechanism into the scheme, Algorithm 1.2, without increasing its overall complexity. 

To present the basic defect correction algorithm and the modification we st.udy, ipt 

rr7(n),j ?: 1, denote a series of edge-to-edge finite element triangulation of n, with 
o 

xj C HI (n) denoting a conforming finite element space based upon that mesh. (In the 

computational experiments we present Xj will be either conforming linears, quadratics or 

cubics.) Define the usual and artificial viscosity bilinear forms: 

aE(u,v):= 1 €'Vu· 'Vv + (v· 'Vu + gu)vdx 

a{o(u, v):= L J fo(T, €)'Vu . \lv + (v· 'Vu + gu)vdx, 
TEflh(rl) T 

where, for example, the artificial viscosity parameter €o(T, f) can be chosen as 

€O(1',f) = max{lvILOO(T) diam (T),E}. 

The basic defect correction algorithm [2.3,11 ,12-14,16] then proceeds as follows. First t It(' 

global solu tion envelop is capt ured via an artificial viscosi ty a pproximo t ion. This i~ t hCll 

"anti-diffused" .J (= polynomial degree (Xh) + 1) times. Note that at ench step only t lw 

matrix arising from the artificial vis("osity discretization need be inwrtc·d. 



Algorithm 1.1: Basic Defect Correction Method (D.C.~I.) for (1.1). 

1. Calculate U 1 E X~ satisfying 

2. For j = 2," . ,J calculate Ui E XJ satisfying 

(Ui_Uj - 1 )-(1 )- (Ui - 1 ) f 11 Xh a lQ ,v - ,vat ,V, or a v E j' 

It has been proven (see [2.3,11] for details) this algorithm produces an approximate 

solution u J which converges, uniformly in c in smooth regions 0 ' C 0, to tt at rate 

O(hk) in Hl(Q/) and O(hk+ 1 / 2) in L2(0') where k = polynomial degree (XJ). It has 

also been observed [11,12] that this basic algorithm tends to antidiffuse too much near 

layers (resulting in oscillations near layers) and needs to be modified to incorporat.e some 

sort of nonlinear selection me,hanism. 

The nonlinear selection me:hanism we shall employ involves the use of a (nonlinear) 

p-Laplacian, incorporated into the residual calculation, to limit the antidiffusion in re

gions where grad(u i ) = O(h- 1
). This use of the p-Laplacian is natural for finite element 

methods. Analogous uses of p- Laplacians have occurred quite early in the global circula

tion models of Smagorinski [26J and other subgridscale models [19]. Define the nonlinear 

functional A lip ( " .) by: 

A.l,~(lt, tI):= L 11'0 <li,lIn (T)ldiam (T)\'u!P\'u· 'Vvdx. 
TErt h Cf2) T 

III all ollr experiments we tak(· p = '.:. wlwrc' k is the polyuomial dq!;I"(,(> of X" . 

. , 



Algorithm 1.2: OCM with p-Laplacian for (Ll). 

1. Calculate U l E Xf satisfying 

a{o(UI,v) = (/,v), for all v E X~. 

2. For j = 2,'" ,J calculate uj E Xj satisfying 

The main result of this report is a reliable a posteriori error estimator for Algorithm 

1.2 (and also for Algorithm 1.1 by taking flo = 0). To present the estimator, let ri denote 

the strong (local) residual of Ui : 

and -let [wl e denote the jump of a function w a cross an edge e In the finite elemc>nt 

triangulation rrj(n). Let Ej denote the set of edges in the finite element mesh rrJ01). 
The estimators we derive in Corollaries 3.1 and 3.2 take the following form: for compllt<lhle 

constants GR,G] and Gu 

Ilu - Uill},2(n) ::; GR L e- 1h}llri lli2(T)+ 
TEn7(n) 

+G] L min{e-lh~,ehe}IJ[~Uj . 11ellli2(e) 
eEE: 

+Gu L min{e l(eo(T) f)2.h'T2(co(T) _fj2}* (1.3) 

FEII;{!1) 

~ IIv(FJ [U- I ) + Ilohlh\,,[lJ-11I'V[TJ-JII12(T) == Est 2 , 



The constants C R•J•U are computable in terms of tabulated upper bound constants ill 

various inequalities and ground states of certain simple eigenvalue problems. Since til(' 

worse case in each step of the derivation of (1.3) seldom occur simultaneously, it can 1)(' 

usual in practical settings to estimate C R.J.U by solving several small problems wit h known 

solutions followed by data fitting. 

There are at least two important issues connected with the estimator (1.3). The first 

issue concerns the reliability and efficiency of the estimator. Is IItt - UillL2(f2) S; Est in 

all cases and does Est accurately reflect the true error? The second issue is how the 

information in Est is used to generate an adaptive algorithm based upon equidistribution 

of Est. To this end, we have used a simple and robust n-dimensional mesh refinement and 

de-refinement procedure developed in [20,21]. In the test reported herein the refinement 

criteria used in conjunction wi~h the mesh.generator of.f20,21] jsas follows. Define. for T 

a triangle in rrj(n), 

1 -+ -C] 
2 

:L min{ €-1 h;, €h e } j(\lUi . ne];de+ 
a.1I edges e 

e of T 

(1.3:b) 

+ tv min{€-l, hi'l} * 1I(€o(T) - €)\l(Ui - U j - 1 ) + Jlohlh\lUj-lIP\luj-11112(T)' 

The decision procedure used is then quite simply gIven Tol (global tolerance) and 

LocTolJ = Tol'l/ (no. of triangles in IIJ(n)) 

Ii 



Algorithm 1.3: i = 1 

Compute U j , Est(T) 

If Est < Tol, then STOP 

Else 

For T E IIj(n) 

If Est2 (T) > LocTolJ; mark T for refinement. 

If Est2 (T) < tLocTolJ, mark T for de-refinement. 

(*) Refine and de-refine IIjen) to obtain IIj+l (n), 

i=i+1 
Continue. 

The mesh generator used in step (*) in the previous algorithm is critical; we have used a 

conservative remeshing strategy biased to refinement in our tests. Different final meshes are 

generated depending upon the remeshing algorithm used at (*). (Sections 4 and 5 present 

some of our conclusions (and speculations) on possible improvements to the procedure we 

used.) 

Although changes in how the information contained in the estimator (1.3; b) is If.sed 

in (*) is possible as noted above, (1.3;b) did prove to be a reliable estimator and quite 

reasonable grids were generated by this simple procedure, as Section 4 illustrates. 

2.1 Notation and Preliminaries. 

This preliminary section records some basic notation and introduces a posteriori error 

estimation through energy norm error analysis for the usual Galerkin formulation. This 

preliminary error analysis shows that, although the estimator derived provides both upper 

and lower estimates of the true errors, for problems with large skew symmetric parts ((' < < 

0(1)) the respective constants differ by 0(c::- 1/ 2 ). This effect is shared by our estim(\ton.; 

for the defect correction procedure. (It seems to arise eS~f'ntial from t.he mathcI11(l,ic';d 

framework used for a posteriori error analysis and Lf'mma 2.1.) \Ve thus focns ill tit(' 

f('maincier of this r<'port on computahh-- uppc-r ('st imat<'s. 
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o 

The space X throughout will denote X := HI(0.). The finite element spacC's X;.j = 

1, . .. ,J, are assumed to be conforming X J C' X. They are associated wi th meshes IT ~ ( n } 
which are constructed based upon refinement and de-refinement of an initial mesh. TIl(' 

set of internal edges of triangles in IT;( 0.) is denoted EJ. For D a subdomain (typically olle 

triangle), II·IID will denote the L2(D} norm and (",),11·/1 the usual L2(0.) inner product 

and norm. The operator [h : X - XJ, (henceforth, suppressing the "j"), is definecl 

by interpolating suitable local averages of v in Xj. This interpolant was introduced by 

Clement [7] and satisfies (see [7]) for T in ITj, e in EJ, hT = diam (T), and he = diam (e) 

IIV ivhllT :5 C1IlVivIlN(T). i = 0, 1, 

IIv - vh llT:5 C2hTI!\7ivIlN(T),i = 1,2, 

1l\7( V - vh )IIT :5 C3 hT- 1 IIVivIlN(T), i = 1,2, 

IIVvhIlT:5 C4hylllvhIlN(T), 

Ilv - vhll e :5 C5h~-1/2I1\7iv\lN(e),i = 1,2, 

(2.1 ) 

(2.2) 

(2.3) 

(2.4 ) 

(2.5 ) 

where VOv = V, V~ := Vv and IV2vl := (v;x + 2vxy + V;y)I/2 and N(II) denotes the 

neighborhood of the element or edge II consisting of those elements [{ in ITj sharing at 

least one node with II. We also introduce the constant C7 := C7(Bmin (IIj)) which satisfies 

the condi tions 

)

1/2 

( 2: IIwll~(T) 
TenJ 

(2.6) 

The usual Galerkin finite element approximation to (1.1), (1.2) is the function [!h E X h 

satisfying 

It is well known that [Th is typically an oscillatory, low quality approximation to u(.r. y}. 

Nevertheless. the estimators for U h share some common [('atafes with those for hoth the 

streamline diffusion method. [10], and Algorithms 1.1 and 1.2. Tlms. we slwll illtro<il\('f' 

some Ilotation nnd t.cdmiqu(>s by C'onsidcritl1!; t'stimators for til(' standard Gal('rkill nwtliod. 



One universal effect that the analysis of the "centered" method illustrates is that t hpI'(' 

is an 0(€-1/2) gap between computable upper and lower error bounds for € smalL Sf'C' 

Theorem 2.1 below. The cause of this gap is that one bound comes naturally wcightf'd 

with lI.ctllc(Hl,H-I) (which is 0(1)), and the other bound with lI.c t llC(H-l,Hl), which is 

O( €-1/2 )). This gap does not occur for symmetric problems. 

Lemma 2.1. Define the nonn on X, for a > 0 b > 0 

Illwlll!,b := in all\7wlI2 + bw
2 

dx. 

Assume 0 < go ::; 9 - t\7· v, and Ig - \7. vi::; 91' Then 

I II 
af(w,v) 

IIw It,go::; sup _111111 . 
O,evE.\ v f,go 

(2:7) 

Further, 

(2.8) 

(2.9) 

Proof, The inequality (2.7) follows triviallyfromcoercivity of a t (·,·) in the 11I·llkgo norm. 

For the upper bound (2.8), note that 

af(w, v) = in €\7w· V'v + (v· \7w + gw)vdx 

= in fV'tc . \1v + (g - \7 . v)wvdx - In v· \1vwd.r 

::; fllV'wll lIV'vll + IIg - V' . vil oo llwllllt'li + IIvlloollVvllllwlL 

::; [€IIV'wll + (91 + II v ilco)lIw IlJllv!h, 

::; h[c2 11'VwIl2 + (gl + II vll oo )2I1tI'1I2]1/2Ikll" 

from which (2.8) then follows. 

Thp inequality (2.9) is estahlished in an analop;ol1s fa~hi()n. 0 

9 



Theorem 2.1. Assume 0 < go S g(x) - 1/2\7 ,v(x}, Then, there is a constnnt C, 

independent of hand €, such that 

Proof. Using the identity af(u - Uh,v) = (f,v) - at(Uh,v) for all v E X, and Galerkin 

orthogonality, ac ( u - U h , v h
) = 0, for all v h E X h , it follows that 

h af(u-Uh,v) 
Illu - U Illf,go S sup III III 

O#v€X v (,go 

aEe u - Uh
, V - v h

) = sup 
O#v€X IlIvlllE,go 

(I, v - v h ) - a E ( [Th, v - v h ) 
= sup , 

O#v€X IIlvlll E •go 

The left inequality in (2.10) thus follows, as v h E X h is arbitrary. The right inequality 

in (2.10), follows the same approach, beginning with: for any v E X, v h E X h 
tl = [T" 

satisfies 

Applying (2.9) and the arbitrariness of v h yields the right hand side of (2.10). 0 

Remark: The difference between the norms of the error on the left and right hand side 

of (2.10) arise from the relatively large skew symmetric part of the bilinear form G .. (',·) 

through the different scalings of € in the continuity and coercivit.y constants of "((,,.). 

For tt satisfying (1.1), (1.2). we have in general that as f ~ 0 that Uulll ~;)O, As we 

are interested in constructing error estimators valid for f small it is thus more appropriate 

to bound the error in the weighted energy norm 1lI'lIlqo' \Yf> therefore proc('('d hy tClkinp; 

the first inequali ty in (2.10) a nd developing its right hand side int.o a sum of CO III pll t;\ hl(' 

quallt it ies, 

10 



Consider now the residual term in (2.10). For v E X, V h E X h
, applying the di\"(~rg('n('"(' 

theorem on each triangle T gives 

(J, v - v h
) - a(U h

, v - v h
) 

= L 1 (J - (-€6.U h + v· 'YUh + g[Th)](v - vh)dT 
TEn" T 

- € L i[V'Uh . neJ(v - vh)de. 
eEE" e 

Choosing v h = [h( v) E Xh, applying (2.1) . (2.5), and using the Cauchy-Schwarz inequal

ity gives 

which gives the following estimate: 

Theorem 2.2. Assume 0 < go :S g(.1:) - 1/2\7· v(x). Then 

I/,2 

Ilitt - U"IIIt.go ~ hf- I
/

2 max{C:!. C", }Ci [ I: h~'lIrhll} + I: 'l"J'f~II[\lUh . I1c11l;] 
TElIh eEl·: h 

(2.11 ) 

11 



An adaptive procedure can be based upon the usual Galerkin finite element mC'thod 

and equidistribution of the bracketed terms on the R.H.S. of (2.11). Such a prc)('C'durC' is 

quite poor compared to one based upon a "better" discretization, hecause it leads to nearly 

uniform overrefinement as the indicators try to eliminate the nonphysical oscillations hy 

refinement. 

3. A Posteriori Error Analysis of Algorithms 1.1 and 1.2. 

This section considers the defect correction discretization with and without the addi

tional p-Laplacian term. \Ve first give an a posteriori error analysis for Algorithms 1.1 and 

1.2 in the energy norm, then (the main result of our work) in the L2-norm. The L2(fl) 

analysis follows the pioneering path set forth in the work of Eriksson and Johnson (see, 

e.g., [9,10] and the references therein). For the convection dominated case, .it seems to 

give essentially a better estimator (even accounting for the differences in the norm) than 

energy norm estimators. 

Recall that to is a piecewise constant function (which is O( hT) for t < < hT) on each 

triangle given by 

to(T) = max{lvILOO(T)' diam (T),t}. (3.1 ) 

The dependence of toCT) upon T and t will be supressed in the manipulations that follow. 

For later reference we note that the update .step in Algorithms L land 1.2 can be rewritten 

as, for all v h E Xj: 

and 

Energy Norm Estimates 

There are two natural energy norms. 111·111'.90 for the mutinnons prohlptll and 11I·III(o.go 

for tltp discrete problem, Using 111·111(,90 t'('sttlts in a fully ("omput<lhlC' C'stimator annlol!;OIIS 

12 



to the estimator for the centered Galerkin method (Section 2) which, for c small. llppf'nrS 

worse than the L2(n) estimators we consider next. The III . 111(.90 norm is the "nntttrnf' 

norm arising in the approach pioneered by Babuska, Rheinboldt and Banks (see [4.5.6. also 

27J and the references therein). The norm bounded by the estimator is "improvable" by 

using the III ·111(0.90 norm. However, the result is not fully computable without a Ilf'uristic 

step of replacing II \Tu II Ll(T) by II\TU i Il L 2(T) on the RHS (compare (3.13) and (3.14)). Full 

reliability is therefore sacrificed. The derivation of the estimates for Algorithm 1.1 (i.e. 

Po = 0) begins with the identity 

(3.4) 

From (3.3), (I, vh ) - a(U j , vh
) = «co - c)'V(Ui - U j - I ), 'Vvh

) for all uh E XJ. Thus, 

(3.4) can be written as 

for all v E X,v h E XJ. 

Adding «co - c)\T(u - Ui), 'Vv) to both sides of the above gives 

a EO (u - Vi, v) = (J, v - uh
) - aE(U j

, v - vh
) + « co - c)'V( [P - Ui- 1

), \Tv) 

- «co - €)'V(Ui - Ui-I), \l(v - uh)) + «co - c)'V(u - vj), \Tv) 

or, for all v E X, uh E xj , 

.. h 
- (co - €)\T(U) - U)-I), \l(v - v)). (3.5 ) 

Consider the first two terrr.s on the right hand side of (3.5). Applying the din>rgence 

theorem upon each triangle T gives 



Choosing u h = [h (u), and letting r) := f - ( -d!1.U j + V . "VU j + g[Tl) denote the lo("al 

residue for U j, we obtain 

The jump integral terms in (3.6) may be bounded similarly as 

Consider now the fourth term on the right hand side of (3.5). 

«(EO - E)\l(Ui - Uj-I), \lev - Uh)) 

= L« EO - E)'V(Uj 
- Uj

-
I
), \l( u - uh))r 

r 
S L(EO - f)f;1/2 11 \l([Tl - Ui-l)llre~/211\l(p - vh)lIr 

r 

(3.7) 

(3.8) 

S c1 e, (:Z=(<'Q - f) 2 e;;-III"V([rl - UJ '1I1~') 1/2 ·IIHII(o.f}o' (3.0) 
T 

1·1 



Analogously, the third term on the right hand side of (3.5) satisfies 

(3.lO) 

Using (3.6) - (3.lO) in (3.5) gives for any v E X, v =f. 0, 

Define fO = max fo(T). Using the previous inequality and (2.7) in Lemma 2.1 (with f 
T 

replaced by Co on both sides of (2.7)), and (eo - e)2fol ~ [(in - e)/ioj2eo gives 

Illu U}III;o,yo ~ CjI::eo1h}llrjll}+ 
T 

+ c}j L (;2eol hrll[\?Uj 
. neJII;+ 

eEE; 

+ CjJi L((;o - E)2fo' II\!( Uj 
- Ui I )II~+ 

r 
- 'l 

+ (fO_-f) IlIll-[TJ-11112 . 
fO fO.YO 



Thus, 

Illu - ujlll;o.9o ~ t(EO
C
- C)2(j-() [i=(C[€~lh}llrlll}+ 

1=1 0 T 

+ C(U(€O - €)2€~11l'V(Ul - Ut-1)IIT (3.11) 

This inequality (3.11), together with an estimate for Ililt -U 1 11I{o,9o ,will give a comp\ptc> 

error estimate for DCM. 

Consider the error in the first step in DCM. U1 satisfies 

This can be rewritten as: for all v k E X h 

Consider, now for all v E X and v h E X h 

a{ (u - U I , v) = (j, v) - a{ (U 1 , v) 

= (j, v - vk
) - a{(U1

, u - uk) + (EO - €)\7U 1
, Vv k

). (3.12) 

Repeating the operations of (3.6) . (3.8) gives: 

The gives immediately the following error estimator for 1£ - U I : 

IG 



\Ve note for future reference, that by taking a slightly different path the following estimate' 

can also be derived: 

These two estimates for (u-Ul), (3.13), (3.14), differ in that (3.14) uses a "better" norm 

and has 4'better" constants but has one term ( the lI\7u II} term) which is not computable. 

Using (3.14) would require a heuristic substitution of, e.g., IIVUi II} for lI\7ull} in the RH.S. 

of (3.14). If the estimate (3.13) or (3.14) is inserted into (3.11) we obtain an estimator for 

IJlu - Uilll(o,go' This estimator obtained is unattractive for practical computations due to 

the sum of residuals, jumps and updates calculated for each update. We could use instead 

111'111(,go in the analysis. Howe\'er, since € is typically very small III·III( ,go should be thought 

of as very close to the L2({2) norm. We therefore proceed directly to estimating lilt - Cill. 

L2 Norm Estimates. 

In this section we present the main theoretical result of our report: L2 norm estimates 

fOf.u...,.Ujfor Algorithms 1.1 and 1.2. We estimate 1Iu-Ui ll by duality techniques following 

the approach of Eriksson and Johnson [1O}. 

Theorem 3.1. For u satis(ving (1.1), (1.2), with 0 < go s: (g(.r) - 1/2\7 . v(.r)) and r 
either a com'ex polygon or smooth, and uj given by Algorithm 1.1. we have 

+ ('\.11'-1/2 ( L (€O 

TEn; 

Ii 

(3.1.;) 



where Cs , C 12 , and C 14 , are computable constants dependent upon the given data and t/1r 

partition of the domain. 

The proof of this theorem uses the following regularity result of Navert [231. see also [2]. 

Lemma 3.1. Assume that (g - 1/2'V . v) !:: go > O. If r is either a com'ex pol.'·gon or 

smooth, then the solution u of (1.1), (1.2), satisfies 

(3.16) 

where C6 is independent of u and c. 0 

Proof of Theorem 3.1: We begin the a posteriori error analysis by introducing the 

associated adjoint problem of (L1), (1.2). Since J..Lo = ° 
(3.17) 

For B := u - U i , define z as the solution to the associated adjoint problem of (1.1), 

(1.2) with right hand side fJ. Specifically, 

£;z:= -eLlz - 'V. (zv) + gz = B In {l,z = 0, on r. 

Then, 

IIBI12 = (6,B) = (B,£;z) = a((B,z). 

\Vith vh = z = [he;:), and J.lo = 0, using (3.3) in (3.19) we obtain: 

IIBI12 = a((B, z) - a,(u, i) + ato(U i , i) + ((eo d'V(lP - U j
-

I
). 'VE) 

= a((B,:; - i) + ((eo - €)'V(Ui - Ui - t ). 'Vi) 

= (f,z - z) - (gUi + v· \lUi,z - z) - (e\lUi , 'V(z - E)) 

+ ((eo - c)'V(U i - Uj-I), 'Vi) 

= I: (r i ,:; - i)T I: j c['VU i . l1e](': - i)ds 
TEn~ eEEj e 

+ ((f.o - €)'V(Cl - crt), 'Vi) 

=1+11+[[1. 
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(3.19 ) 

(3.~(l) 



Using the approximaton properties of the Clement interpolant ann (3.16) we can hound 

expression I by : 

Thus, 

III = I L (rJ,;; - ihl 
T€nJ 

:5 L hTlirjllTllhTl(z - i)IIT 
T€nj 

:5 L C2f-
1/2 hT lir j IlTII€1/2'V zIIN(T) 

TEnJ 

where C8 = C2 C6 C7 • Consider now II. 

1111 = I L j €-1/2h;12[VU j . llel€3/2h;3 /2(z - z)d~1 
eEE~ e 
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(3.22) 



To bound the second term in (3.22) we use (2.5). Hence, 

where Gl2 = GrGs. 

The remaining term to be bounded in (3.20) is Ill. 

IIll1 =i(eo -e)\J(Uj _Vi-i), \Jz)1 

S; :L IICeo - e)e- 1
/
2\J(U j - Uj-I)IITllel/2\JiIlT 

TEnJ 

S; :L IICeo - e)e- 1
/
2\J(U j - uj-l)IITGIJ\lel/2\7=IIN(T), 

TEnJ 

where G13 satisfies !!\JiIiT S; G!3I1\JzIIN(T), 

(3.23) 

$ C13,-I/' ( L (,. - ,j'II\7(Ui _ Ui-Ijll}) II' (L 1I,I/'\7zll;"(T)) II' 
TEflJ TEnJ 

(3.24) 

where G14 = G6 GrG13 • 

Combining (3.21), (3.23), (3.24), with (3.20), we obtain the d(limed a posteriori c>rror 

estimate for u - [Ti. 

Remarks 

1. As noted in [10), in the pn'sC'ncC' of houndary lay('rs, the nnmciqhtrd £'2 norm of 

til(' residual wilL in ~('n('ral. not COllv<'rp;e to z£'ro undC'r local r£'filH'IlH'lIt of til£' p"rl it i(lll. 
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Hence. it cannot be used as an effective error estimator for prohlems having boundarv 

layers. However, when weighted with the local mesh parameter the product clops th('n 

converge to zero under local refinement of the mesh. 

2. With an analogous argument, replacing h~/2 by h!/2, one can derive for I [ the hOllnd 

(3.25) 

3. Introducing the local grid parameter, hT, instead of €, and using an inverse estimate 

for 'Vi., lI'VzllT :::; C1shrljjillr, an alternate estimate for III can be derived 

(3.2G) 

where C16 = C1 C6 C7C15 . 

Using remarks 2 and 3 appropriately in the last proof we obtain the following. 

Corollary 3.1. Under the conditions of Theorem 3.1, the following error bound holds: 

(3.27) 

3.3 Incorporation of the p-Laplacian. 

If a p-Laplacian is used in the algorithm to limit the amoHnt of anti-diffusion pcrfonn('d 

in transition regions the analysis leading to (3.27) must be modified. The rcqllin'd modi

fication is simply to replace, at each step, ttl<' updat(· term Il(fo f)\,{U j - [!J 1 )W~· hy a 
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modified update term reading 

lIe ~o - c)\7( ui - ui - t ) + J1.ohlh \7U j- 1 IP\7uj-l II} = 

II( ~o - [c + J1.ohTlhT\7Ui+lIPj)\7urlll}. 

Repeating the steps leading to Corollary 3.1 with this modification gives the following 

estimator. 

Corollary 3.2. Suppose the hypotheses of Theorem 3.1 hold. Then, font satisfying {1.1}. 

(1.2) and Ui given by Algorithm 1.2 the error lIu - Uill satisfies: 

+ (C14 + C16 ) ( L min{c- l
, h-2 (T)}II(cO(T) - c)\7(uj - Ui - 1

) 

TerIJ 

4. Numerical Illustrations. 

Two numerical illustrations of Algorithms 1.1 and 1.2 are presented. The first illustratf's 

the reliability of the error estimators. Next, we present an additional example for which 

an exact solution is not known. It is traditional to exhibit the grids generated by adaptiw 

procedures (and we shall do so shortly). Nevertheless it has been noted in many places that 

the final adaptively generated grid can change dramatically with small changes in thf' input 

parameters. Thus grids should be judged with regard to their general "reasonal>l(,llP~~" 

rat her than their exact configuration. 

TIH' two examples we considf'r itf'I"(' are, (1) a "sk('w step" type prohh'm with H kllowlI 

(,X,lct solution and. (2) the "rotatill~ pulse" prohlem of lI!)j (modelling some f("(ltm('~ or 
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internal flow problems) with a circular plateau-like solution and O( J€) internal tran~jtion 

region. In each case we use continuous, piecc'o/ise linear elements. 

In these illustrations, we take the coefficients in the estimator (1.3,b) to be equal: 

A better estimate of these coefficients can certainly be obtained. Since we are illustrating 

the estimators utility rather than optimizing the overall algorithm we do not pursue this 

point. 

In all our tests herein, we take eo = 2h( x), which is almost certainly overly diffuse and 

J.Lo = a or J.Lo = 4. Only one antidiffusion/corrector step was performed. No p-Laplacian 

was needed in Example 4.2 since only one corrector steps were performed. 

In all the tests presented herein, a simple fLUt/> preconditioned CGS (conjugate gradient 

squared) solver was used. The number of CGS iterations was observed for each approximate 

solution Ui to be always quite small due to the good numerical stability of the linear system 

arising from the artificial viscosity operator a EO (', .). 

Example 4.1: Let n 
and 2!0 (uniform refinement). We take 

UTRUE(X,y) = arctan[a(x/4 - y + 1/21 

with a = 100, substitute tLTRUE into the differential equation and calculate a fiRS f(x, y. e) 

and take nonhomogeneolls boundary conditions u = lLTRUE on aQ. In the tahle below we 

prf'sent the ratio of the estimated and t.nt(' f'ITOrS for Jlo 0 (AI~oritll1n 1.1) and 110 = -l 

(Alp;orithm 1.2). 



Algorithm 1.1 Algorithm 1.2 
h Estimated Error Estimated Error 

TRUE ERROR TRUE ERROR 
1 

16 
2.83 3.47 

1 
2.96 - 2.11 

32 

1 
1.53 2.45 -

64 

1 
2.19 -- 1.37 

128 

1 
?!1n 

1.05 1.25 

Table 4.1 

In Table 4.1 we see that the estimators become closer to the true error (Est/Error 

-+ 1) as the mesh is refined. This is entirely as expected. The ratio approaches 1 more 

slowly in Algorithm 1.2 since the combined effects of a too diffuse stable operator (see the 

conclusions section) with the p-Laplacian slows resolution of the internal layer. 

Example 4.2: The "Rotating Pulse" In (1.1) we take € = lO-4,D = (-I,If and 

for r = Jx 2 + y2 and c = 2, f(r) == 1 if r $ t with f == 0 for r > t. The velocity field v 

is given by 

v = [-y(l- r 2),.r(l- r2)]'r for 0 $ r $1 and v = 0 otherwise. 

At the boundary, u(.r, y) == O. 

In Example 4.2's experimellts we take Jto = 0, Tol = 0.02 and. on eneh sllccessive grid. 

perform one artificial viscosity step followed by one defect COffection update. 

Table 4.2 presents the number of triangles and estimat.ed error Oil t II/' seven mpshcs. 

:Jote the de-refiu(,lllellt occurring lwt\\'('en Steps G and 7. 
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~lesh No .. of Est.imat.ed 
Number Triangles Error 

1 512 0.19 

2 3136 0.19 

3 9568 0.087 

4 21504 0.045 

5 39552 0.035 
6 65996 0.023 

7 53240 0.027 

Table 4.2: Estimated errors for the rotating pulse problem (Example 4.2). . 

In Figure 4.1 we present the seven meshes and approximate solutions. 

-------- - _ ... _ .. --. 
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FIGUnE 4.1: ADAPTIVE ApPHOXH.IATIO;\!S TO EX"!\IPI.E -t 2. 

2Gb 



Mesh Refinenlent and De-refinement. 

After the simplices are marked for refineme"nt. de-refinement or no action via Algorit hm 

1.3, the particular mesh generation algorithm chosen is then applied. \Ve have u~('d <l 

newest vertex bisection algorithm which produces simplical grids in any dimension with 

a small finite number of equivalence classes of elements. This method is developpd and 

validated in detail in Maubach [20,21J (building upon the early work of SeweIr[28j). Siurf' 

this study focuses primarily upon Algorithm 1.2 and its error estimation we have at paeh 

step opted for simplicity, universality and reliability over economy. For example, a triangle 

being refined is simply cut in half twice (reducing its diameter by t) rather than using 

differing levels of refinement at each update according to the relative sizes of the individual 

indicators. De-refinement is also repeated twice at each step, when possible. 

,Du.e to the-recursive "and more global nature of de-refinement there are several option~ 

that must be selected in the de-refinement algorithm. Since our study has emph(\sizf'd 

reliability over economy we have also, at each step, given refinement precedent over dp

refinement. It is possible to include numerous "heuristics" into the mesh generation pro

cedure with the aim of genen·_ting a better mesh at an earlier grid number. 'Ve have not 

done so in our tests. 

The rotating pulse problem illustrates the fact that the adaptive defect correction al

gorithm can provide an accurate and high quality approximate solution. It further shows 

that the attractive features of the approach are independent of requiring a streamwise node

ordering, or requiring a convection field without closed loops. 

5. Conclusions. 

To improve the performance of the defect correction method in adaptive complltCltinlls 

our experience suggests the following refinements. 

1) The amount of artificiai viscosity used in the stable oppr(\tor should hf' as small 

as possible consistent with stability and the error localization [{'SlIlts of [2. 11]. (This 

observation has been bOn1p out in a study of the authors of ada pt iw' d('f{'("t C01"[("t iou 

1lH't.hods for tlte \'avicr-Stok(·s equation). 
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2) \Vith less artifical viscosi ty in the stable operator or more correction steps, use of ~ 

p-Laplacian in the residual can control overs~oots and undershoots, [29. 30j. The prf'Sf'nt 

paper shows that its use presents no problem for the mathematical basis of the' ('rror 

estimators. 

3) For € < < O( h ), L 2 error estimators seem to be preferable to energy norm error 

estimators. Estimators using heuristics are possibly more efficient than the estimators w(, 

have used but they are certainly less reliable. 

4) The mesh generator used, combined with a strategy restricted to mesh halving or 

doubling, is not optimal. It seems to initially over refine in smooth regions and then is slow 

to de-refine there because of the constraint of preserving mesh conformity. This question 

of how a posteriori information is best, useclin.ao .. adaptive.procedure -should be studied 

further since it influences the practical success of the overall computation. 
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