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to be essentially independent of the influence of phase error. A 
similar effect may be seen in the time domain results presented in 
[6] for a sampling rate four times the input frequency (y = 90”). 
Figs. 2 and 3 also depict the maximum stable value of convergence 
coefficient for time delays of one sample and one cycle. Observe, 
especially in Fig. 3, that the characteristics of the relationship between 
the phase error and maximum stable convergence coefficient have 
changed. In addition, with the time delays, the peaks near the f90” 
bound are removed, and so the shape of the c w e  approximutes 
the cosine function shape of the complex algorithm, as suggested 
in [6].  However, the curve is still not, in general, symmetric about 
the 4 = 0” point, the exception being at a sampling rate four times 
the input frequency (y = 90”) used in [61. 

Although these convergence characteristics of the time domain- 
filtered s LMS algorithm with a cancellation loop transfer function 
phase estimation error are somewhat interesting, they are also some- 
what discouraging from the viewpoint of the stated objective of the 
analysis. In fact, it is almost impossible to provide a more quantitative 
assessment of the effectrof transfer function phase estimation error 
beyond stating that the tolerable bounds of this error are 141 < 
90”. 

IV. CONCLUSIONS 
Errors in the estimation of the cancellation path transfer function 

for active noise and vibration control systems implementing the 
filtered-s LMS algorithm will have an influence on the stability of the 
algorithm. Errors in the estimation of the magnitude of this quantity 
will alter the maximum stable value of convergence coefficient 
through an inverse proportional relationship. It can further be said 
that it is possible for the algorithm to be made stable, provided the 
error in the estimation of the phase of the transfer function does 
not exceed f90”. The effect that a phase error has on algorithm 
stability between these bounds is more difficult to predict, owing to 
the alteration of the error surface as seen by the algorithm induced 
by the phase errors. The effect will normally not be symmetric about 
the 0” phase error point and may, in fact, cause the stability of the 
algorithm to increase for some values of error. This is in contrast to 
the case where the complex algorithm is used, where the maximum 
stable value of convergence coefficient is simply reduced by a factor 
proportional to the cosine of the phase error. 

REFERENCES 

B. Widrow and S .  D. Steams, Adapfive Signal Processing. Englewood 
Cliffs, NJ Prentice-Hall, 1985. 
D. R. Morgan, “An analysis of multiple correlation cancellation loops 
in a filter with an auxiliary path,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. ASSP-28, pp. 454467, 1980. 
J. C. Burgess, “Active adaptive sound control in a duct: A computer 
simulation,” J .  Acovst. Soc. Amer., vol. 70, pp. 715-726, 1981. 
S .  J. Elliott, I. M. Stotbers, and P. A. Nelson, “A multiple error 
LMS algorithm and its application to the active control of sound and 
vibration,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP- 
35, pp. 1423-1434, 1987. 
S .  D. Snyder and C. H. Hansen, “The influence of transducer transfer 
functions and acoustic time delays on the LMS algorithm in active noise 
control systems,” J. S o d  Vibration, vol. 140, pp. 409424, 1990. 
C. C. Boucher, S. J. Elliott, and P. A. Nelson, “Effect of errors in the 
plant model on the performance of algorithms for adaptive feedforward 
control,” in Proc. Insf. Elec. Eng., pt .  F,  vol. 138, 1991, pp. 313-319. 

Laguerre-Domain Adaptive Filters 

Albertus C. den Brinker 

Abshnct4Jsing a tappeddelay-line as an adaptive filter, the complexity 
of the filter increases with increasing correlation length of input and 
reference signal. We seek simple adaptive filter structures such that for 
a long correlation length only a minor complexity of the lilter is needed. 
We consider adaptive mechanisms governed by an exponentially weighted 
squarederror criterion. Laguerre-domain adaptive filters are introduced, 
which leads to a tapped W-filter line. These filters contain a discount 
factor as a free variable, which makes it possible to set the memory 
and the number of adaptive coeflicients independently. Convergence 
properties of the proposed adaptive lilten are discussed. 

I. INTRODUCTION 

The following problem is considered. Suppose we have a reference 
signal ~ ( n )  where part of ~ ( n ) ,  say rl(n), is correlated with another 
signal s(n). The correlation is considered to be a consequence of 
some linear causal filtering. This filtering is descibed by an impulse 
response called f(n) and therefore, n ( n )  = f(n) * s(n), where * 
denotes convolution. We want to construct a filter that approximately 
performs the filter operation f(n). We allow linear, causal, slowly 
time-varying impulse responses f (n) . 

Usually, a transversal filter is used in these cases. However, in the 
case of a long correlation length, i.e., f(n) has a long nonnegligible 
tail, we need a transversal filter with many taps. Thus, the complexity 
of the adaptive filter, defined as the number of adaptive parameters, 
increases with increasing correlation length for a proper functioning 
of the adaptive filter. On the other hand, a large number of parameters 
is of course cumbersome to control, and, in itself, deteriorates the 
performance. 

Starting from a more general adaptive filter and an exponentially 
weighted squared-emr criterion, we seek appropriate filter structures 
that are able to cope with the situation of a long correlation length 
without the need to increase complexity. It is shown that what we 
call Laguerre-domain adaptive filters (LDAF) are suited for this job. 
The filter coefficients can be updated using a recursive least-squares 
algorithm. 

11. THE OPTIMIZATION CRITERION 

Consider the adaptive filter F shown in Fig. 1. We have an input 
signal s(n) and a desired response or reference signal r (n ) .  The 
adaptive filter F has an output signal called y(n), and we construct 
the error signal e ( n )  according to e (n )  = r (n)  - y(n). 

The filter parameters of F are called the weights wm. Our aim 
is to set these weights in such a way that the error is minimal 
in a certain sense. We consider minimization of the exponentially 
weighted squared error J ( n ) :  

n 

J ( ~ )  = {e (k ) )zes” -k ,  o < 0 < 1. (1) 
k=-- 
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We assume a linear regression model where the filter output y(n) 
is written as 

M 

y(n) = Wnum(n). (2) 
,=O 

The signals um(n) are intemal signals of the adaptive filter F, and 
there are M + 1 weights indexed 0 to M. The signals u,(n) are 
derived from 5 by some linear causal filter operation. In essence the 
adaptive filter F is a filter bank, not necessarily the usual tapped- 
delay-line. 

Taking the derivatives of this optimization criterion J ( n )  with 
respect to the filter weights w,, setting these to zero and using (2) 
gives 

M 

W p  2 u p ( k ) u m ( k ) o n - k  = 2 T ( k ) U , ( k ) e " - k .  (3) 
p=O k=-m le=-m 

This equation holds for all m in the optimal situation. In (3), we 
recognize a number of local cross-correlations as introduced in [l], 
[2]. These can be calculated from the Laguerre spectrum of the 
windowed signals ?(n; k) = ~ ( k ) < " - ~  and &(n; k) = u,(k)E"-', 
where E 2  = I9 and k 5 n. Therefore, we write the windowed signals 
as a Laguerre series 

m 

k) = T ( ~ ) E " - ~  = C g r i ( n ) d t ( E ;  n - k), (4) 
,=O 
m 

i m ( n ;  k) = um(k)En-k = C m h * ( n ) 4 t ( ~ ; n  - I C )  (5)  
Z=O 

(k 5 n). where the Laguerre functions are given by (Z-' denotes 
the inverse z-transformation) 

& ( E ;  k) = z-'{@z(E; z)) 

The Laguerre coefficients can be determined by a convolution 
g p l ( n )  = ~ ( n )  * d,(n)  and ,h,(n) = um(n) * d , ( n ) ,  where d, 
is the ith decomposition filter 

= Z - l { D * ( z ) } .  (7) 
Substituting (4) and (5) in (3) yields [2] 

In matrix notation, we have H H T w  = Hg, where w = 
[WO, W I , .  . . , W M ] ~ ,  a vector containing the filter weights s = 
[gro ,gr l , .  . . I T ,  the Laguerre spectrum of r*, and H is a matrix 
containing rowwise the Laguerre spectra of the windowed intemal 
filter signals i, (0 5 m 5 M )  

(9) 

The relation H H T w  = H g  - is the normal equation for the coefficients 
of the adaptive filter. 

The derived normal equation is equal to a deterministic normal 
equation for a tapped delay line (cf. [3]). The matrix H H T  contains 
the coefficients CO (see 111 and [2]) of the local cross-correlation 
functions of up and U,, whereas the vector H g  contains the 
coefficients CO of the local cross-correlation functions of U ,  and T .  

I I 

Fig. 1. Adaptive filter F and its signals: 

III. THEFILTERBANK 

So far, our analysis and signal descriptions only gave rise to more 
computational complexity since all signals had to be windowed and 
transformed to the Laguem domain. However, we still have complete 
freedom in the choice of the filter bank. We will make use of this 
freedom by taking the transfer functions Fm(z) such that both the 
filtering of z and the decomposition of the signals U ,  are performed 
within the adaptive filter. 

To derive the Laguerre coefficient ,h,(n) the input signal z (n)  
has to be filtered by F,(z)D,(z). Consider the following choice for 
F, (z). We take the ratio of successive filters F, and F,- 1 equal 
to the ratio of successive decomposition filters, so 

where Fo(z)  is an arbitrary system function. We assume an infinite 
number of filters, M = W. Consequently, we have F,(z)D,(z) = 
[Fm+l (~ )  + dF"+i+i(~)]/J17I-e, and thus 

Equation (11) states that the ith Laguerre coefficient of the signal 
U ,  is equal to two consecutive signals in the filter bank itself. Since 
,h, is dependent on the sum m + i and not on m and i separately, 
the matrix H assumes the form of a Hankel matrix, and theerefore, 
H T  = H .  

A special case occurs by taking'Fo(z) = z-/(z - 6'). The 
adaptive filter then contains a filter bank equal to the decomposition 
filter bank. Our goal is to be able to describe, or at least approximate, 
arbitrary linear causal operators by the proposed adaptive filter. The 
question is whether this is possible. 

First, consider the ith system function F,(z).  For F2(z) = D,( z ) ,  
it can be easily verified that F, (2) can be written as a finite sum of @ J  

where @ j  is the z-transform of d j .  

defined by 
A Laguerre filter L M ( ~ ;  z )  of order + 1 ( M  = 0,1, .  . .) is 

where tEt are unspecified constants. From (12), we infer that a 
limited number M + 1 of partial system functions F, (z) and arbitrary 
weights W, encompasses the same set of functions as a Laguerre 
filter of order M + 1. The Laguerre filter for M -+ 00 describes 
the system functions of all square-summable time-invariant causal 
impulse responses [3], and consequently, so does the proposed 
adaptive filter for this special choice of Fo. Any other choice for 
FO can conceptually be split into a cascade of two filters with one 
of them having a system function DO. The other filter can then be 
considered as prefiltering the input signal .r. 
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Fig. 2. 
of the LDAF. 

Sketch of the situation for the analysis of the convergence properties 

Obviously, we will later use only a limited number of weights. In 
that case the rate of convergence of the Laguem series plays a role. 
This rate depends on the parameter B and the choice of Fo(z), i.e., 
the prefiltering operation on z. 

IV. UPDATING M,ECHANISM 
The exponentially windowed error criterion (1) automatically gives 

rise to the following two recursive relations 

A(n)AT(n) = BH(n - l )AT(n  - 1)  + g(n)gT(n), (14) 

(15) 

which hold for finite M x M matrices H A T  together with vector U 
of length M. Note that (15) states that we do not need to perform a 
decomposition of the reference signal T in order to establish the vector 
As. Using the matrix inversion lemma (e.g., [4]), this leads to the 
well-known IUS algorithm (P( n) being the inverse of H( n) AT (n))  

(16) 

(17) 

a(n)g(n)  - = e+ - i)g(n - 1) + g ( n ) T ( n )  

P(n - 1 M n )  
kJn )  =. B + gT(n)P(n - l)IJ(n)' 

a(.) = T ( n )  - gT(n)g(n - l), 
u(n> = - 1)  + k g ( n b ( n ) ,  (18) 
P(n)  = O-'P(n - 1) - B-l~g(n)gT(n)P(n  - 1). (19) 

V. CONVERGENCE PROPERTIES OF THE LDAF 
Consider the situation in Fig. 2. We have two filter banks F 

according to (lo), with Fo(z) unspecified and finite M. Both filter 
banks have input signal ~ ( n ) .  The outputs of one of these are 
linearly combined in an output signal T I  (n) by constant weights Gm 
(0 5 m 5 M). The process ~ ( n )  -+  TI(^) is thus a stationary 
process. A reference signal ~ ( n )  is produced as a summation of 
~ ( n )  and a statistically independent noise signal rz (n) .  The other 
filter bank is combined with variable weights and constitutes the 
proposed adaptive filter. For this situation three statistical properties 
are derived. 

From (18) and g ( n )  = & + b(n),  we construct the updating 
equation for the bias 

Substitution of (17) in (20) and using kg(n) = P(n)g(n)  and (14) 
gives the following time-variant difference equation for b: 
b(n)-BP(n)A(n-l)AT(n-l)b(n-l) = P(n)g(?l)T2(n). (21) 

This equation is linear in m(n) provided that ~2 and z are statistically 
independent. Since g(n), A(n - l )AT(n  - 1). and P(n)  are 
proportional, proportional to the square, and inversely proportional to 
the square of the amplitude of ~ ( n ) ,  respectively, the bias is inversely 
proportional to the amplitude of the input signal ~ ( n ) .  

Suppose now that we start at time n = 1 with b(0) = &, and 
matrix A(0)AT(O). (The initial matrix H(0)AT(O)  should be taken 
nonsingular. In RLS algorithms, one commonly takes H ( o ) H ~ ( o )  = 
61 ,  where I is the identity matrix, and 6 is some small positive 
constant [4].) Solving the difference equation (21) gives 

n 

b(n) = O"P(n)H(O)AT(O)$ + P(n)  r k g ( k ) r 2 ( k ) .  (22) 
k = l  

Suppose now that z(n) is a deterministic signal and thus that g(k) 
and P(n) are deterministic quantities. Suppose furthermore that T Z  is 
a stochastic signal derived from a zero-mean process. Consequently, 
the bias b(n) is a stochastic signal and its expectation Ek(n)] is 

The foregoing equation expresses that if P(n) increases slower than 
exponentially, the expectation Ek(n)] tends to zero for n + 00. In 
fact, (23) expresses the identifiability of the unknown process given 
a certain input signal z(n).  One can always construct signals ~ ( n )  
such that tu(.) does not tend to &(n) for n -+ 00. 

Given a proper input signal such that the unknown process is 
identifiable, the weights will fluctuate around the optimal solution 
- 6 &er a first learning period. The difference between the actual 
and optimal solution is again denoted as b(n) and is called the 
weight-error vector. We calculate the weight-error correlation matrix 

We assume that the adaptive filter is working in its steady state and 
that the signals z(n) and rp(n) extend from n = -00 to +00. We 
assume that z (n)  is a deterministic signal and that 7-2 is a wide-sense 
stationary, zero-mean process with variance u2. Repeated application 
of (21) gives 

Jw.)kT(41. 

E [ 7 ~ ( n ) b ~ ( n ) ]  = u2P(n) 82("-k)g(k)gT(k) I "  k = - w  

The covariance matrix is proportional to the variance of ~ 2 .  Since 
b(n) is inversely proportional to the amplitude of the input signal z, 
the covariance matrix is inversely proportional to the square of this 
,amplitude. 

As a next item, we consider the mean-squared innovation J ' ( n )  
defined as J ' (n )  = E [ { c ~ ( n ) } ~ ] .  We again consider the steady state 
situation, and we assume that r2 is a wide-sense stationary, zero- 
mean, white-noise process with variance U'.  Since r2 is assumed 
to be a white-noise process, T Z ( ~ )  and b(n - 1) are statistically 
independent. By using a(.) = T Z ( ~ )  - bT(n - l)g(n) and (24) we 
find 

J ' ( n )  = u2 + a"T(n)P(n) 

19 ' (" -~)g (k )g~  (k) P(n)g(n). (25) I /  
From the foregoing relation, we conclude that the mean-squared 
innovation is proportional to the variance of 7-2 and independent of 
the amplitude of the input signal. 

We have simulated the adaptive filter in the situation shown 
in Fig. 2. The signals z (n)  and ~ ( n )  were derived from two 
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“0 2 4 6 0 1 0  

number o f  weights 

Fig. 3. Normalized mean-squared innovation J‘(co)/ u2 as a function of the 
number of weights in the adaptive filter for 0 = 0.8, 0.9, and 0.95 (indicated 
by crosses, circles and stars, respectively). The data are calculated from the 
average over 200 independent runs of the adaptive mechanism. 

statistically independent, stationary, zero-mean, white-noise sources. 
The normalized mean-squared innovation J‘ (m)/u’ is plotted in Fig. 
3 as a function of the number of parameters for three different values 
of 8. We observe that a larger number of weights increases the mean- 
squared innovation error, as is to be expected: a larger number of 
fluctuating parameters yields larger fluctuations in the innovation. For 
8 + 1, i.e., operating with a long memory, we have J‘(m) --* U’ ,  

i.e., a perfect performance of the algorithm. The conclusion is that 
the Laguerre-domain adaptive filter is expected to perform well for a 
small number of weights and a large 8. This is exactly the problem 
we addressed in the introduction. 

VI. DISCUSSION 
We developed an adaptive filter starting by considering windowed 

versions of the input and reference signals. Windowing of the data is 
required since in adaptive filtering it is assumed that the correlation 
between input and reference signal is (slowly) time varying. An 
exponential window was chosen, and consequently, the signals were 
described as Laguerre series. 

Our starting point differs from the usual approach in system 
identification using Laguerre functions [5]-[ 121. There one commonly 
starts by a description of the model by a Laguerre filter, whereas 
we started by transforming the windowed signals to the Laguerre 
domain. This provides a local analysis of the input signal. We did 
not actually use the information provided by the local analysis in the 
present study. As a consequence of this and the fact that the model 
sets of the introduced adaptive filter and the more commonly used 
Laguen-e filter are equal (Section IV), the differences between these 
two approaches should be sought in aspects of implementation. 

There are two degrees of freedom in the Laguerre domain adaptive 
filter. The first one is the initial filtering stage Fo. Taking Fo(z) = 
Z-/(Z - 8) is equal to taking a truncated Laguerre filter. Other 
choices for FO can be interpreted as prefiltering the input data z 
and subsequently using a truncated Laguerre filter. In this way, one 
can shape the spectrum of the input signal on the basis of a priori 
information in order to optimally exploit the properties of a truncated 
LDAF with a minimal number of coefficients, e.g., if it is known that 
we are approximating a process with a high-frequency falloff, one 
can already suppress these parts of the input signal by Fo. 

The second degree of freedom is the parameter B ,  which is in 
essence a scale factor determining how long the memory of the filter is 
taken. Although each stable linear causal time-invariant operator can 
be approximated by a Laguerre filter, the discount factor 8 must be 

carefully chosen in order to obtain a minimal number of meaningful 
coefficients in the adaptive filter. In the case that the unknown process 
has a broadband spectrum, one can resort to multiscale adaptive 
filtering [12]. 

Current research includes further software simulations of the 
LDAF. Hardware implementation of the proposed adaptive filter is 
considered as well. 
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Least-Squares Design of Higher 
Order Nonrecursive Differentiators 

S. Sunder and Ravi P. Ramachandran 

Absmct-A method is described that can be used to design non- 
recursive linear-phase higher order differentiators that can perform 
differentiation over any frequency range. The method is based on formu- 
lating the absolute mean-square error between the amplitude responses 
of the practical and ideal differentiator as a quadratic function. The 
coefficients of the differentiators are obtained by solving a set of linear 
equations. This method leads to a lower mean-square error and is 
computationally more efficient than both the eigenfilter method and the 
method based on the Remez exchange algorithm. Design of differentiators 
based on minimization of the relative mean-square error is also carried 
out. Finally, our method is extended to the design of frequency selective 
higher order differentiators. 
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