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Integrated-Optic Versus Microoptic Devices
for Fiber-Optic Telecommunication
Systems: A Comparison

Erik Pennings Member, IEEE Giok-Djan Khoe,Fellow, IEEE
Meint K. Smit, Associate Member, IEEEand Toine Staring

(Invited Paper)

Abstract—We assess the relative merits and prospects of
integrated-optics in comparison with microoptic and fiber-based
techniques. Firstly, the market for fiber-optic components for
telecommunications is analyzed. Secondly, the technological
issues which make integrated optics quite different from
integrated electronics will be discussed. Thirdly, a specific
comparison between the potential of the competing optical
technologies will be made for the polarization-diversity hybrid @
and the optical wavelength (de)multiplexer, two optical devices

used in networks that are based on optical frequency division
multiplexing (OFDM).

I. INTRODUCTION - - ‘

NTEGRATED OPTICS has, ever since its inception in (b)
1969 [1], held the promise that the success of integrated

electronics could be transferred to the realm of optics. So far, m
this promise has fallen short of expectations and the market for
photonic integrated circuits is still in its infancy. In this paper, @
we investigate the current status of integrated-optic versus A /
microoptic devices and generate possible explanations for the /-\»@- T
slow commercialization of integrated-optics. In order to have a &;b
practical scope for the paper, the discussion will be confined to
optical components for lightwave telecommunication systems,
hence to components that have at least one single-mode fiber
The single-mode glass fiber is rather important in th'I§|g. 1. lllustration of the categories of components considered in this paper,

Con.teXtv because i_t directly aﬁ?‘CtS the Viab"_it)_/ of waveguidgith typical examples: (a) Fiber-based components. Fibers are fused or glued
optics. Although single-mode fibers were originally proposedgether in a directional coupler. (b) Waveguide-based components. A coupler

in 1966 [2] attention soon focussed on the graded_ind&made by means of waveguide techniques, fiber pigtails are subsequently
! coupled to the interfaces. (c) Microoptics. Bulk optics are used, in combination

fiber [3]. As it was very difficult to realize integrated optiCSyith fiber pigtails which are attached to expanded beam lens interfaces. (d)
employing large multimode waveguides, almost all deviddodules that are assembled from any of the categories just mentioned (not

work concentrated on microoptics at the time. When the ugepwn).

of the graded-index fiber was drastically reduced due to modal

noise problems [4], the come-back of the single-mode fiber,|n this paper, we have distinguished components for light-
thus, also reinvigorated the interest in integrated optics.  wave telecommunications into four categories, as illustrated

in Fig. 1.

Manuscript received August 14, 196. it phi | , 1) Fiber-Based:Made from fiber, such as couplers, polar-
WAED_Cl" '\Sﬂészeﬂng;gﬁg\,;'Sﬁgn,%;fe:’l‘gndz lips Optoelectronics Centre, ~ ;o5 and filters. Fiber-based components are predom-
G.-D. Khoe is with the Technical University of Eindhoven, Faculty of inantly fabricated using either the fused-fiber or the

Electrical Engineering EH-12, 5600 MB Eindhoven, The Netherlands. side-polishing technique.
M. K. Smits with the Delft University of Technology, Faculty of Electrical . . . . . .
Engineering, 2628 CD Delft, The Netherlands. 2) Integrated-Optic Devices, where Light is Guided in
Publisher Item Identifier S 1077-260X(96)09507-X. Planar Waveguidesa) Single-component devices, such
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Fig. 2. Time-frames related to the developments of integrated electronics (top) and integrated optics (bottom) on relative time-framesnRtagress i
development of integrated optics lags behind electronics.
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Fig. 3. The 1992 market and 1997 market forecast for fiber-optic components for North America. The CAGR (compounded annual growth rate) percentages,
divided into passive and active components, express compound annual growth rates for 1992-1997. Keys to the abbreviations in the figure arenielC—phot
integrated circuits, OEIC—optoelectronic integrated circuits, PIN—pin photodiode, APD—avalanche photodiode, LED—Iight-emitting diode.

- laserdiode (32.5%)

as lasers, semiconductor optical amplifiers, and phase-1971, and the widescale deployment of the microprocessor
modulators and b) photonic integrated circuits (PIC’s)n PC’s during the 1980’s. For optics, the first OEIC was
where a number of optical elements are monolithicallseported in 1978 [5] and complex photonic integrated circuits
integrated. were reported from 1990 onwards [26]. The time difference

3) Microoptic: Single-component or a combination of comin development between integrated electronics and integrated
ponents employing techniques where light is not guidedptics, thus, has increased to about 20 years. Based on this
but which rely on diffractive or reflective elements suclanalogy, widescale deployment of photonic integrated circuits
as lenses or mirrors. is not likely to happen before the turn of the century.

4) Modules:Assemblies from any of the above categories.

Note that it is the purpose of this paper, considering an
increase in functionality in the future, to mainly investigate the II. THE FIBER-OPTIC COMPONENT MARKET
potential of photonic integrated circuits, rather than integrated-\y/hen comparing integrated optics and microoptics, it is a
optic components with a single functionality. We, thus, excludgsod starting point for the discussion to first identify which
most lasers and OEIC’s, such as PIN/FET combinations fraf8mponents have already established a place in the fiber-optic
the comparison, but include advanced lasers such as DEdnponent market. Fig. 3 shows the fiber-optic component
lasers with integrated modulator. market for 1992 and 1997 in the US. A direct comparison

When making the analogy between integrated electroniggtween integrated-optic and microoptic techniques can only
and integrated optics, one has to bear in mind that there i@ made for passive components and Fig. 3 shows that the
large difference in time-frame, as illustrated in Fig. 2. Wherea®mparison therefore applies to the smaller part of the market
the starting point for integrated electronics is the invention ¢i5%), since the larger part consists of active devices such
the transistor in 1947, the equivalent starting point for intexs lasers and photodiodes. For passive components, the largest
grated optics is the invention of the semiconductor laser diodearket segment is formed by couplers (11%) which are almost
in 1962, thus 15 years later. The development of integratedclusively fiber-based. This shows that the market segments
electronics continues with the integrated circuit which wasaptured by integrated-optic and microoptic products are both
patented in 1959, the first microprocessor which was reportgdite small (of the order of 1%-2%).
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Fig. 4. The 1997 market forecast for fiber-optic components for North America. Specific technologies used for the components are shown. The
CAGR percentages for 1992-1997 are given for each type of the components considered. Keys to abbreviations not mentioned earlier in Fig. 3 are:
SLD—super luminescent diode, Transc.—transceiver, EDFA—Erbium doped fiber amplifier, SOA—semiconductor optical amplifier, WDM—wavelength
division multiplexer, MZ—Mach-Zehnder, FP—Fabry—Perot, OA—optical amplifier.

The microoptic segment consists of products' such as NETWORK EVOLUTION COMPONENT TRENDS
switches, isolators/circulators, attenuators, and filters. The 1995 2000 |
integrated-optic segment mainly consists of LiNb&witches . N _

; i direct 25Gb 10Gb 20Gb dispersion reduction
and modulators. Another proven integrated-optic product|dsteciion | =>%0PS ps ps increalsed spfeed
(though active) is the DFB laser with integrated electro- OFDM [, oy 1X25CEPS cBupiers T (doymux

b . trunk  [XSSEOPS L 0Gbps sets of (tunable) lasers
absorption modulator. tunable filters
H H T : OFDM tical XC / ADM
The 1997 market forecast_for _actlve ano_l passive flber-_optlc natwork R e verter | saiich
components for North America is shown in Fig. 4, provided OFDM
with specific details on the technologies involved and on the access low-cost

CAGR (compounded annual growth rate) for each component.
The market for OEIC’s shows a very strong growth, buiig. 5. Expected component trend in relation to optical system evolution.
consists of the integration of optics with elecironics sudfEe® [eled 1 dsperson veducton and ncreased speee wi o ead to
as laser/driver and PIN/FET combinations rather than of @Bmplex optical functionalities is therefore not likely to be substantial before
integration of optical elements. Optical amplifier modulete year 2000. Future developments will depend on the deployment of OFDM

show a strong growth as well and contain pump lasers, fitfgg&c?géze_qd“rigcﬁ]ljjl't‘i’r'jg(grg“;r'ﬂei’;) t:\?gﬂ?::ss in XC's (crossconnects),
WDM'’s and microoptic isolators. Microoptical components
have a small but well-established presence in the form efige for PIC's is precisely in integrating complex optical
isolators, fiber FP filters, optomechanical switches, and denctionality. This situation, however, is likely to change: the
multiplexers for three or more wavelengths (91% of thmarket is not only growing fast (more than 25% a year), but
demultiplexers involve two wavelengths only and are fibeelso changing due to the rapid commercialization of OFDM
based). For advanced PIC’s the market is still small at ti{®ptical Frequency Division Multiplex) systems, as illustrated
moment. in Fig. 5. However, the first OFDM transmission systems will
One area, where integrated optics seems to have a compaterely require optical devices with a single functionality, so
tive edge, is in lithiumniobate modulators and in tree couplensiat the demand for complex optical functionality will only
such as 1x 32 couplers, where integrated-optic couplers aiacrease later on, i.e., when the wavelength domain is used to
smaller, cheaper and show better port-to-port reproducibilityealize add—drop multiplexing and cross-connecting functions.
At the same time, the market for single-function componen&gnificant cost reduction of the components is required
is very large, consisting of lasers and transceivers. It lfore OFDM systems can be deployed in the access.
likely that these devices will function as “enablers” for more One reason for the fact that integrated optics has, up to
advanced PIC’s. Lasers become more advanced leadingnta, not been able to match the speed of development of
three-section DFB or DBR lasers, and DFB lasers with int@tegrated electronics is the observation that the market for
grated modulators. The success of lithiumniobate modulatgisotonic integrated circuits is still in its infancy, but it is also
allows lithiumniobate foundries to be set up that can algoue that the telecommunication industry is, by tradition, not
fabricate customized PIC's. very market oriented. For example, many of the companies and
The market analysis shows that the demand for componeimstitutes performing integrated-optics research do not have a
with a larger degree of optical functionality has beedirect commercial interest in the component market. In the
negligible so far. This is important because the competitigming years, substantial changes are expected due to the



154 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. 2, JUNE 1996

deregulation of the telecommunication market and the gradual and the (usually) semiconductor waveguide dimensions.
global break-up of the monopolies of network operators.  The temporary success of multimode fibers was partly
As a result from the deregulation process and increasing due to the fact that it strongly relaxed the coupling
competition, integrated-optics research will, to an increasing  problem to the laser. Presently, the coupling problem
extent, be performed by component manufacturers and as a to single-mode fibers has been solved technically,

consequence will become more market driven. but fiber coupling to lasers is still expensive and
until recently communication lasers were the only
IIl. TECHNOLOGICAL CONSIDERATIONS semiconductor components which possess sufficient

functionality to justify the coupling costs economically.
Semiconductor optical amplifiers (SOA’s) are the next
class of components to take this hurdle.
Reflections:Many fiber-optic communication systems
are extremely sensitive to reflections. Optical reflec-
tions can cause power fluctuations, noise, nonlinearity,
and dispersion. In coherent transmission systems and
CATV applications, for example, reflections should be
kept below—50 dB. Many components such as narrow
linewidth lasers and semiconductor optical amplifiers,
therefore, require the use of optical isolators which
complicates packaging and increases costs. In addition,
on-chip optical isolators are not available for implemen-
tation today and there are no breakthroughs in laser
designs which may lead to more immunity against
optical reflections.
3) Temperature ControlAccuracy imposed on the optical
frequency value of certain components can necessitate
It is important to notice that packaging issues form, on the incorporation of Peltier coolers and thermistors.
one hand, the major economic incentive for integration, but  Examples are active components such lasers for use in
that they, at the same time, form a technical obstacle against OFDM systems and passive components such as phased
integration. Due to difficulties in reducing packaging costs it array WDM components for implementation in optical
will take a long time, before integrated optic components with networks.
a limited functionality can compete with microoptic or fiber-
optic alternatives. The best way to offset packaging costs is to
increase the functionality of the chip by integration of multipl&- On-Chip Optical Amplification
components on a single chip. Three specific issues whichin electronic IC’'s compensation of losses is not a problem
influence the packaging configuration are the fiber-pigtailingue to the availability of the amplifier. Until recently there
problems related to components which are sensitive to optiggére no means for loss compensation in optical circuits.
reflections and the need to stabilize the temperature of certainfortunately, losses in optical IC’s are often considerable.
devices. For example, in semiconductor switching matrices 2-5 dB per
1) Fiber-Pigtailing: In electronics, input and outputswitch is not exceptional. The integration scale is therefore
connections are usually simple, unless very high signstrongly restricted by the component losses. In fiber matched
frequencies are involved. The single-mode optical fibavaveguide systems component losses are usually much lower.
connection problem is usually complicated and rathdlr has to be seen whether on-chip optical amplifiers can be
demanding. In fiber-pigtailed lasers, for example, thesed lavishly to compensate loss in the near future. Sponta-
packaging costs are usually a multitude of the chip costieous emission noise may hamper the implementation of large
Pigtailing costs are very different for a) fiber-matchedumbers of on-chip amplifiers.
waveguides such as those based on lithiumniobate or
silica, when compared to b) compact waveguides as _. )
used in semiconductor optical chips. Fiber-matched: Dimensions
waveguides can be coupled relatively easy to fibers, byModern transistors have dimensions of only a few microns.
means of butt-coupling. It is obvious that connection®ptical couplers or switches in fiber-matched waveguide sys-
between multiple fibers and multiple waveguides willems have lengths ranging from many millimeters to several
be even more demanding. centimeters, so that only a few components can be cascaded on
Commercially available integrated-optic couplersa single wafer. Semiconductor components are usually smaller,
switches and modulators are, therefore, almost exclout suffer from higher losses. Improvements in waveguide
sively realized with fiber-matched waveguides. Fibaechnology and the design of bends have gradually reduced
coupling to unmatched waveguides is much morhe dimensions of certain optical elements, but the gap with
complicated due to the large difference between the fibelectronics remains large.

It has been argued many times that the competitive edge
of photonic IC’'s comes from increased scale of integration
plus the corresponding cost reduction. This argument is inz)
fact based on an implicit analogy between photonic and
electronic IC’s. This analogy, however, has to be treated with
care. Firstly, the markets for photonic and electronic IC’s are
very different. As was argued in the previous section, the
demand for complex optical functionality is still in its infancy.
Secondly, there are several technical reasons why photonic
and electronic IC’s are quite different. In this section, we
want to identify the technological factors that make integrated
optics differ from integrated electronics. It is these differences
that cause the development of photonic integrated circuits to
take longer than the corresponding development for integrated
electronics.

A. Packaging
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D. Feedback Control o X -

Both in optical and electronic IC’s it is difficult to accurately ' Ti\p//?)\’ pal-div hybrid wi’_@m.
control the component parameters. In electronic IC’s the 74 g it
feedback principle is used to reduce the sensitivity of the tunable [demod -2
circuit performance to the spread in component performance. asar i g °
In photonic IC’s such a principle is not (yet) available. The 4 - “3 ol
requirements on process technology are, therefore, much more = =

severe, which is doubly complicating because integrated-optic

technology is a young technology and the variety in integrate%ig 6. Schematics of a coherent system employing a polarization diversity
ceiver. An incoming signal with arbitrary and varying polarization state

. . . ; . I
optic components which have to be 'ntegrated IS C0n5|derahﬁﬁst be efficiently combined with the local oscillator signal. Key elements in

larger than the variety of components used in electronic IQi® receiver are the local oscillator laser, a polarization hybrid which consist
today. of optical power splitters and polarization splitters and balanced detectors.

E. The Wave Nature of Light and a narrow tunable filter [47]. Optical front-ends for coherent
olarization-diversity receivers have been regarded as prime

Dealing with optical waveguides leads to issues similar c%}ndidates for monolithic integration and are thus very suitable

those encountered in microwave electronics. Optical wav . ; . . . . .
P For a comparison with microoptic and fiber-optic solutions. A

uides can radiate light, leading to loss of power and the . o X : :
: e ; . coOherent system employing the polarization-diversity receiver
possible onset of cross-talk. Similarly, single-mode operation . oS
shown schematically in Fig. 6.

of waveguides is usually desirable, which can complicate PI&Most active and passive waveguide-based components are

design and leads to strict tolerances on waveguide dimensions._ .~ " . .
. Olarization sensitive. Examples are semiconductor optical

Recent work, however, has shown that the single-mode cond- ... . . :
.amplifiers and waveguide-type optical multiplexers and de-

t'?g Z?Séénorp?:lﬁt?niszg \l;)vz\:glalﬁzgsb)[/sggnploymg the Imag"r}grljItiplexers. Substantial efforts are being spent to make these
prop . . 9 L . 80mponents less polarization sensitive and important progress
In conclusion, one might be tempted to think that integrated-, . . . o
optic components are and will remain futuristic. We do n '? being mad_e. Another option to avp|d the pollan;anor.] prqb—
. . - 9&m to combine such components with a polarization diversity
adhere to that opinion and believe that there is a future for. . : A o
: . .7~ unit. This solution may become attractive if the polarization
integrated-optic components, but that the following issues .. - : .
o . Sensitive components can be monolithically integrated with
deserve attention in order to speed up the commercializatign - ) . . : .
o o the polarization-diversity unit. We will not elaborate this
of photonic integrated circuits: o . )
) ) o area further and focus on polarization diversity for coherent
1) reduction of packaging and pigtailing costs; receivers.
2) incorporation of on-chip optpal amplification; Fig. 7 lists all polarization-diversity hybrids that have to
3) reduction of component size; our knowledge been reported in the literature for different
4) improvement of process technology and developmeg§mneting technologies, tracing their development in time
of fab.ncatlon-tolerant components. in the form of subcomponents, complete hybrids, packaged
The last five years have shown tremendous progress. Wgsions, systems experiment, and commercial availability.
gradual reduction of packaging costs will broaden the clasable | summarizes the parameters of several types of the
of components where integrated-optics can compete with rdbmponents.

crooptic and fiber-based components. The major breakthrough
for integrated optics, however, can be expected when bgih Assemblies

hnol nd mark re r for photonic integr o . . .
tep lology a d. arket are ea}dy or p otonic integ atecjPoIarlzatlon-dlverslty hybrids, assembled from separate
circuits with an increased functionality due to larger-scale ) : o h .
integration components, has been used in the first polarization-diversity

system experiments which were reported from 1987 onwards

by Tokyo University [6], AT&T [7], [8], KDD [9], and
IV. POLARIZATION-DIVERSITY others [13]-[15], [17]. Although an assembly can produce a
In this section, a specific comparison will be made betweéﬁ"able polarization-diversity hybrid ready for field use as was
the potential of integrated-optic, fiber-based, and microoptrigported by KDD [10] and NTT [16], assembly .prO(_:edur.es are
polarization-diversity hybrids. Polarization-diversity hybrid umperso_mg, and produce rather bulky polgrlzgtlon-dllver_sny
are needed in coherent lightwave receivers and in syste ?rlds with increased losses, reduced polarlzgtlon extinction,

and reduced robustness when compared to a single component.

where polarization sensitive components are used. ) initiated d q letelv fiber-based
The wavelength tunability of coherent receivers can be usZB'S soon initiated a trend toward completely fiber-based,

to construct flexible photonic networks based on optical frdCrooptic or integrated polarization-diversity hybrids.
qguency division multiplexing (OFDM). For such applications .
coherent receivers could provide a cost-effective alternativeﬁo All-Fiber

direct-detection systems, where the cost and performance oAll-fiber polarization-diversity hybrids, as shown in Fig. 8,
the coherent receiver need to be compared to that of a dirdtéve been fabricated by AT&T [18], using side-polishing
detection receiver in combination with an EDFA preamplifielechniques, and by Daimler—-Benz [20], using fused-fiber tech-
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Fig. 7. Overview of reported polarization-diversity networks and their development in time. A distinction is made between integrated optias based o
semiconductor (InP), which can be monolithically integrated with active components, and those based on other materials.

TABLE | splitted states of polarization
B
Fiber . . Integr. Optic
Parameter Polish / Fused | Micro-Optic Passive / InP .
polished
Loss (dB) 0.6/0.2 0.5-1 1-3/3-10 Si V-grooves
Balance OK (order of 50 + 3%)
input
Pol.Ext. (dB) >15 >25 >15 put. %‘ (5)
polarization
Ak (nm) 100/20 > 90 >70 @
Reflection OK (< -50dB) ?
# Groups 2 6 9 €Y
# System Exp. 1/1 4 0/2-3 —

Receiver Sensitivity (dBm) (Polarization Dependence (dB))

@ 0.14 Gbps -48.5 (?) -33.5 (1.4) splitted SOP’s

@ 0.2 Gbps -39.7 (no div.)

@ 0.28 Gbps -43.0 (0.7 .

P ©7) input I
@ 0.565 Gbps -43.4 (0.4) po|arization
@ 2.5 Gbps -38.0 (?) -39.5 (0.5) (b)
-44.0(0.5) Fig. 8. lllustration of the fiber-based components used in polariza-
: tion-diversity fiber networks. A side polished version of a fiber polarization

Avail. (comm.) 270 2 0/0 splitter (a) is shown on top [18]. The second example (b) is made with the
Avail. (sample) 0/1 12 0/1 aid of a fused fiber technique [20].

polishing technique, however, may show serious reliability
nology. All-fiber hybrids offer excellent insertion losses oProblems due to aging of the epoxy which forms the coupling
0.2-0.7 dB and ultra-low reflection, but they show weal@yer between both fibers.
polarization—extinction ratios of around 15 dB. It is illustrative _ _
for fiber-optics, that both reported hybrids were immediatefy- Microoptical
used in system experiments [18], [21], and were availableMicrooptical polarization-diversity hybrids, in principle, can
either as samples or as a product. The critical componentafier low insertion losses, excellent polarization-handling and
the fused-fiber hybrid is the polarization splitter [19]. Usablaltralow reflection, as demonstrated by Fujitsu [37], and HHI
bandwidths are 17 nm for the fused-fiber technology [20] aj@3]. The main disadvantages of most microoptic designs are
over 100 nm for the side-polishing technique [18]. The sidbe strict tolerances on fabrication and alignment procedures.
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PML  PBS Preamplifiers example, a Si V-groove technique as used by GMMT [28].
K'Q’I'_zy If photodetectors are not integrated, such as in the versions
Signal —» ) ) 3 made by AT&T [22], NTT [23], CNET [27], and HHI [29],
Local = 0 B e then the output waveguides must be coupled to four fibers,
7 \1 \ s which has not been reported so far, or quad photodetectors
Glass waveguide L_ need to be packaged together with the hybrid as was reported
optical coupler 23;5—2:%"332‘9" by HHI [35]. But even if photodetectors are integrated with
the hybrid, the high-frequency behavior will still be limited by
@ the electrical connection between the photodetectors and the
front-end electronics. If SMA connectors are used between the
I5 Lens Ferrules . )
_ photodetectors and the electronic front-end, a cutoff frequency
| Oug:m Fibers  4f 6 GHz is still achievable (Bellcore [30]), but optimum high-
Input Fibers p-pol. (1)  frequency behavior actually requires that either the electronic
O» front-end is placed inside the package (5 GHz, GMMT [28])
= ?Aelgarluss%ond E o or that FET’s are integrated as well (1 GHz, HHI [42]).
w= Mirror 3
= Ant eion Ceting 72BN s-pol. (1) _ _ _
= 20 gggm ggugg Sg:ggll:g ZIBQ» 0,4 E. Discussion and Conclusion
(b) Given technological difficulties that needed to be overcome,

Fig. 9. Examples of diversity optics employing microoptical techniques. Thré IS not surprising that Only very recently the first system re-

example on top (a) shows a hybrid which contain microoptics and waveguigllts were reported employing a polarization-diversity receiver
optics, packaged together with a quad PIN detector [37]. At the bottom, ®1C, as shown in Fig. 10, which is made by HHI [48], yielding

example is illustrated (b) where critical angle alignments of each expan ; P ~
beam fiber interface have been avoided owing to a design based on a gé(éﬁeSt receiver sensitivity 6£33.5 dBm for a 140-Mb/s FSK

of glass plates with parallel surfaces [46]. system.
Despite of quite impressive achievements in the field of

) . monolithic integration, PIC’s are still not competitive with
The optical beams travelling through the component have g, hased or microoptic polarization-diversity hybrids for a

b? expandedl N d|amiter and t?s a resulti( verylsevere andlgber of reasons. Firstly insertion losses are considerably
alignment to_er_ances_ ave to be met to keep losses W'”I]H?ger for integrated-optic than for either fiber-based or mi-
reasonable limits. This affects cost, performance and robusfyqnic solutions. Secondly, coherent systems are extremely

ness and as a result several microoptical hybrids were reporieQiqitive 1o reflections, which are required to be smaller than
without subsequent system experiments or commercializatio, g

[39], [40]. So far, the influence of reflections by photonic integrated

A different approach minimizing bOth_ fabrication a_nd a“gnbircuits has been little studied and often neglected, but there is
ment procedures was reported by Philips [46]. This result%g

. ' . , ) .growing evidence that PIC’s cause nonnegligible reflections,
in a high performance hybrid which combines compact sizf oniy by the facets, but also by integrated-optic elements

insertion Io_ss of 0.7 dB, polarlzguon extinction ratio of 25_4%nd by active/passive transitions [49], [51]. Also, monolithic
dB, balancmg_SO%t 3%, reflection of less thar58 dB, and integration of many different optical functions on a single
usable pandvyldth of-over90_nm. Two example; Of.compone%tﬁip constitutes a compromise on the performance of each
made with microoptic techmques are shovyn in Fig. 9. single element, so that overall system performance does not
Although microoptics requires high-precision manual Opef;aieh the system performance achieved when using separate
ations, this does in no way prevent low-cost mass-fabricatiQg,onents. It is, therefore questionable whether there will
as demonstrated by the microoptical recording heads useq, 05 market for polarization diversity PIC's since they have

CD players. to outperform their fiber-based or microoptic counterparts, or
they have to be much cheaper which, however, will put serious
D. Monolithically Integrated constraints on the total PIC size.

Monolithically integrated polarization-diversity hybrids
were quite promising, but required much more research.
The very first device was reported by AT&T [25] and was
also immediately used in a system experiment [26], thoughIn this section, a specific comparison is made for the
not polarization-diversity. Much research was still requiredlavelength demultiplexer for dense WDM applications in
on subcomponents such as integration of the polarizaticdB-DM systems. The development of these demultiplexers is
rotator (HHI [34]), photodiodes (e.g., AT&T [11]), polarizationshown in Fig. 11. WDM is used in point to point transmision
splitter (Bellcore [31]), FET (CNET [41] and HHI [42]) andlinks to enhance the capacity of the system and is currently
laser (AT&T [25], NTT [24], and HHI [45]). In addition, the being studied for implementation in future optical networks
packaging of such a PIC is far from trivial. in order to improve the flexibility and upgradability of those

If the laser is not integrated, both a SMF fiber and a PMitetworks. A point to point link using WDM is shown in
fiber need to be coupled to the PIC simultaneously using, fBig. 12.

V. (DE)MULTIPLEXERS
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Fig. 10. Monolithically integrated polarization diversity hybrids. The first example shown on top (a) combines polarization diversity detéttars wi
polarization-independent 3-dB coupler [30]. The second example (b) also includes a local oscillator laser and field-effect transistors [48].

A. Fiber-Based filters and a fiber splitter are shown in Fig. 13. The filters can

Two-wavelength fiber-based demultiplexers are mainly us@ ©f @ variety of types. Tunable fiber Fabry-Perot filters are
as duplexers for two-channel communication (1.3/ir, or commercially supplied by, for example, Micron Optics and
are employed in EDFA’s (0.98/1.56n and 1.48/1.55:n). Queensgate. Fixed interference filters are offered by, among
The market for WDM couplers consists for about 90% dithers, OCA and JDS, and the performance in a system
duplexers and is completely dominated by fiber-couplers. it reported [92]. Experiments employing fiber duplexers for
is, therefore, unsuitable for a comparison between microopte¥VDM [90] and using fiber Bragg gratings [91] have also
and integrated optics. For dense WDM applications in OFDREEN reported.
networks on the other hand, fiber-based couplers are less
suitable because they need to be cascaded [90], [91]. Tﬁ’l's
market relies entirely on microoptics or integrated optics, asFig. 11 shows that much of the work on microoptical

Microoptics

can be seen in Fig. 11. demultiplexers was already carried out in the early eighties
when multimode fibers were used with wavelengths of in the
B. Modules range of 700-900 nm. Microoptical wavelength demultiplexers

Fibers can, of course, be used in combination with filtegan be divided into the cascaded interference filter type and
to realize wavelength demultiplexers for dense WDM. Thedke grating-based type.
filters can be placed in series (cascaded) or in parallel byln the early eighties, a large number of microoptical
using a fiber splitter. Examples with cascaded and parallele)multiplexers were published. This focus was due to the fact
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Fig. 11. Overview of reported wavelength demultiplexers and their development in time for DWDM (Dense Wavelength Division Multiplex).
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Fig. 12. Principle of an optical point to point system employing wavelength rest

multiplexers and demultiplexers. Key specifications of the WDM components
are the optical loss, the maximum number of wavelength channels, the spacing
between the channels, the 3-dB bandwidth of the optical passband of each

(tunable) filter

channel, polarization dependence of the location of the passbands and the 7\,1

influence of temperature.

that microoptics is the natural solution for multimode fiber- Ao

baseql systems, WhICh were dominant in the early elghtles as Ay, Ao, Az, Mg As

explained in the introduction. Although some demultiplexer /

designs employ dichroic or interference filters, such as those passive coupler A
4

made by NTT [88] and OCA, most microoptical WDM designs
use collimating optics and a reflecting grating, such as those (b)

made by Jobin-Yvon [89], _STC [94]’ NEC [84]’_ AT&T [86], Fig. 13. Demultiplexers which combine fiber components and filters: (a)
[93], BTRL [85], and Physical Optics Corporation [87]. Theuwith the filters in cascade, and (b) with the filters in parallel.

designs of OCA and Jobin—Yvon are illustrated in Fig. 14.

Despite the availability of good components only a fewnicrooptic (de)multiplexers were conveniently introduced on
publications on WDM transmission experiments explicitlyhe market. Research in OFDM networks has further increased
mention the use of wavelength demultiplexers, examples ake interest in WDM components. Recently, the phased array
reports by STC [94] and GMMT [95]. Most WDM systemdesign, which is typical for integrated optics discussed in the
experiments at that time use ordinary couplers and filters fisllowing section, has also been realized in microoptics [96].
perform the (de)multiplexing function. Obviously the emer-
gence of WDM transmission systems did not automaticalB )
create a market for demultiplexers. - Integrated-Optic

In the second half of the eighties, research on microoptic Starting at the end of the eighties an increasing number
WDM'’s slowed down due to the advent of the monomodef integrated-optic devices is reported. Early planar demulti-
fiber and a shift of interest to coherent systems. When thkexers relied on cascaded duplexers, such as Mach-Zehnder
interest in WDM returned in the early nineties because of tliiéters as reported by AT&T [52], or as interference couplers
need to enhance transmission capacity, previously develogeth as made by Boeing [81]. Later on, focusing elements and
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Fig. 14. Microoptic type demultiplexers which are commercially available. The example on top (a), made by Optical Corporation of America, is based
on cascaded narrowband filters [104] aligned between expanded beam fiber interfaces. The other example (b), made by Jobin-Yvon, is based on a
combination of a concave mirror and a grating [89].

dispersive gratings were used, such as realized by STC/BIBRth University [80]. An add—drop multiplexer has been made
[79], [80], thus creating a planar equivalent of the microopticaising the phased array (de)multiplexer [98].
design. In a subsequent period in time, devices combinedFirst system experiments were carried out by NTT [61],
dispersive and focusing properties in a single (curved) ri§2] using an add—drop filter and by Siemens [74] using a
flecting grating, such as those reported by Bellcore [66]-[68)ultiwavelength receiver. Recently more system experiments
and Siemens [70]-[74]. A module containing an InP gratingave been carried out [99]-{101]. These experiments apply
demultiplexer and pin-JFET receiver array is made recenffjica-based components. A system experiment with InP-based
by ETH [97]. components has been carried out by TU Delft and Philips
A problem for grating-based devices is formed by thet02].
reflection loss of the grating>6 dB), which is extremely
sensitive to the steepness of the reflecting sidewall. THis Discussion and Conclusion
problem is avoided by applying an optical phased array as théx; present, high-performance microoptic (de)multiplexers
focusing and dispersive element. The concept, proposed 4% commercially available. However, integrated optical com-
TU Delft [54]-[58], has now found widespread applicationgonents are rapidly approaching the commercial stage. For
for example by NTT [59]-{62], AT&T [63]-[65], Philips [76], example, AT&T, Hitachi, and NTT recently introduced the
Alcatel [77], [78], Bellcore [69], Hitachi [83], and Siemensfirst integrated-optic demultiplexers. The performance of these
[73]. (de)multiplexers compares well with their microoptic coun-
Since 1992, realization of integrated devices combiningrparts, as shown in Table Il. In addition, multivavelength
(de)multiplexers with detectors have been reported by Siemergworks, employing direct detection schemes, combine mod-
[71], [72], Bellcore [68], and TU Delit [57], [58]. Combina- est component requirements with the level of integration (e.g.,
tions with lasers were made by Bellcore [67], AT&T [65], andn add—drop filters or optical cross-connects) where scaling
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TABLE I
. AL |ins. loss|ret. loss| x-talk drift pol.dep.
technique type N (hm) (dB) (@B) | (-dB) (nm/°C) (dB) Vendor
splitter + <1.5-2.5 ? ? act. tuning <0.5 |[Micron Optics
FFP-filter <4 |>2240| 2 | act.tuning ? Queensgate
module
<15 | >40-55 | >15 0.004 ? OCA
cascaded filter
4 4 | <2.2-43| >45 >20 0.06 <0.1 JDS
micro- | cascaded filter| 4-8 | 1.6 <3-4 | >40-55 | >30 0.004 <01 OCA
optic grating 441|1-16| <35 ?  |>30-55| 0.02-0.004 ? Jobin-Yvon
8 ? <10 >25 >20 ? <1 Hitachi
integr. PHASAR : -
opt. (passive) 8 | 161 <10 >30 >20 |0.01(tuning) ? AT&T
4-32|0.8-2| <6-7 >40 |>20-22 | Peltier/NTC | <0.3 NTT
stability [103]. Integrated-optic demultiplexers, especially the
Ay phased array type, have seen an enormous development and
; N the recently commercialized Si-based demultiplexers show
L —— -Z0mm 3 very competitive performance. The performance of these
A commercial versions can, however, not yet match that of
microoptic versions. This leads us to conclude that the real
breakthrough for WDM integrated optics has to be expected
- 1zmm when both technology and market are ready for photonic IC’s
@) with increased functionality due to a larger scale of integration.
Curved
section
VI. CONCLUSION
In this paper, the status of integrated-optics has been re-
viewed in comparison with microoptic and fiber-based tech-
Fan-out o nology. Early expectations of integrated optics based on the
section oo analogy with the success of integrated electronics, were found
. ) to be ill-based considering the many differences between
object _ " put output ~ mage integrated optics and integrated electronics.

plane "> aperture aperture <% plane For two components in OFDM networks, a specific compar-
/ A\ N ison has been made between integrated-optic, microoptic and
fiber-optic solutions. Presently, integrated-optic polarization-
Receivers  diVersity solutions can not compete with fiber-optic or mi-
(b) crooptic solutions, and it seems unlikely that they will in the
Fig. 15. Two examples of integrated type optical demultiplexers: (a) withfgture' . . .
planar reflection grating [66] and (b) with a phased array design [55]. For dense WDM, competitive microoptical wavelength-
demultiplexers are commercially available, but market devel-
ments, technological considerations and scale of integration
! em to be advantageous for integrated-optic solutions, as
over other techniques. _ _ indicated by recent introductions of integrated-optic demul-
The performance of a variety of commercial demultlplexel’t§p|exers_ Although these developments are promising, we do
is compared in Table Il. The splitter plus filter configuratiop,; expect a major breakthrough of integrated-optic compo-
is rather popular due to its simplicity and tunability, but ihents before the turn of the century.
poses an intrinsic splitter loss af « log(V) and may show  Fipally, it should be noted that the different optical technolo-
unwanted back-reflections. Fixed demultiplexers will gain igies cannot be too Sharp|y distinguished_ A butterﬂy_packaged
importance, as soon as WDM channels have been standajidital telecommunication laser, for example, incorporates,
ized. For cascaded filters, the loss increases proportionalafsart from the laser, a Peltier cooler, a monitor photodiode,
number of channels, which may limit its suitability to 4-8n NTC element, an isolator, fiber-chip coupling optics, and
channels. an internal bias and impedance matching network, so that it
Microoptic demultiplexers offer proven reliability in addi-is more appropriate to view the laser as a hybrid module than
tion to excellent performance in terms of number of channekss a planar waveguide component. As different technologies
insertion loss, cross-talk, polarization-dependence and therrhatome more mature, the best solution for each individual

Transmitter

0
effects might provide integrated optics with a competitive edgg
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application very likely consists of combining the best fiber23] T. Oguchi, A. Sugita, and J. Noda, “Integrated polarization diversity
based, microoptic or integrated-optic subcomponents in a

single module.
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