EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

From data to speech : language generation in context

Citation for published version (APA):

Theune, M. (2000). From data to speech : language generation in context. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR540269

DOI:
10.6100/IR540269

Document status and date:
Published: 01/01/2000

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR540269
https://doi.org/10.6100/IR540269
https://research.tue.nl/en/publications/9e6f540d-0a54-482a-85ab-077927a5a349

From Data to Speech:

Language Generation in Context

The work described in this thesis has been carried out at IPO, Center
for User-System Interaction, Eindhoven, within the framework of the
Priority Programme Language and Speech Technology (TST), which is
sponsored by NWO (Netherlands Organisation for Scientific Research).

© M. Theune, 2000.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Theune, Mariét.

From data to speech: language generation in context /

by Mariét Theune. —

Eindhoven: Eindhoven University of Technology, 2000. - Thesis
ISBN 90-386-0833-0

NUGI 832

Keywords: Language generation

Printed by: Universiteitsdrukkerij, Eindhoven University of Technology

From Data to Speech:

Language Generation in Context

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op vrijdag 1 december 2000 om 16.00 uur

door

Mariét Theune

geboren te Vlissingen

Dit proefschrift is goedgekeurd door de promotoren:

prof.ir. S.P.J. Landsbergen
en
prof.dr. R.P.G. Collier

Copromotor:
dr. E.J. Krahmer

Acknowledgements

Many people have helped me in some way or other during my PhD-
research. Those who made the most direct contributions to my work are
mentioned below. I wish to thank them, as well as all the others who
are not mentioned.

Of all the people who contributed to my research, Jan Landsbergen
and Emiel Krahmer certainly deserve to be mentioned first. Their advice
and support have been invaluable to me. They read many versions of
this thesis (and of practically everything else that I wrote), and provided
me with countless useful, detailed suggestions for improvement.

Jan forced me, friendly but insistent, to perfect my algorithms and
to clarify everything that I had left conveniently vague. Having stood at
the origin of my PhD-project, Jan kept watching over it until the end,
first staying on at IPO just for me and then continuing to ‘coach’ me
after his retirement. I could not have wished for a better supervisor.

The same holds for Emiel, my daily supervisor. Ever cheerful and
positive, Emiel always made me look on the bright side of things. We
have cooperated closely, most notably on the generation of referring
expressions. Emiel’s continuing stream of good ideas and infectious en-
thusiasm made it a pleasure to work together.

This thesis has benefited from several useful suggestions by René
Collier and Jacques Terken. Jacques also provided helpful comments
on several of my earlier publications. Here, I should also mention the
other members of my thesis committee: Remko Scha and Paul de Bra,;
and last but not least, Stephen Pulman and Donia Scott, who agreed to
come over all the way from England, just for my thesis defence.

During the first year-and-a-half of my PhD-research, Jan Odijk acted
as my daily supervisor. I am grateful to him for giving me a good
start. During my PhD-research, my path kept crossing that of Kees van
Deemter, with whom I shared several interests. Among other things, I

am obliged to Kees for commenting on several papers and on Chapter 4
of this thesis. Jan, Kees and the others who were involved in the DYD-
project provided me with the framework for my research.

Esther Klabbers put up with me as a room mate for nearly five years.
(Note the contrastive accent!) I think we made a good team. In addition,
Esther contributed to this thesis by providing me with material for the
sections on speech generation, and by reading the final manuscript to
correct my English.

Danny Kersten patiently suffered being treated as my personal help
desk, never complaining when I came to him with all my computer-
related problems. He developed the GoalGetter Internet-demo, which
provided Esther and me with a great way to illustrate our research.
(Although I must admit that we sometimes got fed up with giving all
those demonstrations.)

With Marc Swerts and Mieke Weegels, my fellow M’s, I have had a
very pleasant cooperation (together with Emiel). We had a lot of fun
and even managed to get some work done.

I am also indebted to everybody who participated in the experi-
ments described in this thesis, and to John-Pierre Verhagen and Daniél
Nachtegaal, who conducted two of these experiments.

It would be too much to mention everybody individually, so I will just
say thanks in general to all other, former and current, IPO-colleagues
from whom I have learned a lot and who made me feel at home at IPO;
in particular the people from SLI. (Tea breaks are relevant!)

Finally, I wish to mention my family and friends, who provided me
with a life outside work and showed a continued interest in my progress.

Contents

1 Introduction

1.1 Language generation in context

1.2 Text generation
1.2.1 Text generation tasks
1.2.2 Text generation systems
1.2.3 The generation of referring expressions

1.3 Language generation in data-to-speech
1.3.1 Speech generation methods
1.3.2 The importance of prosody
1.3.3 Prosody computation: an additional task

14 Researchaims.

1.5 Overview e

2 Description of D2S
2.1 Imtroduction. L.
2.2 The architectureof D2S
2.3 The GoalGetter system
2.4 Language generationinD2S
2.4.1 Acrchitecture
2.4.2 Syntactic templates
2.4.3 'Topics, conditions and coherence
244 Algorithm
245 Example.
2.5 Prosody computation in D25
2.5.1 Overview
2.5.2 Focus and information status
2.5.3 Weak and strongnodes
2.5.4 Phragse boundaries
2.5.5 Ewvaluation, ...,

viii / CONTENTS

2.6 Speech generationin D2S
2.6.1 Phonetics-to-speech
2.6.2 Phrase concatenation using prosodic variants .

2.7 Discussiono

Contrastive accent
3.1 Imtroduction.
3.2 The need for contrastive accent
3.3 Early viewson contrast
3.4 Formal approaches to contrastive accent assignment
3.4.1 Prevost: sets of alternatives
3.4.2 Pulman and others: HOU and parallelism . . .
3.4.3 Van Deemter: contrariety and equivalence . . .
344 Discussiono
3.5 Experiment L.
3.5.1 Hypotheses and assumptions
3.5.2 Method
3.5.3 Materials
354 Results
3.5,5 Discussion L.
3.5.6 Coherence
3.5.7 Conclusions,
3.6 Assigning contrastive accent within the LGM
3.6.1 Deriving contrast from data structures
3.6.2 Contrastive accent assignment: illustrations . .
3.6.3 A possible extension
364 Discussion
3.7 Summaryo o

Generating descriptions in context

4.1 Imtroduction.

4.2 The Incremental Algorithm (Dale and Reiter 1995) . .
4.2.1 Assumptions about domains
4.2.2 Outline of the Incremental Algorithm
423 Example.
424 Discussion,

4.3 A modification of the algorithm based on salience . . .
4.3.1 Motivation: determining the context set
4.3.2 Definite descriptions and salience
4.3.3 Outline of the modified algorithm
434 Examples L.
435 Discussion

CONTENTS / ix

4.4 Determining salience weights 116
4.4.1 Haji¢ov4: hierarchical focus constraints 117
4.42 Groszet al.: Centering 118
4.4.3 Examples, predictions and comparison 119
4.4.4 Discussion: revising salience weight assignment 121

4.5 Further extensions 123
4.5.1 Pronominalisation 123
4.5.2 Relational descriptions 125
4.5.3 Bridging descriptions. 139

46 Experiment 0. 140
4.6.1 Hypotheses and assumptions 140
4.6.2 Method 142
4.6.3 Materials 142
464 Results 142
46.5 Discussion 143

4.7 Integration of the modified algorithm in the LGM . . 147
4.7.1 Generation of referring expressions 147
4.7.2 Referring expressions and accentuation 148

4.8 Summary e e 150

5 Language generation in a spoken dialogue system 152

5.1 Introduction. 152

5.2 Using the LGMin OVIS 154
5.2.1 The OVIS architecture 154
5.2.2 Input and output of the LGM 156
5.2.3 Syntactic templates 159
524 Coherence 162
5.2.5 Variation, 165
526 Discussion 166

5.3 Context and information status in dialogues 167
5.3.1 Grounding 0oL 168
5.3.2 Cross-speaker anaphora 169
5.3.3 Accentuation 172
534 Discussion 175

5.4 Detecting information status 177
541 Corpus 178
5.4.2 Linguisticcues 178
5.4.3 Prosodiccues 180
544 Discussion 183

5.5 Summaryl 183

6 Conclusion 185

x / CONTENTS

6.1 Generaloverview, 185
6.2 Futurework 188
6.3 Finalword. 189
Bibliography 191
Samenvatting 205

Curriculum Vitae 209

1

Introduction

1.1 Language generation in context

Natural language generation is the process of automatically creating a
natural language text on the basis of a non-linguistic information rep-
resentation, for instance information from a database. This thesis dis-
cusses the generation of texts that are to be conveyed to the user in
spoken, not written, form. The fact that the generated texts must be
pronounced places additional demands on language generation: the out-
put should not be plain text, but so-called ‘enriched text’ containing
markers that indicate the desired prosody of the spoken output.

As the subtitle of this thesis indicates, the research presented here
focuses on language generation in contezt. The word ‘context’ allows for
many different interpretations; those that are intended here are listed
below.

Language generation and linguistic context. The focus of this thesis
is on the relevance of linguistic context for generation. Here, linguistic
context is informally defined as “what has been said previously in the
text being generated”. In this thesis, it is shown how the coherence
(and thus, naturalness and understandability) of generated texts can be
increased by taking linguistic context into account during the genera-
tion of referring expressions and the computation of prosody (i.e., the
assignment of prosodic markers to the generated output).

Language generation in a monologue or in a dialogue context. This
thesis discusses the generation of spoken monologues, as well as lan-
guage generation in spoken dialogue. The type of interaction between
system and user, either monologue or dialogue, influences what counts
as the linguistic context of an utterance. In monologue generation, the
linguistic context consists only of the system output that preceded the

2 / INTRODUCTION

utterance currently being generated. In a dialogue, a distinction must be
made between the user’s and the system’s contributions to the linguistic
context. The fact that in a spoken dialogue the system can never be
completely sure of what the user has said has consequences for prosody
computation and other aspects of language generation.

Language generation in the context of data-to-speech. This thesis
deals with language generation for data-to-speech systems, i.e., systems
which produce spoken output. In the context of data-to-speech, an addi-
tional task of language generation is the placement of prosodic markers
which indicate how the generated output should be pronounced. The
more specific system context is formed by the D2S system.! This is
a generic data-to-speech system developed at IPO, which has been the
basis for various data-to-speech applications. The research presented
here has resulted in several improvements to the language generation
module of D2S.

The current chapter provides a brief overview of language and speech
generation, forming the general background for the chapters that follow.
Background information on more specific generation issues dealt with
in this thesis is provided in the relevant chapters. The outline of the
current chapter is as follows. Section 1.2 gives a global overview of text
generation, i.e., language generation in systems that provide written
output. The next section, Section 1.3, discusses the additional demands
placed on language generation in systems that produce spoken output.
In Section 1.4, the aims of the current research are presented. Finally,
in Section 1.5 an overview of the thesis is given.

1.2 Text generation

Most research in the area of natural language generation has focused on
the generation of texts that are presented to the user in written form. To
distinguish this form of language generation from language generation
aimed at spoken output, in this thesis the term text generation is used to
denote the former. The more common term natural language generation
is used for language generation in systems producing either written or
spoken output.

In this section, a brief overview is given of the tasks involved in text
generation (Section 1.2.1), and of the way these tasks are carried out in

1D2S stands for ‘data-to-speech’. This term describes D2S more appropriately than
the more common ‘concept-to-speech’, as D2S takes as input data retrieved from
tables or databases, rather than some sort of semantic or ‘conceptual’ representations.

TEXT GENERATION / 3

current text generation systems (Section 1.2.2). Finally, an important
generation task is highlighted: the generation of referring expressions
(Section 1.2.3). For a comprehensive introduction to the field of natural
language generation, the reader is referred to Reiter and Dale 2000.

1.2.1 Text generation tasks

Reiter and Dale 1997 distinguish six basic tasks that a text generation
system should perform when going from its input data to a natural lan-
guage text. These tasks can be summarised as follows:

1. Content determination is the task of converting the raw system
input to the specific kind of data objects (or ‘messages’) that serve
as a basis for the subsequent text creation processes. This includes
deciding which input information to express in the text.

2. Discourse planning is the process of ordering the information to be
expressed and determining the structure of the output text. The
result is a text plan, often in the form of a tree structure repres-
enting the order and grouping of the messages, and the relations
between them.

3. Sentence aggregation is the process of deciding which information
to put in one sentence. Pieces of information that form separate
input messages may be joined together and expressed using one
sentence which, for instance, contains a conjunction or a relative
clause.

4. Lezicalisation is the task of choosing the right words to express
the input information. Often, a concept can be expressed using
different words or phrases; the task of the lexicalisation procedure
is to choose the one that is most appropriate in the given context.

5. Referring expression generation is the task of creating phrases to
identify domain entities. This involves choosing the type of ex-
pression (e.g., a pronoun or a definite description) and in the case
of definite descriptions, choosing the properties to include in the
description.

6. Linguistic realisation, finally, is the task of creating grammatical
sentences. This involves the application of syntactic and morpho-
logical rules that determine aspects like word order and agreement.

Although these tasks are listed more or less in the order of execution,
some generation systems may perform them in a different order, as will
be discussed below. It should also be noted that some authors (e.g.,
Cahill et al. 1999) have made somewhat different task distinctions than

4 / INTRODUCTION

Reiter and Dale 1997, for instance by leaving out or splitting up some of
the tasks listed above. Still, the tasks presented here can be considered
largely representative of the operations involved in text generation.

Reiter 1994 observes that most applied text generation systems make
use of a pipeline architecture with the following three modules:

e Content determination
e Sentence planning
o Surface generation

In this architecture, the output of each module forms the input for
its successor, and there is no feedback between modules. The mod-
ules can best be characterised in terms of their output: first, content
determination produces an abstract text plan specifying the semantic
structure of the text, then sentence planning maps the conceptual struc-
tures in the text plan onto linguistic sentence representations, and finally
surface realisation converts these sentence plans to text. According to
Reiter and Dale 1997, the generation tasks outlined in Section 1.2.1 are
distributed over the different modules as follows: the content determina-
tion module, which Reiter and Dale call ‘text planner’, is responsible for
the tasks of content determination and discourse planning; the sentence
planner performs sentence aggregation, lexicalisation, and referring ex-
pression generation; and surface generation corresponds to linguistic
realisation.

The relevance of the pipeline architecture is confirmed by Cahill et
al. 1999, who discuss the architecture of 19 text generation systems, and
show that most of these systems indeed conform to the pipeline architec-
ture discussed in Reiter 1994. However, they also show that there is no
standard mapping of tasks to modules in the pipeline. Some tasks, such
as referring expression generation, can be performed in almost any mod-
ule; other tasks seem to be on the boundary between two modules, and
only a few tasks, such as discourse planning (which Cahill et al. divide
into ‘ordering’ and ‘rhetorical structuring’) are generally associated with
one specific module (in this case content determination).

The research by Cahill et al. 1999 shows that although existing sys-
tems diverge in their distribution of tasks over system modules, the
pipeline architecture is the most common architecture. Still, several
generation systems have a different architecture. As an example, Cahill
et al. mention the KOMET system (Teich and Bateman 1994, Bate-
man and Teich 1995), which generates text through the traversal of a
network.

Another example of a deviating architecture is the language gener-
ation module of IPO’s D2S system. As we will see in Chapter 2, the

TEXT GENERATION / 5

language generation system employed in D2S performs text generation
in a sentence-by-sentence fashion, without having subsequent modules
that deal with different ‘levels’ of sentence production, as in the standard
pipeline.

1.2.2 Text generation systems

In the ideal case, a text generation system should carry out each of the
tasks discussed in Section 1.2.1 in a theoretically well-founded manner,
for example by performing discourse planning on the basis of Rhetorical
Structure Theory (Mann and Thompson 1985) and by using a grammar
for linguistic realisation. In practice, however, such sophistication is
usually reserved for only a few steps of the generation process. This
limitation may have several causes. For instance, some systems are
aimed (for research purposes) at only one particular generation task,
e.g., linguistic realisation. Other tasks are then performed in a more ad
hoc fashion (if they are performed at all). Another limiting factor for the
deployment of linguistic rules in language generation is simply that not
enough good linguistic rules are known yet (van Deemter et al. 1999).
Finally, ‘linguistic’ generation techniques may lack computational speed
and efficiency (see e.g., Bateman and Henschel 1999), which makes them
less attractive for use in applied generation systems.

The alternative for ‘linguistic’ generation is the use of simple, ad
hoc methods that are specific to particular applications. An example
is the use of ‘canned text’, an approach which is based on pure string
manipulation. As Reiter 1995 points out, linguistic notions hardly play
any role in such ‘canned text’ approaches, which are mainly used for very
simple applications in a limited domain. Building generation systems
which use canned text is relatively quick and easy, and generation using
canned text is both fast and efficient.

However, the use of such simple approaches has several disadvant-
ages. First of all, output texts created using a ‘canned text’ approach
tend to be rather simple (in particular at the discourse level) and show
almost no variation.? In contrast, linguistic techniques allow for the
generation of texts that are more complex and more coherent, mak-
ing principled use of e.g., anaphora and rhetorical markers. Also, most
canned text systems are entirely application-specific, and therefore not
reusable. Linguistic methods are usually general in nature and therefore
domain- and application independent. They are more flexible and easier
to maintain. Generalising, we can say that canned text approaches offer

2Coch 1996 offers a discussion of the weak points of such texts, based on a formal
evaluation of the quality of business reply letters, written by means of different
techniques.

6 / INTRODUCTION

ease of development, computational speed and efficiency at the cost of
text quality, generality and flexibility, whereas for linguistic generation
techniques the opposite holds.

It is clear that for the generation of all but the most simple texts, at
least some linguistic knowledge is required. However, given the current
state-of-the-art it is hardly possible to build text generation systems
where each generation task is fully guided by linguistic principles. As
a consequence, most applied generation systems can be characterised as
hybrid systems, in the sense that some generation tasks are carried out
on the basis of linguistic notions, whereas other tasks are performed us-
ing a non-linguistic method, e.g., by using ready-made text strings. An
example is the IDAS system (Reiter and Mellish 1993), which incorpor-
ates those portions of text that are difficult to generate linguistically as
‘canned text’ in the output. Other recent hybrid generation systems are
described in Carenini et al. 1994, Geldof and van de Velde 1997, White
and Caldwell 1998, and Busemann and Horacek 1998. The language
generation module of D2S, the data-to-speech system developed at TPO,
also employs a hybrid technique. For example, in D2S linguistic real-
isation is performed by means of hand-made sentence structures, but
well-established rules are used for the generation of anaphoric expres-
sions and the computation of prosody. To guide the performance of the
latter tasks, the language generation module of D2S uses a model of the
linguistic context. This model is used, among other things, to determ-
ine the type of referring expressions (e.g., pronouns or proper names).
In Chapter 3, it is discussed how information on the linguistic context
can also be used to determine the content of referring expressions. First,
Section 1.2.3 gives an informal introduction to the generation of referring
expressions.

1.2.3 The generation of referring expressions

The generation of expressions that identify particular entities is “one of
the most ubiquitous tasks in language generation” (Dale and Reiter 1995:
233). It basically involves two kinds of decisions: determining the type
of the expression, and selecting its content. Among the different types
of expressions that can be used are proper names (e.g., Bill Clinton),
definite descriptions (the American president) and pronouns (he). These
types of expressions are subject to different restrictions on their use. For
instance, generally a pronoun can only be used if there is an accessible
antecedent for it in the linguistic context; it is not appropriate to use
a pronoun when referring to a specific entity for the first time.® In ad-

3In dialogues between humans, speakers sometimes use a pronoun for the initial
reference to an entity which is highly prominent in the physical context. For instance,

TEXT GENERATION / 7

dition, it is not appropriate to use a pronoun when there is more than
one possible antecedent in the linguistic context, since this will result in
an ambiguity. This is illustrated in (1) below. (Here, ‘??’ indicates that
the continuation is not well-formed, in this case because the pronoun is
ambiguous.)

(1) Clinton and his friend entered the bar. 7?7 He ordered a drink.

Proper names and definite descriptions can be used for both initial
and subsequent (i.e., anaphoric) references. However, in cases where
there is only one possible antecedent in the linguistic context, a pronoun
often seems most appropriate, as can be seen when comparing (2)a and
(2)b.

(2) a. Clinton entered the bar. Clinton ordered a drink
b. Clinton entered the bar. He ordered a drink.

In general, it is considered ‘bad style’ to repeat the same description
over and over in a text. More importantly, it may be confusing, since the
impression might be created that the second name refers to a different
entity from the first. It is more natural to start with a proper name or
a full description (e.g., the president of the United States) and then to
continue with a pronoun or a reduced description (e.g., the president).

This brings us to the issue of content selection, i.e., deciding which
properties of the intended referent will be included in its description. In
order to enable the hearer to identify the intended referent, those prop-
erties should be selected which help to distinguish it from other entities
in the domain of discourse. For instance, when generating instructions
for operating some device with many buttons, it would be useful to refer
to a specific button as the black button if it is the only button of that col-
our. However, if there happen to be other black buttons on the device,
it might be more appropriate to use a description like the round button
(if all other buttons have some other shape) or even the round black
button (if it is the only black button of that shape). So, which prop-
erties of an entity are selected for inclusion in its description, depends
on the properties of the other entities with which it might be confused.
Another relevant factor is the linguistic context: if an entity has just
been mentioned, generally fewer properties are needed for the hearer to
identify it. For instance, when the round black button of the previous

when a dog growls at a passer-by, its owner may say, “Don’t worry, it doesn’t bite.”
Here, the dog has not been mentioned before, but there is no doubt of the pronoun’s
intended referent. However, in applications of language generation such a ‘physical
context’ is generally lacking.

8 / INTRODUCTION

example is mentioned for the second time, it can simply be referred to
as the button, as shown in (3) below.

(3) The; round black button is used for channel selection. To do this,
turn the; button slowly to the left or right.

The influence of linguistic context on content selection is discussed
in depth in Chapter 4.

1.3 Language generation in data-to-speech

The basic form of human communication is spoken language. Still, until
recently research in language generation has been aimed mainly at the
generation of written texts. At the same time, research in speech gen-
eration (usually called speech synthesis) has focused on the automatic
production of human speech sounds, concentrating on acoustic/phonetic
aspects without considering the preceding stages of speech production.
Thus, for a long time text generation and speech generation have been
regarded as separate fields, and they were rarely combined. However,
recent years have seen a raised interest in systems with speech output.
In some of these systems, the text that is to be pronounced is provided
by a source outside the system. This is the case for spoken newspapers,
email readers and other ‘text-to-speech’ applications. In other systems,
such as spoken dialogue systems, the text to be pronounced is generated
by the system itself. In these systems, language and speech generation
are combined in the form of data-to-speech.

This section discusses the additional tasks that must be carried out
by language generation in a data-to-speech context. First, Section 1.3.1
offers a brief overview of current methods to produce speech output. In
Section 1.3.2 the role of prosody in speech is explained, and it is argued
that in order to achieve a good prosodic output quality, linguistic infor-
mation from the language generation component should be used. Finally,
Section 1.3.3 discusses some possibilities for fitting prosody computation
into the architecture of a data-to-speech system.

1.3.1 Speech generation methods

The most straightforward way to provide a system with speech output
is to simply record all utterances that one wants the system to be able
to pronounce, and then play them back as required. Of course, this
approach is impracticable in all but the simplest of applications, as it will
work only for a limited number of sentences, which are exactly known
beforehand. A more realistic solution is to use phrase concatenation,
where pre-recorded phrases existing of one or more words are played
back in different orders to form complete utterances. The key merit

LANGUAGE GENERATION IN DATA-TO-SPEECH / 9

of the technique is that it becomes possible to generate sentences that
have never been produced as such by any human speaker, but with a
quality approaching natural speech. Phrase concatenation is used in
several commercial applications such as travel information services (see
e.g., Aust et al. 1995), telephone banking systems, and market research
tele-services. A major drawback of this technique is that it is practical
only if the application domain is limited and remains rather stable.

A method which has none of the disadvantages inherent to the record-
and-play-back scheme is that of full-fledged speech synthesis. The most
common form of speech synthesis is concatenative synthesis. In this
approach, a database of very small speech segments is used (usually
phonemes or diphones, see Section 2.6.1). Utterances are formed by
concatenating the required segments and applying different forms of sig-
nal processing to the result. This method offers unlimited flexibility: it
is not necessary to restrict the number of possible sentences that can be
generated by the application, and addition of new material to be pro-
nounced presents no problem. Unfortunately, there is a price to be paid
for this flexibility. Although speech technology has reached the stage
where synthesised speech has a high degree of intelligibility, in general
the speech still sounds quite unnatural.*

1.3.2 The importance of prosody

The naturalness and intelligibility of speech output is influenced by dif-
ferent factors, one of which is prosody.> The term ‘prosody’ is generally
used to refer to variations in pitch, loudness, tempo and rhythm within
an utterance. These variations are determined mainly by accentuation
and phrasing. Some of the words in an utterance are emphasised by
pronouncing them with a pitch change. These words are said to be
accented. In addition, most utterances are divided into (intonational)
phrases, the boundaries of which are often marked by a pause, a rise in
pitch and the lengthening of pre-boundary speech sounds.

In natural speech, the prosody of an utterance varies depending on
several factors such as the syntactic structure of the utterance and its
linguistic context. In Dutch and English, usually the rightmost word
in a syntactic phrase is accented, but this default may be changed by
contextual factors: if a word expresses information that is already part

4For an on-line comparison of speech synthesis systems in various languages, see
http://www.ldc.upenn.edu/ltts/.

5The user’s comprehension of a spoken text is also influenced by text features such
as sentence length and complexity. This issue is not discussed in this thesis; but see
Petri¢ and van den Bergh 1993 for an overview of text features that affect listening
performance. The usability of different types of spoken route presentations in the
OVIS system (see Chapter 5) has been tested by Claassen 1998;1999;2000.

10 / INTRODUCTION

of the linguistic context, it is not accented. This can be illustrated by
example (4), taken from Sproat 1995, where the word dogs will often be
deaccented because of the earlier reference to the concept ‘dog’. (In this
and later examples, accented words are printed in small capital letters.)

(4) My SON wants a DOG, but I am ALLERGIC to dogs.

On the other hand, words expressing information that is contrastive
are always accented, even if the information they express has been men-
tioned previously. A well-known example is given in (5). Here, both
pronouns receive a contrastive accent, even though they refer to entities
that have already been mentioned. The issue of contrastive accentuation
of ‘given’ items is discussed in depth in Chapter 3.

(5) John insulted Mary and then SHE insulted HIM.
(Lakoff 1971:333)

Finally, the placement of phrase boundaries within an utterance
mainly depends on syntax. An example is shown below in (6), adap-
ted from Sanderman 1996. To indicate that the phrase with the stick
is used as an adverbial with the verb hit, a phrase boundary (indicated
by a slash) may be placed after the word dog, as in (6)a. On the other
hand, if with the stick modifies the noun dog, as in (6)b, such a phrase
boundary is less appropriate.

(6) a. The man hit [the DOG] / with the STICK
b. The man hit [the DOG with the STICK]

In order for speech output to sound natural, the prosodic variations
caused by syntactic and contextual factors must be taken into account.
This presents a major problem for the conventional approach to phrase
concatenation, since in this approach all the necessary words and phrases
are recorded once and thus have a fixed prosody, making contextual
variation impossible. In contrast to the conventional approach, the TPO
approach to phrase concatenation (discussed in detail in Section 2.6.2;
see also Klabbers 2000) does take prosodic variation into account. This
is done by recording different prosodic versions for otherwise identical
words and phrases. For choosing the correct version during speech gener-
ation, this technique depends on the presence of prosodic markers in the
text to be pronounced. These markers indicate which words in the text
should be accented, and where phrase boundaries should occur. For
prosody generation in speech synthesis, we see the same dependency:
abstract prosodic markers in the text to be pronounced are required as
input for the intonational and durational models of the speech synthes-
iser.

This dependency of speech generation on abstract prosodic mark-

LANGUAGE GENERATION IN DATA-TO-SPEECH / 11

ers, indicating the location of accents and phrase boundaries, raises the
question where these markers should come from. This issue is discussed
in Section 1.3.3.

1.3.3 Prosody computation: an additional task

Since most language generation systems produce plain written text, the
most obvious way of pronouncing this text is by using a text-to-speech
system. Such systems take plain text as input, then perform some form
of text analysis in order to determine the abstract prosodic properties
of the text, and finally put the result of this analysis through a speech
synthesiser for pronunciation. The main drawback of this scheme is that
valuable linguistic information that is present in the language genera-
tion system remains unused, even though the prosodically relevant in-
formation that can be obtained through text analysis is generally much
less reliable and detailed. By exploiting the information from the lan-
guage generation component, in principle a higher prosodic quality can
be obtained than by using a plain text-to-speech system.

In order to exploit this information, different solutions are possible.
One solution is to have a monolithic architecture, where language and
speech generation are closely integrated. This design may be efficient,
because all relevant information is directly available, but it has the disad-
vantage that language and speech generation are so closely intertwined
that it is impossible to reuse either component in another system. An ex-
ample of such an intertwined architecture is the SSC (Speech Synthesis
from Concept) system proposed by Young and Fallside 1979. In this
system, the computation of prosody is done during speech generation.
The two tasks are inseparable, and fully dependent on the specific input
(a full syntactic structure for an utterance) provided by the preceding
language generation component.

An alternative solution, proposed by McKeown and Pan 1997, is to
have an architecture in which language and speech generation are inde-
pendent modules which are interfaced by a general prosodic component.
The advantage of such an architecture is that the language and speech
generation modules are reusable for different applications, and that the
intermediate prosody component can (in principle) be used to couple dif-
ferent language and speech generation components. However, in practice
the usability of such a prosodic component may be restricted by the vari-
ety of linguistic information provided by, and representation formalisms
used in, current language generation systems. Given this variety, a sep-
arate pre-processing module will be required for almost every language
generation system the prosodic component is to be coupled with.

The D2S approach is somewhere in between. In D2S, language and

12 / INTRODUCTION

speech generation form separate, reusable modules, but prosody com-
putation is performed within the language generation module. In line
with this architecture (discussed in Section 2.2), in this thesis prosody
computation is regarded as a step in the language generation process,
performing the final task of adding prosodic markers to the generated
text.

1.4 Research aims

This thesis deals with language generation in the context of data-to-
speech, and in particular in the context of the D2S system. As argued
in the previous section, prosody computation is an important task in
data-to-speech. One of the distinguishing characteristics of D2S is that
prosody computation is carried out in a fairly sophisticated manner,
using information from the language generation module. For instance,
based on a model of the linguistic context, certain words are deaccented
because they express information that is assumed to be already known
to the hearer. However, one aspect of accent assignment remained some-
what underdeveloped in the original language generation module of D2S:
the assignment of contrastive accents. Many researchers have noted that
to achieve natural prosody, it is necessary to assign an accent to words
expressing contrastive information. However, the notion of contrast has
long defied formalisation. As a consequence, most speech generation
systems do not incorporate a method for the automatic detection of
contrast. This thesis examines how information about the linguistic
context of an utterance can be used to determine which of its words and
phrases express contrastive information.

Another task for which linguistic context is highly relevant, and
which is central to all forms of language generation, is the generation
of referring expressions. As will be shown in Chapter 2, the context
model of D28 is used for determining the type of referring expressions;
the task of determining the content of these expressions, however, re-
ceived less attention in the original language generation module. In
other words, D2S originally did not have a principled way of selecting
the properties to be included in a definite description. In the literature
several algorithms dealing with this issue have been put forward, but
none of these explicitly take the linguistic context into account. In this
thesis, it is investigated how definite descriptions can be generated in a
context-sensitive and efficient fashion.

Finally, the issues mentioned above are examined for language gen-
eration in both a monologue and a dialogue context. Thus, the aims of
the research presented here can be summarised as follows:

OVERVIEW / 13

e To determine how information on the linguistic context can be
used to establish the placement of contrastive accents;

e To determine how information on the linguistic context can be
used for the generation of definite descriptions;

e To investigate the effect of a dialogue context on the above-
mentioned issues.

The research results to be presented are based on theoretical insights
and new experimental data. They do not depend on any particular
generation system, but D23 will serve as a framework for implementation
of these results in various applications. Testing the usefulness of D28,
originally developed as part of one specific system, for a wider class of
applications, can be seen as an — implicit — additional research aim.

1.5 Overview

In the remaining chapters of this thesis, the following issues are dis-
cussed. First, in Chapter 2, a detailed description is given of the D23
system, which forms the system context for the research described in this
thesis. The architecture of D28 is presented, and each of its modules are
discussed in turn: the language generation module, the prosodic com-
ponent, and the speech generation module. The chapter focuses on the
description of the language generation module, presenting among other
things a detailed representation and discussion of the main language
generation algorithm, which has not been described in detail before. In
addition, a detailed account is given of the way in which information
about linguistic context and syntactic structure is used for the com-
putation of accents and phrase boundaries in D2S. The D2S system is
illustrated using a particular application called GoalGetter, a D2S-based
data-to-speech system which generates Dutch spoken football reports on
the basis of tabular data. The GoalGetter system has been developed
as part of the research described in this thesis.

Chapter 3 discusses how information about the linguistic context of
an utterance can be used to determine which of the words and phrases
in this utterance express contrastive information. As was briefly pointed
out in Section 1.3.2, the accentuation pattern of an utterance depends,
among other things, on its linguistic context. Generally, words express-
ing information that is new to the hearer are accented, whereas words ex-
pressing information that is known (for instance, because it was already
mentioned), are not. An exception to this general rule is formed by con-
trastive information: words expressing information that is contrastive
are generally accented, even if this information was already mentioned
earlier in the discourse. This means that to achieve appropriate pros-

14 / INTRODUCTION

ody, contrast of information must be taken into account. Without it,
improper deaccentuation of known but contrastive items may occur.
However, the automatic detection of contrast is not a simple task, as
contrast is a rather intangible notion. In Chapter 3, some early, in-
formal views on contrast are discussed, as well as some more recent,
formal approaches to the prediction of contrast for data-to-speech gen-
eration. In addition, a small experiment is described that was carried
out to test in what linguistic contexts people have a preference for con-
trastive accentuation. Finally, a practical, but theoretically motivated
way of detecting the presence of contrastive information within D2S is
presented.

Chapter 4 presents an algorithm for the generation of referring ex-
pressions for domain entities, which is one of the essential tasks in lan-
guage generation. The easiest way of referring to an entity is by using
its name. However, proper names are not always available, and in those
cases a description of the entity is required. The creation of descrip-
tions may also be required for stylistic reasons, e.g., to avoid repeating
a proper name over and over again. To obtain a principled method for
the context-sensitive generation of descriptions, an existing algorithm
for the generation of definite descriptions has been modified so that lin-
guistic context is taken into account. The basic idea underlying the new
algorithm is that a definite description refers to the most salient element
satisfying the descriptive content. A method for determining salience on
the basis of linguistic context is proposed, and it is shown that taking
salience into account allows for the generation of reduced descriptions,
which still uniquely identify the intended referent in the given context.
In addition, a description is given of a small experiment that was carried
out to test the hypotheses underlying the revised algorithm. Finally, it
is shown that by some simple modifications the algorithm can be used
for the generation of other types of referring expressions, such as pro-
nouns and relational descriptions (which describe an object in terms of
its relation to another object).

Chapter 5 discusses language generation in a dialogue context. It
describes how, as part of the research presented here, the language gen-
eration module of D2S was adapted for use in a spoken dialogue sys-
tem called OVIS, which provides information on train tickets and time
tables. In addition, the chapter presents an informal discussion of the
relation between linguistic context and information status in dialogue.
In a dialogue, it cannot be assumed that all information presented by
one speaker is immediately ‘known’ to both speakers. First, they have
to signal their mutual understanding of the information. The relevance
of this observation for accentuation and referring expression generation

OVERVIEW / 15

is discussed, based on examples from human-human dialogues. From
these it appears that, as soon as both speakers agree on what is in the
linguistic context, they can both refer to this information in the same
way as in a monologue. However, when a speaker is not sure of what the
other has said, he or she cannot use a reduced or deaccented description
to refer to the information provided by the other. In human-machine dia-
logues, such communication problems are very common. The chapter
finishes with a description of a corpus study, investigating which lin-
guistic and prosodic cues people use to signal the presence or absence of
communication problems in human-machine interaction.

Finally, in Chapter 6 the issues discussed in the preceding chapters
are recapitulated and several pointers to future research are given.

2

Description of D2S

2.1 Introduction

This chapter presents a detailed description of the D2S system developed
at IPO. D2S is a generic system that can be used for the construc-
tion of data-to-speech systems for various domains and languages. The
most important characteristic of data-to-speech is that it combines lan-
guage and speech generation. An obvious way of combining the two
is to have two separate modules for language and speech generation
whose interface consists of plain text. A serious drawback of such an
architecture is that valuable information for speech generation is lost
(Pan and McKeown 1997, Zue 1997). For this reason, in D2S linguistic
information provided by the language generation module is used for the
reliable generation of prosodic markers, thus improving the prosodic
quality of the system’s speech output.

D2S is a hybrid system, in which some parts of the generation process
are based on general, linguistic principles, whereas other generation tasks
are carried out using less flexible, application-specific methods. One of
the interesting features of the language generation module of D2S is
that it does not follow the relatively common pipeline architecture for
language generation (Mykowiecka 1991, Reiter 1994, Cahill et al. 1999)
in which text and sentence planning precede linguistic realisation. In
fact, D2S contains hardly any global text planning. In order to maxi-
mige variation between generated texts, local conditions determine which
sentences can be used properly given the current state of the genera-
tion process. (This issue is discussed in Section 2.4.3.) D2S can operate
with two different speech generation modules: one based on pre-recorded
phrases, which offers high speech quality but is very inflexible, and one
based on diphone synthesis, which offers high flexibility but has a lower
output quality. What the two have in common is that they can make use

INTRODUCTION / 17

of the prosodic marking provided by language generation to determine
prosody.

D2S was initially developed with the construction of the Dial Your
Disc (DYD) system (van Deemter et al. 1994, Odijk 1995, van Deemter
and Odijk 1997). The DYD-gystem provides a natural language inter-
face to a music database which contains information about recordings
of Mozart compositions, as well as the music recordings themselves. In
DYD, natural language is used both for browsing through the database
and for presentation of the results. During browsing, the user can specify
filters on the database using typed or spoken natural language, and the
system provides spoken natural language feedback. After a filter (e.g.,
a sonata played by Uchida, van Deemter 1996:7) has been applied to
the database, the system selects a sample from the set of music record-
ings that pass the filter. A fragment of this sample recording is played,
and the system presents information about the recording in the form of
a spoken natural language monologue. The D2S system is a general-
ised version of the DYD-module that is responsible for the generation
of these spoken monologues. By stripping away all application-specific
parts from this module, a general framework has been formed that can
be used as the basis for a whole range of applications.

In this thesis, two D2S-based applications are discussed. The first
application is GoalGetter, a data-to-speech system which generates
spoken reports of football matches in Dutch, based on tabular data
(Klabbers et al. 1996, Klabbers et al. 1998). GoalGetter is described
in detail in the current chapter. It has been developed to demonstrate
the wide applicability of the techniques used in D2S, as GoalGetter dif-
fers from DYD with respect to both language (Dutch versus English)
and domain (football versus Mozart). In addition, D2S has been used
for output generation in a Dutch spoken dialogue system called OVIS
(Veldhuijzen van Zanten 1998, van Noord et al. 1999, Klabbers 2000).
OVIS is a public transport information system which can be accessed
via the telephone. The use of D2S (and in particular, its language gen-
eration module) in OVIS is discussed in Chapter 5.

In the current chapter, which is largely based on Theune et al. 2000,
the GoalGetter system is used to illustrate D2S and the techniques
it is based on. Specific aspects of D2S that have been described in
earlier publications are topic management (Odijk 1995), prosody com-
putation (Theune et al. 1997), language generation (van Deemter and
Odijk 1997) and speech generation (Klabbers 1997;2000). The current
chapter, however, gives a detailed overview of D2S as a whole. It focuses
on the description of the system’s original language generation module,
which was the starting point of the research presented in this thesis. It

18 / DESCRIPTION OF D2S

presents a detailed representation and discussion of the main language
generation algorithm, which has not been described in detail before.
The chapter is organised as follows. Section 2.2 gives an overview of
the architecture of D2S, together with a brief discussion of its advantages
and disadvantages. Section 2.3 introduces the GoalGetter system and
gives an example of its input and output. In the subsequent sections,
examples from GoalGetter are used to illustrate the workings of the
different modules of D2S. First, Section 2.4 describes the language gen-
eration module (LGM) of D2S. Then, Section 2.5 explains how prosodic
markers are assigned by the prosodic component of the LGM. Finally,
Section 2.6 discusses the use of these markers by the speech generation
module (SGM) of D2S. The chapter ends with a discussion in Section 2.7.

2.2 The architecture of D2S

The general architecture of D28 is sketched in Figure 2.1. The language
generation module of D2S (abbreviated as LGM) takes data as input
and produces enriched text, i.e., text which has been annotated with
prosodic markers by the prosodic component of the LGM. This com-
ponent determines the placement of accents and phrase boundaries in
the output text, using the linguistic information that is present in the
LGM. The enriched text is then used as input for the speech generation
module (abbreviated as SGM), which turns it into a speech signal. By
using the prosodic information in the enriched text, the SGM is able to
generate speech output that has a higher prosodic quality than could
be obtained when using a plain text-to-speech system. In text-to-speech
systems, the linguistic information that is relevant for prosody must be
obtained through linguistic analysis of the input text. Such an analysis
may yield unreliable and incomplete results, which has a negative impact
on the prosodic quality of the speech output. In contrast, D2S makes
use of the combination of language and speech generation by exploiting
the linguistic information which is present in the language generation
component for prosody computation.

In D2S, language and speech generation form separate, reusable mod-

Language enriched Speech
data Generation EZOZ‘;?Y ™ oxt —|Generation zfeeg?
Module odule Module &n

FIGURE 2.1: Global architecture of D2S.

THE GOALGETTER SYSTEM / 19

ules, which are connected through a prosodic component. The advant-
age of this architecture is that both language and speech generation
are reusable: the language generation module can be used stand-alone
(without speech output) or in combination with different speech out-
put methods, discussed in Section 2.6. In their turn, the speech output
methods currently employed in D2S can be used in other systems, given
that the required prosodic mark-up is provided in the input. Only the
prosody module cannot be ported to another system, since it is embed-
ded in the language generation module, with which it shares a mutual
knowledge source containing information about the context.

2.3 The GoalGetter system

In this chapter, examples from GoalGetter are used to illustrate D23
and the techniques it is based on. As noted in the introduction, various
applications have been developed on the basis of D2S. Of these, Goal-
Getter is the least complex due to its limited domain. This makes it
suitable for use as an example, but it will also leave some aspects of D2S
(in particular the method of topic management employed in the LGM,
see Section 2.4.3) somewhat underexposed. This is further discussed in
the relevant sections below.

The GoalGetter system generates Dutch spoken summaries of foot-
ball matches. The data which form the input for GoalGetter are auto-
matically retrieved from Teletert, a system with which textual infor-
mation is broadcast along with the television signal. The information is
distributed over various ‘pages’, each filling a screen, which are continu-
ously refreshed and are also available via the Internet. Some pages con-
tain textual information, e.g., news messages, and some contain tables,
e.g., weather reports and sports results.

Figure 2.2 shows an example Teletext page with information about
two football matches. For each match, information about the home team
is shown on the left; information about the visiting team is shown on the
right. Behind each team name, this team’s result is shown. Below it, a
list is given of all players that scored a goal for this team. The minute
in which a certain player scored is given between brackets behind the
player’s name. ‘Special’ goals are indicated using a specific marker;
for instance, /pen indicates a penalty. Then, the name of the referee
(arbiter) and the number of spectators (toeschouwers) are given. Finally,
for each team a list is given of all players who received a card.!

1A player who commits a minor offence receives a yellow card. For a major offence,
he receives a red card and is sent off the field. Two yellow cards amount to one red
card.

20 / DESCRIPTION OF D2S

= T b -

FORTUNA SITTARD GO AHEAD EAGLES

Arbiter: Toeschouwers:
Geel:
RODA JC PSSy

Arbiter: Toeschouwers:

Geel:

uitzlagen 661 ~ stand 662

FIGURE 2.2: Teletext page containing data from two football matches.
(Arbiter = referee; toeschouwers = spectators; geel = yellow card)

An example output text, describing the first match of Figure 2.2,
is given in Figure 2.3 together with its translation. The output text is
given in enriched text format, i.e., including prosodic mark-up. Accen-
ted words are printed in small capital letters, and phrase boundaries of
different strengths are indicated by a number of slashes (/, // or ///).
The marker <new-par> indicates the start of a new paragraph.

Two systems which have the same application domain as GoalGet-
ter, are SOCCER (Andre et al. 1988) and MIKE (Tanaka et al. 1998).
However, both SOCCER and MIKE generate commentaries, spoken de-
scriptions of image sequences of football scenes, whereas GoalGetter
generates summaries of football matches, taking tabular information
about the match as input. In that respect, GoalGetter is more like the
STREAK system (Robin 1994, McKeown et al. 1995), which also gener-
ates sports summaries, though the sports domain is basketball instead
of football. An important difference between GoalGetter and STREAK
is that the latter produces only written, not spoken, output.

An interactive, on-line demonstration of the GoalGetter system can
be found at http://iris19.ipo.tue.nl:9000/.

THE GOALGETTER SYSTEM / 21

Output:

Go Ahead EAGLES / ging op BEZOEK bij Fortuna SITTARD // en speelde GELIK ///
Het duel eindigde in TWEE // - TWEE ///
VIJFENVEERTIG honderd TOESCHOUWERS / kwamen naar “de BAANDERT” ///

<new-par>

De PLOEG uit SITTARD / nam na ZEVENTIEN MINUTEN de LEIDING / door een TREFFER
van HAMMING ///

EEN minuut LATER / bracht SCHENNING van Go Ahead EAGLES / de teams op GELIJKE
HOOGTE ///

Na ACHTENVEERTIG minuten / liet de AANVALLER HAMMING / zijn TWEEDE doelpunt
aantekenen ///

In de VIJFENZESTIGSTE minuut / bepaalde de Go Ahead EAGLES speler DECHEIVER
de EINDSTAND / op TWEE // - TWEE ///

<new-par>

De wedstrijd werd GEFLOTEN door SCHEIDSRECHTER UILENBERG ///
Hij deelde GEEN RODE KAARTEN uit ///

MARBUS van Go Ahead EAGLES / liep tegen een GELE kaart aan ///

Translation:

Go Ahead EAGLES / visited Fortuna SITTARD // and DREW ///
The duel ended in TWO // - ALL ///
FOUR thousand FIVE hundred SPECTATORS / came to “de BAANDERT” ///

<new-par>

The TEAM from SITTARD / took the LEAD after SEVENTEEN MINUTES / through a GOAL
by HammING ///

ONE minute LATER / SCHENNING from Go Ahead EAGLES / EQUALISED the score ///
After FORTY-EIGHT minutes / the FORWARD HAMMING / had his SECOND goal noted ///
In the SIXTY-FIFTH minute / the Go Ahead EAGLES player DECHEIVER brought the
FINAL SCORE / to TWO // - ALL ///

<new-par>

The match was OFFICIATED by REFEREE UILENBERG ///

He did NOT issue any RED CARDS ///

MARBUS of Go Ahead EAGLES / picked up a YELLOW card ///

FIGURE 2.3: Example output of the LGM, describing the first match
from Figure 2.2. Accents are indicated by small capital letters, phrase
boundaries by /, // or ///, and the start of a new paragraph by <new-
par>.

22 / DESCRIPTION OF D28

2.4 Language generation in D2S

The language generation module of D2S (from now on abbreviated as
LGM) was designed for spoken information presentation in situations
where the user is likely to hear several presentations in succession. Vari-
ation in the generated presentations is important here, and this is re-
flected in the architecture of the LGM, sketched in Section 2.4.1. In
particular, the LGM has no global text planner but instead makes use
of a set of syntactic templates with conditions on their use (discussed in
Section 2.4.2). Combined with the use of topic information to achieve
coherence, these conditions act as a kind of local, reactive planner, as
discussed in Section 2.4.3. The selection of syntactic templates and the
filling of their slots is discussed in Section 2.4.4; finally, a detailed ex-
ample is given in Section 2.4.5.

2.4.1 Architecture

The general architecture of the LGM is depicted in Figure 2.4. The
module Generation contains the basic generation algorithm of the LGM
(see Figure 2.9). It takes data from outside the system as input; in
GoalGetter these are data concerning the characteristics of a particular
football match. Because the Teletext pages provide football results in
a fixed format, a simple parser can be used to convert the information
they contain into typed data structures, which are used as a basis for
generation. Figure 2.5 shows the LGM’s input data structure for the
first match of Figure 2.2.

In addition to the input data, the LGM also uses domain data, i.e.,
a collection of relatively fixed background data on the relevant domain.
In GoalGetter these are data about the football teams and their players,

domain data| | Knowledge State

fo

data—t»| GENERATION |— PROSODY

111

syntactic
templates Context State

enriched
>

- text

FIGURE 2.4: The architecture of the language generation module.

LANGUAGE GENERATION IN D2S / 23

match
teampair
teams : home_team : Fortuna_Sittard
visitors : Go_Ahead_Eagles
resulttype
result : home_team: 2
visitors : 2
(goallist 3
[goal_event
team : Fortuna_Sittard
1. player : Hamming
minute : 17
type : normal
[goal_event
team : Go_Ahead_Eagles
2. player : Schenning
minute : 18
type : normal
goals : { ol
[goal_event
team : Fortuna_Sittard
3. player : Hamming
minute : 48
type : normal
[goal_event
team : Go_Ahead_Eagles
4. player : Decheiver
minute : 65
type : normal
\ 7/
referee : Uilenberg
spectators : 4500
cardlist
card_event
team : Go_Ahead_Eagles
cards : 1. player : Marbus
minute : —
type : yellow

FIGURE 2.5: Data structure representing the first match of Figure 2.2.

such as the home town of each team and the position and nationality
of each player. These data are stored in typed data structures for the
teams and their players. An example is the feature structure containing
information about the team Fortuna Sittard, shown in Figure 2.6. The
domain data serve as a supplement to the system’s input data from

24 / DESCRIPTION OF D28

Teletext, and are used to achieve more variation in the generated texts
by providing additional information about the players and teams that are
mentioned. For instance, knowledge about the positions of the players
provides the system with more possibilities for the generation of referring
expressions than if only the Teletext data were available. Examples of
the use of domain data in Figure 2.3 are the reference to the stadium
of Fortuna Sittard as “de Baandert”, the reference to Fortuna Sittard
as the team from Sittard and the second reference to Hamming as the
forward Hamming. On the basis of only the input data shown in 2.5
(and derived from the first half of Figure 2.2), “de Baandert” could not
have been referred to, and teams and players could only be referred to
using their proper names.

team
name : Fortuna Sittard
hometown : Sittard
stadium : de Baandert
trainer : Verbeek
playerlist
player
first_name: Ronald
1. last_name : Hamming
players : nationality : Dutch
position : forward
2.

FIGURE 2.6: Background data structure for the team Fortuna Sittard.

The module Generation additionally uses a collection of syntactic
templates to express (parts of) the input data. Syntactic templates con-
tain syntactic tree structures with open slots for variable information.
The syntactic information from the templates is used for prosody compu-
tation (see Section 2.5), and for checking certain grammatical conditions
(see Section 2.4.4). Each syntactic template has a (complex) condition
on its use, and the interplay between these conditions during generation
determines the structure of the generated text. The form and content
of the syntactic templates and their use in generation are discussed in
detail below.

During generation, two records are kept. One of them is the Know-
ledge State. It records which parts of the input data structure have been
expressed by the system (these are assumed to be known to the user)
and which parts have not (these are assumed to be unknown). The
Knowledge State takes the form of a labelling on all fields in the input

LANGUAGE GENERATION IN D28 / 25

data structure, indicating if their values are known to the user or not.
Initially, all fields in the input data structure are labelled ‘unknown’.
After generation of a sentence that expresses one or more fields of the
input data structure, these fields are labelled as ‘known’. The Know-
ledge State information is used to guide the selection of templates by
the Generation module.

In addition to the Knowledge State, there is another record which
is kept during generation: the Context State, which records various as-
pects of the linguistic context (i.e., the text that has so far been gen-
erated). A central part of the Context State is the Discourse Model,
which keeps track of the discourse objects that have been mentioned.
The information in the Context State is used, among others, during the
generation of referring expressions and the computation of prosody. For
a detailed discussion of the modelling and use of contextual information
in the LGM, see van Deemter and Odijk 1997. Finally, the Prosody
component computes the prosodic features of each generated sentence.

Due to its use of syntactic templates with associated conditions, dis-
cussed in Section 2.4.2, the LGM does not have a pipeline architecture
as sketched in Section 1.2.1. In the LGM, three of the main generation
tasks distinguished by Reiter and Dale 1997 (outlined in Section 1.2.1)
are performed directly through application of the syntactic templates.
These tasks are sentence aggregation, lexicalisation, and linguistic real-
isation. No specific algorithms or system components are required for
these tasks. The generation of referring expressions, however, does con-
stitute a separate task in the LGM. It is used to fill the open slots in the
templates, and is thus a part of the template application procedure (see
Section 2.4.5 below). Unlike most NLG-systems, the LGM does not have
global discourse planning. Instead, it uses a form of local planning, dis-
cussed in Section 2.4.3 below. Finally, in principle the LGM allows for a
simple form of content determination. This is used in the DYD-system,
where the user can indicate whether he or she wishes to hear a short or
a long text presentation. For the generation of a short text, the system
uses only a subset of all available templates. Content determination in
the LGM is not discussed in this chapter, since in the GoalGetter system
no content determination is performed: all input data are expressed in
the output text.

2.4.2 Syntactic templates

One of the main characteristics of the LGM is the usage of syntactic
templates. Each syntactic template can be used to express one or more
parts of the system’s input data structure. Figure 2.7 contains an ex-
ample template from GoalGetter, which has been used to generate the

26 / DESCRIPTION OF D2S

Template Sent16

S =
CP

<time> C

co 1P

liet
(‘had’)
<player> VP

NP Vo

aantekenen
(‘noted”)
<player_gen> N

N

<ordinal> NO
doelpunt
(‘goal’)

E = time « ExpressTime (currentgoal. minute)
player — ExpressObject (currentgoal.player, nom)
player_gen «— ExpressObject (currenitgoal.player, gen)
ordinal — ExpressOrdinal (ordinalnumber)

C = Known (match.teams) A
currentgoal = First (unknown, match.goals) A
GoalsScored (currentgoal.player) > 1 A
currentgoal.type # owngoal

= ‘game_course’

FIGURE 2.7: Syntactic template used for the generation of the sixth sen-
tence of Figure 2.3, Na achtenveertig minuten liet de aanvaller Hamming
zijn tweede doelpunt aantekenen (“After forty-eight minutes the forward
Hamming had his second goal noted”). (CP = Complementiser Phrase,
IP = Inflectional Phrase)

sixth sentence of the example text in Figure 2.3. Formally, a syntactic
template o is a quadruple (S, E, C,T), where S is a syntactic tree (typi-
cally for a sentence) with open slots in it, E is a set of links to additional
syntactic structures which may be substituted in the gaps of S, C is a
(possibly complex) condition on the applicability of o and a T is a set
of topics. Let us discuss the four components of the syntactic templates
in some more detail, beginning with the syntactic tree S.

All interior nodes of the syntactic tree structures S are labelled by

LANGUAGE GENERATION IN D2S / 27

non-terminal symbols, while the nodes on the frontier are labelled either
by terminal or non-terminal symbols. The non-terminal nodes on the
frontier are the gaps which are open for substitution. The syntactic trees
in the templates bear a certain resemblance to the initial trees of Tree
Adjoining Grammar (TAG, Joshi 1987), but a notable difference with
TAG trees is that the latter are generally ‘minimal’, i.e., only the head of
the construction is lexicalised and the gaps coincide with the arguments
of the head, whereas the syntactic trees in the templates may contain
more words, often in order to express collocations (groups of words with
a frozen meaning). Examples of collocations occurring in the GoalGetter
templates are een doelpunt laten aantekenen (“have a goal noted”) (as
in Template Sent16) and de leiding nemen (“take the lead”).

The second element of a syntactic template is E: the slot fillers. Each
open slot in the tree S is associated with a call of a so-called Express
function, which generates the set of possible slot fillers for the given gap.

The third ingredient is C: the condition. A template o is applicable
if and only if its associated condition is true. Two kinds of conditions
can be distinguished: (¢) conditions on the Knowledge State and (%)
linguistic conditions. Conditions of the former type state things like “X
should not be conveyed to the user before Y is conveyed”. The first two
(sub)conditions of Template Sent16 are of this kind. They state that the
template can only be used if the competing teams have been introduced
to the user (i.e., are known) and the current goal is the first one which
has not been conveyed (is unknown). The first condition has to do with
the desired global discourse structure. GoalGetter employs the strategy
of first presenting general information, and then giving further details.
So, the competing teams should be known to the user before the system
can describe who scored when. The first condition therefore checks if the
teams field of the input match has been labelled ‘known’. The second
condition ensures that the template only expresses goals which have not
been previously described: the function First takes the first goal_event
from the goals list that is labelled ‘unknown’. If there is no such goal
(i.e., all goals have been described), the template is not applicable.

‘Linguistic’ conditions are related to the semantics/pragmatics of the
sentence that can be generated from the template, and pose restrictions
on the kind of input data to which the template can be applied. The
two final conditions on Template Sentl6 are of this type. The first of
the two says that Sent16 is only applicable if the player of the current
goal has scored more than once during the match. Because a sentence
of the form X had his first goal noted creates the impression that player
X has scored at least more than one goal, such a sentence should not be
used if X has actually scored only once. The final condition on Template

28 / DESCRIPTION OF D2S

‘GAME_COURSE'
‘GENERAL’ -

Sent12

Sentl0 Sent14

8
‘GAME_STATISTICS Sen

FIGURE 2.8: Topics and templates.

Sent16 states that this template cannot be used to describe an own goal.
This restriction is added because using the phrase having a goal noted to
describe an own goal would give rise to a false conversational implicature
(Grice 1975) by creating the impression that the current goal is a normal
goal when, in fact, it is not.

Finally, each template ¢ contains a set of one or more topics T'. These
are labels which globally describe what the syntactic template is about.
The LGM algorithm uses the topic information to group sentences to-
gether into coherent chunks of text. Fach topic has several templates
associated with it, and each template is associated with one or more
topics. This situation can be illustrated using the simple Venn diagram
in Figure 2.8, which represents the topics and templates of the Goal-
Getter system. In GoalGetter, which is a relatively small system, there
are only three topics: (i) ‘general’ (giving general information about,
for instance, the names of the opposing teams and the final result of
the match), (i) ‘game_course’ (giving information about events which
occurred at a specific time during the match) and (44) ‘game_statistics’
(giving details of the match that are not necessarily associated with a
specific time, e.g., bookings of specific players). The GoalGetter sys-
tem currently contains approximately 30 syntactic templates, not all of
which are shown in Figure 2.8. Some of these templates belong to more
than one topic; for instance, information about red cards (which cause a
player to be sent off the field during the game) can either be expressed
as part of the ‘game_course’ or as part of the ‘game_statistics’. Similarly,
information about the number of spectators of a match may be seen as
part of either the ‘general’ information or the ‘game statistics’.

Not all of GoalGetter’s templates are used in each text; for instance,

LANGUAGE GENERATION IN D28 / 29

if no own goals occurred in the match to be described, the templates that
express the scoring of an own goal are not used. In addition, each piece
of information from the input data structure can typically be expressed
using more than one template. For instance, in GoalGetter there are four
different templates available to convey information about the referee of
a match. The selection of templates and the form of ‘discourse planning’
used in the LGM are discussed in Section 2.4.3 below.

2.4.3 Topics, conditions and coherence

Given a set of syntactic templates that can be used to create sentences
expressing parts of the input data, a method is neededfor combining
these sentences into a coherent output text. Various approaches are
possible here, such as the use of an explicit grammar which states where
each sentence can occur. A different approach would be to make use of
a form of text planning where, before linguistic realisation, the pieces of
information to be conveyed are grouped in such a way that a coherent
text results. In the LGM, a different approach has been taken, starting
as it were from the other side: instead of explicitly specifying in advance
where in the output each sentence should occur, it is assumed that in
principle all sentences can occur anywhere, but that conditions prohibit
their use in some cases. This approach aims at achieving a high de-
gree of variation in the output texts. Variation is important, since the
users of typical D2S applications are expected to listen to several texts
in succession. If these texts do not show sufficient variation, this will
presumably be slightly boring (Odijk 1995).

So, the generated texts must be both varied and coherent. Presum-
ably, the two main requirements for achieving global coherence of a text
are (i) the information must be presented in a natural order, and (i)
the information must be presented in natural groupings. To ensure a
natural grouping of the sentences in the output of the LGM, the topics
associated with the templates are used. Each paragraph in the generated
text contains only sentences that have been generated from templates
sharing the same topic. In the GoalGetter example in Figure 2.3, the
first paragraph corresponds to the ‘general’ topic, the second paragraph
is about the ‘game_course’ and the third about ‘game statistics’.

The ordering of paragraphs in a text and sentences in a paragraph is
determined by the conditions on the templates. A template can be used
if it belongs to the topic of the current paragraph, and if its conditions
evaluate to true given the current Knowledge State. If more than one
template is applicable in the current state of the generation process (and
this will often be the case), one is chosen arbitrarily. After a sentence
has been generated from the chosen template, the Knowledge State is

30 / DESCRIPTION OF D2S

updated and new templates become applicable. If there are no more ap-
plicable templates within the current topic, a new topic must be chosen.
There is no a priori ordering on the topics; whether a new paragraph can
be started given a topic T' depends on the applicability of the templates
within that topic. If there are no templates associated with T whose
conditions evaluate to true in the current Knowledge State, T' must
be skipped until the Knowledge State has been sufficiently changed for
some of its templates to be applicable. Below, the generation algorithm
is discussed in detail and illustrated with some examples.

One might argue that the conditions on the templates act as a dis-
tributive, reactive planner, in the sense that the conditions are spread
across the templates and respond to the current stage of the generation
process. This ‘local condition’ approach makes it possible to formulate
certain general principles on the presentation of information (e.g., that
global information is pre